

Development of an Automation Test Setup for

Navigation Data Processing

Master Thesis

for

the fulfillment of the academic degree

M.Sc. in Automotive Software Engineering

Faculty of Computer Science

Department of Computer Engineering

Submitted by: Dhruvjit Vilas Bhonsle, 29/12/1989

Supervisor: Prof. Dr. W. Hardt

 Prof. Mirko Lippmann

 Basti Anil Shenoy (Bosch GmbH)

 Ralf Feil (Bosch GmbH)

 David Ayemle (Bosch GmbH)

Dhruvjit Vilas Bhonsle (dhruvjit-vilas.bhonsle@s2012.tu-chemnitz.de)

Development of an Automation Test Setup for Navigation Data Processing

Master Thesis, Technische Universität Chemnitz, December 2015

mailto:dhruvjit-vilas.bhonsle@s2012.tu-chemnitz.de

Acknowledgement

This master thesis is an outcome of direct and indirect support from large group of people.

Firstly, I would heartily convey my thanks to my mentors Prof. Dr. Wolfarm Hardt and

Prof. Mirko Lippmann who gave important guidance and ideas during my presentations

and before even I began my work.

I am also very much thankful to Dr. Ariane Heller who greatly supported me with

organizing my thesis. Her prompt feedbacks were very helpful from beginning to an end of

my thesis. It was due to guidance of Prof. Dr. Hardt, I was able to undertake my thesis work

at Bosch, Abstatt in department of electronics engineering.

My thesis was well guided under the supervision of my mentor Mr. Basti Anil Shenoy. Under

any circumstances it would not have been possible to finish my thesis work in given time

period without his nonstop efforts. I would also like to thank Mr. Ralf Feil and Mr. David

Ayemle for their technical inputs throughout my term. I am very grateful to my mentors at

company for giving me chance to contribute my efforts for such an innovative project.

Also, I am very much thankful to my friends, especially Himanshu, Ketan and Mrinal for

encouraging and helping me to achieve my goals. It was because of them I was able to plan

my priorities right. Lastly, I want to express my love and gratitude towards my family

members who continuously made efforts for boosting my work-life balance.

Thank you,

Dhruvjit

Abstract

With the development of Advanced Driving Assistance Systems (ADAS) vehicles have

undergone better experience in field of safety, better driving and enhanced vehicle systems.

Today these systems are one of the fastest growing in automotive domain. Physical

parameters like map data, vehicle position and speed are crucial for the advancement of

functionalities implemented for ADAS.

All the navigation map databases are stored in proprietary format. So for the ADAS

application to access this data an appropriate interface has to be defined. This is the main

aim of Advance Driver Assistant Systems Interface Specifications (ADASIS) consortium.

This new specification allows a coordinated effort of more than one industry to improve

comfort and fuel efficiency.

My research during the entire duration of my master thesis mainly focuses on two stages

namely XML Comparator and CAN stream generation stages from ADASIS Test

Environment that was developed in our company. In this test environment ADASIS

Reconstructor of our company is tested against the parameters of Reference Reconstructor

provided by ADASIS consortium. The main aim of this environment is to develop a

Reconstructor which will adhere to all the specifications given in ADASIS Reconstructor.

My implementation in this master thesis focuses on two stages of test environment setup

which are XML Comparison and CAN Stream Generation Tool respectively. Prior to my

working, these stages lacked in-depth research and usability features for further working.

Table of Contents

1. Introduction .. 1

1.1. Motivation ... 2

1.2. Objective ... 3

1.3. Organization of Thesis .. 4

1.4. Type and Contribution .. 4

2. State of The Art .. 5

2.1. CAN Script Generator ... 6

2.1.1. CAN Trace View ... 7

2.1.2. Main Use .. 8

2.2. Reconstructors ... 9

2.2.1. API for Information Retrieval.. 10

2.2.2. Main loop of Simulation .. 11

2.3. XML Dumper .. 12

2.3.1. Deployment .. 14

2.3.2. Application Interface ... 15

2.4. XML Comparison .. 18

3. ADASIS v2 Protocol .. 19

3.1.Digital Map Database ... 20

3.1.1. Path Presentation.. 21

3.1.2. Optimized Path Presentation .. 22

3.2. Building Blocks ... 23

3.3. Paths and Offsets ... 25

3.3.1. Path Length Limits... 26

3.3.2. Path Profiles ... 27

3.4. Messages .. 28

3.4.1. Message Types ... 28

3.4.2. Message Types Description ... 29

4. Concept of XML Comparison Tool .. 31

4.1. XML File ... 31

4.1.1. XML File Description .. 31

4.1.2. XML Structure ... 32

4.2. University standard Open Street Map (OSM) ... 34

4.2.1. Open Street Map Attributes ... 35

4.2.2. Open Street Map (OSM) vs Bosch XML Mapping ... 35

4.3. Necessity for XML Comparison Tool ... 36

4.3.1. Availability .. 36

4.3.2. Problems with BeyondCompare .. 37

4.4. Research for Implementation .. 38

4.4.1. XML Parsers .. 38

4.4.2. Working with Libraries .. 38

4.4.3. User Interface ... 39

4.4.4. Software Tools used... 39

4.5. Planned Research Approach .. 40

4.5.1. Primary Stages ... 40

4.5.2. Saving Stage .. 41

5. Concept of CAN Stream Generation Tool .. 42

5.1. Script Structure .. 42

5.1.1. CAN Stream Generation Algorithm .. 42

5.1.2. Assigning Attributes to CAN data ... 43

5.2. Necessity of CAN Stream Generation Tool .. 44

5.3. Research for Implementation .. 44

5.3.1. Parameters .. 44

5.3.2. Input to Parameters .. 44

5.3.3. Saving Output to File ... 45

6. Realization and Implementation .. 46

6.1. Reordering Approach for XML Comparator ... 47

6.1.1. Program Structure .. 48

6.1.2. Logic Implementation .. 49

6.2. Comparison approach for XML Comparator .. 55

6.2.1. Program Structure .. 56

6.2.2. Logic Implementation .. 57

6.3. Saving Information of Comparison ... 64

6.4. Displaying Information of Comparison ... 68

6.4.1. Developing User Interface ... 69

6.4.2. Binding results to User Interface ... 70

6.5. Implementing Interface for CAN Script Generator ... 75

6.5.1. Program Structure .. 75

6.5.2. Logic Implementation .. 76

7. Results ... 80

7.1. XML Comparator .. 80

7.2. Old Comparator interface vs New Comparator ... 83

7.3. CAN Stream Generator ... 85

8. Summary ... 87

8.1. Conclusion ... 87

8.2. Limitation .. 87

9. Appendix ... 88

List of Figures

1.1. ADASIS Interface .. 1

1.2. ADASIS Interface Description .. 1

1.3. ADASIS Test Setup ... 3

2.1. CAN Stream Generation Script ... 6

2.2. CAN Trace View ... 7

2.3. CAN Stream Generator use ... 8

2.4. Packet Structure of Reconstructor ... 9

2.5. DataStore APIs .. 10

2.6. Event APIs ... 10

2.7. Main Simulation Loop ... 11

2.8. XML Code Generation .. 12

2.9. Deployment XML Dumper ... 14

2.10. Application Interface ... 15

2.11. XML Dumper Integration .. 16

2.12. XML File created from Dumper .. 17

2.13. XML Comparison in BeyondCompare .. 18

3.1. ADAS Application Architecture ... 19

3.2. Digital Map .. 20

3.3. Front view Retained ... 20

3.4. Pure Path Representation ... 21

3.5. Optimized Path Representation ... 22

3.6. Application View ... 22

3.7. Main Path ... 23

3.8. Main Path with Stubs ... 23

3.9. Main Paths with first level stubs .. 24

3.10. Full Horizon ... 24

3.11. Offsets .. 25

3.12. Path Length Limits .. 26

3.13. Path Profiles ... 27

4.1. XML Map Representation ... 31

4.2. Horizon Preview .. 32

4.3. XML File Structure ... 32

4.4. XML File Format ... 33

4.5. Sample OSM Map file ... 34

4.6. BeyondCompare Comparison Window ... 36

4.7. Planned Approach for XML Comparison Tool ... 40

4.8. Saving Results to XML File .. 41

5.1. CAN Stream Generation Tool ... 42

5.2. Path Attributes ... 43

6.1. Mismatching file Contents ... 47

6.2. Reordering Process .. 47

6.3. Reordering Approach .. 48

6.4.Tree Parsing .. 50

6.5. Comparison Approach (XML Comparator) .. 56

6.6. Comparison of Profiles .. 59

6.7. First Objective – detect order Change in different “Type” attribute 61

6.8. Second Objective – detect order change in same “Type” attribute 61

6.9. BeyondCompare Error ... 62

6.10. First Scenario Solution .. 62

6.11. Second Scenario Solution .. 63

6.12. Saving Comparison results to XML file .. 64

6.13. Approach for User Interface .. 69

6.14. Interface for opening/loading files .. 70

6.15. Comparison Results ... 72

6.16. Highlighting Algorithm ... 73

6.17. Highlighting Results .. 74

6.18. CAN Stream Generator Implementation ... 75

6.19. Creating Entries (can_structure.py) ... 76

6.20. Scale Widget Tkinter (can_structure.py) ... 77

7.1. XML Comparator Main Window .. 80

7.2. XML Comparator Compare/Load ... 81

7.3. Old XML Comparator Interface .. 83

7.4. CAN Stream Generator ... 85

7.5. Can Stream Generator Loading Data ... 86

List of Tables

1. Message Type Field .. 29

2. ADASIS v2 as Multiplexed CAN Protocol .. 29

3. ADASIS v2 as Non Multiplexed CAN Protocol .. 30

4. XML Comparator (File Structure).. 46

5. XML elements and Attributes .. 50

6. Can Stream Generator (File Structure) ... 76

Listings

1. Load “Reference.xml” and “Copy.xml”... 49

2. XML Parsing .. 50

3. Parsing and storing data .. 51

4. Timestamps after parsing XML file ... 51

5. Looping elements in parallel .. 52

6. Making New XML element ... 52

7. Storing Car attributes in reordering .. 53

8. Comparing Indexes .. 54

9. Write ordered stubs to XML file .. 54

10. Comparing Car Attribute .. 57

11. Checking First Stub Order .. 58

12. Storing Profile Data .. 60

13. Storing Data in Dictionary ... 60

14. Writing Car Difference ... 65

15. Calculating length of values inside keys .. 66

16. Writing Profile values to XML file .. 67

17. Opening/Loading files for Comparison .. 70

18. Displaying Reordered Data .. 71

19. Creating Frame and Label for Car element .. 71

20. Creating label for Timestamp element ... 72

21. Highlighting events and calling class ... 73

22. Write values entered by user to file .. 77

23. Importing values and CAN stream generation ... 78

24. StubMessage class .. 79

25. Final Saved data from comparator ... 82

1 | P a g e

1. Introduction

Advance Driver Assistant Systems Interface Specifications (ADASIS) is a standard

protocol for compact representation and exchange of navigation information (digital map,

position and speed). It provides a limited preview of road geometry (crossing, curve,

slope…) around vehicle called the “ADAS Horizon” or “e-horizon”.

The horizon preview is made available to ADAS application via standard interfaces. The

preview is then used by applications as predictive sensor data to enhance their functionality.

In Figure 1.2 Server ECU provides the horizon information to the client ECU and

information is exchanged between ADAS horizon provider (AHP) and ADAS horizon

reconstructor (AHR) via CAN bus. One thing to note here is server ECU is continuously

updated with latest horizon information from the server. This setup is installed together in

the car

Figure 1.1: ADASIS Interface [1]

Figure 1.2: ADASIS Interface Description [1]

2 | P a g e

1.1. Motivation

After standard objectives of ADASIS consortium were announced we wanted to develop

our own implementation of reconstructor which would follow the guidelines of ADASIS

reconstructor. The main entities that are part of ADAS applications are:

ADAS Horizon Provider – This maintains the ADAS Horizon

ADAS Protocol – This defines how ADAS Horizon will be sent from ADAS provider

ADAS Application – It is a client application that receives the ADAS Protocol messages

then reconstructs and uses the ADAS Horizon [1]

Main motivation behind test environment is to verify the conformance of Bosch

Reconstructor against Reference Reconstructor which is provided by ADASIS consortium.

Moreover, to nullify the differences or errors if generated once the test setup was deployed

there was need to come up with efficient XML data comparison tool because the

information of horizon is specifically stored in XML format.

Similarly, for the CAN stream generation stage which is part of our test environment setup

there was a need to develop robust tool that will allow developers to use user interface

which will take manual input of test points and output CAN data.

Since horizon attributes are crucial for classifying data which will be discussed ahead there

was a great requirement of research to develop these useful tools that will work on applying

different set of rules for providing better usability to developers.

3 | P a g e

1.2. Objective

Test environment setup is divided into above given five work packages. The main objective

of this thesis is to mainly undertake work package-1 and if time permits then focus on work

package-4. Main implementation consists of deploying different functions and features for

software tool based on specific research rules related with these two work packages.

First implementation stage consists of developing a working XML Comparison tool which

is located in work package-4. This is current top priority of our organization and hence it

was taken first into consideration.

Work package-1 is CAN stream generation stage where CAN data has to be generated using

the CAN interface tool which will be developed in second implementation stage as it is not

top priority task. CAN scripts are available for CAN data stream generation and there only

lacks a solid user interface to handle them.

Figure 1.3: ADASIS Test Setup [2]

4 | P a g e

1.3. Organization of Thesis

This thesis is divided into nine chapters and each one with sub sections. Chapter one mainly

deals with motivation and objectives.

In chapter two main focus is given on state of the art which comprises of technology

available for four sub section – CAN Script Generator, Reconstructor, XML dumper and

lastly XML Comparison Tool.

Chapter three sheds some light over the ADASIS v2 Protocol which is crucial to understand

before mentioning concept of XML comparison. It consists of description of digital map

database, Path profiles and messages.

Chapter four explains about research for development of XML comparator which covers

necessity for this task and my approach to fulfill it. Similarly, Chapter five focuses on

concepts for CAN script generator tool.

Chapter six shows implementation for XML comparator and CAN script generator. This

covers explanation for implementation of algorithms and logics. Finally in Chapter seven

working results are presented.

Lastly, to conclude in Chapter 8 summary is described which states conclusion, Challenges

and Limitation. With last Chapter 9 I have marked the end of my thesis.

1.4. Type and Contribution

This master thesis is a combined mixture of “Research and Implementations” of software

tools to gain desired output. After understanding the prevalent technology and ongoing

requirement of Xml Comparator and CAN script generator. My contribution to thesis was:

- Develop working XML comparator

o Research Comparison rules

o Take order change into effect

o Highlight errors

o Saving results to XML file

- Develop working model of CAN stream generation

o Research means to get data as input for defined range

o GUI to receive input and output from user

5 | P a g e

2. State of the Art

The image shown in Figure 2 is the current situation of environment under test. The entire

system is developed to put ADASISv2 Reconstructor (Bosch or Test Reconstructor) under

test. This is done by comparing the difference between Reference Reconstructor and Bosch

Reconstructor. Finally these differences can be known and eliminated from the Test

Reconstructor to make it follow the functioning of Reference Reconstructor.

Our test setup is divided into five work packages and for every stage there is a degree of

development associated with it which is explained as below:

- [WP1] CAN test stream generation: Basic Python based framework and scripts are

available

- [WP2] Simulation setup for executing the 2 reconstructors: Eclipse based

simulation projects are available

- [WP3] XML log dumper: C++ based solution is available

- [WP4] XML log comparison: Currently manual file comparison done using

BeyondCompare tool

- [WP5] Integration of WP1 – WP4 into a single test automation setup: Currently no

solution available.

The state of the art is further explained here covering all the stages shown in figure 2 in

detail. Explanation from work package 1 to work package 5 is presented.

Figure 2: ADASIS test setup state of the art [2]

6 | P a g e

2.1. CAN Script Generator

This is a python based framework which is used to generate CAN trace files. Test cases

specified in the Test specification are implemented as Python scripts using the framework.

The result of the script execution is suitable CAN file used as input for the Re-constructors.

Create a horizon on a single path with multiple profile spots within the horizon limits. Then

move forward to see whether the entries behind are removed from the horizon. The removal

of entries are done here because as the vehicle moves forward the entries from the past

location are supposed to be removed as they hold no significance.

One of such script works on following parameters:

 single path: path ID = 8

 initial car position: 2000

 initial horizon: [1900,2500]

 profile type: Slope Linear

 profile spots: [1800,1899,1900,2000,2300,2499,2500,2700,3000,3100]

 move car: 2100, 2200, ….., 5000

Above data depicts different points that are needed for data deletion which is in reference

to past details. The script which is making use of above details is able to generate CAN

trace file. A short view of this script is explained below:

Figure 2.1 CAN stream generation script

Path ID Initial Car Position Profile Spots Move Car

msg = StubMessage()

msg.offset = 0

msg.pathId = 0

msg.subPathId = 8

print msg.toString()

msg.toFile(f)

msg = PositionMessage()

msg.offset = 2000

msg.pathId = 8

print msg.toString()

msg.toFile(f)

for offset in

[1800,1899,1900,2000,2300,249

9,2500,2700,3000,3100]:

 msg = ProfileShortMessage()

 msg.offset = offset

 msg.pathId = 8

 msg.profileType =

ProfileShortType.AV2_SLOPE

_LIN

 msg.value0 = 10

 msg.distance1 = 0

 print msg.toString()

 msg.toFile(f)

for offset in

range(2100,5000,100):

 msg = PositionMessage()

 msg.offset = offset

 msg.pathId = 8

 print msg.toString()

 msg.toFile(f)

7 | P a g e

2.1.1. CAN Trace View

When script runs as explained in Figure 2.1 it generates a CAN trace file which is in ASCII

format as shown below. This file is later on fed to the Reconstructor which is covered in

section 2.2.

 0.000000 1 121 Rx d 8 60 00 00 20 00 00 00 00 Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 27 d0 08 00 00 00 00 00 Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 87 08 08 20 00 00 2b ff Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 87 6b 48 20 00 00 2b ff Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 87 6c 88 20 00 00 2b ff Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 87 d0 c8 20 00 00 2b ff Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 88 fc 08 20 00 00 2b ff Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 89 c3 48 20 00 00 2b ff Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 89 c4 88 20 00 00 2b ff Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 8a 8c c8 20 00 00 2b ff Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 8b b8 08 20 00 00 2b ff Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 8c 1c 48 20 00 00 2b ff Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 28 34 48 00 00 00 00 00 Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 28 98 88 00 00 00 00 00 Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 28 fc c8 00 00 00 00 00 Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 29 60 08 00 00 00 00 00 Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 29 c4 48 00 00 00 00 00 Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 2a 28 88 00 00 00 00 00 Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 2a 8c c8 00 00 00 00 00 Length = 236000 BitCount = 122

 0.000000 1 121 Rx d 8 2a f0 08 00 00 00 00 00 Length = 236000 BitCount = 122

Figure 2.2: CAN Trace View

8 | P a g e

2.1.2. Main Use

As shown in above figure that CAN stream generator is used for feeding the input of test

setup with CAN data from trace file as opposed to the real time environment where data is

fed from original CAN bus. Since the test setup is simulated on the computer workspace,

CAN trace plays an important role in feeding setup with CAN trace. The real system and

our simulated systems is same except only the CAN stream generation block.

Av2HR-Target

Application SW

<<submodule>>

HRZ

<<submodule>>

Av2API

<<submodule>>

DEC

ComStack

CAN Bus

Av2HR-Simulation

Application SW

<<submodule>>

HRZ

<<submodule>>

Av2API

<<submodule>>

DEC

File Reader

CAN

Trace

Figure 2.3: CAN stream generator use [2]

9 | P a g e

2.2. Reconstructors

In the test setup which is shown in figure 2 there are two types of reconstructors used,

firstly, the reconstructor which is put under test (test or Av2HR Bosch reconstructor) and

other one is the reference reconstructor provided by ADASIS consortium (Av2HR-Ref

Reference reconstructor)

An ADASISv2 Bosch reconstructor is “compliant” if at any given time a complete query

of the eHorizon tree using the Av2HR DataStore-API matches the eHorizon tree of the

Av2HR reference reconstructor while been feed with the identical ADASISv2 CAN stream

and configured with the same trailing horizon length.

Above chart describes the package structure of reconstructors. All the packages listed

above are same for test and reference reconstructor.

Figure 2.4: Package Structure of Reconstructors [2]

pkg Av 2HR Package Structure

Av 2HR

notes

The customer specific

reference reconstructor to

be tested.

Av 2API

notes

- implements the API

functions as defined by

the ADASIS consortium.

- this functions can be

called by an other

application to request

horizon data from the

recontructor.

- identical to target

code.

DEC

notes

CAN Message Decoder:

- receive CAN

messages (raw bytes).

- decode the raw bytes

dependent on message

type and profile type.

- signal extraction.

- handover the

decoded SDU to the HRZ

sub module.

- identical to target

code.

HRZ

notes

- implements the

horizon data storage and

the entity deletion logic.

- identical to target

code.

PRJ

notes

- contains project

specific code and

definitions like constants,

interfaces, and so on.

- identical to target

code.

SIM

notes

- contains the code

required to simulate the

Av2HR on a PC.

- implements the main

routine of the simulation

which reads CAN

messages from a CAN

trace fi le and forwards

them to the DEC

submodule.

- simulation specifc

code not available in

target implementation.

Av 2HR_SIM_Test

+ SIM_StartAv2HRSimulation_V(char*) :void

10 | P a g e

2.2.1. API for Information retrieval

To retrieve any information from the reconstructors we have to make use of specific

DataStore API. To follow the ADASIS guidelines any compliant reconstructor has to

provide following DataStore API:

Similarly any compliant reconstructor also has to provide Event API which is mentioned:

av2hr_e Av2HR_getPosition (uint8_t index, av2hr_position_t* position)

av2hr_e Av2HR_getStub (av2hr_pathid_t pathId, av2hr_offset_t offset, uint8_t index, av2hr_stub_t* stub)

av2hr_e Av2HR_getProfileRange (uint16_t type, av2hr_pathid_t pathId, av2hr_offset_t* x0, av2hr_offset_t* x1)

av2hr_e Av2HR_getProfile (uint16_t type, av2hr_pathid_t pathId, av2hr_offset_t offset, av2hr_profiledesc_t* pd)

av2hr_e Av2HR_getLocation (uint16_t* countryCode, uint16_t* regionCode)

av2hr_e Av2HR_getDrivingSide (bool_t* drivingSideRight)

av2hr_e Av2HR_getSpeedUnit (bool_t* speedUnitMPH)

av2hr_e Av2HR_getProtocolVersion (uint8_t* major, uint8_t* minor, uint8_t* subminor)

av2hr_e Av2HR_getHardwareVersion (uint16_t* hardwareVersion)

av2hr_e Av2HR_getMapProvider (av2hr_mapprovider_e* mapProvider)

av2hr_e Av2HR_getMapVersion (uint16_t* mapVersionYear, uint8_t* mapVersionQuarter)

Figure 2.5: DataStore APIs

av2hr_e Av2HR_onNewPosition (const av2hr_position_t* p)

av2hr_e Av2HR_onNewSegment (const av2hr_segment_t* p)

av2hr_e Av2HR_onNewStub (const av2hr_stub_t* p)

av2hr_e Av2HR_onNewProfile (const av2hr_profile_t* p)

av2hr_e Av2HR_onNewMetaData (const av2hr_metadata_t* p)

av2hr_e Av2HR_onMissingMessage (const av2hr_msgtype_e msgType)

Figure 2.6: Event API

11 | P a g e

2.2.2. Main Loop of Simulation

In the main loop of simulation we can see that the simulation reads from a CAN trace file,

extracts the raw data bytes and afterwards directly calls Av2HR functions of the original

target reconstructor. At the end of the process we will have fully dumped XML file which

will have all the information of horizon.

Figure 2.7 Main simulation loop [2]

act SIM

Initialize the reconstructor

Initialize and create the

XML Dumper instance

read line from CAN

trace fi le

Extract the CAN message

raw bytes

l ine != End Of File ?

EndOfSimulation

Dump the horizon to the

XML file.

(XmlDumper::xmlDump)

Call the CAN message receiv e callback function

(Av2HR_PRJ_Includes::Av2HR_CANMsgRxCbk_V)

Call the Av 2HR cyclic function to update

the horizon data store with the new

message
(Av2HR_PRJ_Includes::Av2HR_Cyclic_V)

[YES]

[NO]

12 | P a g e

2.3. XML Dumper

The XML Dumper is querying the eHorizon tree using the Av2HR DataStore API after

each new CAN packet that has arrived and processed by the reconstructor. The XML-

Dumper has been integrated into the Av2HR-Reference simulation. It is called in the main

loop of the simulation each time a CAN message has been processed.

The task of the XML-Dumper is to request the complete horizon from an Av2HR

reconstructor and to dump this horizon into an XML file. To request the horizon data from

the Av2HR it uses the standard ADASIS Av2 API which is implemented by the

reconstructor. The data received by the reconstructor is mapped to the XML format which

has been specified by the ADASIS consortium. Finally the XML result is written to an

XML file.

The following sections will give some details about the XML-Dumper architecture and its

implementation.

Figure 2.8: XML Code Generation [2]

dfd XML Schema Code Generation

eHorizon.xsd XSD-Generator

eHorizon.hxx

eHorizon.cxx

XML Schema input file

defined by the ADASIS

consortium.

Generated header file

with class definitions.

Generated source file.

Configuration

13 | P a g e

The format and contents of the XML file / dump is defined in a XML DTD by the ADASIS

consortium. This XML schema file is the input file of a so called XML schema to C++ data

binding compiler. In this project the open source compiler CodeSynthesis XSD is used for

this purpose (XSD-Generator). It generates C++ classes which realize and cover all the

XML functionality needed to generate the XML dump. The following excerpt from the

CodeSynthesis website explains what is does and what the benefits are:

“CodeSynthesis XSD is an open-source, cross-platform W3C XML Schema to C++ data

binding compiler. Provided with an XML instance specification (XML Schema), it

generates C++ classes that represent the given vocabulary as well as parsing and

serialization code. You can then access the data stored in XML using types and functions

that semantically correspond to your application domain rather than dealing with the

intricacies of reading and writing XML.”

Classes shown in Figure 2.9 implement an abstract and easy to use XML interface.

14 | P a g e

2.3.1. Deployment

Above diagram shows all files of the XML Dumper and describes its functionality. The

functionality is deployed programmatically using different classes. The description of all

classes inside files is also available in the individual blocks.

Figure 2.9: Deployment XML dumper [2]

deployment XML-Dumper Deployment

XML-Dumper

«artifact»

XmlDumper.h

notes

Declares the export functions of the XmlDumper. This is

the interface of the XML Dumper, i.e. an application

which wants to use the XML-Dumper service must include

this header fi le.

«artifact»

XmlDumperAv 2hrApi.cpp/.h

notes

This class declares and

implements all functions to

request the horizon data from an

ADASIS reconstructor by call ing

the Av2 API functions.

«artifact»

XmlDumperFileIo.cpp/.h

notes

declares and implements all

functions related to the XML

dump file:

- read from the fi le

- write to fi le

- create the fi le

- and so on.

«artifact»

XmlDumperConstants.h

notes

defines common used

constant values of the XML

Dumper.

«artifact»

XmlDumperCfg.h

notes

Definition of configuration values which have got

influence on the behavior of the XML-Dumper.

«artifact»

PositionDecoder.cpp/.h

notes

This class implements

the mapping from an

Av2API position data

structure into its XML

equivalent.

«artifact»

StubDecoder.cpp/.h

notes

This class implements

the mapping from an

Av2API stub data

structure into its XML

equivalent.

«artifact»

ProfileDecoder.cpp/.h

notes

This class implements

the mapping from an

Av2API profile data

structure into its XML

equivalent.

«artifact»

eHorizon.cxx/.hxx

notes

Files generated from the XML

schema file eHorizon.xsd. It

contains all the classes that

represent the specified XML

vocabulary as well as the XML

parsing and serialization code.

«artifact»

XmlDumper.cpp

notes

implements the XML-Dumper

interface / exported functions.

«manifest» «manifest»

«manifest» «manifest»«manifest» «manifest»

«manifest» «manifest» «manifest» «manifest»

15 | P a g e

2.3.2. Application Interface

The following section describes how XML-Dumper functionality can be integrated into

client Av2HR reconstructor.

The XML dumper artifact is a static library that can be used by another application to

request an Av2 horizon using the Av2API functions and dump it to an XML file. The XML

dumper internally uses Xerces-C for all XML handling. For this reason the Xerces Library

is embed in the XML-Dumper library.

Figure 2.10: Application Interface [2]

deployment TestEnv Deployment

XML-Dumper

«library»

XML-Dumper-Library

Av 2HR

«ex...

Av 2HR-Exec

«executable»

Av 2HR-Reference-Exec

«executable»

Xsd-Exec

Av 2HR-Reference

«library»

Xerces-Library

XmlDumper.h

«call»

«manifest» «manifest»«manifest»

«use» «use»

«manifest» «include»«include»

16 | P a g e

Integration of the XML-Dumper into a reconstructor is explained thoroughly in below

steps:

Figure 2.11: XML Dumper Integration

Include the file XmlDumper.h

#include <XmlDumper.h>

Somewhere in the init phase create an XML-

Dumper instance and init the dumper.

XmlDumper* xmlDumper = XmlDumper::getInstance();

Set path and name of the XML dump file

string xmlDumperFile = fileName;

xmlDumper->setOutFilename(xmlDumperFile);

And / Or clear the outfile if it already exists

xmlDumper->clearOutFile ();

To dump the horizon in the XML file call the

xmlDump() method

xmlDumper->xmlDump();

Output written in

XML File

17 | P a g e

The basic structure of the XML created from XML Dumper looks like this:

Each time the complete eHorizon is queried, the result is written into a new <time

nTimestamp=””>…</time> section and appended to the existing XML file. So at the end

of a dumper session the complete eHorizon history since start is available.

To create the XML output, the entire eHorizon tree is queried starting from the tree root

using the Av2HR DataStore API. Further explanation of XML file will be covered in

upcoming section of AV2HR Protocol.

Using this file any horizon related query can be found out at specific time or position.

<p1:time nTimestamp="18">

<p1:car age="495" confidence="0" heading="0" index="0" lane="7" nTimestamp="0"

 offset="402" pathId="136" probability="40" speed="1660" vpStat="0"/>

<p1:stub complexIntersection="0" formOfWay="2" functionalRoadClass="2"

 lastStubAtOffset="true" numberOfLanesInDrivingDirection="2"
 numberOfLanesInoppositeDirection="0" offset="0" partOfCalculatedRoute="3"
 pathId="0" relativProbability="100" rightOfWay="2" subPathId="136" turnAngle="0"
 update="false">

<p1:profile offset="299" type="AV2_CURVATURE">559</p1:profile>
 <p1:profile offset="323" type="AV2_CURVATURE">564</p1:profile>
 <p1:profile offset="353" type="AV2_CURVATURE">564</p1:profile>
 <p1:profile offset="391" type="AV2_CURVATURE">570</p1:profile>
 <p1:profile offset="448" type="AV2_CURVATURE">570</p1:profile>
 <p1:profile offset="458" type="AV2_CURVATURE">570</p1:profile>
 <p1:profile offset="548" type="AV2_CURVATURE">439</p1:profile>
 <p1:profile offset="613" type="AV2_CURVATURE">583</p1:profile>
 <p1:profile offset="676" type="AV2_CURVATURE">593</p1:profile>
 <p1:profile offset="299" type="AV2_SLOPE_LIN">516</p1:profile>
 <p1:profile offset="323" type="AV2_SLOPE_LIN”>516</p1:profile>
 <p1:profile offset="353" type="AV2_SLOPE_LIN">518</p1:profile>
 <p1:profile offset="391" type="AV2_SLOPE_LIN">520</p1:profile>
 <p1:profile offset="448" type="AV2_SLOPE_LIN">520</p1:profile>
 <p1:profile offset="458" type="AV2_SLOPE_LIN">520</p1:profile>
 <p1:profile offset="548" type="AV2_SLOPE_LIN">523</p1:profile>
 <p1:profile offset="613" type="AV2_SLOPE_LIN">525</p1:profile>
 <p1:profile offset="676" type="AV2_SLOPE_LIN">525</p1:profile>
 <p1:profile offset="299" type="AV2_ROAD_CONDITION">8</p1:profile>
 <p1:profile offset="323" type="AV2_ROAD_CONDITION">8</p1:profile>
 <p1:profile offset="448" type="AV2_ROAD_CONDITION">8</p1:profile>
 <p1:profile offset="548" type="AV2_ROAD_CONDITION">8</p1:profile>
 <p1:profile offset="613" type="AV2_ROAD_CONDITION">8</p1:profile>

Figure 2.12: XML File created from Dumper

18 | P a g e

2.4. XML Comparison

XML comparison is the last stage of the test setup which is mentioned in Figure 2. Currently

there is no implementation for this task which can apply specific rules and take results for

order change. As far as comparison is concerned, we make use of software called

BeyondCompare which uses a line to line comparison technique. The comparison window

is presented below about how the differences look in BeyondCompare:

A sample difference of two files produced from dumper shows up in above manner where

missing data is replaced by empty space in another file. If there is any value change then

it’s highlighted with red mark.

Figure 2.13: XML Comparison in BeyondCompare

Reference.xml Copy.xml

19 | P a g e

3. ADASIS v2 Protocol

For understanding the basics and further implementation of master thesis it is very crucial

to cover ADASIS v2 protocol (Advanced Driver Assistance Systems Interface

Specifications).

ADASIS forum have developed a specification to describe the road geometry with its

related attributes ahead of a vehicle based on the vehicle’s position and a digital map

(ADAS Horizon). ADASIS v2 protocol is the advancement of ADASIS v1 protocol which

was implemented before and was successfully tested.

 The general architecture of ADAS applications are given by below entities:

In the general architecture of ADAS applications, the main entities are:

ADAS Horizon Provider, which maintains the ADAS Horizon;

ADAS Protocol that defines how the ADAS Horizon will be sent from the ADAS Horizon

Provider to the ADAS Applications;

ADAS Application is a client application that receives the ADAS Protocol messages then

reconstructs and uses the ADAS Horizon;

ADAS Reconstructor as discussed in section 2.2 it is a common component of ADAS

Applications that is built in accordance with this general architecture. The task of the ADAS

Reconstructor is to receive, parse and interpret ADAS Protocol messages, and, in effect,

reconstruct a copy of the ADAS Horizon on the client side.

Figure 3.1: ADAS Application Architecture [3]

20 | P a g e

3.1. Digital Map Database

In the digital map database, the road network is shown by collection of links and nodes

which are shown in yellow and they define connectivity between links.

In reference to map-enabled and map-enhanced ADAS application, the only roads of

interest are those that are ahead of the vehicle and can be accessed in time. The ADAS

Horizon (Electronic Horizon, eHorizon…) is the part of the digital map that contains only

those roads in front of the vehicle.

Comparing a simple extract of roads around the vehicle in Figure 3.2 and the ADAS

Horizon in Figure 3.3, one can see that links 95, 100 and 105, being not important for

majority of ADAS applications, are not in the ADAS Horizon. Moreover, not all link

attributes available in the digital map need to be present on links of the ADAS Horizon.

Figure 3.2: Digital Map [3]

Figure 3.3: Only front view retained [3]

21 | P a g e

So information like street names, housing number are not taken into much consideration.

In other words, the ADAS Horizon provides to ADAS application an optimized view of the

environment, allowing for more efficient processing.

For ADAS application analyzing ADAS Horizon is complex task. The reason is because as

shown in figure 3.2 or 3.3 if our destination of interest is Link 235 then ADAS application

should be able to reach it following 200->210->230->215->235 or 200->205->220->235.

It is more convenient for the ADAS application to deal with paths – trajectories the vehicle

may follow in the near future. Internally, paths are built from database links and their

connectivity, but each path is seen by the application as a single entity. [3]

3.1.1. Path Presentation

On the basis of path representation presented in figure 3.4 applications can now easily

recognize that there is a specific traffic sign on paths 3 and 5 (Figure 3.4). It may or may

not be known that traffic signs on those two paths are the same physical traffic sign. For

most applications, however, this information is not fundamentally important – the only

significant information is that there is a traffic sign ahead and the distance to it. [3]

Figure 3.4: pure path representation [3]

22 | P a g e

3.1.2. Optimized Path Presentation

This approach is used to reduce the amount of duplicated data but still providing advantages

of path approach over network representation of ADAS Horizon. In Optimized Path

Representation just one path needs to be present, this is called as the Main Path. The

defining characteristic of the main path is that the current vehicle position is located on it.

In Figure 3.4, Path 2 is the Main Path.

The vehicle may turn from the Main Path to First-Level Sub-Paths. In the above example

Paths 1, 3 and 4 are first-level sub-paths. From first-level sub-paths there are possible turns

to Second-Level Sub-Paths (Path 5, for instance, from Path 4), etc. The ADAS Horizon’s

construction algorithm should choose the Main Path so that it appears to be the most likely

alternative for the vehicle to continue driving. First-level sub-paths are less likely to be

driven on and so on. It can be further seen in Application view point below.

On the ADAS Horizon, crossings, road attributes and even geometry may be seen only as

characteristics of (one of) the paths. Therefore, Path is the main entity that needs to be

accessed by the application in order to retrieve the desired information.

Figure 3.6: Application View [3]

Figure 3.5: Optimized Path Representation [3]

23 | P a g e

3.2. Building Blocks

Stubs are entities that define the relationship between paths. Each stub marks the start of a

sub-path and it is located on another parent path. The concepts of profiles will also be

introduced, which are the characteristics of paths.

The position of Stubs and Profiles on the ADASIS v2 Horizon are defined by a path

identifier and an offset along that path. All offsets are defined as the distance between an

entity and the start of a path.

In general, ADASIS v2 Horizon Providers should initially consider and calculate all

possible paths. However, the client ADAS application may need just a subset of those paths.

Most applications will actually only need the main path. Therefore, in many installations it

will be enough if the ADASIS v2 Horizon Provider (Av2HP) sends only the main path to

the client (see Figure 3.7) [3]

If only the main path has been provided, but the vehicle leaves it, the application will be

“blind” for a moment until new information for the new path is available.

If the ADAS application also needs information for sub-paths, the ADASIS v2 Horizon

Provider may provide transmitting preview information reaching into sub path structures.

This is done by using "stubs" which indicate the start of a new path attached to a parent

path, and which contain basic information about the attached road (e.g. turn angle, road

class). This is shown in below Figure 3.8.

In context of figure 3.10 if the application is sensitive to a short "blindness" when the

vehicle leaves the main path then the Horizon Provider must also preventively transmit

information about upcoming sub paths. With the availability of sub paths, the client will

Figure 3.7: Main Path [3]

Figure 3.8: Main Paths with stubs [3]

24 | P a g e

receive the information when the vehicle position has, for example changed from Path 2 to

Path 1, no gap will occur in the available track preview data on the client side.

In case memory is not a barrier for client and he is interested in more information, the

ADASIS v2 Horizon Provider can also transmit the full available map information with

higher-level sub paths as shown in Figure 3.10. In that case, the client will never be in a

"blind" state and will always have immediate map information available when the vehicle

leaves a path.

Figure 3.9: Main Paths with first level stubs [3]

Figure 3.10: Full Horizon [3]

25 | P a g e

3.3. Paths and Offsets

As discussed, each path is uniquely identified by some number which is called Path

Identifier, path identifier defines the position of map entities and the vehicle position and

the distance from the start of the path. This along-path distance is called Offset. The start

of each path is defined to be at offset zero.

At intersections encountered on the main path, sub-paths may branch off. These entries into

branches are called stubs. Like other map entities, the location of stubs along the ADASIS

v2 Horizon is described by specifying the (parent) path identifier and offset.

Physical crossings on the path can be described as locations with one or more stubs – one

for each alternate road at the crossing. From an abstract perspective, both the ADASIS v2

Horizon Provider and the ADASIS v2 Horizon Reconstructor/Client do not need to have

any limitation of the number of paths present in each moment and of the length of each

path.

A path has a defined start point (offset 0), but potentially no end at all. Therefore, the offset

can be any large positive number. As we will see later, the ADASIS v2 Protocol defines

only 6 bits for the identification of the path that is referenced by each CAN message. For

the offset, just 13 bits are available. After removing special values, an ADASIS v2 message

accommodates 56 numbers that can be used for path identification and offsets between 0

and 8190 meters inclusive. [3]

Figure 3.11: Offsets [3]

26 | P a g e

3.3.1. Path length limits

 Figure 3.13 shows an example of the different length values.

 The current vehicle position is at offset value 1000m

 The "maximum offset range" is limited to 8190

 The "maximum length of transmitted path" is configured to 1200m

 The "current length of transmitted path" for the short profile slope is 1000m, because

the provider has sent out a new slope information 0% at offset value 2000

 The "current length of transmitted path" for the segment message (containing the

road class) is only 500m, because the farthest road class information is at offset 1500

and the next one at offset 2500 is too far away and has not yet been transmitted. [3]

Figure 3.12: Path Length Limits [3]

27 | P a g e

3.3.2. Path Profiles

Path Profile is a property that has a value for any location along a path (e.g., curvature, form

of way, number of lanes, speed limit, and horizontal geometry). A Path Profile is made up

of a quantity of “Profile Spots” and the specification of a Profile Interpolation Type.

 Profile Type is the property that the profile shall represent.

 Profile Interpolation Type is a code specifying how intermediate profile values are

to be calculated.

 Profile Offset is a position along a path, defined by its distance from the path origin,

measured as the arc or poly-line length along the path.

 Profile Spot is the numeric description value of a property at a Path Offset

Figure 3.13: Path Profiles [3]

28 | P a g e

3.4. Messages

ADASIS v2 undertakes one way communication between an ADASIS v2 Horizon Provider

and ADASIS v2 Horizon Clients. Six types of messages are defined in the ADASIS v2.

3.4.1. Message Types

In this section, those messages are ordered by priority. Besides a list and descriptions of

message fields, the CAN layout for each message is also defined. Five bits are common to

every ADASIS v2 message:

1). the three bits define message type. This field is critical in multiplexing setups (Table 2),

in a non-multiplexing CAN environment message type can be deduced from the CAN

identifier of message (Table 3) and this field is redundant. TYPE field always occupies bits

7-5 of byte 0 of each CAN frame.

2). Two bits of each message are a cyclic message counter for each specific message type

(and each profile type). It will be used to detect missing frames at the client side. [3]

The following message types are defined which are shown in Table1:

 POSITION message specifies the current position of the vehicle.

 STUB message indicates the start of a new path that has origin at an existing one.

 SEGMENT message specifies the most important attributes of a part of the path.

 PROFILE SHORT message describes attribute of the path whose value can be

expressed in 10 bits.

 PROFILE LONG message describes attribute of the path whose value can be

expressed in 32 bits.

 META-DATA message contains utility data.

29 | P a g e

3.4.2. Message Types Description

Table 1: Message Type Field

In each message, the 3-bit field Message Type determines semantics of rest of the message.

Therefore, the content of the Message Type field determines what fields are present in each

CAN frame used in the protocol. The minimum number of CAN identifiers that must be

assigned to ADASIS v2 protocol is one.

CAN Identifier Content of Message Type Message

100 0 System Specific

100 1 Position

100 2 Segment

100 3 Stub

100 4 Profile Short

100 5 Profile Long

100 6 Meta-Data

n/a 7 Reserved

Table 2: ADASIS v2 as Multiplexed CAN Protocol

Message Type Message

0 System Specific

1 Position

2 Segment

3 Stub

4 Profile Short

5 Profile Long

6 Meta-Data

7 Reserved

30 | P a g e

If multiplexing (polymorphism) of CAN frames is not desirable, different CAN identifiers

can be assigned to the different messages just the way it is shown in Table 3 below. Most

systems support single-level multiplexing in CAN traffic. If no other requirements are set,

only the Message Type field can be used as the multiplexing field, since each message type

has fixed structure.

CAN Identifier Content of Message Type Message

100 0 System Specific

100 1 Position

100 2 Segment

100 3 Stub

100 4 Profile Short

100 5 Profile Long

100 6 Meta-Data

n/a 7 Reserved

Table 3: ADASIS v2 as Non Multiplexed CAN Protocol

31 | P a g e

4. Concept of XML Comparison Tool

This part explains the concept and need to come up with xml comparison tool. Here the

research prior to implementation of this tool is described in brief.

4.1. XML File

Before I discuss how research was undertaken for XML comparison it is mandatory that I

explain the structure of XML file and type of data it represents. As explained in Figure 2.12

we just observed a XML file without going in brief for what it stands for.

4.1.1. XML File Description

This XML file as shown in figure 2.12 contains the information of map data. The time in

this data file can range from 1 to 330…. timestamps. Here for the scope of this document

we have just considered 18th timestamp. It represents and sums up in following manner:

Map Data = Links + Nodes + Road Geometry + Vehicle Position + Additional Info

Figure 4.1: XML Map Representation

<p1:time nTimestamp="18">

<p1:car age="495" confidence="0" heading="0" index="0" lane="7" nTimestamp="0"
 offset="402" pathId="136" probability="40" speed="1660" vpStat="0"/>

<p1:stub complexIntersection="0" formOfWay="2" functionalRoadClass="2" lastStubAtOffset="true"

 numberOfLanesInDrivingDirection="2" numberOfLanesInoppositeDirection="0" offset="0"
 partOfCalculatedRoute="3" pathId="0" relativProbability="100" rightOfWay="2" subPathId="136"
 turnAngle="0" update="false">

<p1:profile offset="299" type="AV2_CURVATURE">559</p1:profile>
 <p1:profile offset="323" type="AV2_CURVATURE">564</p1:profile>
 <p1:profile offset="353" type="AV2_CURVATURE">564</p1:profile>
 <p1:profile offset="391" type="AV2_CURVATURE">570</p1:profile>
 <p1:profile offset="448" type="AV2_CURVATURE">570</p1:profile>
 <p1:profile offset="458" type="AV2_CURVATURE">570</p1:profile>
 <p1:profile offset="548" type="AV2_CURVATURE">439</p1:profile>
 <p1:profile offset="613" type="AV2_CURVATURE">583</p1:profile>
 <p1:profile offset="676" type="AV2_CURVATURE">593</p1:profile>
 <p1:profile offset="299" type="AV2_SLOPE_LIN">516</p1:profile>
 <p1:profile offset="323" type="AV2_SLOPE_LIN”>516</p1:profile>
 <p1:profile offset="353" type="AV2_SLOPE_LIN">518</p1:profile>
 <p1:profile offset="391" type="AV2_SLOPE_LIN">520</p1:profile>
 <p1:profile offset="448" type="AV2_SLOPE_LIN">520</p1:profile>
 <p1:profile offset="458" type="AV2_SLOPE_LIN">520</p1:profile>
 <p1:profile offset="548" type="AV2_SLOPE_LIN">523</p1:profile>
 <p1:profile offset="613" type="AV2_SLOPE_LIN">525</p1:profile>
 <p1:profile offset="676" type="AV2_SLOPE_LIN">525</p1:profile>
 <p1:profile offset="299" type="AV2_ROAD_CONDITION">8</p1:profile>
 <p1:profile offset="323" type="AV2_ROAD_CONDITION">8</p1:profile>
 <p1:profile offset="448" type="AV2_ROAD_CONDITION">8</p1:profile>
 <p1:profile offset="548" type="AV2_ROAD_CONDITION">8</p1:profile>
 <p1:profile offset="613" type="AV2_ROAD_CONDITION">8</p1:profile>

32 | P a g e

In Figure 4.1 the xml file represents the data which is stored in map database in the form

of figure shown above. XML file describes the path and gives information of current car

position, stub, new paths and type of road geometry.

A car when travelling has to only take into consideration the horizon preview on which it

is present. That means it should delete or eliminate data that is not required any more. It

can be done in the form of forgetting the attributes like path, position, offsets etc. of such

location from where the car has already passed.

As the vehicle moves forward it don’t need the values of such route from which it already

passed by. In Figure 4.2 it can be seen that how car stores only the information of current

horizon. This is very efficient method as it saves memory and as the car moves forward

ADAS horizon provider can send more information related to current path at one time.

4.1.2. XML structure

Clearer version of XML file is presented in Figure 4.4. A fully developed file has all the

information of path in XML format at every instant of time. XML file shown in Figure 4.4

and 4.1 is structured in following manner:

Figure 4.3: XML file structure

Figure 4.2: Horizon Preview

<p1: time>

establishes

Timestamp i.e.

vehicle property at

different time instant

(1, 2, 3…)

<p1: car> element

locates car attributes

like position, lane,

offset etc. This shows

current car situation

and distance it travelled

<p1: stub> is start of

the new path with

characteristics of its

own

Every stub has profile and it consists of <p1: profile>

that constitutes of following entities:

Offset: The distance from start to destination at every

time

Type: It defines the geometry of the path. It holds

information of curve, slope or heading

33 | P a g e

Above mentioned file structure is based on data given in Figure 4.4. This will give a

proper view upon schema that xml file uses in our project.

XML file format shown in Figure 4.4 is the same format used in files that are generated out

of xml log dumper. These files are written out of reference reconstructor and Bosch

reconstructor at the same time. These are the files which we wish to compare.

As the labels in figure suggest the order of elements, this will be same order while parsing

files for xml comparison. Each parent and child element has many attributes which explains

elements details in brief. These attributes are great source of information as they suggest

the nature of path, car position, distance etc. [4]

Parent Element “time”

<p1:time nTimestamp="18">

First child Element “car”

<p1:car age="495" confidence="0" heading="0" index="0" lane="7" nTimestamp="0"
 offset="402" pathId="136" probability="40" speed="1660" vpStat="0"/>

Second child Element “stub”

<p1:stub complexIntersection="0" formOfWay="2" functionalRoadClass="2"
 lastStubAtOffset="true" numberOfLanesInDrivingDirection="2"
 numberOfLanesInoppositeDirection="0" offset="0" partOfCalculatedRoute="3"
 pathId="0" relativProbability="100" rightOfWay="2" subPathId="136" turnAngle="0"
 update="false">

first sub - child Elements “profile”

<p1:profile offset="299" type="AV2_CURVATURE">559</p1:profile>
 <p1:profile offset="323" type="AV2_CURVATURE">564</p1:profile>
 <p1:profile offset="353" type="AV2_CURVATURE">564</p1:profile>
 <p1:profile offset="391" type="AV2_CURVATURE">570</p1:profile>
 <p1:profile offset="448" type="AV2_CURVATURE">570</p1:profile>
 <p1:profile offset="458" type="AV2_CURVATURE">570</p1:profile>
 <p1:profile offset="548" type="AV2_CURVATURE">439</p1:profile>
 <p1:profile offset="613" type="AV2_CURVATURE">583</p1:profile>
 <p1:profile offset="676" type="AV2_CURVATURE">593</p1:profile>
 <p1:profile offset="299" type="AV2_SLOPE_LIN">516</p1:profile>

Figure 4.4: XML file format

34 | P a g e

4.2. University standard Open Street Map (OSM)

One of the important question which was suggested by prof. Wolfram Hardt in my concept

presentation was to include the difference between university’s current working standard

of OSM and relevant work in xml mapping that was taking place at Bosch in my research

work.

Looking at the structure of OSM file in figure below we can say that there are lots of

similarities in schema and how map information is attached with XSD file used in OSM.

<?xml version="1.0" encoding="UTF-8"?>
<osm version="0.6" generator="CGImap 0.0.2">
<bounds minlat="54.0889580" minlon="12.2487570" maxlat="54.0913900" maxlon="12.2524800"/>

<node id="298884269" lat="54.0901746" lon="12.2482632" user="SvenHRO" uid="46882"
visible="true" version="1" changeset="676636" timestamp="2008-09-21T21:37:45Z"/>

<node id="261728686" lat="54.0906309" lon="12.2441924" user="PikoWinter" uid="36744"
visible="true" version="1" changeset="323878" timestamp="2008-05-03T13:39:23Z"/>

<node id="1831881213" version="1" changeset="12370172" lat="54.0900666" lon="12.2539381"
user="lafkor" uid="75625" visible="true" timestamp="2012-07-20T09:43:19Z">
 <tag k="name" v="Neu Broderstorf"/>
 <tag k="traffic_sign" v="city_limit"/>

<relation id="56688" user="kmvar" uid="56190" visible="true" version="28" changeset="6947637"
timestamp="2011-01-12T14:23:49Z">
 <member type="node" ref="294942404" role=""/>
 ...
 <member type="node" ref="364933006" role=""/>
 <member type="way" ref="4579143" role=""/>
 ...
 <member type="node" ref="249673494" role=""/>
 <tag k="name" v="Küstenbus Linie 123"/>
 <tag k="network" v="VVW"/>
 <tag k="operator" v="Regionalverkehr Küste"/>
 <tag k="ref" v="123"/>
 <tag k="route" v="bus"/>
 <tag k="type" v="route"/>
 </relation>

</node>
</osm>

Figure 4.5: Sample OSM Map file [6]

35 | P a g e

4.2.1. Open Street Map Attributes

OSM uses structure where map information is attached in specifically in the form of nodes,

way, tags and relation. It provides complete map information data with these major

elements. The XSD file of OSM is semantically similar to mapping done to xml file in our

company as the details are expressed in same manner.

Main elements of OSM consists of:

Node: A node represents any point in space. It is generally defined by its latitude and

longitude. Each node has at least an id number and a pair of co-ordinates. Nodes can also

define standalone features. Be it any shop, traffic signals or highways.

Tag: Tag conveys the meaning of element to which they are attached. Two text fields are

crucial for the consideration of tags, “Key” and “Value”. ‘Key’ describes the broad class of

feature and ‘Value’ details the specific feature. A most simplistic example of tag can be

‘name=Park Avenue’. This is a tag for which value field conveys name of some street.

Relation: A relation is a data structure that establishes relation between two or more data

elements. E.g. a route relation forms a relation between routes like highways, tunnel routes

or heavy vehicle routes. It can also be a restriction like speed restriction.

Way: Ways can represent linear features like rivers and roads. They can show limits of

areas like forests or building. [7]

4.2.2. Open Street Map (OSM) vs Bosch XML Mapping

However, there are some major differences related to type of work that OSM intends and

what we work on in Bosch. Some of the differences are:

OSM is mainly used for creating maps on higher scale. Whereas the xml mapping that is

used in our company is limited to what vehicle can see in nearby environment and not much

further.

OSM emphasizes more on providing accurate location, paths and services. While in our

case we are more concerned with the path and road geometry that vehicle follows. The path

from which vehicle is consider obsolete. OSM can be integrated in the work we do only

when there is strong need to create full fledge mapping of source to destination.

36 | P a g e

4.3. Necessity for XML Comparison Tool

XML Comparison was a needed to deal with following problems:

 To design a GUI tool for XML comparison that will highlight missing or invalid

data

 Algorithm should compare despite order change

 Easy to use comparison interface

 Implementing Re-ordering of test XML file according to Reference File

 Research about different data comparison techniques

 Saving log files for later use

4.3.1. Availability:

As we discussed in state of the art that currently only a traditional tool named

BeyondCompare is only available for calculating the differences. We can now look to some

of the features that BeyondCompare possess:

Figure 4.6: BeyondCompare comparison window

37 | P a g e

The way in which differences are presented in beyond compare is shown in above figure.

It aligns the data in such a manner that if data is present in one file and missing in another

then it will show empty spaces in the portion of file where data is missing.

Apart from this wherever there is mismatch caused in data then it will be marked red.

4.3.2. Problems with BeyondCompare

 BeyondCompare is easy to use tool and very productive. However, there are some major

disadvantages like it fails to detect the order change like showed in Figure 4.6.

There can be many types of order changes like:

1). Mismatching order of “stubs” in both files

2). Order change in Timestamps

3). When data is complex there can be order change in deep children elements like “Profile”

With reference to xml file above there can be great variation in order change problems when

data is complex.

Likewise there are also no options for saving data for further use. Moreover, it does a line

to line comparison which is far simplistic.

38 | P a g e

4.4. Research for Implementation

Before going into implementation, a research for implementation was established. This

section explains research regarding means to obtain the end goal. Brief explanations about

parsers, tools and libraries is mentioned in this section.

4.4.1. XML Parsers

XMl parsing in python can be done in many ways. One of the generic way is making use

of DOM (Document Object Model) and SAX (Simple API for XML) parsers. However due

to availability of ElementTree library as python’s inbuilt standard library. I tried using it

and results generated were very appealing. [8]

The way ElementTree performs is it uses parse () function which takes filename and it

parses the entire document at once. It returns an objects which are presented in Code 2.

Core concepts of implementing parser is explained in section 6.1.2. Once results were

confirmed from the parser a working method of how information can be extracted from the

XML elements was established.

4.4.2. Working with Libraries

On further parsing some documents using above mentioned ElementTree library, I figure

out that parsing was getting really slow for long size documents. This can be a greater

drawback as files used for comparisons are way too complex.

Upon some research I came across some useful libraries like BeautifulSoup, minidom,

cElementTree (faster version of ElementTree). Using them for results was not a problem.

But minidom uses DOM parser and it is not useful if we have large number of data because

it stores information in the form of node and there can be many of them in large data.

However with more amount of data there was needed something versatile and easy to use.

It also should have good tool support. So while reading about ElementTree I came across

LXML, it is open source library made by third party but it has full compatibility with

ElementTree. Moreover, it is built on popular C libraries like libxml2 and libxslt. Putting it

to test produced interesting and fast results. Accessing elements and their roots was not a

problem anymore. [9]

So by this time a working concept of parser and library was found which would allow me

at least finish scripting comparator.

39 | P a g e

4.4.3. User Interface

Just like scripting, a firm research was needed to know which GUI library can provide us

needed functionality. Python have great support for making interactive user interfaces, but

while working in corporate environment we have to take care of licenses as well.

Majority of the popular support for user interface included wxPython, PyQT, PyGtk,

gnome. However except python’s inbuilt library Tkinter all of the other libraries had GPL

licenses. So project made by GPL compliant libraries also has to be open source which was

not possible in development of my project. Tkinter is 100% open source with BSD license

so user have full rights to modify, sell his/her products without even necessarily providing

source code for it. [10]

Additionally, Tkinter had great features and overriding any of its inbuilt feature was very

simplistic. This gave it an edge over other tools. In my work I want something which can

be easily modified to user requirements and Tkinter is best library used so far.

4.4.4. Software tools used

Summing everything up for developing comparison algorithm I have made use of

following tools and libraries:

Integrated Development Environment (IDE): Eclipse for C/C++ developers, version: Juno

Programming Language: Python 2.7 [5]

XML parsing Library: LXML (Open source MIT license)

User Interface Library: Tkinter (Open source BSD license)

40 | P a g e

4.5. Planned Research Approach

Figure 4.7: Planned approach for XML comparison tool

This block diagram presents an idea of how the tool work was planned over the duration of

thesis. There are three main stages of interest – reordering, comparing and displaying. All

the calculations was based on certain rules which were researched prior implementation for

gaining desired output.

4.5.1. Primary Stages

The order of working was 1). Reordering 2). Comparing and 3) Displaying

1). Reordering: Reordering takes place before comparison as here we align the order of

<stubs> (fig. 4.7) in “Copy.xml” or test.xml according to the one given in “Reference.xml”

2). Comparing: Here we systematically produce the results of data with respect to following

objectives or rules:

Rules:

1. Finding missing elements

2. Establishing invalid points

3. Correct comparison despite order change (<Profile> elements)

41 | P a g e

3). Displaying: Displaying deals with how we present our output. This module should give

ease of operation to the user and at the same time highlight the differences.

Rules:

1. Show errors under timestamps label

2. Highlight violating data points

3. Options to reordering and saving should be present

4.5.2. Saving Stage

The idea behind this stage was to research an algorithm which can introduce the feature of

BeyondCompare software in which it deploys “space” to whichever points are missing from

either file. This can be viewed in figure 4.6, here that large chunk of space is left by the

tool to align both file format in correct manner.

Before implementing this feature a research was mandatory because a possibility has to be

established weather this can be done or not. The requirement for this stage aroused when

detail reading was undertaken for understanding working of BeyondCompare. Research

finding for designing this algorithm is shortly summarized as:

Figure 4.8: Saving results to XML file

According to research this task is possible but it may not be work as expected if the format

of two files varies slightly. This approach can still work in most of the cases but needs to

be backed by upgraded interface for handling and showing xml files. Moreover, in GUI that

was developed has certain restriction over how functionality of widgets can be overridden.

To implement this approach we have to override the present functionality of involved

Tkinter widgets by larger proportion.

Steps explained in figure above suggests closest solution possible to implement the feature

that we need from BeyondCompare to our software tool. All other approaches would

include changes to be done to xml file externally before loading it in XML file in order to

achieve what we need.

Build a Canvas

widget using

Tkinter interface

library

Introduce line numbers

on this widget which will

be located aside text

widget in which we

display both files in GUI

Extract line

numbers for

missing points

from both files.

Store this

information in

new XML file and

save it

Load saved file

in tool and

introduce

“empty spaces”

wherever

needed

42 | P a g e

5. Concept of CAN Stream Generation Tool

In this section description of research behind CAN stream generation tool is presented.

Main aim of this task is to make a user interface for python scripts that were responsible to

produce CAN data.

5.1. Script Structure

The script structure explained in figure 2.1 explains the task flow for stream generation. In

this section we can understand in detail how the process takes place in detail.

5.1.1. CAN stream generation algorithm

Desired scripting of the CAN stream can vary for various purpose. For instance the flow

chart that is explained below is an approach to generate CAN script data that simulates the

process of giving car position, speed limits, creating paths and moving car over that path.

Since this entire test environment simulates the natural environment of moving car, CAN

stream is used to model that environment.

The structure is as follows:

Figure 5.1: CAN Stream generation process

Create main path

Mention position

of car on main

path

Create number of

paths ahead of

vehicle

Assign Speed

Limits

Move Car Forward

on the path

CAN Data

43 | P a g e

5.1.2. Assigning Attributes to CAN data

In section 5.1 we can see that how simulation takes place of creating paths, assigning speed

limits and driving car over the created path in the form of moving offset points. In above

figure there are classes called like stubMessge (), positionMessage () and segmentMessage

().

These classes are imported from another file and whenever these methods are called, they

define attributes for specific paths like shown in below figure.

Figure 5.2: Path Attributes

Now if we recall what was discussed in section 4.1.1 and figure 4.4 regarding XML file

format, all the attributes that were written in XML file were originally created from this

methods listed above. CAN data that is generated after calling this classes and methods

looks like the one presented in figure 2.2 in section 2.1.1.

Just like methods shown in Figure 5.2 stands for defining any path characteristics all

different methods like positionMessage () and segmentMessage () are there to define

vehicle’s attributes. This all data is then converted into CAN stream and given as an input

to the Reconstructor in next stage.

subPathId = property(get_sub_path_id, set_sub_path_id, None, None)
lastStub = property(get_last_stub, set_last_stub, None, None)
turnAngle = property(get_turn_angle, set_turn_angle, None, None)
update = property(get_update, set_update, None, None)
relProbb = property(get_rel_probb, set_rel_probb, None, None)
funcRoadClass = property(get_func_road_class, set_func_road_class, None, None)
partOfCalcRoute = property(get_part_of_calc_route, set_part_of_calc_route, None, None)
complexInter = property(get_complex_inter, set_complex_inter, None, None)
formOfWay = property(get_form_of_way, set_form_of_way, None, None)
rightOfWay = property(get_right_of_way, set_right_of_way, None, None)
numOfLaneOppDir = property(get_num_of_lane_opp_dir, set_num_of_lane_opp_dir, None, None)
numOfLaneDrvDir = property(get_num_of_lane_drv_dir, set_num_of_lane_drv_dir, None, None)
retrans = property(get_retrans, set_retrans, None, None)

44 | P a g e

5.2. Necessity for CAN Stream Generation Tool

The main reason for developing tool was to expand its capabilities and make human

interfacing less complex. Further development was needed to build user interface that

would be able to take input from user in specific way and generate CAN stream just the

way scripts are generating.

Automate Manual Operations

As we discussed the script structure in section 5.1, we can see that current implementation

include only scripts for working. Anyone who intends to use the script has to understand

the functions and accordingly input appropriate offsets inside file.

With the introduction of user interface this task can be automated. Also making sure that

user has the option to input offset points which represent car as moving on path. Moreover,

this tool will not be limited for testing only one type of script. Rather user can write script

for any scenario and use tool to generate output. [11]

5.3. Research for Implementation

Just like XML comparator tool this section deals with research findings for confirming the

feasibility of solutions. There is no difference between user interface libraries that I used

previously. But concept is altogether different to implement needed features.

5.3.1. Parameters

Main parameters for building user interface for the scripts are offsets. Offsets are data points

that are responsible for calling methods which can define path and vehicle attributes. These

parameters may be data points which can have a specific range.

5.3.2. Input to Parameters

Tools and libraries used for this task include:

Integrated Development Environment (IDE): Eclipse for C/C++ developers, version: Juno

Programming Language: Python 2.7

User Interface Library: Tkinter (Open source BSD license)

45 | P a g e

Input to this parameters has to be given in a way that there should be a user interface like

popup window that were users should be allowed to mention range or in the form of any

numbers. These values will define the offset points. There should be another method

implemented where after the user is done inputting range, these values can be extracted to

the main window.

On main window for every selected parameters some sliders should be displayed on main

window which gives users to pass any offset points from the mentioned range. Since Tkinter

library has implementation of inbuilt sliders. Selecting various values over the given range

is possible.

Apart from sliders there also should be option of inputting such values which are not range

dependent. So this can be attained by the use of Label which is also an option available in

Tkinter library.

5.3.3. Saving output to file

After all the values are loaded into user interface, there should also be option where all the

loaded values are stored in another file according to the titles. This file should be then

imported in another file so that all the values which were stored in this file are available for

scripts that contain program to generate CAN data. Whole structure can be viewed in

following manner:

46 | P a g e

6. Realization and Implementation

This section includes implementation for all the research work that was undertaken over

the duration of thesis. Unlike section 4 and section 5 where I divided the research and

concept work for both tools separately, in this section explanations is given to all the

implementation in one section with individual sub sections.

The basic organization of this section is done in a manner where implementation for XML

Comparator tool stages is described first and then followed with implementation of CAN

Script Generator. All the research and implementation for this tool was prepared from

scratch.

Before starting approaches it will be helpful to go through the file structure of XML

comparison. XML comparator comprises of three python script files and four XML files.

Throughout implementation all the logic implemented in these scripts and files will be

explained.

Reference.xml Contains the data generated by reference

reconstructor

Copy.xml Contains the data generated by Bosch

reconstructor

Reordered_copy.xml New ordered format of “Copy.xml” that

has order according to “Reference.xml”

ReorderFile.py Script to generate “Reordered_copy.xml”

Stub_Structure.py Script to compare xml files and contains

user interface building

Saving_file.py Script to save compared results in

saveddata.xml

Saveddata.xml File that contains all the compared results

in form of index numbers and other

formatting info.

Table 4: XML Comparator (File Structure)

47 | P a g e

6.1. Reordering Approach for XML Comparison

Reordering has to be done before comparison and the reason is presented below:

Figure 6.1: mismatching file contents

In figure 6.1 both files represents an easy to understand structure that defines xml file. It

can be seen that order of stubs in “Copy.xml” file is completely changed. This might have

happened when the file was generated out of the reconstructor. Using this file directly with

any comparison tool will yield error in difference because the order of children of all xml

files must be same.

This is where reordering algorithm comes handy. A simple working is presented below:

Figure 6.2: Reordering Process

Reference.xml

<time “nTimestamp” = 18>

<car></car>

<stub1></stub1>

<stub2></stub2>

<stub3></stub3>

</time>

<time “nTimestamp” = 19>

<car></car>

<stub1></stub1>

<stub2></stub2>

<stub3></stub3>

<stub4></stub4>

</time>

“Copy.xml”

<time “nTimestamp” = 18>

<car></car>

<stub1></stub1>

<stub2></stub3>

<stub3></stub2>

</time>

<time “nTimestamp” = 19>

<car></car>

<stub1></stub1>

<stub2></stub3>

<stub4></stub4>

<stub3></stub2>

</time>

Reference File or

Reference.xml

Copy File or

“Copy.xml”

(Unordered)

Reordering

Stage

 New_Copy File or

new_”Copy.xml”

(Ordered)

New_”Copy.xml”

(reordered)

<time “nTimestamp” = 18>

<car></car>

<stub1></stub1>

<stub2></stub2>

<stub3></stub3>

</time>

<time “nTimestamp” = 19>

<car></car>

<stub1></stub1>

<stub2></stub2>

<stub3></stub3>

<stub4></stub4>

</time>

48 | P a g e

6.1.1. Program Structure

Figure 6.3: Reordering Approach

Start

Load

Reference.xml

Load “Copy.xml”

Tree Parsing and loading two

files in parallel

Parse first parent

element <p1: time>

For each “time” enter first

children element <p1: car>

Store all car

attributes in list

and compare

If Difference If no Difference

Enter second children

elements <p1: stub>

Go-to next timestamp

Create new XML element to store ordered

data. This is new file e.g.

new_”Copy.xml”

For every stub store all

its attributes in list.

Follow this for both

files

Compare indexes of this stub for both files

and if unmatched swap the position of stubs in

“Copy.xml” until new positions of stubs

match Reference.xml

Store these newly

ordered stubs in

new file with new

elements

Start

49 | P a g e

6.1.2. Logic Implementation

Flowchart shown in Figure 6.3 explains how reordering is performed. First few stages of

parsing files are same as shown in Figure 4.5 of comparison approach. However moving

further we store the new order of stubs which were taken from “Copy.xml” into new file

with matching XML schema. Below is the working implementation of script for all stages.

1). File loading:

This is first stage where tool asks for two files from user. These two files are generated out

of XML log dumper. One file is “Copy.xml” which represents data in Bosch Reconstructor

and other is “Reference.xml” which represents data from ADASIS Reconstructor.

This can be observed in Figure 2 where both dumpers are individually connected to the

both reconstructors. Our main aim here is to change the order of “Copy.xml” and to make

new file named as “Reordered_copy.xml” that matches the order of “Reference.xml”. This

order change is necessary because most of the times XML dumper does not maintains the

correct order while writing “Copy.xml”.

Code 1: Load “Reference.xml” and “Copy.xml” (stub_structure.py)

2). Parsing XML Files

For parsing XML files a specific use of python based LXML library which is used for xml

parsing. There are many libraries that are available for parsing xml files like python’s state

of the art ElementTree, Minidom, cElementTree, BeautifulSoup etc.

I chose to use LXML because it’s built on the C libraries libxml2 and libxslt. This gives it

edge over speed and memory performance while keeping format simple to use while

programming in python. It is easy to install and its ability to parse xml documents in Tree

format is exceptionally fast and simple to understand. Due to its simplicity it becomes easy

to modify or extract the deep located elements in xml format.

def RefSelect_load_file(self):
 self.reffname = askopenfilename(filetypes=(("XML files", "*.xml"),
 ("All files", "*.*")))
 if self.reffname:
 self.page1RefLabel.delete("1.0",END)
 self.page1RefLabel.insert(END, self.reffname)
 self.page2RefLabel.delete("1.0",END)

 def CopySelect_load_file(self):
 self.copyfname = askopenfilename(filetypes=(("XML files", "*.xml"),
 ("All files", "*.*")))

 if self.copyfname:
 self.page1CopLabel.delete("1.0",END)
 self.page1CopLabel.insert(END, self.copyfname)
 self.labelCopy.delete("1.0",END)

50 | P a g e

We will see how below given xml file resembles to data when parsed:

Code 2: XML parsing

Here the structure of parsing and xml file is consisted of following order:

Elements Attributes

Parent Element – time Attribute – nTimestamp 18, 19, 20…

Children Element 1 – Car Attribute – age, confidence, heading…

Children Element 2 – Stub Attribute – offset, complex Intersection…

Sub children elements of Stub – Profile Attribute – Offset, Type, Unit…

Table 5: XML Elements and Attributes

As shown in Table 5 this structure is also called Tree parsing because in any given xml file,

the parsing forms a sequential parent to children relationship that works like tree.

Figure 6.4: Tree Parsing

Time

<p1:time nTimestamp="18">

<p1:car age="495" confidence="0" heading="0" index="0" lane="7" nTimestamp="0"
 offset="402" pathId="136" probability="40" speed="1660" vpStat="0"/>

<p1:stub complexIntersection="0" formOfWay="2" functionalRoadClass="2"

 lastStubAtOffset="true" numberOfLanesInDrivingDirection="2"
 numberOfLanesInoppositeDirection="0" offset="0" partOfCalculatedRoute="3"
 pathId="0" relativProbability="100" rightOfWay="2" subPathId="136" turnAngle="0"
 update="false">

<p1:profile offset="299" type="AV2_CURVATURE">559</p1:profile>
 <p1:profile offset="323" type="AV2_CURVATURE">564</p1:profile>
 <p1:profile offset="353" type="AV2_CURVATURE">564</p1:profile>
 <p1:profile offset="391" type="AV2_CURVATURE">570</p1:profile>
 <p1:profile offset="448" type="AV2_CURVATURE">570</p1:profile>
 <p1:profile offset="458" type="AV2_CURVATURE">570</p1:profile>
 <p1:profile offset="548" type="AV2_CURVATURE">439</p1:profile>
 <p1:profile offset="613" type="AV2_CURVATURE">583</p1:profile>
 <p1:profile offset="676" type="AV2_CURVATURE">593</p1:profile>
 <p1:profile offset="299" type="AV2_SLOPE_LIN">516</p1:profile>
 <p1:profile offset="323" type="AV2_SLOPE_LIN”>516</p1:profile>
 <p1:profile offset="353" type="AV2_SLOPE_LIN">518</p1:profile>
 <p1:profile offset="391" type="AV2_SLOPE_LIN">520</p1:profile>
 <p1:profile offset="448" type="AV2_SLOPE_LIN">520</p1:profile>
 <p1:profile offset="458" type="AV2_SLOPE_LIN">520</p1:profile>
 <p1:profile offset="548" type="AV2_SLOPE_LIN">523</p1:profile>
 <p1:profile offset="613" type="AV2_SLOPE_LIN">525</p1:profile>
 <p1:profile offset="676" type="AV2_SLOPE_LIN">525</p1:profile>
 <p1:profile offset="299" type="AV2_ROAD_CONDITION">8</p1:profile>
 <p1:profile offset="323" type="AV2_ROAD_CONDITION">8</p1:profile>
 <p1:profile offset="448" type="AV2_ROAD_CONDITION">8</p1:profile>
 <p1:profile offset="548" type="AV2_ROAD_CONDITION">8</p1:profile>
 <p1:profile offset="613" type="AV2_ROAD_CONDITION">8</p1:profile>

<Element {http://www.example.org/eHorizon}time at 0x33910a8>

<Element {http://www.example.org/eHorizon}car at 0xc7acaa8>

<Element {http://www.example.org/eHorizon}stub at 0xbdccdc8>

<Element {http://www.example.org/eHorizon}profile at 0xbde3cd8>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3d00>,

<Element {http://www.example.org/eHorizon}profile at 0xbde34e0>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3530>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3cb0>,

<Element {http://www.example.org/eHorizon}profile at 0xbde37d8>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3738>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3788>,

<Element {http://www.example.org/eHorizon}profile at 0xbde37b0>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3940>

<Element {http://www.example.org/eHorizon}profile at 0xbde3b48>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3c60>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3b20>,

<Element {http://www.example.org/eHorizon}profile at 0xbde39b8>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3c38>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3a58>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3c88>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3d28>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3c10>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3be8>,

<Element {http://www.example.org/eHorizon}profile at 0xbde3d78>,

Profile

Car

Stub

51 | P a g e

After user opens the file in interface, as we seen in Figure 6.3 that variable “self.reffname”

extracts the “Reference.xml” file from given location. Similarly, “Copy.xml” file is also

stored in variable “self.copyfname”.

In order to parse these two xml files using LXML library following steps are implemented

for both files – “Reference.xml” and “Copy.xml”

Code 3: parsing and storing data of “Reference.xml” and “Copy.xml” (stub_structure.py)

As we see in above figure newly formed variables “self.TimeReferenceTest” and

“self.TimeCopyTest” are having the values of all time events. A quick debugging in Eclipse

shows the value of this data which is shown below.

These are nothing but all the parent elements with format <p1: time “nTimestamp”=‘1, 2,

3...’> in xml file. As we discussed earlier there can be more than 200 to 300 timestamps

with “Time” as parent element and “car”, “stub” and “profile” as children elements.

In order to compare two file at same instant and timestamp, it is mandatory that two files

has to run in parallel. This is done using python’s “zip” function. The main advantage of

this method is one can compare every element and attributes within it at same instant.

Though making sure that there is no simple line to line comparison being done.

The format of timestamps in both files are specific and in correct order. Order change may

only happen inside children elements which is taken care of while comparing as we go

forward.

recovering_parser = etree.XMLParser(recover=True)
AdasReference = etree.parse(self.reffname, parser=recovering_parser).getroot()
 ToStringAdasReference = etree.tostring(AdasReference)

 AdasReferenceString = etree.fromstring(ToStringAdasReference,
 parser=recovering_parser)

 self.TimeReferenceTest =
AdasReferenceString.findall("{http://www.example.org/eHorizon}time")

 recovering_parser = etree.XMLParser(recover=True)
AdasCopy = etree.parse(self.copyfname, parser=recovering_parser).getroot()
 ToStringAdasCopy = etree.tostring(AdasCopy)
 AdasCopyString = etree.fromstring(ToStringAdasCopy,

 parser=recovering_parser)
 self.TimeCopyTest = AdasCopyString.findall("{http://www.example.org/eHorizon}time")

Code 4: Timestamps after parsing xml file

52 | P a g e

In implementation parsed data of two files run in parallel by following the tree structure

explained in Figure 6.4

3). Create new XML element in new file:

The significance of this stage is that reordered data set is not overwritten on “Copy.xml”

itself. The reason for this is it increases the complexity of the data which is showed and

also resulting file may or may not be accurate. This process corrects the order of

“Copy.xml” and this corrections are written in new file – “Reordered_copy.xml”.

Making a new XML file and creating new elements inside just like the way

“Reference.xml” is created will give us with replica of new copy file which has stubs

according to “Reference.xml”. New element is written on xml file in following manner:

Function to make new file named

def make_reorder_file(self):
 self.saveFile="C:/Users/BHD4ABT/Desktop/ReorderData.xml"
 status.config(text="Reordering initiated. Please wait. Writing files")
 Reordering = Reorder()
 Reordering.reOrder(self.reffname,self.copyfname, self.saveFile,
 pbar_f, bottomframe5)
 pbar_f["value"] = 0
 status.config(text="Reordering done. File saved in desktop")

Creating new XML element in newly created file:

root = etree.Element('{http://www.example.org/eHorizon}adasis_eh',nsmap={'p1':'http://www.exam-
ple.org/eHorizon',
'xsi':'http://www.example.org/eHorizon'})

root.text= '\n\n\n'

Code 6: Making new XML element (stub_structure.py)

for i,j in zip(self.TimeReferenceTest,self.TimeCopyTest):
 self.stubFrame_a=0
 self.stubFrame_b=0

 for car1,car2 in zip(i.getchildren(),j.getchildren()):

 # some data

for k,l in zip(i.findall
("{http://www.example.org/eHorizon}stub"),j.findall("{http://www.exam-
ple.org/eHorizon}stub")):

 self.Reflinenumber = 0
 self.Coplinenumber = 0
 self.stubIndex = self.stubIndex+1
 MakeFrame = 0

Code 5: Looping elements in parallel (stub_structure.py)

53 | P a g e

4). Storing car attributes:

This stage is similar to the one described in comparison approach but only difference here

algorithm cannot proceed to next stub if we spot any difference in car attributes. This is

because it is assumed that if car attributes are not completely matching then the algorithm

should not proceed to other children elements and it should transit to next timestamp.

for carRef,carCopy in zip(i.getchildren(), j.getchildren()):

 # carCopy.set('age', 'Updated')
 car_reference_attributes = [i.get('nTimestamp'), carRef.attrib.get('age'),

carRef.attrib.get('confidence'), carRef.attrib.get('heading'), carRef.attrib.get('in-
dex'), carRef.attrib.get('lane'), carRef.attrib.get('offset'), carRef.attrib.get('path-
Id'), carRef.attrib.get('probablity'), carRef.attrib.get('speed'), carRef.at-
trib.get('vpStat')]

car_copy_attributes = [j.get('nTimestamp'), carCopy.attrib.get('age'), carCopy.at-
trib.get('confidence'), carCopy.attrib.get('heading'), carCopy.attrib.get('index'),
carCopy.attrib.get('lane'), carCopy.attrib.get('offset'), carCopy.attrib.get('pathId'),
carCopy.attrib.get('probablity'), carCopy.attrib.get('speed'), carCopy.at-
trib.get('vpStat')]

 if car_reference_attributes == car_copy_attributes:
 reorderStub = j.findall("{http://www.example.org/eHorizon}stub")

for k,l in zip(i.findall("{http://www.example.org/eHorizon}stub"), reorderStub):

Code 7: Storing car attributes in reordering (ReorderFile.py)

54 | P a g e

5). Comparing and Reordering stubs:

Here variable “ref_list” and “cop_list” are list that stores the attributes and current position

of stubs from both “Reference.xml” and “Copy.xml”. In below mentioned method for every

stub in ref_list, it is compared with all the stubs of cop_list. If the index of both stubs are

same that means that the position of both stubs is same and hence we should not do anything

and break the loop.

However if the indexes are not same then the position of stub in cop_list has to be swapped

so that its index match the stub in ref_list. So after the position is matched we should head

on to next stub and so on.

After swapping the list of stubs has to be written back to the file. These stubs are now in

correct order and they are written back to file ““Reordered_copy.xml”” which we discussed

in 3rd point from above. Code for writing is given below where “saveFile” variable has

location of “Reordered_copy.xml”

ref_list.append(reference_stub_attributes)
cop_list.append(copy_stub_attributes)

 if ref_list and cop_list:

 if ref_list [0][1]!=cop_list[0][1]:
 break
 else:
 for stub1 in ref_list:
 for stub2 in cop_list:
 if stub1[1] == stub2[1]:
 stub1_index = ref_list.index(stub1)
 stub2_index = cop_list.index(stub2)
 if stub1_index==stub2_index:
 break
 else:
 temp = cop_list[stub2_index]
 cop_list[stub2_index] = cop_list[stub1_index]
 cop_list[stub1_index] = temp

Code 8: Comparing Indexes (ReorderFile.py)

root.append(j)
etree.ElementTree(root).write(saveFile)

Code 9: Write ordered stubs to XML file

55 | P a g e

6.2. Comparison approach for XML Comparator

For XML comparator I have discussed my implementation regarding the approach that I

discussed in section 4.5.

56 | P a g e

6.2.1. Program Structure

Figure 6.5: Comparison Approach (XML Comparator Tool)

Start

Load

Reference.xml

Load

Reordered_copy.xml

 Tree Parsing and loading two

files in parallel

Parse first parent

element <p1: time>

For each “time” enter first

children element <p1: car>

Compare car

attributes like

age, confidence…

If Difference If no Difference

Enter second children

elements <p1: stub>

Stubs can be > 1.

Check if 1st stub

attributes are equal

If Yes

If No

Enter deep children

element of stub i.e.

<p1: profile>

Store profile

data in

dictionary

Compare

Dictionary

If

Difference If no Difference

End

Display

Difference

& compare

next

profile

Display

Difference

Compare next

attribute

Compare next timestamp

Compare next Profile

57 | P a g e

6.2.2. Logic Implementation

Flowchart in Figure 6.5 resembles to the comparison of data shown in XML file of figure

4.4. The programmatic structure in context of research approach is described. The steps

shown in flowchart is implementation of research algorithm. In later part of this

implementation a user interface is displayed that would present the differences and

highlight it for users.

Here brief explanation of individual stages is discussed. It comprehends the details about

research in every phase of my implementation.

1). File Loading and Parsing:

This two methods are same as explained in section 6.1.2 in points 1 and 2 respectively.

Since comparison also needs to have input from two files, entire process of loading files in

reordering approach discussed in section 4.3.2 follows same here. For parsing also same

method is used.

Our main aim here is to find difference between two files and try to estimate the data

irrelevancy of “Reordered_copy.xml” from “Reference.xml”. Our main aim as discussed

earlier is to check the compliancy of Bosch Reconstructor with ADASIS reconstructor.

2). Comparing Car Attributes

As discussed above in parsing files section every “time” element is parent element and each

of “time” element has children elements like car and stub. So according to approach

discussed above we have to compare every individual attributes of child starting from “car”.

One simple example in Code 10 shows how every individual attributes of car element is

compared. “car1” here represents child element from “Reference.xml”, “car2” represents

child element from “Reordered_copy.xml” file and “age” is common attribute in both file

at given timestamp. Since the loop is run in parallel it is possible to compare attributes of

both child elements at one timestamp.

for car1,car2 in zip(i.getchildren(),j.getchildren()):
 carFlag = False
 self.stubIndex = 0

 if car1.attrib.get('age')!= car2.attrib.get('age'):
 if self.t and self.var==[self.t, int(i.get('nTimestamp'))]:
 string = 'Age Difference'

Code 10: Comparing Car Attribute (stub_structure.py)

58 | P a g e

Above Figure Code 10 only presents the difference checking code of one attribute i.e.

“Age”, but in main program it compares all attributes like “Age”, “Confidence”, “PathId”,

and etc. which are located in the file.

In case of any difference the value has to be written as output. Currently implemented script

generates output on user interface that was designed and will discuss it in brief ahead.

3). Comparing Stub Attributes

As we can observe from xml file that “stubs” are always 2nd child element after “car”. Once

car attributes are compared and output is displayed, we compare stub. As the comparison

is done in parallel loops as shown in Code 10, first all stubs are recorded at any given

timestamps.

Before we move further a check is done which assures that order of first stub is always

correct. It’s shown below:

In above figure “k” stands for stub from “Reference.xml” file and ‘l’ stands for stub from

“Reordered_copy.xml”. As this loop runs in parallel, we compare the attributes of stub

stored in dictionary “self.Ref” for “Reference.xml” with attributes stored in stub of

“Reordered_copy.xml” declared by variable “self.Copy” in Figure 4.12 above.

Before proceeding for comparing further a check is made to confirm that attributes of first

stub of any timestamp in “Copy.xml” is matching the attributes of same stub at given

timestamp in “Reference.xml”.

for k,l in zip
(i.findall("{http://www.example.org/eHorizon}stub"),j.findall("{http://www.exam-
ple.org/eHorizon}stub")):

 self.Reflinenumber = 0
 self.Coplinenumber = 0
 self.stubIndex = self.stubIndex+1
 MakeFrame = 0

 if carFlag==False:

if self.Ref.get(int(i.get('nTimestamp')))[0] ==
self.Copy.get(int(j.get('nTimestamp')))[0]:

 for m in k.getchildren():

Code 11: Checking 1st stub order (stub_structure.py)

59 | P a g e

 4). Comparing Profile elements inside stubs

Every stub has long list of profile elements which hold an important details about road

geometry. This elements characterize different stubs. Their types are in the form of

“AV2_CURVATURE”,“AV2_SLOPE_LIN”,“AV2_HEADING_CHANGE”,“AV2_HE

ADING_CHANGE”, “AV2_ROAD_CONDITION”

A specific approach is derived in following manner to compare individual profile elements.

Figure 6.6: Comparison of Profiles

Start

For every profile extract type, offset,

timestamp and stub index number.

Do this in parallel loop for both

Reference.xml and “Copy.xml”

Store this data in list format. Repeat

process for both files

Form a python dictionary with keys

as “Type” and for all common keys

assign values as offset, text and index

numbers for same type of keys. This

process is also done for both files

simultaneously

Implement order change detection

algorithm and to check possible

order change in profiles and

simultaneously compare structures

individually

.

Implement order change detection

algorithm to check possible order

change in profiles and

simultaneously compare structures

individually

.

Display

Result

60 | P a g e

Step 1: Extract Data:

In the figure above we can observe how profile attributes are stored in list called “record1”

for “Reference.xml” and “record2” for “Copy.xml”. This storing of attributes is designed

to perform in parallel for both loops.

Step 2: Forming a Python dictionary

In Code 12, first two lines shows how data is stored in dictionary format. The last two lines

are the output of debugger showing that “4” is the key which resembles to type

“AV2_CURVATURE” from Code 12. The values which are stored inside keys are offsets,

index number, text values etc. “Reference_File” dictionary belongs to “Reference.xml” and

“Implemented_File” dictionary variable belongs to “Reordered_copy.xml”.

Code 13: Storing data in Dictionary (stub_structure.py)

for m in k.getchildren():
 self.Reflinenumber=self.Reflinenumber+1
 record1 = [[m.get('type'), int(j.get('nTimestamp')),

int(m.get('offset')), int(m.text)],[self.Reflinenumber,self.stubIndex,
m.sourceline]]

 if record1[0][0]=='AV2_EFF_SPEED_LIMIT':
 record1[0][0]=1
 elif record1[0][0]=='AV2_ROAD_CONDITION':
 record1[0][0]=2
 elif record1[0][0]=='AV2_SLOPE_LIN':
 record1[0][0]=3
 elif record1[0][0]=='AV2_CURVATURE':
 record1[0][0]=4
 elif record1[0][0]=='AV2_HEADING_CHANGE':
 record1[0][0]=5

for n in l.getchildren():
 self.Coplinenumber=self.Coplinenumber+1
 record2 = [[n.get('type'), int(j.get('nTimestamp')),

int(n.get('offset')), int(n.text)],[self.Coplinenumber,self.stubIndex,
n.sourceline]]

 if record2[0][0]=='AV2_EFF_SPEED_LIMIT':
 record2[0][0]=1
 elif record2[0][0]=='AV2_ROAD_CONDITION':
 record2[0][0]=2
 elif record2[0][0]=='AV2_SLOPE_LIN':
 record2[0][0]=3
 elif record2[0][0]=='AV2_CURVATURE':
 record2[0][0]=4
 elif record2[0][0]=='AV2_HEADING_CHANGE':
 record2[0][0]=5

Code 12: storing profile data (stub_structure.py)

61 | P a g e

Step 3: Order Change Detection

Order change detection has to be used to detect difference between following set of data:

Figure 6.7: First Objective – detect order Change in different “Type” attribute

Here in above mentioned first scenario any generic tool would list out difference in the

XML files. But realistically this is not a difference. There is only an order change that has

taken place within profile elements. This may have been caused by reconstructor or xml

dumper but it’s not a difference.

Figure 6.8: second objective – detect order change in same “Type” attribute

In second scenario, there is order change detected in same type. However on having a closer

look at points highlighted by green mark, we can observe that these points are not violating

Referen

ce.xml

Reordered_copy.xml

Reference.xml

Reordered_copy.xml Reference.xml

62 | P a g e

any rules. These are valid points hence, our algorithm should not detect them as an error.

This is something not possible with generic tool which we use so far in our firm.

Failure in BeyondCompare Tool

Figure 6.9: BeyondCompare error

As we discussed about BeyondCompare tool in state of the art section. In above figure it

fails to detect order change and mentions difference in data which has no difference. Lines

in red denotes difference or missing elements.

My Implementation for first objective:

To tackle problem mentioned in first scenario of Figure 6.6 I have developed a working

approach of comparing elements despite order change. It works as follows:

Figure 6.10: First scenario solution

For every profile make

dictionary with “Type”

attribute as key. This

follows for both files

For each key in both files

compare the profile

elements of both files

Display missing or

different elements for each

key

OrderedDict ([(3, [[18, 223, 513, 1, 1,

78]]), (4, [[18, 223, 542, 11, 1, 88]]),

(5, [[…..)

Where

3, 4, 5 are keys that represents type

“AV2_CURVATURE”,

“AV2_SLOPE_LIN” and values inside

are offsets, text, timestamps etc.

all_keys = set(Reference_File) | set(Implemented_File)
for keys in all_keys:
 if keys in Reference_File:
 if keys in Implemented_File:
 #print "\n Key is in both dictionaries:",k
 a_value = [tuple(p) for p in Reference_File[keys]]

63 | P a g e

My implementation for second objective:

For solving the problem in second scenario as listed in Figure 6.7, we have to ignore the

consecutive pairs of data which is in right order for both files. And later output should be

such data which is not in order resulting in only different data to be displayed.

Figure 6.11: second scenario solution

For every profile make

dictionary with “Type”

attribute as key. This

follows for both files

For each key in both files

compare the profile

elements of both files

Find consecutive

pairs that are in same

order

Display result

def find_subseq(seq1, seq2):
 """Find matching subsequences of the two argument sequences."""
 compareSeq1 = [t[:-1] for t in seq1]
 compareSeq2 = [t[:-1] for t in seq2]

 matcher = SequenceMatcher(None, compareSeq1, compareSeq2, False)
 out = []
 for start, _, size in matcher.get_matching_blocks():
 if size > 1:
 out.extend(compareSeq1[start:start+size])
 finalValue = [t for t in seq1 if t[:-3] in out]
 return finalValue

 Remove the

consecutive pairs

from values stored in

that key

OrderedDict ([(3, [[18, 223, 513, 1, 1,

78]]), (4, [[18, 223, 542, 11, 1, 88]]),

(5, [[…..)

Where

3, 4, 5 are keys that represents type

“AV2_CURVATURE”,

“AV2_SLOPE_LIN” and values inside

are offsets, text, timestamps etc.

 Values left are the

ones which have

incorrect order

a = find_subseq(b_value, a_value)
matches = []
if a:
 c = set(b_value)-set(a)

64 | P a g e

6.3. Saving information of Comparison

As discussed in section 4.5.2 about saving comparison results. Here the implementation of

saving results into XML file is described in brief.

Figure 6.12: Saving comparison results to XML file

Load

Reference.xml

Load

Reordered_copy.xml

 Tree Parsing and loading two

files in parallel

Parse first parent

element <p1: time>

For each “time” enter first

children element <p1: car>

Start

If Difference If no Difference

Go to Stub

element

Compare car

attributes like age,

confidence…

Write its

value to

XML file

For each “time” enter deep

children element <p1: profile>

of parent element <p1: stub>

For each key “Type” in <p1:

profile> compare size of both

Store profile

data in

dictionary for

every keys

File with less amount of

values in key is assumed to

have missing value inside

Locate index numbers of all

keys from that file. And

append “space” tag to missing

value

Write this data along with

correct file tags to XML file. End

65 | P a g e

Algorithm Description

Above implementation of XML file for saving comparison results is done in reference to

the steps explained in section 4.5.2. Main aim of this algorithm is to save all comparison

results in a XML file which can be later used for formatting purpose. So much of its

implementation is same as comparison as far as parsing of two files is concerned.

Only change is when results are generated they are written in another XML file which

includes all the necessary information like timestamp, stub number, file etc. where error

was generated. In above shown algorithm since all the information of stages related to

comparison are covered before. Here the major focus is given on explaining implementation

of file saving feature.

1). Writing Car Difference

Writing difference of Car element is far simplistic. Here for every “timestamp” we compare

attributes of both files. If they are matching, the result is “True” or else it is “False”.

If result is false we proceed further to write it. In this file new main element is created which

will have “timestamp” value listed in which data was found faulty. Like stated in above

figure later new sub element with name “Car” is created and result is written to the file – in

our case it is “saveddata.xml”

if age=='False' or confidence=='False' or heading == 'False' or index == 'False' or lane ==
'False' or nTimestamp == 'False' or offset == 'False' or pathId == 'False' or probablity ==
'False' or speed == 'False' or vpStat == 'False':

 etree.SubElement(self.AHR, 'Car')
 self.SavedError.append(self.MainRoot)
 writeValue = minidom.parseString(etree.tostring(self.SavedError)).toprettyxml()
 with open('C:\Users\BHD4ABT\Desktop\saveddata.xml','w') as f:
 f.write(writeValue)

Code 14: Writing Car Difference (saving_file.py)

66 | P a g e

2). Writing Profile difference inside Stub element

Profile element is located inside Stub element. And while writing difference we are more

concerned about differences in Profile elements. In above algorithm we have to detect the

size of two keys from both files. If the size of key in one file is less than that of another,

then there is a missing element inside.

“a_value” refers to the values found in “Reference.xml” and “b_value” refers to values

found in “Reordered_copy.xml”. Wherever this missing elements are found we have to

append a tag – in our case it is string “space”.

This means that when this file is loaded back in tool, at whichever instance this string is

found we have to insert an empty line in the text widget which carries our xml data.

Moreover, if this is not achieved then this file can also be used by developer to load back

results in tool and observe the difference.

Based on file in which difference was found differences are written to another XML file

using method given in code below.

a_value = [tuple(p) for p in self.Reference_File[keys]]
b_value = [tuple(p) for p in self.Implemented_File[keys]]

if len(a_value)<len(b_value):
 self.compareFlag = 'true'
 space = len(b_value)-len(a_value)

for values in range(space):
 a_value.append((0,0,0,'space'))

if len(b_value)<len(a_value):
 self.compareFlag = 'true'
 space = len(a_value)-len(b_value)
 for values in range(space):
 b_value.append((0,0,0,'space'))

Code 15: Calculating length of values inside keys (saving_file.py)

67 | P a g e

The way this data is written onto file is shown below:

for location in a_value:
 value_ref.append(location[3])

for values in b_value:
 copy_value.append(values[3])

if 'space' in value_ref:
 self.AHR = etree.SubElement(self.MainRoot, "RefAHR")
 self.stub = etree.SubElement(self.AHR, 'Stub', attrib = self.stubAttrib)
 etree.SubElement(self.stub, 'Profile',
 type = keys,
 location = str(value_ref).strip('[]'))

if 'space' in copy_value:
 self.TestAHR = etree.SubElement(self.MainRoot, "TestAHR")
 self.TestStub = etree.SubElement(self.TestAHR, 'Stub', attrib = self.stubAttrib)
 etree.SubElement(self.TestStub, 'Profile',
 type = keys,
 location = str(copy_value).strip('[]'))

self.SavedError.append(self.MainRoot)
writeValue = minidom.parseString(etree.tostring(self.SavedError)).toprettyxml()
with open('C:\Users\BHD4ABT\Desktop\saveddata.xml','w') as f:
 f.write(writeValue)

Code 16: Writing profile value to XML file (saving_file.py)

68 | P a g e

6.4. Displaying Information of Comparison

This section deals with displaying of results on the user interface. It also deals with how

usage of Tkinter library was made to build the interface.

Before we move on to structure of how I implemented user interface I want to depict the

important widgets that Tkinter provides and I made extensive use of:

Label: This is a widget which provides display box for implementing text or images. It is

defined in following manner:

Text field: This widget allows to edit multiline text or insert any text inside it. You can

get index number of string or highlight specific string.

Buttons: This widget allows us to bind any even on button press. Majority of times I have

bind functions with button press.

Scrollbar: This widget allows vertical and horizontal scrolling of widgets on frame or

canvas.

Frame: Lastly there is Frame which is used to group and organize above given widgets. It

helps in arranging widgets in given position.

69 | P a g e

6.4.1. Developing User Interface

As shown in section 4.4.4 I made use of Tkinter as my GUI interface building library.

Following is the algorithm that was used to create needed interface:

Figure 6.13: Approach for user interface

Flowchart explained above shows how comparison results are saved on widgets provided

by Tkinter library. For every instance of compared results it is written on GUI widgets. This

widgets are created only when difference is sensed. All the differences are then presented

over the Label widget as described in section 6.4.

Load

Reference.xml

Load “Copy.xml”

Tree Parsing and loading two

files in parallel

Parse first parent

element <p1: time>

For each “time” enter first

children element <p1: car>

Start

If attribute

Difference

No

Yes

Print difference on Tkinter

Label widget

Go to next

attribute and

compare

For each “time” enter first

children element <p1: stub>

If profile

attribute

Difference

Print difference

on Tkinter

Label widget

End

70 | P a g e

6.4.2. Binding results to User Interface

In this section complete working results are not shown. Rather bigger part focus is given

on explaining how results were bonded with user interface. In section 7.1 I have shown

full working results of my implementation.

1). Building options for opening files

For taking input of files a user interface is built in such a way that it asks for option of

opening two files for comparison – “Reference.xml” and “Reordered_copy.xml”

comparatively.

Code 17: Opening/Loading files for comparison (stub_structure.py)

In above figure I have shown how implementation of file loading interface was done. The

first coding box in Code 17 suggests how buttons are designed to ask for opening reference

and copy files. Then in next code box it is displayed how files are opened and the data is

then inserted into text boxes which are meant to display two files. “ReferenceXML” and

“CopyXML” are two text boxes meant to display the content.

self.page1ref = Button(page1, text="Open Reference File",
 command=self.RefSelect_load_file)
self.page1ref.grid(row =1, column=0, padx = 10, pady=30)
self.page1RefLabel = Text(page1, height=1, width = 60)
self.page1RefLabel.grid(row=1, column=1, padx=10, pady=10)
self.page1cop = Button(page1, text="Open Copy File",
 command=self.CopySelect_load_file)
self.page1cop.grid(row=2, column=0, pady=10)

fileOpen = open(self.reffname)
self.labelReference.insert(END, self.reffname)
ReferenceXML.insert(END,fileOpen.read())

fileOpen = open(self.copyfname)
self.labelCopy.insert(END,self.copyfname)
CopyXML.insert(END, fileOpen.read())

Figure 6.14: Interface for opening/loading files

71 | P a g e

2). Displaying reordered data

Before comparison the data has to be reordered so there has to be option to reorder the

current “Copy.xml” as we shown in Figure 6.13. For the reordering we provided the button

option in file open/close dialogue box in following manner:

So pressing a button creates an event which calls function “make_reorder_file” function

which calls “Reordering” class and saves the file in desktop. The status is also shown to

user in the form of progress bar.

3). Displaying comparison results

As discussed earlier for showing difference on user interface, there is need to bind the

output to the user interface. So to perform this appropriate Frame widget has to be made

and for every difference we have to make a Label on that Frame as shown in below figure

with label “ttk.Label” and inside that label we have to save our results.

self.t = ResultFrame(self.callbackFrame, text= 'Timestamp:' + i.get('nTimestamp'), re-
lief="raised", borderwidth=1, width=20)
self.t.pack(fill="x", expand=1, pady=2, padx=2, anchor="n")

string = 'Age Difference'
self.var=[self.t, int(i.get('nTimestamp'))]
carLabel = ttk.Label(self.t.error_frame, text=string, justify=LEFT, width=20)
carLabel.pack(fill="x", expand=1, pady=2, padx=2, anchor="n")

Code 19: Creating Frame and Label for Car element (Children Label) (stub_structure.py)

self.ReorderFile = Button(page1, text="Reorder", height = 1, bg = '#66CCFF',
 command=self.make_reorder_file)

def make_reorder_file(self):
 self.saveFile="C:/Users/BHD4ABT/Desktop/ReorderData.xml"
 status.config(text="Reordering initiated. Please wait. Writing files")
 Reordering = Reorder()
 Reordering.reOrder(self.reffname,self.copyfname, self.saveFile,

 pbar_f, bottomframe5)

 pbar_f["value"] = 0
 status.config(text="Reordering done. File saved in desktop")

Code 18: Displaying Reordered Data (stub_structure.py)

72 | P a g e

Apart from difference we also make a parent label for timestamp in which this differences

are developed. They are shown in below figure.

Above mentioned figure is the way we write car difference onto the label used in the user

interface. Now we will discuss about how we bind compared output that was generated out

of stub element.

For stub element we use same method that we used for showing car difference. But here

some checks has to be performed that makes sure that no frames are overwritten. So if the

difference from stub and car element are generated from same timestamp then there should

be common parent label like shown in Figure 6.14. Under this parent label the difference

should be children labels comprising of car and stub element.

A working sample looks like this:

Figure 6.15: Comparison Results

self.title_frame = ttk.Frame(self)
self.title_frame.pack(fill="x", expand=1)
ttk.Label(self.title_frame, width=20, text=text).pack(side="right", fill="x", expand=1) #for
showing title on error frames

self.error_button = ttk.Checkbutton(self.title_frame, text='+',

command=self.plusButton,
variable=self.show, width=7, style='Toolbutton')

Code 20: Creating label for Timestamp element (Parent label) (stub_structure.py)

73 | P a g e

4). Highlighting difference

After listing the difference out on user interface there should also be provision for

highlighting errors. So a defined highlight class gets called whenever user clicks on label

that defines difference.

Highlighting algorithm works in following manner:

Figure 6.16: Highlighting algorithm

Our main aim is to highlight xml lines which is stored in text box. For that difference has

to be located which matches xml lines in both text box that is used to show our data in user

interface. To detect the correct line we have to find the data in correct range. So starting

and ending limits are set on specific timestamps in which error was detected. Lastly, based

on line number of those errors situated in timestamps entire line is highlighted.

Highlighting Class

def highlightStub(self,event,start,end,copyMissing,refMissing,color,label):

 findRefScrollPos=float(ReferenceXML.search(start, '1.0', stopindex=END))
 autoScrollRefXML = ReferenceXML.index(str(findRefScrollPos))
 ReferenceXML.see(autoScrollRefXML)
 findCopyScrollPos=float(CopyXML.search(start, '1.0', stopindex=END))
 autoScrollCopyXML = CopyXML.index(str(findCopyScrollPos))
 CopyXML.see(autoScrollCopyXML)

 for index in copyMissing:
 self.color_config(event, label, color)
 sequence = 0
 ReferenceXML.tag_configure("yellow", background="yellow")
 CopyXML.tag_configure("yellow", background="yellow")
 end = ReferenceXML.search(end, '1.0', stopindex=END)

Capturing button events

stubLabel.bind("<Button-1>",lambda event, start = selectedTimestamp,
 end = '<p1:time nTimestamp="{0}">'.format(int(i.get('nTimestamp'))+1),
 copyMissing = copyValue, refMissing = refValue, label=stubLabel,
 color = "red": self.highlightStub(event,start,end,copyMissing,
 refMissing,color,label))

Code 21: highlighting events and calling class (stub_structure.py)

Capture mouse click

on label

Call highlight function with

arguments like start limit, end

limit, color and compared data

points

Find line number of these

data points from xml file

inserted in text box within

limits passed as arguments

Highlight

Data

74 | P a g e

Sample of highlighting is presented below:

Figure 6.17: Highlighting Results

As given in figure at some specific timestamps two sets of “AV2_HEADING_CHANGE”

differed greatly. The difference can be seen in “offset” as these two lines in both files are

highlighted. On opening two files in file dialogue box they are inserted into text box.

 Ref.xml

 Copy.xml

75 | P a g e

6.5. Implementing interface for CAN Script Generator

In this section I have shown my implementation work concerning CAN script generator. I

have explained program structure which depicts a flowchart explaining my work flow. In

later section I have briefly showed my logic implementation concerning the work flow.

6.5.1. Program Structure

Figure 6.18: CAN stream generator Implementation

Start

Get range and interval from

user for Curve, Slope, Speed

and Heading

Display sliders for selecting

any input from given range.

Store the values from

sliders in list. The list should

belong to appropriate entity

(Slope, Curve, Heading…)

Write the stored values to

new python file

Import these values to the

script files and replace

manual input in scripts with

these values

Import script files into new

class in new file. When this

class is called, execute the

scripts

Output is CAN stream

End

76 | P a g e

6.5.2. Logic Implementation

Here logic is described for implementing stages that was explained in section 6.5.1. It is

depicted in the form of coding snippets and wherever possible have shown some working

interface pics.

File structure of CAN stream generator is organized into following category

can_structure.py My implementation of user interface for the

can script generation

can.py Used for storing user selected values from

the interface

generation_script.py Script file where can.py is imported and all

values are made available for the scripts to

generate can data. It also imports

framework.py

framework.py Defines attributes for generating a can data.

It has all the attributes like road geometry,

car distance, path ids, stubs etc. this data is

then made available in the form of CAN

stream

Table 6: CAN Script Generator (File Structure)

1). Getting range and interval from user

Here dialogue box is designed which will ask user to enter range and set intervals. There

will be option for users to enter different values for different parameters. These parameters

are then given to sliders on the basis of which sliders determine their range.

for curve label

curveLabel = Label(self.menu_frame1,text='Curve',bg='cyan')
curveLabel.pack(side=LEFT)

curveEntry1 = Entry(self.menu_frame1)
curveEntry1.pack(side=LEFT, padx=20)

curveEntry2 = Entry(self.menu_frame1)
curveEntry2.pack(side=LEFT, padx=20)

Output:

Figure 6.19: Creating entries (can_structure.py)

77 | P a g e

Curve label, Slope label, heading label etc. are the entries that we are interested in taking

values for. Just like in above figure an output represents a simple interface to get values

from user.

2). Displaying Sliders for selecting values over given range

Sliders are part of Tkinter library and they are defined by “Scale” widget for which

following syntax is used:

Above mentioned sliders are used to retrieve the values from user for given range. So the

values that user enters in Figure 6.19 are connected with the variables “from_”, “to” and

“tickinterval” of scale widget. This variables can be viewed in above figure 6.20.

3). Storing and writing values

In this stage values are retrieved which are stored by user using sliders or any other input

field. These values are then written to another python file.

self.slideCurve = Scale(curveFrame, from_=int(curveEntry1.get()), to=int(curveEntry2.get()),
 length = 700, tickinterval=int(curveEntry3.get()), orient=HORIZONTAL)
self.slideCurve.pack()

Figure 6.20: Scale widget Tkinter (can_structure.py)

can_structure.py

def write_values(self):

 print self.curve
 print self.curveEntry.get()

 f=open('C:\Users\BHD4ABT\Desktop\can.py','w')
 f.write('CurveSlider={}'.format(self.curve))
 f.write('\n')
 f.write('CurveManual=[{}]'.format(self.curveEntry.get()))
 f.close()

can.py

CurveSlider=[3135, 3437, 3698, 3940, 4123, 3985]
CurveManual=[56,78,98,89]

Code 22: Write values entered by user to file

78 | P a g e

4). Importing newly written file in script

Now that file with newly written values is generated, they have to be imported into script

file so that all the values shown in above figure are accessed by the scripts to generate CAN

data based on these files.

This is done in following manner:

from framework import *
from can import *
create the sub pathes / max number
subpathId = 9
for offset in CurveSlider:
 msg = StubMessage()
 msg.offset = offset
 msg.pathId = 8
 msg.subPathId = subpathId
 msg.turnAngle = 100
 subpathId += 1
 print msg.toString()
 msg.toFile(f)

Code 23: importing values and CAN

 stream generation (generation_script.py)

79 | P a g e

5). Generating CAN data

CAN stream can be viewed in figure 2.2 and section 2.1.1. After implementing above steps

one final work is to call the scripts from program. Once it is called CAN stream is generated

and user can use interface for writing different values for desired output.

In reference to code in Code 23, “generation_script.py” imports framework class inside its

own file. It then calls methods located in “framework.py” like stubMessage(),

positionMessage() etc. which assigns attributes in the form of CAN stream according to

received arguments. A sample of such class can be viewed below:

class StubMessage(AdasisMessage):

 _cyclicCtr = 0
 #
 # Constructor
 #
 # rawData (mandatory) - raw data bytes from CAN message (size = 8 bytes)
 def __init__(self, rawData=None):
 AdasisMessage.__init__(self,rawData)
 if rawData is not None:
 # take values from rawData
 self.decode()
 else:
 # set default values
 self.set_msg_type(MessageType.AV2_MSG_STUB)
 self.set_sub_path_id(0) # unknown
 self.set_last_stub(0) # 0 = false
 self.set_turn_angle(255) # N/A
 self.set_update(0) # false = no update
 self.set_rel_probb(31) # N/A

Code 24: StubMessage class (framework.py)

80 | P a g e

7. Results

In this concluding section of implementation I want to present some snapshots of working

results that were generated. Along with snapshots the description of features are also

explained.

7.1. XML Comparator

This is the main window of XML comparator wherein comparison results are showed by

list of labels for every timestamps in which data was found to be faulty. Violating points

are shown stub wise so they are easy keep track off. Labels carry “Type” from xml data.

“Reordered_copy.xml” is generated out of “Copy.xml”. In image it cannot be shown but

process is explained in section 6.1.

Figure 7.1: XML Comparator Main Window (Latest Interface)

Comparison Results Reference.xml

Error

Highlighting

Reordered_copy.xml

81 | P a g e

On pressing Compare/Load file a dialogue box opens which is described in below figure.

First dialogue box is for reordering and comparing. Reordering has to be done before

comparing because the original “Copy.xml” may have unordered stubs which needs to be

arranged in proper order for comparison. If this step is skipped and direct comparison is

done with original “Copy.xml” then the results will be predicted right by the tool, however

they cannot be correctly interpreted by the user.

Second dialogue box is for loading comparison results while taking reordered file into

consideration. Also there will be option for saving the current results. Current results are

stored in the form of new XMl file which can be used for further calculations.

Compare and Reorder window

Reorder and Save

Figure 7.2: XML Comparator Compare/Load

82 | P a g e

XML comparison results saving file as we discussed in section 6.3 are shown below. This

file is generated on pressing save button in above dialogue box when user has completed

reordering operation and has loaded that file inside the tool.

In above file “RefAHR” stands for Reference ADAS Horizon Reconstructor and it means

the data belongs to “Reference.xml” and “TestAHR” stands for Test ADAS Horizon

Reconstructor and this suggests that data located inside this element is taken from

“Reordered_Copy.xml”

<Time nTimestamp="17">
 <TestAHR>
 <Car/>
 </TestAHR>
</Time>

<Time nTimestamp="18">
 <RefAHR>
 <Stub index="1">
 <Profile location="33, 34, 35, 36, 37, 'space'" type="AV2_EFF_SPEED_LIMIT"/>
 <Profile location="19, 20, 21, 22, 23, 'space'" type="AV2_ROAD_CONDITION"/>
 <Profile location="10, 11, 12, 13, 14, 15, 16, 17, 18,
 'space'"type="AV2_SLOPE_LIN"/>
 <Profile location="1, 2, 3, 4, 5, 6, 7, 8, 9, 'space'"
 type="AV2_CURVATURE"/>
 <Profile location="24, 25, 26, 27, 28, 29, 30, 31, 32, 'space'"
 type="AV2_HEADING_CHANGE"/>
 </Stub>

<Stub index="3">
 <Profile location="31, 'space', 'space', 'space', 'space', 'space'"
 type="AV2_EFF_SPEED_LIMIT"/>
 <Profile location="21, 'space', 'space', 'space', 'space', 'space'"
 type="AV2_ROAD_CONDITION"/>
 <Profile location="22, 23, 24, 25, 26, 27, 28, 29, 30, 'space'"
 type="AV2_HEADING_CHANGE"/>
 </Stub>
 </RefAHR>
 </Time>

<Time nTimestamp="19">
 <RefAHR>
 <Stub index="3">
 <Profile location="36, 'space', 'space', 'space', 'space', 'space'"
 type="AV2_EFF_SPEED_LIMIT"/>
 </Stub>
 </RefAHR>
</Time>

Code 25: Final saved data from comparator (saveddata.xml)

83 | P a g e

7.2. Old Comparator interface vs New Comparator Interface

Main Window

Comparing Window

Figure 7.3: Old XML Comparator Interface

84 | P a g e

Figure 7.1 presents latest interface design and Figure 7.3 shows the old interface that

was used for comparing XML files. The main difference between two is the latest design

has only one window and for better usability two text files are showed in vertical format

than horizontal. This was done to match the display options of BeyondCompare tool.

Secondly, in previous format for every comparison a comparing window would pop out

as shown in figure 7.3. It also had lots of text inside sometimes not easy to read. This

was nullified and converted to shorter version in latest format. With highlighting feature

there is no need of showing so much text.

85 | P a g e

7.3. CAN Stream Generator

This is how the main window of CAN stream generation looks after getting all the values

from the user. It can be observed from the figure that user can use slider over scale to move

to different points and select the data points or he can also choose to use values directly

using the entry label right below scale widget.

“Write” option located down is used to write values to another python file which is imported

into script files. When user presses Generate, CAN stream generated which is shown in

Figure 2.2.

Figure 7.4: CAN Stream Generator

86 | P a g e

Using this dialogue we can load the values of different parameters like curve, slope, speed

and heading. Whichever parameters are filled here are only showed on the main screen.

With this window one can set needed range with interval which will be then displayed on

the slider.

Figure 7.5: Loading data

87 | P a g e

8. Summary

The thesis have been concluded with covering three major topics which consist of

Conclusion, Challenges and Limitations that were faced throughout the duration of

work.

8.1. Conclusion

In this research main focus was put forward on building XML Comparison tool and

CAN Stream Generator tool. Comparing of two XML files is done efficiently taking

every scenario into consideration as discussed in implementation chapter.

Similarly the user interface for CAN Stream Generator is able to generate CAN stream

just the way scripts used to perform. User interface that was built for both tools is robust

and many custom user interface in our firm are built on same Python library Tkinter.

This document covers the concept that was developed to build both of these tools. It

also backs research with working implementations and finally we have two software

tools that are developed for further use.

8.2. Limitations

Despite of building working software tools, there are some areas which can be improved

and some features that can be upgraded.

Initially with XML Comparator though the task of comparison is achieved, the user

interface can be slightly improved by introducing a feature of auto spacing. This new

feature will implement spaces in XML data which is shown in text box of interface.

There can be ways in which data from file saved can be utilized in more efficient

manner.

Secondly, in CAN Stream Generator, the functioning should not be only limited till

generating CAN stream. But it can also be further developed to take such parameters in

consideration which can simulate the data points for a scenario in which car is moving

on a path. It can need more time but this feature can add cutting edge facility to the

present tool.

88 | P a g e

9. Appendix

ADAS Advance Driving Assistance System

ADASIS Advance Driving Assistance System Interface Specification

AHP ADASIS Horizon Provider

AHR ADASIS Horizon Reconstructor

Av2HR ADASIS Version 2 Horizon Reconstructor

WP Work Packages

e-Horizon Event Horizon

Path ID Path Identifier

OSM Open Street Map

Ref.xml Reference.xml

Cop.xml Copy.xml

MPP Most Probable Path

89 | P a g e

Literature

[1] “ADASIS Report” Bosch Engineering GmbH – Internal, BEG-VS/EBI1, 2015

[2] Achim Haegele, “SWS Test Environment ADASIS”, Internal, Bosch Engineering

 GmbH BEG-VS/EBI1, 2013

[3] Sinisa Durekovic (NAVTEQ), “ADASIS v2 Protocol“, Bosch Engineering GmbH

 Internal, BEG-VS/EBI1, 2012

[4] Erik T. Ray, Learning XML, 2nd ed. O'Reilly Media, 2003

[5] Mark Lutz, David Ascher, 2nd ed. O'Reilly Media, 2000

[6] EXAMPLE OSM XML FILE http://wiki.openstreetmap.org/wiki/OSM_XML

[7] Haklay M, “OpenStreetMap: User-Generated Street Maps” IEEE, Univ. London, 2008

[8] Christopher A. Jones, Fred L. Drake Jr, Python and XML, 1st ed. O'Reilly Media,

2001

[9] Mark Pilgrim, Dive Into Python, http://www.diveintopython.net/toc/index.html

[10] John E. Grayson, Python and Tkinter Programming, 1st ed. United States, 2000

[11] Wilfried Voss, A Comprehensible Guide to Controller Area Network,

 Copperhill Technologies, United States, 2005

	Acknowledgement
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Listings
	1. Introduction
	1.1. Motivation
	1.2. Objective
	1.3. Organization of Thesis
	1.4. Type and Contribution

	2. State of the Art
	2.1. CAN Script Generator
	2.1.1. CAN Trace View
	2.1.2. Main Use

	2.2. Reconstructors
	2.2.1. API for Information retrieval
	2.2.2. Main Loop of Simulation

	2.3. XML Dumper
	2.3.1. Deployment
	2.3.2. Application Interface

	2.4. XML Comparison

	3. ADASIS v2 Protocol
	3.1. Digital Map Database
	3.1.1. Path Presentation
	3.1.2. Optimized Path Presentation

	3.2. Building Blocks
	3.3. Paths and Offsets
	3.3.1. Path length limits
	3.3.2. Path Profiles

	3.4. Messages
	3.4.1. Message Types
	3.4.2. Message Types Description

	4. Concept of XML Comparison Tool
	4.1. XML File
	4.1.1. XML File Description
	4.1.2. XML structure

	4.2. University standard Open Street Map (OSM)
	4.2.1. Open Street Map Attributes
	4.2.2. Open Street Map (OSM) vs Bosch XML Mapping

	4.3. Necessity for XML Comparison Tool
	4.3.1. Availability:
	4.3.2. Problems with BeyondCompare

	4.4. Research for Implementation
	4.4.1. XML Parsers
	4.4.2. Working with Libraries
	4.4.3. User Interface
	4.4.4. Software tools used

	4.5. Planned Research Approach
	4.5.1. Primary Stages
	4.5.2. Saving Stage

	5. Concept of CAN Stream Generation Tool
	5.1. Script Structure
	5.1.1. CAN stream generation algorithm
	5.1.2. Assigning Attributes to CAN data

	5.2. Necessity for CAN Stream Generation Tool
	5.3. Research for Implementation
	5.3.1. Parameters
	5.3.2. Input to Parameters
	5.3.3. Saving output to file

	6. Realization and Implementation
	6.1. Reordering Approach for XML Comparison
	6.1.1. Program Structure
	6.1.2. Logic Implementation

	6.2. Comparison approach for XML Comparator
	6.2.1. Program Structure
	6.2.2. Logic Implementation

	6.3. Saving information of Comparison
	6.4. Displaying Information of Comparison
	6.4.1. Developing User Interface
	6.4.2. Binding results to User Interface

	6.5. Implementing interface for CAN Script Generator
	6.5.1. Program Structure
	6.5.2. Logic Implementation

	7. Results
	7.1. XML Comparator
	7.2. Old Comparator interface vs New Comparator Interface
	7.3. CAN Stream Generator

	8. Summary
	8.1. Conclusion
	8.2. Limitations

	9. Appendix
	Literature

