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Preface

The topic of this thesis has its origin in a project I have worked on during an internship at
Commerzbank in Frankfurt. Having been able to work in the dynamic and familiar Quantitative
Research team has been a great experience for me. The objective of the project was to improve
accuracy and to speed up the computation time of one option pricer for stochastic volatility markets
based on the finite difference method. Mainly occupied with implementing the algorithm in a
C++ environment the project still left some time for practical examinations. With help of many
simulations the influence of different non uniform grids as well as different boundary conditions
were studied.

This thesis aims to put some heuristics on a theoretical basis and gives further suggestions for an
improvement of convergence. However, it has sometimes been quite difficult to find and acquire
appropriate literature about finite differences which did not simplify the task.

I would like to take this opportunity to thank the Quantitative Research team at Commerzbank for
giving me an insight in the banking business, in particular to Dr. Jürgen Hakala for providing me
with important material, to Dr. Uwe Wystup for giving me the opportunity to attend conferences,
to PD Dr. Thomas Apel, from Chemnitz University of Technology, for his valuable ideas and to
Prof. Chris Rogers, from the University of Cambridge, for assisting in stochastic questions.
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Chapter 1

Introduction

On financial markets many different products are traded. Focusing on the foreign exchange market
we are basically faced with exchange rates of different currency pairs and derivative products which
depend in a deterministic way on the underlying rates. The most common examples are swaps,
forwards and different kind of options. At time of maturity T the value of a call option for instance
is by contract equal to the value of an underlying minus a predefined so called strike value if the
underlying exceeds the strike and otherwise zero. Even the trade of plain vanilla options is of high
importance for the whole industry. Without going into too much detail the buyer of a call option
of an exchange rate like EUR/USD protects himself from a strengthening Euro maybe because he
will receive payments in US Dollar and thus hedges the currency risk. If the Euro looses value
the option might become worthless but the incoming money will be worth more. The issuer which
is mainly a bank on the other hand does not want to be exposed to the uncertainty and risk
involved in the outcome of the deal. Therefore the bank hedges the value of the option using a
portfolio consisting of the underlying and a money market account with the objective to replicate
the option value at maturity T . The price of the option will be determined based on the value
of the portfolio at the beginning of the contract. For an accurate assessment of the price it is
essential to have a realistic stochastic model about the development of the underlying quantity.
Black and Scholes [2] discussed in 1973 a simple model where the underlying obeys a geometric
Brownian motion and derived option prices based on the no arbitrage principle. Their work was
remarkable and the results are still widely used. Since then, several improvements and extensions
were suggested in order to obtain a more realistic model and hence more accurate option prices.
We concentrate on stochastic volatility models where as the name suggests the volatility is not
constant like in the Black-Scholes model but a stochastic process itself. Of course there are other
models which are equally important like Jump-Diffusion and Lévy processes. Further approaches
also take into account which is called friction of the market meaning illiquidity effects, default risks
and transaction costs.

In this thesis we examine the numerical part of option valuation and take stochastic volatility
models for granted for which option prices in general are not available through an analytic formula.
Besides Monte Carlo methods and evaluation using binomial or trinomial trees one can determine
the price by solving a parabolic partial differential equation (p.d.e.) which is the approach we
focus on. The actual price is then the solution of the p.d.e. evaluated in one particular point
in space and time. In reality one needs an algorithm which computes this value as quickly as
possible with an acceptable accuracy. Roughly, that means two accurate digits in less than one
second. We employ the finite difference method (f.d.m.) to solve the p.d.e. which is of convection-
diffusion type in two space dimensions. This numerical method has been chosen because it is
simple to implement, flexible as far as modelling of different boundary conditions is concerned and
offers ways to speed up the computation by using an alternating direction scheme. Still, practical
implementations show that the relation between accuracy and time consumption of the numerical
method is yet unsatisfactory. One of the main results of this thesis is a proposal for a non uniform
structured grid which strongly improves the local error in that particular point in space we are
interested in. Another contribution to reduce errors without increasing complexity is the choice of
a discretisation at the zero variance boundary where no boundary condition is given. There, we
discretise the p.d.e. using finite difference approximation from the right. These ideas which are
coming from theoretical consideration are substantiated by numerical simulations.

Even though there exists a whole family of stochastic volatility models, the presented theory is

2



CHAPTER 1. INTRODUCTION 3

mainly tailored to the p.d.e. arising from the Heston stochastic volatility model. Where possible,
statements have been kept as general as possible in order to cover other p.d.e. as well. One difficulty
of the Heston p.d.e. is its degenerating behaviour at the zero variance boundary. Existence and
uniqueness properties have been shown in [8, Chapter 24] but only if the zero variance boundary
is moved so that the p.d.e. is uniformly parabolic. In this work we present a proof which at
least certifies a special finite difference method unconditionally stability even if the p.d.e. is not
uniformly parabolic given a uniform grid and appropriate boundary conditions.



Chapter 2

Stochastic model

The aim of this chapter is to provide the reader with the basic idea on how to derive a differential
equation for the value function of an option from the stochastic model of the underlying. It is not
intended to introduce and exemplify the stochastic background like stochastic processes, stochastic
differential equations (s.d.e.) and the no arbitrage principle. For an introductory text refer for
example to [20].

For stochastic processes the subscript t denotes the random value which the process assumes at
time t. In contrast a subscript t, v or s on a deterministic function means the derivative with
respect to the variable. To distinct these two different meanings an additional prime ′ is added to
indicate derivatives. That will only be maintained within this chapter. In the following chapters a
subscript t, x, y or v without a prime always denotes a partial derivatives.

2.1 Stochastic volatility models

Let (Ω,A, P ) a probability space. The value of the underlying financial product also called the
spot value is in general modelled by a stochastic process denoted by S. At any time t the process
is a random variable St : Ω → R+. In the Black-Scholes world the spot evolves according to the
stochastic differential equation

dSt

St
= µ dt + σ dWt

with a Wiener process W and constants µ ∈ R and σ > 0 describing the drift and volatility,
respectively. In stochastic volatility models the constant σ is replaced by a local times a stochastic
volatility. The local volatility is a deterministic function of the spot and time. Following [14] the
model can be characterised by

dSt

St
= µ dt + σL(St, t)

√
vt dW

(1)
t ,

dvt = κ(θ − vt) dt + ξ
√

vt dW
(2)
t .

In this approach the stochastic variance v is modelled by a mean reverting process with the mean
variance θ > 0, the strength of mean reversion κ > 0 and the so called vol of vol ξ > 0. The function
σL : R+ × [0, T ] → R+ is called local volatility. Both Wiener processes might be correlated. There
exists several suggestion for the most appropriate choice of σL. For example Blacher suggests in
[1] a local volatility which is quadratic in s

σL(s, t) = 1 + α(s − S0) + β(s − S0)
2

with some constants α, β and the at time t = 0 observed spot S0. The stochastic volatility model
by Heston [10] is the particular case with σL(s, t) = 1. Figure 2.1 shows one sample path of the spot
and volatility processes in Heston’s model. The constants are taken from Table 6.1 and describe
the exchange rate between US Dollar and Japanese Yen.

Remark 2.1.1 (Boundary behaviour of the variance process)
The variance process v never reaches the value zero if the inequality κθ − 1

2ξ2 < 0 is fulfilled. For
details see [22, Chapter 5]. The idea can be summarised as follows: It is known that the so called

4
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Figure 2.1: Sample path of the stochastic process St and
√

vt

n-dimensional Bessel process Rt : Ω → R
1 defined by the s.d.e.

dRt =
n − 1

2Rt
dt + dWt

never hits the origin if n ≥ 2. The same obviously applies to the squared Bessel process Vt := R2
t .

By Itô’s formula we see that
dVt = n dt + 2

√

Vt dWt.

To obtain a similar s.d.e. as for the variance process we define Xt := ξ2

4 Vt because then it is

dXt =
ξ2

4
n dt + ξ

√

Xt dWt.

The process X behaves qualitatively similar to v near the zero boundary if ξ2

4 n = κθ. It follows
that the process v never reaches the zero value if

n =
4κθ

ξ2
≥ 2.

2.2 Valuation of derivatives using the p.d.e. approach

We derive the p.d.e. for the value function u of an option only for the Heston model. The general
stochastic volatility models can be treated in a similar way. First, it need to be remarked that
the models above are incomplete in the sense that we are unable to perfectly replicate any given
derivative with the underlying and the money market account. Different hedging strategies might
be used. One example is the super hedging strategy where the value of the hedging portfolio is in
almost any state ω ∈ Ω at least as big as the payoff of the option at maturity T . The price of an
option at issue time is therefore depending on the implemented hedging strategy and not unique
as in the presence of complete markets.

In reality plain vanilla options are traded very liquidly in the market. One might tend to accept
these prices and additionally use these products to hedge more exotic options. As it turns out we
are then able to perfectly replicate derivatives and obtain unique prices.
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We denote the value of a certain plain vanilla option by c(s, v, t) where s is the current spot and
v the current instantaneous volatility. Our hedging portfolio then consists of the following assets:

underlying

dSt = Stµ dt + St
√

vt dW
(1)
t ,

dvt = κ(θ − vt) dt + ξ
√

vt dW
(2)
t ,

dW
(1)
t dW

(2)
t = ρ dt,

(2.1)

money market
dMt = Mtr dt,

contingent claim
c(St, vt, t).

At this stage we do not really need to know the value function c : R
2
+ × [0, T ] → R. It is only

important that c depends on no other values than s, v and t and that c is two times continously
differentiable except for t = T .

Now, our objective is to hedge any given derivative of the underlying (with value function u :
R

2
+ × [0, T ] → R to be determined) with a trading strategy Ht : Ω → R

3, Ht = (αt, δt, γt), applied
to the portfolio

(

Mt, St, c(St, vt, t)
)

. The value of the trading strategy is then

ht := αtMt + δtSt + γtc(St, vt, t).

We require the trading strategy to be self financing, i.e.

dht := αt dMt + δt dSt + γt dc(St, vt, t).

The value of the hedge portfolio must be equal to the value of the option

u(St, vt, t) = ht

and in particular, the instantaneous changes must be equal

du(St, vt, t) = dht.

Using Itô’s formula we derive the partial differential equation (p.d.e.) which u must obey. In order
to apply Itô’s formula we have to assure that u and c are two times continuously differentiable.
As it turns out this property is satisfied e.g. for any contingent claim or for barrier options. Itô’s
formula directly gives the expressions for du(St, vt, t) and dht:

du(St, vt, t) =

(

u′
t + Stµu′

s + κ(θ − v)u′
v +

1

2
S2

t vtu
′′
ss +

1

2
ξ2vtu

′′
vv + Stξvtρu′′

sv

)

dt

+ St
√

vtu
′
s dW

(1)
t + ξ

√
vtu

′
v dW

(2)
t ,

(2.2)

dht = γt

(

c′t + Stµc′s + κ(θ − v)c′v +
1

2
S2

t vtc
′′
ss +

1

2
ξ2vtc

′′
vv + Stξvtρc′′sv

)

dt

+ (αtMtr + δtStµ) dt

+ (γtSt
√

vtc
′
s + δtSt

√
vt) dW

(1)
t + γtξ

√
vtc

′
v dW

(2)
t .

(2.3)

Given |ρ| < 1, the Itô processes u(St, vt, t) and ht are identical if and only if the factors in front
of dW (1), dW (2) and dt are equal (in a certain stochastic sense). Equality of the first two factors
implies

St
√

vtu
′
s = γtSt

√
vtc

′
s + δtSt

√
vt,

ξ
√

vtu
′
v = γtξ

√
vtc

′
v



CHAPTER 2. STOCHASTIC MODEL 7

so that the γ- and δ-trading strategy are determined by

γ =
u′

v

c′v
,

δ = u′
s − γc′s = u′

s −
u′

vc
′
s

c′v
.

At this stage we already know how to perfectly hedge the option u with the money market account
Mt, the underlying St and the option c. It remains the question how to hedge the option c but
that will not be answered within this paper.

Having determined δt, γt and by replacing αt using the relation u(St, vt, t) = ht = αtMt + δtSt +
γtc(St, vt, t) we now can compare the drift terms, yielding

u′
t + Stµu′

s + κ(θ − v)u′
v +

1

2
S2

t vtu
′′
ss +

1

2
ξ2vtu

′′
vv + Stξvtρu′′

sv

=γt

(

c′t + Stµc′s + κ(θ − v)c′v +
1

2
S2

t vtc
′′
ss +

1

2
ξ2vtc

′′
vv + Stξvtρc′′sv

)

+ (u − δtSt − γtc) r + δtStµ.

By rearranging the terms and dividing the equation by u′
v we achieve that each side of the equation

is either dependent on c or on u:

1

u′
v

(

u′
t + Stµu′

s + κ(θ − v)u′
v +

1

2
S2

t vtu
′′
ss +

1

2
ξ2vtu

′′
vv + Stξvtρu′′

sv − ru − (µ − r)u′
sSt

)

=
1

c′v

(

c′t + Stµc′s + κ(θ − v)c′v +
1

2
S2

t vtc
′′
ss +

1

2
ξ2vtc

′′
vv + Stξvtρc′′sv − cr − (µ − r)c′sSt

)

.

We can reproduce this result with any such option c. Given a sufficient richness of the set of these
options we come to the conclusion that the left hand side of the equation does not depend on c
but is a function of St, vt and t, only. We denote this function by λ : R

2
+ × [0, T ] → R and obtain

1

u′
v

(

u′
t + Stru

′
s + κ(θ − v)u′

v +
1

2
S2

t vtu
′′
ss +

1

2
ξ2vtu

′′
vv + Stξvtρu′′

sv − ru

)

= λ(St, vt, t).

The partial differential equation the value function u : R
2
+ × [0, T ] → R, u(s, v, t) has to obey is

therefore

u′
t + sru′

s + (κ(θ − v) − λ(s, v, t)) u′
v +

1

2
v

(

s2u′′
ss + ξ2u′′

vv + 2sξρu′′
sv

)

− ru = 0.

The function λ is called market price of volatility risk and is not uniquely determined. That
characterise an incomplete market where one cannot replicate derivatives with an portfolio only
consisting of the money market account and the underlying. However, if one accepts the prices for
plain vanilla call/put options (c) observed in the market and just wants to price other options (u),
e.g. barrier options one gets a unique solution by finding an appropriate function λ which matches
the prices for c. In practise one simply sets λ(s, v, t) = 0 and calibrates the parameters of the
underlying to the observed prices for plain vanilla options (calibration to the smile).

If we have to deal with dividend paying assets St the situation slightly changes. We consider a
continously dividend paying asset with the instantaneous rate rf as it is the case in the foreign
exchange market. Then, the instantaneous change in the hedge portfolio is:

dht := αt dMt + δt( dSt + rf dt) + γt dc(St, vt, t).

Following the same steps as above we obtain the p.d.e.

u′
t +

1

2
v

(

s2u′′
ss + ξ2u′′

vv + 2sξρu′′
sv

)

+ s(r − rf)u
′
s + (κ(θ − v) − λ(s, v, t)) u′

v − ru = 0.

The final condition of the p.d.e. is given by the payoff of the option. A transformation from time t to
time to maturity T − t coordinates yields a p.d.e. with the payoff as initial condition. Additionally,
we perform a transformation of the type x = log s in order to obtain a convection-diffusion type
equation. Taking into account that Heston furthermore assumes that the market price of volatility
risk is of the form λ(s, v, t) = λv with a constant λ so that κ+λ > 0 we obtain the equation which
we call henceforth the Heston p.d.e.

ut =
1

2
v

(

uxx + ξ2uvv + 2ρξuxv

)

+ (rd − rf −
1

2
v)ux + (κ(θ − v) − λv)uv − rdu. (2.4)



Chapter 3

Analysis of parabolic p.d.e.s

The field of parabolic partial differential equations has been extensively analysed in the literature.
One of the most important examples is the convection-diffusion equation which has a variety of
applications in physics and their analytical properties are well understood. Thanks to the concept
of Fourier transformation the solution of constant coefficient p.d.e.s can be given in a fairly explicit
way. Due to its simplicity and its powerful results which will also be used for consistency and
stability estimates in 5.2 the basic ideas are discussed in the following sections. Additionally,
fundamental solutions to simple equations are given which builds a basis for some rough estimates
for the Heston p.d.e.

To begin with, we introduce the term parabolic p.d.e. and the notations we will use henceforth.

Definition 3.0.1 (Parabolic p.d.e.)
Let Ω ⊂ R

d be a region (open and simply connected set) and u(x, t), u : Ω × [0, T ] → R be a
function which is two times continuously differentiable with respect to the space variable x and
continuously differentiable with respect to the time variable t.

With the abbreviation u(t) := u(·, t) the partial differential equation

∂

∂t
u(t) = Lu(t)

is then called parabolic if L : C2(Ω) → C(Ω) is an elliptic differential operator or written more
explicitly, the p.d.e.

∂

∂t
u(x, t) =

d
∑

i,j=1

ai,j(x, t)
∂2u

∂xi∂xj
+

d
∑

i=1

bi(x, t)
∂u

∂xi
+ c(x, t)u + f(x, t)

is called parabolic if the Matrix A(x, t) := (ai,j(x, t))
d
i,j=1 is positive definite for each (x, t) ∈

Ω × (0, T ). The p.d.e. is called uniformly parabolic if additionally 〈A(x, t)y, y〉 ≥ C ‖y‖2
, ∀y ∈ R

d

with a common constant C > 0 for all (x, t).

Introducing the multi-index α ∈ N
d
0 with the usual definitions |α| := α1+· · ·+αd, xα := xα1

1 · · ·xαd

d

and Dα := ∂|α|

∂x
α1
1 ···∂x

αd
d

one can rewrite the p.d.e. in a more elegant way

∂

∂t
u(x, t) =

∑

|α|≤2

pα(x, t)Dαu(x, t) + f(x, t).

We then define the characteristic polynomial of that p.d.e. by

P (x, t) :=
∑

|α|≤2

pα(x, t)xα.

3.1 The convection-diffusion equation

The convection-diffusion equation is not just an example but is almost as general as the parabolic
p.d.e. in the above definition. The main difference is the representation of the p.d.e. where the

8
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terms are no longer grouped in second-, first- and undifferentiated parts but as

∂

∂t
u = div(A ∇ u) − div(ub) + f (3.1)

or in expanded form like

ut =

d
∑

i,j=1

ai,juxixj
+

d
∑

i=1





d
∑

j=1

∂aj,i

∂xj
− bi



 uxi
− div(b)u + f.

The matrix A is called diffusion matrix and b the convection vector of the convection-diffusion
equation (3.1). Sinks and sources are represented by the function f . If one allows f to be dependent
on u, i.e. if f is a functional of u then we can identify any parabolic p.d.e. with a convection-
diffusion equation. In order to understand why one writes the p.d.e. as in (3.1) and why A and b
are called diffusion matrix and convection vector, respectively, it is essential to discuss the physical
background which will be the main objective of this section.

In physics these equations occur if we model the transport of a quantity for which a conservation
law applies. This is the case, e.g. for the mass density of matter or the temperature (as a measure
of energy density). Both, the diffusion of matter and the diffusion of heat are derived in the same
principal way: One introduces a flow vector and states its dependence on the distribution of matter
or temperature, respectively and then applies the conservation law. The following explanations
are based on modelling the transport of a fluid (e.g. some pollution) inserted in an underlying
flow of an other fluid (e.g. water in a river). It makes no difference if one imagines two gases (i.e.
smoke in the air) instead of the fluids. First one needs to understand the basic physical law of
mass conservation which will be the foundation and is derived in the next subsection. By defining
what diffusion and convection quantitatively means we are able to deduce the convection-diffusion
equation. Finally, the Heston p.d.e. as a non physical example will be stated.

3.1.1 Continuity equation

Let ρ : R
d × [0, T ] → R

+, ρ(x, t) be the mass density or concentration of the pollutant and
v : R

d × [0, T ] → R
d, v(x, t) be the velocity of a particle at the position x ∈ R

d and time t.

The conservation law now says that the change of mass of the matter in a certain region G ⊂ R
d

is equal to the mass flow ρv over its borders ∂G

∂

∂t

∫

G

ρ(x, t) dx = −
∫

∂G

ρ(x, t)v(x, t) dσ(x).

Using the Gauss integral theorem we obtain the equivalent formulation

∫

G

∂

∂t
ρ(x, t) dx = −

∫

G

div(ρv)(x, t) dx.

Since this has to remain true for any region G ⊂ Ω we obtain the differential formulation of the
mass conservation which is

∂

∂t
ρ + div(ρv) = 0. (3.2)

3.1.2 Modelling diffusion and convection

Diffusion is a process which forces the matter of the pollutant at a point with a higher concentration
to flow towards a lower concentration. From molecular considerations (see Fick’s law e.g. in [33,
Subsection 5.4.5]) it follows that the mass flow of the pollutant defined by ρv is equal to

ρv = −κ∇ ρ

where κ is the conduction coefficient which describes the strength of diffusion and might depend
on the position x and time t. It implies that the velocity of a particle imposed by the diffusion is
v = −κ∇ ρ

ρ . It might also be remarked that for heat conduction in non isotropic matter (i.e. crystal)
the flow is not necessarily proportional to the density gradient but rather a linear expression of
the gradient, i.e. ρv = −A∇ ρ with a so called diffusion matrix A.
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Coming to the modelling of convection it is natural to assume that the underlying fluid imposes its
movement to the injected pollutant. Furthermore let this flow be known in advance and denoted
by the vector field b : Ω × [0, T ] → R

d.

Putting the effects of diffusion and convection additively together we conclude that the velocity of
a particle of the pollutant is determined by

v(x, t) = b(x, t) − κ(x, t)
∇ ρ(x, t)

ρ(x, t)
.

Having made an assumption about the flow of the injected fluid we would like to obtain an expres-
sion for the mass density ρ. Using the continuity equation leads to the desired result

∂

∂t
ρ − div(κ∇ ρ) + div(ρb) = 0.

In the simplest case the parameter κ is a constant and the velocity field of the underlying fluid obeys
div b = 0 which is automatically satisfied if its mass density is constant, e.g. if the underlying fluid
can be considered as incompressible. Under these assumptions the convection-diffusion equation
simplifies to

∂

∂t
ρ = κ△ ρ − 〈b,∇ ρ〉 .

Returning to the general form where the diffusion might also be non isotropic and additionally
admitting sources and sinks represented by f : Ω × [0, T ] → R we obtain the most general form of
the convection-diffusion equation

∂

∂t
ρ = div(A∇ ρ) − div(ρb) + f.

3.1.3 Heston p.d.e. as convection-diffusion equation

The value function u : Ω × [0, T ] → R, u(x, v, t), with Ω ⊂ R × R
+ of an option obeys in the

Heston model in its spot log transformed form (x := log s) a convection-diffusion equation. That
is basically the reason why one performs this transformation as convection-diffusion problems are
well understood. Comparing the coefficients of the Heston p.d.e.

ut =
1

2
v

(

uxx + ξ2uvv + 2ρξuxv

)

+ (rd − rf −
1

2
v)ux + (κ(θ − v) − λv)uv − rdu

with the coefficients of the convection-diffusion p.d.e. we see that

A =
1

2
v

(

1 ρξ
ρξ ξ2

)

,

b =

(

1
2v − (rd − rf) + 1

2ρξ
−(κ(θ − v) − λv) + 1

2ξ2

)

= v

(

1
2

κ + λ

)

+

(

1
2ρξ + rf − rd

1
2ξ2 − κθ

)

,

f = (κ + λ − rd)u.

We note that the second component of the flow vector b might be greater zero at the boundary
v = 0 and in this case we are faced with an inflow boundary. Fortunately, with parameters usual
in the markets the flow is quite small at v = 0.

3.2 Solution of parabolic p.d.e.s with constant coefficients

In some simple cases one is able to explicitly give solutions to parabolic p.d.e.s. The pure convection
equation as well as the pure diffusion equation are such cases. Thanks to the Fourier transformation
method a solution to any parabolic p.d.e. with constant coefficients can be found – at least in the
Fourier transformed space.
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3.2.1 The pure convection problem

The pure convection equation with a constant velocity vector field b ∈ R
d

ut + 〈b,∇u〉 = 0

as derived in Section 3.1 should exactly exhibit the behaviour of the physical model, that is the
transport of matter. Indeed, that is the case since with the initial condition u0 : Ω → R the
solution of the p.d.e. is given by

u(x, t) = u0(x − bt), ∀(x, t) ∈ Ω × [0, T ] : x − bt ∈ Ω

simply because ut = −〈∇u0, b〉. If the condition x − bt ∈ Ω is not satisfied the value u(x, t) is
determined by the boundary conditions. Assuming Dirichlet conditions only at the inflow boundary
Γin ⊂ ∂Ω with u(t)|Γin

= g(t) the solution at these points is

u(x + bτ, t) = g(x, t − τ), ∀(x, t) ∈ ∂Ω × [0, T ] : x + bt ∈ Ω.

It is clear that the values at the outflow boundary are determined by the inside values and can not
be specified differently.

3.2.2 The pure diffusion problem – separation of variables

In the one dimensional case x ∈ [a, b] and with help of the separation of variables approach we are
able to solve the pure diffusion equation

ut = κuxx.

The solution is assumed to have the form

u(x, t) = f(x)g(t).

It follows that
f(x)g′(t) = κg(t)f ′′(x)

which is equivalent to
g′(t)

κg(t)
=

f ′′(x)

f(x)
.

Keeping x ∈ [a, b] constant and varying t ∈ [0, T ] it follows that both terms have to be constant,
e.g. −c:

g′(t) = −cκg(t),

f ′′(x) = −cf(x).

Considering the case c > 0 both ordinary differential equations have the general solution

g(t) = c1 e−cκt,

f(x) = c2 sin(
√

cx) + c3 cos(
√

cx)

where the constants have to satisfy the given boundary conditions. For Dirichlet and Neumann
boundaries only a countable number of constants c > 0 are admissible. Due to the physical
interpretation as a frequency we define ωi :=

√
ci and additionally rename the other constants.

By superposition of solutions for each admissible ωi we obtain the general solution of the pure
diffusion equation

u(x, 0) =

∞
∑

i=0

ai sin(ωix) + bi cos(ωix),

u(x, t) =

∞
∑

i=0

(

(ai sin(ωix) + bi cos(ωix)
)

e−κω2
i t .

(3.3)

The set of all admissible frequencies ωi might also be uncountable if for example the infinite
domain is considered in which case the sum has to be replaced by an integral expression. By this
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Figure 3.1: Solution of ut = uxx with a step function as initial value

representation the solution of the pure diffusion equation becomes clear. Given the initial value
function u(0) : Ω → R one has to perform a Fourier analysis or transformation, respectively, to
obtain the parameters ai, bi. High oscillations (ωi big) in the initial condition are damped strongly

with time by the factor e−ω2
i t so the solution becomes much smoother as time progresses. Figure

3.1 shows that behaviour where the initial condition

u(0)(x) =

6
∑

i=1

1

2i + 1
sin(2i + 1)x

has been chosen which is an approximation to the step function.

It also needs to be remarked that in the infinite domain exponentially growing functions can be
solutions of the diffusion equation, too. This becomes obvious if we admit the constant c to be
negative in the separation of variables approach. The solution then is

g(t) = c1 e|c|κt

f(x) = c2 e
√

|c|x +c3 e−
√

|c|x

3.2.3 The general constant coefficient p.d.e. – Fourier transformation

As seen in the last subsection the structure of the solution looks much simpler in the frequency
domain, i.e. in the Fourier transformed space. We will employ this method in order to examine
solutions of parabolic p.d.e.s with constant coefficients in a more systematic way. For the definition
and the properties of the Fourier transformation see appendix A.1. Particularly important is the
differentiation rule (A.3) which makes it possible to solve the p.d.e. in the Fourier transformed
space.

We consider the parabolic p.d.e. with constant coefficients in Ω = R
d

ut =
∑

|α|≤2

pαDαu.

With the characteristic polynomial

P (x) :=
∑

|α|≤2

pαxα

we can formally write the p.d.e. as
ut = P (D)u.

Since differentiation translates to multiplication in the Fourier transformed space the differential
equation simplifies by the transformation. Transforming only the space variables x ∈ R

d the p.d.e.
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rewrites to
ũt(ω, t) =

∑

|α|≤2

(iω)αpαũ(ω, t) = P (iω)ũ(ω, t).

This is an ordinary differential equation for each fixed ω ∈ R
d. Its unique solution is simply

ũ(ω, t) = ũ(0)(ω) exp (P (iω)t). (3.4)

The importance of that result is worth mentioning. We now know the solution of p.d.e. in the
Fourier transformed space in an explicit form so that we are able to interpret the solution. Fur-
thermore we have shown existence and uniqueness of the parabolic p.d.e. in a constructive way.
However, one needs to be careful with the statement of existence and uniqueness since that only
holds true if the transformation and its inverse are applicable, e.g. u ∈ S (Rd).

As an example we consider the pure diffusion equation

ut = κ△u.

The characteristic polynomial is therefore

P (x) = κ
d

∑

i=1

x2
i

and the solution of the p.d.e. in the Fourier transformed space is

ũ(ω, t) = ũ(0)(ω) exp
(

−‖ω‖2
t
)

since ω ∈ R
d is a real vector. This result coincides with the solution we have already obtained the

one dimension using separation of variables, see equation (3.3).

3.3 Fundamental solution

The solution of a uniformly parabolic p.d.e. in R
d can be represented as an integral over a funda-

mental solution G

u(x, t) =

∫

Rd

G(x, x′, t)u(x′, 0) dx′, (3.5)

see for example [32, Section 8].

The function G is sometimes also called Green’s function. For constant coefficient p.d.e.s the
fundamental solution can be given as an integral expression since with the Fourier transformed
function ũ and (3.4) we have

u(x, t) = (2π)−d/2

∫

Rd

ũ(ω, t) ei〈ω,x〉 dω

= (2π)−d/2

∫

Rd

ũ(0)(ω) exp (P (iω)t) ei〈ω,x〉 dω

= (2π)−d/2

∫

Rd

(2π)−d/2

∫

Rd

u(x′, 0) e−i〈ω,x′〉 dx′ exp (P (iω)t) ei〈ω,x〉 dω

=

∫

Rd

G(x, x′, t)u(x′, 0) dx′

with

G(x, x′, t) := (2π)−d

∫

Rd

exp (P (iω)t) ei〈ω,x−x′〉 dω.

For the pure diffusion equation that integral can be evaluated. Following [12, Chapter 4] the
fundamental solution for ut = κ△u is in d-dimensions given by

G(x, x′, t) := (4πκt)−d/2 exp

(

−‖x − x′‖2

4κt

)

which is illustrated in Figure 3.2.
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Figure 3.2: Fundamental solution of ut = uxx + uyy

For analytical purposes it would be quite interesting to know the fundamental solution of the
diffusion part of the Heston p.d.e. if existent. Only in one space dimension we will be able to
find a fundamental solution. Hence consider the p.d.e. ut = κuxx. By the variable transformation
z = (x

2 )2, i.e. v : [0,∞)× [0, T ] → R, v(z, t), is defined by v
(

(x
2 )2, t

)

= u(x, t), we see that v fulfils
the p.d.e.

vt = κ

(

zvzz +
1

2
vz

)

because ut = vt, ux = x
2 vz and uxx = 1

2vz + (x
2 )2vzz = zvzz + 1

2vz. If the initial condition fulfils
u(x, 0) = 0 for all x ≤ 0 then we know from the fundamental solution for u denoted by G that

u(x, t) = v
(

(x

2

)2
, t

)

=

∫ ∞

0

G(x, x′, t)v

(

(x′

2

)2
, 0

)

dx′

=

∫ ∞

0

G(x, 2
√

z′, t)v(z′, 0)
1√
z′

dz′

from which the following lemma directly follows.

Lemma 3.3.1
The fundamental solutions of the differential equations ut = κuxx denoted by G and of ut =
∂
∂x (κxux) − 1

2κux denoted by F are

G(x, x′, t) =
1√

4πκt
exp

(

− (x − x′)2

4κt

)

,

F (x, x′, t) =
1√
x′G(2

√
x, 2

√
x′, t)

=
1√

4πκx′t
exp

(

− (
√

x −
√

x′)2

κt

)

.

(3.6)

Proof The first equation follows from [12, Chapter 4] and the second one is a direct result of the
transformation z = (x

2 )2 as shown above. ¤

Both functions are pictured in Figure 3.3 with the centre at x′ = 1 and x′ = 1
2 .
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Chapter 4

Description of the finite difference
method

Solving parabolic p.d.e.s with the finite difference method (f.d.m.) is relatively straight forward.
First the region Ω̄ ⊂ R

d where the p.d.e. is defined needs to be approximated by a finite grid
denoted by Ω̄h. The variable h > 0 shall henceforth be used for the space discretisation parameter
indicating the distance between two adjacent grid points. Section 4.1 answers the question how
to generate non uniform grids. After that any continuous function defined on Ω̄, u ∈ C(Ω̄), can
be approximated by its values only at the grid-points. Functions only having values at grid points
but which are related to the continuous function are denoted by a subscript h, i.e. uh : Ω̄h → R.
All of those functions build the space of grid functions Φh which can be identified with the R

n

given the grid points are numbered from one to n. Section 4.2 deals with the problem on how
to approximate derivatives of a differentiable function if only its values in the grid points are
known. After these introductory sections the numerical scheme is described in 4.3. Basically, the
differentiable functions are replaced by grid functions and the partial derivatives in the p.d.e. are
replaced by finite difference approximations so that one obtains a finite and linear equation system
which can be solved by identifying Φh with the R

n.

It needs to be remarked that the theory of finite differences was mainly developed in the years
around 1960. The multitude of publications and the sometimes very time consuming process of
obtaining literature made it impossible for me to get an absolute complete picture about the
theory. I therefore can not rule out that some Theorems shown with much effort in the sections
below were already known before. As a standard reference we use the articles [32] and [16] from
the Handbook of Numerical Analysis.

4.1 Generating non uniform grids

The choice of an appropriate mesh is of very high importance since it directly influences the error
we are making by approximating a continuous function with the function values in only grid points
of the mesh. Basically, there are two different approaches of adapting grids. These are grid
refinement where additional grid points are added in order to reduce approximation errors and
grid redistribution. In the latter strategy the number of grid points remain constant and only the
location of the grid points are changed. This has the advantage of no change in the complexity
mainly depending on the number of grid points. That is why we focus on that method which will
lead to the introduction of grid generating functions mapping from a uniform to a non uniform
grid.

We restrict the discussion to so called structured grids which are the result of the direct prod-
uct of d grids each only one-dimensional. For example in two dimensions these grids look like
{(xi, yj) : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}. One example can bee seen in Figure 4.1. It is there-
fore sufficient to consider grids in only one dimension. In order to be more specific the following
definition is provided.

Definition 4.1.1 (Structured grids, grid functions)
A grid of a subset Ω ⊂ R

1 is a finite set of points Ωh :=
{

x(i) : i ∈ {1, . . . ,m}
}

⊂ Ω with pints

x(i) ∈ R in strictly increasing order, i.e. x(1) < x(2) < . . . x(m).

16
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Figure 4.1: Example of a structured grid in two dimensions

A structured grid (sometimes also called tensor grid) of the closure of a region Ω̄ ⊂ R
d is the set

Ω̄h :=
{

x(k) = (x
(k1)
1 , . . . , x

(kd)
d ) : k ∈ Ih

}

⊂ Ω̄

based on d one dimensional meshes
{

x
(1)
i , . . . , x

(m)i

i

}

, i = 1, . . . , d. We call Ih ⊂ N
d
0 the index set.

To distinguish between boundary and inner points we define with Ωh the set of all inner and with
Γh the set of all boundary grid points.

The set of all functions v : Ω̄h → R denoted by Φh is called the space of grid functions. The multi
index k ∈ Ih as a subscript indicates the value at the k-th grid point: vk := v

(

x(k)
)

.

The discretisation parameter h > 0 can for example be defined as the maximum distance between
two adjacent grid points or as the reciprocal of the number of grid points in one particular direction.

4.1.1 The grid generating function and the distance ratio function

One general approach to generate a non uniform mesh in one dimension is through a generating
function. The idea is very simple. One has to specify an appropriate function g : [0, 1] → [0, 1]
which is continuously differentiable, bijective and strictly monotonic increasing. Now, given a
uniform grid on [0, 1] one applies the mapping g to these grid points and scales if necessary, i.e.
the resulting non uniform mesh is then defined by {yi}n

i=0 with

yi := cg(xi) + d, xi :=
i

n
, i = 1, . . . , n.

Figure 4.2 illustrates this process graphically. Unfortunately, the grid generating function is not
very intuitive, that is to say if one wants the non uniform grid to be very dense at a certain
point it is not immediately clear how to define the generating function. The example function
g(x) = x2 used in Figure 4.2 strongly increases the number of grid points at the lower boundary.
A polynomial of third order for instance is able to concentrate grid points at any position with a
pre-specified ratio.

With ∆x := 1
n the distance between two adjacent grid point is obviously

yi+1 − yi = cg(xi+1) − cg(xi) ≈ cg′(xi)∆x = cg′(g−1(yi))∆x.

Motivated by this result we introduce a distance ratio function r : [0, 1] → R
+ by

r(y) := g′(g−1(y)) (4.1)

which characterises the ration between the distances of two adjacent points of the non uniform
grid and the uniform grid. Having defined that distance ratio function one senses it more natural
to first determine the distance ratio function and then deduce the mapping g from r. And indeed,
that is possible since g satisfies the ordinary differential equation (o.d.e.)

g′(x) = r(g(x))
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which directly follows from the definition of r. This o.d.e. can be solved by the separation of
variables approach

∫ x

0

g′(z)

r(g(z))
dz =

∫ x

0

1 dz

which yields
∫ g(x)

0

1

r(y)
dy = x. (4.2)

If it is possible to find a primitive to 1
r one has an implicit equation for the function g. In general

where this might not be achievable the o.d.e. g′(x) = r(g(x)) can still be solved numerically. It is
worth mentioning that the distance ratio function r can not be specified arbitrarily. Besides the
obvious restrictions of r(y) > 0 and r ∈ C[0, 1] it also has to satisfy the relation

∫ 1

0

1

r(y)
dy = 1.

4.1.2 An example of the generating function

We choose a polynomial of degree three

g(x) = a3(x − x∗)3 + a2(x − x∗)2 + a1(x − x∗) + a0.

Let the position where the grid should be concentrated (concentration point) be denoted by y∗ ∈
[0, 1]. We then choose the constant x∗ ∈ [0, 1] so that g(x∗) = y∗. The question is how to choose the
parameters a0 to a3. With the additional requirement that the grid points at the concentration
point have to be 1

c times as dense as in the uniform case we have to satisfy the following five
equations with five unknowns (x∗ and a0 to a3):

g(x∗) = y∗

g(0) = 0

g(1) = 1

g′(x∗) = c

g′′(x∗) = 0

The last equation has to hold since at y∗ the concentration of grid points has to be the most dense.
Inserting the function g into the equations we obtain

a0 = y∗

−a3x
∗3 + a2x

∗2 − a1x
∗ + a0 = 0

a3(1 − x∗)3 + a2(1 − x∗)2 + a1(1 − x∗) + a0 = 1

a1 = c

2a2 = 0.
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Figure 4.3: Polynomial of third degree as generating function with y∗ = 0.8 and c = 0.1

We immediately see that g(x) = a3(x − x∗)3 + c(x − x∗) + y∗ and the remaining two parameters
a3 and x∗ can be determined using a numerical method, e.g. Newton iteration method applied to
the system of equations

−a3x
∗3 − cx∗ + y∗ = 0

a3(1 − x∗)3 + c(1 − x∗) + y∗ = 1

which can be simplified to

−cx∗ + y∗

x∗3 = a3

(−cx∗ + y∗)
(1 − x∗)3

x∗3 + c(1 − x∗) + y∗ = 1.

With the parameter y∗ := 0.8 and c := 0.1 the non uniform grid as shown in Figure 4.3 will be
created. Using Newton iteration method it turns out that x∗ ≈ 0.62353125.

4.1.3 An example of the distance ratio function

Before choosing a distance ratio function one needs to be aware of the grid structure one would like
to have, e.g. the following questions have to be answered: Is one concentration point sufficient or are
there more points where the grid should be finer and how strong should the distance between two
adjacent grid points increase as we go away from the concentration points? As a simple example
we consider the distance ratio function

r(y) :=
√

c2 + p2(y − y∗)2.

The parameter y∗ can be viewed as the centre of the grid point concentration with c as a measure
of the intensity because r assumes its minimum at y∗ with r(y∗) = c. For big values y the function

is almost linear since r(y) =
√

c2 + p2(y − y∗)2 ≈
√

p2y2 = |py|. The parameter p hast to be
set appropriately so that the property of a density function is satisfied. A big advantage of the
function r is that we are able to find an analytic solution for the grid generating function g by
solving the o.d.e. g′ = r(g). From (4.2) it follows

∫ g(x)

0

1
√

c2 + p2(y − y∗)2
dy = x.

Knowing the result of the integral

∫

1
√

ay2 + by + c
dy =

1√
a

arsinh
2ay + b√
4ac − b2

iff a > 0, 4ac − b2 > 0
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Figure 4.4: Concentration of grid points around y∗ = 0.8 with 10 fold density c = 0.1

we conclude that
1

p

(

arsinh
(p

c
(g(x) − y∗)

)

− arsinh
(

−p

c
y∗

))

= x,

and thus
g(x) = y∗ +

c

p
sinh

(

px + arsinh
(

−p

c
y∗

))

. (4.3)

The parameter p has to be chosen so that g(1) = 1. That can for example be performed using the
Newton iteration method. With the particular parameter y∗ := 0.8 and c := 0.1 it follows that
p ≈ 8.42136 which Figure 4.4 illustrates.

4.2 Approximation of derivatives

The general approach to approximate derivatives of a function f : Ω ⊂ R
d → R, f ∈ C3(Ω), in a

certain grid point x(k) ∈ Ωh is to use a weighted sum of the function values of adjacent grid points

∂2f

∂xi∂xj
(x(k)) ≈

∑

l∈I0

alf(x(k+l)). (4.4)

The variables k ∈ Z
d and l ∈ Z

d are multi indices and I0 ⊂ Z
d is the set of all indices considered

to be adjacent to the origin.

In the following section we focus on cantered approximations using exactly 3d grid points (compact
stencil), i.e. the case I0 = {−1, 0, 1}d is treated. However, right (I0 = {0, 1, 2}) and left (I0 =
{−2,−1, 0}) hand side approximation are also mentioned.

4.2.1 Approximation of derivatives in one dimension

In one dimension we use subscripts instead of superscripts and abbreviate ∆xk := xk+1−xk. Before
examining the general approach of a weighted sum of function values it is quite useful to describe
how derivatives are approximated on uniform grids. We hence introduce the discrete backward
and forward difference operators ∂̄ and ∂, respectively, defined for any grid function v ∈ Φh by

(∂v)k :=
vk+1 − vk

∆xk
,

(∂̄v)k :=
vk − vk−1

∆xk−1
.

For a good approximation it seems to be quite reasonable to use symmetric approximations. As it
will be shown later in this subsection the approximation error with the abbreviation fk := f(xk)
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of

f ′(xk) ≈ 1

2
(∂ + ∂̄)fk =

fk+1 − fk−1

2∆x
,

f ′′(xk) ≈ ∂∂̄fk =
fk+1 − 2fk + fk−1

∆x2

is of O(∆x2) as ∆x approaches zero. A generalisation to non uniform grids is non trivial. It will
be shown that the best approximation using only three points is given by

f ′(xk) ≈
(

σ∂ + (1 − σ)∂̄
)

fk, σ :=
∆xk−1

∆xk−1 + ∆xk
,

f ′′(xk) ≈ ∂̄fk+1 − ∂̄fk
1
2 (∆xk + ∆xk−1)

.

Keeping the initial remarks in mind we now examine the very general approach

df

dx
(xk) ≈

l2
∑

i=l1

aif(xk+i).

As it turns out it suffices to set l1 = −1 and l2 = 1 to obtain an approximation to the first
and second derivative which is second order accurate. The key to analyse the accuracy of this
approximation is to apply Taylor series expansion around the grid point xk.

With the abbreviations fk := f(xk), f ′
k := f ′(xk), f ′′

k := f ′′(xk), ∆x1 := xk − xk−1 and ∆x2 :=
xk+1 − xk we get:

∆x1 ∆x2

xk−2 xk−1 xk xk+1 xk+2

Figure 4.5: ∆xi

a−1f(xk−1) + a0f(xk) + a1f(xk+1)

= a−1

(

fk − ∆x1f
′
k +

1

2
∆x1

2f ′′
k + R3(−∆x1)

)

+ a0fk

+ a1

(

fk + ∆x2f
′
k +

1

2
∆x2

2f ′′
k + R3(∆x2)

)

= (a−1 + a0 + a1)fk + (−a−1∆x1 + a1∆x2)f
′
k + (

1

2
a−1∆x1

2 +
1

2
a1∆x2

2)f ′′
k

+ a−1R3(−∆x1) + a1R3(∆x2)

=





fk

f ′
k

f ′′
k





τ 



1 1 1
−∆x1 0 ∆x2
1
2∆x1

2 0 1
2∆x2

2









a−1

a0

a1



 + a−1R3(−∆x1) + a1R3(∆x2).

Remark 4.2.1
Taylor series approximation gives an explicit expression for the remaining part R since it is

f(x + ∆x) = f(x) +

n
∑

k=1

1

k!
∆xkf (k)(x) + Rn+1(∆x)

with

Rn+1(∆x) =
1

n!

∫ ∆x

0

(∆x − t)nf (n+1)(x + t) dt

=
1

(n + 1)!
f (n+1)(ξ)∆xn+1, ∃ξ ∈ [x, x + ∆x]

which can be estimated by

|Rn+1(∆x)| ≤ 1

(n + 1)!

∥

∥

∥f (n+1)
∥

∥

∥

C[a,b]
|∆x|n+1

.
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It follows that

|a−1R3(−∆x1) + a1R3(∆x2)| ≤
1

6

∥

∥

∥
f (n+1)

∥

∥

∥

C[a,b]

(

|a−1|∆x1
3 + |a1|∆x2

3
)

≤ 1

6

∥

∥

∥f (n+1)
∥

∥

∥

C[a,b]
max {|a−1| + |a1|}h3.

In order to approximate the first derivative we have to choose the factors a−1, a0, a1 so that factors
before the function value fk and its second derivative f ′′

k are zero and the factor before the first
derivative f ′

k is one. In general, the following linear equations have to be solved, where exactly one
of the δ’s is one and the others are zero depending on which derivative has to be approximated.





1 1 1
−∆x1 0 ∆x2
1
2∆x1

2 0 1
2∆x2

2









a−1

a0

a1



 =





δ
δx

δxx





The solution is





a−1

a0

a1



 =







0 −∆x2

∆x1(∆x1+∆x2)
2

∆x1(∆x1+∆x2)

1 ∆x2−∆x1

∆x1∆x2

−2
∆x1∆x2

0 ∆x1

∆x2(∆x1+∆x2)
2

∆x2(∆x1+∆x2)











δ
δx

δxx



 .

We summarise the result in Table 4.1 and additionally consider the uniform case where ∆x :=
∆x1 = ∆x2.

non uniform case uniform case
f f ′ f ′′ f f ′ f ′′

a−1 0 −∆x2

∆x1(∆x1+∆x2)
2

∆x1(∆x1+∆x2)
0 −1

2∆x
1

∆x2

a0 1 ∆x2−∆x1

∆x1∆x2

−2
∆x1∆x2

1 0 −2
∆x2

a1 0 ∆x1

∆x2(∆x1+∆x2)
2

∆x2(∆x1+∆x2)
0 1

2∆x
1

∆x2

Table 4.1: Central approximation of derivatives, inner points

The central difference scheme can not be applied on boundaries. For convection dominated
parabolic p.d.e.s the Finite Difference Method with central difference approximation exhibits an
oscillating behaviour. That is why we also need to discuss left and right hand side approximations.
Beginning with right hand side approximation

df

dx
(xk) ≈

2
∑

i=0

aif(xk+i),

redefining ∆x1 := xk+1 − xk, ∆x2 := xk+2 − xk+1 and applying the same method described above
results in the system





a0

a1

a2



 =





1 1 1
0 ∆x1 ∆x1 + ∆x2

0 1
2∆x1

2 1
2 (∆x1 + ∆x2)

2









δ
δx

δxx



 .

The result of this equation system is given in Table 4.2.

The left hand side approximation of derivatives with

df

dx
(xk) ≈

0
∑

i=−2

aif(xk+i).

non uniform case uniform case
f f ′ f ′′ f f ′ f ′′

a0 1 − 2∆x1+∆x2

∆x1(∆x1+∆x2)
2

∆x1(∆x1+∆x2)
1 −3

2∆x
1

∆x2

a1 0 ∆x1+∆x2

∆x1∆x2

−2
∆x1∆x2

0 2
∆x

−2
∆x2

a2 0 −∆x1

∆x2(∆x1+∆x2)
2

∆x2(∆x1+∆x2)
0 −1

2∆x
1

∆x2

Table 4.2: Right hand side approximation of derivatives, left border
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non uniform case uniform case
f f ′ f ′′ f f ′ f ′′

a−2 0 ∆x2

∆x1(∆x1+∆x2)
2

∆x1(∆x1+∆x2)
0 1

2∆x
1

∆x2

a−1 0 −∆x1+∆x2

∆x1∆x2

−2
∆x1∆x2

0 −2
∆x

−2
∆x2

a0 1 2∆x2+∆x1

∆x2(∆x1+∆x2)
2

∆x2(∆x1+∆x2)
1 3

2∆x
1

∆x2

Table 4.3: Left hand side approximation of derivatives, right border

is similar and we obtain the factors as shown in Table 4.3. There, the values of ∆x1 and ∆x2 have
been redefined with ∆x1 := xk−1 − xk−2 and ∆x2 := xk − xk−1.

The rate of convergence of the approximations to the real derivatives is given by the following
proposition.

Proposition 4.2.2
Assume f ∈ C3[a, b] and let {x(h)

−1 , x0, x
(h)
1 } ⊂ (a, b), h > 0, be a series of points with x

(h)
−1 <

x0 < x
(h)
1 , ∆x1 := x0 − x

(h)
−1 , ∆x2 := x

(h)
1 − x0 and h := max{∆x1,∆x2} with the restriction that

∆x1 ∼ ∆x2 (h → 0), i.e. ∃c1, c2 > 0 : c1∆x2 ≤ ∆x1 ≤ c2∆x2 ∀h > 0. It then applies

f ′(x0) = f ′
h(x0) + O(h2)

f ′′(x0) = f ′′
h (x0) + O(h)

where the f ′
h(x0) and f ′

h(x0) are defined as the approximation of the derivatives at the point x0

using the method and the factors as derived above. On equidistant meshes (∆hx1 = ∆hx2, ∀h > 0)
the second derivative is even been approximated with second order accuracy if the function f is
also four times continuous differentiable.

Proof Taking the factors for the approximation of the first derivative (see one of the Tables 4.1
to 4.3) and using the fact that ∆hx1 ∼ ∆hx2 (h → 0) one can find a constant α > 0 so that
|a−1| ≤ α 1

h and |a1| ≤ α 1
h . Furthermore, the factors ai were derived so that

f ′(x0) = f ′
h(x0) + O(max{|a−1h

3|, |a1h
3|}).

With the estimate of a−1 and a1 we obtain

f ′(x0) = f ′
h(x0) + O(h2).

Similarly, we get an estimate for the factors ai in the case of the second derivative |ai| ≤ α̃ 1
h2 i ∈

{−1, 1} which leads to the conclusion:

f ′′(x0) = f ′′
h (x0) + O(h)

Second order accuracy on uniform meshes is obtained due to the fact that having chosen the factors
a−1, a0 and a1 so that the first derivative vanishes, the third derivative vanishes at the same time.
More precisely,

f ′′
h (x0) :=

1
∑

i=−1

aif(x
(h)
i ) = (a−1 + a0 + a1)f(x0) + (−a−1∆hx1 + a1∆hx2)f

′(x0)

+
1

2
(a−1∆hx1

2 + a1∆hx2
2)f ′′(x0) +

1

6
(−a−1∆hx1

3 + a1∆hx2
3)f ′′′(x0)

+ O(max{|a−1∆hx4
1|, |a1∆hx4

2|}).

In the case that ∆hx1 = ∆hx2 the factor in front of the first derivative is zero if and only if the
factor in front of the third derivative is zero. By construction of the second derivative the factor
in front of the first derivative is zero. Therefore we obtain the estimate

f ′′(x0) = f ′′
h (x0) + O(max{|a−1h

4|, |a1h
4|})

which results in
f ′′(x0) = f ′′

h (x0) + O(h2).

¤
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Let now the grid be created using a generating function g : [0, 1] → [a, b] as defined in Subsection
4.1.1. We then define the discretisation parameter h as the distance between two adjacent grid
points of the uniform grid in [0, 1]. As we will see the accuracy of approximating the second
derivative is similar to uniform grids, i.e. of order h2. This comes not unexpected because as
h → 0 the two distances ∆x1 and ∆x2 become similar, more precisely ∆x1 − ∆x2 → 0.

Lemma 4.2.3 (Accuracy of differential approximation)
Assume f ∈ C4[a, b] and let {x(h)

−1 , x0, x
(h)
1 } ⊂ (a, b), h > 0, be a series of points which are the

result of a grid generating function g ∈ C2[0, 1], i.e. x
(h)
i := g(z0 + ih). Defining the distance ratio

function as before r(x) := g′(g−1(x)) the approximation errors of derivatives using the central
three point scheme can then be estimated by

|f ′(x0) − f ′
h(x0)| ≤

1

6
r(x0)

2 ‖f ′′′‖C[x−1,x1]
h2 + O(h3)

|f ′′(x0) − f ′′
h (x0)| ≤

(

1

12
r(x0)

2
∥

∥

∥f (4)
∥

∥

∥

C[x−1,x1]
+

1

3
‖g′′‖C[z0−h,z0+h] f

′′′(x0)

)

h2 + O(h3)

where the f ′
h(x0) and f ′′

h (x0) are defined as the approximation of the derivatives at the point x0

using the method and the factors as derived above and shown in Table 4.1. The higher order term
can be estimated with a uniform constant, i.e. O(h3) ≤ ch3 for any x0 ∈ [a, b] and c only depends
on the functions f and g.

Proof The derivation of the factors ai as shown above is already one important aspect of the
proof since the factors have been chosen so that the lower parts of the Taylor series expansion of
∂f
∂x (xk) − ∑1

i=−1 aifk+i vanish. The same applies to the second derivative. We now estimate the
higher order terms and first state that ∆xi is given by

∆x1 = hg′(z0) −
1

2
h2g′′(ξ1), ξ1 ∈ [z0 − h, z0]

∆x2 = hg′(z0) +
1

2
h2g′′(ξ2), ξ2 ∈ [z0, z0 + h]

Referring to Table 4.1 we estimate the error of the first derivative approximation. By obvious
calculation we see that the factors a−1 and a1 become similar to the factors of a uniform mesh as
h → 0:

a−1 =
−1

2hg′(z0)
− g′′(ξ)

g′(z0)2
O(1), h → 0

a1 =
1

2hg′(z0)
− g′′(ξ)

g′(z0)2
O(1), h → 0

The factors in Table 4.1 are chosen so that the error is of third order in ∆x1 and ∆x2, i.e.

|f ′(x0) − f ′
h(x0)| =

1

6

(

−a−1∆x1
3f ′′′(ξ1) + a1∆x2

3f ′′′(ξ2)
)

, ξ1 ∈ [x−1, x0], ξ2 ∈ [x0, x1]

≤ 1

6
h2g′(z0)

2 ‖f ′′′‖C[x−1,x1]
+ ‖f ′′′‖C[x−1,x1]

O(h3).

For the factors ai of the second derivative we similarly have

a−1 =
1

h2g′(z0)2
+

g′′(ξ)

g′(z0)3
O(h−1), h → 0

a1 =
1

h2g′(z0)2
− g′′(ξ)

g′(z0)3
O(h−1), h → 0.
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The usage of one more term in the Taylor series expansion results in the estimate

|f ′′(x0) − f ′′
h (x0)| =

1

6

(

−a−1∆x1
3 + a1∆x2

3
)

f ′′′(x0) +
1

24

(

a−1∆x1
4f (4)(ξ1) + a1∆x2

4f (4)(ξ2)
)

≤ 1

6

(

−a−1∆x1(h
2g′′(z0)

2 − g′(z0)g
′′(ξ1)h

3) + a1∆x2(h
2g′′(z0)

2 + g′(z0)g
′′(ξ2)h

3)
)

f ′′′(x0)

+
1

12
g′(z0)

2h2
∥

∥

∥f (4)
∥

∥

∥

C[x−1,x1]
+ O(h3)

=
1

6

(

a−1∆x1g
′(z0)g

′′(ξ1)h
3 + a1∆x2g

′(z0)g
′′(ξ1)h

3
)

f ′′′(x0)

+
1

12
g′(z0)

2h2
∥

∥

∥f (4)
∥

∥

∥

C[x−1,x1]
+ O(h3)

=

(

1

3
‖g′′‖C[z0−h,z0+h] f

′′′(x0) +
1

12
g′(z0)

2
∥

∥

∥f (4)
∥

∥

∥

C[x−1,x1]

)

h2 + O(h3).

In the third step the relation −a−1∆x1 + a1∆x2 = 0 has been used. ¤

This Lemma roughly says that the approximation error for both derivatives reduces to one quarter
if the distance ratio function halves. However, a second error component comes into action if the
non uniformity is too strong, i.e. if |g′′(z0)| is big.

4.2.2 Approximation of derivatives in two dimensions

Since other schemes can be treated in a similar way only the central approximation scheme will be
discussed. All derivatives are then approximated using a compact nine point stencil, that is the
point itself and all eight adjacent grid points as it is exemplarily shown for the mixed derivative

∂2f

∂x∂y
(xk, yl) ≈

1
∑

i,j=−1

ai,jf(xk+i, yl+j).

Before going into the analysis one already expects certain results of the one dimensional case to
be applicable. So would it not be surprising if the approximation of all derivatives in the same
direction is been done using only three grid points along this direction as in the one dimensional
case. For the mixed derivative the relation

∂2f

∂x∂y
(xk, yl) =

∂

∂x

∂

∂y
f(xk, yl) ≈

∂

∂x





1
∑

j=−1

cjf(xk, yl+j)



 ≈
1

∑

i,j=−1

bicjf(xk+i, yl+j)

suggests that ai,j = bicj where bi and cj denote the factors approximating the first derivative in x
and y direction, respectively. These first ideas will turn out to be one possible solution. However,
there exist more possibilities to approximate derivatives with the same accuracy.

Using Taylor approximation for f(xk+i, yl+j) around (xk, yl) and the abbreviation f ′
x := ∂

∂xf(xk, yl)
leads to

1
∑

i,j=−1

ai,jf(xk+i, yl+j) = a0,0fk

+ a−1,0

(

f − ∆x1f
′
x +

1

2
∆x1

2f ′′
xx

)

+ a1,0

(

f + ∆x2f
′
x +

1

2
∆x2

2f ′′
xx

)

+ a0,−1

(

f − ∆y1f
′
y +

1

2
∆y1

2f ′′
yy

)

+ a0,1

(

f + ∆y2f
′
y +

1

2
∆y2

2f ′′
yy

)

+ a−1,−1

(

f − ∆x1f
′
x − ∆y1f

′
y +

1

2

(

∆x1
2f ′′

xx + ∆y1
2f ′′

yy

)

+ ∆x1∆y1f
′′
xy

)

+ a−1,1

(

f − ∆x1f
′
x + ∆y2f

′
y +

1

2

(

∆x1
2f ′′

xx + ∆y2
2f ′′

yy

)

− ∆x1∆y2f
′′
xy

)

+ a1,−1

(

f + ∆x2f
′
x − ∆y1f

′
y +

1

2

(

∆x2
2f ′′

xx + ∆y1
2f ′′

yy

)

− ∆x2∆y1f
′′
xy

)

+ a1,1

(

f + ∆x2f
′
x + ∆y2f

′
y +

1

2

(

∆x2
2f ′′

xx + ∆y2
2f ′′

yy

)

+ ∆x2∆y2f
′′
xy

)

+ O
(

max{ai,j∆̃xi, ∆̃yj : i, j ∈ {−1, 0, 1}}
) (

(∆x1,∆x2,∆y1,∆y2) → 0
)

.
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The variables ∆̃xi := xk − xk+i have been introduced in order to write the order term O in a
compressed way. Collecting all arguments for each derivative we see that this sum is equal (up to
the term O(. . . )) to
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In order to obtain factors to approximate derivatives the equation system has to be solved, where
again all δ’s are zero except that δ which corresponds to the derivative to be approximated:
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δ

δx

δxx

δy

δyy

δxy
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There may be many solutions to that equation system. However we are only interested in one
solution so we try to solve it by a product approach ai,j = âiãj which yields























( 1
∑

j=−1

ãj

)





1 1 1
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1
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2 0 1
2∆x2

2
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( 1
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,

where p and q are defined by (p−1, p0, p1) := (−∆x1, 0,∆x2) and (q−1, q0, q1) := (−∆y1, 0,∆y2).
Now it becomes obvious that we can reduce the solution to the one dimensional case. If we, for
instance, want to find the factors to approximate fx, i.e. δx = 1 and all other are equal to zero, we
obtain a solution if we set ã−1 = 0, ã0 = 1, ã1 = 0 and solve the equation system





1 1 1
−∆x1 0 ∆x2
1
2∆x1

2 0 1
2∆x2

2









â−1

â0

â1



 =





0
1
0





which is exactly the same system we have already solved in the one dimensional case. The other
lines in the big system are equal to zero since we set ã−1 and ã1 to zero. The same argument
applies to derivatives with respect to y.

To find an approximation for the mixed derivative fxy, let âi and ãj are the factors which approxi-
mate fx and fy, respectively. As it can easily be seen, ai,j := âiãj are the sought factors to approx-

imate fxy. That is because
∑1

i=−1 âi = 0 and
∑1

i=−1 ãi = 0. Finally, we have
∑

i∈{−1,1} piâi = 1

and
∑

j∈{−1,1} qiãi = 1. Consequently
∑

i,j∈{−1,1} piãi qj ãj = 1. Table 4.4 sums up the result.

Remark 4.2.4
By similar estimation as shown in Lemma 4.2.3 one can show that the error by approximating the
mixed derivative is also of quadratic order in h.

4.3 Finite difference method (f.d.m.)

Besides the finite element and finite volume method the finite difference method is one method
to solve partial differential equations numerically. In its simplest form it requires a structured
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ai,j non uniform case
−1 0 1

−1 ∆x2

∆x1(∆x1+∆x2)
∆y2

∆y1(∆y1+∆y2)
−∆x2

∆x1(∆x1+∆x2)
∆y2−∆y1

∆y1∆y2

−∆x2

∆x1(∆x1+∆x2)
∆y1

∆y2(∆y1+∆y2)

0 ∆x2−∆x1

∆x1∆x2

−∆y2

∆y1(∆y1+∆y2)
∆x2−∆x1

∆x1∆x2

∆y2−∆y1

∆y1∆y2

∆x2−∆x1

∆x1∆x2

∆y1

∆y2(∆y1+∆y2)

1 ∆x1

∆x2(∆x1+∆x2)
−∆y2

∆y1(∆y1+∆y2)
∆x1

∆x2(∆x1+∆x2)
∆y2−∆y1

∆y1∆y2

∆x1

∆x2(∆x1+∆x2)
∆y1

∆y2(∆y1+∆y2)

ai,j uniform case
−1 0 1

−1 1
4∆x∆y 0 −1

4∆x∆y

0 0 0 0
1 −1

4∆x∆y 0 1
4∆x∆y

Table 4.4: Central approximation of the mixed derivative

grid that is why the method is not suitable for regions Ω ⊂ R
d with a smooth boundary. Since

the Heston p.d.e. can be approximated by a rectangular domain that causes no problems. The
big advantage of f.d.m. is its simplicity and straight forward implementation where in short the
derivatives are replaced by differential quotients. Additionally, under certain conditions it achieves
second order convergence.

In the following we consider the parabolic p.d.e. as introduced in Chapter 3 with u(x, t), u :
Ω × [0, T ] → R and the abbreviation u(t) := u(·, t)

∂u(t)

∂t
= Lu(t) + f(t) in Ω, ∀t ∈ [0, T ] (4.5)

where Ω is a rectangular domain and

L =
∑

|α|≤2

pα(x)Dα.

In general pα might also depend on time. However, as the time dependency of the coefficients is
not of particular interest within the topic of this thesis we do not consider it. It is no problem,
though, to extend the following statements to the time dependent case.

4.3.1 The method

Given any structured grid Ω̄h =
{

x(i) : i ∈ Ih

}

of the space variables with the index set Ih :=
{0, . . . ,m1}× . . .×{0, . . . ,md} and a one dimensional grid of the time {tk}m0

k=0 ⊂ [0, T ] the function
u : Ω× [0, T ] → R will be approximated at time point tk by the grid function ū(k) ∈ Φh, defined as

ū(k)(x) := u(x, tk), ∀x ∈ Ω̄h.

As indicated before we sometimes write in short ū
(k)
i := u(k)(x(i)) for any multi index i ∈ Ih. The

space of grid functions will often be identified with the R
n where n := |Ih| := (m1+1)·. . .·(md+1).

We first discuss the discretisation of the differential operator in space, L, which is straight forward
since we know how to approximate derivatives of the form Dαu(x, t) for |α| ≤ 2 according to
Section 4.2. In general the approximation takes the form

Dαu(x(i), tk) ≈
∑

j∈I0

ai,j ū
(k)
i+j .

with the constants ai,j , e.g. as shown in Table 4.1 and 4.4. The constants ai,j are of course differing
for different derivatives α, but in order not to over-stretch the index it has been left out. It is
natural to define the discrete differential operator by

(

Dα
h ū(k)

)

(x(i)) :=
∑

j∈I

ai,j ū
(k)
i+j , ∀x(i) ∈ Ωh.

By identifying the space of grid functions Φh with the R
n the differential operator can be repre-

sented by a sparse n × n matrix. The discrete operator of L is now defined by
(

Lhū(k)
)

(x(i)) :=
∑

|α|≤2

pα(x(i))
(

Dα
h ū(k)

)

(x(i)), ∀x(i) ∈ Ω. (4.6)
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And again, Lh can be represented by a sparse n× n matrix. Its sparsity results from the fact that
derivatives at a grid point are approximated using function values of only the immediate adjacent
grid points and not all points of the grid. In the one dimensional case where Ω = (a, b), Lh is
represented by a band matrix, e.g. tridiagonal for central differences.

The first step to discretise a parabolic p.d.e. is to discretise the space variables only. In order to
accomplish that and not to confuse with the existing vector ū(k) we introduce the vector function
ϕ : [0, T ] → Φh depending on time as an approximation to the solution u on all grid points

ϕi(t) ≈ u(x(i), t).

Replacing the continuous space operator L by its discrete version Lh in the parabolic p.d.e. (4.5) and
thus only considering the function values of u in the spacial grid points the p.d.e. is approximated by
a system of ordinary differential equations (o.d.e.). Since the vector function ϕ is the representation
of u in its spacial grid points we require ϕ to comply with

d

dt
ϕ(t) = Lhϕ(t). (4.7)

This system of o.d.e.s is called the semi-discrete system of the parabolic p.d.e. (4.5). It has constant
coefficients (Lh)i,j . In the case of a time dependent spacial operator L the coefficients in the system
of o.d.e.s are time dependent, too. One now could employ a sophisticated numerical o.d.e. solver
to obtain a highly accurate solution for ϕ. However, the numerical algorithm has to be able to deal
with large sparse systems Lh. We take a different approach and use the simplest solver available
– the explicit or implicit Euler method. The advantages are its simplicity, the ability to deal
with sparse systems and an easy to establish error analysis which finally reveals an acceptable
convergence order. In order to explain the method we discretise the variable t and define the series
of vectors û(0), . . . , û(m0) as an approximation to ϕ at the time points t0 = 0, . . . , tm0

= T

û(k) ≈ ϕ(tk).

There are many different ways to approximate the time derivative. Taking more than two points
for the derivative results in a multi-step scheme. Also, the operator Lh can be applied at slightly
different times and an average can be taken. That all leaves a lot of freedom to construct a stable
and high order convergent scheme. However, as said before, we only consider the Euler- or single
step method which approximates the time derivative with two points in time and the right hand
side at a time point in between. With a parameter θ ∈ [0, 1] and the abbreviation ∆tk := tk+1 − tk
the method is defined by

û(k+1) − û(k)

∆tk
= Lh

(

θû(k+1) + (1 − θ)û(k)
)

(4.8)

and is called the θ-method or weighted method.

Changing from the space Φh to R
n all grid function become vectors and operators like Lh become

matrices. Given the vector û(k) one can determine û(k+1). The initial condition is given and
therefore û(0) known. Step by step û(1), û(2), . . . , û(m0) are being determined always solving the
linear equation system

(

I − θ∆tkLh

)

û(k+1) =
(

I + (1 − θ)∆tkLh

)

û(k) (4.9)

or in short
Ahû(k+1) = Bhû(k). (4.10)

The involved matrices Ah(k) := I − θ∆tkLh and Bh(k) := I + (1 − θ)∆tkLh play an important
role in the stability analysis. The three particular schemes where θ = 0, θ = 1

2 and θ = 1 are
called forward Euler (fully explicit), Crank-Nicholson and backward Euler (fully implicit) scheme,
respectively. The Crank-Nicholson scheme is of particular importance since it has second order
consistency in time (see Section 5.1). The second order consistency of (4.8) is almost expected
because the difference quotient in time is second order accurate at the time point tk+tk+1

2 and
the right hand side of the equation is only second order accurate at this time point if and only if
θû(k+1) +(1− θ)û(k) is a second order approximation to ϕ

( tk+tk+1

2

)

which is only fulfilled if θ = 1
2 .

Many numerical methods exists for the solution of the linear equation system (4.10) which is
of order n. A simple Gauss elimination algorithm which does not exploit the structure of the
matrix Ah would need memory storage of order O(n2) and O(n3) operations to solve the equation.
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Under practical consideration that would limit its application to n ≤ 10000. Fortunately, there are
more sophisticated algorithms available. One basically distinguishes between iterative and direct
methods which all take advantage of the sparsity of the matrix Ah. Iterative methods do not alter
the matrix Ah but find successively a better approximation to the solution. Examples are the
SOR, Bi-CG and GmRes methods. In contrast, direct methods change the structure of the matrix.
The LU method with column permutation for example, decomposes the matrix multiplicatively
into Ah = LU with a left lower matrix L and a right upper matrix U using Gauss elimination.
The previous permutation of columns is needed in order to give Ah the sparsest band structure as
possible because L and U have the same band width as Ah but in general all values within that band
are not zero. The advantage of direct methods is, once the decomposition has been established the
solution of Ahû(k) = b can be determined very efficiently, i.e. the number of calculations is of order
O(l2n). If the time grid is uniform then Ah does not change with time and the decomposition
process needs to be done only once. The disadvantage is that it needs O(ln) bytes of memory
where l denotes the number of non zero diagonals after the permutation. In practice that is much
more memory space than the sparse matrix Ah occupies but also much less than O(n2).

4.3.2 Componentwise splitting

Even though numerical methods solving the equation system (4.10) are quite efficient they do not
reach the efficiency of solving a tridiagonal system of the same order n. That is why one introduces
splitting methods where a series of tridiagonal systems are solved instead of the original general
sparse system Ah. As soon as a more efficient algorithm for solving general sparse matrices is
developed splitting methods might not be superior, any more. The following descriptions are all
based on [16].

If the operator L does not contain any mixed derivative one can decompose the matrix Lh additively
into

Lh =

d
∑

i=1

Di

where Di is that part of Lh which discretises derivatives in direction i. After permutation all
matrices Di are tridiagonal or have at most five non zero diagonals. A method which in each step
solves an equation system only containing one of the matrices Di is called a splitting method.

The objective of this section is to introduce splitting methods which are at least consistent of order
O(∆t) and preferably of order O(∆t2) like the Crank-Nicholson method. For the sake of simplicity
no strict proof for consistency and stability is given. More details can be found in the [16]. To
start with, we describe the simplest case where the matrix Lh is decomposed into two parts

Lh = D1 + D2.

The general case can be discussed in a similar way. The only difficulty there is to construct a
second order consistent scheme in time. The basic idea is to introduce half time steps, i.e. vectors
û(k+1/2). We now add a zero to the equation of the θ-method (4.8)

û(k+1) − û(k+1/2) + û(k+1/2) − û(k)

∆tk
= (D1 + D2)

(

θû(k+1) + (1 − θ)û(k)
)

.

As an approximation we instead solve

û(k+1/2) − û(k)

∆tk
= D1

(

θû(k+1/2) + (1 − θ)û(k)
)

,

û(k+1) − û(k+1/2)

∆tk
= D2

(

θû(k+1) + (1 − θ)û(k+1/2)
)

.

(4.11)

To see whether this splitting method is an approximation to the original θ-method (4.8) we elimi-
nate û(k+1/2) from

(

I − θ∆tkD1

)

û(k+1/2) =
(

I + (1 − θ)∆tkD1

)

û(k),
(

I − θ∆tkD2

)

û(k+1) =
(

I + (1 − θ)∆tkD2

)

û(k+1/2)

to obtain

û(k+1) =
(

I − θ∆tkD2

)−1(
I + (1 − θ)∆tkD2

)(

I − θ∆tkD1

)−1(
I + (1 − θ)∆tkD1

)

û(k).
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Given the norm of ∆tkD1 and ∆tkD2 is sufficiently small we can apply Neumann series (I−T )−1 =
∑∞

i=0 T i:

û(k+1) =
(

I + θ∆tkD2 + θ2∆t2kD2
2 + . . .

)(

I + (1 − θ)∆tkD2

)

·
(

I + θ∆tkD1 + θ2∆t2kD2
1 + . . .

)(

I + (1 − θ)∆tkD1

)

û(k)

=
(

I + ∆tkD2 + ∆tk
2θD2

2 + . . .
)(

I + ∆tkD1 + ∆tk
2θD2

1 + . . .
)

û(k)

=
(

I + ∆tk(D1 + D2) + ∆tk
2(D2D1 + θ(D2

1 + D2
2)) + . . .

)

û(k).

Hence, the system can be written in the form

û(k+1) − û(k)

∆tk
= θLhû(k) + (1 − θ)Lhû(k) + ∆tk(D2D1 + (1 − θ)(D2

1 + D2
2)) + . . .

)

û(k).

Replacing û(k) with û(k+1) −∆tkLhû(k) −∆tk
2(. . . )û(k) + . . . we obtain a scheme which is similar

to the θ-method

û(k+1) − û(k)

∆tk
= θLhû(k+1) + (1 − θ)Lhû(k) + ∆tk(D2D1 + θ(D2

1 + D2
2 − L2

h)) + . . .
)

û(k).

Since the difference to the θ-method is only of order O(∆tk) one expects it to be first order accurate
in time. Even for θ = 1

2 the consistency in general is also only of first order. In special cases it can
reach second order, though, but only if D1 and D2 commute, i.e. D1D2 = D2D1. Then the term
D2D1 + 1

2 (D2
1 + D2

2 −L2
h) becomes zero as L2

h = D2
1 + D2

2 + 2D1D2. Unfortunately, the restriction
D1D2 = D2D1 is too strict and in practice mainly does not hold. In order to compete with the
Crank-Nicholson method as far as the order of convergence is concerned one needs to construct a
splitting method which approximates the Crank-Nicholson scheme up to a term of order O(∆tk

2).
As it turns out that will be achieved if one swaps D1 and D2 on the right hand side of the splitting
method just discussed, namely by solving

û(k+1/2) − û(k)

∆tk
=

(

θD1û
(k+1/2) + (1 − θ)D2û

(k)
)

,

û(k+1) − û(k+1/2)

∆tk
=

(

θD2û
(k+1) + (1 − θ)D1û

(k+1/2)
)

.

(4.12)

This method is called Alternating Direction scheme and plays a very important role for θ = 1
2 .

Eliminating û(k+1/2) from the equation and applying the same estimation as above we see that the
Alternating Direction method (4.12) approximates the θ-method (4.8) as follows.

û(k+1) − û(k)

∆tk
= θLhû(k+1)+(1−θ)Lhû(k)+∆tk

(

(1−θ)(D1D2)+θ(D2D1+D2
1+D2

2−L2
h)

)

û(k)+. . .

For θ = (1−θ), i.e. θ = 1
2 the term after ∆tk becomes zero because L2

h = D2
1 +D2

2 +D1D2 +D2D1.
That suggests that this method in general is second order accurate in time like the Crank-Nicholson
method. A proof is given in [16, Section 26]. The restriction of the above splitting method that
D1 and D2 have to commute is no longer necessary. Unfortunately, it is not possible to generalise
this result for splitting methods with more than two components.

Finally, we turn to the practically relevant situation where mixed derivative occur. Focusing on
the two dimensional case we decompose Lh into two (up to permutation) tridiagonal matrices Di,
each representing derivatives with respect to one dimension, and a matrix D1,2 approximating the
mixed derivative. The part of the p.d.e. with no derivatives, i.e. a0u, is represented by a diagonal
matrix and can therefore be put into D1 or D2

Lh = D1 + D2 + D1,2.

The difficulty with D1,2 is that it is not of tridiagonal but rather of block tridiagonal form and it
is inefficient to solve an equation system like D1,2z = b. Hence, the part D1,2 is considered to be
explicit in the splitting method to avoid solving such equation systems. Again, the basic idea is
to introduce half time steps. Focusing on approximating the Crank-Nicholson method (θ = 1

2 ) we
derive from the θ-method (4.8)

û(k+1) − û(k+1/2) + û(k+1/2) − û(k)

∆tk
= (D1 + D2)

1

2

(

û(k+1) + û(k)
)

+ D1,2û
(k+1/2).
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In order not to loose one order of consistency in time the operator D1,2 ideally would have to be
applied to the average of û(k) and û(k+1). As a fairly good approximation we have chosen û(k+1/2).
The splitting method is then defined by

û(k+1/2) − û(k)

∆tk
=

1

2
D1

(

û(k+1/2) + û(k)
)

,

û(k+1) − û(k+1/2)

∆tk
=

1

2
D2

(

û(k+1) + û(k+1/2)
)

+ D1,2û
(k+1/2).

An analysis reveals, however, that it does not reach the desired second order consistency:

û(k+1) − û(k)

∆tk
=

1

2
Lh

(

û(k+1) + û(k)) +
∆tk
2

(

(D1 + D2)
2 + (D1 + 2D2)D1,2 − L2

h

)

û(k) + . . . .

In order to improve accuracy one has somehow to find a better approximation to ϕ(tk+1/2) to
what the operator D1,2 has to be applied. We call this the predictor step. High accuracy is not
needed but first order accuracy in time is necessary. That is not difficult to achieve. One can
for example use a splitting method for the half step which is implicit for D1, D2 and explicit in
D1,2. Having found a good approximation to ϕ at time point tk+1/2 the entire operator Lh can be
applied to this approximation. This strategy is motivated by the fact that the time derivative is
second order consistent to the real value only at the time (tk + tk+1)/2 and so is the entire scheme
if the space discretisation Lh is applied to û at the same point in time. As a whole this method is
called predictor-corrector scheme. The predictor step in the example described is

û(k+1/4) − û(k)

2∆tk
= D1û

(k+1/4),

û(k+1/2) − û(k+1/4)

2∆tk
= D2û

(k+1/2) + D1,2û
(k+1/4)

(4.13)

and the corrector step can be written as

û(k+1) − û(k)

∆tk
= Lhû(k+1/2). (4.14)

In [16, Section 23] the method is shown to be stable and consistent for the simple case of D1,2 = 0.

There exists a variety of different splitting methods. A method which is second order consistent
and unconditionally stable for equations with mixed derivatives is for example shown in [17].



Chapter 5

Analysis of the finite difference
method

If for a numerical method it can not be shown convergence to the analytical solution in the limit
case h → 0 and τ → 0, their results have to be used with caution. The main objective of this
chapter is to show convergence of the finite difference method for general parabolic p.d.e.s without
the restriction to be uniformly parabolic. First the general theory of error analysis is described
and the important concepts of consistency and stability are introduced. For the initial value
problem and p.d.e.s with constant coefficients simple criteria can be found to determine whether
a scheme is stable. That is illustrated in Section 5.2. The description of the theory is mainly
based on [32]. In [32, Chapter 3] the mixed initial boundary value problem is treated, mainly
requiring uniform parabolicity. Hence we can not apply that to the p.d.e.s derived from stochastic
volatility models. In Section 5.3 we generalise these results and show unconditionally stability for
the Crank-Nicholson method under zero Dirichlet boundary conditions.

In order to conclude convergence of a scheme it is essential that the original problem is well
posed which in particular means that the p.d.e. has a unique solution. Under the assumption of
the uniform parabolicity of the Heston p.d.e. (can be achieved by displacing the zero volatility
boundary) it is shown in [8, Chapter 24] that there exists a unique solution in the weak sense.
Semi analytic formulas (represented by integrals) are known for plain vanilla options (see [10] or
[8, Chapter 23]) and under some restrictions also for barrier options (see [14] or [6]). Any following
statement about convergence implicitly assumes the well posedness of the problem.

5.1 Basic error analysis

The concepts of consistency1, stability and convergence are introduced and applied to numerical
schemes for parabolic equations.

5.1.1 Error analysis of general operator equations

In order to illustrate the basic ideas in error analysis techniques we begin with a general linear
operator equation where a parabolic p.d.e. is always the example we have in mind. Let G ⊂ R

d+1

be a region of R
d+1 (open and simple connected set) and A : C2(G) → C(G) a linear operator.

Let f ∈ C(G) then we look for solutions u ∈ C2(G) of

Au = f.

To solve that numerically we need to approximate u, f and the operator A in a finite dimensional
space. By some approximation method, for instance the finite difference method, we then obtain
a linear equation system

Ahû = fh (5.1)

1Based on [32, Section 3] we mainly call a scheme accurate instead of consistent to indicate that the approximation
order is better than o(1).

32
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defined over the space of grid functions Φh. If we identify the space of grid functions with the
R

n, n equal to the number of grid points, the grid functions û and fh can be represented by
n-dimensional vectors and Ah by an n × n matrix. The parameter h > 0 describes the fineness of
the discretisation, for example the distance between two adjacent grid points of the grid Ω̄h. It
also suggests that we are provided with a series of approximations and that we are interested in
the limit case where h approaches zero. The dimension n of the approximation space is somehow
indirectly related to the discretisation parameter h, i.e. as h approaches zero n goes to infinity.
We call the series of approximations convergent if the solution û converges in a certain sense to u
for h → 0. To put this idea on a more precise basis we need to introduce the projection operator
Ph : C(G) → Φh and the interpolation operator Qh : Φh → C2(G). One particular example is the
operator which restricts a function to the grid points, i.e. Phf : Ω̄h → R, Phf(x) = f(x) for all
x ∈ Ω̄h. Now, the objective is to find an expression for the error which can be represented with
the introduced projection operator by Phu− û. If this error converges in a certain norm to zero as
h → 0 the approximation method is called convergent. Examples of discrete norms defined over
the space of grid points are the maximum norm ‖û‖ := maxx∈Ω̄h

|û(x)| or the L2 norm which is

on uniform grids defined by ‖û‖ := hd/2
√

∑

x∈Ω̄h
û(x)2.

In order to analyse the approximation error we multiply with the discrete operator Ah and obtain

Ah(Phu − û) = AhPhu − fh.

The expression on the right hand side is called the consistency or truncation error and describes
how well the exact solution u projected to Φh fulfils the discrete equation system Ahû = fh.
Multiplying both sides with A−1

h results in the fundamental relation

Phu − û = A
−1
h (AhPhu − fh) (5.2)

which says that the approximation error is the result of the multiplication of the inverse discrete
operator A−1

h with the consistency error. If A−1
h is bounded by a constant independent of h the

scheme is said to be stable, i.e. if
∥

∥A−1
h v

∥

∥ ≤ c ‖v‖ ∀v ∈ Φh, h > 0. The immediate conclusion is
that if an approximation method is consistent and stable it is also convergent with respect to the
same norm. Under certain assumptions one can show even more. By the famous Lax equivalence
theorem a consistent scheme is convergent if and only if it is stable. The necessity of stability is
more difficult to show and uses some fundamental theorems of functional analysis.

Proving consistency is quite often the simplest part of an error analysis. It might sometimes be
advantageous to use a second linear projection operator P̃h different from Ph. If we furthermore
define fh := P̃hf in the discretisation we then see that using the relation P̃h(Au − f) = 0 we can
estimate the consistency error denoted by γh with

γh := AhPhu − fh = AhPhu − P̃hAu + P̃hf − fh = AhPhu − P̃hAu (5.3)

which can be examined componentwise using Taylor series expansion for instance.

Example 5.1.1 (Consistency of uxx + uyy = 0)
To clarify the idea we consider for a moment the two dimensional Laplace equation, i.e. Au := △u
and f = 0. Abbreviating ûi,j := û(xi, yj) the finite difference method leads on a uniform grid to

(Ahû)i,j =
1

h2
(−4ûi,j + ûi+1,j + ûi−1,j + ûi,j+1 + ûi,j−1)

and Taylor series expansion of u(xi±1, yj±1) around (xi, yj) gives the following approximation (see
also Section 4.2.1)

(PhAu)i,j = △u(xi, yj)

=
1

h2
(−4u(xi, yj) + u(xi+1, yj) + u(xi−1, yj) + u(xi, yj+1) + u(xi, yj−1)) + R4(h)

= (AhPhu)i,j + R4(h)

with

|R4(h)| ≤ 2

4!

(

∥

∥

∥

∥

∂4u

∂x4

∥

∥

∥

∥

C[a,b]2
+

∥

∥

∥

∥

∂4u

∂y4

∥

∥

∥

∥

C[a,b]2

)

h2.

It follows immediately for the consistency error

(PhAu − AhPhu)i,j = R4(h).
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Returning to the general case, investigating stability might be more difficult since it involves
properties of the inverse operator A−1

h which one most likely does not know a priori but can
be calculated numerically. If it is possible to estimate eigenvalues of Ah then one can conclude
whether A−1

h is bounded. As we will see later on this is possible for the finite difference method in
an unbounded domain if the coefficients of the p.d.e. are constant. Otherwise one has to use other
estimation techniques.

5.1.2 Error analysis of parabolic p.d.e.s

The results of the general case can directly be applied to parabolic p.d.e.s. In order to do that we
first have to recall some basic notations already introduced in Section 4.3 where the finite difference
method is described. The first d components of the R

d+1 are conceived as the representation of
space and the last component is understood to be the representation of time. Let Ω ⊂ R

d be a
region of the space and Ω̄h =

{

x(i) : i ∈ Ih

}

⊂ Ω̄ a structured grid consisting of n grid points.
The spatial discretisation parameter h > 0 might be defined as the greatest distance between two
adjacent grid points. For simplicity of notation let the time interval [0, T ] be represented by the
uniform grid {0, t1, . . . , tm0−1, T} and we set τ := ti+1 − ti. The projection operator mapping
continuous function to grid functions over the space time grid can now be defined by Ph,τu := ū
with

ū(k)(x) := u(x, tk), ∀x ∈ Ω̄h.

With the time independent linear elliptic differential operator L : C2(Ω) → C(Ω) a parabolic p.d.e.
can be written in the form

∂

∂t
u = Lu + f,

u(x, 0) = v(x).

General two step finite difference methods can be represented by two n × n matrices forming the
equation

1

τ
Ah,τ û(k+1) =

1

τ
Bh,τ û(k) + fh(k). (5.4)

Note that by definition ū is the projection of the function u which is the exact solution of the p.d.e.
However, the vector û in the first place is not at all related to u but is the solution of the discrete
system. Under the assumptions of consistency and stability û finally converges to ū.

In the θ-method (4.9) for example with the discrete space operator Lh we know that Ah,τ =
(I −θτLh) and Bh,τ = (I +(1−θ)τLh). With the solution matrix Eh,τ := A−1

h,τBh,τ which applied
to the solution in a certain time step k gives the solution of the time step k + 1 we can write the
method in an explicit way:

û(1) = Eh,τ v̄ + τA−1
h,τf

(0)
h

û(2) = Eh,τ û(1) + τA−1
h,τf

(1)
h

= E2
h,τ v̄ + τEh,τA−1

h,τf
(0)
h + τA−1

h,τf
(1)
h

...

û(k) = Ek
h,τ v̄ + τ

m0
∑

k=1

Em0−k
h,τ A−1

h,τf
(k)
h .

(5.5)

For homogeneous equations (f = 0) everything simplifies to

û(k) = Ek
h,τ v̄. (5.6)

It is thus not surprising that the stability of the method is directly connected to the boundedness
of the m0-th power of Eh,τ . A more detailed analysis as shown below reveals that the boundedness
of A−1

h,τ is important as well.

After these introductory remarks we are now able to apply the general theory described in the
above subsection. We approximate the operator equation

(

∂

∂t
− L

)

u = f,

u(x, 0) = v(x)
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with the discretised version Ahû = fh where Ah represented as a matrix is of order n(m0 + 1) and
consists of the sub-matrices Ah,τ and Bh,τ as follows:

1

τ























τI O O . . . O O O

−Bh,τ Ah,τ O . . . O O O

O −Bh,τ Ah,τ . . . O O O

...
...

...
. . .

...
...

...
O O O · · · Ah,τ O O

O O O · · · −Bh,τ Ah,τ O

O O O · · · O −Bh,τ Ah,τ













































û(0)

û(1)

û(2)

...
û(m−2)

û(m−1)

û(m)
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v̄

f
(0)
h

f
(1)
h
...

f
(m−3)
h

f
(m−2)
h

f
(m−1)
h

























.

Hereby the vector v̄ is the projection of the initial value function v : Ω → R. Consequently, the
inverse of the operator Ah is























û(0)

û(1)
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û(m−2)
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1
τ I O O . . . O O O

1
τ Eh,τ A−1

h,τ O . . . O O O

1
τ E2

h,τ Eh,τA−1
h,τ A−1

h,τ . . . O O O

...
...

...
. . .

...
...

...
1
τ Em0−2

h,τ Em0−3
h,τ A−1

h,τ Em0−4
h,τ A−1

h,τ · · · A−1
h,τ O O

1
τ Em0−1

h,τ Em0−2
h,τ A−1

h,τ Em0−3
h,τ A−1

h,τ · · · Eh,τA−1
h,τ A−1

h,τ O

1
τ Em0

h,τ Em0−1
h,τ A−1

h,τ Em0−2
h,τ A−1

h,τ · · · E2
h,τA−1

h,τ Eh,τA−1
h,τ A−1

h,τ

















































v̄

f
(0)
h

f
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.

The consistency or truncation error defined in equation (5.3) is
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(1)
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γ
(2)
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γ
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=
1
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τ ū(0)
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v̄
f (0)

f (1)

...
f (m−1)















.

We call the component γ
(k)
h,τ the truncation error at the time step k and according to (5.3) it is

equal to

γ
(k)
h,τ =

1

τ

(

Ah,τ ū(1) − Bh,τ ū(0)
)

− P̃h

(

∂u

∂t
− Lu

)

(5.7)

if the right hand side is defined as fh = P̃hf . The relation between convergence, consistence and
stability as seen in (5.2) is given by Phu − û = A−1

h (AhPhu − fh) = A−1
h γh. With the knowledge

of the inverse of the big matrix Ah and the definition of the truncation error we conclude at once
that the error at the time step k is given by

(Phu − û)(k) = τ

k
∑

i=1

E
k−i
h,τ A

−1
h,τ γ

(i)
h,τ . (5.8)

This result is of fundamental importance in local error analysis. Since the truncation error γ
(i)
h,τ

can be estimated using Taylor series expansion we can directly deduce the approximation error at
any time step k. Furthermore, with the knowledge of the spatial distribution of the truncation
error, which depends on the elliptic operator L and the choice of the non uniform grid, one can
estimate the distribution of the approximation error. Formula (5.8) tells that this error is a sum

of the terms v̂(1), v̂(2), . . . , v̂(k) where v̂(i) := Ek−i
h,τ A−1

h,τγ
(i)
h,τ . However, it is mostly impracticable

to obtain sufficient information about the operator Eh,τ which would allow us to perform a local
error analysis. Comparing with the finite difference method (5.6) it becomes clear that the single
error terms are approximations to solution of the p.d.e. with the truncation error as part of the

initial condition v̄ = A−1
h,τγ

(i)
h,τ . This point of view opens the way for a local error analysis without

examining the matrix Eh,τ . Assuming that the operator is convergent and given we know a
fundamental solution G of the p.d.e. we can state that for one x ∈ Ωh

v̂(i)(x) ≈
∫

Ω

G(x, x′, ti)Qh(A−1
h,τγ

(i)
h,τ )(x′) dx′
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and hence

(Phu − û)(k)(x) ≈ τ
k

∑

i=1

∫

Ω

G(x, x′, ti)Qh(A−1
h,τγ

(i)
h,τ )(x′) dx′

≈
∫

Ω

∫ tk

0

G(x, x′, t)Qh(A−1
h,τγh,τ )(x′, t) dt dx′

≈
∫

Ω

∫ tk

0

G(x, x′, t) dtQh(A−1
h,τγh,τ )(x′) dx′

(5.9)

where the last approximation only holds if the truncation error is similarly distributed over time.
If one can show that the operator A−1

h,τ does not have a big effect the influence of the truncation
error at a point x′ on the numerical solution at x is then expressed by the the fundamental solution
averaged over the time period [0, tk]. Although these estimates are quite remote one can at least
get an insight in local errors.

Writing the relation of the truncation and approximation error in a different way, i.e. like Ah(Phu−
û) = γh we see that the approximation error z := Phu − û is the solution of the finite difference
method applied to the same p.d.e. but with the right hand side given by the truncation error and
the initial condition z(0) = 0:

Ah,τ z(k+1) = Bh,τ z(k) + τγ
(k+1)
h,τ . (5.10)

For non uniform time steps one has to replace τ by ∆tk := tk+1 − tk. If for example it turns out
that the truncation error remains not constant in each time step then it is advantageous to choose
different time steps. Smaller time steps reduce the influence of the truncation error. One example
where one should use non uniform time steps is if the initial condition contains discontinuities in a
derivative or even in the values. The truncation error is then very big at the beginning until these
discontinuities are no longer visible due to the effect of diffusion. Especially for reverse barrier
options the discontinuity is huge directly next to the knockout boundary.

Since the ideas illustrated above are crucial in further error analysis we give the definitions of
consistency and stability according to [32, Section 3] and mention the Lax equivalence theorem for
the special case of parabolic p.d.e.s.

Definition 5.1.2 (Consistency)
A numerical scheme is called consistent with the parabolic differential equation if the truncation
error for a sufficiently smooth solution u tends uniformly to zero as the discretisation parameters
h and τ approach zero, i.e.

γ
(k)
h,τ (x) :=

1

τ
Ah,τ ū(k)(x) − Bh,τ ū(k−1)(x) − τf

(k)
h (x) → 0, ∀x ∈ Ω̄h, (h, τ → 0).

The scheme is said to be accurate of order µ in x and ν in t if additionally the order of convergence
is uniformly for all grid and time points

γ
(k)
h,τ,i := γ

(k)
h,τ (x(i)) = O(hµ + τν), (h, τ → 0).

The requirement that the convergence is uniform, i.e. the ǫ-estimates have to be independent of i, is
equivalent to the formulation that the maximum norm of γh,τ converges. One sometimes says that
a method is consistent or accurate in the maximum norm. Since in literature the above definition
of consistency is the most common we do not emphasise the maximum norm convergence and only
say it is consistent.

Definition 5.1.3 (Stability)
Let (Φh, ‖·‖h) be a series of normed spaces of the spatial variables. The difference scheme (5.5) is
said to be stable with respect to the normed space if the discrete operator Em0

h,τ is bounded with a
common constant for any discretisation parameters h > 0 and τ > 0, i.e.

∥

∥Ek
h,τv

∥

∥

h
≤ c ‖v‖h , ∀v ∈ Φh, k ∈ {1, . . . ,m0} , h > 0, τ > 0.

Note that the variable m0 ∈ N is directly linked to the discretisation parameters τ , respectively,
i.e. if τ → 0 then m0 → ∞.
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The Lax Richtmyer equivalence theorem now says that for a consistent method stability is necessary
and sufficient for convergence if the original problem is well posed. For more details see the original
work [13] or [32, Section 3]. The theorem is a remarkable achievement in numerical analysis. It is
of simple structure, does not require much information about the schemes except consistency and
stability and links these properties in an equivalent way together with the much more difficult to
prove and most interesting property of convergence.

Unfortunately, it does not establish a connection between the order of accuracy and the order
of convergence. Relation (5.8) suggests that order of consistency and order of convergence are
the same given the scheme is stable and the solution u is sufficiently smooth. Additionally it
requires that A−1

h,τ is bounded in the considered normed space. The relation between accuracy and
convergence follows directly from (5.8) since

∥

∥

∥
(Phu − û)(m0)

∥

∥

∥
≤ τ

m0
∑

i=1

∥

∥

∥
Em0−k

h,τ

∥

∥

∥

∥

∥

∥
A−1

h,τ

∥

∥

∥

∥

∥

∥
γ

(k)
h,τ

∥

∥

∥
≤ τm0c

∥

∥

∥
A−1

h,τ

∥

∥

∥
max

k=1...m0

∥

∥

∥
γ

(k)
h,τ

∥

∥

∥

≤ Tc
∥

∥

∥A−1
h,τ

∥

∥

∥C(u, T )(hµ + τν).

As it turns the requirement that A−1
h,τ is bounded does not need to be checked for convergence

analysis in the methods demonstrated in the following sections.

Finally, we prove a statement about the θ method which reveals its accuracy in time.

Lemma 5.1.4 (Consistency of the θ-method)
Let the discrete operator Lh be accurate of order µ to the differential operator in space L and let
additionally the truncation error of Lh applied to v(x, t) := θu(x, t + ∆tk) + (1− θ)u(x, t) denoted

by λ
(k)
h,i :=

(

Lhv̄(k)
)

i
− Lv(xi, tk) be of order hµ uniformly for all k ∈ {0, . . . ,m0} if the solution u

is sufficiently smooth. Let additionally f
(k)
h be defined so that it consists of the function values of

f at the time tk+1/2, i.e. f
(k)
h :=

(

f(xi, tk + 1
2τ)

)m1,...,md

i1,...,id=0
then the θ-method (4.8)

û(k+1) − û(k)

∆tk
− Lh

(

θû(k+1) + (1 − θ)û(k)
)

= f
(k)
h

is accurate of order µ in x and of order one in t to the p.d.e.

(

∂

∂t
− L

)

u = f

and the truncation error of the method is bounded by

∣

∣

∣γ
(k+1)
h,τ,i

∣

∣

∣ ≤
(

1

6
‖uttt‖C(Ω̄×[0,T ]) +

1

2
‖Lutt‖C(Ω̄×[0,T ])

)

(∆tk/2)2

+
∣

∣

∣
(2θ − 1)Lut(xi, tk+1/2)(∆tk/2) + λ

(k)
h,i

∣

∣

∣

= O(hµ + τ).

(5.11)

For θ = 1
2 the scheme is obviously accurate of order two in t.

Proof For the θ-method we have Ah,τ = (I − τθLh) and Bh,τ = (I + τ(1 − θ)Lh) and so the
truncation error is given by

γ
(k+1)
h,τ =

1

τ

(

Ah,τ ū(k+1) − Bh,τ ū(k)
)

− P̃h

(

∂u

∂t
− Lu

)

=
ū(k+1) − ū(k)

∆tk
− Lh

(

θū(k+1) + (1 − θ)ū(k)
)

− P̃h

(

∂u

∂t
− Lu

)

if fh = P̃hf . As it turns out it is appropriate to choose P̃h so that it projects to the values in
the spatial grid points and in time to the values of the middle of the time interval, more precisely

(P̃hu)
(k)
i := u(xi, tk + 1

2∆tk). For a sufficiently smooth solution u we estimate the truncation error
componentwise using the abbreviation tk+1/2 := tk + 1

2∆tk:

γ
(k+1)
h,τ,i =

u(xi, tk+1) − u(xi, tk)

∆tk
−∂u

∂t
(xi, tk+ 1

2
)+Lu(xi, tk+ 1

2
)−Lh

(

θū(k+1) + (1 − θ)ū(k)
)

i
(5.12)
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For the first part we find by Taylor series expansion around the time point tk+1/2

∣

∣

∣

∣

u(xi, tk+1) − u(xi, tk)

∆tk
− ∂u

∂t
(xi, tk+1/2)

∣

∣

∣

∣

≤ (∆tk/2)2

6
‖uttt‖C(Ω̄×[0,T ])

and the second part can be estimated using the truncation error for the spatial operator λ
(k)
h,i :=

(

Lhv̄(k)
)

i
− Lv(xi, tk) with v(x, t) := θu(x, t + ∆tk) + (1 − θ)u(x, t):

Lh

(

θū(k+1) + (1 − θ)ū(k)
)

i
= θLu(xi, tk+1) + (1 − θ)Lu(xi, tk) + λ

(k)
h,i

= Lu(xi, tk+1/2) + (2θ − 1)Lut(xi, tk+1/2)(∆tk/2)

+
1

2

(

θLutt(xi, ξ1) + (1 − θ)Lutt(xi, ξ2)
)

(∆tk/2)2 + λ
(k)
h,i

with ξ1 ∈ [tk+1/2, tk+1] and ξ2 ∈ [tk, tk+1/2]. Since L is assumed to be a differential operator and u

sufficiently smooth the operators ∂
∂t and L commute which has been used in the last Taylor series

expansion. Putting both estimates together into (5.12) we conclude that the truncation error is
uniformly for i ∈ N

d and k ∈ N bounded by

∣

∣

∣γ
(k+1)
h,τ,i

∣

∣

∣ ≤
(

1

6
‖uttt‖C(Ω̄×[0,T ]) +

1

2
‖Lutt‖C(Ω̄×[0,T ])

)

(∆tk/2)2

+
∣

∣

∣(2θ − 1)Lut(xi, tk+1/2)(∆tk/2) + λ
(k)
h,i

∣

∣

∣

= O(hµ + τ).

In the Crank-Nicholson scheme (θ = 1
2 ) the first order term in ∆tk vanishes and the truncation

error then is

∣

∣

∣
γ

(k+1)
h,τ,i

∣

∣

∣
≤

(

1

6
‖uttt‖C(Ω̄×[0,T ]) +

1

2
‖Lutt‖C(Ω̄×[0,T ])

)

(∆tk/2)2 +
∣

∣

∣
λ

(k)
h,i

∣

∣

∣

= O(hµ + τ2).

¤

Remark 5.1.5
Together with Lemma 4.2.3 and Remark 4.2.4 this lemma concludes the second order accuracy in
space as well as in time for the Crank-Nicholson method with the three point central approximation
of derivatives and the space operator Lh as defined in (4.6) for any parabolic p.d.e. with sufficiently
smooth and bounded coefficients pα. That also applies for any non uniform structured grid created
by a sufficiently smooth grid generating function for which g′(z) > 0, ∀z ∈ [0, 1].

5.1.3 Super-convergent methods for parabolic p.d.e.s

The estimate (5.11) in the above lemma can sometimes be used to construct schemes which are
super-convergent, that is if the convergence rate is greater than accuracy suggests. This is for

example achievable if one order term in λ
(k)
h,i cancels with (2θ − 1)Lut(xi, tk+1/2)(∆tk/2). At first

sight that seems to be impossible since the spatial truncation error λ
(k)
h,i will never depend on a

time derivative of u. However, for the homogeneous equation one might use the relation that u
solves ut = Lu to rewrite the truncation error

∣

∣

∣
γ

(k+1)
h,τ,i

∣

∣

∣
≤

(

1

6
‖uttt‖C(Ω̄×[0,T ]) +

1

2
‖Lutt‖C(Ω̄×[0,T ])

)

(∆tk/2)2

+
∣

∣

∣(2θ − 1)LLu(xi, tk+1/2)(∆tk/2) + λ
(k)
h,i

∣

∣

∣ .

For the simple example ut = κuxx on a uniform grid it can easily be seen how the higher consistency
can be achieved. The spatial truncation error is by Taylor series expansion (see also Lemma 4.2.3)

λ
(k)
h,i :=

(

Lhv̄(k)
)

i
− Lv(xi, tk) = κ

(

(D2
hv̄(k))i − vxx(xi, tk)

)

=
κ

12
vxxxx(xi, tk)h2 + O(h4) =

κ

12
uxxxx(xi, tk+1/2)h

2 + O(h4) + O(τ2)
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and we obtain for the truncation error

∣

∣

∣γ
(k+1)
h,τ,i

∣

∣

∣ ≤
(

1

6
‖uttt‖C(Ω̄×[0,T ]) +

1

2
‖Lutt‖C(Ω̄×[0,T ])

)

(∆tk/2)2

+
∣

∣

∣
(2θ − 1)κ2uxxxx(xi, tk+1/2)(∆tk/2) +

κ

12
uxxxx(xi, tk+1/2)h

2 + O(τ2) + O(h4)
∣

∣

∣
.

If we now choose θ < 1
2 and set the time step size according to

τ =
1

6κ(1 − 2θ)
h2

the first order term in τ and the second order term in h cancel each other so that the truncation
error is of order O(h4 + τ2). As will be demonstrated in Subsection 5.2.3 this method is stable
in the L2 norm and one can show that it is then convergent in L2 with the order of accuracy.
Comparing to equation (5.24) the time step size is exactly one third of what the stability criterion
requires. It is important to note that the super-convergence only applies to the specified p.d.e.
ut = κuxx. For other parabolic p.d.e.s the estimates have to be repeated with possibly different
results for the parameters. In general, though, the above method will not be able to eliminate

the order O(h2) in λ
(k)
h,i with the term LLu and hence super-convergence will not be achieved.

Fortunately, the idea can be saved if one allows certain extensions of the Crank-Nicholson method
for instance the parameter θ might differ for some terms in the p.d.e.

In quite resent research Ronald Smith ([25] to [29]) extensively studied an extension of the Crank-
Nicholson method with some more parameters. With this additional degree of freedom he was able
to match all the first four order terms in the spatial direction so that the method proposed by him is
accurate of the astonishing order O(h5 +τ2). In [25] the method is stated for the non-homogeneous
parabolic p.d.e. with constant coefficients in one dimension. For a simplified discussion we consider
the parabolic p.d.e.

ut = κuxx − bux − λu.

With the three point discrete differential operator D2
h and D1

h approximating second and first
derivative with respect to x the numerical scheme is defined by

ϑ

4

û
(k+1)
i−1 − u

(k)
i−1

∆t
+

4 − 2ϑ

4

û
(k+1)
i − u

(k)
i

∆t
+

ϑ

4

û
(k+1)
i+1 − u

(k)
i+1

∆t
=

= κ̄D2
h(θ2û

(k+1) + θ2û
(k))i − b̄D1

h(θ1û
(k+1) + θ1û

(k))i − λ(θ0û
(k+1) + θ0û

(k))i.

The optimal choice of the parameters ϑ, θ2, θ1, θ0, κ̄ and b̄ to achieve the mentioned high accuracy
is given in [25]. They depend on the coefficients of the p.d.e. as well as the discretisation parameters
∆t and ∆x. A generalisation to non uniform grids and non constant coefficients is given in [26]
and [28]. The case of a two dimensional p.d.e.s with constant coefficients is covered in [29] where
an alternating direction scheme is proposed. As far as I can judge, this method is a very promising
approach to achieve more accurate numerical results within less computing time and should the
centre of attention in further investigations.

5.2 Analysis of f.d.m. for constant coefficient p.d.e.s

In this chapter a general overview over the main ideas of analysing the error for constant coefficients
p.d.e.s is given. The theory is well established and mainly relies on the Fourier transformation for
L2 norm estimates. Even though it is not directly applicable to variable coefficient p.d.e.s and is
restricted to uniform grids and the pure initial value problem the theory is nevertheless of high
importance. First of all, it gives clear statements under which circumstances a certain scheme
is stable and secondly there exists a generalisation to variable coefficient p.d.e.s. Furthermore,
convergence information not only for function values but also for derivative values are obtained.
For an exact presentation of the L2 theory which uses the Fourier transformation a very detailed
description would be necessary which is out of scope of this thesis. The reader might refer to [32,
Section 4] or for a more detailed treatment to [31, chapter 10]. Consequently, only the ideas will
be shown and the main theorems be stated.
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5.2.1 Introduction and Definitions

We quickly recall some facts of Subsection 3.2.3 which are important in the following treatment.
The parabolic p.d.e. with constant coefficients

ut = P (D)u

is called parabolic in the sense of Petrovskii if

ℜP (iω) ≤ −c1 |ω|2 + c2, ∀ω ∈ R
d

with a positive constant c1 > 0. As derived in Subsection 3.2.3 the solution of the p.d.e. in the
Fourier transformed space is

ũ(ω, t) = ũ(0)(ω) exp (P (iω)t) .

The definition of the parabolicity as above makes sense because by Parseval’s relation we have

‖u(·, t)‖ = ‖ũ(·, t)‖ =
∥

∥

∥ũ(0) exp (P (iω)t)
∥

∥

∥ ≤ sup
ω∈Rd

exp
(

(−c1 |ω|2 + c2)t
) ∥

∥

∥ũ(0)
∥

∥

∥

≤ exp(c2t)
∥

∥

∥
u(0)

∥

∥

∥
,

i.e. the problem is well posed in L2.

We exclusively consider one step finite difference schemes for the homogeneous pure initial value
problem, i.e. Ω = R

d. We thus bypass the difficulty of boundary conditions but have to deal
with infinite domains. Also, the grid in the space dimensions has to be uniform, for simplicity
we say Ω̄h :=

{

x(i) : i ∈ Z
d
}

and x(i) = hi. In order to define stability we have to introduce a
normed space and since we want to use Fourier transformation the discrete version of the L2 space
is appropriate, i.e. (Φh, ‖·‖) with

‖v‖ := hd/2

√

∑

i∈Zd

v2
i , v ∈ Φh.

One step finite difference schemes are represented by Ah,τ û(k+1) = Bh,τ û(k) or equivalently with
Eh,τ := A−1

h,τBh,τ by û(k+1) = Eh,τ û(k). Due to the structure of the approximation of derivatives
and the spatial homogeneity of the differential operator the discrete operator are as follows

(Ah,τv)i =
∑

k∈I0

akvi+k,

(Bh,τv)i =
∑

k∈I0

bkvi+k

where I0 ⊂ Z
d is the finite set of grid point indices which are used to approximate derivatives of

a function at the origin. We have to keep in mind that the real numbers ak etc. are clearly also
dependent on the discretisation parameters τ and h and are known explicitly. The simplicity of
the operators Ah,τ and Bh,τ will be very useful and is due to the absence of boundary conditions.

The basic idea to examine stability of the difference scheme, which is by definition equivalent to the
boundedness of the m0-th power of the operator Eh,τ , is to perform an eigenvalue analysis. Due
to the simple structure of Ah,τ and Bh,τ we are even able to explicitly provide the eigenvectors.
We define the series of grid functions

{

w(ω) : ω ∈ R
d
}

with

w
(ω)
i := ei〈ω,x(i)〉 (5.13)

and as one can easily see these are all eigenvectors of Ah,τ and Bh,τ :
(

Ah,τw(ω)
)

i
=

∑

k∈I0

ak ei〈ω,x(i+k)〉 = ei〈ω,x(i)〉 ∑

k∈I0

ak ei〈ω,xk〉 .

Motivated by this relation one defines the symbol of a discrete operator.

Definition 5.2.1 (Symbol of discrete operators)
The function λA : R

d → R which assigns each ω ∈ R
d the eigenvalue of the operator Ah,τ to the

eigenvector w(ω) is called the symbol of Ah,τ , i.e.

Ah,τw(ω) = λA(ω)w(ω).

The same applies to the operators Bh,τ and Eh,τ .
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The eigenvalues are known explicitly and so are the symbols. As seen above the symbol of Ah,τ

for example is given by

λA(ω) =
∑

k∈I0

ak ei〈ω,x(k)〉 =
∑

k∈I0

ak eih〈ω,k〉 . (5.14)

Since an eigenvector of Ah,τ is an eigenvector of Bh,τ and vise versa we immediately conclude that
the eigenvalues of A−1

h,τBh,τ are

λE(ω) =
λB(ω)

λA(ω)
.

One might suspect that the boundedness of Em0

h,τ is strongly related to the boundedness of λE(ω)m0 .
As it turns out both properties are even equivalent. That will be justified by the fact that any
grid function v ∈ L2 can be represented as an integral over all eigenvectors w(ω) and will be proved
with help of the Fourier transformation. It is remarkable how simple the analysis of stability turns
out to be if one uses the symbol of Eh,τ .

5.2.2 Analysis using Fourier transformation

As said in the introductory part of this section only the basic ideas and some explanatory remarks
on why the results of the theorems make sense are given. To begin, we establish a connection
between the Fourier transformation and the principles of the subsection above. Let the projection
operator Qh : Φh → L2 be defined as the constant interpolation, i.e. (Qhv)(x) := vi ∀x1 ∈
[x

(i)
1 , x

(i)
1 + h), . . . , xd ∈ [x

(i)
d , x

(i)
d + h). We are now able to introduce the Fourier transformation

for the grid function v ∈ Φh by

ṽ(ω) := F (Qhv)(ω) = (2π)−d/2hd
∑

i∈Zd

vi e−i〈ω,x(i)〉 = (2π)−d/2
〈

v, w(−ω)
〉

and we see that it is simply the scalar product of v with the the vector w(−ω) defined in (5.13). The
further objective is to fully represent the finite difference scheme in the Fourier transformed space.
We note that the multiplication Ah,τv simplifies after transforming due to the simple structure of
Ah,τ :

F (Ah,τv)(ω) = (2π)−d/2hd
∑

i∈Zd

(Ah,τv)i e−i〈ω,x(i)〉 = (2π)−d/2hd
∑

i∈Zd

∑

k∈I0

akvi+k e−i〈ω,x(i)〉

= (2π)−d/2hd
∑

k∈I0

ak

∑

i∈Zd

vi e−i〈ω,x(i−k)〉 =
∑

k∈I0

ak ei〈ω,x(k)〉 ṽ(ω)

= λA(ω)ṽ(ω)

From these remarks it follows that the finite difference scheme Ah,τ û(k+1) = Bh,τ û(k) simplifies to
a multiplication with the symbols of Ah,τ and Bh,τ in the Fourier transformed space

˜̂u(k+1)(ω) =
λB(ω)

λA(ω)
˜̂u(k)(ω) = λE(ω)˜̂u(k)(ω). (5.15)

Comparing the discrete scheme with the analytical solution

ũ(ω, t) = ũ(0)(ω) exp (P (iω)t)

one suspects a very strong relationship between the two functions exp
(

P (iω)τ
)

and λE(ω). As it
turns out it is consistency which requires both functions to be similar. In order to see that, we
apply the definition of the truncation error (5.7) to one particular solution of the p.d.e.

u(x, t) = ei〈ω,x〉 exp(P (iω)t)

where ω ∈ R
d is a fixed frequency. The truncation error then is

γ
(k)
h,τ =

1

τ

(

exp(P (iω)tk+1)Ah,τw(ω) − exp(P (iω)tk)Bh,τw(ω)
)

=
1

τ
exp(P (iω)tk) (exp(P (iω)τ)λA(ω) − λB(ω)) w(ω)

=
1

τ
exp(P (iω)tk)λA(ω)

(

exp(P (iω)τ) − λE(ω)
)

w(ω) = O(hµ + τν)
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which concludes that 1
τ λA(ω)

(

exp(P (iω)τ)−λE(ω)
)

= O(hµ+τν) for all ω ∈ R
d but not necessarily

uniformly. The dependence of the truncation error on ω can be examined using Taylor expansions
of λE and the exp function. Motivated by these remarks we give a further definition of consistency.

Definition 5.2.2 (Consistency in the Fourier transformed space)
A one step finite difference scheme (5.4) for a constant coefficient p.d.e. on a uniform grid with a
given relation between space and time discretisation τ = σ(h) is called accurate of order µ in space
and ρ in ω if there exists a constant c > 0 so that

1

τ
|exp(P (iω)τ) − λE(ω)| ≤ chµ(1 + |ω|)ρ, ∀ |hω| ≤ π (5.16)

This definition makes sense as shown by the following theorem.

Theorem 5.2.3 (Consistency)
Let the p.d.e. be parabolic in the sense of Petrovskii. The one step finite difference scheme (5.4)
with a predefined relation between space and time discretisation τ = σ(h) is accurate of order µ
in space according to definition 5.1.2 if and only if it is accurate of order µ in space and 2 + µ in
ω according to definition 5.2.2.

The theorem is a slight modification of Theorem 4.1 in [32, page 45]. A similar theorem with proof
can be found in [31, chapter 10].

The criterion for stability defined by the boundedness of the m0-th power of Eh,τ := A−1
h,τBh,τ

obviously translates to the boundedness of λE(ω)m0 uniformly for all ω. Since m0 = T
τ it follows

that a constant c > 0 exists so that λE(ω) ≤ 1 + cτ . Following [32, Theorem 4.2] we state:

Theorem 5.2.4 (Stability)
A one step finite difference scheme (5.4) for a constant coefficient p.d.e. on a uniform grid is stable
in L2 if and only if there exists a constant c > 0 so that

|λE(ω)| ≤ 1 + cτ, ∀ω ∈ R
d, τ > 0. (5.17)

The above condition is referred to as the von Neumann stability criterion. Following the line of
[32, Section 4] and [31, chapter 10] we state the theorem about convergence where the usual Hρ

space will be used. The Hρ-norm is defined as

‖v‖2
Hρ :=

∑

|α|≤ρ

‖Dαv‖2
L2

, ∀tk ≤ T.

Theorem 5.2.5 (Convergence)
Let the p.d.e. be parabolic in the sense of Petrovskii and the initial condition sufficiently smooth

u(0) ∈ Hρ. If the one step finite difference scheme (5.4) with a predefined relation between space
and time discretisation τ = σ(h) is stable and accurate of order µ in space and ρ in ω with
ρ > max

{

µ, 1
2

}

then it is convergent in L2 of order µ and the error can be estimated by

∥

∥

∥Phu(·, tk) − û(k)
∥

∥

∥ ≤ CT hµ
∥

∥

∥u(0)
∥

∥

∥

Hρ
. (5.18)

Proof See [31, Theorem 10.1.4] or [32, Theorem 4.6]. ¤

The idea on why one obtains the same order of convergence as the order of accuracy can be made
plausible by considering the error in the L2-norm and switching to the Fourier transformed space:

∥

∥

∥u(·, tk) − Qhû(k)
∥

∥

∥

L2

=
∥

∥

∥ũ(·, tk) − ˜̂u(k)
∥

∥

∥

L2

=
∥

∥

∥exp(P (i·)tk)ũ(0) − λk
E

˜̂u(0)
∥

∥

∥

L2

≤ sup
ω∈Rd

∣

∣exp(P (iω)tk) − λE(ω)k
∣

∣

∥

∥

∥
ũ(0)

∥

∥

∥

L2

+ sup
ω∈Rd

∣

∣λE(ω)k
∣

∣

∥

∥

∥
ũ(0) − ˜̂u(0)

∥

∥

∥

L2

.

The last term describes the difference between the Fourier transformed of the initial condition and
the approximated initial condition and is equal to

∥

∥F (u(0) − QhPhu(0))
∥

∥. Neglecting this term
just for the moment the first term can be estimated using the easy to prove relation ak − bk =
(a−b)

∑n−1
i=0 an−1−ibi and as a−b = exp(P (iω)τ)−λE(ω) which is the definition of accuracy of the
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scheme one can imagine that accuracy and convergence are strongly related. Stability is necessary
to estimate the other terms. However a much more thorough analysis is necessary to prove the
theorem.

A further interesting question is how accurate are the approximated derivatives of the numerical
solution compared to the derivatives of the analytical solution. As it turns out stability is no longer
a sufficient condition and we have to introduce a stronger criteria comparing to (5.17).

Definition 5.2.6
A one step finite difference scheme (5.4) for a constant coefficient p.d.e. on a uniform grid is called

parabolic in the sense of John if for the symbol of Eh,τ := A−1
h,τBh,τ exist constants δ > 0 and

c > 0 so that for sufficiently small τ > 0

|λE(ω)| ≤ 1 − δh2 ‖ω‖2
+ cτ, ∀ω ∈ R

d. (5.19)

The following theorem is a special case of [32, Theorem 4.7].

Theorem 5.2.7
Let the p.d.e. be parabolic in the sense of Petrovskii and the initial condition sufficiently smooth

u(0) ∈ Hρ. We consider the difference operator Dα
h which is assumed to be accurate of order q

to Dα. If the one step finite difference scheme (5.4) with a predefined relation between space and
time discretisation τ = σ(h) is accurate of order µ in space and parabolic in John’s sense then

∥

∥

∥PhD
αu(·, tk) − Dα

h û(k)
∥

∥

∥ ≤ Chµt
−q/2
k

∥

∥

∥u(0)
∥

∥

∥

Hµ
. (5.20)

5.2.3 Some examples of schemes

This subsection is devoted to the examination of stability of some particular numerical schemes.
The coverage is limited to the θ-method for some simple p.d.e.s and different approximations of
derivatives in space direction. First, some general statements are given.

We recall that for the θ-method (4.9) the discrete operators are defined as Ah,τ := I − θτLh and
Bh,τ := I + (1 − θ)τLh. Hence the symbol of Eh,τ is simply

λE(ω) =
1 + (1 − θ)τλL(ω)

1 − θτλL(ω)
, ω ∈ R

d. (5.21)

In some simple cases, for instance if λL(ω) is real, the fraction can be simplified. The discrete
Laplace operator is one example where the symbol is real. By polynomial division we see that
under the assumption of real values equality (5.21) becomes

λE(ω) = −1 − θ

θ
+

θ−1

1 − θτLh(ω)
.

If additionally the inequality λL(ω) ≤ 0 holds which hints that the operator Lh is negative semidef-
inite we can immediately give stability estimates since we conclude from the above equation that

−1 − θ

θ
+

θ−1

1 + θτ sup
ω∈Rd

|λL(ω)| ≤ λE ≤ 1.

Corollary 5.2.8
Let the symbol of the discrete space operator Lh be real and not positive, i.e. λL(ω) ≤ 0, then the

θ-method for the pure initial value problem is unconditionally stable in L2 for all 1
2 ≤ θ ≤ 1 and

otherwise stable if the condition

τ ≤ 2

1 − 2θ

1

sup
ω∈Rd

|λL(ω)| , 0 ≤ θ <
1

2
(5.22)

is satisfied.
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Proof For 1
2 ≤ θ ≤ 1 we know from the above estimate that −1 ≤ λE ≤ 1 holds automatically.

For all other values of θ ∈ [0, 1] the relation −1 ≤ λE ≤ 1 is also fulfilled if we additionally restrict
the step length by (5.22). It follows by Theorem 5.2.4 that the method is then stable. ¤

In general the symbol λL is complex and one has to calculate in the complex plane in order to
evaluate λE . However, as only the absolute value of λE is relevant for stability the calculation of
|λE | is simpler:

|λE |2 =
(1 + (1 − θ)τℜλL)2 + ((1 − θ)τℑλL)2

(1 − θτℜλL)2 + (θτℑλL)2

=
1 + ((1 − θ)τ)2 |λL|2 + 2(1 − θ)τℜλL

1 + (θτ)2 |λL|2 − 2θτℜλL

.

(5.23)

Corollary 5.2.9
Let the real part of the symbol of the discrete space operator Lh be negative or zero, i.e. ℜλL(ω) ≤
0, then the θ-method for the pure initial value problem is unconditionally stable in L2 for all
1
2 ≤ θ ≤ 1.

Proof For 1
2 ≤ θ ≤ 1 the inequality (1 − θ) ≤ θ holds. As additionally ℜλL ≤ 0 it follows that

1 + ((1 − θ)τ)2 |λL|2 + 2(1 − θ)τℜλL ≤ 1 + (θτ)2 |λL|2 − 2θτℜλL

and hence by (5.23) it is

|λL|2 ≤ 1.

The stability follows immediately by Theorem 5.2.4. ¤

Example 5.2.10 (ut = κuxx with central differences)
With the approximation of the second derivative in space on a uniform grid as shown Subsection
4.2.1 the discrete space operator is

(Lhv)i =
κ

h2
(vi−1 − 2vi + vi+1)

and by definition (5.14) its symbol is

λL(ω) =
κ

h2
(eihω −2 + e−ihω) =

2κ

h2
(cos(hω) − 1)

which is obviously real and non positive so that Corollary 5.2.8 is applicable. The θ-method is
thus unconditionally stable for θ ≥ 1

2 and otherwise conditionally stable if

τ ≤ 1

2κ(1 − 2θ)
h2, 0 ≤ θ <

1

2
. (5.24)

Example 5.2.11 (Pure diffusion equation with central differences)
The pure diffusion equation in d dimensions is given by

ut = div(G∇u) =

d
∑

i,j=1

gi,j
∂2u

∂xi∂xj

with a symmetric positive semidefinite matrix G of order d × d. We allow a uniform grid with
different discretisation parameters (h1, . . . , hd). Referring to Subsection 4.2.1 where among others
the approximation of mixed derivatives is explained the discrete operator in space is with k ∈ Z

d

(Lhv)k =

d
∑

i=1

gii

h2
i

(vk−ei
− 2vk + vk+ei

) +

d
∑

i,j=1
i6=j

gij

hihj
(vk+ei+ej

+ vk−ei−ej
− vk+ei−ej

− vk−ei+ej
)
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Figure 5.1: Symbol λE of ut = uxx with τ = 1
2 and θ = 0, θ = 1

2 and θ = 1, respectively

where ei ∈ Z
d represents the i-th unit vector, i.e. e1 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1). It

follows for the symbol (5.14) of Lh which depends on ω = (ω1, . . . , ωd) ∈ R
d

λL(ω) =
d

∑

i=1

gii

h2
i

(

eihiωi −2 + e−ihiωi
)

+
d

∑

i,j=1
i6=j

gij

hihj

(

e−i(hiωi+hjωj) +ei(hiωi+hjωj) − e−i(hiωi−hjωj) − ei(hiωi−hjωj)
)

=

d
∑

i=1

2gii

h2
i

(cos(hiωi) − 1) +

d
∑

i,j=1
i6=j

2gij

hihj
(cos(hiωi + hjωj) − cos(hiωi − hjωj))

= −
d

∑

i,j=1

4gij

hihj
sin(hiωi) sin(hjωj).

The relation cos(α+β) = cos α cos β−sinα sinβ has been used to simplify the sum. It immediately
follows that the symbol λL is real and not positive since G is positive semidefinite and with the
definition of the vector s(ω) :=

(

1
h1

sin(h1ω1), . . . ,
1

hd
sin(hdωd)

)τ
we have

λL(ω) = −4s(ω)τGs(ω) ≤ 0.

Hence Corollary 5.2.8 is applicable and we conclude that the θ-method is unconditionally stable
for all θ ≥ 1

2 . We first must find the supremum of |λL| in order to say whether the scheme is stable
for all other values θ. If G is a diagonal matrix the maximum is then

|λL(ω)| = 4

d
∑

i=1

gi,i

h2
i

sin2(hiωi) ≤ 4

d
∑

i=1

gi,i

h2
i

.

Let the discretisation parameters be tight together by the relation (h1, . . . , hd) = h̄(c1, . . . , cd) with
the scalar h̄ > 0. The stability criterion then is

τ ≤ 1

2(1 − 2θ)
∑d

i=1
gi,i

c2
i

h̄2, 0 ≤ θ <
1

2
. (5.25)
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Figure 5.2: Symbol |λE | of ut = −ux with τ = 1
2 and θ = 0, θ = 1

2 and θ = 1, respectively; central
differences

Example 5.2.12 (ut = −bux with central differences)
The equation ut = −bux characterises pure advection and is a degenerated parabolic differential
equation (→ hyperbolic equation). With the discretised space operator

(Lhv)i = − b

2h
(vi+1 − vi−1)

we obtain for the symbol

λL(ω) = − b

2h
(e−ihω − eihω) =

b

h
i sin(hω).

As the symbol λL is pure imaginary it follows from Corollary 5.2.9 that the θ-method is uncondi-
tionally stable for 1

2 ≤ θ ≤ 1. For the Crank-Nicholson scheme the absolute value of the symbol is
equal to one for any frequency. We remark that the scheme then is not parabolic in the sense of
John and thus approximation to derivatives might be unreliable. In practice one observes visible
oscillations. That gives rise to an alternative scheme where space derivatives are approximated in
that direction where the flow comes from which will be shown in the next example.

For θ < 1
2 we see from (5.23) that

|λE |2 =
1 + ((1 − θ)τℑλL)2

1 + (θτℑλL)2
.

Stability is obtained if there exists a constant c > 0 so that for all sufficiently small τ the inequality
|λE |2 ≤ 1 + cτ holds. That is the case if the time step size obeys

τ ≤ inf
ω∈R

c

(1 − 2θ)ℑλL
2 =

c

b2(1 − 2θ)
h2, 0 ≤ θ <

1

2
. (5.26)

Therefore it is sufficient for stability to choose τ = ch2 with any constant c > 0. Figure 5.2 shows
the symbol |λE | graphically.

Example 5.2.13 (ut = −bux with a simple upwind scheme)
Let b > 0. We then approximate the first derivative with backward differences, i.e.

(Lhv)i = − b

h
(vi − vi−1).
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Figure 5.3: Symbol |λE | of ut = −ux with τ = 1
2 and θ = 0, θ = 1

2 and θ = 1, respectively; upwind

This choice is understandable if one imagines the solution of the equation (see also Subsection
3.2.1). Because b > 0 the matter flows from the left to the right so that one might prefer to
approximate the derivatives from the side where the information comes from. The symbol of Lh

is obviously

λL(ω) = − b

h
(1 − eihω) = − b

h

(

1 − cos(hω) − i sin(hω)
)

.

The real part of λL is negative so that from Corollary 5.2.9 we deduce the unconditionally stability
of the θ-scheme for θ ≥ 1

2 . To be more precise we calculate the symbol of λE by referring to (5.23)

and noting that |λL|2 = 2
(

b
h

)2
(1 − cos(hω)), ℜλL = − b

h (1 − cos(hω)):

|λE | =
1 + 2(1 − cos(hω))(1 − θ)τ b

h

(

(1 − θ)τ b
h − 1

)

1 + 2(1 − cos(hω))θτ b2

h2
b
h

(

θτ b
h + 1

)

The sufficient criteria for stability |λE | ≤ 1 is achieved if (1 − θ)
(

(1 − θ)τ b
h − 1

)

≤ θ
(

θτ b
h + 1

)

which is equivalent to

τ ≤ h

(1 − 2θ)b
, 0 ≤ θ <

1

2
. (5.27)

It indicates that by using an upwind scheme for a pure convection equation the stability strongly
increases. First of all the scheme is parabolic in John’s sense as illustrated in Figure 5.3. Secondly,
the stability criterion for more explicit schemes (θ < 1

2 ) is less strict as it only requires that the
time step size approaches zero with the same speed as the space step size goes to zero. For the
central difference approximation the criterion for stability is more restrictive as seen in (5.26). The
disadvantage though is that we lose one order of consistency in space direction.

There exists a very illustrative explanation for the stability criterion in the explicit case (θ = 0)
which is shown in figure 5.4. The value of a grid point ûk+1

i only depends on ûk
i and ûk

i−1 because
the derivatives are approximated using exactly these two points. By iteration we see that ûk

i only

depends on û
(0)
i−k to û

(0)
i . It follows that only the initial condition in the interval [xi − kh, xi]

influences the value ûk
i . Since the analytical solution shows that the graph of the initial condition

moves with speed b (from the left to the right if b > 0). It follows that a value u(x, 0) influences
u(x + bt, t). Hence we only expect convergence if at least bkτ ≤ kh and thus τ ≤ h

b is fulfilled.
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Figure 5.4: Obvious necessary stability criterion bτ ≤ h
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Figure 5.5: Symbol |λE | of ut = uxx − ux with τ = 1
2 and θ = 0, θ = 1

2 and θ = 1, respectively

Example 5.2.14 (General diffusion convection with central differences)
Using the results already obtained in the previous examples the symbol of the general diffusion
convection equation

ut = div(G∇u) − 〈b,∇u〉
is given by

λL(ω) = −
d

∑

i,j=1

4gij

hihj
sin(hiωi) sin(hjωj) + i

(

d
∑

i=1

bi

hi
sin(hiωi)

)

where hi denotes the discretisation parameter in direction i. With the definition of the vector
function s(ω) :=

(

1
h1

sin(h1ω1), . . . ,
1

hd
sin(hdωd)

)τ
the symbol simplifies to

λL(ω) = −4s(ω)τGs(ω) + i 〈b, s(ω)〉 . (5.28)

As the real part of the symbol is not positive it follows by Corollary 5.2.9 that the θ-method is
unconditionally stable for 1

2 ≤ θ ≤ 1. Both Figures 5.5 and 5.6 show the symbol of Eh,τ where the
latter is the result of a convection dominated equation.



CHAPTER 5. ANALYSIS OF THE FINITE DIFFERENCE METHOD 49

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9

|la
m

bd
a|

omega

symbol of the pure convection process

exact
h=1.0
h=0.1

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9

|la
m

bd
a|

omega

symbol of the pure convection process

exact
h=1.0
h=0.1

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9

|la
m

bd
a|

omega

symbol of the pure convection process

exact
h=1.0
h=0.1

Figure 5.6: Symbol |λE | of ut = 1
10uxx − ux with τ = 1

2 and θ = 0, θ = 1
2 and θ = 1, respectively

5.3 Stability of f.d.m. for variable coefficient p.d.e.s

There exists a broad range of different approaches to determine stability for the variable coefficient
case. In [32, Section 8] it is described how the theory of the constant coefficients can be generalised.
Essentially, one fixes one x ∈ Ω, determines the coefficients in that point and examines stability
of the corresponding constant coefficient p.d.e. Stability in all points x ∈ Ω is related to the
stability of the scheme, if the p.d.e. is uniformly parabolic. Samarskii gives in [24, chapter 6]

general estimates and stability criteria in the energetic norm, e.g. ‖v‖2
−Lh

:= −〈Lhv, v〉. However,
we concentrate on estimates for the weaker L2-norm in which we are finally able to infer stability
of the Crank-Nicholson scheme on uniform grids applied to the Heston p.d.e. under appropriate
boundary conditions even if the left variance boundary is at x2 = 0.

5.3.1 General L2 stability analysis in the R
d

The main ideas presented in this subsection are taken from [32, Section 10]. Basically, we estimate
û(k+1) by scalar multiplying the finite difference scheme with a combination of the two vectors
û(k) and û(k+1). Restricting the analysis to the θ-method with emphasis on the Crank-Nicholson
method we will see that stability depends on the properties of the space operator Lh. Hence in
the second part of this subsection the discrete operator Lh will be examined and a result proved
which certifies the Crank-Nicholson method with a particular space discretisation unconditionally
stability if boundary conditions are chosen appropriately.

In order to state the first important result we recall the finite dimensional Hilbert space of grid
functions (Φh, 〈·, ·〉) over a uniform grid Ω̄h where the scalar product is defined by

〈u, v〉 := hd
∑

x∈Ω̄h

u(x)v(x) = hd

m1,...,md
∑

i1,...,id=0

uivi.

For convenience reasons let Ω̄h :=
{

x(k) := hk|k ∈ {0, . . . ,m1} × . . . × {0, . . . ,md}
}

for any h > 0.
The values m1, . . . ,md are obviously indirect proportional to h.
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Lemma 5.3.1
For the θ-method (4.8) at time step k ∈ N

û(k+1) − û(k)

∆tk
= Lhû(k+θ) + f

(k)
h

with the abbreviation û(k+θ) := θû(k+1) + (1 − θ)û(k), the following L2-norm equality holds:

∥

∥

∥û(k+1)
∥

∥

∥

2

+ (2θ − 1)
∥

∥

∥û(k+1) − û(k)
∥

∥

∥

2

=
∥

∥

∥û(k)
∥

∥

∥

2

+ 2∆tk

(〈

Lhû(k+θ) + f
(k)
h , û(k+θ)

〉)

. (5.29)

Proof Multiplying both sides of the θ-method with the grid function û(k+θ) results in

〈

û(k+1) − û(k), û(k+θ)
〉

= ∆tk

(〈

Lû(k+θ), û(k+θ)
〉

+
〈

f
(k)
h , u(k+θ)

〉)

.

We would like to convert the term on the left hand side which is essentially (a − b)(θa + (1 − θ)b)
to a form of c1(a

2 − b2) + c2(a − b)2. Determining the constants we see that

(a − b)(θa + (1 − θ)b) =
1

2
(a2 − b2) +

1

2
(2θ − 1)(a − b)2

and hence

2
〈

û(k+1) − û(k), û(k+θ)
〉

=
∥

∥

∥û(k+1)
∥

∥

∥

2

−
∥

∥

∥û(k)
∥

∥

∥

2

+ (2θ − 1)
∥

∥

∥û(k+1) − û(k)
∥

∥

∥

2

from which the desired result immediately follows. ¤

Corollary 5.3.2
For the θ-method (4.8), 1

2 ≤ θ ≤ 1, at time step k ∈ N and the same abbreviation as used above
the following L2-norm inequality holds:

∥

∥

∥û(k+1)
∥

∥

∥

2

≤
∥

∥

∥û(k)
∥

∥

∥

2

+ 2∆tk

(

〈

Lhû(k+θ), û(k+θ)
〉

+
∥

∥

∥û(k+θ)
∥

∥

∥

2

+
∥

∥

∥f
(k)
h

∥

∥

∥

2
)

. (5.30)

Proof It is a direct result of (5.29) with the estimates 2θ−1 ≥ 0 and
〈

f
(k)
h , û(k+θ)

〉

≤
∥

∥û(k+θ)
∥

∥

2
+

∥

∥

∥
f

(k)
h

∥

∥

∥

2

. ¤

It is now quite simple to find criteria for stability in the sense that
∥

∥û(m0)
∥

∥ ≤ c
∥

∥û(0)
∥

∥ for all
h, τ → 0. The next corollary gives the stability criterion if the space operator Lh is negative
semidefinite which is a generalisation of Corollary 5.2.8 and 5.2.9.

Corollary 5.3.3
Let the discrete space operator Lh be negative semidefinite, i.e. 〈Lhv, v〉 ≤ 0, ∀v ∈ Φh satisfying
current boundary conditions. The θ-method for the homogeneous equation is then unconditionally
stable in L2 for θ ≥ 1

2 . If Lh is additionally symmetric the stability criterion for 0 ≤ θ < 1
2 can be

written as

∆tk ≤ 2

1 − 2θ

1

‖Lh‖
. (5.31)

Proof If θ ≥ 1
2 then 2θ− 1 ≥ 0 and with the above lemma and the negative semidefinite operator

Lh it follows

∥

∥

∥û(k+1)
∥

∥

∥

2

≤
∥

∥

∥û(k)
∥

∥

∥

2

+ 2∆tk

〈

Lhû(k+θ), û(k+θ)
〉

≤
∥

∥

∥û(k)
∥

∥

∥

2

≤ . . . ≤
∥

∥

∥û(0)
∥

∥

∥

2

which is stability by definition.

Otherwise 2θ − 1 < 0 and the neglected term
∥

∥û(k+1) − û(k+1)
∥

∥

2
has to be taken into account.

Using the relation û(k+1) − û(k) = ∆tkLhuk+θ and the above lemma the following equality holds:

∥

∥

∥
û(k+1)

∥

∥

∥

2

=
∥

∥

∥
û(k)

∥

∥

∥

2

+ (1 − 2θ)∆t2k

∥

∥

∥
Lhû(k+θ)

∥

∥

∥

2

+ 2∆tk

〈

Lhû(k+θ), û(k+θ)
〉

.
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For stability it is sufficient if

(1 − 2θ)∆t2k

∥

∥

∥Lhû(k+θ)
∥

∥

∥

2

+ 2∆tk

〈

Lhû(k+θ), û(k+θ)
〉

≤ 0

which is satisfied if

∆tk ≤ 2

1 − 2θ
inf

v∈Φh

|〈Lhv, v〉|
‖Lhv‖2 .

For a symmetric matrix there exists an eigenvector basis. Writing the vector as a linear combination
of the eigenvectors and finding the infimum it turns out that it is reached for the eigenvector v∗

to the greatest absolute eigenvalue

inf
v∈Rn

|〈Lhv, v〉|
‖Lhv‖2 =

λmax 〈v∗, v∗〉
λ2

max ‖v∗‖2 =
1

λmax
=

1

‖Lh‖

which completes the proof. ¤

The requirement 〈Lhv, v〉 ≤ 0 is strict and quite often not satisfied. An stronger stability result

gives the following corollary where only 〈Lhv, v〉 ≤ C ‖v‖2
is demanded.

Corollary 5.3.4
Let the space grid Ω̄h be uniform and the time steps be proportional to the parameter τ , ∆tk ∼ τ ,
i.e. there exist constants c1 > 0, c2 > 0 so that τ ≤ c1 mink ∆tk and maxk ∆tk ≤ c2τ . The θ-
method with 1

2 ≤ θ ≤ 1 for the non-homogeneous equation is unconditionally stable in L2 if there
exists a constant independent of τ and h so that

〈Lhv, v〉 ≤ C ‖v‖2

for all v ∈ Φh satisfying the actual boundary conditions.

The norm of the approximated solution at the final time T can then be estimated with a constant
c̃ > 0 by

∥

∥

∥û(m0)
∥

∥

∥

2

≤ ec̃T

(

∥

∥

∥û(0)
∥

∥

∥

2

+ sup
k∈{0,...,m0}

∥

∥

∥f
(k)
h

∥

∥

∥

2
)

, h, τ → 0. (5.32)

Proof By Corollary 5.3.2 the solution of the numerical scheme for θ ≥ 1
2 at time step k + 1 ∈

{1, . . . ,m0} denoted by û(k+1) ∈ Φh can be estimated by

∥

∥

∥
û(k+1)

∥

∥

∥

2

≤
∥

∥

∥
û(k)

∥

∥

∥

2

+ 2∆tk

(

〈

Lhû(k+θ), û(k+θ)
〉

+
∥

∥

∥
û(k+θ)

∥

∥

∥

2

+
∥

∥

∥
f

(k)
h

∥

∥

∥

2
)

≤
∥

∥

∥û(k)
∥

∥

∥

2

+ 2(2C + 1)∆tk

(

θ2
∥

∥

∥û(k+1)
∥

∥

∥

2

+ (1 − θ)2
∥

∥

∥û(k)
∥

∥

∥

2
)

+ 2∆tk

∥

∥

∥f
(k)
h

∥

∥

∥

2

from which

∥

∥

∥
û(k+1)

∥

∥

∥

2

≤ 1 + (1 − θ)2C̃∆tk

1 − θ2C̃∆tk

∥

∥

∥
û(k)

∥

∥

∥

2

+ 2∆tk

∥

∥

∥
f

(k)
h

∥

∥

∥

2

≤ (1 + c∆tk)
∥

∥

∥
û(k)

∥

∥

∥

2

+ 2∆tk

∥

∥

∥
f

(k)
h

∥

∥

∥

2

, (∆tk → 0)

follows. By iterative application of the estimate and keeping in mind that maxk ∆tk ≤ c2τ we
conclude

∥

∥

∥
û(m0)

∥

∥

∥

2

≤ (1 + cτ)m0

∥

∥

∥
û(0)

∥

∥

∥

2

+ 2c2τ

m0
∑

k=0

(1 + cτ)k
∥

∥

∥
f

(k)
h

∥

∥

∥

2

≤ ec∗T

(

∥

∥

∥û(0)
∥

∥

∥

2

+ 2c2τ

m0
∑

k=0

∥

∥

∥f
(k)
h

∥

∥

∥

2
)

≤ ec̃T

(

∥

∥

∥û(0)
∥

∥

∥

2

+ sup
k∈{0,...,m0}

∥

∥

∥f
(k)
h

∥

∥

∥

2
)

, τ → 0.

In the last step the relation m0τ ≤ c1T has been used which follows from m0 mink ∆tk ≤ T and
τ ≤ c1 mink ∆tk. ¤
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As seen in (5.10) the error of the numerical solution of a homogeneous p.d.e. satisfies the same
difference equation but with the truncation error as right hand side f and zero as initial condi-
tion. Stability of the θ-method for non-homogeneous p.d.e.s therefore implies the convergence of
a homogeneous equation.

Theorem 5.3.5 (Convergence)
Let a finite difference scheme be accurate of order O(hµ+τν) and stable in the sense that constants
c1 > 0 and c2 > 0 exists so that independently of h, τ and f the estimate

∥

∥

∥û(m0)
∥

∥

∥

2

≤ ec̃T

(

∥

∥

∥û(0)
∥

∥

∥

2

+ sup
k∈{0,...,m0}

∥

∥

∥f
(k)
h

∥

∥

∥

2
)

, h, τ → 0

for any right hand side f holds. The method is then convergent of the order O(hµ + τν), i.e. the
difference between the analytic solution u(·, T ) and the numerical solution û(m0) is

∥

∥

∥Phu(·, T ) − û(m0)
∥

∥

∥ = O(hµ + τν).

Proof We set z(k) := Phu(·, tk) − û(k). Since z(0) = O it follows from (5.10) and the stability of
the numerical scheme that for a c̃ > 0

∥

∥

∥z(m0)
∥

∥

∥ ≤ ec̃T sup
k∈{0,...,m0}

∥

∥

∥γ
(k)
h,τ

∥

∥

∥ , h, τ → 0

with the truncation error γ
(k)
h,τ . By definition of accuracy 5.1.2 the truncation error is

∥

∥

∥γ
(k)
h,τ

∥

∥

∥

∞
= O(hµ + τν), (h, τ → 0)

uniformly for all k ∈ {0, . . . ,m0}. It follows for the error
∥

∥

∥z(m0)
∥

∥

∥ ≤ ec̃T
∣

∣Ω̄
∣

∣ O(hµ + τν), h, τ → 0

where
∣

∣Ω̄
∣

∣ denotes area of Ω̄ ⊂ R
d. ¤

With Theorem 5.3.5 and Corollary 5.3.4 one only needs to check the boundedness of the space
operator Lh, i.e. 〈Lhv, v〉 ≤ C ‖v‖2

, in order to determine whether the θ-method is stable and
thus convergent if consistent. Hence from now on we concentrate on estimating 〈Lhv, v〉. It might
already be said that this is not a straight forward process and requires some effort especially if
different boundary conditions are taken into account. As it turns out for Dirichlet-type boundary
conditions with zero values on Γ the analysis mainly based on the summation by parts rule –
the discrete analogue of integration by parts – simplifies a lot. Hence only these conditions are
discussed below. It is remarkable that the uniform parabolicity of the p.d.e. will not be required.
In order to apply the summation by parts rule and thus simplifying the proof of the theorems a
space operator Lh slightly differing from the space discretisation described in Subsection 4.3.1 will
be introduced.

We now consider the general d-dimensional convection-diffusion equation in a rectangular domain
Ω ⊂ R

d,
ut = div(G∇u) − 〈b,∇u〉 − cu + f, , u|∂Ω = 0 (5.33)

with in x continuous functions G : Ω̄ → R
d×d, b : Ω̄ → R

d and c : Ω̄ → R. We require the matrix
G(x) to be positive semidefinite for all x ∈ Ω̄. No further restrictions are imposed on the p.d.e.
which in particular means that G(x) = O is allowed for any x ∈ Ω̄. Written more explicitly the
p.d.e. under consideration is

∂u

∂t
(x, t) =

d
∑

i,j=1

∂

∂xi

(

gi,j(x)
∂u

∂xj

)

(x, t) +

d
∑

i=1

bi(x)
∂u

∂xi
(x, t) + c(x)u(x, t).

To specify the discrete space operator Lh we use the backward, forward and centred difference
approximation introduced in Subsection 4.2.1. Let v ∈ Φh be a grid function then these operators
are defined for i ∈ {1, . . . , d} and k ∈ {0, . . . ,m1} × . . . × {0, . . . ,md} by

(∂iv)k :=
vk+ei

− vk

h
, ki 6= mi,

(∂̄iv)k :=
vk − vk−ei

h
, ki 6= 0,

(∂̂iv)k :=
1

2
(∂iv + ∂̄iv)k, ki 6∈ {0,mi} .
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The vectors ei ∈ Z
d are unit vectors in direction i ∈ {1, . . . , d}, i.e. e1 = (1, 0, . . . , 0) to ed =

(0, . . . , 0, 1). If the operators are undefined in the above sense, e.g. if k + ei is not a grid point
we assign the value zero. This artificial declaration causes no problems when it comes to the
examination of 〈Lhv, v〉 as we always assume that v|Γh

= 0. All difference operators are then
mappings on the space of grid functions ∂i : Φh → Φh which simplifies the notation below.

The following lemma lies the foundation to estimate 〈Lhv, v〉.

Lemma 5.3.6 (Discrete version of integration and differentiation rules)
Let u ∈ Φh and v ∈ Φh be grid functions with u|Γh

= v|Γh
= 0. The following equation then holds

for any i ∈ {1, . . . , d}
〈∂iu, v〉 = −

〈

u, ∂̄iv
〉

(5.34)

which is called the summation by parts rule.

For the difference operator ∂̂ the multiplication rule with k ∈ {0, . . . ,m1} × . . . × {0, . . . ,md}

∂̂i(u · v)k = uk(∂̂v)k +
1

2

(

vk+ei
(∂iu)k + vk−ei

(∂̄iu)k

)

, ki 6∈ {0,mi} (5.35)

applies for all u, v ∈ Φh where (u · v)k := ukvk.

Proof For simplicity of notation the summation by parts rule is only shown for the derivative
with respect to the first component. Applying the definition, rearranging the terms of the sum
and taking into account that u, v are zero on the boundary Γh yields

〈∂1u, v〉 =
1

h

m1−1,...,md−1
∑

k1,...,kd=1

uk+e1
vk − ukvk

=
1

h

m2−1,...,md−1
∑

k2,...,kd=1

(

m1
∑

k1=2

ukvk−e1
−

m1−1
∑

k1=1

ukvk

)

=
1

h

m2−1,...,md−1
∑

k2,...,kd=1

m1−1
∑

k1=1

uk(vk−e1
− vk)

= −
〈

u, ∂̄1v
〉

.

By applying the definition we see that both terms of the multiplication rule are equal:

∂̂i(u · v)k =
1

2h
(uk+ei

vk+ei
− uk−ei

vk−ei
),

uk(∂̂v)k +
1

2

(

vk+ei
(∂u)k + vk−ei

(∂̄u)k

)

=
ukvk+ei

− ukvk−ei

2h

+
vk+ei

uk+ei
− vk+ei

uk + vk−ei
uk − vk−ei

uk−ei

2h
.

¤

Remark 5.3.7
It is easy to prove that the above summation by parts rule remains true even if uk 6= 0 for ki = mi

as it is exemplary the case for u := ∂̄v. Lemma 5.3.12 shows for the R
1 how the rule generalises if

no restrictions on the boundary values of u and v are imposed.

We now introduce the discretisation Lh for which we will show stability of the θ-method. The three
different parts of the p.d.e., that is to say the diffusion, the convection and the undifferentiated
term are treated separately. We thus set Lh := Mh + Nh + Oh and define them as follows

(Mhv)k :=

d
∑

i,j=1

∂i

(

gi,j(x
(k))∂̄jv

)

k
,

(Nhv)k :=

d
∑

i=1

bi(x
(k))(∂̂iv)k,

(Ohv)k := c(x(k))vk.

(5.36)
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Figure 5.7: Stencil of mixed derivatives for Lh and L̃h

Remark 5.3.8
Comparing the spatial operator Lh with the general discretisation defined in Subsection 4.3.1 and
derived in Section 4.2 the convection and undifferentiated term Nh and Oh, respectively, coincide
in both definitions. The diffusion term Mh differs, mainly due to the approximation of the mixed
derivatives. If in (5.36) all entries of the matrix G(x) are constant 1 then we see that mixed
derivatives are as follows compared to the four point approximation shown in Table 4.4:

∂2v

∂x∂y
(xi, yj) ≈

1

2

(

∂1∂̄2v̄ + ∂̄1∂2v̄
)

i,j

=
h2

2
(v̄i−1,j − v̄i−1,j+1 + v̄i,j−1 − 2v̄i,j + v̄i,j+1 + v̄i+1,j − v̄i+1,j−1) ,

∂2v

∂x∂y
(xi, yj) ≈

(

∂̂1∂̂2v̄
)

i,j

=
h2

4
(v̄i−1,j−1 − v̄i−1,j+1 − v̄i+1,j−1 + v̄i+1,j+1) .

The stencil of these two difference approximations is illustrated in Figure 5.7. Filled circles repre-
sent the value one and empty circles represent minus one or minus two depending on the diameter.

Only if the p.d.e. does not contain any mixed derivatives we are able to conclude stability of L̃h

if Lh is stable. That will below exemplary be shown in only one space dimension. The reason
why it has been defined that way is to simplify the proof of stability. One disadvantage of that
definition is its first and not second order accuracy if G is not constant. Second order accuracy
can be achieved with the alternative definition

(Mhv)k :=

d
∑

i,j=1

∂i

(

gi,j(x
(k) − 1/2hei)∂̄jv

)

k
. (5.37)

As by Lemma 5.3.1 it is decisive for stability of the θ-method which values the scalar product
〈Lhv, v〉 = 〈Mhv, v〉 + 〈Nhv, v〉 + 〈Ohv, v〉 can attain:

Lemma 5.3.9
Assume G(x) is symmetric, positive semidefinite for all x ∈ Ω̄ and let b ∈ C1(Ω̄, Rd). For the
operators Mh, Nh and Oh as defined in (5.36) the following estimates hold for any v ∈ Φh with
v|Γh

= 0:

〈Mhv, v〉 ≤ 0,

〈Nhv, v〉 ≤ C2(b) ‖v‖2
,

〈Ohv, v〉 ≤ C3(c) ‖v‖2
.

(5.38)

If the diffusion part is of the form a(x)G with a constant positive semidefinite matrix G ∈ R
d×d

and a scalar a(x) ≥ 0 ∀x ∈ Ω̄ then the same estimate applies to the second order accurate operator
Mh as defined in (5.37).

Proof Let ḡi,j := Phgi,j and b̄i := Phbi be the restrictions of the corresponding continuous
function to the grid Ω̄h. With the definition of Mh and the summation by parts rule we establish
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the estimate

〈Mhv, v〉 =

d
∑

i,j=1

〈

∂i(ḡi,j · ∂̄jv), v
〉

= −
d

∑

i,j=1

〈

ḡi,j · ∂̄jv, ∂̄iv
〉

= −
m1,...,md

∑

k1,...,kd=1

d
∑

i,j=1

gi,j(x
(k))(∂̄iv)k(∂̄jv)k ≤ 0.

The last expression is smaller or equal zero because G(x) is positive semidefinite for all x ∈ Ω̄, i.e.
∑d

i,j=1 gi,j(x)yiyj ≥ 0, ∀y ∈ R
d. If the diffusion coefficient is of the form a(x)G with a constant

matrix G and if Mh is defined as in (5.37) the equation modifies

〈Mhv, v〉 = −
m1,...,md

∑

k1,...,kd=1

d
∑

i,j=1

a(x(k) − h/2ei)gi,j(∂̄iv)k(∂̄jv)k

= −
m1,...,md

∑

k1,...,kd=1

d
∑

i,j=1

g̃i,j(x
(k))(∂̄iv)k(∂̄jv)k

with the matrix G̃(x) defined by

G̃(x) :=











a(x − h/2e1) 0 · · · 0
0 a(x − h/2e2) · · · 0
...

...
. . .

...
0 0 · · · a(x − h/2ed)











G

which is still positive semidefinite since G is positive semidefinite and a(x) ≥ 0. It can be shown
by the determinant criteria that a positive semidefinite matrix remains so if it is multiplied line by
line with a non negative value. That is why we conclude as above that 〈Mhv, v〉 ≤ 0.

Assisted by the multiplication rule and the abbreviation v±ei
(x(k)) := v(x(k)±hei) or v±ei

(x(k)) :=
0 if x(k) ± hei 6∈ Ω̄h, we see that

〈Nhv, v〉 =
d

∑

i=1

〈

b̄i · ∂̂iv, v
〉

=
d

∑

i=1

〈

∂̂iv, b̄i · v
〉

= −
d

∑

i=1

〈

v, ∂̂i(b̄i · v)
〉

= −
d

∑

i=1

(

〈

v, b̄i · ∂̂iv)
〉

+
1

2

(〈

v, v+ei
∂ib̄i

〉

+
〈

v, v−ei
∂̄ib̄i

〉)

)

= −〈Nhv, v〉 −
d

∑

i=1

(

1

2

(〈

v, v+ei
∂ib̄i

〉

+
〈

v, v−ei
∂̄ib̄i

〉)

)

.

It follows

〈Nhv, v〉 = −1

4

d
∑

i=1

(〈

v, v+ei
∂ib̄i

〉

+
〈

v, v−ei
∂̄ib̄i

〉)

≤ 1

4

d
∑

i=1

∥

∥

∥

∥

∂bi

∂xi

∥

∥

∥

∥

C(Ω̄)

(〈v, v−ei
〉 + 〈v, v+ei

〉)

≤ 1

2

d
∑

i=1

∥

∥

∥

∥

∂bi

∂xi

∥

∥

∥

∥

C(Ω̄)

‖v‖2
.

By the Cauchy-Schwarz inequality we have 〈v, v+ei
〉 ≤ ‖v‖ ‖v+ei

‖ ≤ ‖v‖2
which justifies the last

step in the estimate.

Finally, we remark that obviously 〈Ohv, v〉 ≤ ‖c‖C(Ω̄) ‖v‖
2

. ¤

The estimates of this lemma together with Corollary 5.3.4 paves the way for a general stability
result.

Theorem 5.3.10 (Stability of the θ-method)
Let the space grid Ω̄h be uniform and ∆tk ∼ τ . The θ-method with 1

2 ≤ θ ≤ 1 and in particular
the Crank-Nicholson scheme is then unconditionally stable in L2 for the non-homogeneous p.d.e.
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(5.33) with zero boundary conditions and the space discretisation Lh := Mh + Nh + Oh as defined
in (5.36) if the matrix G(x) is positive semidefinite for all x ∈ Ω̄ and b ∈ C1(Ω̄, Rd). Is the diffusion
matrix of the form a(x)G with a constant matrix then we also obtain stability if Mh is defined as
in (5.37).

Proof The prerequisite of Corollary 5.3.4 which is 〈Lhv, v〉 ≤ C ‖v‖2
is ensured by (5.38). ¤

Remark 5.3.11
Any homogeneous p.d.e. with Dirichlet conditions can be transformed to an inhomogeneous p.d.e.
with a zero boundary: Let u be the solution of ut = Lu with u|Γ = g and a smooth function
g : Γ × [0, T ] → R defined on the boundary. If one can find a smooth function w : Ω × [0, T ] → R

fulfilling w|Γ = g we define v := u − w. Since Lv = Lu − Lw = ut − Lw = vt + wt − Lw and
v|Γ = g − g = 0 the function v obeys an inhomogeneous p.d.e. with a zero boundary: vt = Lv + f
with f := wt − Lw known a priori.

5.3.2 Further analysis in the R
1

The stability result of Theorem 5.3.10 is general but on the other hand quite restrictive in the
sense that it requires zero boundary conditions. Estimating the scalar product 〈Lhv, v〉 is more
difficult in R

d if v is not zero on Γh because the summation by parts rule complicates as many
boundary terms come into the equation. Also, the inevitable usage of multi indices in the R

d can
make equations look unnecessarily complex. Hence the remaining questions, which are stability of
the discrete space operator as defined in 4.3.1 and under other boundary conditions, are examined
in the R

1. There the homogeneous p.d.e. can be written in the two equivalent ways

ut =
∂

∂x
(g(x)ux) + b(x)ux + c(x)u,

ut =
(

g(x)uxx + gx(x)ux

)

+ b(x)ux + c(x)u.
(5.39)

Let the grid for simplicity be Ω̄h = {xk = hk : k = 1 . . . m}.
First we restate the summation by parts rule valid for any boundary condition. To write the
following equations in an elegant way it is useful to define the scalar product with subscript:

〈u, v〉(k,l) :=

l
∑

i=k

uivi.

Lemma 5.3.12
Let u ∈ Φh and v ∈ Φh be grid functions then the following equations are valid:

〈∂u, v〉(1,m−1) = −
〈

u, ∂̄v
〉

(1,m)
+ umvm − u1v0,

〈

∂̂u, v
〉

(1,m−1)
= −

〈

u, ∂̂v
〉

(1,m−1)
+

1

2
(umvm−1 + um−1vm − u0v1 − u1v0) .

Proof All equations follow directly from definition. ¤

We now look into the differences between the discretisation defined in (5.36) with Mh as in (5.37)
and Subsection 4.3.1. Being in line with the approach above and discretising the three parts of
the convection-diffusion equation separately the method described in 4.3.1 for which we will show
stability is given on a uniform grid by L̃h = M̃h + Nh + Oh with

(M̃hv)k :=
1

h2
g(xk)(vk+1 − 2vk + vk−1) +

1

2h
gx(xk)(vk+1 − vk−1),

(Nhv)k :=
1

2h
b(xk)(vk+1 − vk−1),

(Ohv)k := c(xk)vk.

(5.40)
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In one space dimension (5.36) and Mh defined as in (5.37) simplifies to Lh = Mh + Nh + Oh with
Nh, Oh as above and

(Mhv)k :=
1

h2
(g(xk + 1/2h)(vk+1 − vk) − g(xk − 1/2h)(vk − vk−1))

=
1

h2
g(xk)(vk+1 − 2vk + vk−1) +

1

2h
gx(xk)(vk+1 − vk−1)

+
1

4
(gxx(ξ1)(vk+1 − vk) − gxx(ξ2)(vk − vk−1)) .

(5.41)

From Lemma 5.3.9 follows that 〈Mhv, v〉(1,m−1) ≤ 0 for all v ∈ Φh with v|Γh
= 0. Using the

relation

(M̃hv)k = (Mhv)k − 1

4
(gxx(ξ1)(vk+1 − vk) + gxx(ξ2)(vk−1 − vk))

we conclude that
〈

M̃hv, v
〉

≤ ‖gxx‖C(Ω̄) ‖v‖
2
,

which is sufficient for unconditionally stability of the θ-method if θ ≥ 1
2 as shown in 5.3.4. We

summarise the result in a lemma.

Lemma 5.3.13
Let the coefficients of (5.39) be sufficiently smooth and g(x) ≥ 0, ∀x ∈ Ω̄h ⊂ R

1. The Crank-
Nicholson method is then stable for the space operator Lh as defined in Subsection 4.3.1 and zero
boundary conditions if the grid Ω̄h is uniform and ∆tk ∼ τ . For f = 0 the method is convergent
of order O(h2 + τ2).

Proof By the above considerations the space operator is bounded by
〈

L̃hv, v
〉

≤ C ‖v‖2
for all

v ∈ Φh with v|Γh
= 0. Stability then follows from Corollary 5.3.4. By Remark 5.1.5 the Crank-

Nicholson method with that space operator is accurate of order O(h2 + τ2) and by Theorem 5.3.5
convergent of the same order if the p.d.e. is homogeneous. ¤

We now turn to the question of stability under different boundary conditions. In [32, Section 10]
Thomée shows the unconditional stability of the θ-method ( 1

2 ≤ θ ≤ 1) for Dirichlet, Neumann and
third-kind boundary continuous. However, he always requires the boundedness of a from above
and below, i.e. constants c1, c2 > 0 exist so that c1 ≤ a(x) ≤ c2, ∀x ∈ Ω̄h. This assumption is been

used to obtain a stronger estimate for Mh: 〈Mhv, v〉 ≤ −C ‖v‖2
with a positive constant C > 0.

Finally, we discuss stability of the numerical boundary condition where the p.d.e. is discretised
using finite difference approximations from the left and the right, respectively. For example on
the outflow boundary of the pure convection equation no boundary condition can be imposed
so that it is sound to approximate the p.d.e. even in the border points. In 5.4.2 we will also
suggest this numerical condition for the Heston p.d.e. at the zero variance boundary x2 = 0. Even
though the stability analysis is inconclusive we give the estimates which might be useful in further
examinations of the problem.

We use the discretisation similar to (5.36) with (5.37) in all inner grid points Ωh and define on the
boundary

(Mhv)0 :=
a(1/2h)

h2
(v0 − 2v1 + v2) (Mhv)m :=

a((m − 1/2)h)

h2
(vm−2 − 2vm−1 + vm)

(Nhv)0 :=
b(0)

h
(v1 − v0) (Nhv)m :=

b(mh)

h
(vm − vm−1).

Employing the summation by parts rule we obtain the following estimates:

Lemma 5.3.14
For the above operators the following estimates are valid for any v ∈ Φh:

〈Mhv, v〉 =
〈

ā−1/2∂̄v, ∂̄v
〉

(1,m)
+

1

h

(

ām−1/2(2vm − 3vm−1 + vm−2)vm + ā1/2(2v0 − 3v1 + v2)
)

,

〈Nhv, v〉 ≤ (1/2 + 1/4) ‖bx‖C[a,b] ‖v‖
2

+
1

2

(

2b̄mv2
m − 2b̄0v

2
0 − b̄mvmvm−1 + b̄0v0v1

)

.
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Proof The first equation follows directly from applying summation by parts and adding the
boundary terms. Following the same steps and additionally performing a Taylor expansion for
b(x1) and b(xm−1) leads to

〈

∂̂v, b̄ · v
〉

(1,m−1)
= −

〈

v, ∂̂(b̄ · v)
〉

(1,m−1)
+

1

2

(

vmvm−1(b̄m + b̄m−1) − v0v1(b̄0 + b̄1)
)

= −
〈

v, ∂̂(b̄ · v)
〉

(1,m−1)
+ vmvm−1b̄m − v0v1b̄0 +

h

2
(bx(ξ1)vmvm−1 + bx(ξ2)v0v1) .

Estimating the last term h
2 (bx(ξ1)vmvm−1 + bx(ξ2)v0v1) ≤ 1

2 ‖bx‖C(Ω̄h) ‖v‖
2

and using the multi-
plication rule similar as in proof of Lemma 5.3.9 yields

〈

∂̂v, b̄ · v
〉

(1,m−1)
≤ (1/2 + 1/4) ‖bx‖C[a,b] ‖v‖

2
+

1

2

(

vmvm−1b̄m + u0u1b̄0

)

.

We finally infer

〈Nhv, v〉(0,m) = 〈Nhv, v〉(1,m−1) +
(

b̄m(vm − vm−1)vm + b̄0(v1 − v0)v0

)

≤ (1 + 1/4) ‖bx‖C[a,b] ‖v‖
2

+
1

2

(

2b̄mv2
m − 2b̄0v

2
0 − b̄mvmvm−1 + b̄0v0v1

)

.

¤

For outflow boundaries we have b̄mv2
m − b̄0v

2
0 ≤ 0. However, the estimation of b̄mvmvm−1 + b̄0v0v1

still remains.

5.4 Conclusions for the Heston p.d.e.

Based on the general theory presented in this chapter we are now able to derive properties and
make suggestions for the particular p.d.e. arising from Heston’s stochastic volatility model. Due to
the meaning of the space variables we switch from the general notation (x1, x2) ∈ Ω to (x, v) ∈ Ω.
The variable x represents the logarithm of the spot which is the value of the underlying financial
product and v the square of its instantaneous volatility. The price of an option is denoted by
u(x, v, t). We write the p.d.e. u has to obey in the convection-diffusion form

ut = div(G∇u) − div(ub) + cu

with

G(v) =
1

2
v

(

1 ρξ
ρξ ξ2

)

,

b(v) = v

(

1
2

κ + λ

)

+

(

1
2ρξ + rf − rd

1
2ξ2 − κθ

)

,

c = κ + λ − rd.

The region Ω where the p.d.e. is defined depends on the type of option but is always a rectangular
domain with Ω ⊂ R × R

+.

5.4.1 Consistency, stability and convergence

We note that the diffusion matrix G(v) is obviously positive semidefinite for all v ≥ 0 which follows
directly from the determinant criteria since g1,1(v) ≥ 0, g2,2(v) ≥ 0 and detG(v) = 1

4v2ξ2(1−ρ2) ≥
0 because ρ is the correlation: |ρ| ≤ 1. Given Dirichlet conditions on the entire boundary it follows
by Theorem 5.3.10 and Remark 5.3.11 that the Crank-Nicholson scheme is unconditionally stable
in L2 on a uniform grid with the space discretisation defined in (5.36) and (5.37) even if the left
variance boundary is at v = 0. Given smooth initial data, convergence then follows immediately
from Theorem 5.3.5.

Unfortunately, we felt short of the initial expectation to show stability on non uniform structured
grids with the approximation of derivatives introduced in Section 4.2. By Taylor series expansion
the second order accuracy in space as well as in time of the Crank-Nicholson method on these non
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uniform grids has been shown in Lemma 5.1.4 as long as the grids are created by a generating
function. Without a conclusive stability result convergence can not be guaranteed. Numerical
calculations show that second order convergence in space and time is reached in those cases where an
analytic formula is known. However, we can not rule out that there exist parameter constellations
so that the numerical scheme becomes unstable.

From the theory of constant coefficients described in Section 5.2 we know by Theorem 5.2.7 and
Examples 5.2.10 to 5.2.14 that for diffusion dominated equations all central finite differences con-
verge to the corresponding analytical solution. If the diffusion term vanishes and the convection
dominates this is no longer the case and oscillations can be observed in the numerical solution.
Upwind schemes as shown in Example 5.2.13 are suggested to cure that behaviour. In the Heston
p.d.e. the diffusion term G(v) is linear in v and so is the convection term b(v) up to an additional
constant. In my opinion the constant vector (1

2ρξ + rf − rd, 1
2ξ2 − κθ) with parameters usual in

finance can be neglected as far as the necessity of an upwind scheme is concerned. Only for huge
and unrealistic asymmetries in the foreign and domestic currency an upwind scheme has to be
considered. A demonstration is given in chapter 6 which substantiates these statements.

5.4.2 Boundaries and boundary conditions

Initial and boundary conditions are determined by the kind of option. The initial condition is
always equal to the payoff of the derivative at time to maturity. Is the payoff not dependent on
the path of the underlying value s = ex but only on the value at maturity then no boundaries in
spot direction exist, i.e. Ω = R×R

+. Up-and-out or down-and-out barrier options lose the value if
at any time the value s hits a predefined level. That is modelled by setting the spot boundary to
the upper and lower barrier level, respectively, and imposing Dirichlet conditions with value equal
zero or equal to the rebate value if that has been specified. All options are independent of the
instantaneous variance v and hence no additional boundary in v-direction is introduced. Even on
the v = 0 boundary no conditions are required by the option or the stochastic model. That seems
to be reasonable if the convection at v = 0 in v-direction given by 1

2ξ2 − κθ is flowing outside.
We know from Subsection 3.2.1 that for the pure convection equation no boundary condition can
be imposed if the flow points outside. Since diffusion slowly disappears as v approaches the zero
boundary it is possible that the same applies to the Heston p.d.e.

Motivated by the stability result of the numerical scheme we suggest to leave the left variance
boundary at v = 0 and not to impose any artificial boundary condition. Instead we recommend
to discretise the p.d.e. at these boundary grid points by finite differences from the right as it is
for example done in upwind schemes. The accurate numerical implementation of the left variance
boundary is decisive for errors of the numerical solution at the point (x∗, v∗) we are interested in
since the boundary v = 0 is not far away from (x∗, v∗) so that errors at v = 0 influence the value
at (x∗, v∗). However, I was neither able to show stability of this numerical boundary condition nor
could I present a proof that no boundary condition can be imposed at v = 0. It only remains a
well tested heuristic with some theoretical motivations.

For path independent options we have to introduce three artificial boundaries at x = xmin, x = xmax

and v = vmax because it is impossible to numerically calculate with infinite many grid points.
Barrier options only require the artificial boundary at v = vmax since the other two boundaries
are defined in a natural way. The question on how to choose xmin, xmax and vmax are addressed
below. For the choice of the most appropriate condition we refer to the literature. We note that the
current implementation of these conditions are uncritical since errors made there have a negligible
effect at (x∗, v∗) if only the boundary is sufficiently far away. That is a nice property of parabolic
p.d.e.s in general. One sometimes uses Dirichlet conditions with values one would expect from
simpler models like the model by Black and Scholes. Dirichlet conditions have the advantage that
they do not jeopardise stability of a scheme. In chapter 6 the boundary condition suggested for
v = 0 is also used for all the artificial boundaries. It seems that the error made at the boundary
is then the smallest compared to other conditions. However, as soon as the flow vector b is big
enough and points inside, the numerical scheme becomes unstable.

In order to decide where the artificial boundaries should be placed we examine which influence
a small disturbance at the boundary would have on the solution at (x∗, v∗). Since we do not
know an analytic solution for arbitrary initial conditions we have to use our comprehension of
convection-diffusion equations and consider both effects, convection and diffusion, separately. A
typical vector field of b is shown in Figure 5.8. In a pure convection equation the disturbance moves
with a velocity b and the way it passes is Tb assuming a constant b. For the v = vmax boundary
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Figure 5.8: A typical convection field of foreign exchange markets

we only need to satisfy that b2(vmax) = (κ + λ)vmax
1
2ξ2 − κθ ≥ 0 since κ + λ > 0. The boundaries

in spot direction need to satisfy xmin + b1(v
∗)T < x∗ and xmax + b1(v

∗)T > x∗. Given a diffusion
only p.d.e. the disturbance has an immediate effect on any point of the solution. However, the
magnitude strongly reduces as the distance to the disturbance increases. Quantitatively, this effect
can be described using a fundamental solution. As we do not know the fundamental solution for
the Heston p.d.e. we consider both dimensions separately and take as a fairly good approximation
the fundamental solution to ut = γuxx and ut = ∂

∂v (γvuv) − 1
2γuv for the x- and v- direction,

respectively. It follows from Lemma 3.3.1 that the fundamental solution of each respective p.d.e.
is given by

G(x, x′, t) =
1√

4πγt
exp

(

− (x − x′)2

4γt

)

,

F (v, v′, t) =
1√

4πγv′t
exp

(

− (
√

v −
√

v′)2

γt

)

≤ 10√
4πγt

exp

(

− (
√

v −
√

v′)2

γt

)

, ∀v′ ≥ 1

100
.

A disturbance at vmax has a negligible influence on the solution at v∗ if F (v∗, vmax, T ) ≤ ǫ which
is satisfied if vmax ≥ 1

100 and

vmax ≥
(√

v∗ +

√

−γT log
( ǫ

10

√

4πγT
)

)2

.

Since we want to approximate the diffusion part of the Heston p.d.e. in v-direction with ut =
∂
∂v (γvuv) − 1

2γuv we choose γ := 1
2ξ2. Similarly, we demand for the boundaries xmin and xmax

that G(x∗, xmax, T ) ≤ ǫ and G(x∗, xmin, T ) ≤ ǫ which is equivalent to

xmin ≤ x∗ −
√

−4γT log(ǫ
√

4πγT ),

xmax ≥ x∗ +

√

−4γT log(ǫ
√

4πγT ).

It is not obvious in this situation which value to assign to γ. A conservative approach would be to
take γ = 1

2vmax, a more realistic choice maybe γ = 1
2

v∗+vmax

2 .

We have chosen the boundary sufficiently far away so that errors at the boundary have no significant
impact on the quality of the solution at (x∗, v∗). We therefore do not discuss optimal conditions
for the artificial boundaries and only refer to literature. In [19] optimal conditions for the Laplace
equations are derived. Analytical properties of the condition ut = −buxx have been examined in
[15]. Finally, absorbing boundary conditions are constructed and analysed in [9].
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5.4.3 Space discretisation

The value function u obeys a p.d.e. which we solve numerically. With the finite difference method
the numerical solution is calculated in all grid points and all time steps but at the end we are only
interested in one value, namely u(x∗, v∗, T ) and sometimes also in some derivatives. Therefore
the objective is to choose a grid which is optimal in the sense that the error at exactly that
point (x∗, v∗, T ) is minimal. Local error analysis is quite complicated since the operator Eh,τ =
(

I−θτLh

)−1(
I +(1−θ)τLh

)

mainly influences the error but is in general only numerically known.
We present an approach which is not fully justified by theory but still yields very useful results.

From error analysis in Subsection 5.1.2 and particularly (5.10) it follows that the numerical error,
i.e. the difference between analytical and numerical solution, is given by the same finite difference
equation with the truncation error at the right hand side. In an equivalent formulation (5.8) the
error can be expressed as a sum over solutions with the truncation error as part of the initial
condition. If the numerical scheme is convergent, in a rough estimate (5.9) the local error can be
expressed by the fundamental solution GHeston of the Heston p.d.e. and the truncation error γh,τ

which shall be be similarly distributed over time. Ignoring A−1
h,τ in the estimate the error then is

(Phu − û)(x∗, v∗, T ) ≈ C

∫

Ω

∫ T

0

GHeston(x∗, v∗, x′, v′, t) dt Qhγh,τ (x′, v′) dx′ dv′.

The finite difference scheme requires a structured grid so that we construct one dimensional grids in
x- and in v- direction. In both directions we approximate the Heston p.d.e. so that the coefficients
best fit the diffusion term at the point (x∗, v∗). As above we choose the equation ut = γuxx and
ut = ∂

∂v (γvuv) − 1
2γuv for x- and v- dimension, respectively, and try to find an optimal grid for

each one dimensional problem. Beginning with the choice of a grid in the x-direction and denoting
the integral of the fundamental solution G over t by Gi the error at the point x∗ of the p.d.e.
ut = γuxx is

(Phu − û)(x∗, T ) ≈ C

∫

Ω

Gi(x∗, x′, T )Qhγh,τ (x′) dx′. (5.42)

The truncation error γh,τ of the Crank-Nicholson method can by Lemma 4.2.3 and 5.1.4 estimated
as follows

|Qhγh,τ (xi)| = |γh,τ (xi)| ≤ C1τ
2 + γC2h

2r(xi)
2 + γC3 ‖g′′‖C[0,1] h

2,

where r denotes the distance ratio function and g the grid generating function as introduced in
Subsection 4.1.1. The value r(xi) describes the ratio between the distance to the next grid point
and the distances in the corresponding uniform grid. Hence the truncation error consists of a time
step error, an error proportional to the square of the distances of two grid points and an error
due to the non uniformity of the grid. We only try to minimise the influence of the second part,
still keeping in mind that if the resulting grid becomes strongly non uniform it will not be optimal
since the error due to non uniformity can not be ignored. The constants C1, C2, C3 depend on
the norm of some derivatives of u. In the following we assume that the solution u is equally
smooth over the entire domain Ω ⊂ R so that the constants are similar in each grid point. This
requirement excludes for example the initial and boundary conditions of reverse barrier options.
Inserting the estimate for the truncation error into (5.42) and minimising the error at x∗ leads to
the optimisation problem

{

∫ xmax

xmin
Gi(x∗, x′, T )r(x′)2 dx′ → min

∫ xmax

xmin

1
r(x′) dx′ = xmax − xmin

which we do not solve but instead apply the equidistribution principle in the hope it gives a result
not far away from the optimal solution for r. The equidistribution principle requires

Gi(x∗, x′, T )r(x′)2 = C, ∀x′ ∈ [xmin, xmax].

We therefore choose

r(x′) =
C

√

Gi(x∗, x′, T )
, (5.43)

with a constant C defined by

C :=

∫ xmax

xmin

1
√

Gi(x∗, x′, T )
dx′.
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Figure 5.9: Distance ratio function for ut = γuxx and ut = ∂
∂v (γvuv) − 1

2γuv at T = 1

For the v-axis we propose by similar deliberations

r(v′) =
C

4
√

v′

√

Fi(v∗, v′, T )
. (5.44)

It remains the question whether there is an explicit representation of the functions Gi and Fi
defined as the integral of the respective fundamental solution over t. Since both functions G and F
are of the same principal form we answer the question at once by giving the result of the integral

∫ T

0

c(x, x′)√
t

exp

(

−d(x, x′)

t

)

dt = 2c(x, x′)

(

√
T exp

(

−d(x, x′)

T

)

+
√

d(x, x′)π erf

√

d(x, x′)

T

)

− 2c(x, x′)
√

d(x, x′)π

where the so called error function erf is defined as the commutative normal distribution

erf(x) =

∫ x

−∞

1

2π
e−

x′2

2 dx′.

As an illustration Figure 5.9 shows the distance ratio functions for some diffusion parameters γ.
The central points (x∗, v∗) in these examples are x∗ = 1

2 and v∗ = 1
5 . It can clearly be seen that if

diffusion is quite big the distance ratio function has values near to one and the corresponding grid
will be almost uniform. This is not unexpected because strong diffusion means that a disturbance
at some remote point is blurred quickly over the entire domain.

5.4.4 Time discretisation

In Subsection 5.1.2 it has already been remarked that the usage of non uniform time steps might
be useful. It is in particular important if the truncation error is not of the same order of magnitude
over time. From (5.10) it follows that time steps should be made smaller if the truncation error
increases. The truncation error mainly depends on the smoothness of the solution. Since uniformly
parabolic equations exhibit a smoothing property, i.e. the solution becomes smoother with time,
the truncation error is expected to be bigger near the initial time. If the initial condition is not at
least two times continuously differentiable the truncation error might be severely big in the first
time steps and a refinement of the grid in time is highly recommended. Since the payoff functions
of options are often not differentiable in some points and might even be discontinuous in the case
of reverse barrier options we always use a finer grid near the time zero.

In [3] some particular choices of time grids were analysed, for example

∆tk = (α + βtk)h2

with some positive parameters α, β > 0. We use a similar grid which is generated by a distance
ratio function r of the form discussed in Subsection 4.1.3:

r(t) =
√

α2 + βt2.
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Numerical calculation have shown that in general a value of α = 1
10 or even α = 1

100 is advantageous
which means that time grid points are ten or one hundred times as dense at t = 0 as in the uniform
case. If one uses a direct matrix solver in each time step the LU matrix decomposition has to be
performed in each step because if ∆t changes the matrix Ah,τ = I − θτLh changes, too. In this
case one should consider to choose the time steps piecewise uniform.



Chapter 6

Numerical results

This chapter is dedicated to the practical aspects of the finite difference method as described in
Chapter 4 applied to the Heston p.d.e. We show that the stability of the method is not in question
even though the in Chapter 5 derived stability result only applies for uniform grids and a different
approximation of mixed derivative as proposed in Chapter 4. The suggestion given in Section 5.4
to improve accuracy of the numerical solution like the particular boundary condition at v = 0 and
the choice of the non uniform grids in space and time direction are also substantiated below.

6.1 Details of the algorithm

The finite difference method (Crank-Nicholson) with a 3d-point compact stencil capable of dealing
with non uniform grids (see Section 4.2) has been implemented in C++. Also a simple ADI
scheme where the mixed derivative part is treated as explicit (see Subsection 4.3.2) has been
integrated. The method is only second order accurate and stable if the coefficient in front of
the mixed derivative is negligible. The most computing intensive part of the θ-method and in
particular of the Crank-Nicholson method is solving the linear equation system. Having tested
some different algorithms like SOR, BiCG with pre-conditioning and also a few direct methods
based on the LU decomposition I recommend to use direct methods which strongly outperform
iterative methods if the same equation system has to be solved many times with a different right
hand side. That is usual for time independent parabolic p.d.e.s if the time grid is chosen to be
uniform. The implementation of a direct solver which takes advantage of the sparsity of matrices
is expensive. That is why I use the freely available SuperLU package.

The programme is compiled with the GNU C++ compiler and maximum optimisation (gcc -O3).
Computing times are given for a Pentium II with 300 MHz equipped with 512 MB RAM under
Linux. The time for generating the non uniform grid is excluded in the figures because as yet, this
is only poorly and inefficiently implemented and might take up to 0.5 seconds.

For convergence analysis we use the semi analytic formulas for plain vanilla options [8, Chapter
23] implemented by Gunter Winkler and for barrier options with zero correlation and foreign equal
domestic interest rate [6].

6.2 Selected examples

We present three examples, two of them have been calibrated to the foreign exchange market of
USD/JPY (US Dollar in Japanese Yen) at some time and the parameters of the third example has
been taken from [8, Chapter 24].

6.2.1 Call option on USD/JPY

We consider the exchange rate of USD/JPY that is the value of one US Dollar in Japanese Yen.
The Heston parameters were calibrated to the market and shown in Table 6.1. We want to by
a call option with strike K = S∗ = 123.4 and a time of T = 0.50137 years. In order to get an
imagination of the market some sample paths of the underlying Heston process can be viewed in

64
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S∗ 123.4 x∗ 4.8154 v∗ 0.014328
rd log(1.0005) rf log(1.0375)
θ 0.011876 κ 1.98937
ξ 0.33147 ρ 0.0258519 λ 0
K 123.4 T 0.50137
exact price 2.7207095899

Table 6.1: Call option on USD/JPY
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Figure 6.1. The convection field b of the corresponding p.d.e. can be seen in Figure 6.2. According
to Subsection 5.4.2 the boundaries are set to x ∈ [2.990790, 6.640072] and v ∈ [0.0, 0.559951] if
ǫ = 10−5. If we follow the method in Subsection 5.4.3 the non uniform grid as in Figure 6.3 will
be generated.

The solution of the finite difference scheme is shown in Figure 6.4 where the x-axis is already back
transformed to spot values. First the initial condition is portrayed which is equal to the payoff of
the option and then the solution at maturity is shown. A numerical error near the edge (smin, vmax)
can be seen but which has no impact on the solution at (s∗, v∗).

6.2.2 Up and out call option on USD/JPY

In the second example we use almost the same market as in the first. Since we want to compare
the numerical results with the analytical solution which is only available for ρ = 0 and rd = rf

we choose the market with parameters as in Table 6.2. We specify the barrier option as follows:
T = 0.50137, K = 120 and the up and out barrier is at 127. The boundaries in this example
are then set to x ∈ [2.990790, 4.844187] and v ∈ [0.0, 0.559951] and the grid looks like in Figure
6.5. The initial condition and the final solution are shown in Figure 6.6 where the x-axis has been
transformed back to spot values. For a more detailed view the third picture again shows the final
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Figure 6.2: Convection field b of the p.d.e.
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Figure 6.3: Non uniform structured grid
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Figure 6.4: Initial condition and final solution of the call option (z-scale: 50)

S∗ 123.4 x∗ 4.8154 v∗ 0.014328
rd log(1.0005) rf log(1.0005)
θ 0.011876 κ 1.98937
ξ 0.33147 ρ 0 λ 0
K 120 B 127 T 0.50137
exact price 0.3312511368

Table 6.2: Up and out call on USD/JPY

solution but ten times zoomed in.

6.2.3 Call option on an underlying with higher volatility

The parameters of Table 6.3 are identical to the example treated in [8, Chapter 24]. We consider
the call option with strike K = 1 and time to maturity T = 0.25. The boundaries are set to
x ∈ [−1.583349, 1.583349] and v ∈ [0.0, 0.804015]. The convection field and the non uniform grid
can be seen in Figure 6.7 and 6.8.

6.3 Influence of diffusion and convection

The critical area of the Heston p.d.e. is where the diffusion vanishes and therefore the flow domi-
nates. By theory we know that the Crank-Nicholson scheme is still stable in L2 but the derivatives
at these points are unreliable since the solution begins to oscillate. This problem can be bypassed
using an upwind scheme where derivative are approximated in that direction from where the flow
is coming. We show, however, that the flow at v = 0 can be neglected for realistic market param-
eters and hence the implementation of an upwind scheme is not essential. We demonstrate that
by choosing some peaks as initial condition and solve the p.d.e. In Figure 6.9 the solution u is
shown at four different time points with parameters as in Table 6.1. Only if we strongly increase
the difference between the domestic and foreign interest rate the influence of the convection can
be seen. For the same parameters but with rf = log(10), i.e. the foreign interest rate is at 1000%,
the solution looks as in Figure 6.10. The same is shown in Figure 6.12 but with an even higher
interest rate of rf = log(100).

S∗ 1.0 x∗ 0.0 v∗ 0.05225
rd log(1.052) rf log(1.048)
θ 0.06 κ 2.5
ξ 0.5 ρ -0.1 λ 0
K 1 T 0.25
exact price 0.0449439664

Table 6.3: Call option on an underlying with higher volatility
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Figure 6.5: Non uniform structured grid for an up and out barrier
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Figure 6.6: Initial condition and final solution of the barrier option (z-scale: 10) and the last
picture shows the final solution zoomed in (z-scale: 1)
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Figure 6.7: Convection field b of the p.d.e.
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Figure 6.9: Convection and diffusion of the Heston p.d.e.
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Figure 6.10: Convection and diffusion of the Heston p.d.e. with rf = log(10)
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Figure 6.11: Convection field b for rf = log(10)
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Figure 6.12: Convection and diffusion of the Heston p.d.e. with rf = log(100)
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Figure 6.13: Convection field b for rf = log(100)
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Figure 6.14: The error û − Phu at T for different numerical boundary conditions

6.4 Improvements of the accuracy of the numerical solution

The effect of the particular boundary condition suggested in Subsection 5.4.2 and the effect of
non uniform grids are demonstrated. We compare the numerical solution of the first example (call
option on USD/JPY) with its analytical solution and plot the error over the entire region Ωh.

First we demonstrate the impact of different boundary conditions, see Figure 6.14. In the upper
left picture homogeneous Neumann conditions have been imposed. We observe a quite big error at
the v = 0 boundary near the strike. The error reduces if we instead require that second derivatives
have to be zero and almost vanishes if we discretise the p.d.e. in the boundary points as shown
in the lower picture. It also becomes clear that an accurate modelling of the boundary v = 0 is
crucial for good numerical values at (s∗, v∗).

Using appropriate non uniform grids can greatly improve the quality of the solution at the particular
point (s∗, v∗). In the upper left picture of Figure 6.15 a uniform grid has been chosen and in the
right picture the grid has been created using a generating function as described in Subsection 4.1.3.
The grid on the lower picture is based on the grid which has been derived in 5.4.3 and aims to be
locally optimal for the point (s∗, v∗). And indeed, the local error is impressively small (as shown
in Table 6.5) but obviously only in a small neighbourhood of (s∗, v∗).

Finally we show the result of using non uniform grids in time. The effect is particularly impressive
for reverse barrier options. Hence Figure 6.16 and 6.17 show the error of the barrier option problem,
the first on a uniform and the latter on a non uniform time grid (100 times as dense at t = 0).
Both figures show a series of errors at four different times. It can be seen that if time steps are
uniform a huge error is made in the first step. The error then continously reduces with time but
still has an undesirable effect on the final solution.

6.5 Results of the ADI- and Crank-Nicholson scheme

The following calculations are based on grids in space direction as defined in Table 6.4. For plain
vanilla call options we choose the a non uniform time grid so that at t = 0 the time step size is ten
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Figure 6.15: The error û − Phu at T with different space discretisation (z-scale: 0.1)

Figure 6.16: The error û−Phu at times to maturity t = 4.6, 64.1, 119.0 and 173.9 days, respectively
(z-scale: 2)
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Figure 6.17: The error û − Phu at times to maturity t = 4.2, 60.2, 112.8 and 165.5, respectively;
time grid non uniform (z-scale: 2)

grid points in x points in y matrix size time points (call) time points (barrier)
1 25 8 200 10 20
2 50 15 750 20 40
3 100 30 3000 40 80
4 200 60 12000 80 160
5 400 120 48000 160 320

Table 6.4: Grids used in the numerical simulations
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grid result of scenario absolute error of scenario
1 2 3 1 2 3

1 6.5208303 2.5240578 2.6975496 3.8000348 -0.1967376 -0.0232458
2 5.4382319 2.7044851 2.7174149 2.7174363 -0.0163104 -0.0033806
3 4.0524806 2.7174085 2.7201532 1.3316851 -0.0033870 -0.0006422
4 3.3863823 2.7201582 2.7206148 0.6655867 -0.0006372 -0.0001806
5 3.0786712 2.7206342 2.7207095 0.3578757 -0.0001613 -0.0000859

Table 6.5: Results of different improvements

grid time LU-time s-time a-time a-b-time memory value error
1 0.3 2.6975496 -0.0232458
2 0.9 3 MB 2.7174149 -0.0033806
3 5.8 6 MB 2.7201532 -0.0006422
4 41.0 2.6 0.1 0.4 0.1 20 MB 2.7206148 -0.0001806
5 439.8 18.7 0.8 1.7 0.4 80 MB 2.7207095 -0.0000859

Table 6.6: Efficiency of the Crank-Nicholson method

times as large as for uniform grids. For reverse barrier option we choose 100 as the factor. In both
cases the time grid is modified to obtain piecewise uniform time steps so that the LU-decomposition
only has to be performed at five time points.

6.5.1 Improvement of the solution

Based on the example of a call option on USD/JPY we demonstrate how the suggestion made
within this thesis strongly improve the accuracy of the numerical solution. In Scenario one we use
a uniform grid in space and in time. The boundary condition is set to homogeneous Neumann
conditions. As can be seen in Table 6.5 the results are unacceptable. Scenario two uses a non uni-
form grid in space according to Subsection 4.1.3 with the parameter c = 0.2 and the concentration
points K and v∗, respectively. It uses the boundary condition where the p.d.e. is discretised. The
last scenario is based on the non uniform grid as proposed in Subsection 5.4.3 and shown in Figure
6.3. The accuracy with that grid is remarkable.

6.5.2 Comparison between Crank-Nicholson and ADI method

From now on we only discuss the results of the best discretisation, i.e. only Scenario three is
considered. We compare the efficiency and accuracy of the ADI and Crank-Nicholson scheme
with the parameters of the first example (call option on USD/JPY). In Table 6.6 and 6.7 some
information about the computing time is given. The titles have the following meanings:

time total computing time
LU-time time for solving the equation system Ax = b including the LU decomposition
s-time time for solving the equation system Ax = b if LU decomposition is known
a-time time to assemble the matrix A and the vector b
a-b-time time to assemble the vector b

Three observations can be made. Both methods are quite efficient and accurate. Even with Grid
two the error is about 0.1% and the total computing time less than one second which is sufficient
for most of the practical applications. In both methods the time to solve the equation system once
the LU-decomposition has been performed is less than the time to assemble the vector b which

grid time LU-time s-time a-time a-b-time memory value error
1 0.1 2.6975496 -0.0232458
2 0.4 2.7188348 -0.0019606
3 2.4 2.7205944 -0.0002010
4 17.8 0.1 0.0 0.3 0.2 4 MB 2.7207878 -0.0000076
5 142.9 0.4 0.1 1.1 0.6 8 MB 2.7211212 0.0003257

Table 6.7: Efficiency of the ADI method
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grid time value relative error time value relative error
1 0.1 0.0448298 -0.25397% 0.1 0.3902796 17.81988%
2 0.3 0.0449514 0.01656% 0.6 0.3526465 6.45897%
3 2.3 0.0449475 0.00798% 4.5 0.3378257 1.98476%
4 17.6 0.0448605 -0.18566% 33.5 0.3327874 0.46380%

Table 6.8: Comparison between accuracy of plain vanilla and reverse barrier option

might be due to some inefficiencies in the assembly routines. The order of convergence seems
to be partially better than second order. In the last grid of the ADI scheme the error increases
significantly. That is because the method I use is only stable if the correlation ρ is equal zero.

6.5.3 Solution of the second and third example

We finally compare the accuracy of the results for a reverse boundary option with a plain vanilla
call option. The ADI method with improved boundary conditions and the fairly optimal grid is
used. With the parameters of the second (Table 6.2) and third example (Table 6.3) we obtain the
results which are summarised in Table 6.8.

The numerical errors for reverse barrier options are very big compared to plain vanilla options. I
believe that the error is mainly caused by inappropriate numerical boundary conditions at v = 0.
According to Subsection 5.4.2 the suggested numerical boundary condition shall only be used if
1
2ξ2 − κθ < 0 which is not fulfilled in that example.

Again, the particular ADI method which I use shows instabilities if the correlation is not zero.
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Mathematical methods

A.1 Fourier transformation

The Fourier transformation defined over R
d can be considered to be a generalisation of the Fourier

series expansion. In short, the Fourier coefficients are the coordinates of a function v : Ω ⊂ R
d → R

with respect to a complete orthogonal basis (given appropriate Ω) consisting of sine and cosine
functions {sk}k∈Nd

0
∪{ck}k∈Nd

0
, sk(x) := sin 〈k, x〉, ck(x) := cos 〈k, x〉. In that basis the coordinates

of the function v are

v =
∑

k∈N
+
0

αkck + βksk, with αk := ‖ck‖−1 〈v, ck〉 , and βk := ‖sk‖−1 〈v, sk〉 .

There exist similar results if we admit real values for k. Due to its interpretation as a frequency
we denote it by ω. Let now v : R

d → R be a function which satisfies certain conditions, especially
the absolute integrability condition, i.e.

∫

Rd |v(x)| dx exists and is finite. One then can show that

v(x) =

∫

Rd

a(ω) cos 〈ω, x〉 + b(ω) sin 〈ω, x〉 dω

with

a(ω) := (2π)−d

∫

Rd

v(x) cos(ωx) dx,

b(ω) := (2π)−d

∫

Rd

v(x) sin(ωx) dx.

That can be expressed more elegantly if we go to the complex plane, more precisely we consider
functions v : R

d → C. So far, only the basic idea has been shown. In order to introduce the Fourier
transformation in an accurate way we need to define the space of all test functions which consists
of functions where the function values as well as all derivatives tend strongly to zero as we go to
infinity. Base on [7, Subsection 10.4.6]

Definition A.1.1 (Space of test functions)
With u : R

d → C, u ∈ C∞(Rd) we define a system of half norms

ρk,r(u) := sup
x∈Rd



(‖x‖r
+ 1)

∑

‖α‖≤k

‖Dαu(x)‖



 .

The space of test functions is the subset of infinite often differentiable functions where ρk,r is finite,
i.e.

S (Rd) :=
{

u ∈ C∞(Rd) : ρk,r(u) < ∞∀k, r > 0
}

The strict requirement to be a test function guarantees the existence of the integral in the Fourier
transform.

78



APPENDIX A. MATHEMATICAL METHODS 79

Definition A.1.2 (Fourier transformation)
For v ∈ S (Rd) the Fourier transformation F : S (Rd) → S (Rd) is defined as F (v) := ṽ with

ṽ(ω) := (2π)−d/2

∫

Rd

v(x) e−i〈ω,x〉 dx. (A.1)

The function ṽ is called the Fourier transformed of v. Formally, we define the inverse by I (ṽ) := v
with

v(x) = (2π)−d/2

∫

Rd

ṽ(ω) ei〈ω,x〉 dω. (A.2)

As it turns out the formally defined inverse transformation I is the inverse of F .

Theorem A.1.3 (Fourier transformation)
The Fourier transformation is well defined, i.e. the integral exists and the operator F : S (Rd) →
S (Rd) is bijective and it is F−1 = I . Furthermore, F as well as F−1 are continuous. The
operator F is uniquely extendable to the Hilbert space L2(R

d, C).

One of its most valuable properties is that differentiation in the real space translates to multipli-
cation with iω in the Fourier transformed space.

Lemma A.1.4
The following properties apply to the Fourier transformation F for all u, v ∈ S (Rd).

Parseval’s relation With the L2(R
d, C) scalar product it is

〈F (u),F (v)〉 = 〈u, v〉 .

Differentiation With the multi-index α ∈ N
d
0 it applies

F (Dαv)(ω) = (iω)α
F (v)(ω),

F (xαv)(ω) = (−i)|α|Dα
(

F (v)
)

(ω).
(A.3)

Convolution The convolution of u and v is defined by (u ∗ v)(x) :=
∫

Rd u(y)v(x− y) dy. Then it
is

F (u ∗ v) = F (u)F (v).

A.2 Approximation of derivatives using polynomial inter-
polation

An alternative approach to obtain an approximation to derivatives is to use polynomial interpo-
lation of three adjacent points and to determine the derivative of that polynomial. As it turns
out we obtain the same result as with the approach of using Taylor expansion shown in subsection
4.2.1.

A.2.1 One dimensional functions

We use the trial function g(x) := c2(x − xk)2 + c1(x − xk) + c0 to approximate the function f
around xk. It has to be satisfied that g(xk+i) = f(xk+i), ∀i ∈ {−1, 0, 1} which restricts the choice
of c0, c1 and c2 by the system of equations





1 −∆x1 ∆x1
2

1 0 0
1 ∆x2 ∆x2

2









c0

c1

c2



 =





fk−1

fk

fk+1



 .

By inverting this matrix we obtain the solution for the coefficients





c0

c1

c2



 =





0 1 0
−∆x2

∆x1(∆x1+∆x2)
∆x2−∆x1

∆x1∆x2

∆x1

∆x2(∆x1+∆x2)
1

∆x1(∆x1+∆x2)
−1

∆x1∆x2

1
∆x2(∆x1+∆x2)









fk−1

fk

fk+1



 .
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Furthermore we have

g(xk) = c0

g′(xk) = c1

g′′(xk) = 2c2

and thus





g(xk)
g′(xk)
g′′(xk)



 =





0 1 0
−∆x2

∆x1(∆x1+∆x2)
∆x2−∆x1

∆x1∆x2

∆x1

∆x2(∆x1+∆x2)
2

∆x1(∆x1+∆x2)
−2

∆x1∆x2

2
∆x2(∆x1+∆x2)









fk−1

fk

fk+1



 .

This is exactly the same result already obtained using Taylor series expansion.

A.2.2 Two dimensional functions

Interpolation over nine points in two dimensions requires multi-quadratic trial functions

g(x, y) :=

2
∑

i,j=0

ai,j(x − xk)i(x − xl)
j

With the abbreviation fi,j := f(xk+i,l+j) the interpolation requirements g(xk+i, yl+j) = fi,j is
equivalent to the linear equation system

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1 −∆y1 ∆y1
2
−∆x1 ∆x1∆y1 −∆x1∆y1

2
∆x1

2
−∆x1

2
∆y1 ∆x1

2
∆y1

2

1 0 0 −∆x1 0 0 ∆x1
2

0 0

1 ∆y2 ∆y2
2
−∆x1 −∆x1∆y2 −∆x1∆y2

2
∆x1

2
∆x1

2
∆y2 ∆x1

2
∆y2

2

1 −∆y1 ∆y1
2

0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 ∆y2 ∆y2
2

0 0 0 0 0 0

1 −∆y1 ∆y1
2

∆x2 −∆x2∆y1 ∆x2∆y1
2

∆x2
2
−∆x2

2
∆y1 ∆x2

2
∆y1

2

1 0 0 ∆x2 0 0 ∆x2
2

0 0

1 ∆y2 ∆y2
2

∆x2 ∆x2∆y2 ∆x2∆y2
2

∆x2
2

∆x2
2
∆y2 ∆x2

2
∆y2

2

1
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C

C

C

C

C

C

C

C

C

C

C

A
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B

B

B

B

B

B

B

@
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B
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B

B

B
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@

f−1,−1

f−1,0

f−1,1

f0,−1

f0,0

f0,1

f1,−1

f1,0

f1,1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

.

We are only interested in the coefficients a1,0, a0,1, a2,0, a0,2 and a1,1 since

∂g

∂x
(xk, yl) = a1,0

∂g

∂y
(xk, yl) = a0,1,

∂2g

∂x2
(xk, yl) = 2a2,0

∂2g

∂y2
(xk, yl) = 2a0,2,

∂2g

∂x∂y
(xk, yl) = a1,1.

After inverting the Matrix and determining the coefficients we see that the result is identical to
that we obtained by the Taylor approximation approach. This is not very astonishing since, up to
some permutation of columns and a transposition of the matrix, both matrices are the same.
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List of symbols

In general for x ∈ R we denote with xi the i-th point. For x ∈ R
d, however, subscripts are reserved

to indicate the i-th component of the vector x. Therefore x(k) with a multi-index k denotes the
k-th point. If there is no bracket superscripts always indicate the i-th power.

Throughout the text, the time variable t is always considered as a distinct variable which means
that all operators like Laplace, the gradient or the Fourier transformation operate only in the space
variables.

o.d.e. abbreviation for ordinary differential equation
p.d.e. abbreviation for partial differential equation
f.d.m. abbreviation for finite difference method
R+ positive real numbers (0,∞)
N0 non negative natural numbers {0, 1, 2, . . .}
〈·, ·〉 scalar product
F (u) Fourier transformation
△u Laplace operator
∆x delta x, ∆x := xk+1 − xk

I identity matrix
Ω ⊂ R

d region of the R
d where the p.d.e. is defined

Ω̄ closure of the set Ω
Γ = ∂Ω boundary of Ω
Dα derivative operator
Cp(Ω̄) space of functions defined over Ω which are p-times continuously differentiable
u mainly used in the context of the solution of a p.d.e.
h space discretisation parameter, h > 0
τ time discretisation parameter, τ > 0
Ih index set of grid points
Ω̄h finite grid approximating Ω̄
Γh boundary points of the grid Ω̄h

Ωh inner points of the grid Ω̄h

fh grid function defined over Ω̄h approximating a continuous function f
Φh space of all grid function defined on Ω̄h, can be identified with the R

n where
n ∈ N is the number of grid points in Ω̄h

vk = v(x(k)) for grid functions v ∈ Φh the multi index k indicates the value of v at the k-th
grid point

ū = Phu projection of a continuous function to the space of grid functions
Qhv interpolation of a grid function v ∈ Φh to the continuous space.
û(k) solution of the finite difference scheme at time step k
∂ forward finite difference operator defined on Φh

∂̄ backward finite difference operator defined on Φh

∂̂ centred finite difference operator defined on Φh
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Thesen

• Stochastische Volatilitätsmodelle ermöglichen marktnahe Optionspreisbewertung. Aus dem
stochastischen Modellen können partielle Differentialgleichungen für die Optionspreisfunk-
tion abgeleitet werden. Die Differentialgleichung ist von parabolischer Form und hat zwei
Ortsrichtungen, die den momentanen Spot und die Varianz beschreiben (s, v). Die Lösung
der Gleichung ist nur in einem bestimmten Punkt von Interesse.

• Das Finite Differenzenverfahren ist zur Lösung dieser parabolischen Differentialgleichung ge-
eignet, da das Gebiet durch ein Rechtecksnetz approximiert werden kann.

• Die untersuchten Verfahren – Crank-Nicholson und Alternating Direction Implicit (ADI) –
sind auf uniformen und nicht uniformen Gittern konsistent von der Ordnung zwei in Ort und
in Zeitrichtung.

• Die Crank-Nicholson Methode ist stabil bei Dirichlet-Randbedingungen.

• Es kann ein nicht uniformes Netz angegeben werden, dass unter der Voraussetzung von glatten
Anfangsbedingungen die Genauigkeit der Lösung in einem lokalen Punkt erheblich verbessert.
Bei Reverse Barrier Optionen ist das nicht erfüllt. Dort sind weitere Untersuchungen nötig,
um ein passendes Gitternetz zu ermitteln.

• Die Wahl eines nicht uniformen Netzes in Zeitrichtung ist empfehlenswert und besonders
wichtig für Reverse Barrier Optionen. Am Beginn (t = 0) sollte mit feinen Zeitschritten
gerechnet werden.

• Die Modellierung der Randbedingung an dem linken Rand in Varianzrichtung (v = 0) hat
entscheidende Auswirkung auf die Genauigkeit der Lösung in dem Punkt, an dem wir in-
teressiert sind. Die Diskretisierung der Differentialgleichung erwieß sich als bestmögliche
Variante.

• Die anderen Ränder genügen entweder Dirichlet Bedingungen oder müssen künstlich gesetzt
werden um den unendlichen Bereich zu approximieren. Es kann angegeben werden, wie
weit die künstlichen Ränder entfernt sein müssen damit der Einfluss auf die Lösung im
interessanten Punkt vernachlässigbar ist.

• Mit allen genannten Vorschlägen ist das Finite Differenzenverfahren praxistauglich für ein-
fache pfadunabhängige Optionen. Für Call Optionen erreicht man Genauigkeiten von 0.1%
innerhalb einer Sekunde.

• Für das Crank-Nicholson Verfahren wird ein direkter Gleichungssystem-Löser empfohlen.

• ADI ist schneller als das Crank-Nicholson Verfahren bei gleicher Genauigkeit.
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