
PARALLEL THREE-DIMENSIONAL NONEQUISPACED FAST
FOURIER TRANSFORMS AND THEIR APPLICATION TO

PARTICLE SIMULATION

MICHAEL PIPPIG AND DANIEL POTTS

Abstract. In this paper we describe a parallel algorithm for calculating nonequispaced fast
Fourier transforms on massively parallel distributed memory architectures. These algorithms are
implemented in an open source software library called PNFFT. Furthermore, we derive a parallel
fast algorithm for the computation of the Coulomb potentials and forces in a charged particle system,
which is based on the parallel nonequispaced fast Fourier transform. To prove the high scalability of
our algorithms we provide performance results on a BlueGene/P system using up to 65536 cores.
Key words and phrases: parallel nonequispaced fast Fourier transform, parallel fast summation,
parallel particle mesh methods, NFFT
2000 AMS Mathematics Subject Classification : 65T50, 65Y05

1. Introduction. A broad variety of mathematical algorithms and applications
depends on the calculation of the nonequispaced discrete Fourier transform (NDFT),
which is a generalization of the discrete Fourier transform to nonequispaced nodes.
Especially its fast approximate realization called nonequispaced fast Fourier transform
(NFFT) [7, 2, 43, 46, 42, 18, 27] multiplied the application areas, since it led to
fast algorithms in computerized tomography [14, 8], particle simulation [40, 21] and
spectral methods on adaptive grids, just to name a few examples. An extensive list
of applications can be found e.g. in [18].

Roughly speaking, the nonequispaced fast Fourier transform consists of three
steps. First, a deconvolution in Fourier space. Second, a fast Fourier transform
(FFT) and, finally, a discrete convolution in spatial domain. The deconvolution and
convolution is performed with a window function that is well localized in Fourier and
spatial domain. Therefore, the convolution steps can be performed approximately in a
fast way. Another advantage of the good localization is, that parallel implementations
of the convolution steps only require next neighbor communication.

The FFT plays central role in the modular structure of the NFFT algorithm and
is a perfect example for the important interplay between the development of fast al-
gorithms and sustainable software engineering in order to produce high performance
software. Without a doubt, the FFTW software library [16, 17] is an outstanding
implementation of the fast Fourier transform and one of the most important soft-
ware packages in scientific computing. It offers support of shared memory parallelism
and also distributed memory parallelism based on a one-dimensional decomposition
of the input array. However, it has been argued that the one-dimensional data de-
composition is not scalable enough for modern massive parallel distributed memory
architectures [5, 10, 12, 44]. Whenever the dimensionality of the input array is at
least three, a more scalable two-dimensional domain decomposition can be applied.
Several publicly available parallel FFT software libraries [39, 34, 32, 31, 37, 35] based
on this approach have been proposed during the last years.

Following the example of the FFTW software library, the NFFT algorithm has
been implemented in the publicly available NFFT software library [27, 26], which also
offers support of shared memory parallelism [45] and a parallel implementation for

{michael.pippig,potts}@mathematik.tu-chemnitz.de,
Chemnitz University of Technology, Department of Mathematics, 09107 Chemnitz, Germany

1

graphic processing units [28]. However, to our knowledge there is no publicly available
implementation of the NFFT algorithm based on distributed memory parallelism. The
algorithms in this paper and their publicly available implementations are intended to
close the gap between NFFT and modern distributed memory architectures.

In this paper we propose a parallel algorithm for computing the NFFT on mas-
sively parallel distributed memory architectures. This algorithm strongly requires the
parallel pruned FFT [37] in order to overcome severe load balancing problems. Our
highly scalable implementation is based on the Message Passing Interface [33] and
utilizes the PFFT software library [35] for computing the pruned FFT in parallel.
Furthermore, we describe a massively parallel fast summation algorithm based on the
parallel NFFT. The fast summation algorithm [40, 41] deals with the computation
of Coulomb interactions in charged particle systems with non-periodic boundary con-
ditions. This is similar to Ewald-like particle-mesh algorithms, which only work for
periodic boundary conditions, see e.g. [19, Ch. 7] for an overview. Indeed, in [38]
we point out that the building blocks of the fast summation [40, 41] for non-periodic
boundary conditions and the fast Ewald summation [21] for periodic boundary con-
ditions are very similar. Especially, both algorithms employ the NFFT in order to
achieve a fast algorithm. To our knowledge, this is the first paper that presents results
on distributed memory parallelization of particle-mesh algorithms with non-periodic
boundary conditions. A numerical comparison with parallel implementation of other
methods, e.g. FMM [25], will be published elsewhere.

The outline of this paper is as follows: We start in Section 2 with the introduction
of the notation and definitions that we will use in the remainder of the paper. Next,
we give the definition of the nonequispaced discrete Fourier transform and explain the
basic principles of the NFFT in Section 3. In Section 4 we present our parallel NFFT
algorithm, which we apply in Section 5 to develop a parallel algorithm for computing
the Coulomb potentials and fields of a charged particle system. Section 6 contains
performance evaluations of our publicly available, parallel implementation. Finally,
we conclude the paper in Section 7.

2. Notation, Definitions and Assumptions. In this section we introduce
the notation, basic definitions and assumptions that are used throughout the entire
paper. Assume the multi-bandwidth N = (N0, N1, N2)> ∈ 2N3. We define the multi-
index set of possible frequencies IN :=

{
−N0

2 , . . . ,
N0
2 − 1

}
×
{
−N1

2 , . . . ,
N1
2 − 1

}
×{

−N2
2 , . . . ,

N2
2 − 1

}
, the total number of frequencies |IN | = N0 ·N1 ·N2 and the three-

dimensional torus T3 := R3/Z3 ∼ [− 1
2 ,

1
2)3. For |IN | complex numbers f̂k, k ∈ IN ,

the trigonometric polynomial f : T3 → C is given by

f(x) =
∑

k∈IN

f̂ke−2πikx. (2.1)

The fast evaluation of f at arbitrarily chosen nodes xj ∈ T3, j = 1, . . . ,M , with
M ∈ N, i.e.,

fj := f(xj) =
∑

k∈IN

f̂ke−2πikxj , j = 1, . . . ,M, (2.2)

is known as three-dimensional nonequispaced fast Fourier transform (NFFT). Equa-
tion (2.2) can be written as a matrix-vector product,

f = Af̂ ,

2

with the vectors f := (fj)j=1,...,M ∈ CM , f̂ := (f̂k)k∈IN
∈ C|IN |, and the non-

equispaced Fourier matrix A :=
(
e−2πikxj

)
j=1,...,M ; k∈IN

∈ CM×|IN |. For clarity of
presentation the multi-index k addresses elements of vectors and matrices as well.
In general, the matrix A is not square. Even for the square case, it is usually not
orthogonal. Therefore, the definition of an inverse NFFT is not canonical, but can be
realized by an iterative method, see e.g. [29]. Instead, it is customary to define the
adjoint transform by the matrix-vector product

ĥ = Aàf ,

that is equivalent to the sums

ĥk =
M∑
j=1

fje+2πikxj , k ∈ IN , (2.3)

with the vector ĥ := (ĥk)k∈IN
. In addition, we are interested in the fast calculation

of the gradients

∇fj := ∇f(xj) =
∑

k∈IN

f̂k∇e−2πikxj , j = 1, . . . ,M. (2.4)

Equation (2.4) can be written as a matrix-vector product,

∇f = ∇Af̂ ,

with the vectors ∇f := (∇fj)j=1,...,M ∈ C3M , f̂ := (f̂k)k∈IN
∈ C|IN |, and the matrix

∇A :=
(
∇e−2πikxj

)
j=1,...,M ; k∈IN

∈ C3M×|IN |.
The parallel NFFT (PNFFT) algorithms, implemented in our library [36], are fast

approximate algorithms to compute the sums in (2.2) and the adjoint transform (2.3).
These both transforms are also the cornerstone for the nonequispaced convolution, see
e.g. [30]. In addition, we implemented a fast approximate algorithm for computing
the gradients (2.4).

3. The Three-Dimensional NFFT Algorithm. This section summarizes the
mathematical theory and ideas behind the NFFT based on [42, 26, 27]. For further
NFFT approaches see [27, Appendix C]. Assume n = (n0, n1, n2)> ∈ 2N3, with N ≤
n. Again, we use the multi-index set In :=

{
−n0

2 , . . . ,
n0
2 − 1

}
×
{
−n1

2 , . . . ,
n1
2 − 1

}
×{

−n2
2 , . . . ,

n2
2 − 1

}
and the total number of frequencies |In| = n0 · n1 · n2. Let

ψ : T → R be a smooth window function, i.e., a function that is well localized in
spatial domain and in frequency domain. We denote its Fourier coefficients by ψ̂k,
k ∈ Z. Furthermore, we define a multivariate window function ϕ : T3 → R by the
tensor product ϕ (x) := ψ (x0)ψ (x1)ψ (x2). A simple consequence is that its Fourier
coefficients

ϕ̂k :=
∫
T3
ϕ(x)e+2πikxdx

are given by ϕ̂k = ψ̂k0 ψ̂k1 ψ̂k2 , k = (k0, k1, k2)> ∈ Z3 with ψ̂k :=
∫
T ψ(x)e+2πikxdx

and the gradient ∇ϕ(x) can be easily computed by

∇ϕ(x) = (ψ′(x0)ψ(x1)ψ(x2), ψ(x0)ψ′(x1)ψ(x2), ψ(x0)ψ(x1)ψ′(x2))> .
3

We follow the general approach of [43, 42] and approximate the complex expo-
nentials in the trigonometric polynomial (2.1) by

e−2πikx ≈ 1
|In|ϕ̂k

∑
l∈In,m(x)

ϕ
(
x− l� n−1) e−2πik(l�n−1) ,

where the multi-index set

In,m (x) := {l ∈ In : n� x−m1 ≤ l ≤ n� x +m1}

collects these indexes where the window function ϕ is mostly concentrated. Here,
m ∈ N is a small window cutoff parameter, which depends on the particular choice
of the window function. We use the vector 1 := (1, 1, 1)>, the component-wise vector
product n � x := (n0x0, n1x1, n2x2)>, the reciprocal of a vector n with nonzero
components n−1 :=

(
n0
−1, n1

−1, n−1
2
)> and the inequality between two vectors holds

component-wise.
After changing the order of summation in (2.1) we obtain for xj ∈ T3, j =

1, . . . ,M, the approximation

f (xj) ≈
∑

l∈In,m(xj)

(∑
k∈IN

f̂k

|In|ϕ̂k
e−2πik(l�n−1)

)
ϕ
(
xj − l� n−1) ,

which causes a truncation error and an aliasing error, see [42, 27] for details. As can
be readily seen, after an initial deconvolution step,

ĝk = f̂k

|In|ϕ̂k
, k ∈ IN , (3.1)

the expression in brackets can be computed via a three-dimensional oversampled FFT
of total size |In|,

gl =
∑

k∈IN

ĝke−2πik(l�n−1), l ∈ In . (3.2)

The final step consists of the evaluation of sums having at most (2m+1)3 terms where
the window function ϕ is sampled only in the neighborhood of the node xj , i.e.,

f(xj) ≈ sj :=
∑

l∈In,m(xj)

gl ϕ
(
xj − l� n−1) , (3.3)

and

∇f(xj) ≈ ∇sj :=
∑

l∈In,m(xj)

gl∇ϕ
(
xj − l� n−1) .

In addition to the evaluation of the window function ϕ, it requires roughly |IN |+
|In| log |In| + (2m + 1)3M floating point operations. In matrix-vector notation, the
NFFT Algorithm can be written as Af̂ ≈ BF Df̂ , where D is a real |IN | × |IN |
diagonal matrix defined by

D := diag (1/ϕ̂k)k∈IN
.

4

The matrix F := (e−2πik(n−1�l))l∈In,k∈IN
is a truncated Fourier matrix of size |In|×

|IN | and B denotes the sparse real M × |In| matrix

B := (bjl)j=1,...,M ; l∈In
, bjl :=

{
ϕ
(
xj − n−1 � l

)
: l ∈ In,m(xj)

0 : l /∈ In,m(xj)
.

An approximation of the adjoint transform is given by Aàf ≈ DF àB>f . The
gradients (2.4) can be approximated by means of the analytic derivative of the window
function [11], i.e., ∇Af̂ ≈ ∇BF Df̂ with

∇B := (∇bjl)j=1,...,M ; l∈In
, ∇bjl :=

{
∇ϕ

(
xj − n−1 � l

)
: l ∈ In,m(xj)

0 : l /∈ In,m(xj)
.

Note that the NFFT and gradient NFFT only differ in the multiplication with the last
matrix B and ∇B, respectively. Since the window function ϕ is defined as a tensor
product, the evaluation of function values for both matrices can be easily combined.
For a given node x = (x0, x1, x2)> ∈ T3 it is sufficient to evaluate the one-dimensional
window function ψ and its derivative ψ′ at the three coordinates x0, x1, x2.

To keep the approximation error small, several functions ϕ with good localization
in time and frequency domain have been proposed. In our parallel NFFT implemen-
tation the user is free to choose between the (dilated) Gaussian [7, 43, 6], (dilated)
cardinal central B–splines [2, 43], and (dilated) Kaiser–Bessel functions [24, 15]. We
point out that the approximation error introduced by the NFFT decays exponentially
with the number of summands m. Error estimates for the multivariate case were pre-
sented in [9], see also [27, Appendix C]. In the case of the Gaussian window function,
the evaluations of the exponential function exp() can be reduced substantially, see
[18] and [27, Appendix C].

4. The Parallel Three-Dimensional NFFT Algorithm. In this section we
describe a parallel algorithm for computing the three-dimensional NFFT on massively
parallel, distributed memory architectures. The implementation of this algorithm is
based on the Massage Passing Interface [33]. Our parallel NFFT (PNFFT) algorithm
combines the serial three-dimensional NFFT algorithm from Section 3 with a three-
dimensional block domain decomposition. In addition, we pay special attention to
the case where all the nonequispaced nodes xj are contained in a special subset of
the torus T3. For C = (C0, C1, C2)> ∈ R3 with 0 < C0, C1, C2 ≤ 1 we define the
truncated torus T3

C := [−C0
2 ,

C0
2) × [−C1

2 ,
C1
2) × [−C2

2 ,
C2
2). For the parallel NFFT

we assume xj ∈ T3
C for every j = 1, . . . ,M . Obviously, for C0 = C1 = C2 = 1

this corresponds to the serial NFFT, where the nodes xj are contained in the whole
three-dimensional torus T3. This slight generalization is necessary in order to assure
a load balanced distribution of nodes xj whenever the nodes are concentrated in the
center of the box.

4.1. Description of the Algorithm. Assume P = (P0, P1, P2)> ∈ N3. We
identify every MPI process of a given parallel hardware architecture with a multi-
index of the three-dimensional process mesh PP := {0, . . . , P0 − 1}×{0, . . . , P1 − 1}×
{0, . . . , P2 − 1}. For every process r = (r0, r1, r2)> ∈ PP we define the multi-index
set

I r
N ,P =

{
(k0, k1, k2)> ∈ IN : −Nt2 + rt

Nt
Pt
≤ kt < −

Nt
2 + (rt + 1)Nt

Pt
, t = 0, 1, 2

}
.

5

At the beginning of our parallel algorithm, we assume the NFFT input array of |IN |
complex numbers to be distributed among the three-dimensional process mesh PP

such that every process r ∈ PP holds the input data f̂k, k ∈ Ir
N ,P in its locally

available memory. For the sake of simplicity, we assume that the input array sizes
N0, N1, N2 are divisible by the process mesh sizes P0, P1, P2. Therefore, the input
array is distributed in equal blocks of sizeN0/P0·N1/P1·N2/P2. This restriction serves
to keep the notation simple. Nevertheless, our implementation supports arbitrary
process mesh sizes P ∈ N3.

The serial NFFT algorithm starts with the deconvolution step (3.1) that consists
of an ordinary point wise multiplication. It can be calculated straight forward in
parallel, i.e., every process r ∈ PP computes

ĝk = f̂k

|In|ϕ̂k
, k ∈ Ir

N ,P .

In the second step (3.2) we compute a three-dimensional oversampled FFT. Be-
fore we look at the parallel counter part of this step, we need the following slight
generalization. Similar to the truncated input data set of an oversampled FFT, we
want to allow a truncated output data set. Therefore, we introduce the pruned FFT
output size L ∈ 2N3 with L ≤ n. Hereby, the inequality holds component-wise. The
pruned FFT is given by

gl =
∑

k∈IN

ĝke−2πik(l�n−1), l ∈ IL ,

with IL := {−L0
2 , . . . ,

L0
2 −1}×{−L1

2 , . . . ,
L1
2 −1}×{−L2

2 , . . . ,
L2
2 −1}. Obviously, for

L = n the pruned FFT coincides with the second step of the serial NFFT algorithm
given by equation (3.2). The significance of the pruned FFT output size L becomes
clear, if we have look at the third step of the NFFT algorithm shown in equation (3.3).
There the summation runs over the multi-index sets In,m (xj) ⊂ In, j ∈M. We want
to take advantage of the fact that all the nodes xj are contained in the truncated torus
T3

C . In order to avoid the computation of unneeded coefficients gl we are looking for
the smallest multi-index set IL that holds In,m (xj) ⊂ IL for every j ∈ M. The
component-wise smallest L = (L0, L1, L2)> ∈ 2N3 that fulfills these conditions is
given by

Lt := min
{
nt, 2

(⌈
Ct
nt
2

⌉
+m

)}
, t = 0, 1, 2 .

In parallel we substitute the three-dimensional pruned FFT by a parallel one, i.e.,

gl =
∑

s∈PP

∑
k∈Is

N,P

ĝk e−2πik(n−1�l), l ∈ Ir
L,P .

The formal order of summation in this notation was chosen to symbolize the parallel
data decomposition of a block distributed parallel three-dimensional FFT algorithm.
In general, a parallel FFT algorithm may use a different order of summation or an
approximate algorithm to calculate the Fourier transform. The inner sum reflects that
every process s ∈ PP starts with calculations on its locally available input data block
of sizeN0/P0·N1/P1·N2/P2. The outer sums stands for the global communication that
must be performed somehow within the parallel FFT algorithm. After the parallel

6

FFT the output data gl, l ∈ IL, is distributed on the process mesh in a similar way as
the input data set, i.e., every process owns a block of L0/P0 · L1/P1 · L2/P2 complex
numbers. We assume that L0, L1, L2 are divisible by the process mesh sizes P0, P1, P2
in order to keep the notation simple. Again, for every process r ∈ PP the multi-index
set

I r
L,P :=

{
(k0, k1, k2)> ∈ In : −Lt2 + rt

Lt
Pt
≤ kt < −

Lt
2 + (rt + 1)Lt

Pt
, t = 0, 1, 2

}
collects all the multi-indexes of locally available data. We apply the PFFT software
library [35] for computing the parallel pruned FFT. This library was developed for
calculating parallel FFT on massively parallel architectures. It uses a transpose FFT
algorithm that consist of successive one-dimensional FFT and global data transposi-
tions, see [37] for details. We stress that PFFT is the only publicly available parallel
FFT software library that pays special attention to the efficient parallel computa-
tion of pruned FFT. This feature is crucial in order to assure a good load balancing
of our parallel NFFT algorithm. It is noteworthy to say that PFFT is based on a
two-dimensional domain decomposition, i.e., the three-dimensional decomposed FFT
input ĝk, k ∈ Ir

N ,P , and output gl, l ∈ Ir
L,P is redistributed before and after every

parallel FFT. Therefore, an upper limit for the number of processes is given by the
two-dimensional decomposition of the parallel FFT.

The block data distribution of the FFT output gl, l ∈ IL, naturally induces a
block decomposition of the truncated Torus T3

C . This motivates the definition of the
index sets

Mr
P :=

{
j = 1, . . . ,M : ∃l ∈ Ir

L,P with l ≤ n� xj < l + 1
}
,

for every process r ∈ PP . We assign all nodes xj , j ∈Mr
P , to a single process r ∈ PP .

As one can already see, heterogeneous distributions of the nodes xj , j = 1, . . . ,M ,
can lead to imbalances in memory consumption and workload between the processes,
which is a typical problem of mesh based domain decompositions.

According to the discrete convolution step of the serial NFFT algorithm, we
compute the sums (3.3), which run over the local multi-index sets In,m (xj), j ∈Mr

P .
Our choice of parameter L assures In,m (xj) ⊂ IL for every j ∈Mr

P , i.e., the output
of the pruned FFT is sufficient. But in general, not all sufficient data gl, l ∈ In,m (xj),
is located on a single process r. Therefore, we perform a communication step in order
to gather all the additionally needed data. However, this step equals to a mesh ghost
cell communication [20, Ch. 5.6.1] and only involves nearest neighbor communication.
With the definition of the multi-index sets

I r
L,P ,m :=

{
(l0, l1, l2) ∈ In :

− Lt
2 + rt

Lt
Pt
−m ≤ lt < −

Lt
2 + (rt + 1)Lt

Pt
+m, t = 0, 1, 2

}
,

for all processes r ∈ PP , we symbolize the ghost cell communication by

gr
l = gl, l ∈ Ir

L,P ,m \ Ir
L,P . (4.1)

We use the ghost cell support of the PFFT software library for implementing the
ghost cell communication. Finally, the sums

sj =
∑

l∈In,m(xj)

gr
l ϕ(xj − n−1 � l), j ∈Mr

P ,

7

are calculated locally on all processes r ∈ PP . Alg. 1 summarizes the PNFFT algo-
rithm in pseudo-code.

Input: xj ∈ T3
C , j ∈Mr

P , and f̂k ∈ C, k ∈ Ir
N ,P .

1: For k ∈ Ir
N ,P compute ĝk := |In|−1 · f̂k/ϕ̂k.

2: For l ∈ Ir
L,P compute gl :=

∑
s∈PP

∑
k∈Is

N,P

ĝk e−2πik(n−1�l) by a parallel

three-dimensional pruned FFT.
3: For l ∈ Ir

L,P ,m \ Ir
L,P copy gr

l := gl by a ghost cell communication.

4: For j ∈Mr
P compute sj :=

∑
l∈In,m(xj)

gr
l ϕ(xj − n−1 � l).

5: For j ∈Mr
P compute ∇sj :=

∑
l∈In,m(xj)

gr
l ∇ϕ(xj − n−1 � l).

Output: Approximate function values sj ≈ fj and gradients ∇sj ≈ ∇fj , j ∈Mr
P .

Alg. 1: Parallel, three-dimensional, nonequispaced fast Fourier transform (PNFFT)
for each process r ∈ PP .

The adjoint PNFFT algorithm can be derived analogously from the serial adjoint
NFFT algorithm [27]. Note that the adjoint counterpart of the ghost cell communi-
cation (4.1) is a sum over all ghost cells, i.e.,

gl =
∑

s∈PP

gs
l , l ∈ Ir

L,P .

The pseudo-code of the adjoint PNFFT is given by Alg. 2.

Input: xj ∈ T3
C , and fj ∈ C, j ∈Mr

P .

1: For l ∈ Ir
L,P ,m compute gr

l :=
∑

{j∈Mr
P :

l∈In,m(xj)}

fj ϕ(xj − n−1 � l).

2: For l ∈ Ir
L,P accumulate gl :=

∑
s∈PP

gs
l by an adjoint ghost cell communication.

3: For k ∈ Ir
N ,P compute ĝk :=

∑
s∈PP

∑
l∈Is

L,P

gl e+2πik(n−1�l) by an adjoint parallel

three-dimensional pruned FFT.
4: For k ∈ Ir

N ,P compute ŝk := |In|−1 · ĝk/ϕ̂k.

Output: Approximate coefficients ŝk ≈ ĥk, k ∈ Ir
N ,P .

Alg. 2: Adjoint, parallel, three-dimensional, nonequispaced fast Fourier transform
(adjoint PNFFT) for each process r ∈ PP .

8

5. Application of the Parallel NFFT. In this section we demonstrate the
application of our parallel NFFT algorithm in order to calculate the Coulomb poten-
tials and forces of a charged particle system on massively parallel distributed memory
architectures. We start with the outline of the serial fast summation algorithm [40, 41]
and continue with its parallel counterpart.

5.1. Serial Fast Summation Algorithm. Assume M charged particles with
charge qj ∈ R at position xj ∈ T3, j = 1 . . . ,M . We are interested in the fast
evaluation of the potentials

φj := φ(xj) =
M∑
l=1
l 6=j

ql
1

‖xj − xl‖2
, j = 1, . . . ,M, (5.1)

and fields

Ej := −∇φ(xj) = −
M∑
l=1
l 6=j

ql
xj − xl
‖xj − xl‖3

2
, j = 1, . . . ,M . (5.2)

Hereby, ‖x‖2 := (x2
0 + x2

1 + x2
2)1/2 denotes the Euclidean norm. Without loss of

generality we may assume that the nodes are scaled, such that ‖xj‖2 <
1
4 −

εB
2 and

consequently ‖xj − xl‖2 <
1
2 − εB.

We outline the NFFT based fast summation algorithm. It requires O(M log 3
√
M)

arithmetic operations for uniformly distributed source nodes xj . This approach was
suggested in [40, 41]. There, a regularization

R(r) :=

TI(r) if r ≤ εI,

TB(r) if 1
2 − εB < r < 1

2 ,

TB(1
2) if 1

2 ≤ r,
1
r otherwise,

has been introduced. The functions TI and TB are chosen such that R(‖x‖2) is in
the Sobolev space Hp(T3) for an appropriate degree of smoothness p ∈ N. Several
regularizations of 1

r are possible, e.g., by algebraic polynomials, splines, trigonometric
polynomials or two point Taylor interpolation, see [13]. The potentials φj in equa-
tion (5.1) can be approximated by

φj ≈ hj := φNE
j + φRF

j ,

where

φNE
j := R(0) +

∑
l∈INE

εI
(j)

ql

(
1

‖xj − xl‖2
−R(‖xj − xl‖2)

)
, (5.3)

φRF
j :=

∑
k∈IN

R̂k

(
M∑
l=1

qle+2πikxl

)
e−2πikxj . (5.4)

Hereby, the index set INE
εI

(j) := {l ∈ {1, . . . ,M} \ {j} : ‖xj − xl‖2 < εI} collects all
the indexes of xj next neighbors and the Fourier coefficients of the regularized kernel
function

R̂k := 1
|IN |

∑
l∈IN

R(‖N−1 � l‖2)e+2πi(N−1�l)k, k ∈ IN ,

9

are precomputed by a three-dimensional discrete Fourier transform. Since the gra-
dient of the regularization is given by ∇R(‖x‖2) = R′(‖x‖2) x

‖x‖2
, we are able to

approximate the fields Ej in equation (5.2) analogously to the potentials by

Ej ≈ ∇hj := ENE
j + ERF

j ,

where

ENE
j := −

∑
l∈INE

εI
(j)

ql
xj − xl
‖xj − xl‖2

(
1

‖xj − xl‖2
2
−R′(‖xj − xl‖2)

)
, (5.5)

ERF
j := −

∑
k∈IN

R̂k

(
M∑
l=1

qle+2πikxl

)
∇e−2πikxj . (5.6)

If the nodes xj are “sufficiently uniformly distributed” this can indeed be done in a
fast way, namely:

Near field computation (5.3), (5.5). To achieve the desired complexity of our
algorithm we suppose that there exists a small constant ν ∈ N such that the near field
index sets INE

εI
(j) contain at most ν indexes for every node xj , j = 1, . . . ,M . This

implies that εI depends linearly on 1/ 3
√
M . Then for fixed xj the sum (5.3) contains

not more than ν terms so that its evaluation at all M nodes xj requires only O(νM)
arithmetic operations.

Far field computation (5.4), (5.6) by NFFT. The expression in the inner
brackets of (5.4) can be computed by an adjoint parallel three-dimensional NFFT of
total size |IN |. This is followed by |IN | multiplications with the Fourier coefficients
R̂k of the regularized kernel function and completed by a parallel three-dimensional
NFFT of total size |IN | to compute the outer most sum. If m is the cut-off parameter
and n the FFT size of the (adjoint) NFFT, then the proposed evaluation of φRF

j at
the nodes xj , j = 1, . . . ,M requires O(m3M + |In| log |In|)) arithmetic operations.
The relation between M,N and n is determined by the approximation error of the
algorithm and is discussed in detail in [40, 41, 13].

5.2. Parallel Fast Summation Algorithm. After we have seen the highly
modularized structure of the serial fast summation algorithm it is easy to derive a
parallel fast summation algorithm by substituting every module with its parallel coun-
terpart. Our parallel algorithm starts with a parallel forward sorting step that assures
the following two conditions. First we need to distribute the nodes xj according to
our block decomposition such that every process r ∈ PP holds the nodes xj , j ∈Mr

P .
Furthermore, every process r ∈ PP needs local copies of all the nodes that are in-
volved in the calculation of the near field sums (5.1) and (5.5), i.e., all the nodes xj ,
j ∈

⋃
l∈Mr

P
INE
εI

(l). We perform these two tasks at once using a fine-grained data
distribution operation [23] that is implemented within a software library for parallel
sorting algorithms [3].

Note that the serial fast summation algorithm requires the condition ‖xj‖2 <
1
4−εB for every node xj , j = 1, . . . ,M . Therefore, we set C = (1

4−εB ,
1
4−εB ,

1
4−εB)>

and our parallel adjoint NFFT starts with a three-dimensional decomposition of the
truncated torus T3

C . We stress that the usage of the truncated torus T3
C is crucial

in order to avoid severe load balancing problems in this case. If we use a block
decomposition of the whole torus T3 instead, at most an eighth of the processes will
receive a non empty block.

10

After the parallel forward sort every process r ∈ PP owns all the local particles
xj , j ∈Mr

P , and the associated particles in the near field radii of these particles, i.e.,
xj , j ∈

⋃
l∈Mr

P
INE
εI

(l). Now, the local near field computations (5.3) and (5.5) are
performed with a standard linked cell algorithm, see e.g. [22, Ch. 8.4] or [19, Ch. 3],
and the far field computations are split into the following three steps.

At first we compute

âk :=
∑

s∈PP

∑
j∈Ms

P

qje+2πikxj , k ∈ Ir
N ,P

by an adjoint parallel three-dimensional NFFT (Alg. 2). Again the formal order of
summation was chosen to reflect the parallel data decomposition. The convolution
in Fourier space is a simple point wise multiplication an is performed locally on each
process r ∈ PP , i.e.,

d̂k := âkR̂k , k ∈ Ir
N ,P .

Hereby, the Fourier coefficients R̂k of the regularization R are precomputed by a
parallel three-dimensional FFT

R̂k = 1
|IN |

∑
s∈PP

∑
l∈Is

N,P

R(‖N−1 � l‖2)e+2πi(N−1�l)k, k ∈ Ir
N ,P . (5.7)

The far field potentials and fields are computed by a parallel NFFT (Alg. 1)

φRF
j :=

∑
s∈PP

∑
k∈Is

N,P

d̂ke−2πikxj , j ∈Mr
P

ERF
j :=

∑
s∈PP

∑
k∈Is

N,P

d̂k∇e−2πikxj , j ∈Mr
P .

Finally, we use the fine-grained data distribution operation from the parallel sorting
library to restore the initial parallel distribution of the nodes xj together with the
computed Coulomb potentials and fields.

In summary we obtain Alg. 3 for the fast evaluation of the potentials (5.1) and the
fields (5.2). The steps of this algorithm are very similar to P3M (Particle-Particle–
Particle-Mesh) algorithms [22, Ch. 8], see also [4] for an overview of particle-mesh
algorithms. Analogously, Alg. 3 is called P2NFFT (Particle-Particle–NFFT), since
the short range particle-particle interactions are computed in the same way, while the
long range particle-mesh part is computed by nonequispaced fast Fourier transforms.
Note that this algorithm can be easily modified for other kernels frequently used in
the approximation by radial basis functions, e.g., the Gaussian [30] or the (inverse)
multiquadric[13] (x2 + c2)±1/2.

6. Numerical Results. We implemented Alg. 1 (PNFFT), Alg. 2 (adjoint
PNFFT) and Alg. 3 (P2NFFT) and investigated the strong scaling behavior of our
implementations on a BlueGene/P architecture. The parallel NFFT algorithms have
been published in the PNFFT software library [36]. In this section we first present
the parallel runtime measurements of the parallel NFFT and its adjoint. Secondly,
we show the strong scaling of the P2NFFT. The software has been build with the
IBM XL C/C++ compiler (Advanced Edition for Blue Gene/P, V9.0) and the com-
piler flags CFLAGS="-O3 -qmaxmem=-1 -qarch=450 -qtune=450". As a test system

11

Input: N ∈ 2N3 multi degree,
εI > 0 nearfield size,
εB > 0 boundary size,
nodes xj ∈

{
x ∈ T3 : ‖x‖2 ≤ 1

4 −
εB
2
}
, j ∈Mr

P ,
sources qj ∈ R, j ∈Mr

P .
Precomputation: Compute the Fourier coefficients R̂k, k ∈ Ir

N ,P , given by Equa-
tion (5.7) by a parallel three-dimensional FFT.

1: Assign the local nodes xj , j ∈Mr
P ∪

⋃
l∈Mr

P
INE
εI

(l), by a parallel forward sort.

2: For k ∈ Ir
N ,P compute âk :=

∑
s∈PP

∑
j∈Ms

P

qje+2πikxj by an adjoint parallel three-

dimensional NFFT, see Alg. 2.
3: For k ∈ Ir

N ,P compute the products d̂k := âkR̂k.
4: For j ∈Mr

P compute the far field sums

φRF
j :=

∑
s∈PP

∑
k∈Is

N,P

d̂ke−2πikxj ,

ERF
j :=

∑
s∈PP

∑
k∈Is

N,P

d̂k∇e−2πikxj

by a parallel three-dimensional NFFT, see Alg. 1.
5: For j ∈Mr

P compute the near field sums

φNE
j = R(0) +

∑
l∈INE

εI
(j)

ql

(
1

‖xj − xl‖2
−R(‖xj − xl‖2)

)
,

ENE
j =

∑
l∈INE

εI
(j)

ql

(
xj − xl
‖xj − xl‖3

2
−R′(‖xj − xl‖2) xj − xl

‖xj − xl‖2

)
.

by a linked cell algorithm, see [22, Ch. 8.4] or [19, Ch. 3].
6: For j ∈ Mr

P compute the near field corrections hj = φNE
j + φRF

j and ∇hj =
ENE
j + ERF

j .
7: Restore the initial data distribution by a parallel backward sort.

Output: Approximate potentials hj ≈ φj and fields ∇hj ≈ Ej , j ∈Mr
P .

Alg. 3: Parallel three-dimensional Particle-Particle NFFT (P2NFFT) for each process
r ∈ PP .

we use a cubic box filled with 12960 particles of a silica melt. It was generated by
a simulation of a melting silica crystal using the potential given in [1]. This particle
system consist of positive and negative charged ions which are sufficiently homoge-
neously distributed. We duplicate the initial test system of 12960 particles for 4, 9
and 20 times in every direction of space in order to generate a cubic box filled with

12

829440, 9447840 and 103680000 particles, respectively. The sum of all charges is equal
to zero since the initial sample of 12960 particles is neutrally charged.

6.1. Some Notes on Performance Optimization. Before we present our
numerical results, we introduce some performance optimizations that we employed in
order to improve the run times of Alg. 1, Alg. 2 and Alg. 3.

Precomputation of the window function. In order to reduce the compu-
tational cost of the evaluation of the window function in Alg. 1 and Alg. 2, we use
tensor structure based precomputation and interpolation from lookup tables [27]. The
flags PRE_LIN_PSI, PRE_QUAD_PSI and PRE_KUB_PSI enable linear, quadratic and cu-
bic interpolation of the one-dimensional window function ψ(x). Additionally, the flag
PRE_PHI_HAT enables the precomputation of the Fourier coefficients ϕk, k ∈ Ir

N ,P .
Hereby, we do not store the full set of |IN | Fourier coefficients. Instead, we ex-
ploit the tensor structure of the three-dimensional window function ϕ̂k = ψ̂k0 ψ̂k1 ψ̂k2 ,
k = (k0, k1, k2)> ∈ IN and store the precomputed N0 + N1 + N2 Fourier coeffi-
cients of one-dimensional window functions ψ̂kt

, kt = −Nt/2, . . . , Nt/2−1, t = 0, 1, 2.
Therefore, the evaluation of the three-dimensional Fourier coefficients requires 2∗|IN |
multiplications. For our numerical experiments we chose the Kaiser-Bessel window
function with cubic interpolation from a precomputed lookup table.

Transposed FFT Output. The PFFT software library employs a parallel FFT
algorithm that contains several data transpositions in order to enable the computa-
tion of one-dimensional local FFTs [37]. On default these transpositions are reverted
after the computation of the FFT, which doubles the amount of global communi-
cation. However, a convolution in Fourier space corresponds to a simple point-wise
multiplication of two arrays. As long as both array are distributed in the same way, a
point-wise multiplication can be easily implemented for any parallel data decomposi-
tion. Therefore, we omit the additional communication and use the transpositions of
the second FFT to restore the initial data decomposition in the following way. First,
we compute the parallel adjoint FFT Step 3 of the adjoint PNFFT Alg. 2 with trans-
posed output. Afterward, the convolutions in Fourier space of the adjoint PNFFT
(Step 4 of Alg. 2), the P2NFFT (Step 3 of Alg. 3) and the PNFFT (Step 1 of Alg. 1)
are computed on transposed arrays. Finally, we compute the parallel FFT Step 2 of
Alg. 1 with transposed input.

Interpolation of the Regularization. The computation of the near field step 5
of the P2NFFT Alg. 3 requires the repetitive evaluation of the regularization R(r)
and its derivative R′(r) for 0 ≤ r ≤ εI . Since these two functions are smooth, we use
cubic interpolation from precomputed lookup tables to speed up their evaluation.

6.2. Runtimes of PNFFT and adjoint PNFFT. In Figure 6.1 we show
the wall clock time measurements of Alg. 1 (PNFFT) and Alg. 2 (adj. PNFFT)
for 5123 Fourier coefficients and 829440 nonequispaced nodes up to 16384 cores of a
BlueGene/P architecture. For comparison purposes we show the perfect strong scaling
times (perfect) of the first recorded time. In addition, we add the wall clock time of
the most time consuming parts of these algorithms. These are the convolution Steps 4
and 5 (B, ∇B), the ghost cell communication Step 3 (ghost), the FFT Step 2 (F)
and the deconvolution Step 1 (D) of Alg. 1 and their adjoint counterparts of Alg. 2,
i.e., the adjoint convolution Step 1 (adj. B), the adjoint ghost cell communication
Step 2 (adj, ghost), the adjoint FFT Step 3 (adj. F) and the adjoint deconvolution

13

Step 4 (adj. D). Both plots are scaled equally such that a direct comparison of the
time measurement between the two algorithms is possible.

25 27 29 211 213

10−3

10−2

10−1

100

101

number of cores

w
al
lc

lo
ck

tim
e
in

s

PNFFT perfect B, ∇B

ghost F D

25 27 29 211 213

10−3

10−2

10−1

100

101

number of cores

w
al
lc

lo
ck

tim
e
in

s

adj. PNFFT perfect adj. B

adj. ghost adj. F adj. D

Figure 6.1. Wall clock time measurements of Alg. 1 (PNFFT) on the left and Alg. 2 (adjoint
PNFFT) on the right with number of nonequispaced nodes M = 829440, pruned input FFT size
N = (512, 512, 512)>, oversampled FFT size n = (576, 576, 576)>, pruned output FFT size L =
(174, 174, 174)> and window cutoff parameter m = 4.

The deconvolution Step 1 of Alg. 1 and the adjoint counterpart Step 4 of Alg. 2
scale perfectly and only represent a small amount of the overall run times. This step
is noted by matrix D. The fast Fourier transform (Step 2 of Alg. 1, matrix F) and its
adjoint (Step 3 of Alg. 2) show good strong scaling up to 4096 cores, which corresponds
to one rack of the BlueGene/P. We observe a performance penalty for computing the
parallel FFT on more than one rack. However, please note that the pruned FFT
output is only of size 1743. The FFT-internal two-dimensional distribution of 1743

complex numbers on 1282 processes results in very small workload per process.
The discrete convolution step of Alg. 1 includes the calculation of the potentials

(Step 4 of Alg. 1) and the calculation of the gradients (Step 5 of Alg. 1). Therefore,
it is more time consuming than the corresponding adjoint Step 1 of Alg. 2. Both
show good strong scaling behavior. Note that every process gets only 51 nodes xj in
average, if we use 16384 processes in total.

Instead, the ghost cell communication shows bad strong scaling for more than 512
processes. The adjoint ghost cell communication is more expensive than plain ghost
cell communication since it involves the communication of all the summands to one
process and the synchronization of the partial sums. For 16384 processes the adjoint
ghost cell communication turns out to be the most time consuming part of the adjoint
parallel NFFT. We observe that the ghost cell communication is the most limiting
factor for strong scaling. This slightly improves for larger test cases, where the ration
between the ghost cell communication and the overall computing time decreases.

In Figure 6.2 we show the wall clock time measurements of Alg. 1 (PNFFT) and
Alg. 2 (adj. PNFFT) for 10243 Fourier coefficients and 9447840 nonequispaced nodes
up to 65536 cores of a BlueGene/P architecture.

In Figure 6.3 we show the wall clock time measurements of Alg. 1 (PNFFT) and
Alg. 2 (adj. PNFFT) for 20483 Fourier coefficients and 103680000 nonequispaced
nodes up to 65536 cores of a BlueGene/P architecture. There the computing time of

14

211 212 213 214 215 216

10−3

10−2

10−1

100

number of cores

w
al
lc

lo
ck

tim
e
in

s

PNFFT perfect B, ∇B

ghost F D

211 212 213 214 215 216

10−3

10−2

10−1

100

number of cores
w
al
lc

lo
ck

tim
e
in

s

adj. PNFFT perfect adj. B

adj. ghost adj. F adj. D

Figure 6.2. Wall clock time measurements of Alg. 1 (PNFFT) on the left and Alg. 2 (adjoint
PNFFT) on the right with number of nonequispaced nodes M = 9447840, pruned input FFT size
N = (1024, 1024, 1024)>, oversampled FFT size n = (1152, 1152, 1152)>, pruned output FFT size
L = (340, 340, 340)> and window cutoff parameter m = 4.

the discrete convolution step, the adjoint FFT and the adjoint ghost cell communica-
tion are nearly the same. Also the strong scaling behavior of all three steps is good.
Although the ghost cell communication does not provide good scaling behavior, it
only takes 4% of the overall PNFFT run time with 65536 processes. Once more, the
deconvolution steps show perfect strong scaling. The overall wall clock time of the
parallel NFFT and the adjoint parallel NFFT reflect the good scaling of all their most
time consuming steps.

211 212 213 214 215 216

10−2

10−1

100

101

number of cores

w
al
lc

lo
ck

tim
e
in

s

PNFFT perfect B, ∇B

ghost F D

211 212 213 214 215 216

10−2

10−1

100

101

number of cores

w
al
lc

lo
ck

tim
e
in

s

adj. PNFFT perfect adj. B

adj. ghost adj. F adj. D

Figure 6.3. Wall clock time measurements of Alg. 1 (PNFFT) on the left and Alg. 2 (adjoint
PNFFT) on the right with number of nonequispaced nodes M = 103680000, pruned input FFT size
N = (2048, 2048, 2048)>, oversampled FFT size n = (2304, 2304, 2304)>, pruned output FFT size
L = (674, 674, 674)> and window cutoff parameter m = 4.

6.3. Runtimes of P2NFFT. Let φP2NFFT(xj), j = 1, . . . ,M denote the po-
tentials that are calculated by Alg. 3 and φREF(xj), j = 1, . . . ,M the potentials that

15

are calculated by any high accuracy reference method. For small numbers of parti-
cles we chose the direct summation as reference method, while a fast method with
higher accuracy was used to calculate the reference potentials for large systems. The
absolute RMS potential error is given by

εpot := 1
M

√√√√ M∑
j=1

(φREF(xj)− φP2NFFT(xj))2
.

For the following run time measurements we tuned the parameters of P2NFFT in
order to hold εpot < 10−5.

In Figure 6.4 we show the wall clock time measurements of Alg. 3 (P2NFFT) for
the silica melt test case with 829440 particles on a BlueGene/P architecture using
up to 16384 cores. For comparison purposes we show the perfect strong scaling time

25 27 29 211 213

10−2

10−1

100

101

number of cores

w
al
lc

lo
ck

tim
e
in

s

P2NFFT perfect Sort Forw
Far Field Near Field Sort Back

Figure 6.4. Alg. 3 (P2NFFT) for a silica melt with number of nonequispaced nodes M =
829440, RMS-potential error εpot = 10−5, regularization parameters εI = εB = 0.0078, pruned
input FFT size N = (512, 512, 512)>, oversampled FFT size n = (576, 576, 576)>, pruned output
FFT size L = (174, 174, 174)> and window cutoff parameter m = 4.

(perfect) of the first recorded time. In addition, we add the wall clock time of the
most time consuming parts of this algorithm. These are the forward sorting Step 1
(Forw Sort), the far field computation Steps 2, 3 and 4 (Far Field), the near field
computation Step 5 (Near Field) and the backward sorting Step 7 (Back Sort) of
the P2NFFT Alg. 3. Note that the individual wall clock time measurements of the
adjoint PNFFT Step 2 (adj. PNFFT) and the PNFFT Step 4 (PNFFT) are given
in Figure 6.1. We stress that the pruned FFT output size L = (174, 174, 174)> is
significantly smaller than the oversampled FFT size n = (576, 576, 576)> for this test
case, i.e., only 2.8% of the oversampled FFT output are necessary to compute the
convolution Steps of the PNFFT and its adjoint. This problem arises from the fact
that we must scale all the nonequispaced nodes in order to fulfill ‖xj‖2 < 1

4 − εB
for all j = 1, . . . ,M . However, our algorithm takes care of this fact since we apply
parallel pruned FFT and use the data decomposition of the truncated Torus T3

C .
Although the near field and far field computations show good strong scaling, we

observe that the sorting steps are the most limiting factor for strong scaling of the
P2NFFT algorithm. Since the parallel sorting algorithm calls a MPI_Alltoallv we

16

see the typical almost linear increase of sorting time from 2048 to 16384 processes.
Note that using 16384 cores implies a very small number of 51 local nodes for every
process. However, our P2NFFT algorithm uses a common three-dimensional data
decomposition. Therefore, for several applications, e.g. molecular dynamics, the
forward and backward sort can be omitted if the nodes are given in the correct data
decomposition at the beginning of the P2NFFT algorithm.

In Figure 6.5 we show the wall clock time measurements of Alg. 3 (P2NFFT) for
the silica melt test case with 9447840 particles on a BlueGene/P architecture using up
to 65536 cores. Finally, in Figure 6.6 we see the wall clock time measurements of Alg. 3

211 212 213 214 215 216

10−2

10−1

100

number of cores

w
al
lc

lo
ck

tim
e
in

s

P2NFFT perfect Sort Forw
Far Field Near Field Sort Back

Figure 6.5. Alg. 3 (P2NFFT) for a silica melt with number of nonequispaced nodes M =
9447840, RMS-potential error εpot = 10−5, regularization parameters εI = εB = 0.0039, pruned
input FFT size N = (1024, 1024, 1024)>, oversampled FFT size n = (1152, 1152, 1152)>, pruned
output FFT size L = (340, 340, 340)> and window cutoff parameter m = 4.

(P2NFFT) for the silica melt test case with 103680000 particles on a BlueGene/P
architecture using up to 65536 cores. A comparison of Figure 6.5 and Figure 6.6
yields a better scaling of the larger test case since the quota of sorting decreases. In
both test cases the wall clock time of the sorting steps increases almost linearly with
the number of processes and prevents a good scaling of the over all run time.

7. Conclusions. In this paper we have presented new parallel algorithms for
computing the nonequispaced fast Fourier transform and its adjoint on distributed
memory architectures. We implemented and published these algorithms in the PNFFT
software library [36]. To our knowledge this is the first publicly available massively
parallel NFFT implementation. Run time tests on a BlueGene/P system using up
to 65536 cores showed a good scalability of our implementation. Furthermore, we
applied the parallel nonequispaced Fourier transform to derive a parallel fast summa-
tion algorithm. As we tested our parallel fast summation algorithm on a BlueGene/P
system using up to 65536 cores it turned out that the sorting of particles is the most
limiting factor for strong scaling.

Acknowledgments. This work was partly supported by the BMBF under grant
01IH08001B. We are grateful to the Jülich Supercomputing Center for providing the
computational resources on Jülich BlueGene/P (JuGene). We wish to thank Dr.
Franz Gähler, who supplied the silica melt test case. Furthermore, we gratefully

17

211 212 213 214 215 216

10−1

100

101

number of cores

w
al
lc

lo
ck

tim
e
in

s

P2NFFT perfect Sort Forw
Far Field Near Field Sort Back

Figure 6.6. Alg. 3 (P2NFFT) for a silica melt with number of nonequispaced nodes M =
103680000, RMS-potential error εpot = 10−5, regularization parameters εI = εB = 0.002, pruned
input FFT size N = (2048, 2048, 2048)>, oversampled FFT size n = (2304, 2304, 2304)>, pruned
output FFT size L = (674, 674, 674)> and window cutoff parameter m = 4.

acknowledge the help of Dr. Michael Hofmann on the parallel sorting algorithms and
the help of Rene Halver on the implementation of the parallel linked cell algorithm.

REFERENCES

[1] B.W.H. van Beest and G.J. Kramer: Force fields for silicas and aluminophosphates based on ab
initio calculations. Physical Review Letters, 64(16):1955–1958, apr 1990, ISSN 0031-9007.

[2] G. Beylkin: On the fast Fourier transform of functions with singularities. Appl. Comput.
Harmon. Anal., 2:363 – 381, 1995.

[3] H. Dachsel, M. Hofmann, and G. Rünger: Library Support for Parallel Sorting in Scientific
Computations. In Proc. of the 13th International Euro-Par Conference, vol. 4641 of LNCS,
pp. 695–704. Springer, 2007, ISBN 978-3-540-74465-8.

[4] M. Deserno and C. Holm: How to mesh up Ewald sums. I. A theoretical and numerical com-
parison of various particle mesh routines. J. Chem. Phys., 109:7678 – 7693, 1998.

[5] H.Q. Ding, R.D. Ferraro, and D.B. Gennery: A portable 3d FFT package for distributed-memory
parallel architectures. In PPSC, pp. 70 – 71, 1995.

[6] A.J.W. Duijndam and M.A. Schonewille: Nonuniform fast Fourier transform. Geophysics,
64:539 – 551, 1999.

[7] A. Dutt and V. Rokhlin: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Stat.
Comput., 14:1368 – 1393, 1993.

[8] H. Eggers, T. Knopp, and D. Potts: Field inhomogeneity correction based on gridding recon-
struction. IEEE Trans. Med. Imag., 26:374 – 384, 2007.

[9] B. Elbel and G. Steidl: Fast Fourier transform for nonequispaced data. In C.K. Chui and
L.L. Schumaker (eds.): Approximation Theory IX, pp. 39 – 46, Nashville, 1998. Vanderbilt
University Press.

[10] M. Eleftheriou, J.E. Moreira, B.G. Fitch, and R.S. Germain: A volumetric FFT for Blue-
Gene/L. In T.M. Pinkston and V.K. Prasanna (eds.): HiPC, vol. 2913 of Lecture Notes
in Computer Science, pp. 194 – 203. Springer, 2003, ISBN 3-540-20626-4.

[11] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen: A smooth
particle mesh Ewald method. J. Chem. Phys., 103:8577 – 8593, 1995.

[12] B. Fang, Y. Deng, and G. Martyna: Performance of the 3D FFT on the 6D network torus
QCDOC parallel supercomputer. Computer Physics Communications, 176(8):531 – 538,
apr 2007, ISSN 00104655.

[13] M. Fenn and G. Steidl: Fast NFFT based summation of radial functions. Sampl. Theory Signal
Image Process., 3:1 – 28, 2004.

[14] J.A. Fessler and B.P. Sutton: Nonuniform fast Fourier transforms using min-max interpolation.

18

IEEE Trans. Signal Process., 51:560 – 574, 2003.
[15] K. Fourmont: Non equispaced fast Fourier transforms with applications to tomography. J.

Fourier Anal. Appl., 9:431 – 450, 2003.
[16] M. Frigo and S.G. Johnson: The design and implementation of FFTW3. Proceedings of the

IEEE, 93:216 – 231, 2005.
[17] M. Frigo and S.G. Johnson: FFTW, C subroutine library, 2009. http://www.fftw.org.
[18] L. Greengard and J.Y. Lee: Accelerating the nonuniform fast Fourier transform. SIAM Rev.,

46:443 – 454, 2004.
[19] M. Griebel, S. Knapek, and G. Zumbusch: Numerical simulation in molecular dynamics, vol. 5

of Texts in Computational Science and Engineering. Springer, Berlin, 2007.
[20] W. Gropp, E. Lusk, and R. Thakur: Using MPI-2: Advanced Features of the Message-Passing

Interface. MIT Press, Cambridge, MA, USA, 1999, ISBN 0262571331.
[21] F. Hedman and A. Laaksonen: Ewald summation based on nonuniform fast Fourier transform.

Chem. Phys. Lett., 425:142 – 147, 2006.
[22] R.W. Hockney and J.W. Eastwood: Computer simulation using particles. Taylor & Francis,

Inc., Bristol, PA, USA, 1988.
[23] M. Hofmann and G. Rünger: Fine-grained Data Distribution Operations for Particle Codes.

In M. Ropo, J. Westerholm, and J. Dongarra (eds.): Recent Advances in Parallel Virtual
Machine and Message Passing Interface, 16th European PVM/MPI Users Group Meeting,
vol. 5759 of LNCS, pp. 54–63. Springer, 2009, ISBN 978-3-642-03769-6.

[24] J.I. Jackson, C.H. Meyer, D.G. Nishimura, and A. Macovski: Selection of a convolution function
for Fourier inversion using gridding. IEEE Trans. Med. Imag., 10:473 – 478, 1991.

[25] I. Kabadshow and H. Dachsel: The Error-Controlled Fast Multipole Method for Open and
Periodic Boundary Conditions. In G. Sutmann, P. Gibbon, and T. Lippert (eds.): Fast
Methods for Long-Range Interactions in Complex Systems, IAS-Series, pp. 85 – 113, Jülich,
2011. Forschungszentrum Jülich, ISBN 9783893367146.

[26] J. Keiner, S. Kunis, and D. Potts: NFFT 3.0, C subroutine library. http://www.tu-chemnitz.
de/~potts/nfft.

[27] J. Keiner, S. Kunis, and D. Potts: Using NFFT3 - a software library for various nonequispaced
fast Fourier transforms. ACM Trans. Math. Software, 36:Article 19, 1 – 30, 2009.

[28] S. Kunis and S. Kunis: The nonequispaced FFT on graphics processing units. PAMM, Proc.
Appl. Math. Mech., 12, 2012.

[29] S. Kunis and D. Potts: Stability results for scattered data interpolation by trigonometric poly-
nomials. SIAM J. Sci. Comput., 29:1403 – 1419, 2007.

[30] S. Kunis, D. Potts, and G. Steidl: Fast Gauss transform with complex parameters using NFFTs.
J. Numer. Math., 14:295 – 303, 2006.

[31] N. Li: 2DECOMP&FFT, Parallel FFT subroutine library. http://www.2decomp.org.
[32] N. Li and S. Laizet: 2DECOMP & FFT - A Highly Scalable 2D Decomposition Library and

FFT Interface. In Cray User Group 2010 conference, pp. 1 – 13, Edinburgh, 2010.
[33] MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2, September 2009. http:

//www.mpi-forum.org.
[34] D. Pekurovsky: P3DFFT, Parallel FFT subroutine library. http://code.google.com/p/

p3dfft.
[35] M. Pippig: PFFT, Parallel FFT subroutine library, 2011. http://www.tu-chemnitz.de/~mpip/

software.
[36] M. Pippig: PNFFT, Parallel Nonequispaced FFT subroutine library, 2011. http://www.

tu-chemnitz.de/~mpip/software.
[37] M. Pippig: PFFT - An extension of FFTW to massively parallel architectures. Preprint TU

Chemnitz, Preprint 6, 2012.
[38] M. Pippig and D. Potts: Particle simulation based on nonequispaced fast Fourier transforms. In

G. Sutmann, P. Gibbon, and T. Lippert (eds.): Fast Methods for Long-Range Interactions
in Complex Systems, IAS-Series, pp. 131 – 158, Jülich, 2011. Forschungszentrum Jülich,
ISBN 9783893367146.

[39] S. Plimpton: Parallel FFT subroutine library. http://www.sandia.gov/~sjplimp/docs/fft/
README.html.

[40] D. Potts and G. Steidl: Fast summation at nonequispaced knots by NFFTs. SIAM J. Sci.
Comput., 24:2013 – 2037, 2003.

[41] D. Potts, G. Steidl, and A. Nieslony: Fast convolution with radial kernels at nonequispaced
knots. Numer. Math., 98:329 – 351, 2004.

[42] D. Potts, G. Steidl, and M. Tasche: Fast Fourier transforms for nonequispaced data: A tutorial.
In J.J. Benedetto and P.J.S.G. Ferreira (eds.): Modern Sampling Theory: Mathematics and
Applications, pp. 247 – 270, Boston, MA, USA, 2001. Birkhäuser.

19

http://www.fftw.org
http://www.tu-chemnitz.de/~potts/nfft
http://www.tu-chemnitz.de/~potts/nfft
http://www.2decomp.org
http://www.mpi-forum.org
http://www.mpi-forum.org
http://code.google.com/p/p3dfft
http://code.google.com/p/p3dfft
http://www.tu-chemnitz.de/~mpip/software
http://www.tu-chemnitz.de/~mpip/software
http://www.tu-chemnitz.de/~mpip/software
http://www.tu-chemnitz.de/~mpip/software
http://www.sandia.gov/~sjplimp/docs/fft/README.html
http://www.sandia.gov/~sjplimp/docs/fft/README.html

[43] G. Steidl: A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math.,
9:337 – 353, 1998.

[44] D. Takahashi: An Implementation of Parallel 3-D FFT with 2-D Decomposition on a Mas-
sively Parallel Cluster of Multi-core Processors. In R. Wyrzykowski, J. Dongarra, K. Kar-
czewski, and J. Wasniewski (eds.): Parallel Processing and Applied Mathematics, vol. 6067
of Lecture Notes in Computer Science, pp. 606 – 614. Springer Berlin / Heidelberg, 2010,
ISBN 978-3-642-14389-2.

[45] T. Volkmer: OpenMP parallelization in the NFFT software library. Preprint TU Chemnitz,
Preprint 7, 2012.

[46] A.F. Ware: Fast approximate Fourier transforms for irregularly spaced data. SIAM Rev., 40:838
– 856, 1998.

20

