
Parallel Hardware- and Software Threads in a Dynamically Reconfigurable
System on a Programmable Chip

Marko Rößler
Chair Circuit and System Design

Chemnitz University of Technology
09126 Chemnitz, Germany

email: marr@infotech.tu-chemnitz.de

Today’s embedded systems depend on the availability of hybrid
platforms, that contain heterogeneous computing resources such as
programmable processors units (CPU’s or DSP’s) and highly spe-
cialized hardware cores. These platforms have been scaled down
to integrated embedded system-on-chip. Modern platform FPGAs
enhance such systems by the flexibility of runtime configurable sil-
icon. One of the major advantages that arises is the ability to use
hardware (HW) and software (SW) resources in a time-shared man-
ner. Though the ability to dynamically assign computing resources
based on decisions taken at runtime is given.

The traditional way to implement efficient computational tasks
on FPGA based hybrid platforms requires the development along
two paths. Application development starts with the decision about
HW/SW partitioning of parallel component computations (sub-
tasks). It is followed by embedded software implementation, most
likely in C, and custom hardware core implementation by the use of
hardware description languages like VHDL or Verilog. Synthesis,
mapping and extensive testing finalize the process. It would be ad-
vantageous to abstract away the distinction between the two sides
of the traditional low-level HW/SW development into a system-
level perspective and provide a continuous programming scheme
throughout the development process.

Previous work in the field of unified programming models for
platform FPGA’s has been dominated by Andrews et al. [1] and
their HThreads project. They were first in proposing a thread based
model and utilize a C-to-HDL transformation to generate simple
hardware threads. Remarkable is that they implement major parts of
the operating system in hardware with focus on hard real time con-
straints. Thus dropping the flexibility of executing computation in
software and the portability of their applications. Another approach
is the RoConOS project by Lübbers et al. [2]. Off-the-shelf embed-
ded OS (eCos and Linux) are extended to provide multi threading
primitives to native hardware cores. Focus is to integrate existing
IP into a software multi threaded environment. They embed the
cores into a VHDL wrapper that consists of a state machine. It ex-
ecutes all interactions with the OS and enables a blockable control
flow. Another OS for dynamically reconfigurable FPGAs has been
developed by Steiger et al. [3]. All works manage task queues and
placement but do not allow migration between computing resources
and preemption of tasks.

Respective programming models are still immature, as they gen-
erally treat FPGAs as independent accelerators and therefore miss
to utilize the full potential. Further more distributed and parallel
computation on hybrid platforms requires:

• Independence from execution domain for component
computations

• Execution synchronization between component compu-
tations

• Preemption of component computations for dynamic
partitioning

• Efficient HW/SW scheduling algorithm to address soft
real time constraints.

From the programmers point of view the following features are crit-
ical:

• Uniform programming language
• Access to an HW/SW runtime environment that pro-

vides common operating system primitives
• Automated tool and work flow with simulation capabil-

ities during the design process.
The major novelty of this work is to deploy modern High-Level-

Synthesis technology as key to create a uniform programming
model [4] to address these points. Thus achieving major improve-
ments in system efficiency while increasing productivity and porta-
bility. To the best of my knowledge this is the first work that com-
bines an integrative programming view and an unitary runtime en-
vironment across the HW/SW boundary. The software concept of
concurrently running threads is utilized to implement component
computations in line with the well known POSIX API standard in
augmented C language. The synthesis tool flow is based on a mod-
ified commercial High-Level C to VHDL transformation. The tool
is enhanced to generate functional identically instances of a thread
for HW and SW domain, communication interfaces, management
code injection to support preemption, and runtime primitives i.e.
semaphores. A modified Linux kernel is used to provide the uni-
form runtime environment including the scheduler that is aware of
an applications real time constraints. Management of the config-
urable logic area is carried out by the reconfiguration controller in a
fragmentation preventing manner.

The current state of my work supports shared memory, creation
and destruction of threads and protection of shared resources by
mutexes due to the enhancement of the High-Level synthesis tool
CoDeveloper. Presently we are capable to cooperatively preempt
threads and migrate them including the traversal of the HW/SW
boundary at runtime [5]. We further introduce a simple scheduler
that preferably schedules threads to hardware computation and as-
signs mutexes priority based. The integration of more sophisticated
scheduling algorithms as in [6] is subject to further work.

REFERENCES

[1] D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck, J. Stevens, F. Baijot,
and E. Komp, “Achieving programming model abstractions for reconfigurable
computing,” IEEE Trans. Very Large Scale Integr. Syst., vol. 16, no. 1, pp. 34–
44, 2008.

[2] E. Lubbers and M. Planner, “ReconOS: An RTOS Supporting Hard-and Soft-
ware Threads,” Aug. 2007, pp. 441–446.

[3] C. Steiger, H. Walder, and M. Platzner, “Operating systems for reconfigurable
embedded platforms: online scheduling of real-time tasks,” Computers, IEEE
Transactions on, vol. 53, no. 11, pp. 1393–1407, Nov. 2004.

[4] M. Rössler and U. Heinkel, “Preemptive HW/SW-Threading by combining ESL
methodology and coarse grained reconfiguration,” in ReCoSoC’08: Proceedings
of the 4th International Workshop on Reconfigurable Communication Centric
System-on-Chips, Barcelona, Spain, July 2008.

[5] E. Billich, M. Rössler, and U. Heinkel, “Flexible Implementation of a MJPEG
Coding Chain using Preemptive HW/SW-Threading,” in submitted, December
2008.

[6] N. Guan, Q. Deng, Z. Gu, W. Xu, and G. Yu, “Schedulability analysis of preemp-
tive and nonpreemptive EDF on partial runtime-reconfigurable FPGAs,” ACM
Trans. Des. Autom. Electron. Syst., vol. 13, no. 4, pp. 1–43, 2008.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Multimedia ONline ARchiv CHemnitz

https://core.ac.uk/display/153229432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

