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Acremolin, a stable natural product with an antiaromatic 1H-azirine moiety? A

structural reorientation
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Recently, acremolin (4), a novel modified base, was isolated from a marine-derived fungus and
claimed to possess a structure with a 1H-azirine moiety. It is shown now that the reported NMR
data are not compatible with this antiaromatic heterocycle, which should be an extremely
unstable compound. An isomeric, substituted N23-ethenoguanine is presented as a plausible
alternative structure of acremolin that is consistent with all spectroscopic data. Thus, 1H-azirines

keep their classification as very short-lived intermediates.
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Strained compounds are of special interest because of their
increased energy content and the enhanced reactivity, which
frequently results from this. For 1H-azirines 1 and 2H-azirines 2,
it is obvious that both types of heterocycles include considerable
ring strain (Scheme 1). However, the properties of 1 and 2 are
quite different.' A great number of 2H-azirines 2, especially
those with R' # H, were isolated and characterized by
spectroscopic methods in solution or even by X-ray
crystallographic structure determination. Although compounds of
type 2 are highly reactive, the 2H-azirine unit has been found in a
few natural products.” On the other hand, only five examples of
short-lived 1H-azirines 3a,b were photochemically generated and
detected at very low temperatures by IR spectroscopy, which
indicated absorptions in the region of 1867-1890 cm * attributed
to C=C valence vibration.> Most probably, the push-pull
substitution pattern of 3a,b diminishes the antiaromatic character
of the 1H-azirine structure and increases the relative stability.
Thus, attempts to isolate or observe the parent compound (1 with
R' = R? = R® = H) by cycloaddition” or cyclorevision® approaches
and by using argon-matrix isolation technique were unsuccessful
and yielded unsubstituted 2 and other isomeric species. Elusive
1H-azirine intermediates were merely postulated in several other
reactions, which finally led to 2H-azirines,6 pyrroles,7 indoles,8
oxazoles,” isoquinolines,’® ketenimines,™ nitriles,"? or anilines.”
Furthermore, many quantum chemical calculations, that analyzed
the energy content,'* the molecular geometry,* the nitrogen
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inversion barrier,'® the basicity,"” and the vibrational frequencies
and IR intensities™ of the parent 1H-azirine 1, have been
published. All experimental and theoretical results emphasize the
properties of the antiaromatic heterocycles 1 as short-lived
intermediates, which cannot be isolated at room temperature.

Recently, Shin et al. reported on the isolation of a novel
modified base from the culture broth of the marine fungus
Acremonium strictum.” They called this compound acremolin
and analyzed the white amorphous solid with the help of HR-
FAB-MS to get the molecular formula C;;H13NsO. Moreover, IR
and UV spectra were recorded, and *H NMR and “*C NMR
investigations including 'H COSY, HSQC, and long-range
HMBC methods were performed. This led to the surprising
structure 4 (Figure 1). The authors emphasized that the presence
of a 1H-azirine moiety is unprecedented among natural
products.” However, such an antiaromatic heterocycle has never
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Scheme 1. Structures of 1H-azirines and 2H-azirines.
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Figure 1. Structure 4, reported for acremolin in ref.?, and the assignment of

the correspondingnc NMR signals and some of the 'H NMR signals
(6 values, DMSO-dg).

been isolated as a pure compound or characterized in solution
although this was tried many times.*

Some doubts about the structure 4 already resulted from the
chemical shifts in the "H NMR and **C NMR spectra reported by
Shin et al.”® The proton H-1' was said to generate a signal with &
= 7.37, which is within the typical region of aromatic compounds
(Figure 1).° But the antiaromatic properties of the 1H-azirine
moiety should induce a shielding effect for the perimeter proton
(H-1") and an upfield shift for the corresponding *H NMR
signal.* Furthermore, the great value of AJ(C-2'/C-1') = 44.9
ppm cannot be explained by the usual a-effect of an isopropyl
group on the adjacent olefinic carbon atom (+20.3 ppm) and the
corresponding p-effect (—11.5 ppm),? because the sum only
reaches a value of 31.8 ppm. Instead of 4, an alternative structure,
in which C-1' and C-2' are intrinsically (even without isopropyl
group) different, should be discussed. However, the strongest
argument against the structure 4 is the isolation of acremolin at
room temperature, which is absolutely incompatible with an
antiaromatic 1H-azirine moiety."*™*®
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Scheme 2. Structures of isomeric ethenoguanines with the
formula C H}3NO.

When the three-membered ring of 4 is omitted and a second
fused five-membered cyclic system is introduced, the isomeric
etheno-bridged guanines 5, 6, and 7 can result (Scheme 2).
Whereas 6 and 7 are not compatible with *H COSY or HMBC
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Figure 2. **C NMR and *H NMR data of 1H-imidazo[2,1-b]-
purine-4(5H)-one (8) reported in ref. 239 (5 values, DMSO-dg).

experiments reported™ by Shin et al., both regioisomers of 5 are
plausible candidates for a revised structure of acremolin.
Fortunately, the complete 'H NMR and *C NMR data of
compound 8 were published (Figure 2).* These data can now be
utilized to calculate the *H and *C NMR 6 values of 5a and 5b
(Figure 3). The additional methyl group at N-5 should induce
small upfield shifts for the four carbon atoms of the six-
membered ring. This assumption is based on *C NMR studies*
with uracil and 3-methyluracil, which show little shielding
effects due to the methyl group (Ad = 0.4 — 3.4 ppm). In the case
of 2-thiouracil and 3-methyl-2-thiouracil, the changes of the
chemical shifts are even smaller (Ad =0.5- 1.5 ppm).24
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Figure 3. Calculated 3¢ NMR and *H NMR data of 5a and 5b (o values,
DMSO-dg) based on the corresponding data of 8 and increments for the
additional methyl group at N-5 and the isopropyl group at C-7 or C-8.

Thus, upfield shifts of Ad = 1.0 ppm due to the additional
methyl group were included when the ¢ values of C-3a, C-4, C-
5a, and C-9a of 5a,b were calculated from the corresponding data
of 8 (Figure 3). Greater effects should be induced by the
isopropyl group, which is known to produce a downfield shift of
Ao =20.2 or 21.4 ppm for the ipso carbon in benzene or pyridine,
respectively.”® An average value of A = 20.8 ppm was used in
the calculation of J(C-7) in 5a and J(C-8) of 5b. Furthermore,
isopropyl groups cause moderate shielding effects for carbon
atoms in “ortho” position, for example, Ad = 2.2 ppm in benzene
and AS = 1.8 ppm in pyridine.” Thus, an upfield shift of Ad = 2.0
ppm was included when 6(C-8) of 5a and §(C-7) of 5b were
calculated from the corresponding data of 8. Finally, isopropyl
groups also induce a small shielding effect for protons in “ortho”
position (Ad = 0.13 ppm in the case of cumene).” This is taken
into consideration for 6(H-8) of 5a and d(H-7) of 5b (Figure 3).
The calculated results exclude 5b as a potential candidate, but the
NMR data estimated for 5a are nearly identical with those
measured for acremolin, which should no longer be characterized
by structure 4. Both structures, 4 and 5a, can easily be
distinguished when the coupling constants J(C-1'/H-1') of 4% or
1J(C-8/H-8) of 5a are known. In the case of 5a, the value of 1J
should be about 190 Hz, which is quite typical for *J(C-4/H-4) or



1J(C-5/H-5) of imidazoles.”” For example, *J(C-7/H-7) = 191 Hz
was measured for 8.2" On the other hand, *J(**C,*H) is expected
to be greater than 230 Hz for 1H-azirines such as 4 (compare also
to 1J(C-3/H-3) in 2H-azirines®).”’

In summary, it has been demonstrated now that there is no
necessity to assign the very unlikely antiaromatic structure 4 to
the natural product acremolin. Instead, this compound shows
stability and spectroscopic data, which are highly compatible
with the structure of N 3-ethenoguanine 5a. Thus, 1H-azirines
keep their classification as very short-lived intermediates.
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