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 Strained compounds are of special interest because of their 

increased energy content and the enhanced reactivity, which 

frequently results from this. For 1H-azirines 1 and 2H-azirines 2, 

it is obvious that both types of heterocycles include considerable 

ring strain (Scheme 1). However, the properties of 1 and 2 are 

quite different.
1
 A great number of 2H-azirines 2, especially 

those with R
1
 ≠ H, were isolated and characterized by 

spectroscopic methods in solution or even by X-ray 

crystallographic structure determination. Although compounds of 

type 2 are highly reactive, the 2H-azirine unit has been found in a 

few natural products.
2 

On the other hand, only five examples of 

short-lived 1H-azirines 3a,b were photochemically generated and 

detected at very low temperatures by IR spectroscopy, which 

indicated absorptions in the region of 1867–1890 cm
–1

 attributed 

to C=C valence vibration.
3
 Most probably, the push-pull 

substitution pattern of 3a,b diminishes the antiaromatic character 

of the 1H-azirine structure and increases the relative stability. 

Thus, attempts to isolate or observe the parent compound (1 with 

R
1
 = R

2
 = R

3
 = H) by cycloaddition

4
 or cyclorevision

5
 approaches 

and by using argon-matrix isolation technique were unsuccessful 

and yielded unsubstituted 2 and other isomeric species. Elusive 

1H-azirine intermediates were merely postulated in several other 

reactions, which finally led to 2H-azirines,
6
 pyrroles,

7
 indoles,

8
 

oxazoles,
9
 isoquinolines,

10
 ketenimines,

11
 nitriles,

12
 or anilines.

13
 

Furthermore, many quantum chemical calculations, that analyzed 

the energy content,
14

 the molecular geometry,
15

 the nitrogen  
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inversion barrier,
16

 the basicity,
17

 and the vibrational frequencies 

and IR intensities
18

 of the parent 1H-azirine 1, have been 

published. All experimental and theoretical results emphasize the 

properties of the antiaromatic heterocycles 1 as short-lived 

intermediates, which cannot be isolated at room temperature. 

 Recently, Shin et al. reported on the isolation of a novel 

modified base from the culture broth of the marine fungus 

Acremonium strictum.
19

 They called this compound acremolin 

and analyzed the white amorphous solid with the help of HR-

FAB-MS to get the molecular formula C11H13N5O. Moreover, IR 

and UV spectra were recorded, and 
1
H NMR and 

13
C NMR 

investigations including 
1
H COSY, HSQC, and long-range 

HMBC methods were performed. This led to the surprising 

structure 4 (Figure 1). The authors emphasized that the presence 

of a 1H-azirine moiety is unprecedented among natural 

products.
19

 However, such an antiaromatic heterocycle has never 
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Recently, acremolin (4), a novel modified base, was isolated from a marine-derived fungus and 

claimed to possess a structure with a 1H-azirine moiety. It is shown now that the reported NMR 

data are not compatible with this antiaromatic heterocycle, which should be an extremely 

unstable compound. An isomeric, substituted N
2
,3-ethenoguanine is presented as a plausible 

alternative structure of acremolin that is consistent with all spectroscopic data. Thus, 1H-azirines 

keep their classification as very short-lived intermediates.  
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been isolated as a pure compound or characterized in solution 

although this was tried many times.
1
 

Some doubts about the structure 4 already resulted from the 

chemical shifts in the 
1
H NMR and 

13
C NMR spectra reported by 

Shin et al.
19

 The proton H-1' was said to generate a signal with δ 

= 7.37, which is within the typical region of aromatic compounds 

(Figure 1).
20

 But the antiaromatic properties of the 1H-azirine 

moiety should induce a shielding effect for the perimeter proton 

(H-1') and an upfield shift for the corresponding 
1
H NMR 

signal.
21

 Furthermore, the great value of Δδ(C-2'/C-1') = 44.9 

ppm cannot be explained by the usual -effect of an isopropyl 

group on the adjacent olefinic carbon atom (+20.3 ppm) and the 

corresponding -effect (–11.5 ppm),
22

 because the sum only 

reaches a value of 31.8 ppm. Instead of 4, an alternative structure, 

in which C-1' and C-2' are intrinsically (even without isopropyl 

group) different, should be discussed. However, the strongest 

argument against the structure 4 is the isolation of acremolin at 

room temperature, which is absolutely incompatible with an 

antiaromatic 1H-azirine moiety.
1,3–18 

 When the three-membered ring of 4 is omitted and a second 

fused five-membered cyclic system is introduced, the isomeric 

etheno-bridged guanines 5, 6, and 7 can result (Scheme 2). 

Whereas 6 and 7 are not compatible with 
1
H COSY or HMBC 

experiments reported
19

 by Shin et al., both regioisomers of 5 are 

plausible candidates for a revised structure of acremolin. 

Fortunately, the complete 
1
H NMR and 

13
C NMR data of 

compound 8 were published (Figure 2).
23

 These data can now be 

utilized to calculate the 
1
H and 

13
C NMR δ values of 5a and 5b 

(Figure 3). The additional methyl group at N-5 should induce 

small upfield shifts for the four carbon atoms of the six-

membered ring. This assumption is based on 
13

C NMR studies
24

 

with uracil and 3-methyluracil, which show little shielding 

effects due to the methyl group (Δδ = 0.4 – 3.4 ppm). In the case 

of 2-thiouracil and 3-methyl-2-thiouracil, the changes of the 

chemical shifts are even smaller (Δδ = 0.5 – 1.5 ppm).
24

  

Thus, upfield shifts of Δδ = 1.0 ppm due to the additional 

methyl group were included when the δ values of C-3a, C-4, C-

5a, and C-9a of 5a,b were calculated from the corresponding data 

of 8 (Figure 3). Greater effects should be induced by the 

isopropyl group, which is known to produce a downfield shift of 

Δδ = 20.2 or 21.4 ppm for the ipso carbon in benzene or pyridine, 

respectively.
25

 An average value of Δδ = 20.8 ppm was used in 

the calculation of δ(C-7) in 5a and δ(C-8) of 5b. Furthermore, 

isopropyl groups cause moderate shielding effects for carbon 

atoms in “ortho” position, for example, Δδ = 2.2 ppm in benzene 

and Δδ = 1.8 ppm in pyridine.
25

 Thus, an upfield shift of Δδ = 2.0 

ppm was included when δ(C-8) of 5a and δ(C-7) of 5b were 

calculated from the corresponding data of 8. Finally, isopropyl 

groups also induce a small shielding effect for protons in “ortho” 

position (Δδ = 0.13 ppm in the case of cumene).
25

 This is taken 

into consideration for δ(H-8) of 5a and δ(H-7) of 5b (Figure 3). 

The calculated results exclude 5b as a potential candidate, but the 

NMR data estimated for 5a are nearly identical with those 

measured for acremolin, which should no longer be characterized 

by structure 4. Both structures, 4 and 5a, can easily be 

distinguished when the coupling constants 
1
J(C-1'/H-1') of 4

26
 or 

1
J(C-8/H-8) of 5a are known. In the case of 5a, the value of 

1
J 

should be about 190 Hz, which is quite typical for 
1
J(C-4/H-4) or 
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1
J(C-5/H-5) of imidazoles.

27
 For example, 

1
J(C-7/H-7) = 191 Hz 

was measured for 8.
23b

 On the other hand, 
1
J(

13
C,

1
H) is expected 

to be greater than 230 Hz for 1H-azirines such as 4 (compare also 

to 
1
J(C-3/H-3) in 2H-azirines

28
).

27
  

 In summary, it has been demonstrated now that there is no 

necessity to assign the very unlikely antiaromatic structure 4 to 

the natural product acremolin. Instead, this compound shows 

stability and spectroscopic data, which are highly compatible 

with the structure of N
2
,3-ethenoguanine 5a. Thus, 1H-azirines 

keep their classification as very short-lived intermediates.  
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