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Abstract

The Laplacian energy of a graph is the sum of the distances of the eigenvalues of the
Laplacian matrix of the graph to the graph’s average degree. The maximum Laplacian
energy over all graphs on n nodes and m edges is conjectured to be attained for threshold
graphs. We prove the conjecture to hold for graphs with the property that for each k
there is a threshold graph on the same number of nodes and edges whose sum of the k
largest Laplacian eigenvalues exceeds that of the k largest Laplacian eigenvalues of the
graph. We call such graphs spectrally threshold dominated. These graphs include split
graphs and cographs and spectral threshold dominance is preserved by disjoint unions and
taking complements. We conjecture that all graphs are spectrally threshold dominated.
This conjecture turns out to be equivalent to Brouwer’s conjecture concerning a bound on
the sum of the k largest Laplacian eigenvalues.
Keywords: Laplacian Energy, threshold graph, Brouwer conjecture, Grone-Merris-Bai
Theorem
MSC 2010: 05C50, 05C35

1 Introduction

Let G = (N,E) be a simple graph with node set N = {1, . . . , n} and edge set E ⊆ {{i, j} :
i, j ∈ N, i 6= j}. For brevity, we will usually write ij instead of {i, j} for edges and put
m = |E|. It will be convenient to assume that the nodes are numbered so that their degrees
di = |{j : ij ∈ E}| are sorted nonincreasingly. Let ei denote the i-th column of the n × n
identity matrix In and define the positive semidefinite matrices Eij := (ei − ej)(ei − ej)T , then
the Laplacian matrix of G is defined to be L(G) =

∑
ij∈E Eij . If G is clear from the context,

we drop the argument and simply write L. The Laplacian is a positive semidefinite matrix
with a trivial eigenvalue 0 and the vector of all ones 1 as associated eigenvector. In this paper
we denote the eigenvalues of L in nonincreasing order by λ1(L) ≥ · · · ≥ λn−1(L) ≥ λn(L) = 0.
As the trace of L is 2m there holds

∑n
i=1 λi(L) = 2m and for m > 0 at least one eigenvalue

has value greater than the average degree 2m/n.
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The Laplacian energy is defined to be

LE(G) :=
n∑
i=1

∣∣∣∣λi(L)− 2m

n

∣∣∣∣ .
For i = 1, . . . , n the conjugate degree d∗i (G) = |{i : di ≥ i}| gives the number of nodes of G

of degree at least i. Each degree sequence satisfying d∗i = di + 1 for i = 1, . . . , f with trace
f = max{i : di ≥ i} uniquely defines a graph and these graphs form the so called threshold
graphs [8]. In our context a central property of threshold graphs is that the conjugate degrees
are exactly the eigenvalues of their Laplacian matrix, λi = d∗i for i = 1, . . . , n [7]. It has been
conjectured that among all connected graphs on n nodes the threshold graph called pineapple
with trace b2n

3 c maximizes the Laplacian energy (see [10]). Among connected threshold graphs
the pineapple is indeed the maximizer; for general threshold graphs on n nodes the clique of
size b2n+1

3 c+ 1 together with bn−3
3 c isolated vertices is a threshold graph maximizing Laplacian

energy [5] and we conjecture that this graph has maximum Laplacian energy among all graphs
on n nodes.

In this paper we prove that the general conjecture holds for graphs that are spectrally
dominated by threshold graphs in the following sense.

Definition 1 A graph G on n nodes with m edges is spectrally threshold dominated if for
each k ∈ {1, . . . , n} there is a threshold graph Tk having the same number of nodes and edges
satisfying

∑k
i=1 d

∗
i (Tk) =

∑k
i=1 λi(L(Tk)) ≥

∑k
i=1 λi(L(G)).

This definition was in part motivated by the Grone-Merris conjecture, proved by Bai [1] – from
here on called the Grone-Merris-Bai Theorem – which states that for any graph G on n vertices
with degree sequence d1 ≥ . . . ≥ dn and for any k ∈ {1, . . . , n},

k∑
i=1

λi ≤
k∑
i=1

d∗i . (1)

Note that equality holds in (1) for threshold graphs.
Our main result (proved in Section 2) is the following.

Theorem 2 For each spectrally threshold dominated graph G there exists a threshold graph
with the same number of nodes and edges whose Laplacian energy is at least as large as that of
G.

We conjecture that all graphs are spectrally threshold dominated, in which case the maximum
Laplacian energy would be attained by threshold graphs for any given number of nodes and
edges. We prove that this class goes well beyond threshold graphs (definitions of the graph
classes will be given along with the proofs in Section 3 and Section 4).

Theorem 3 Split graphs are spectrally threshold dominated.

Theorem 4 Disjoint unions and complements of spectrally threshold dominated graphs are
spectrally threshold dominated.

This has the following immediate consequence.

2



Corollary 5 Cographs are spectrally threshold dominated.

The search for further examples of graph classes whose sum of the k largest Laplacian
eigenvalues can be bounded by threshold graphs leads to Brouwer’s conjecture. It is related
to (and motivated by) the Grone-Merris conjecture [4] and states that for any graph G on n
vertices and m edges,

k∑
i=1

λi ≤ m+

(
k + 1

2

)
. (2)

One may ask whether the bound given by the Grone-Merris-Bai theorem is sharper than
Brouwer’s conjecture, because it uses more detailed information from the graph. Indeed, it has
been shown in [6] that for split graphs this is the case. However, more generally, it is shown
that there is a k such that the k-th inequality of Brouwer’s conjecture is sharper than the k-th
Grone-Merris inequality if and only if the graph is non-split. Brouwer’s conjecture remains
unproven to this date.

It turns out (see Section 5) that Brouwer’s conjecture is, in fact, equivalent to spectral
threshold dominance.

Theorem 6 A graph G satisfies Brouwer’s conjecture if and only if it is spectrally threshold
dominated.

Quite likely this relation to threshold graphs has been part of the motivation for Brouwer’s
conjecture. Recognizing this equivalence also opens the door to previous, rather different proofs
of theorem 3, theorem 4, and corollary 5 by [6], who proved that Brouwer’s conjecture holds in
these cases.

Establishing Brouwer’s conjecture would prove the Laplacian energy conjecture in the
non connected case. The requirement of spectral threshold dominance is, however, stronger
than needed for the Laplacian energy conjecture. A counterexample for Brouwer’s conjecture
might not be sufficient to disprove the Laplacian energy conjecture. On the other hand, a
counterexample for the non connected Laplacian energy conjecture would immediately disprove
the spectral threshold dominance conjecture and thus also Brouwer’s conjecture.

2 Spectral threshold dominance and Laplacian energy

Before embarking on the proof of theorem 2 we illustrate spectral threshold dominance by
an example involving cycles (these are neither cographs nor split graphs). Note that in the
definition of spectral threshold dominance, the threshold graph is allowed to depend on G and
k. In the example, we are able to supply a single threshold graph that spectrally dominates G
for all values of k. Our constructions here and later are inspired by the characterization of
threshold graphs by their Ferrers (or Young) diagram (see for example [8]) of their nonincreasing
degree sequence, i. e. row i displays di boxes aligned on the left. For threshold graphs, the
shape described by the boxes on and above the diagonal is exactly the transpose of the shape
of the boxes below the diagonal. The f boxes on the diagonal will be displayed in black.

Example 7 Figure 1 depicts the cycle C8 on 8 vertices, while Figure 2 shows a threshold graph
that spectrally dominates C8 for all k ∈ {1, . . . , 8}. Indeed the spectrum of C8 is the multiset
{4, 2+

√
2, 2+

√
2, 2, 2, 2−

√
2, 2−

√
2, 0} whose partial sums are 4, 6+

√
2, 8+2

√
2, 10+2

√
2, 12+
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2
√

2, 14 +
√

2, 16, 16, whereas the partial sums for the eigenvalues of the threshold graph of
Figure 2 are 5, 10, 14, 16, 16, 16, 16, 16. Note, the resulting threshold graph is disconnected.

Figure 1: C8 and its Ferrers diagram

This procedure can be generalized for a general cycle Cn on n vertices. Indeed consider
Cn with n ≥ 8 vertices (hence with m = n ≥ 8 edges). Let h = b

√
2nc. We observe that

2n− (h2− h) ≥ h and 2n− (h2 + h) ≤ h+ 1. Define T to be the threshold graph whose Ferrers
diagram has Durfee square (trace) f = h− 1, if 2n− (h2 + h) < 0, otherwise T will have trace
f = h. The remaining boxes will be placed as a last (f + 1)th-column (half of them) and the
corresponding last (f + 2)th-row in the Ferrers diagram. As the Laplacian spectrum of Cn is
the set {2 − 2 cos 2π

n i : i = 1, . . . , n} we observe that for i = 1, . . . , f , λi(Cn) ≤ 4 =
√

2 · 8 =

b
√

2 · 8c ≤ b
√

2 · nc ≤ λi(T ). Hence it holds that
∑k

i=1 λi(Cn) ≤ 4 · k ≤ h · k ≤
∑k

i=1 λi(T ),
for k = 1, . . . f . If k ≥ f , we observe that

∑k
i=1 λi(T ) = 2n = 2m ≥

∑k
i=1 λi(Cn).

Figure 2: A spectrally threshold dominant graph of C8

The Laplacian energy of a graph G is actually fully determined by the sum of the k
eigenvalues whose values exceed the average degree 2m

n . For providing a threshold graph T on
the same number of nodes and edges with the same or higher Laplacian energy it suffices to
find one with

∑k
i=1 λi(T ) ≥

∑k
i=1 λi(G) for this specific k, as proved in the following lemma.

Lemma 8 Let G be a graph on n nodes with m edges and conjugate degree sequence d∗i ,
i = 1, . . . , n and let k ∈ {1, . . . , n} be the index satisfying λk(L(G)) > 2m

n ≥ λk+1(L(G)).
Any threshold graph T on n nodes with m edges satisfying

∑k
i=1 d

∗
i (T ) ≥

∑k
i=1 λi(L(G)) also

satisfies LE(T ) ≥ LE(G).
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Proof By
∑n

i=0 λi(G) = 2m there holds
∑n

i=k+1 λi(L(G)) = 2m−
∑k

i=1 λi(L(G)) and therefore

LE(G) =

n∑
i=1

|λi(L(G))− 2m
n |

=

k∑
i=1

(λi(L(G))− 2m
n ) +

n∑
i=k+1

(2m
n − λi(L(G)))

= 2
k∑
i=1

λi(L(G))− 2m− k 2m
n + (n− k)2m

n

= 2
k∑
i=1

(λi(L(G))− 2m
n )

≤ 2

k∑
i=1

(d∗i (T )− 2m
n )

= 2
k∑
i=1

(λi(L(T ))− 2m
n )

≤ 2
∑

i∈{j : λj(L(T ))>
2m
n }

(λi(L(T ))− 2m
n ) = LE(T ).

The last equation follows by repeating the initial arguments on G for T . �

If a graph is spectrally threshold dominated, an appropriate threshold graph Tk exists for all k,
in particular for the k required in lemma 8. This proves theorem 2.

3 Split graphs are spectrally threshold dominated

Recall that G is a split graph if its set of vertices can be partitioned in two sets A and B such
that A induces a clique in G and B does not contain any edge. The key for proving that split
graphs are spectrally threshold dominated is the characterization of split graphs and threshold
graphs by their Ferrers diagram. Split graphs have the same number of boxes above and on the
diagonal as below the diagonal. Threshold graphs are special split graphs in that the shape
below is the transposed of the shape above and on the diagonal. This forms the basis of the
proof of the following lemma, which directly establishes theorem 3.

Lemma 9 Given a split graph G on n nodes with m edges and k ∈ {1, . . . , n}, there is a
threshold graph T on n nodes with m edges so that

∑k
i=1 λi(L(T )) ≥

∑k
i=1 λi(L(G)).

Proof Let f(G) = max{i : di(G) ≥ i} be the trace of the Ferrers diagram for G. We discern
the cases k < f(G) and k ≥ f(G).

k < f(G): leaving the boxes below the diagonal unchanged and by copying its shape in
transposed form to the part above the diagonal we obtain a diagram uniquely defining a threshold
graph T with the property

∑k
i=1 λi(L(T )) =

∑k
i=1 d

∗
i (T ) =

∑k
i=1 d

∗
i (G) ≥

∑k
i=1 λi(L(G)),

where the last inequality follows from the Grone-Merris-Bai theorem. We refer to Figure 3 for
an illustration of the graph transform. In the example k = 2 and the hatched box is moved.
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Figure 3: A transform for k < f(G).

k ≥ f(G): construct the desired threshold graph T by filling up the diagram above and
on the diagonal in columnwise order by the m boxes, but only up to and including row f(G)
(and in rowwise order below the diagonal up to column f(G) for the transposed shape). Thus
f(T ) = f(G). Figure 4 shows the threshold graph T for a particular graph G. In the example
the hatched boxes are moved. The construction never moves boxes across the diagonal.

First consider the case k = f(G). Because the number of boxes below the diagonal is the
same for G and T , we obtain

f(G)∑
i=1

λi(T ) =

f(G)∑
i=1

d∗i (T ) = m+ f(G)(f(G) + 1)/2 =

f(G)∑
i=1

d∗i (G). (3)

The claim follows from
∑k

i=1 d
∗
i (G) ≥

∑k
i=1 λi(L(G)) by the Grone-Merris-Bai theorem.

Finally, for k > f(G) observe that for j ∈ {f(G) + 1, . . . , n} there holds
∑j

i=f(G)+1 d
∗
i (T ) ≥∑j

i=f(G)+1 d
∗
i (G), because in T the boxes have been rearranged to maximally fill up the first

columns after column f(G). This, (3) and the Grone-Merris-Bai theorem yield
∑k

i=1 d
∗
i (T ) ≥∑k

i=1 d
∗
i (G) ≥

∑k
i=1 λ

∗
i (G). �

Figure 4: A transform for k ≥ f(G).

Note that the construction of the proof for k ≥ f(G) may generate a threshold graph that is
not connected even if G is. Indeed, at this point we do not know how to construct for a general
connected split graph G and given k a spectrally dominating connected threshold graph Tk.

4 Disjoint unions and complements preserve spectral threshold
dominance

In order to increase the class of spectrally threshold dominated graphs a bit further, we consider
taking the union and complements of spectrally threshold dominated graphs.
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Lemma 10 Let G be a (disjoint) union of spectrally threshold dominated graphs with n nodes
and m edges and let k ∈ {1, . . . , n}. There is a threshold graph T on n nodes and m edges so
that

∑k
i=1 λi(L(T )) ≥

∑k
i=1 λi(L(G)).

Proof Suppose G =
⋃h
j=1Gj with each Gj spectrally threshold dominated. Let the first k

eigenvalues of G consist of the first kj eigenvalues of Gj , j = 1, . . . , h with
∑h

j=1 kj = k. For

each Gj there is threshold graph Tj so that
∑kj

i=1 λi(L(Tj)) ≥
∑kj

i=1 λi(L(Gj)). Thus it suffices
to prove the result under the assumption that each Gj is a threshold graph Tj = (Nj , Ej)

with nj = |Nj |, mj = |Ej | so that
∑h

j=1 nj = n and
∑h

j=1mj = m. Put H = {(j, i) : j ∈
{1, . . . , h}, i ∈ {1, . . . , nj}} with index (j, i) representing d∗(j,i) = d∗i (Tj) = λi(Tj). Represent
the ordering of the eigenvalues of G by a bijection

σ : {1, . . . , n} → H so that d∗σ(p) ≥ d
∗
σ(q) for p ≤ q and so that i ≤ q for (j, i) = σ(q) (4)

(this is always possible, because the d∗i (Tj) are sorted nonincreasingly). Consider a diagram
DG having d∗σ(i) boxes in column i, then

∑k
i=1 λi(L(G)) counts the boxes in columns one to k.

The Ferrers diagram DT of the intended threshold graph T will be obtained from DG by only
moving boxes to columns with smaller or equal index, then

∑k
i=1 λi(L(T )) =

∑k
i=1 d

∗
i (L(T )) ≥∑k

i=1 d
∗
σ(i) =

∑k
i=1 λi(L(G)).

For column q = 1, . . . , n in DG and (j, i) = σ(q) place the d∗i (Tj) boxes of this column by
the following algorithm in the new diagram DT . The box of row r ∈ {1, . . . ,min{i, d∗i (Tj)}}
is placed on or above the diagonal of DT , concretely in row r in the next free column
c = q − |{p ∈ {1, . . . , q − 1} : (̄, ı̄) = σ(p) ∧ ı̄ < r}|, thus (4) implies r ≤ c ≤ q; the box of row
r ∈ {i + 1, . . . , d∗i (Tj)} is placed in column i (recall that i ≤ q by (4)) in the next free row
i +

∑
(̂,i)∈{(̄,̄ı)=σ(p) : ı̄=i∧p∈{1,...,q−1}}max{0, d∗i (Tj) − i} + (r − i), thus below the diagonal of

DT .
We complete the proof by showing that DT is the Ferrers diagram of a threshold graph

with trace f = max{i : ∃(j, i) ∈ H with d∗i (Tj) > i}. Note that no boxes are placed on or
above the diagonal of DT for rows r > f (indeed, d∗i (Tj) 6= i for all threshold graphs Tj and i
due to the transposed structure of their diagrams) and no boxes are placed below the diagonal
for columns c > f . Column c = 1, . . . , f contains

∑h
j=1 max{0, d∗c(Tj) − c} boxes below the

diagonal. The number of boxes in row r = 1, . . . , f of DT on or above the diagonal computes to∑h
j=1 |{i ∈ {r, . . . , nj} : d∗i (Tj) ≥ r}| =

∑h
j=1 max{0, dr(Tj)−r+1} =

∑h
j=1 max{0, d∗r(Tj)−r},

where the last equation uses the defining property d∗i (Tj) = di(Tj)+1 for i = 1, . . . , f(Tj) (while
max{d∗i (Tj), di(Tj)} ≤ f(Tj) for i > f(Tj)). Thus, for c = r ∈ {1, . . . , f} the counts coincide
and DT is the Ferrers diagram of a threshold graph T with

∑k
i=1 λi(L(T )) ≥

∑k
i=1 λi(L(G)).�

Forming the complement does not pose a problem as we show next.

Lemma 11 Let G be a graph on n nodes with m edges and suppose that for each k ∈ {1, . . . , n−
1} there is a threshold graph T on n nodes and m edges so that

∑k
i=1 λi(L(T )) ≥

∑k
i=1 λi(L(G)).

Then for the complement graphs Ḡ and T̄ there holds
∑n−k−1

i=1 λi(L(T̄ )) ≥
∑n−k−1

i=1 λi(L(Ḡ)).
Because of λn = 0 any threshold graph T having the same number of nodes and edges satisfies∑n−1

i=1 λi(L(T̄ )) =
∑n−1

i=1 λi(L(Ḡ)).

Proof The equation L(Ḡ) = nIn−11>−L(G) gives rise to the well known relation λi(L(Ḡ)) =
n − λn−i(L(G)) for i = 1, . . . , n − 1 (and λn(L(Ḡ)) = 0 as usual). Because the sum of the
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eigenvalues of the Laplacian equals twice the number of edges of the graph, we get first∑n−1
i=k+1 λi(L(T )) =

∑n−k−1
i=1 λn−i(L(T )) ≤

∑n−k−1
i=1 λn−i(L(G)) and then

n−k−1∑
i=1

λi(L(T̄ )) = (n − k − 1)n −
n−k−1∑
i=1

λn−i(L(T )) ≥ (n − k − 1)n −
n−k−1∑
i=1

λn−i(L(G)) =

n−k−1∑
i=1

λi(L(Ḡ)). �

The two previous lemmas establish theorem 4.
Cographs are defined recursively as (i) K1 is a cograph, (ii) the disjoint union of cographs

is a cograph and (iii) the complement of a cograph is a cograph. Since K1 is a threshold graph,
in view of Lemmas 10 and 11 we have proved corollary 5,

5 Equivalence with Brouwer’s conjecture

In this section we prove that, together with the Grone-Merris-Bai theorem, Brouwer’s conjecture
is equivalent to conjecturing that every graph is spectrally threshold dominated. Since threshold
graphs are known to satisfy Brouwer’s conjecture, it is clear that any spectrally threshold
dominated graph G satisfies Brouwer’s conjecture. The core of the proof is therefore to construct
for arbitrary n and m ≤

(
n
2

)
a threshold graph that attains Brouwer’s eigenvalue bound.

Proof (of theorem 6) Note that by the Grone-Merris-Bai theorem Brouwer’s conjecture
is equivalent to

∑k
i=1 λi(L(G)) ≤ min{kn,m + k(k + 1)/2, 2m} holding for k ∈ {1, . . . , n},

because no conjugate degree exceeds n and the sum of all eigenvalues is 2m.
Thus the equivalence is proven if for arbitrary k ∈ {1, . . . , n} we show min{kn,m+ k(k +

1)/2, 2m} = max{
∑k

i=1 d
∗
i (T ) : T threshold graph on n nodes and m edges}. Depending on

the relation between k, n and m, we discern the following cases:
Case 1. min{kn,m+ k(k + 1)/2, 2m} = kn: The threshold graph T constructed by filling

up the Ferrers diagram below the diagonal in columnwise order (on and above the diagonal
in corresponding rowwise order) satisfies d∗i (T ) = n for i = {1, . . . , k}, so

∑k
i=1 λi(T ) =∑k

i=1 d
∗
i (T ) = kn and this is the maximum attainable over all threshold graphs on n nodes.

Case 2. min{kn,m+ k(k + 1)/2, 2m} = m+ k(k + 1)/2: In this case put h := bmk +
k+1

2 c < n and r := m + k(k + 1)/2 − kh < k. Note that this implies h ≥ k + 1. Define a
threshold graph T on n nodes with m edges of trace k by the conjugate degrees

d∗i (T ) =

{
h+ 1 i ≤ r,
h r < i ≤ k,

then
∑k

i=1 λi(T ) =
∑k

i=1 d
∗
i (T ) = m + k(k + 1)/2. This value cannot be exceeded by any

threshold graph on n nodes with m edges by the Grone-Merris-Bai Majorization theorem,
because in the Ferrers diagram of the conjugate degrees up to column k all boxes are used on
and above the diagonal, while all possible m boxes are included below the diagonal.

Case 3. min{kn,m+ k(k + 1)/2, 2m} = 2m: Put h := max{h ∈ {1, . . . , n} : h(h + 1) ≤
2m} < k and r := (2m − h(h + 1))/2 < h + 1, then the threshold graph T of trace h with
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conjugate degrees

d∗i (T ) =


h+ 2 i ≤ r,
h+ 1 r < i ≤ h,
r i = h+ 1,
0 h+ 1 < i,

satisfies
∑k

i=1 λi(T ) =
∑k

i=1 d
∗
i (T ) = 2m and this is the maximum attainable over all threshold

graphs with m edges. �

Figure 5: Graph for illustration of the equivalence

Example 12 Consider the graph and its Ferrers diagram of Figure 5. There are n = 8 vertices
andm = 15 edges. For k = 1, 2 we are in Case 1, for k = 3, 4, 5 it is Case 2 and for k = 6, 7, 8 we
are in Case 3 of the theorem. We illustrate the construction of the threshold graphs T for which
min{kn,m+k(k+1)/2, 2m} = max{

∑k
i=1 d

∗
i (T ) : T threshold graph on n nodes and m edges}

in Figure 6 for k = 2, representing Case 1 (left), for k = 4, representing Case 2 with h = 6, r = 1
(center) and for k = 7, representing Case 3 with h = 5, r = 0 (right).

Figure 6: Transforms for min{kn,m+ k(k + 1)/2, 2m} = kn,m+ k(k + 1)/2, 2m

We remark that in view of this result, whenever a class of graphs is shown to satisfy
Brouwer’s conjecture, the class also is spectrally threshold dominated and, in particular, the
Laplacian energy is bounded by the Laplacian energy of threshold graphs.

Corollary 13 Trees, unicyclic and bicyclic graphs are spectrally threshold dominated.

This follows from the fact that in [4], it is proven that trees satisfy Brouwer’s conjecture.
Likewise, in [2], it is proven that unicyclic and bicyclic graphs satisfy Brouwer’s conjecture.
Hence the Laplacian energy of these classes of graphs are also bounded by the Laplacian energy
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of threshold graphs. An explicit construction of a threshold graph on n nodes and m edges
maximizing the Laplacian energy over all such threshold graphs is given in [5]. In the case of
trees, it is known that the star on n vertices (a threshold graph) has largest Laplacian energy
among all trees with n vertices [3]

In the same direction in [9] and in [11], it is proven that the conjecture of Brouwer holds
for further classes of graphs.
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