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Preface

Summary

This work refers to ball-intersections bodies as well as covering, packing, and kissing

problems related to balls and spheres in normed spaces. A quick introduction to these

topics and an overview of our results is given in Section 1.1 of Chapter 1. The needed

background knowledge is collected in Section 1.2, also in Chapter 1. In Chapter 2 we

define ball-intersection bodies and investigate special classes of them: ball-hulls, ball-

intersections, equilateral ball-polyhedra, complete bodies and bodies of constant width.

Thus, relations between the ball-hull and the ball-intersection of a set are given. We

extend a minimal property of a special class of equilateral ball-polyhedra, known as

Theorem of Chakerian, to all normed planes. In order to investigate bodies of constant

width, we develop a concept of affine orthogonality, which is new even for the Euclidean

subcase. In Chapter 2 we solve kissing, covering, and packing problems. For a given

family of circles and lines we find at least one, but for some families even all circles kissing

all the members of this family. For that reason we prove that a strictly convex, smooth

normed plane is a topological Möbius plane. We give an exact geometric description

of the maximal radius of all homothets of the unit disc that can be covered by 3 or 4

translates of it. Also we investigate configurations related to such coverings, namely a

regular 4-covering and a Miquelian configuration of circles. We find the concealment

number for a packing of translates of the unit ball.

Sources and co-authors

All our results of this work, with the exception of those given in Subsection 2.1.2 and

Section 2.3, have already been published or will appear soon. Principally, Section 2.1 is

based on the paper [65], which has as the co-author Horst Martini. But in contrast to [65],
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where the considerations are done in dimension 2, the considerations in our Subsection

2.1.1 refer to normed spaces of arbitrary dimension. Subsection 2.1.2 is not included in

[65] and will be submitted. Section 2.2 contains results from my paper [93], and Section

2.3 from [3] (with the co-author Javier Alonso). In Chapter 3 results from my papers [94]

and [95] are included as well as results from [64], [66], which are co-authored by Horst

Martini and from [2] (co-authored by Javier Alonso and Horst Martini). Note that NOT

all results from the mentioned papers with co-authors are included in the present work,

but mainly or only those ones corresponding to my own contributions. If I include (for

the sake of completeness) results of the co-authors from the above papers, I mention this

explicit.

Declaration

I hereby declare that the present work is my own work, based on the papers [2], [3], [64],

[65], [66], [93], [94], and [95]. Among them [2], [3], [64], [65], and [66] have been written

with co-authors, as explained above.

Chemnitz, June 07, 2010
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Theses

1. Relations between the ball-hull and ball-intersection of a set are obtained. With

the help of these relations bodies of constant width and complete bodies are char-

acterized. The derived relations are also used to approximate Meissner bodies.

2. A minimal covering property of a class of equilateral ball-polyhedra in a two-

dimensional normed space is proved. This property is a covering analogue of the

theorem of Blaschke-Lebesgue.

3. A new concept of affine orthogonality is developed. In this way, characterizations

of bodies of constant width as well as characterizations of other classes of special

convex bodies are given. Our concept is completely new, even for the Euclidean

subcase.

4. For a given family of circles and lines at least one, in many cases also all circles

kissing all members of this family are found. For this purpose we prove that every

strictly convex, smooth plane is a topological Möbius plane.

5. An exact geometric description of the smallest positive ratio of k homothetical

copies of a convex body, whose union covers this body, is given for k ∈ {3, 4}.

6. Properties of a regular 4-covering as well as of the Voronoi region and the gray area

of a lattice covering induced by this regular 4-covering are derived.

7. Configurations of circles related to the above covering problems are investigated.

The theorem of Asplund and Grünbaum on Miquelian configurations is extended to

all normed planes. It is proved that non-Euclidean, strictly convex, normed planes

are non-Miquelian Möbius planes.

8. An exact geometric description of the concealment number of an arbitrary normed

plane is given. Also, a lower bound on the concealment number of a direction is
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derived.
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3.1.2 Spheres kissing three given spheres . . . . . . . . . . . . . . . . . 59

3.2 Covering a disc by translates of the unit disc . . . . . . . . . . . . . . . . 64

3.2.1 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



3.3 Regular 4-coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.1 Properties of a regular 4-covering . . . . . . . . . . . . . . . . . . 70

3.3.2 A lattice covering of the plane based on a regular 4-covering . . . 76

3.4 Configurations of circles related to covering problems . . . . . . . . . . . 78

3.4.1 Configurations of Minkowskian circles related to a regular 4-covering 78

3.4.2 Miquel configurations of circles of equal radii . . . . . . . . . . . . 79

3.4.3 Miquel configurations of circles having arbitrary radii . . . . . . . 83

3.5 Visibility in packing of balls . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5.1 Special and very special triangles . . . . . . . . . . . . . . . . . . 88

3.5.2 The concealment number in the planar case . . . . . . . . . . . . 90

Bibliography 96

viii



Chapter 1

Introduction

1.1 A quick introduction and overview

A normed (or Minkowski) space is a finite dimensional linear space equipped with an

arbitrary norm. Such spaces are homogeneous (all translations are isometries) but not

isotropic. Straight lines are geodesics, and so the study of these spaces falls under the

program presented by Hilbert [45] in his fourth problem. The origins and basic devel-

opments of the geometry of Minkowski spaces are connected with names like Riemann,

Minkowski, and Busemann. More precisely, the earliest contribution to Minkowski Ge-

ometry was possibly given by Riemann in his “Habilitationsvortrag” [84], where he men-

tioned the l4-norm. Minkowski [75] introduced the axioms of Minkowski spaces, strongly

motivated by relations of this field to the geometry of numbers. Later on, Minkowski

geometry was studied by Busemann [26], in order to get a better understanding of Finsler

Geometry introduced in [38], which is locally Minkowskian; see also [85] and [4]. Closely

related is the subject of Distance Geometry, going back to Menger [74] and Blumenthal

[22]. From a certain point of view, Minkowski Geometry naturally extends results and

methods of Convex and Discrete Geometry. The present work follows this guideline. I

got the related motivation also from participating in writing the surveys [61] and [69] on

the geometry of normed spaces. These two surveys shed a light on the geometric aspects

of normed spaces. Such an approach is different to that in the classical monograph [99]

of Thompson and to the usual approach to normed spaces used in approximation theory

and functional analysis. The results in our work show that this different approach is

successful in the following sense:

1



2 Chapter 1. Introduction

1. We can substantially extend many results from convex and discrete geometry, like

properties of bodies of constant width, covering problems, and packing problems.

2. Working in the more general framework of normed space we develop concepts which

are completely new, even for the Euclidean subcase. Examples are the notions of

ball-hull of a set and affine orthogonality.

3. The derived results are valid in all normed spaces or in a large class of them, such

as the class of strictly convex normed spaces. It should be noticed that in this more

general framework we cannot use the methods usually chosen in the investigations

of special norms, as the lp-norm, polyhedral norm, and taxicab norm.

The results in the present work are subdivided into two main topics: ball-intersection

bodies and covering/packing/kissing problems.

1.1.1 Ball-intersection bodies

We define, in normed spaces, ball-intersection bodies of size λ as the intersections of

(finitely or infinitely numbers of) balls of radius λ. Until now only special subclasses of

the ball-intersection bodies have been intensively studied. Due to the known theorem of

Meissner, a body of constant width 1 in Euclidean space is the intersection of all balls

of radius 1 centered at this body. According to a theorem of Eggleston, complete bodies

in normed spaces have the same property. Another class of ball-intersection bodies that

is widely studied is the interesting subclass of bodies of constant width, called Reuleaux

triangles in the Euclidean plane as well as in arbitrary normed planes. It should be noticed

that Reuleaux polygons are also ball-intersection bodies, but there are not many results

on them for non-Euclidean norms. Another interesting appearance of ball-intersection

bodies is in an alternative definition of Jung’s constant. Jung’s constant of a normed

space (Md, ‖ · ‖) is the smallest number such that a ball of diameter being this number

may cover, after a suitable translation, any set of diameter ≤ 1. But it can be also defined

as the greatest lower bound on real numbers µ which possess the following property:

Given any family {xi + B : i ∈ I and B is the unit ball of (Md, ‖ · ‖)} of

mutually intersecting balls, then ∩i∈I(xi + µB) 6= ∅;
see [42]. Recently another class of ball-intersection bodies became a subject of special

interest. This is the class of ball-polyhedra (some authors call them ball-polytopes). A
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ball-polyhedron is defined as the intersection of finitely many balls of the same radius. In

a certain sense polytopes can be considered as a special class of ball-polyhedra of size ∞.

This explains also the use of the term ”ball-polytope“. For Euclidean space of dimension

3, ball-polyhedra appeared, without using this name, in works of Grünbaum, Heppes, and

Straszewicz who gave independent proofs of the Vázsonyi conjecture; see, e.g., [81]. Note

that the Vázsonyi’s conjecture says the maximal number of diameters of a finite set of n

points in R3 is 2n − 2 for n ≥ 4. Nowadays ball-polyhedra appear again in connection

to the Kneser-Poulsen conjecture. A new approach to the Vázsonyi problem inspired

researchers very recently to come back to these bodies. It turns out that ball-polyhedra

have many interesting properties for themselves, also with respect to some generalized

types of convexity, like spindle convexity and ball-convexity. This motivated many re-

searcher (Capoyleas, Connelly, Csikós, Bezdek, Lángi, Kupitz, Martini, Naszódi, Papez,

Perles, etc.) to investigate ball-polyhedra in Euclidean space. Due to the complicated

structure of these bodies, most considerations are restricted to dimension 3. For example,

the face sructure and the combinatorial structure of ball-polyhedra is completely clarified

only in Euclidean space of dimension 3; see [18] and [82]. We present the first systematic

approach to ball-intersection bodies in normed spaces. Our investigations are focused on

the following directions:

1. We define the ball-intersection and the ball-hull for a given set (it can be a finite

point set or a convex body) in arbitrary normed spaces (they are ball-intersection

bodies) and study the relations between these two associated bodies and the original

set. The ball-intersections are already known in the literature (e.g., this term is used

in the well-known characterization of complete bodies due to Eggleston). The ball-

hulls are used until now only in Euclidean space of dimension 2 and 3. In contrast

to this we utilize them in any normed space. Applying our methods to a convex

body, we get a pair of ball-intersection bodies associated to this body. Although

this situation is similar to the one when considering a body and its completion (note

that any completion of a convex body is a ball-intersection body), already the study

of even two associated bodies by our treatment helps to understand properties of

the original convex body in a better and new way.

2. We consider a special class C of ball-intersection bodies and we find a subclass C1

of it with minimal covering property. More precisely, this means that if a body can

be covered by any body from C1, then it can be covered by any body from C. If
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in the Euclidean plane C denotes the family of all bodies of constant width and we

replace the minimal covering property by minimal area, then we derive the known

theorem of Blaschke-Lebesgue stating that among all bodies of the same constant

width Reuleaux triangles have minimal area.

3. We give characterizations of the class of bodies of constant width (forming a special

class of ball-intersection bodies) which are new already for the Euclidean subcase.

We note that the concept which is developed for these characterizations is also

suitable for characterizations of further classes of convex bodies, such as centrally

symmetric bodies and ellipsoids.

Now we discuss the concrete results.

⋄ Ball-intersection and ball-hull

The ball-intersection of a set M in a normed space is defined as the intersection

of all balls of the same radii whose centers are from M . We introduce the notion of

ball-hull of a set M as the intersection of all balls of given radius which contain M . In

contrast to the notion of ball-intersection, the notion of ball-hull was considered only

in the Euclidean subcase as a helpful tool. For instance, Capoyleas [28] and Bezdek,

Connelly, and Csikós [16] define the ball-hull of a set in order to give a relation between

it and the ball-intersection of the same set. Such a relation is very useful considering

different aspects of two basic conjectures of discrete geometry. The first one, known

as Kneser-Poulsen conjecture, says that under any contraction of the centers of finitely

many balls in a Euclidean space, the volume of the union (respectively, intersection) of

these balls cannot increase (respectively, decrease). This conjecture is confirmed only in

the planar case by Bezdek and Connelly; see [15]. The second conjecture, namely the

conjecture of Alexander, says that under an arbitrary contraction of the center points

of finitely many congruent discs in the plane, the perimeter of the intersection of these

discs cannot decrease. According to our best knowledge, nothing is known about these

two conjectures in normed spaces. Partially, this is due to the lack of investigations

of the ball-hull of sets in normed spaces. Note also that Perles, Martini, and Kupitz

(see [82] and [58]) considered the ball-hull in Euclidean spaces, in order to give a new

approach to the Vázsonyi problem. Now we present the first systematic approach of this

notion. We give some basic properties of the ball-hull and investigate the relation of it
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with the original body and its ball-intersection (our Proposition 2.1.1 and Proposition

2.1.2). We hope (since already there are partial results) that this will be good basis for

future investigation in the following direction: it is well known that the relation between

a convex body K and its completions (i.e., complete bodies of the same diameter as

K which contain K) gives a lot of information about K. Thus, in our concept, for any

convex body K we have three bodies (all the three are ball-intersection bodies) which are

associated with them, namely a completion C(K) of K, its ball-intersection BI(K), and

its ball-hull BH(K). If diam K = diam BH(K) (this was conjectured for the Euclidean

plane by Boltyanski in [23], and it is still open), then the relation

K ⊆ BH(K) ⊆ C(K) ⊆ BI(K)

holds, i.e., the ball-hull and the ball-intersection of K approximate the completion of K.

Thus, studying these three bodies, which are associated with a convex body K, and the

relations between them, we can understand properties of the original convex body in a

better and new way.

A further relation between the ball-intersection and the ball-hull of a set K is our

Theorem 2.1.8. This theorem holds in all strictly convex, smooth normed planes and

says that for any set K of diameter 1 the Minkowski sum of the ball-intersection of K

and the ball-hull of K is a convex body of constant width 2. This result extends the

results of Capoyleas [28] and Bezdek, Connely, Csikós [16] who proved the same for the

Euclidean subcase.

Another accent is to investigate when the ball-hull of a convex body coincides with

this body. Thus we have an analogue of the theorems of Meissner and Eggleston. As it

was mentioned above, according to the theorem of Meissner a convex body of diameter

λ in a Euclidean space is of constant width if and only if it coincide with its ball-

intersection of size λ. Eggleston proved this for any normed space, but there a convex

body is complete if and only if it coincides with its ball-intersection. Note also that going

back to Meissner, Kelly, and Eggleston, completeness and constant width are equivalent

in Euclidean spaces as well as in two-dimensional normed spaces. In normed spaces of

dimension ≥ 3 constant width implies completeness. Regarding the ball-hull we prove (cf.

Theorem 2.1.4) that the class C1 of convex bodies coinciding with its ball-hull contains

the class C2 of convex bodies which coincide with its ball-intersection, i.e., C2 ⊆ C1 (C2

is the class of complete bodies). In Example 2.1.1 we show that both the classes do not

coincide even in the Euclidean subcase. Our Theorem 2.1.5 gives a necessary condition
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that a body from C1 belongs to C2.

The ball-intersection of three points forming an equilateral triangle is a Reuleaux

triangle. Reuleaux triangles in the Euclidean plane as well as in normed planes are

of constant width. But the ball-intersection of four points p1, . . . , p4 which form an

equilateral tetrahedron in the three-dimensional Euclidean space is no more a body of

constant width; see [73]. By flipping couples of circular edges of the ball-intersection of

{p1, . . . , p4}, Meissner constructed a body, usually called Meissner tetrahedron, which is

of constant width. In [50] Lachand-Robert and Oudet gave an inductive construction of

bodies of constant width for Euclidean spaces of arbitrary dimension such that in the

three-dimensional case a Meissner tetrahedron is obtained. We apply this construction

in normed spaces and prove that the resulting body is complete; see our Theorem 2.1.6.

In Euclidean spaces of dimension ≥ 3 no body of constant width is a ball-polyhedron,

i.e., the intersection of finitely many balls of the same radius. But as our Theorem 2.1.7

shows, Meissner tetrahedra can be approximated by ball-polyhedra. More precisely, if

we start with the Reuleaux triangle with vertices p1, p2, p3, and p4 be a point of the same

distance from the points p1, p2, p3, then for the resulting Meissner tetrahedron K the

following inclusions

BH(p1, . . . , p4) ⊂ K ⊂ BI(p1, . . . , p4)

hold, where BH(p1, . . . , p4) is the ball-hull of {p1, . . . , p4} and BI(p1, . . . , p4) is the ball-

intersection of {p1, . . . , p4}. It should be noticed that this statement is true in a normed

space of dimension 3, if this space has the following property:

for any two points p, q belonging to the unit ball B with ‖p−q‖ = 1 all circular

arcs of radius 1 with endpoints p and q also belong to B.

According to our Lemma 2.1.1 the above property holds in any normed plane, but it is

no longer true in dimension 3; see the example in Remark 2.1.1.

At the end, it should be noticed that the term ”ball-hull“ is used by Moreno and

Schneider in [77] and [78] in another sense. They define the ball-hull of a set in a normed

space as the intersection of all balls containing this set. But very recently (see [76] and

[79]) they also use the term ”wide spherical hull” of a set S. This is, in fact, the ball-hull

of S in our sense but for the case when the radii of the balls forming the ball-hull of S are

equal to the diameter of S. E.g., in [76] Moreno gives a characterization of the ball-hull

of a set.



1.1. A quick introduction and overview 7

⋄ A class of ball-polyhedra with minimal covering property

One of the most remarkable properties of Reuleaux triangles in the Euclidean plane

is that they have minimal area among all bodies of constant width. This result, proved by

Lebesque [55] and later by Blaschke [21], is known as the Blaschke-Lebesque Theorem. But

Reuleaux triangles in the Euclidean plane are also “minimal” in another sense. Namely,

if RT is Reuleaux triangle of width λ and any congruent copy P ′ of a compact, convex

set P can be covered by a translate of RT , then P can also be covered by a translate of

an arbitrary convex body of constant width λ. Here a congruent copy P ′ of a set P means

that there exists a translation, or a rotation, or a product of translations and rotations

mapping P onto P ′. This covering property, known as Chakerian’s theorem, was proved

in [31]. Another proof was later given by Bezdek and Connelly; see [14]. Our main result

in Section 2.2 presents an extension of Chakerian’s theorem to all normed planes. Note

that the theorem of Blaschke-Lebesgue was extended to an arbitrary normed plane by

Chakerian himself [30] and, independently by Ohmann [80]; see also the survey [70, §
2.8].

⋄ Bodies of constant width and the related concept on affine orthog-

onality

Section 2.3 is devoted to a new concept of orthogonality for Euclidean as well as for

normed spaces. For a convex body K we define an orthogonality relation between two

chords [p1, p2] and [q1, q2] of this body. This relation is not symmetric with respect to

both the chords. It is also not symmetric with respect to the endpoints of the first chord,

but symmetric with respect to the endpoints of the second chord. For that reason, the

notation [p1, p2] ⊣p1
[q1, q2] is used. Proposition 2.3.1 says that if [p1, p2] ⊣p1

[q1, q2], then

for any chord [q′1, q
′
2] of K that is parallel to [q1, q2] the relation [p1, p2] ⊣p1

[q′1, q
′
2] holds.

Thus, instead of affinely orthogonal chords we can speak about affine orthogonality of

a chord and a direction. A similar concept was given by Eggleston. He defined that

a chord [p, q] of convex body is a normal of K at p if [p, q] is Birkhoff orthogonal to a

supporting hyperplane of K at p; see [35, p. 166]). Via the notion of normals of a convex

body Eggleston gave a characterization of bodies of constant width which is of interest

not only for itself. In the Euclidean subcase this characterization forms the basis for the

usual definition of space curves of constant width as well as the generalization of these
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curves to transnormal manifolds embedded in Euclidean spaces. But our concept of affine

orthogonality has the following advantages in comparison to Eglleston’s approach.

1. For the definition of affine orthogonality we do not need a metric, i.e., our consid-

eration take place in an arbitrary affine space.

2. We are able to characterize not only bodies of constant width with this notion, but

also other classes of convex bodies, such as centrally symmetric ones, ellipses, and

bodies whose boundary is a Radon curve.

Note also that the relation of affine orthogonality depends on the considered convex

body. If this convex body is a circular disc, then our definition coincides with the usual

Euclidean orthogonality. But for bodies of constant width we have coincidence with the

notion of normals of Eggleston. Thus the notion of affine orthogonality can be considered

on the one hand as a generalization of usual Euclidean orthogonality and, on the other

hand, as an extension of Eggleston’s concept of normals.

The first characterization in Section 2.3 refers to the notion of normals of Eggleston.

Our Theorem 2.3.2 says that a convex body K in a strictly convex and smooth normed

plane is of constant width if and only if any normal [p, q] of K at p is affinely orthogonal

with respect p to the direction of the supporting line of K at p.

In [59] Martini and Makai Jr. gave the following characterization of bodies of

constant width in the Euclidean plane E2: a convex body of diameter 1 in E2 is of

constant width 1 if and only if any two perpendicular chords of it have total length

greater or equal to 1. V. Soltan posed the question of extending this characterization

to normed planes by replacing usual Euclidean orthogonality by Birkhoff orthogonality.

But as the counterexample constructed in [1] shows, in general this cannot be done. We

prove that such an extension is possible if Euclidean orthogonality is replaced by affine

orthogonality, i.e., in a normed plane a convex body K is of constant width if and only

if for any two chords [p1, p2] and [q1, q2] of K, with [p1, p2] ⊣p1
[q1, q2], the inequality

‖p1 − p2‖ + ‖q1 − q2‖ ≥ diam K holds; see Theorem 2.3.3. Both results, Theorem 2.3.2

and Theorem 2.3.3, are new even in the Euclidean subcase.

As we already mentioned, the relation of affine orthogonality is not symmetric with

respect to both the chords, and it is also not symmetric with respect to the endpoints

of the first chord. According to our Theorem 2.3.7, the symmetry of the endpoints

of the first chord characterize the class of centrally symmetric bodies. Theorem 2.3.10
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states that the boundary of centrally symmetric body is a Radon curve if and only if in

the relation of affine orthogonality both the chords are symmetric. Theorem 2.3.11 and

Theorem 2.3.12 characterize the class of ellipses and the class of circular discs via the

notion of affine orthogonality. Moreover, we extend the concept of affine orthogonality

to higher dimensions, and Theorem 2.3.5, Theorem 2.3.6, Theorem 2.3.9, and Theorem

2.3.14 give the corresponding characterizations in Euclidean spaces of dimension ≥ 3.

At the end, we like to explain more detailed the first advantage (see 1. above) of our

concept of affine orthogonality, comparing it with Eggleston’s concept of normals. We

mention two types of non-metrical affine planes, namely the Lorentzian and the isotropic

plane. Let L2 be the vector space R2 equipped with the Lorentzian inner product

x · y = x1y1 − x2y2 for x = (x1, x2), y = (y1, y2).

The affine plane associated to the Lorentzian vector space L2 is called the Lorentzian

plane; see, e.g., [20] and [102, § 11 and § 12]. It should be noticed that the terms

”pseudo-Euclidean“ or ”Minkowski“ are also used for this plane. Each of the two parts

of the curve

(x1 − p1)
2 − (x2 − p2)

2 = λ2

is called a (timelike) Lorentzian circle. From the viewpoint of Klein’s concept of geometry

the absolute of the Lorentzian geometry consists of two points, for example f1 = (1, 1, 0)

and f2 = (1,−1, 0) with respect to an affine coordinate system with homogeneous coor-

dinates, such that the line at infinity has the equation x3 = 0. In a certain way (adding

points at infinity) we can consider a Lorentzian circle as a closed convex curve. Then two

chords are affinely orthogonal if and only if the corresponding vectors are Lorentzian or-

thogonal, i.e., its Lorentzian inner product is 0; for more details see [3, §5]. The isotropic

plane is defined as a projective plane with absolute (in the sense of Klein) consisting of a

line F and a point f on this line; see, e.g, [86] and [102, Chapter 1 and Chapter 2]. This

plane is also called Galilean plane, since its group of motions describes Galileo’s principle

of relativity. This principle says that all properties studied in mechanics are preserved

under transformations of the physical system obtained by imparting to it a velocity which

is constant in magnitude and direction, i.e., under so-called Galilean transformations. An

isotropic circle is a conic touching F at f . Any line through f is isotropic orthogonal to

an arbitrary line; see [86]. Again we can consider an isotropic circle as a convex closed

curve, and then all affine diameters are the chords through f . Thus we have that two

chords [p1, p2], [q1, q2] of an isotropic circle are affinely orthogonal if and only if they are
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isotropic orthogonal. These two examples show that the concept of affine orthogonality

generalizes the concepts of Lorentzian and isotropic orthogonality in the corresponding

planes and can be applied in a more general sense than this one, which is considered in

our Section 2.3.

1.1.2 Covering, packing, kissing, and related configurations of

balls

Common methods of Minkowski geometry are also widely used for solving covering and

packing problems. This is due to the fact that any symmetric body can be viewed as

a ball with respect to some norm. Thus the corresponding problem can be described

and solved in terms of discs (with the same or different radii) in normed spaces. It is

possible to use this approach even for non-centrally symmetric bodies. Then the unit

ball (in this situation is called a gauge) is not assumed to be centrally symmetric, but it

can also induce a ”norm“, of course without the symmetry property. In fact, Minkowski,

who introduced the norm axioms, did not assume symmetry. Another way is to consider

the central symmetral for a convex body K, i.e., K∗ = 1
2
(K − K), which is centrally

symmetric. Then, as it has been noted by Minkowski and used also by Hadwiger and

Grünbaum (see [44] and [43]), (x+K)∩(y+K) and (x+K∗)∩(y+K∗) are simultaneously

empty, non-empty, or have interior point.

⋄ Kissing spheres

The concept of kissing is more general than that of non-overlapping. In a normed

space two balls B1 and B2 do not overlap if they intersect, but do not have common

interior points. Let now B1 and B2 be two balls, and Si, i = 1, 2, be the boundary of Bi.

The spheres S1 and S2 are called kissing spheres if S1 ∩ S2 6= ∅ and one of the following

situations holds:

1. B1 and B2 are non-overlapping balls;

2. B1 $ B2;

3. B2 $ B1.
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Suitably we define also kissing hyperplanes. Let F be a family of spheres and

hyperplanes. It is said to be a kissing family if any two members of this family are

kissing each other. Our results in Section 3.1 can be grouped in the following directions:

1. For a given kissing 3-member family of circles and lines in a strictly convex normed

plane we find at least one or even all circles that kiss all members of this family.

2. In a strictly convex and smooth normed plane we find all circles kissing any member

of a given 3-member family of circles and lines which are in arbitrary position to

each other. Here to the given family we include also points, interpreted as circles

of radius 0.

The used methods in both the cases are quite different. For the first case we study

the behavior of curves topologically equivalent to a line. For the second case we prove, in

Theorem 3.1.1, that any strictly convex, smooth plane is also topological Möbius plane,

i.e., an incidence structure of points and circles satisfying some incidence axioms, and

points and circles carry topologies such that the geometric operations are continuous.

This interpretation of strictly convex, normed planes is completely new and can also be

used for clarifying other types of problems in normed planes.

Referring to 1., we have the following results. Theorem 3.1.5, which asserts that for

any kissing family of three circles of the same radii there exist exactly two circles kissing

the given circles, holds in any strictly convex normed plane. To prove this theorem we

need the following fact, that is of interest for itself and is also used for solving some

covering problems. For three non-collinear points in a strictly convex normed plane

not always a circle exists containing them. But if these three points form an equilateral

triangle then, according to our Lemma 3.1.2, such a circle exists. The next result, namely

Theorem 3.1.6, also holds in any strictly convex normed plane. It says that for any given

family of two circles touching each other externally and their common supporting line

always a circle exists kissing all members of this family.

Our results referring to 2. hold in arbitrary strictly convex and smooth normed

planes. According to Theorem 3.1.2, for any generalized circle K (i.e., a circle or a

line) and two points p1, p2 6∈ K, which are not separated by K, there exist exactly two

generalized circles through p1 and p2 kissing K. Theorem 3.1.3 gives, for an arbitrary

family of two circles and a point, the exact number of generalized circles kissing all

member of this family. Let now K1, K2, K3 be three pairwise intersecting generalized

circles (i.e., properly intersecting or kissing) in a normed plane (M2, ‖ · ‖). A set T
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is called a circular triangle if it is a connected component of M2 \ (∪3
i=1Ki) such that

each Ki ∩ bd T is connected and has nonempty interior in Ki. In Theorem 3.1.4 it is

proved that for any circular triangle T formed by K1, K2, K3 there exists precisely one

generalized circle K kissing K1, K2, K3, which belongs to the closure of T .

⋄ Covering problems in normed planes

The problem of covering the Euclidean unit disc with k homothets of it having

minimum diameter is called the circle1 covering problem (see, e.g., [37] and [24] for

the relevant results). In Section 3.2 we investigate the extension of this circle covering

problem to normed planes for k ∈ {3, 4}. Our considerations can also be viewed as

contributions to the following more general problem. Let K be a convex body and

denote by hk(K) the smallest positive ratio of k homothetical copies of K whose union

covers K. For k ∈ {3, 4} the following bounds on hk(K) are known :

2

3
≤ h3(K) ≤ 1, (1.1)

1

2
≤ h4(K) ≤

√
2

2
; (1.2)

see [54]. According to [54], [37], and my best knowledge for k ∈ {5, 6, 7, 8} the exact

lower bounds on hk are not known, and for k ∈ {5, 6} the exact upper bounds. In this

context we give an exact geometric description of hk(K) for k = {3, 4} in terms of the

radius of inscribed equilateral polygons if K is a strictly convex, centrally symmetric

convex body. Note that an optimal packing of a minimal homothecical copy of the unit

disc by unit discs is described by Doyle, Lagarias, and Randall (see [34]) in such terms.

It should be noticed that the case k = 7 for a centrally symmetric body was investigated

by Lassak; see again [54]. In order to give such a geometric description, we reformulate

the above problem for a centrally symmetric convex body K, i.e., K can be considered

as the unit disc D with respect to some norm. Let Rk(D) be the maximal radius of all

homothets of D that can be covered by k translates of D. Then

Rk(D) =
1

hk(D)
,

1The term ”circle“ here is not correct, but so is the tradition in the literature regarding covering and
packing problems.
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and one can rewrite the inequalities (1.1), (1.2) as follows:

1 ≤ R3(D) ≤ 3

2
, (1.3)

√
2 ≤ R4(D) ≤ 2.

It should be also noticed that the fact whether a planar convex body can be covered

by 3 or 4 smaller positive homothetical copies of itself is not apriori true. For 3 homothets

this was proved by Levi [56] which confirmed for the planar case the famous conjecture

of Hadwiger saying that any convex body of the d-dimensional Euclidean space can be

covered by 2d smaller homothetical copies of itself.

Now we announce the related theorems which give the exact geometric description

of R3(D) and R4(D), where D is the unit disc of a strictly convex normed plane. Theorem

3.2.1 says that the circumdisc of any equilateral triangle of side-length 2 has radius > 1

and can be covered by three translates of the unit disc. Moreover, according to our

Theorem 3.2.2 the quantity R3(D) is the maximal circumradius of equilateral triangles

with side-length 2. Proposition 3.2.1 gives an upper bound on R3(D), namely R3(D) ≤
4
3
. This upper bound strengthens the second inequality in (1.3) for the case that D

is centrally symmetric and strictly convex. If bd D is an affine regular hexagon, then

R3(D) = 4
3
. For the case of four covering discs we prove that the quantity R4(D) is

the maximal circumradius of all parallelograms whose four sides are of Minkowskian

length 2, and whose two diagonals have the same length; see Theorem 3.2.4. This result

refers to the problem of covering a convex body in the plane by four smaller homothets

of it, i.e., the planar case of the conjecture of Hadwiger mentioned above. The smallest

possible ratio of those four homothets is attained at the so-called regular 4-covering. This

regular 4-covering was constructed by Lassak [53] in order to prove that the smallest

possible ratio λ is ≤
√

2
2

; see (1.2). In Section 3.3 we continue the investigations of

Lassak on regular 4-coverings and derive further properties of such coverings. We prove

that for any convex body K of diameter 1 and a regular 4-covering of it the smallest

homothetical copy of K, which contains this regular 4-covering, is of diameter 2λ. Note

that this result (our Theorem 3.3.1) refers to all convex bodies. But if the considered

body K is centrally symmetric, Theorem 3.3.2 gives a detailed description how the discs

of the covering are placed to each other and with respect to K. Based on a regular

4-covering of a centrally symmetric convex body, we construct a lattice covering of the

plane. This covering has margin zero and induces a packing of the plane (Proposition
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3.3.1). We investigate also the Voronoi region and the gray area of an element of this

lattice covering. We only mention two of the properties of them. Namely, the family

of translates of a Voronoi region, obtained by the basis vectors of the lattice, is a tiling

of the plane. The convexity of a Voronoi region implies that it is a parallelogram. The

other properties are summarized in Proposition 3.3.2.

⋄ Configurations of circles related to coverings

We return to the configuration of circles in a strictly convex normed plane described

in Theorem 3.3.2. It consists of four circles Ci, i = 1, . . . , 4, of the same radius λ passing

through a point p such that Ci and Ci+1 do not touch each other. Then Ci and Ci+1 have

exactly one second intersection point, denoted by pi+1. If this configuration is a regular

4-covering of a disc D with center p and radius µ, where µ > λ, then the points p1, . . . , p4

lie on the same circle of radius µ. In case of three circles of the same radius passing

through a point p, the second intersection points (if any two of the circles do not touch)

always lie on a circle of the same radius. In the Euclidean case this is the so-called Ţiţeica

theorem. This theorem was extended by Asplund and Grünbaum [6] to strictly convex,

smooth normed planes, but it also holds if these planes are not necessarily smooth; see

[60] and also [62] for further extensions. Our Theorem 3.4.1 clarifies what configuration is

obtained if the second intersection points of even four circles of the same radius passing

through a point p also lie on one circle. More precisely, in a strictly convex normed plane,

let there be given four circles Ci, i = 1, . . . , 4, of radius λ passing though a point p such

that Ci and Ci+1 do not touch each other, whereas Ci and Ci+2 touch each other. If pi+1

(p5 ≡ p1) is the second intersection point of Ci and Ci+1 and p1, p2, p3, p4 lie on the same

circle of radius µ > λ, then the union of the discs having these four circles as boundaries

is a regular 4-covering of the disc, with center p and radius µ.

More general than the above configurations is a configuration {Ci, i = 1, . . . , 4},
where the first intersection points of Ci and Ci+1 do not coincide. We can describe also

this configuration in the following way. Let p1, . . . , p8 be eight points. To every point

pi, i = 1, . . . , 8, we assign a vertex of a cube. Consider the six quadruples of points that

correspond to the vertices of each facet of the cube, e.g.,

(p1, p2, p3, p4), (p1, p2, p5, p6), (p2, p3, p7, p6),

(p3, p4, p8, p7), (p1, p4, p8, p5), (p5, p6, p7, p8).
(1.4)
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If five of the quadruples in (1.4) are concyclic (i.e., there exists a circle passing through all

points of the quadruple), then this configuration is called a Miquel configuration. In the

Euclidean plane all six quadruples are concyclic. This statements is known as Miquel’s

Theorem. It was proved by Asplund and Grünbaum in [6] that in a strictly convex and

smooth normed plane, for any Miquel configuration of circles with equal radii the theorem

of Miquel holds. Our Theorem 3.4.3 extends the result of Asplund and Grünbaum to all

normed planes. To answer the question what happens in a Miquel configuration of circles

of arbitrary radii in normed planes we return to Theorem 3.1.1 which says that every

strictly convex, smooth normed plane is a Möbius plane. Let Σ and Σ′ be two Möbius

planes. If there exists a one-to-one correspondence σ : Σ → Σ′ mapping concyclic points

into concyclic points, and non-concyclic points into non-concyclic ones, then Σ and Σ′

are called isomorphic and σ is said to be a homography from Σ to Σ′. Let now (M2, ‖ · ‖)
be a strictly convex, smooth normed plane, and consider this plane as a Möbius plane

Σ = (P,C). A homography ϕ in Σ that is involutory and leaves the points of a circle

C fixed such that no other point is fixed is called the inversion with respect to the circle

C. It is clear that such a homography exists at least for the Euclidean subcase. We

prove in Theorem 3.4.5 that in a strictly convex, smooth normed plane there exists an

inversion ϕ with respect to some circle of (M2, ‖ · ‖) if and only if the plane is Euclidean.

In [96], Stiles gives another definition for inversion. Namely, he defines the inversion with

respect to the unit circle C of a normed plane (M2, ‖ · ‖) as a mapping ϕ of M2 \ {0}
onto itself that maps a point x 6= 0 onto the point 1

‖x‖2 x. He proves that if the inversive

image of some line is a circle, then (M2, ‖ · ‖) is Euclidean. Theorem 3.4.5 shows that

Stiles’ definition of inversion and ours are only equivalent in the Euclidean case. As a

consequence of Theorem 3.4.5 we have also that if Miquel’s theorem holds in a strictly

convex, smooth normed plane (M2, ‖ · ‖), then this plane is Euclidean (Theorem 3.4.6).

The proof of Theorem 3.4.6 shows that the condition that (M2, ‖ · ‖) is a Miquelian

Möbius plane can be replaced by the condition that (M2, ‖ · ‖) is isomorphic to a Möbius

plane Σ′ = Mo(F,E), where F is a commutative field and E is a quadratic extension of

F. Now we explain the construction of Σ′. One can consider the elements of E ∪ {∞},
where ∞ is a formal symbol, as points and define circles (usually called chains) as sets

{x ∈ E ∪ {∞}|p− r

q − r
:
p− x

q − x
∈ F ∪∞},

where p, q, and r are three pairwise different points from E. Then the so-defined incidence

structure is a Möbius plane (see [11, § 2]), and we denote it by Mo(F,E). Note also that in
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the classical case F = R, E = C, and Mo(F,E) is the inversive plane. Thus Theorem 3.4.6

shows that non-Euclidean, strictly convex, smooth normed planes cannot be algebraized.

Note that Theorem 3.4.6 is not only a characterization of the Euclidean plane among all

strictly convex, smooth planes. This theorem also clarifies the place of strictly convex,

smooth normed planes among all Möbius planes, i.e., non-Euclidean strictly convex,

smooth normed planes are non-Miquelian Möbius planes.

⋄ Concealment number of normed space

The last section is devoted to visibility in a packing of translates of the unit disc of

normed plane. Let F be a family of translates of K packed between disjoint translates

p+K and q+K. Then p+K and q+K are called visible from each other in the packing

{p + K, q + K} ∪ F if there exist points x ∈ (p + K) and y ∈ (q + K) such that the

segment [x, y] intersects no element of F. Otherwise p + K and q + K are said to be

concealed from each other by F. If B denotes the unit ball of a normed plane (Md, ‖ · ‖),
the concealment number δ((Md, ‖ · ‖)) is defined as the infimum of λ > 0 satisfying the

following condition: for p+B and q+B being disjoint, the inequality ‖p−q‖ > λ implies

that p+B and q+B can be concealed from each other by packing translates of B between

them. For any norm we have the inequality

δ((Md, ‖ · ‖)) ≤ 4.

It is also easy to check that for the Euclidean plane E2 the equation δ(E2) = 2
√

3 holds.

In Section 3.5 we extend the investigations of Hosono, Maehara, and Matsuda ([48]) on

concealment numbers from the Euclidean case to two-dimensional normed spaces. We

define the concealment number δp of the direction p. It is the infimum of µ > 2 such that

the unit disc D and its translate µp + D can be concealed from each other by packing

translates of D. Clearly, δp = δ−p and δ(M2, ‖ · ‖) = sup{δp : p ∈ C}. To describe the

concealment number we introduce the notion of special and very special triangles. These

notions are of interest of themselves, since in terms of them one can get characterizations

of the Euclidean plane among all normed planes; see [2, Theorem 3.1 and Corrolary 3.1]

Our main result in Section 3.5, namely Theorem 3.5.1, says:

(i) If [p, q] is the base of a special triangle, then δ p−q

‖p−q‖
≥ ‖p− q‖.

(ii) If [p, q] is the base of a very special triangle, then δ p−q

‖p−q‖
= ‖p− q‖.
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(iii) If ‖p − q‖ < 4 and [p, q] is the base of a special triangle that is not very special,

then δ p−q

‖p−q‖
> ‖p− q‖.

For strictly convex normed planes, Busemann and Kelly defined reflections in a line

as isometries having this line as line of fixed points; see [27, p. 127]. Not every line

admits a reflection in itself; cf. [27, p. 140, Theorem 25.3]. According to our Corollary

3.5.1 we have that if the segment [p, q] is the base of a special triangle with ‖p− q‖ < 4

and the line through p and q admits a reflection, then

δ p−q

‖p−q‖
= ‖p− q‖.

Note that a different approach to reflections in normed planes can be found in [67] and

[68]. In contrast to the approach of Busemann and Kelly the reflections in lines there are

defined as affine transformations that are not necessarily isometries.

1.2 Background knowledge, notation and definitions

Let Md be a finite dimensional real vector space. In the sequel the elements ofMd will be

denoted by x, y, . . ., and the origin by 0. The elements of Md will often be interpreted as

points in a real affine space. If p1, . . . , pd are affinely independent points, we denote the

hyperplane that is the affine hull of p1, . . . , pd by HP(p1, . . . , pd). For the line (or 1-flat)

through the different points p and q we simply write L(p, q). We denote the closed half

space bounded by HP(p0, . . . , pd−1) and containing the point p 6∈ HP(p0, . . . , pd−1) by

HS+
p (p0, . . . , pd−1), and by HS−

p (p0, . . . , pd−1) this one not containing p. If the hyperplane

G is a translate of the hyperplane H , then for the half space, which is bounded by G and

contains H , we write HS+
H(G). A ray emanating from p and containing x is denoted by

R+
x (p). We use the denotation R−

x (p) for the ray opposite to R+
x (p). As usual, the convex

hull of a set K ⊂ Md is denoted by conv K. If p, q, r are three non-collinear points, by

a triangle with vertices p, q, r we mean the convex hull of {p, q, r}. If the points p, q, r,

and s are such that any of them does not belong to the convex hull of the other three,

then the convex hull conv {p, q, r, s} is a convex quadrangle with vertices p, q, r, and s.

Through this work, the notations T (p, q, r) and Q(p, q, r, s) will be used for the triangle

with vertices p, q, r and for the quadrangle with vertices p, q, r, s, respectively. Note

that, although this geometric interpretation, the elements of Md can also be matrices,

polynomials of degree less than d, etc. Defining an inner product in Md one obtains a
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Euclidean space denoted by Ed. A natural generalization of the Euclidean space is the

notion of normed (or Minkowski) space. It is defined as a finite dimensional real vector

space Md equipped with a real valued function ‖ · ‖ : Md −→ R, called its norm, which

satisfies the following conditions:

⋄ ‖x‖ ≥ 0 and ‖x‖ = 0 ⇐⇒ x = 0;

⋄ ‖λ x‖ = |λ| ‖x‖, where λ ∈ R;

⋄ ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

Let (Md, ‖ · ‖) be a normed space with unit ball B := {x ∈Md : ‖x‖ ≤ 1} and unit

sphere S := {x ∈ M2 : ‖x‖ = 1}. A homothetical copy λB + p of B, where p ∈ Md and

λ ∈ R+, is called the (Minkowskian) ball with center p and radius λ. We denote λB + p

by B(p, λ). Analogously, λS + p is the (Minkowskian) sphere with radius λ centered at

p and denoted by S(p, λ). Sometimes, if there is no possibility of misunderstanding, we

say a unit ball (unit sphere) for a ball (sphere) of radius 1, i.e., for a translate of the unit

ball (sphere). A ball and a sphere in a two-dimensional normed space are called a disc

and a circle, respectively. Let λ > 0, and p, q be points of a normed plane (M2, ‖ · ‖) with

‖p− q‖ < 2λ. Then the circles C(p, λ) and C(q, λ) intersect; see, e.g., [72, Lemma 13]. If

x is a point such that ‖p − x‖ = λ and ‖q − x‖ = λ, then the circular arc of radius λ

with center x joining p and q is defined to be the set

{x+ α(p− x) + β(q − x) : α, β ≥ 0 and ‖α(p− x) + β(q − x)‖ = λ}.

We denote it by arcλ(p, q; x). If the radius λ is 1, we simply write arc(p, q; x).

A normed space (Md, ‖·‖) is called strictly convex if the equality ‖x+y‖ = ‖x‖+‖y‖
implies that x and y are linearly dependent. Geometrically this means that the unit

sphere does not contain a non-trivial line segment. A normed space is said to be smooth

if the norm is differentiable at each non-zero point, or equivalently if the unit ball has a

unique supporting hyperplane at each boundary point.

Any norm accomplishes Md with a topological structure and we use the standard

denotations int K, cl K, and bd K for the interior, the closure, and the boundary of a

set K from Md, respectively.

A non-zero vector p ∈ Md is Birkhoff orthogonal to a non-zero vector q ∈ Md,

denoted by p ⊣ q, if for any real λ the inequality ‖p‖ ≤ ‖p+ λq‖ holds. This means that

there is a supporting line of ‖p‖S at p being parallel to q, where S is the unit sphere of

(Md, ‖ · ‖). Clearly, the so-defined relation of orthogonality is not symmetric in general.
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For d ≥ 3 the symmetry of Birkhoff orthogonality implies that the space (Md, ‖ · ‖) is

Euclidean; see, e.g., [19]. But in the two-dimensional case, according to the Busemann

theorem ([25], see also [71, Theorem 1]) for every norm ‖ · ‖ there is a norm ‖ · ‖a, unique

up to a factor and called antinorm of ‖ · ‖, such that for any x, y with x ⊣ y we have

that y is normal to x with respect to ‖ · ‖a, denoted by y ⊣a x, i.e., for any λ ∈ R the

inequality ‖x‖a ≤ ‖x+ λy‖a holds. This antinorm of ‖ · ‖ can be defined in the following

way. Let (M2)⋆ be the dual plane of M2, i.e., (M2)⋆ is the two-dimensional vector space

consisting of all linear transformations ϕ : M2 → R. On (M2)⋆ a norm ‖ · ‖⋆ can be

introduced by

‖ϕ‖⋆ := sup{ϕ(x) : ‖x‖ = 1}.

The dual plane (M2)⋆ can be identified with M2. This identification can also be realized

by an isomorphism

τ :

{

M2 → (M2)⋆

τ(y) 7−→ [·, y],
where [·, ·] is a symplectic bilinear form. Thus one can define a new norm on M2, namely

an antinorm, by

‖x‖a := ‖τ(x)‖⋆.

For detailed considerations on the antinorm we refer to [71]. Here we only mention that

the antinorm of the antinorm is the original norm (see, e.g., [71, Proposition 1]), which

together with the Buseman theorem implies that

x ⊣ y ⇐⇒ y ⊣a x (1.5)

The unit circle of ‖ · ‖a is called unit anticircle with respect to ‖ · ‖ and denoted by Ca.

If Ca is a homothetic copy of C, then, of course, the normality relation is symmetric, and

planes with this property are called Radon planes.

Since the so-defined relation of Birkoff orthogonality is homogeneous, in what fol-

lows we also use the term of Birkoff orthogonal directions. We note also that in a

two-dimensional, strictly convex normed space for any direction there exists exactly one

direction Birkhoff orthogonal to it. In a two-dimensional smooth normed space there ex-

ists, for any given direction, exactly one direction such that the given direction is normal

to this direction.

In a natural way we also may define the relation of Birkoff orthogonality for a vector

and a hyperplane. A non-zero vector p is said to be Birkoff orthogonal to a hyperplane

G, if there exists a hyperplane G′ parallel to G which supports ‖p‖S at p.
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If G1 and G2 are two parallel hyperplanes, then the distance δ(G1, G2) between

them is defied by

δ(G1, G2) := inf{‖x1 − x2‖ : x1 ∈ G1, x2 ∈ G2}.

This infimum is only attained at points x1 ∈ G1, x2 ∈ G2 for which L(x1, x2) ⊣ G1, G2

holds. Analogously, δ(p,G) := inf{‖p − q‖ : q ∈ G} is the distance between a point p

and a hyperplane G.

The bisector of two points p and q in a normed space (Md, ‖ · ‖) is defined by

B(p, q) := {x ∈Md : ‖x− p‖ = ‖x− q‖}.

In general, bisectors have very complicated topological structure even in dimension 3,

but in every strictly convex normed plane they are unbounded simple curves; see [71, §
8.2] and the survey [70, §4.2]. Also we note that the definition of bisectors immediately

implies that B(p, q) is symmetric with respect to the midpoint of [p, q]. Many further

results on and applications of bisectors in normed planes and spaces are collected in Part

4 of the survey [70].

The first lemma which is necessary for our considerations is known as the mono-

tonicity lemma. It is proved in [41]; see also [99, Lemma 4.1.2] and [72, § 3.5].

Lemma 1.2.1. Let C be the unit circle in a normed plane (M2, ‖ · ‖), and p, q, r be

different points belonging to C such that the origin 0 does not belong to the open half-

plane determined by L(p, q) which contains r. Then

‖p− q‖ ≥ ‖p− r‖,

with equality if and only if q, r, and 1
‖q−p‖ (q − p) belong to a segment contained in C.

The next lemmas express basic metrical relations in different point configurations.

The first one is a special case of Corollary 28 in [72].

Lemma 1.2.2. Let p, q, x be three non-collinear points in a normed plane (M2, ‖ · ‖) and

y ∈ int conv {p, q, x}. Then ‖p− y‖ + ‖y − q‖ < ‖p− x‖ + ‖x− y‖.

Lemma 1.2.3. ([72, Lemma 5]) In a normed space (Md, ‖ · ‖), let there be given two

distinct points p and q and a point x which is strictly between p and q. For an arbitrary

point y of Md the inequality ‖y− x‖ ≤ max{‖y− p‖, ‖y − q‖} holds. Equality is possible

if and only if ‖y − x‖ = ‖y − p‖ = ‖y − q‖.
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Lemma 1.2.4. ([72, Proposition 7]) If the points p, q, r, s form a convex quadrangle

in a normed plane, then the sum of its diagonals is at least the sum of two opposite sides,

i.e.,

‖p− r‖ + ‖q − s‖ ≥ ‖p− q‖ + ‖s− r‖ and ‖p− r‖ + ‖q − s‖ ≥ ‖p− s‖ + ‖q − r‖.

Now we discuss the intersection of two circles in a normed plane. In general, this

intersection is always the union of two segments, which are either disjoint or intersect

in a common point. Each of these segments may degenerate to a point or to the empty

set. This was proved by Grünbaum [41] and later also by Banasiak [8]. The next lemma,

referred to as Proposition 21 in [72], describes the intersection precisely. Moreover, it

includes a statement on where the different pieces of the circles lie relative to each other,

which is a generalization of a lemma of Schäffer; see [91, Lemma 4.3].

Lemma 1.2.5. Let C and C ′ be two circles in a normed plane (M2, ‖ · ‖). Then C ∩ C ′

is a union of two segments A1 and A2, each of which may degenerate to a point or to the

empty set. Let the point pi ∈ Ai, i = 1, 2, and let ϕ : C → C ′ be the positive homothety

which maps C into C ′ (or translation, if C and C ′ are of the same radii). Let ci = ϕ−1(pi)

and c′i = ϕ(pi). Let γ1(γ2) be the part of C on the same side (opposite side) of L(p1, p2)

as c1 and c2; similarly for γ′. Then γ2 ⊆ conv γ′1 and γ′2 ⊆ conv γ1.

If (M2, ‖ · ‖) is strictly convex, then the intersection of two circles described in the

above lemma is very simply. According to [72, Proposition 14], if it is not empty, it only

consists of one or two points. If two spheres in normed space have exactly one common

point we say that they touch each other. The next lemma is usually used without proof.

Its proof is really trivial and we omit it.

Lemma 1.2.6. Let there be given two spheres S(x1, λ1) and S(x2, λ2) in a strictly convex

normed space (Md, ‖ · ‖) with λ1 > λ2. Then they touch each other if and only if

‖x1 − x2‖ = λ1 ± λ2. (1.6)

Moreover, the sign in (1.6) is plus if the point x2 is an exterior point with respect to

S(x1, λ1), and it is minus if x2 is an interior point with respect to S(x1, λ1).

The next theorem, which summarizes Proposition 14 and Proposition 41 from [72],

gives an information about the number of circles passing through three non-collinear

points.
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Theorem 1.2.1. The following properties hold in a normed plane (M2, ‖ · ‖).
(i) If (M2, ‖ · ‖) is strictly convex, then through any three non-collinear points at

most one circle passes.

(ii) If (M2, ‖ · ‖) is smooth, then through any three non-collinear points at least one

circle passes.

Since in strictly convex normed planes any planar quadrangle with opposite sides

of equal lengths is a parallelogram (see [72, Proposition 12]), the following lemma holds.

Lemma 1.2.7. In a strictly convex normed plane, for any two different circles C(y1, λ)

and C(y2, λ) with C(y1, λ)∩ C(y2, λ) = {z1, z2} and z1 6= z2 the equation y1 + y2 = z1 + z2

holds.

Let now K ⊂ Md be a convex body, i.e., a compact, convex set with nonempty

interior. Let the points p and q belong to the boundary of K. The segment [p1, p2] is

called an affine diameter of K if there exist two different parallel supporting hyperplanes

H1 and H2 of K such that p1 ∈ H1 and p2 ∈ H2. If all affine diameters of K have the

same Minkowskian length, then K ⊂ (Md, ‖ · ‖) is said to be of constant Minkowskian

width. The Minkowskian diameter diam K of a set K is defined by

diam K := sup{‖x− y‖ : x, y ∈ K}.

If K is a convex body and p1, p2 ∈ bd K are such that ‖p1 − p2‖ = diam K, then we call

also the segment [p1, p2] diameter of K. Any diameter of K is also an affine diameter,

but not vice versa; see [7, Theorem 2, IV].

For each pair G1, G2 of parallel supporting hyperplanes of a convex body K of

constant width, every affine diameter generated by G1 and G2 is Birkhoff orthogonal to

G1 and G2; see, e.g., [70, Theorem 1, (3)]. This means that for each convex body K of

constant width λ the distance between every two parallel supporting hyperplanes of K

is also λ.

Let there be given a Jordan curve γ in M2. If the points p and q on γ coincide or

p precedes q according to a fixed orientation of γ, we will write p ≺ q.

At the end, we give three basic definitions from discrete geometry. A collection

{Bi} of finitely many convex bodies is called a covering of the body B if any point of

B belongs to
⋃

i

Bi and for every body Bi of {Bi} there exists a point x ∈ B such that
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x ∈
⋃

j 6=i

Bj . Two convex bodies are non-overlapping if they intersect, but have no interior

point in common. A family of convex bodies is said to be packing if any two members of

this family do not overlap each other.
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Chapter 2

Ball-intersection bodies

Let (Md, ‖ · ‖) be a normed space. The intersection of balls of equal radii in (Md, ‖ · ‖) is

called a ball-intersection body. If the number of the balls is finite, then this body is said

to be a ball-polyhedron. If the points p1, . . . , pk form an equilateral set in (Md, ‖ · ‖), i.e.,

‖pi − pj‖ = λ for i 6= j and i, j ∈ {1, . . . , k}, then the ball-polyhedron
⋂k

i=1 B(pi, λ) is

said to be an equilateral ball-polyhedron with vertices p1, . . . , pk.

In this chapter we consider different types of ball-intersection bodies. The fist

section is devoted to the so-called ball-hull of a set. It is defined as the intersection of

all balls of the same radii containing a given set. We investigate relations between the

ball-hull of a set S and the ball-intersection of the same set S. The ball-intersection is

the intersection of all balls of equal radii centered at S, i.e., it is a ball-intersection body,

too. In the second section we give a minimal property of a ball-polyhedron that is the

intersection of three balls of radius λ centered at the vertices of an equilateral triangle of

side-length λ. A subject of the third section is the class of bodies of constant width. As

the theorem of Eggleston states, any body of constant width is the ball-intersection of

themselves. In this chapter results from the papers [65], [93], and [3] are included. The

results from Section 2.1.2 will be submitted. Note that Lemma 2.1.4 and Lemma 2.1.5

are due to Martini and Theorem 2.3.2 and Theorem 2.3.12 to Alonso.

25
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2.1 Ball-hull

2.1.1 Definition and basic properties

Let there be given a set K in a normed space (Md, ‖ · ‖). The ball-intersection BI(K) of

K is the intersection of all unit balls whose centers are in K, i.e.,

BI(K) :=
⋂

x∈K

B(x, 1).

The ball-hull BH(K) of K is defined as the intersection of all unit balls that contain K.

Clearly, BH(K) 6= ∅ if and only if K can be covered by a unit ball. Directly from the

definitions of the ball-intersection and the ball-hull we get

K1 ⊆ K2 =⇒ BI(K1) ⊇ BI(K2) and BH(K1) ⊆ BH(K2). (2.1)

We also note that if K is a set of diameter 1, its ball-hull BH(K) and its ball-intersection

BI(K) are nonempty sets, and the following implications

K ⊆ BH(K) ⊆ BI(K) (2.2)

hold.

The next propositions give further relations between the ball-intersection and the

ball-hull of a set.

Proposition 2.1.1. Let K be a set in a normed space that satisfies BI(K) 6= ∅ and

BH(K) 6= ∅. Then

(i) BH(K) = BI(BI(K)), and

(ii) BI(K) = BI(BH(K)).

Proof. (i): x ∈ BH(K) ⇐⇒ x ∈
⋂

K⊂B(p,1)

B(p, 1) ⇐⇒

x ∈
⋂

‖p− q‖ ≤ 1

for every q ∈ K

B(p, 1) ⇐⇒ x ∈
⋂

p∈BI(K)

B(p, 1) ⇐⇒ x ∈ BI(BI(K)).

(ii): x ∈ BI(BH(K)) =⇒ x ∈
⋂

p∈BH(K)

B(p, 1) ⊆
⋂

p∈K

B(p, 1) = BI(K). For the inverse

implication we note that the ball-intersection BI(K) of a set K can be also viewed as
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Figure 2.1: Reuleaux triangles in normed planes.

the set of centers of all unit balls that include K. Since K and BH(K) are included in

the same unit balls, we obtain (ii).

Proposition 2.1.2. If diam K = diam BI(K) = 1, then the ball-intersection and the

ball-hull of K coincide.

Proof. If diam BI(K) = 1, then by the implication (2.2) and (i) we get BI(K) ⊆
BI(BI(K)) = BH(K), yielding BI(K) = BH(K), again by (2.2).

Now we give an example for the ball-hull of the set {p1, p2, p3}, where the points

p1, p2, p3 form an equilateral triangle in a normed plane (M2, ‖ · ‖). The ball-intersection

BI({p1, p2, p3}) (see Figure 2.1) is, in fact, a Minkowskian Reuleaux triangle. Note that

in normed planes a Reuleaux triangle K was defined in [87] and [88] as the figure bounded

by three arcs of radius λ ∈ R+ which are centered at the vertices of an equilateral triangle

with sides of length λ, i.e.,

K =
(

⋃

i, j ∈ {1, 2, 3}
and i 6= j

conv arc{pi, pj; pk}
)

⋃

conv {p1, p2, p3}. (2.3)

But one can see that this is the ball-intersection of {p1, p2, p3}; for a detailed proof of this

fact we refer to [29, p. 18, Proposition 1.6]. To clarify how the ball-hull of {p1, p2, p3} looks

like, the following lemma is necessary. This lemma will also be used in the considerations

of the next sections.

Lemma 2.1.1. Let (M2, ‖ · ‖) be a normed plane with unit disc B. If the points p and q
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belong to B such that ‖p− q‖ = 1, then any circular arc of radius 1 and with endpoints

p and q also belongs to B.

Proof. The possible centers of circular arcs of radius 1 with endpoints p and q are exactly

two (in different half planes with respect to the line L(p, q)) if and only if the longest

segment in the unit circle parallel to L(p, q) has length at most 1; see, e.g., [72, Proposition

33]. But if the length of this longest segment is more than 1, then all arcs of radius 1

joining p and q coincide with the line segment [p, q]. Thus, in this case our statement

holds. Let us now consider the case when there exist exactly two points x1 and x2 such

that the circles C(x1, 1) and C(x2, 1) pass through p and q. Let the line L(p, q) not pass

through the origin 0. Let x1 lie in this half plane bounded by L(p, q) that contains 0.

Assume also that both the points p and q do not lie on the unit circle C, say p 6∈ C, i.e.

‖p‖ < 1. For x1 there exist the following possibilities:

1. x1 ∈ conv {p, q, 0};

2. x1 ∈ HS+
0 (p, q) ∩ HS−

q (p, 0) ∩ HS+
p (0, q) or x1 ∈ HS+

0 (p, q) ∩ HS−
p (q, 0) ∩ HS+

q (0, p);

3. x1 ∈ HS−
q (p, 0) ∩ HS−

p (0, q).

Case 1. is impossible. Otherwise 2 = ‖p−x1‖+‖x1−q‖ ≤ ‖p‖+‖q‖ < 2, a contradiction

to Lemma 1.2.2. If the first case of 2. holds, assume that there exists a point x on the

circular arc arc(p, q; x1) that does not belong to C, i.e., ‖x‖ > 1. Since x belongs to

HS+
q (x1, p)∩HS+

p (x1, q), the points p, x1, 0, x form a convex quadrangle. Thus, by Lemma

1.2.4 we have 2 ≥ ‖x− x1‖+ ‖p‖ ≥ ‖p− x1‖+ ‖x‖ > 2, a contradiction. For the second

case of 2. we consider the convex quadrangle with vertices q, x, 0, x1, and again we get a

contradiction. For case 3. we denote by y the intersection point of the ray R+
0 (x1) and

the circular arc arc(p, q; x1). Then ‖y‖ ≤ 1. Now we consider a point x from arc(p, q; x1)

different to y. Thus by Lemma 1.2.3 we have ‖x‖ ≤ max{‖x−y‖, ‖x−x1‖ = 1}. Since the

monotonicity lemma yields ‖x−y‖ ≤ ‖p−q‖ = 1, we get ‖x‖ ≤ 1. Moreover, from the fact

that the only possible situation is 3., we conclude the implication 0 ∈ conv {p, q, x1}. On

the other hand, the uniqueness of the centers x1 and x2 implies that the points p, x1, q, x2

form a parallelogram. This means that 0 is contained in the cone HS+
q (x2, p)∩HS+

p (x2, q).

Let x be an arbitrary point from arc(p, q; x2). We distinguish the following cases:

(i) x ∈ conv {p, q, 0};

(ii) x ∈ HS+
0 (p, q) ∩ HS−

q (p, 0) ∩ HS+
p (0, q) or x1 ∈ HS+

0 (p, q) ∩ HS−
p (q, 0) ∩ HS+

q (0, p);
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(iii) x ∈ HS−
q (p, 0) ∩ HS−

p (0, q).

It is our aim to prove that in all three cases ‖x‖ ≤ 1. If (i) holds and R+
x (0) ∩ [p, q] =

{y}, then Lemma 1.2.3 yields ‖x‖ ≤ ‖y‖ ≤ max{‖p‖, ‖q‖} ≤ 1. For the first case of

(ii) we consider the points p, x, 0, q that form a convex quadrangle. If ‖x‖ > 1, then

2 < ‖x‖ + ‖p − q‖ ≤ ‖p‖ + ‖x − q‖ ≤ 2, a contradiction to Lemma 1.2.4. For (iii)

denote by z the intersection point of R+
0 (x2) and arc(p, q; x2). If x = y, then ‖x‖ ≤ 1.

Otherwise, we have ‖x‖ ≤ max{‖x− z‖, ‖x− x2‖} = 1. Thus it remains to consider the

case when p and q lie on C. Then one of the two centers, say x1, has to coincide with the

origin 0. In this case our statement follows from Lemma 1.2.5, which says that the part

of C(x2, 1) lying in the half plane HS+
0 (p, q), in fact the arc arc(p, q; x2), belongs to the

convex hull of the part of C that lies in HS+
0 (p, q).

Remark 2.1.1. The next example shows that Lemma 2.1.1 is no longer true in dimen-

sions ≥ 3. Let (M3, ‖ · ‖) be the normed space whose unit ball B is the regular octahedron

with vertices (±1, 0, 0), (0,±1, 0), (0, 0,±1). Then the circular arc of radius 1 with center

(0, 1
2
, 1

2
) and endpoints (1

2
, 0, 1

2
), (−1

2
, 0, 1

2
) does not belong to B.

Proposition 2.1.3. Let p1, p2, p3 be three points in a normed plane with ‖pi − pj‖ = 1

for i, j ∈ {1, 2, 3}, i 6= j. The ball-hull BH({p1, p2, p3}) is the Reuleaux triangle with

vertices p1, p2, and p3.

Proof. Let B(p, 1) be an arbitrary disc containing the points p1, p2, and p3. Then, ac-

cording to Lemma 2.1.1 and (2.3), it contains ∩3
i=1B(pi, 1). Since diam {p1, p2, p3} = 1

the implication (2.2) yields

BH({p1, p2, p3}) =
3

⋂

i=1

B(pi, 1).

The next notion, namely that of the ball-intersection property, is well known in

Euclidean spaces as well as in normed spaces. Via the ball-intersection property an

important description of the class of bodies of constant width in Euclidean spaces and of

the class of complete bodies in normed spaces is possible. A convex body K of diameter 1

has the ball-intersection property if BI(K) = K. The following classical theorems clarify

the relations between the ball-intersection property, constant width, and completeness;

see [57], [36], and the surveys [32], [70, pp. 98-99]. Note that in a normed space (Md, ‖·‖)
a convex body K is called complete if diam (K ∪ {x}) > diam K for every x 6∈ K.
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Theorem 2.1.1. [Meissner1] Let K be a body of diameter 1 in a Euclidean space. Then

the following statements are equivalent.

1. K is of constant width.

2. K is complete.

3. K has the ball-intersection property.

Theorem 2.1.2. [Kelly, [57]] A convex body K of diameter 1 in a normed plane has

the ball-intersection property if and only if it is of constant Minkowskian width.

Theorem 2.1.3. [Eggleston, [36]] Let K be a body of diameter 1 in a normed space

(Md, ‖ · ‖).

1. If K is of constant width, then it has the ball-intersection property.

2. K is complete if and only if it has the ball intersection property.

Now we say that a convex body K of diameter 1 has the ball-hull property if

BH(K) = K. Implication (2.2) implies that the class of bodies having the ball-hull

property is wider than the class of bodies with ball-intersection property. The following

example shows that the both classes do not coincide.

Example 2.1.1. In a normed plane (M2, ‖ · ‖), let there be given two points p and q

with ‖p − q‖ = 1. Let C(x, 1) be a circle passing through p and q. If y = p + q − x,

then the circle C(y, 1) also passes though p and q. Let K = D(x, 1) ∩ D(y, 1). Due to

Lemma 2.1.1 the ball-hull of K is D(x, 1) ∩ D(y, 1), i.e., K has the ball-hull property.

But since K is centrally symmetric, it is not of constant width, i.e., it does not posses

the ball-intersection property.

Again returning to implication (2.2), we see that any convex body that has the ball-

intersection property also has the hull-intersection property, i.e., the following theorem

holds.

Theorem 2.1.4. In a normed space (Md, ‖ · ‖) any complete body of diameter 1 has the

ball-hull property.

1In fact, usually the equivalence of 1. and 2. if referred to as the theorem of Meissner.
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Setting a condition additional to completeness, we can prove that the converse of

Theorem 2.1.4 holds, too.

Theorem 2.1.5. If a convex body K of diameter 1 in a normed space (Md, ‖ · ‖) has the

ball-hull property and diam BI(K) = 1 is satisfied, then K is complete.

Proof. For any convex body P of diameter 1 we have P ⊆ BI(P ). Applying this for

P = BI(K), we get BI(K) ⊆ BI(BI(K)). On the other hand, Proposition 2.1.1 implies

BI(BI(K)) = BH(K). Therefore BI(K) ⊆ BH(K) = K. Since diam K = 1, also the

relation K ⊆ BI(K) holds. Thus we get the desired statement.

2.1.2 Meissner’s bodies

As we have seen in the previous section, Reuleaux triangles are classical examples of

bodies of constant width being ball-polyhedra. But in [50] it is proved that in a Euclidean

space of dimension ≥ 3 no finite intersection of balls has constant width, unless it reduces

to a single ball, i.e., in Ed, d ≥ 3, there exist no trivial ball-polyhedra of constant width.

It seems that the Reuleaux tetrahedron defined as the ball-intersection of {p1, . . . , p4},
where ‖pi − pj‖ = λ for i, j ∈ {1, . . . , 4} and i 6= j, can play this role. But this

body is not of constant width; see [73]. Meissner was able to construct a body, usually

called Meissner tetrahedron, which is of constant width and very close to the Reuleaux

tetrahedron. Meissner’s construction is obtained by flipping couples of edges of the

Reuleaux tetrahedra. In [50] Lachand-Robert and Oudet gave an inductiv construction

of bodies of constant width for Euclidean space of arbitrary dimension. A variant of this

construction yields, in the two-dimensional case, a Reuleuax triangle, and in the three-

dimensional case a Meissner tetrahedron is obtained. For that reason they called them

Meissner’s bodies. In this section we apply this construction to normed spaces and prove

that the resulting body is complete. We prove also that, although Meissner’s bodies in

Ed are no ball-polyhedra, they can be approximated by ball-polyhedra, namely by the

ball-hull and the ball-intersection of a finite point set that has a special position with

respect to the considered Meissner body.

We start with the construction of Lachand-Robert and Oudet. Let HP be a hy-

perplane in Ed, let HS+ and HS− be the two open half-spaces bounded by HP, and let

K0 ⊂ HP be a (d − 1)-dimensional convex body of constant width λ. Let Q be any set
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satisfying

K0 ⊆ Q ⊂ cl HS−
⋂

(

⋂

x∈K0

B(x, λ)
)

.

Then the body K = K+ ∪K−, where

K+ := cl HS+
⋂

(

⋂

x∈Q

B(x, λ)
)

and K− := HS−
⋂

(

⋂

x∈K+

B(x, λ)
)

, (2.4)

is of constant width. Let now (Md, ‖ · ‖) be a normed space. The resulting body of the

same construction for Q = K0 we call a Meissner body induced by K0.

Theorem 2.1.6. In a normed space (Md, ‖·‖), let K0 be an (d−1)-dimensional complete

body lying in the hyperplane HP. Then the Meissner body K induced by K0 is complete.

Proof. Without loss of generality we assume that diam K0 = 1. First we prove that also

the diameter of K is 1. Let p, q be two distinct points of K. We distinguish the following

cases:

1. p, q ∈ K0; 4. p ∈ K+, q ∈ K−;

2. p ∈ K0, q ∈ K+ \K0; 5. p, q ∈ K−.

3. p, q ∈ K+ \K0;

In view of (2.4) we have directly in 1., 2., and 4. that ‖p − q‖ ≤ 1. For 3. we

consider an affine diameter [p1, q1] of K0 such that p, q, p1, q1 lie in a 2-flat G. Since the

ball B(p1, 1) contains p and q, the disc D(p1, 1) which is the intersection of B(p1, 1) and

G also contains p and q. Moreover, p and q belong to the same half-plane bounded by

the line L(p1, q1). We may assume that p and q lie on the boundary of this disc. We

can also rename the points p and q such that p, q, q1, p1 form a convex quadrangle in this

order. Then by Lemma 1.2.4 we get

2 ≥ ‖p1 − q‖ + ‖p− q1‖ ≥ ‖p1 − q1‖ + ‖p− q‖ = 1 + ‖p− q‖.

The same considerations show that in 5. the distance between p and q is also ≤ 1. Thus

by (2.2) we get K ⊂ BI(K). To prove the converse implication we consider an arbitrary

point p from BI(K). Then the claims

(i) ‖p− x‖ ≤ 1 for all x ∈ K0 and

(ii) ‖p− y‖ ≤ 1 for all y ∈ K+
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hold. If p ∈ HP, then (i) implies that p belongs to all (d − 2)-balls centered at K0.

Since K0 is complete, the point p is contained in K0 ⊂ K. If p lies in HS+, then by

(i) we have p ∈ BI(K0), yielding p ∈ K+ ⊂ K. In the case p ∈ HS−, by (ii) we also

obtain x ∈ K− ⊂ K. Therefore BI(K) = K, which is sufficient to the claim that K is

complete.

Remark 2.1.2. Theorem 2.1.6 is a generalization of Theorem 4.1 in [50] (for the case

Q = K0) which says the same, but for the Euclidean subcase. If we restrict our Theorem

2.1.6 to Euclidean space, we have a new proof of Theorem 4.1 in [50].

Now we consider a Meissner body in a Euclidean space E3 starting from a Reuleaux

triangle K0 with vertices p1, p2, p3 in a 2-plane. Assume that diam K0 = 1. Induced by

this Reuleaux triangle we obtain the Meissner tetrahedron K. Let p4 be a point lying in

that half space with respect to HP(p1, p2, p3) which contains K+ such that ‖p4 −pi‖ = 1.

We call the equilateral ball-polyhedron with vertices p1, p2, p3, p4 associated with K. We

shall prove that any Meissner tetrahedron, which is created from a Reuleaux triangle,

can be approximated by its associated equilateral ball-polyhedron and the ball-hull of

the vertices of this equilateral ball-polyhedron. For this goal we need the following

Lemma 2.1.2. Let K be the Meissner tetrahedron in E3 induced by the Reuleaux triangle

K0. If p1, p2, p3, p4 are the vertices of the equilateral ball-polyhedron associated with K,

then p4 ∈ K.

Proof. Let diam K = 1. If we prove that for any x ∈ K0 the distance from p4 to x is at

most 1, then the lemma is true. If x belongs to the boundary of conv {p1, p2, p3}, this is

trivial. If x ∈ int conv {p1, p2, p3}, we consider x′ determined as the intersection of the

ray R+
x (p3) and the segment [p1, p2]. Thus by Lemma 1.2.3 we get

‖p4 − x‖ < max{‖p4 − p3‖, ‖p4 − x′‖} = 1.

So it remains to consider the case when x ∈ K0 \ conv {p1, p2, p3}. In view of the above

proof it is sufficient to choose x on the boundary of K0, say x ∈ arc(p1, p2; p3). Since any

arc of radius 1 belongs to the ball B(p4, 1) if its endpoints are contained in B(p4, 1) (see,

e.g., [100, p. 373, Theorem 7.6.4]), we again obtain that ‖p4 − x‖ ≤ 1.

Theorem 2.1.7. If K is the Meissner tetrahedron in E3 induced by a Reuleaux triangle

K0 and the associated ball-polyhedron of K has the vertices p1, p2, p3, p4, then

BH(p1, . . . , p4) ⊂ K ⊂ BI(p1, . . . , p4). (2.5)
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Proof. Since

K ⊂ BI(p1, . . . , p4), (2.6)

it follows by (2.1) and Proposition 2.1.1 that

BI(K) ⊇ BI(BI(p1, . . . , p4)) = BH(p1, . . . , p4). (2.7)

On the other hand, K is of constant width, i.e., K = BI(K). Thus by (2.6) and (2.7)

we get the implications (2.5).

Remark 2.1.3. Due to the proof of Lemma 2.1.2 it also holds in a normed space with

unit ball B having the following property:

for any two points p, q belonging to B with ‖p− q‖ = 1 all circular arcs

of radius 1 with endpoints p and q also belong to B.

Thus Theorem 2.1.7 is also true in three-dimensional normed spaces having the above

property. Note that due to our Remark 2.1.1 not all normed spaces of dimension 3 have

this property.

2.1.3 Relations between the ball-hull and the ball-intersection

of a convex body

Now we prove one more relation between the ball-hull and the ball-intersection of a set

K in strictly convex normed planes. Namely, the Minkowski sum of the ball-hull and

the ball-intersection of a set of diameter 1 is a convex set constant Minkowskian width

2. The Euclidean version of this statement was given by Capoyleas [28] and Bezdek,

Connely, Csikós [16].

First we establish a few lemmas.

Lemma 2.1.3. In a strictly convex normed plane (M2, ‖·‖), let there be given a rhombus

Q(p1, p2, p3, p4) with side-lengths 1. If x ∈ D(p1, 1)∩D(p3, 1) and y ∈ D(p2, 1)∩D(p4, 1),

then ‖x− y‖ ≤ 1.

Proof. We distinguish two cases.
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Figure 2.2: The proof of Lemma 2.1.3, I.

I. D(p1, 1) ∩ D(p3, 1) ⊂ D(p2, 1) ∩ D(p4, 1); see Figure 2.2. Then we have p2 ∈
C(p1, 1) ∩ C(p3, 1) ⊂ D(p1, 1) ∩ D(p3, 1) ⊂ D(p4, 1). Therefore

‖p2 − p4‖ ≤ 1. (2.8)

If the diagonals of Q(p1, p2, p3, p4) intersect in z, then the triangle inequality, applied to

the triangle T (p1, z, p2), yields 1
2
‖p1 − p3‖ + 1

2
‖p2 − p4‖ > 1. Therefore

‖p1 − p3‖ > 1, (2.9)

i.e., p1 is an exterior point of D = D(p1, 1) ∩ D(p3, 1). Assume that x, y ∈ D, and [u, v]

be a diameter of D. Due to the monotonicity lemma the points u and v do not lie in

the same half-plane with respect to the line L(p2, p4). Moreover, since D is symmetric

with respect to the midpoint z of [p2, p4], the diameter [u, v] passes through z. Let

u ∈ C(p1, 1), v ∈ C(p3, 1). The case that u, v, and p1 are collinear yields ‖u− v‖ < 1. If

p1 6∈ L(u, v), assume that [u, v] 6= [p2, p4]. If [p1, u]∩ C(p3, 1) = {v∗}, then u, p2, v
∗, v (or

u, p4, v
∗, v) form a convex quadrangle. This means that the quadrangle Q(u, p2, p1, v)

(or Q(u, p4, p1, v)) is convex, too. Thus by Lemma 1.2.4, we get

‖p2 − v‖ + ‖u− p1‖ > ‖p1 − p2‖ + ‖u− v‖ ⇐⇒ ‖p2 − v‖ > ‖u− v‖,

a contradiction to the fact that [u, v] is a diameter. Therefore [u, v] ≡ [p2, p4]. This

means that diam D ≤ 1 (see (2.9)) and ‖x− y‖ ≤ 1.

Now we consider the case that y 6∈ D(p1, 1) ∩ D(p3, 1). Denote D(p2, 1) ∩ D(p4, 1)

by D′. Let D1 = (HS+
p2

(p1, x) ∩ HS+
p1

(p2, x)) ∩D′, D2 = (HS+
p2

(p3, x) ∩ HS+
p3

(p2, x)) ∩D′,
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Figure 2.3: The proof of Lemma 2.1.3, II.

D3 = (HS+
p3

(p4, x) ∩ HS+
p4

(p3, x)) ∩ D′, D4 = (HS+
p4

(p1, x) ∩ HS+
p1

(p4, x)) ∩ D′, and y ∈
D1, say. Then the points p1, y, x, p4 (or the points p3, y, x, p4 when y 6∈ (HS+

p1
(p4, x) ∩

HS+
p4

(p1, x)) ∩D1) form a convex quadrangle, and

‖x− y‖ + ‖p1 − p4‖ < ‖p4 − y‖ + ‖p1 − x‖

holds, by Lemma 1.2.4. Thus we get ‖x− y‖ + 1 < 2 ⇐⇒ ‖x− y‖ < 1.

II. D(p1, 1) ∩ D(p3, 1) 6⊂ D(p2, 1) ∩ D(p4, 1); see Figure 2.3. Let now x and y

be placed as in Figure 2.3 or x, y ∈ ⋂4
i=1 D(pi, 1). Denote by t the intersection point

of arc(p1, p3; p2) and arc(p2, p4; p3). Then D(t, 1) ∩ D(p2, 1) ∩ D(p3, 1) is a Reuleaux

triangle. If y ∈ conv {p4, t, p3}, then the monotonicity lemma implies that ‖t − y‖ < 1.

If y 6∈ conv {p4, t, p3}, then the points p4, t, y, p3 form a convex quadrangle. Therefore

‖p4 − y‖ + ‖t− p3‖ > ‖t− y‖ + ‖p3 − p4‖ ⇐⇒ ‖p4 − y‖ > ‖t− y‖,

again by Lemma 1.2.4. Since ‖p4 − y‖ ≤ 1, it follows that ‖t − y‖ < 1. Analogously,

‖t−x‖ < 1. Thus we get that the Reuleaux triangle D(t, 1)∩D(p2, 1)∩D(p3, 1) contains

the points x and y. Hence ‖x− y‖ ≤ 1.

Lemma 2.1.4. In a strictly convex normed plane, let there be given two points p, q with

‖p−q‖ ≤ 2. If C(x1, 1) and C(x2, 1) are the circles passing through p and q, then we have

BH([p, q]) = D(x1, 1) ∩ D(x2, 1).

Proof. Clearly, BH([p, q]) ⊆ D(x1, 1) ∩ D(x2, 1). Let D(y, 1) ⊃ [p, q]. Then

p, q ∈ D(y, 1) ⇐⇒ y ∈ D(p, 1) ∩ D(q, 1).
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Let z ∈ D(x1, 1) ∩ D(x2, 1). We have that the points p, x1, q, x2 form a rhombus of side-

lengths 1. (Note that in a strictly convex Minkowski plane a quadrangle with opposite

sides of equal length is a parallelogram; see [72, Proposition 12].) Then Lemma 2.1.4

implies ‖z − y‖ ≤ 1, i.e., D(x1, 1) ∩ D(x2, 1) ⊆ D(y, 1). Thus we get BH([p, q]) =

D(x1, 1) ∩ D(x2, 1).

Lemma 2.1.5. In a strictly convex plane (M2, ‖ · ‖), let the points p and q belong to the

unit disc D. If C(x, 1) is a circle passing through p and q, then the arc arc(p, q; x) also

belong to D.

Proof. Let ϕ be the translation mapping C(x, 1) into C = bd D. If C(x, 1) ∩ C = {p1, p2}
and γ2 is the part of C(x, 1) on the same side as ϕ(p1), then according to Lemma 1.2.5

γ2 ⊂ D. Since the arc arc(p, q; x) is a part of γ2, we get arc(p, q; x) ⊂ D.

Lemma 2.1.6. In a strictly convex normed plane, let K be a set with BH(K) 6= ∅. If

p, q ∈ BH(K), then BH([p, q]) ⊆ BH(K).

Proof. Let B(x, 1) be a disc containing K. Then B(x, 1) contains p and q and by Lemma

2.1.4 and Lemma 2.1.5 it contains BH([p, q], too.

Now we are ready to establish the main result in this subsection.

Theorem 2.1.8. In a strictly convex normed plane, let there be given a set K of diameter

1. Then the Minkowski sum BI(K) + BH(K) is a convex set of constant Minkowskian

width 2.

Proof. For an arbitrary direction, denote by G1, G2 the supporting lines of BI(K) parallel

to this direction. Let H1, H2 be the supporting lines of BH(K) also parallel to G1.

According to the implication (2.2) we have that the lines H1, H2 belong to the strip

with bounding lines G1, G2. Let them be placed in the order G1, H1, H2, G2. Let xi ∈
Gi ∩ BI(K), yi ∈ Hi ∩ BH(K), i = 1, 2. Since x2 ∈ BI(K), we get

‖x2 − p‖ ≤ 1 for any p ∈ K ⇐⇒ K ⊂ D(x2, 1).

But y1 ∈ BH(K), which means that y1 ∈ D(x2, 1) ⇐⇒ ‖y1 − x2‖ ≤ 1. Thus we obtain

d(H1, G2) ≤ ‖y1 − x2‖ ≤ 1. (2.10)
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Consider a circle C(x, 1) through y1 with H1 as supporting line at y1. Let C(x, 1) also lie

in HS+
G2

(H1), i.e., in the half-plane bounded by H1 and containing G2. Choose a point

y ∈ BH(K). Since y1 also belongs to BH(K), the monotonicity lemma implies that

‖y − y1‖ ≤ 2. If y ∈ L(x, y1), then ‖x− y‖ ≤ 1, i.e., y ∈ D(x, 1). Let now y 6∈ L(x, y1).

Assume that ‖x−y‖ > 1. We have that BH([y1, y]) 6= ∅. Let C(x∗, 1) and C(x∗∗, 1) denote

the circles of radius 1 passing through y1 and y, i.e., BH([y1, y]) = D(x∗, 1) ∩ D(x∗∗, 1).

Clearly, x∗ and x∗∗ lie in different half-planes with respect to L(y1, y). The point x∗

is contained in the double cone of y1 and y with apex x∗∗ (see [72, Proposition 17]).

If x∗∗ belongs to the half-plane opposite to HS+
G2

(H1), then x∗∗ and y lie in different

half-planes with respect H1, and x∗ has to lie in HS+
G2

(H1). Therefore at least one of

the points x∗ and x∗∗ belongs to HS+
G2

(H1). Let x∗ ∈ HS+
G2

(H1) ∩ HS+
x (y1, y), say. Since

‖y−x‖+‖x−y1‖ > 2 = ‖x∗−y‖+‖x∗−y1‖, the point x does not belong to conv {y, x∗, y1};
see Lemma 1.2.2. Assume that x ∈ HS+

y (y1, x
∗). Then the quadrangle with vertices

x, x∗, y1, and y is convex and 2 = ‖x − y1‖ + ‖y − x∗‖, ‖x∗ − y1‖ + ‖x − y‖ > 2, a

contradiction to Lemma 1.2.4. Therefore x ∈ HS−
y (y1, x

∗)∩HS+
G2

(H1)∩HS+
x (y1, y). Since

‖x− y‖ > 1, the point x∗ does not coincide with x. This means that the line H1 is not a

supporting line of C(x∗, 1). Hence there exists a point z ∈ C(x∗, 1) ∩H1 different to y1.

Assume that z ∈ HS+
y (y1, x

∗). In view of ‖x− y1‖+ ‖x− z‖ > 2 = ‖x∗ − y1‖+ ‖x∗ − z‖
we get x 6∈ conv {x∗, z, y1} (see again Lemma 1.2.2), i.e., the quadrangle with vertices

x, z, y1, and x∗ is convex. Therefore

2 = ‖x− y1‖ + ‖x∗ − z‖ > ‖x− z‖ + ‖x∗ − y1‖ > 2,

a contradiction. Thus we have proved that a part of D(x∗, 1) ∩ D(x∗∗, 1) belongs to

HS−
G2

(H1). Since y1, y ∈ BH(K), this contradicts Lemma 2.1.6. So we get that y ∈
D(x, 1), and therefore D(x, 1) covers BH(K). But K ⊆ BH(K), which means that

x ∈ BI(K) and that x lies in the strip with bounding lines H1 and G2. Let L(y1, x)∩G2 =

{x′}. Then

d(H1, G2) = ‖y1 − x′‖ ≥ ‖y1 − x‖ = 1. (2.11)

By the inequalities (2.10) and (2.11) we obtain that d(H1, G2) = 1. In the same way we

get that also d(G1, H2) = 1. Since the Minkowskian width of the sum of two sets in

a given direction is the sum of the Minkowskian widths of these two sets in the same

direction, the proof is complete.
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2.2 On a theorem of Chakerian

If RT is a Reuleaux triangle in the Euclidean plane of width λ and any congruent

copy P ′ of a compact, convex set P can be covered by a translate of RT , then P can

also be covered by a translate of an arbitrary convex body of constant width λ. This

statement is known as Chakerian’s theorem and was proved in [31]. Another proof was

given later by Bezdek and Connelly; see [14]. In this section we extend this theorem

to arbitrary normed planes. If the points p1, p2, p3 form an equilateral set in a normed

plane (M2, ‖·‖), then the equilateral ball-polyhedron with vertices p1, p2, p3 is a Reuleaux

triangle. If ‖p1−p2‖ = ‖p2−p3‖ = ‖p3−p1‖ = λ, then we denote it by RT (p1, p2, p3;λ).

To prove an extension of Chakerian’s theorem to all normed planes we start with some

lemmas.

Lemma 2.2.1. Let RT (p1, p2, p3;λ) be a Reuleaux triangle in a normed plane. If x ∈
RT (p1, p2, p3;λ), then RT (p1, p2, p3;λ) ⊂ D(x, λ).

Proof. Let y ∈ RT (p1, p2, p3;λ). Since diam RT (p1, p2, p3;λ) = λ, we have

‖x− y‖ ≤ λ⇐⇒ y ∈ D(x, λ).

Lemma 2.2.2. In a normed plane (M2, ‖ · ‖), let there be given three discs D(xi, λ),

i = 1, 2, 3, such that xi, xj ∈ D(xk, λ) for {i, j, k} = {1, 2, 3}. Then
3

⋂

i=1

D(xi, λ) contains

a Reuleaux triangle of width λ.

Proof. Let ‖x1 − x2‖ = max{‖x1 − x2‖, ‖x2 − x3‖, ‖x3 − x1‖} and x′2 ∈ R+
x2

(x1) be such

that ‖x1 − x′2‖ = λ. The intersection of the circles C(x1, λ) and C(x′2, λ) is not empty,

and not all points of this intersection lie in the same half-plane with respect to the line

L(x1, x
′
2). Let

x′3 ∈ C(x1, λ) ∩ C(x′2, λ) ∩ HP+
x3

(x1, x
′
2).

If we prove that x3 ∈ RT (x1, x
′
2, x

′
3;λ), then the statement of the lemma follows from

Lemma 2.2.1. If ‖x1 − x2‖ = µ, then x3 ∈ D(x1, µ) ∩ D(x2, µ) ∩ HS+
x′
3

(x1, x2). Consider

the point x′′3 on R+
x′
3

(x1) such that ‖x1 − x′′3‖ = µ. Then x′′3 ∈ C(x1, µ) ∩ C(x2, µ), by

Thales’ theorem. Therefore

x3 ∈ conv {x1, x2, x
′′
3} ∪ conv arc(x2, x

′′
3; x1) ∪ conv arc(x′′3, x1; x2).
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If x3 ∈ conv {x1, x2, x
′′
3}, then x3 ∈ RT (x1, x

′
2, x

′
3;λ). Let now

x3 ∈ conv arc(x2, x
′′
3; x1) ∪ conv arc(x′′3, x1; x2).

We will prove that

conv arc{x2, x
′′
3; x1} ∪ conv arc(x′′3, x1; x2) ⊂ D(x1, λ) ∩ D(x′2, λ) (2.12)

We omit the case λ = µ, which is obvious. Consider the homothety ϕ mapping the circle

C(x1, µ) onto the circle C(x1, λ). Clearly, if x is an arbitrary point of arc(x2, x
′′
3; x1), then

x′ = ϕ(x) is a point belonging to arc(x′2, x
′
3; x1). Moreover, x is strictly between x1 and

x′, i.e., x ∈ D(x1, λ). On the other hand, the monotonicity lemma and Lemma 1.2.3

imply

‖x′2 − x‖ ≤ max{‖x′2 − x1‖, ‖x′2 − x′‖} = λ,

which means that x ∈ D(x′2, λ). Thus we have proved that

conv arc(x2, x
′′
3; x1) ⊂ D(x1, λ) ∩ D(x′2, λ).

In order to prove that arc(x′′3, x1; x2) also belongs to D(x1, λ)∩D(x′2, λ), we consider the

homothety ψ mapping C(x2, µ) onto C(x′2, λ). It is easy to check that the center of ψ is

the point

s =
λ

λ− µ
x2 −

µ

λ− µ
x′2 (2.13)

Since λ
λ−µ

> 1, the point s lies on R−
x′
2

(x2). By (2.13) we get

‖s− x2‖ =
µ

λ− µ
‖x2 − x′2‖ = µ,

i.e., s ≡ x1. If y ∈ arc(x′′3, x1; x2) and ψ(y) = y′, then y′ ∈ C(x′2, λ) and y lies strictly

between x1 and y′, yielding y ∈ D(x1, λ). Besides this, Lemma 1.2.3 implies

‖x′2 − y‖ ≤ max{‖x′2 − x1‖, ‖x′2 − y′‖} = λ.

Thus the inclusion (2.12) is proved and x3 ∈ D(x1, λ) ∩ D(x′2, λ). So it remains to

show that if x3 ∈ conv arc(x2, x
′′
3; x1) ∪ conv arc(x′′3, x1; x2), then x3 ∈ D(x′3, λ). If

x3 ∈ conv arc(x2, x
′′
3; x1) and R+

x3
(x1) ∩ C(x1, λ) = {x⋆

3}, then x3 is strictly between x1

and x⋆
3. Thus, again by Lemma 1.2.3 and the monotonicity lemma we have

‖x′3 − x3‖ ≤ max{‖x′3 − x1‖, ‖x′3 − x⋆
3‖} = λ.

In the same way, we can prove that ‖x′3−x3‖ ≤ λ, in the case x3 ∈ conv arc(x′′3, x1; x2).
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In order to prove the main result, we also need the following generalization of Helly’s

theorem; see, e.g., [31, Theorem 1].

Theorem 2.2.1. (A generalization of Helly’s theorem) Let P be a fixed compact,

convex set in the plane, and F be a family of compact, convex sets having the property

that each three or less members of F have a translate of P in common. Then all the

members of F have a translate of P in common.

If ψ is an isometry in a normed plane (M2, ‖ · ‖) preserving the orientation of

(M2, ‖ · ‖) and K is a point set in (M2, ‖ · ‖), then ψ(K) is called a congruent copy of K.

It should be noticed that in general the only maps of (M2, ‖ · ‖) that are isometries with

respect to all norms are translations, reflections with respect to a point, and the identity

map; see [5] and [63]. But there exist normed planes (e.g., the Euclidean plane), where

the group of isometries is richer.

Theorem 2.2.2. In a normed plane, let there be given a compact, convex set P such

that every congruent copy of P can be covered by a translate of any Reuleaux triangle of

Minkowskian width λ. Then each congruent copy of P can be covered by a translate of

any convex body of constant Minkowskian width λ.

Proof. LetK be an arbitrary convex body of constant Minkowskian width λ, and x1, x2, x3

be three arbitrary points of K. Then

3
⋂

i=1

D(xi, λ) contains a Reuleaux triangle RT of

width λ, see Lemma 2.2.2. By the assumption of the theorem there exists a translate

P ′ of any congruent copy of P such that P ′ ⊆ RT . Therefore, by Theorem 2.2.1, all

discs of radius λ centered at K have a translate of P in common. Since K is of con-

stant Minkowskian width, i.e., K =
⋂

x∈K

D(x, λ) by Theorem 2.1.2, we conclude that K

contains a translate of any congruent copy of P , and the proof is done.

The next statement can be obtained as an elementary corollary of Theorem 2.2.2.

Corollary 2.2.1. In a normed plane, let there be given a finite point set P such that

every congruent copy of P can be covered by a translate of any Reuleaux triangle of

Minkowskian width λ. Then any congruent copy of the convex hull of P can be covered

by a translate of any convex body of constant Minkowskian width λ.
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2.3 Further characterizations of bodies of constant

width

The notion of a normal to a convex body was introduced by Eggleston (see [35], [36], and

the survey [32]). It is a very useful notion, e.g. for characterizations of convex bodies of

constant width in Euclidean space, as well as in any finite-dimensional real Banach space.

Following this approach, we introduce the notion of affine orthogonality with respect to

a convex body. If the convex body is a circular disc, then our definition coincides with

the usual Euclidean orthogonality. But for bodies of constant width we have coincidence

with the notion of normals of Eggleston. The advantage of our approach is that via this

notion we are able to characterize not only bodies of constant width but also other classes

of convex bodies, such as centrally symmetric ones, ellipses, bodies whose boundary is

a Radon curve, etc. Moreover, we contribute to the solution of the following problem

posed by V. Soltan: to extend the characterization of bodies of constant width in the

Euclidean plane given by Makai Jr. and Martini in [59] to normed planes by replacing

Euclidean orthogonality by Birkhoff orthogonality. Note that, due to the counterexample

constructed in [1], the mentioned characterization cannot be extended to all normed

planes based on Birkhoff orthogonality. But if we replace Euclidean orthogonality by

affine orthogonality (see our Theorem 2.3.3), then we obtain such an extension. It should

be noticed that in contrast to Eggleston’s definition, our definition does not need a metric.

In other words, our considerations take place in an arbitrary affine space.

2.3.1 Affine orthogonality

We start with the definition of affine orthogonality in the planar case. Let [p1, p2] and

[q1, q2] be two chords of a convex body K inM2, and let P1 be the line through p1 parallel

to L(q1, q2). We say that [p1, p2] is affinely orthogonal to [q1, q2] through p1, denoted by

[p1, p2] ⊣p1
[q1, q2],

if one of the following two conditions holds:

a) P1 supports K at p1, and also the line through p2 parallel to P1 supports K.

b) P1 ∩ bd K = {p1, p
′
1}, and [p′1, p2] is an affine diameter of K.
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If K is a Euclidean disc, then the so-defined relation coincides with the usual

Euclidean orthogonality. It is also clear that, in general, affine orthogonality is not

symmetric with respect to the chords [p1, p2] and [q1, q2]. It is also not symmetric with

respect to the points p1 and p2. As we shall see later, these properties of symmetry will

characterize special types of convex bodies. On the other hand, affine orthogonality is

obviously symmetric with respect to q1 and q2.

The next proposition follows directly from the definition above. Property (1) shows

that the position of the second chord [q1, q2] does not matter: of importance is only the

(non-oriented) direction of [q1, q2]. Property (2) recalls what happens if K is a Euclidean

disc: if p, q and r are points in bd K and [q, r] is a diameter, then [p, q] is orthogonal to

[p, r]. This is, in fact, Thales’ theorem and was motivating for the definition of affinely

orthogonal chords.

Proposition 2.3.1. Let K be a convex body in M2.

(1) If [p1, p2] ⊣p1
[q1, q2], then for any chord [q′1, q

′
2] of K that is parallel to [q1, q2] the

relation [p1, p2] ⊣p1
[q′1, q

′
2] holds.

(2) Let [p2, q2] be an affine diameter of K and let the point p1 ∈ bd K be such that the

segment [p1, q2] does not belong to the boundary of K. Then [p1, p2] ⊣p1
[p1, q2].

Let now K be a convex body in Md (d ≥ 3). The intersection of K with a two-

dimensional flat α is a planar convex body (plane section) that will be denoted byKα. Let

[p1, p2] and [q1, q2] be two intersecting chords of K and let α be the 2-flat that contains

them. We say that [p1, p2] is affinely orthogonal through p1 to [q1, q2], denoted again

[p1, p2] ⊣p1
[q1, q2], if [p1, p2] is affinely orthogonal through p1 to [q1, q2] with respect to

Kα. For defining affine orthogonality it is not necessary that [p1, p2] and [q1, q2] intersect,

but sufficient that there exists a 2-flat containing both chords. If α passes through the

origin, we call Kα a main plane section of K, and if two chords of K determine a 2-flat

passing through the origin, then we call them main chords.

2.3.2 Characterizations of bodies of constant width via affine

orthogonality

Let (Md, ‖ · ‖) be a normed space, and let K ⊂Md be a convex body. A chord [p, q] of K

is called a normal of K at p if [p, q] is Birkhoff orthogonal to a supporting hyperplane
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of K at p. This notion was introduced by Eggleston (see [35, p. 166]). Via the notion

of normals of a convex body Eggleston gave the following characterization of bodies of

constant width which is not only of interest in itself. In the Euclidean subcase this

characterization forms the basis for the usual definition of space curves of constant width

and the generalization of that concept to transnormal manifolds embedded in Euclidean

spaces.

Theorem 2.3.1. ([32, (VI’)]) In a strictly convex and smooth normed space, a convex

body K is of constant width if and only if every chord [p, q] of K that is a normal of K

at p is also a normal of K at q.

Our next theorem characterizes bodies of constant width by relating affinely or-

thogonal chords to normal chords.

Theorem 2.3.2. Let K be a convex body in a strictly convex and smooth normed plane.

The following properties are equivalent:

(i) K is of constant width.

(ii) If [p1, p2] is a normal chord of K at p1 and [p1, p2] is Birkhoff orthogonal to the

chord [q1, q2], then [p1, p2] ⊣p1
[q1, q2].

Proof. (i)⇒(ii) Assume that [p1, p2] is a normal chord of K at p1. Then [p1, p2] is Birkhoff

orthogonal to a line L that supports K at p1. By Theorem 2.3.1, the line through p2

parallel to L supports K at p2. If [p1, p2] is Birkhoff orthogonal to the chord [q1, q2], then

[q1, q2] is parallel to L, from which it follows that [p1, p2] ⊣p1
[q1, q2].

(ii)⇒(i) Let [p1, p2] be a chord of K that is a normal of K at p1, and let L be a supporting

line of K at p1 such that [p1, p2] is Birkhoff orthogonal to L. Let [q1, q2] be any chord

parallel to L. Then [p1, p2] is Birkhoff orthogonal to [q1, q2], and by (ii) we have [p1, p2] ⊣p1

[q1, q2], which implies that the line through p2 parallel to L supports K at p2. Thus [p1, p2]

is also a normal of K at p2 and, by Theorem 2.3.1, K is of constant width.

In [59] Martini and Makai Jr. gave the following characterization of bodies of

constant width in the Euclidean plane: a convex body of diameter 1 in E2 is of constant

width 1 if and only if any two perpendicular chords of it have total length greater than

or equal to 1. V. Soltan posed the question of extending this characterization to normed

planes by replacing the usual Euclidean orthogonality by Birkhoff orthogonality. But as
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the counterexample constructed in [1] shows, in general this cannot be done. Now we

prove that such an extension is possible if Euclidean orthogonality is replaced by affine

orthogonality. For that purpose we need the following lemma.

Lemma 2.3.1. [92, Property 3.2] Let K ⊂ Md be a convex body. Then for any line

L there exist q1, q2 ∈ bd K such that [q1, q2] is an affine diameter of K and L(q1, q2) is

parallel to L.

Let [q1, q2] be a chord of a convex body K ⊂ M2, and let p ∈ bd K. We say

that p is in the neighbourhood of [q1, q2] if there exists an affine diameter [q′1, q
′
2] which

is parallel to [q1, q2] such that [p, q′1] ∩ [q1, q2] 6= ∅. And we say that a convex body K in

a normed plane has the affine orthogonality property if for any two intersecting chords

[p1, p2] and [q1, q2], with p1 in the neighbourhood of [q1, q2] and [p1, p2] ⊣p1
[q1, q2], the

inequality ‖p1 − p2‖ + ‖q1 − q2‖ ≥ diam K holds.

Theorem 2.3.3. A convex body K in a normed plane is of constant width if and only if

it has the affine orthogonality property.

Proof. Assume that K is of constant width, and let [p1, p2] and [q1, q2] be two intersecting

chords of K such that [p1, p2] ⊣p1
[q1, q2] and p1 is in the neighbourhood of [q1, q2]. Let

P1 be the line through p1 and parallel to [q1, q2]. Then there exists p′1 ∈ P1 ∩ bd K

(it is possible that p′1 = p1) such that [p′1, p2] is an affine diameter. Since p1 is in the

neighbourhood of [q1, q2], we have that ‖p1 − p′1‖ ≤ ‖q1 − q2‖, and then

diam K = ‖p2 − p′1‖ ≤ ‖p2 − p1‖ + ‖p1 − p′1‖ ≤ ‖p1 − p2‖ + ‖q1 − q2‖.

Conversely, assume that K has the affine orthogonality property and that there exists

an affine diameter [x, y] with ‖x − y‖ < diam K. Let P be a supporting line of K at

x, and let us first assume that P touches bd K only at x. Then there exists a chord

[q1, q2] of K parallel to P and such that ‖q1 − q2‖ < diam K − ‖x − y‖, with x in the

neighbourhood of [q1, q2]. But then [x, y] ⊣x [q1, q2] and ‖q1 − q2‖ + ‖x − y‖ < diam K,

which contradicts the affine orthogonality property. On the other hand, if P touches

bd K at a segment that contains x then, taking a point x′ in that segment such that

‖x− x′‖ < diam K − ‖x− y‖, we get also a contradiction, since [x, y] ⊣x [x, x′].

Using the following result from geometric tomography, we extend the ′′ ⇐=“ part

of Theorem 2.3.3 to Euclidean space of dimension d ≥ 3.
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Theorem 2.3.4. [39, Corollary 7.1.15] Let K be a convex body in an Euclidean space

Ed containing the origin in its interior. If any main plane section of K is of constant

width, then K is also of constant width.

Theorem 2.3.5. Let K be a convex body in an Euclidean space Ed, where d ≥ 3. If K

contains the origin in its interior and for any two main chords [p1, p2] and [q1, q2] with p1

in the neighbourhood of [q1, q2] and [p1, p2] ⊣p1
[q1, q2], the inequality ‖p1−p2‖+‖q1−q2‖ ≥

diam K holds, then K is of constant width.

Proof. It follows directly from Theorem 2.3.3 and Theorem 2.3.4.

Due to further results from geometric tomography we are also able to describe what

happens when all main plane sections of a convex body are of constant width.

Lemma 2.3.2. [39, Lemma 7.1.14] If K is a convex body in Euclidean space Ed, d ≥ 3,

containing the origin in its interior and for any hyperplane σ through the origin K ∩σ is

of constant width, then there is a diameter D of K containing the origin. Furthermore,

if a main plane section contains D, then each normal of K ∩ σ is a diameter of K.

If a 2-flat α contains the diameter D from Lemma 2.3.2, we call the plane section

Kα a maximal plane section. Since D passes through the origin, any maximal plane

section is also a main plane section.

Theorem 2.3.6. Let K be a convex body in Euclidean space E3 containing the origin in

its interior, and any main plane section of K be of constant width. Let Kα be a maximal

plane section.

1. Then for any two chords [p1, p2] and [q1, q2] of Kα with p1 in the neighbourhood of

[q1, q2] and [p1, p2] ⊣p1
[q1, q2], the inequality ‖p1 − p2‖+ ‖q1 − q2‖ ≥ diam K holds.

2. Let [p2, q2] be a normal of Kα and let the point p ∈ bd Kα be such that the segment

[p, q2] does not belong to the boundary of Kα. Then ‖p2 − p‖+ ‖p− q2‖ ≥ diam K.

Proof. The first claim follows from Lemma 2.3.2 and Theorem 2.3.3. For the second

one we note that any normal of Kα is also a double normal. But every double normal

is an affine diameter, and Proposition 2.3.1 yields [p, p2] ⊣p [p, q2]. Thus claim 2. is a

consequence of 1.
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Remark 2.3.1. The mentioned characterization of Makai Jr. and Martini is extended

to Euclidean space of dimension d ≥ 3 only in the one direction. Namely if for a convex

body K of diameter 1 any d mutually perpendicular chords of it have total length greater

than or equal to 1 then K is of constant width; see [59]. But it is still unknown even

in dimension 3 whether the converse holds, i.e., whether any convex body of constant

width 1 has this property. Replacing the usual orthogonality in Euclidean spaces by an

affine orthogonality our Theorem 2.3.6 solves this problem for a big class of convex bodies

of constant width in E3. According to Theorem 2.3.4, this is due to the fact that if any

main plane section of a convex body is of constant width, then this body is also of constant

width.

2.3.3 Applications of affine orthogonality for characterizations

of further classes of special convex bodies

As we already mentioned, the advance of the definition of affine orthogonality is that we

are able to characterize not only bodies of constant width, but also centrally symmetric

bodies, Radon curves, and ellipses.

We start with a relation between the notion of affine orthogonality and the class

of centrally symmetric convex bodies. If K is centrally symmetric and p ∈ K, then we

denote by p̄ the point opposite to p with respect to the center of K. Thus, if K is centrally

symmetric and p ∈ bd K, then [p, p̄] is an affine diameter. But if in the boundary of a

centrally symmetric convex body K there is a segment that contains p1 or p2, then [p1, p2]

can be an affine diameter which does not pass through the center of K. Example (A) in

Figure 2.4 shows that, in general, [p1, p2] ⊣p1
[q1, q2] does not imply [p1, p2] ⊣p2

[q1, q2].

Theorem 2.3.7. For a convex body K ⊂M2, the following properties are equivalent:

(i) K is centrally symmetric and strictly convex.

(ii) If [p1, p2] and [q1, q2] are two chords of K and [p1, p2] ⊣p1
[q1, q2], then [p1, p2] ⊣p2

[q1, q2].

Proof. (i)⇒(ii) Let x be the center of K and assume that [p1, p2] ⊣p1
[q1, q2]. Let P1 be

the line through p1 parallel to L(q1, q2). If P1 supports K at p1, then trivially [p1, p2] ⊣p2

[q1, q2]. Let now P1 not support K at p1, and P1 ∩ bd K = {p1, p
′
1}. Then [p′1, p2] is an

affine diameter, and since K is strictly convex, p′1 and p2 are opposite with respect to x,
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p1p2

q2

q1

p′1

(A) q2p1

q1
p2

(B)

Figure 2.4: (A) [p1, p2] ⊣p1
[q1, q2], but [p1, p2] 6⊣p2

[q1, q2], (B) [p1, p2] ⊣p1,p2
[q1, q2].

i.e., p′1 = p̄2. Since L(p̄1, p2) is parallel to L(p1, p̄2) = P1 and [p1, p̄1] is an affine diameter,

we get [p1, p2] ⊣p2
[q1, q2].

(ii)⇒(i) Let us show first that property (ii) implies that K is strictly convex. Assume,

on the contrary, that bd K contains a segment [p, q], and let p1 and p2 be two different

points in the interior of that segment. Let q2 ∈ bd K be such that [p2, q2] (and then

also [p1, q2]) is an affine diameter. Then we have that [p1, p2] ⊣p1
[p1, q2]. By (ii) also

[p1, p2] ⊣p2
[p1, q2]. Since the line Q through p2 and parallel to L(p1, q2) does not support

K, we have that Q cuts bd K in a point q′2 such that [p2, q
′
2] is an affine diameter and

L(p1, p2) is parallel to L(q2, q
′
2). But this implies that [q2, q

′
2] is a segment contained

in bd K and having the same length as [p1, p2]. Interchanging the roles of p1 and p2,

the above argument shows that there exists another point q′′2 in bd K such that q2 is

the midpoint of [q′2, q
′′
2 ], and thus bd K contains a segment having the double length of

[p1, p2]. Since p1 and p2 are arbitrary points in the interior of [p, q], we have proved that

if bd K contains a segment, then it contains another segment of double length, which is

an absurdity.

Let us now show that K has the following property:

(∗)
If [p, q] is an affine diameter and P is a line that supports K at p, then the line Q

through q and parallel to P also supports K.

Indeed, assume that Q ∩ bd K = {q, q′}, where q 6= q′. Then [p, q′] ⊣q′ [q, q′], and

by (ii) we have [p, q′] ⊣p [q, q′]. But this implies that Q supports K at q (recall (a) in the

definition of affine orthogonality), which is impossible because K is strictly convex.
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p1

q1

q2

p2

p′1

p′2

(A)

p2

p′1
q2

p1

q1

p′2 (B)

Figure 2.5: (A) Centrally symmetric but not strictly convex, (B) Strictly convex but

not centrally symmetric. In both cases [p1, p2] ⊣p1
[q1, q2] but [p1, p2] 6⊣p2

[q1, q2].

Fix now an affine diameter [p2, q2] of K. We shall see that K is centered at the

midpoint of [p2, q2]. Denote by P2 and Q2 the parallel supporting lines at p2 and q2, re-

spectively. Let p1 be an arbitrary point in bd K, different from p2 and q2. By Proposition

2.3.1 we have that [p1, p2] ⊣p1
[p1, q2], and then by (ii) we have [p1, p2] ⊣p2

[p1, q2]. This,

together with property (∗), implies that the line P ′
2 through p2 and parallel to [p1, q2]

cuts bd K in a point p′2 6= p2, with [p1, p
′
2] being an affine diameter. Moreover, we have

[p′2, p2] ⊣p′
2

[p′2, q2], and by (ii) we get [p′2, p2] ⊣p2
[p′2, q2]. Again by (∗), the line P ′′

2 through

p2 and parallel to [p′2, q2] cuts bd K in a point p′′2 6= p2, and [p′2, p
′′
2] is an affine diameter.

Since [p1, p
′
2] and [p′2, p

′′
2] are both affine diameters, property (∗) and the strict convexity

of K imply that p′′2 = p1. Hence the points p1, p2, p
′
2 and q2 form a parallelogram, and

p′2 is the point symmetric to p1 with respect to the midpoint of [p2, q2].

In Figure 2.5 we see examples confirming that if in Theorem 2.3.7 property (i) fails,

then also (ii) fails. On the other hand, as Proposition 2.3.2 below shows that if the chord

[p1, p2] has a special position, then strict convexity is not necessary to obtain property

(ii).

Proposition 2.3.2. Let p, q1, q2 be three different points of a centrally symmetric convex

body K. If [p, p̄] ⊣p [q1, q2], then the line P through p and parallel to [q1, q2] supports K at

p, yielding [p, p̄] ⊣p̄ [q1, q2].

Proof. Assume that [p, p̄] ⊣p [q1, q2], but P ∩ bd K = {p, p′}, where p 6= p′. Then K has

supporting lines at p̄ and at p′ that are parallel, and by the symmetry of K these lines
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are also parallel to a supporting line at p that, by the convexity of K, coincides with P ,

a contradiction.

In view of the situations described in Theorem 2.3.7 and in Proposition 2.3.2, if

[p1, p2] ⊣p1
[q1, q2] and [p1, p2] ⊣p2

[q1, q2], we simply write [p1, p2] ⊣ [q1, q2].

Remark 2.3.2. Let K be a centrally symmetric convex body in M2, taken as the unit

ball of a norm. Then from Proposition 2.3.2 it follows that in this case [p, p̄] ⊣ [q1, q2] if

and only if p− p̄ is Birkhoff orthogonal to q1 − q2.

To extend Theorem 2.3.7 to higher dimensions, we need the following theorem

known as the false center theorem.

Theorem 2.3.8. [39, Corollary 7.1.10] Let K be a convex body in Ed, d ≥ 3. If any

main plane section of K is centrally symmetric, then K is centrally symmetric about the

origin or an ellipsoid.

From this theorem and Theorem 2.3.7 we have immediately

Theorem 2.3.9. Let K be a convex body in an Euclidean space Ed, d ≥ 3.

1. Assume that K is strictly convex and symmetric about the origin. If [p1, p2] and

[q1, q2] are two main chords with [p1, p2] ⊣p1
[q1, q2], then [p1, p2] ⊣p2

[q1, q2].

2. Assume that for any two main chords [p1, p2] and [q1, q2] the implication [p1, p2] ⊣p1

[q1, q2] =⇒ [p1, p2] ⊣p2
[q1, q2] holds. Then K is strictly convex and symmetric about

the origin or an ellipsoid.

The next class of convex bodies that can be described via affine orthogonality is

the class of those convex bodies in (M2, ‖ · ‖) whose boundary is a Radon curve. Radon

curves were introduced by Radon [83] in 1916 and independently rediscovered by Birkhoff

[19]. A centrally symmetric, closed, convex curve C is called a Radon curve if it has the

following property:

For p ∈ C, let P be a supporting line of C at p and assume that the line

parallel to P through the center of C intersects C at q and q̄. Then the line

through q parallel to L(p, p̄) supports C.
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Any Radon curve centered at the origin defines a norm whose properties are ”almost

Euclidean“. In fact, the boundary of a centrally symmetric convex body K in M2 is a

Radon curve if and only if Birkhoff orthogonality with respect to the induced norm is

symmetric. For d ≥ 3 the symmetry of the Birkhoff orthogonality characterizes Euclidean

spaces. In other words, a centrally symmetric convex body inMd (d ≥ 3) is an ellipsoid if

and only if the boundaries of its two-dimensional sections through the center of symmetry

are Radon curves. This characterization was obtained in gradual stages by G. Birkhoff

[19], R. C. James [51, 52] and M. M. Day [33]. For further properties of Radon curves

we refer, e.g., to [99, § 4.7], [72], and [71].

Theorem 2.3.10. For a centrally symmetric convex body K ⊂ M2, the following prop-

erties are equivalent:

(i) The boundary of K is a Radon curve.

(ii) If p, q ∈ bd K with [p, p̄] ⊣ [q, q̄], then [q, q̄] ⊣ [p, p̄].

Proof. (i)⇒(ii) This implication follows directly from Remark 2.3.2. (ii)⇒(i) Let p ∈
bd K, let the line P support K at p, and q ∈ bd K be such that [q, q̄] is parallel to P .

Then [p, p̄] ⊣ [q, q̄], and therefore [q, q̄] ⊣ [p, p̄]. By Proposition 2.3.2 we obtain that the

line Q through q and parallel to [p, p̄] supports K at q, which implies that bd K is a

Radon curve.

Theorem 2.3.10 above shows that the fact that affine orthogonality is symmetric

over a particular class of chords ofK is characteristic for Radon curves. The next theorem

shows that if this symmetry is extended to a wider class of affinely orthogonal chords,

then it is even characteristic for ellipses.

Theorem 2.3.11. For a centrally symmetric convex body K ⊂ M2, the following prop-

erties are equivalent:

(i) The boundary of K is an ellipse.

(ii) If p, q1, q2 ∈ bd K and [p, p̄] ⊣ [q1, q2], then [q1, q2] ⊣q1
[p, p̄] or [q1, q2] ⊣q2

[p, p̄].

Proof. (i)⇒(ii) This is evident. (ii)⇒(i) First we show that K is strictly convex. Assume

the contrary, namely that [s, t] is a segment contained in bd K and that there is no larger

segment containing it. Assume, without loss of generality, that the center of K is the
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origin ofM2 . Let p = 1
4
s+ 3

4
t, q1 = 4

5
s̄+ 1

5
t̄, and q2 = 5

6
s̄+ 1

6
t̄. Then p ∈ [s, t], q1, q2 ∈ [s̄, t̄],

and [p, p̄] ⊣ [q1, q2]. If [q1, q2] ⊣q1
[p, p̄], then p+q1−p̄ = 2p+q1 = −3

10
s+ 13

10
t ∈ bd K, which

implies [s, t]  [s, −3
10
s+ 13

10
t] ⊂ bd K, contradicting the hypothesis. If [q1, q2] ⊣q2

[p, p̄], we

obtain a similar result. Thus, Theorem 2.3.11, property (ii), reads as: If p, q1, q2 ∈ bd K

and [p, p̄] ⊣ [q1, q2], then [q1, q2] ⊣ [p, p̄].

Now we shall see that the midpoints of every family of parallel chords lie in a line,

which is a well known characterization of ellipses; see, e.g., [51]. Let q ∈ bd K, and let

P be a line parallel to [q, q̄] that supports K at a point, say p. Then [p, p̄] ⊣ [q1, q2] for

any chord [q1, q2] parallel to [q, q̄]. By (ii), [q1, q2] ⊣ [p, p̄]. Let Qi, i = 1, 2, denote the

lines parallel to [p, p̄] and passing through qi. By the definition of affine orthogonality it

follows that if Q1 supports K, then Q2 also supports K, and since K is strictly convex

we get q2 = q̄1. This implies that the midpoint of [q1, q2] is the center of K, thus lying in

[p, p̄]. On the other hand, if Q1 ∩ bd K = {q1, q′1}, then [q′1, q2] is an affine diameter and

its midpoint is again the center of K. Since Q1 is parallel to [p, p̄], this chord cuts [q1, q2]

in its midpoint.

Theorem 2.3.12. For a centrally symmetric convex body K ⊂ M2, the following prop-

erties are equivalent:

(i) The boundary of K is a circular disc.

(ii) For p, q1, q2 ∈ bd K the relation [p, p̄] ⊣ [q1, q2] implies that then [p, p̄] is orthogonal

to [q1, q2] in the Euclidean sense.

Proof. (i)⇒(ii) This is evident. (ii)⇒(i) First we show that K is smooth. Assume, on the

contrary, that there are two different supporting lines at a point p of bd K, say L1 and

L2. Let q1, q2 ∈ bd K be such that [q1, q̄1] is parallel to L1 and [q2, q̄2] is parallel to L2.

Then [p, p̄] ⊣ [q1, q̄1] and [p, p̄] ⊣ [q2, q̄2], which implies that [p, p̄] is orthogonal to [q1, q̄1]

and to [q2, q̄2] in the Euclidean sense, which is absurd. Without loss of generality we

can assume that K is centered at the origin, and since it is smooth we can parameterize

bd K via a function

θ ∈ [0, 2π] → x(θ) = ρ(θ)(cos θ, sin θ) ∈ bd K,

where ρ(θ) is a positive differentiable function. Then, for each θ ∈ [0, 2π], the line through

x(θ) parallel to x′(θ) supports K at x(θ), which implies that [x(θ),−x(θ)] is affinely
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orthogonal (and then also orthogonal in the Euclidean sense) to that line. Therefore, the

scalar product x(θ) · x′(θ) is zero, and then

0 = ρ(θ)( cos θ, sin θ) · (ρ′(θ) cos θ − ρ(θ) sin θ, ρ′(θ) sin θ + ρ(θ) cos θ) = ρ(θ)ρ′(θ),

which implies that ρ′(θ) = 0 for θ ∈ [0, 2π]. Consequently, bd K is the circle with center

zero and of radius ρ(0).

The next theorem from geometric tomography gives what is necessary to extend

Theorem 2.3.11 and Theorem 2.3.12 to higher dimensions.

Theorem 2.3.13. [39, Theorem 7.1.5 and Corollary 7.1.4] Let K be a convex body

in Ed, d ≥ 3.

1. If K contains the origin in its relative interior and any main plane section of K is

an ellipse, then K is an ellipsoid.

2. If any main plane section is a ball, then K is also a ball.

The above theorem, Theorem 2.3.11, and Theorem 2.3.12 yield

Theorem 2.3.14. Let K be a convex body in Ed, d ≥ 3.

1. If K is a centrally symmetric strictly convex body whose center is the origin, then

K is an ellipsoid if and only if for any two main chords [p1, p2] and [q1, q2] with

[p1, p2] ⊣ [q1, q2] the relation [q1, q2] ⊣ [p1, p2] holds.

2. If K is centrally symmetric strictly convex body whose center is the origin, then K is

a ball if and only if for any two main chords [p1, p2] and [q1, q2] with [p1, p2] ⊣ [q1, q2]

it follows that [p1, p2] and [q1, q2] are orthogonal in the Euclidean sense.
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Chapter 3

Kissing spheres. Covering and

packing balls

In this chapter we solve kissing, covering, and packing problems related to spheres and

balls in normed spaces. The results included here are from the papers [95], [64], [66],

[94], and [2]. Lemma 3.2.2, Theorem 3.3.2, Theorem 3.4.1 are proved by Martini and

Proposition 3.5.3, Theorem 3.5.1, (iii) by Alonso.

3.1 Kissing spheres

In a normed space (Md, ‖ · ‖), let D1 and D2 be two balls and Si = bd Di, i = 1, 2.

The spheres S1 and S2 are called kissing spheres if S1 ∩ S2 6= ∅ and one of the following

situations holds:

1. D1 and D2 are non-overlapping balls;

2. D1 $ D2;

3. D2 $ D1.

It is clear that two kissing spheres in a two-dimensional strictly convex normed

plane have exactly one point in common, i.e., they are touching circles as defined in

Chapter 1. If a hyperplane supports a sphere, we also say that these sets are kissing.

Two hyperplanes are called kissing hyperplanes if they are parallel. Let F be a family of

spheres and hyperplanes. Such a family is said to be a kissing family if any two members

of it are kissing. It is our aim to find for a given family (not necessary a kissing family) of

55
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spheres and hyperplanes in (Md, ‖ · ‖), all spheres which kiss any member of this family.

If the given family consists of d + 1 spheres and hyperplanes, then for the Euclidean

subcase we obtain the famous Apollonius problem. Note that the Apollonius problem

is a subject of many investigations in incidence geometries. Now we present the first

investigations on this problem in normed planes. For that reason we prove that strictly

convex, smooth normed plane can be viewed as an incidence structures, more precisely,

they are topological Möbius planes. Note that the term ”Möbius plane“ is used according

to Benz’ terminology. Möbius planes in this sense generalize the classical Möbius planes,

i.e., an affine plane, where the set of all lines and circles is invariant with respect to the

group of Möbius transformations.

3.1.1 Strictly convex, smooth normed planes as topological Möbius

planes

We start with the definition of Möbius planes. Let P be a set, and C be a set of subsets

of P. The elements of P are said to be generalized points, and the elements of C are

generalized circles. The incidence structure (P,C) is called Möbius plane if it satisfies

the following axioms:

M1. For any three distinct generalized points x, y, z there exists a unique generalized

circle incident with them.

M2. For any generalized point p on a generalized circle K and any generalized point

q 6∈ K there exists exactly one generalized circle L through q with L ∩K = {p}.

M3. There are four generalized points not on a generalized circle, and each generalized

circle contains at least three generalized points.

The axioms M1, M2, and M3 are called incidence axioms, and the sets P and C the

point set and the circle set of (P,C). Usually a Möbius plane is identified with its

point set. Two generalized circles touch each other if they have exactly one common

generalized point. If they have two common generalized points, they intersect properly.

If a Möbius plane, whose point and circle sets carry T1-topologies, satisfies additional

four axioms, called continuity axioms, then it is said to be a topological Möbius plane.

Roughly speaking this means that the functions of joining, intersecting, and touching, as

obtainable from M1 and M2, are continuous, the domain of proper intersecting is open in
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C× C, and touching is the limit case of proper intersecting. For the precise formulations

of the continuity axioms we refer to [101]. For our consideration it is essential that if the

point set of a Möbius plane (P,C) is homeomorphic to the 2-sphere S2 and each circle

K ∈ C is homeomorphic to the 1-sphere S1, then (P,C) is a topological Möbius plane;

see [101, Korollar 7.6]. A topological Möbius plane whose point set is a 2-manifold (i.e.,

locally homeomorphic to R2) is called a flat Möbius plane.

Let now (M2, ‖ · ‖) be a strictly convex, smooth normed plane. Let a formal point

at infinity ∞ be added to the plane M2, and let all lines of M2 pass through ∞. If

P = M2 ∪ {∞} and C be the set of all circles and lines of (M2, ‖ · ‖), we will prove

that the incidence structure (P,C) is a flat Möbius plane. In the sequence we mean,

saying generalized points of (M2, ‖ · ‖) usual points or ∞. The circles and the lines of

(M2, ‖ · ‖) are referred to as generalized circles of (M2, ‖ · ‖). Note that two intersecting

lines, treated as elements of C, intersect properly, and that two parallel lines touch each

other. For our purpose we need the next lemma.

Lemma 3.1.1. In a strictly convex, smooth normed plane (M2, ‖ · ‖) let there be given

a segment [p, q] and a line G through p. If there exists a line K through p such that

K 6= L(p, q) and G ⊣ K, then the bisector B(p, q) of p and q intersects the line G in

exactly one point.

Proof. First note that anticircles of a strictly convex, smooth Minkowski plane are strictly

convex, smooth curves. Theorem 8 in [71] states that the bisector B(p, q) is contained

in the interior of the strip with bounding lines H1 and H2, which are tangent to the

anticircle

Ca

(p+ q

2
,
‖p− q‖a

2

)

at the points p and q. Thus we have L(p, q) ⊣a H1, H2, and by (1.5) it follows that

H1, H2 ⊣ L(p, q). Assume that H1 ≡ G. Since G ⊣ K, the smoothness of (M2, ‖ · ‖)
implies that L(p, q) ≡ K, a contradiction. Therefore H1 does not coincide with G, and

H2 has to intersect G. Let H2 ∩ G = {p2}. Then the interior of conv {p, q, p2} contains

a part of B(p, q). But B(p, q) is an unbounded curve, and it has to intersect [p, p2] in a

point x. Assume that there exists a point y ∈ B(p, q) ∩ G and y 6≡ x. Let y ∈ R+
p (x),

say. Then

‖x− y‖ = ‖x− p‖ − ‖y − p‖.

Applying Lemma 1.2.6 for the circles C(x, ‖x − p‖) and C(y, ‖y − p‖), we get that they
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touch each other at p. But q ∈ C(x, ‖x− p‖)∩C(y, ‖y− p‖), which means that the point

x is unique.

Theorem 3.1.1. Each strictly convex, smooth normed plane (M2, ‖·‖) is a Möbius plane.

Proof. Let P and C be defined as above. Axiom M3 is trivial, and Theorem 1.2.1 implies

that M1 is satisfied. Thus it only remains to check M2. Let K ∈ C, p ∈ K, and q 6∈ K.

We distinguish two cases:

(i) K is a line. Clearly, if p 6≡ ∞ and L(p, q) ⊣ K, then C(
p + q

2
,
‖p− q‖

2
) is

the unique circle through q touching K at p. If the line L(p, q) is not orthogonal to

K, consider the line G through p being orthogonal to K. Then, by Lemma 3.1.1, the

bisector B(p, q) intersects G in exactly one point x. Therefore we have exactly one circle

C(x, ‖x− p‖) through q and touching K at p. If p ≡ ∞, then there exists also a unique

element of C through ∞ and q 6∈ K having no further common points with K, namely

the line through q and parallel to K.

(ii) K is a Minkowski circle with center x. If q ≡ ∞, the tangent of K at p is

the unique element of C which passes through p, q and touches K. If q 6≡ ∞, then the

case q ∈ L(p, x) is trivial. If q 6∈ (p, x), consider the tangent T of K at p. Again by

Lemma 3.1.1 there exists a unique circle C(y, ‖y− p‖) through p and q which touches T .

Moreover, the center y of this circle lies on the line L(x, p), and by Lemma 1.2.6 we have

that K and C(y, ‖y−p‖) touch each other. Thus we have proved that (P,C) is a Möbius

plane.

Corollary 3.1.1. Each strictly convex, smooth Minkowski plane (M2, ‖ · ‖) is a flat

Möbius plane.

Proof. Since M2 ∪∞ is homeomorphic to the sphere S2 (see, e.g., [12, p. 92, Proposition

4.3.6]), every line and circle in (M2, ‖ · ‖) is homeomorphic to S1 (see also [12, p. 92,

Proposition 4.3.6 and p. 343, Corollary 11.3.4]). Therefore, by [101, Korollar 7.6], (P,C)

is a topological Möbius plane which is evidently a flat Möbius plane.

Remark 3.1.1. Let G be a line of a strictly convex, smooth normed plane and p be a

point on G. Then, by Theorem 3.1.1, for any point q 6∈ G there exists a circle passing

through q and touching G at p. Thus we obtain that the set of all generalized circles

through two different points covers the plane.

Remark 3.1.2. A Möbius plane whose point set is homeomorphic to S2 and whose circles

are homeomorphic to S1 is called a spherical Möbius plane. Clearly, every strictly convex,
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Figure 3.1: Theorem 3.1.3, (1). One of the generalized circles passing through p and

touching K1, K2 is a line.

smooth normed plane is also a spherical Möbius plane. For spherical Möbius planes we

refer to [97] and [98].

3.1.2 Spheres kissing three given spheres

The next theorems, due to Groh [40], refer to flat Möbius planes. Theorem 3.1.2 below

has been proved also by Strambach [98], for the case of spherical Möbius planes. In view

of our Theorem 3.1.1 and Remark 3.1.2 we rewrite Groh’s and Strambach’s results for

strictly convex, smooth normed planes.

Theorem 3.1.2. Let K be a generalized circle in a strictly convex, smooth normed plane,

and p1, p2 ∈ M2 \ K be two points not separated by K. Then there exist exactly two

generalized circles through p1 and p2 kissing K.

Theorem 3.1.3. Let K1 6= K2 be two generalized circles in a strictly convex, smooth

normed plane (M2, ‖ · ‖). Assume that the point p ∈M2 does not belong to K1 ∩K2, and

Vp be the connected component of M2 \ (K1 ∪K2) containing p. Then there exist exactly

n generalized circles through p kissing K1 and K2, where

(1) n = 2, if K1 and K2 intersect properly; see Figure 3.1 and Figure 3.2 (left);

(2) if K1 and K2 touch in q

(2.1) and p ∈ K1 ∪K2, then n = 1; see Figure 3.2 (right);

(2.2) and p 6∈ K1 ∪K2 and

(2.2.1) for i = 1, 2, Ki ∩ bd Vp 6= {q}, then n = 3;

(2.2.2) for some i = 1, 2, Ki ∩ bd Vp = {q}, then n = 1;
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Figure 3.2: On the left Theorem 3.1.3, (1), and on the right Theorem 3.1.3, (2.1).

(3) if K1 and K2 do not intersect

(3.1) and p ∈ K1 ∪K2, then n = 2;

(3.2) and p 6∈ K1 ∪K2 and

(3.2.1) for i = 1, 2, Ki ∩ bd Vp 6= ∅, then n = 4;

(3.2.2) for some i = 1, 2, Ki ∩ bd Vp = ∅, then n = 0.

Let K1, K2, K3 be three pairwise intersecting generalized circles (i.e., properly in-

tersecting or touching) in (M2, ‖ · ‖). A set T ⊂M2 is called a circular triangle if it is a

connected component of M2 \ (∪3
i=1Ki) such that each Ki ∩ bd T is connected and has

nonempty interior in Ki; see Figure 3.3.

Theorem 3.1.4. In a strictly convex, smooth Minkowski plane, let there be given a

circular triangle T determined by the generalized circles K1, K2, and K3. Then there

exists precisely one generalized circle K kissing K1, K2, and K3, which belong to the

closure of T .

Now we consider a strictly convex normed plane (M2, ‖ · ‖), without the restriction

of smoothness, and a 3-member kissing family F of circles and lines. We are looking for

a circle C such that F ∪ C forms also a kissing family when the members of F are in

special position to each other. First we need some preliminaries. As it was announced

in Theorem 1.2.1 not for any three non-collinear points there exists a circle containing

them. But the next lemma shows that if the given points form an equilateral triangle,

then this is true.

Lemma 3.1.2. An equilateral triangle in a strictly convex Minkowski plane (M2, ‖ · ‖)
possesses exactly one circumcircle.
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Figure 3.3: T1, T2, and T are circular triangles.

Proof. Let there be given a triangle T (p1, p2, p3) which is equilateral in (M2, ‖ · ‖), and

m1 and m2 be the midpoints of [p2, p3] and [p3, p1], respectively. Clearly, p1 ∈ B(p2, p3)

and p2 ∈ B(p3, p1). The bisector B(p2, p3) of p2, p3 is contained in the double cone of

p2 and p3 with apex p1, and B(p3, p1) is contained in the double cone of p3 and p1 with

apex p2; see [46] and [72, Proposition 17]. The curve B(p2, p3) can intersect the segment

[p2, p3] only in m1. This means that if we denote the part of B(p2, p3) between p1 and

m1 by γ1, then γ1 ⊂ conv {p1, p2, p3}. Analogously, if γ2 is the part of B(p3, p1) between

p2 and m2, then γ2 ⊂ conv {p1, p2, p3}. If

J := [p1, p2] ∪ [p2, m1] ∪ γ1,

then J is a Jordan curve, with respect to which the point m2 is not an interior point.

Assuming that m2 ∈ γ1 ⊂ B(p2, p3), we have

‖p2−m2‖ = ‖m2−p3‖ ⇐⇒ ‖p2−
1

2
(p1+p3)‖ =

1

2
‖p1−p3‖ ⇐⇒ ‖p2−p1+p2−p3‖ = ‖p1−p3‖.

This is impossible, since the normed plane under consideration is strictly convex. Hence

m2 is an exterior point with respect to J . On the other hand, there exists an ε > 0 such

that C(p2, ε) ∩ γ2 6= ∅. If q ∈ C(p2, ε) ∩ γ2, then q lies in the interior of J . This means

that the part of γ2 between q and m2 has to intersect J . But it does not intersect [p1, p2]

or [p2, m1] (eventually it can touch [p1, p2] or [p2, m1]); therefore it intersects γ1. Thus

we have shown that B(p2, p3) and B(p3, p1) have a common point, which completes the

proof.

The proof of Lemma 3.1.2 implies

Lemma 3.1.3. The circumcenter of any equilateral triangle in a strictly convex normed

plane lies the the interior of this triangle.
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Theorem 3.1.5. In a strictly convex normed plane, let there be given three circles

C(pi, λ), i = 1, 2, 3, forming a kissing family. Then there exist exactly two circles which

kiss the given circles.

Proof. By Lemma 1.2.6 we have that the points p1, p2, p3 form an equilateral trian-

gle of side length 2λ. Lemma 3.1.2 guarantees the existence of the circumcircle of

the triangle T (p1, p2, p3). Denote it by C(x, µ). Moreover, Lemma 3.1.3 implies that

x ∈ int (conv {p1, p2, p3}). Thus we get

2µ = ‖p1 − x‖ + ‖x− p2‖ > ‖p1 − p2‖ = 2λ,

and Lemma 1.2.6 yields that the circle C(x, µ−λ), as well as C(x, µ+λ), touches C(pi, λ),

i = 1, 2, 3. Assume that there exists a circle C(y, ν) with y 6= x which touches C(pi, λ),

i = 1, 2, 3. Clearly, C(y, ν) and any of the circles C(pi, λ), i = 1, 2, 3, cannot internally

touch each other. Therefore C(y, ν) externally touches the three circles C(pi, λ), i = 1, 2, 3.

But this contradicts the fact that in a strictly convex normed plane a triangle possesses

at most one circumcenter; see Theorem 1.2.1.

Lemma 3.1.4. In a strictly convex normed plane (M2, ‖·‖), let there be given two distinct

points p1, p2 and two positive real numbers λ1, λ2 such that λ1 + λ2 = ‖p1 − p2‖. Then

the set

{x ∈M2 : ‖p1 − x‖ = λ1 + χ, ‖p2 − x‖ = λ2 + χ, where χ ∈ R+}

is an unbounded curve.

Proof. For any χ > 0 the circles C(p1, λ1 +χ) and C(p2, λ2 +χ) have exactly two common

points which lie in the different half-planes with respect L(p1, p2). Denote these points

by x1 and x2, and let H+ and H− be both half-planes bounded by L(p1, p2). Assume

that x1,∈ H+ and x1,∈ H+. Thus we have the mapping ϕ : R+ −→ H+, which assigns

to every real positive number χ the point of C(p1, λ1 + χ) ∩ C(p2, λ2 + χ) which lies in

H+. It is easy to see that ϕ is continuous in both directions. Indeed, for any convergent

sequence {χn}∞n=1 −→ χ we have

{λ1 + χn}∞n=1 −→ λ1 + χ⇐⇒ {‖p1 − ϕ(χn)‖}∞n=1 −→ ‖p1 − ϕ(χ)‖ ⇐⇒

{p1 − ϕ(χn)}∞n=1 −→ p1 − ϕ(χ) ⇐⇒ {ϕ(χn)}∞n=1 −→ ϕ(χ).
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Thus we obtain that ϕ([0,+∞)) is a curve. It is also evident that this curve is unbounded.

Theorem 3.1.6. In a strictly convex Minkowski plane (M2, ‖ · ‖), let there be given

two circles C(p1, λ1), C(p2, λ2) touching each other externally. If G is their common

supporting line, then there exists a circle C(x, λ) kissing C(p1, λ1), C(p2, λ2), and G.

Proof. Denote by y the touching point of C(p1, λ1) and C(p2, λ2). Then y lies on the

segment [p1, p2]; see Lemma 1.2.6. If qi, i = 1, 2, is the touching point of C(pi, λi) and G,

then L(pi, qi) ⊣ G. Consider the part B+(λ1, λ2) of the curve

B(λ1, λ2) = {x ∈M2 : ‖p1 − x‖ = λ1 + χ, ‖p2 − x‖ = λ2 + χ, where χ ≥ 0},

which lies in the half-plane with respect to L(p1, p2) containing the points q1 and q2.

Clearly, B+(λ1, λ2) passes through y and does not intersect the segments [p1, q1] and

[p2, q2]. Thus B+(λ1, λ2) has to intersect the segment [q1, q2]. Denote the first intersection

point of B+(λ1, λ2) and [q1, q2] by z. Let z be attained for χ = χ0, i.e., z = ϕ(χ0), where

ϕ is defined as in Lemma 3.1.4. Consider the function f : [0, χ0] −→ R defined by

f(χ) := d(ϕ(χ), G). If f is continuous, since f(0) = d(y,G) > 0, f(χ0) = 0, then there

exists a number χ∗ ∈ [0, χ0] such that f(χ∗) = χ∗. Thus for x∗ = ϕ(χ∗) we have

‖p1 − x∗‖ = λ1 + χ∗, ‖p2 − x∗‖ = λ2 + χ∗, and d(x∗, G) = χ∗.

This means that the circle C(x∗, χ∗) kisses C(p1, λ1), C(p2λ2), and G. In order to complete

the proof we need to show that the function f is continuous. In Lemma 3.1.4 we have

proved that for the convergent sequence {χn}∞n=1 −→ χ the sequence {xn = ϕ(χn)}∞n=1 is

also convergent, and that it converges to x = ϕ(χ). Denote by yn and y those points of

G such that L(xn, yn) ⊣ G and L(x, y) ⊣ G. Then f(χn) = ‖xn−yn‖ and f(χ) = ‖x−y‖.
Let ε ∈ R+. For any n ∈ N there exists an m ∈ N with m > n for which xm ∈ int C(x, ε).

Since in a strictly convex normed plane the common supporting line of C(x, ε) and C(y, ε)

is parallel to the line L(x, y), then ym ∈ D(y, ε). This means that {yn}∞n=1 −→ y, which

implies {f(χn)}∞n=1 −→ f(χ).
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3.2 Covering a disc by translates of the unit disc

LetK be a convex body, and by hk(K) denote the smallest positive ratio of k homothetical

copies of K whose union covers K. For k ∈ {3, 4} the following bounds on hk(K) are

known :

2

3
≤ h3(K) ≤ 1, (3.1)

1

2
≤ h4(K) ≤

√
2

2
; (3.2)

see [54]. In this section we give an exact geometric description of hk(K) for k = {3, 4},
with K being a strictly convex, centrally symmetric convex body in terms of the radius

of inscribed equilateral polygon. For that reason we reformulate the above problem for

centrally symmetric convex bodies K, i.e., K can be considered as unit disc D with

respect to some norm. Let Rk(D) be the maximal radius of all homothets of D that can

be covered by k translates of D. Then

Rk(D) =
1

hk(D)
, (3.3)

and one can rewrite the inequalities (3.1), (3.2) as follows:

1 ≤ R3(D) ≤ 3

2
,

√
2 ≤ R4(D) ≤ 2. (3.4)

3.2.1 Lemmas

Lemma 3.2.1. Let there be given a convex body K in a normed plane (M2, ‖ · ‖), and

K = {Ki}k
i=1 be a covering of K. If x ∈ bd Ki ∩ K, where i ∈ {1, . . . , k}, then there

exists a body Kj from K different to Ki such that x ∈ Kj.

Proof. We argue by contradiction. Suppose that for any j = 1, . . . , k and j 6= i we have

x 6∈ Kj. Then there exists a disc D(x, ε) with (int D(x, ε)) ∩ Bj = ∅. Let y be a point

of int D(x, ε) such that y 6∈ Ki. Denote by D a disc centered at y whose interior lies in

int D(x, ε) and which also satisfies D ∩Ki = ∅. For any j = 1, . . . , k, and j 6= i, there

exists a point yj ∈ Kj ∩ B with ‖y − yj‖ = inf{‖y − z‖ : z ∈ Kj ∩K}; see, e.g., [100, p.

45, Theorem 1.9.1]. If y0 is that point among {yj}k
j=1,j 6=i which has the smallest distance
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to y, then clearly y0 6∈ int D(x, ε). Thus, for any

z ∈
⋃

j 6=i

(Kj ∩K)

we get ‖y−y0‖ ≤ ‖y−z‖. Let y∗ be a point lying in [y, y0]∩D. Then ‖y−y∗‖ < ‖y−y0‖,
which means that

y∗ 6∈
⋃

j 6=i

(Kj ∩K).

Since y∗ ∈ D, we get y∗ 6∈ Ki. Besides this, the convexity of D implies that the point y∗

belongs to K. This contradicts the fact that {Ki}k
i=1 is a covering of K.

Lemma 3.2.2. Let p be a point in a strictly convex normed plane (M2, ‖ · ‖) different to

the origin 0. Then the bisector of the points p and −p intersects the circle C(0, ‖p‖) in

exactly two points.

Proof. It is clear that B(−p, p) intersects C(0, ‖p‖) in at least two points which are

opposite points of that circle, e.g., in x and −x. We will show that, besides x and −x,
there are no further intersection points of B(−p, p) and C(0, ‖p‖). We have that the

bisector B(−p, p) is contained in the double cone V of p and −p with apex x; see [46]

and [72, Proposition 17]. Let us consider that part of V (denoted by V ∗) which lies on

the half-plane HP+
x (−p, p). Thus

V ∗ = {x+ λ(−p− x) +µ(p− x) : λ, µ ≤ 0}∪ {x+ λ(−p− x) +µ(p− x) : λ, µ ∈ (0, 1)}.

We will show that neither

V − = {x ∈M2 : x+ λ(−p− x) + µ(p− x) : λ, µ ≤ 0}

nor the set

V + = {x ∈M2 : x+ λ(−p− x) + µ(p− x) : λ, µ ∈ (0, 1)}

contains points of C(0, ‖p‖) which are different to x. For any y ∈ V − we have

y = x+ λ(−p− x) + µ(p− x) ⇐⇒ (1 − λ− µ) x = y + (λ− µ) p,

where λ, µ ≤ 0. Therefore
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(1 − λ− µ) ‖x‖ = ‖y + (λ− µ) p‖ < ‖y‖ + |λ− µ| ‖p‖ ⇐⇒














‖x‖ ≤ (1 − 2λ) ‖x‖ < ‖y‖ if λ− µ ≥ 0,

‖x‖ ≤ (1 − 2µ) ‖x‖ < ‖y‖ if λ− µ < 0.

Hence any y ∈ V − is an exterior point with respect to C(0, ‖p‖). On the other hand, V +

is a triangle inscribed to the strictly convex curve C(0, ‖p‖). Therefore V + also does not

contain points of C(0, ‖p‖) (except for p, −p, and x).

Lemma 3.2.3. In a strictly convex normed plane let there be given two points x1 and x3

which are opposite points of the unit circle C. If

B(x1, x3) ∩ C = {x2, x4},

then the intersection points of C(xi, 1) and C(xi+1, 1) (with i = 1, 2, 3, 4 and x5 ≡ x1),

which are different to 0, lie on the same circle C with radius between 1 and 2.

Proof. Note that according to Lemma 3.2.2 the intersection of B(x1, x3) and C consists

of exactly two points, which are opposite in C. The monotonicity lemma implies ‖xi −
xi+1‖ < 2, i = 1, . . . , 4. Hence C(xi, 1) and C(xi+1, 1) have exactly two points in common.

Clearly, the origin 0 is one of them, and we denote by pi the other intersection point.

Thus, by Lemma 1.2.7 in Chapter 1 we obtain xi+xi+1 = pi. Since x1 and x3 are opposite

points, like also x2 and x4, it follows that ‖pi‖ = ‖xi+1 − xi+2‖ (note that x6 ≡ x2). But

we have x2, x4 ∈ B(x1, x3), i.e., ‖x1 − x2‖ = ‖x2 − x3‖ = ‖x3 − x4‖ = ‖x4 − x1‖ = λ,

which is equivalent to pi ∈ C(0, λ). Moreover, with respect to the triangle T (x1, x2, x3)

we have 2 = ‖x1 − x3‖ < ‖x1 − x2‖+ ‖x2 − x3‖ ⇐⇒ 1 < λ. On the other hand, applying

Lemma 1.2.4 for the convex quadrangle Q(x1, x2, x3, x4), we obtain

‖x1 − x3‖ + ‖x2 − x4‖ > ‖x1 − x2‖ + ‖x4 − x3‖ ⇐⇒ 2 > λ.

Lemma 3.2.4. In a normed plane (M2, ‖ · ‖), let there be given two circles C(x1, λ1) and

C(x2, λ2) with λ1 6= λ2. Then the homothety

ϕ : x 7−→ −λ2x1 + λ1x2

λ1
+
λ2

λ1
x
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maps C(x1, λ1) into C(x2, λ2). The center of ϕ is the point

s =
λ2

λ2 − λ1
x1 −

λ1

λ2 − λ1
x2.

The proof of this lemma is immediate.

3.2.2 Results

Theorem 3.2.1. In a strictly convex normed plane (M2, ‖ · ‖) let there be given an

equilateral triangle T (p1, p2, p3) of side-length 2. Then the circumradius of T (p1, p2, p3)

is > 1, and the circumdisc of T (p1, p2, p3) can be covered by three translates of the unit

discs.

Proof. If C(q, λ) is the circumcircle of T (p1, p2, p3) (note that according to Lemma 3.1.2

this circumcircle exists), then

‖p1 − q‖ + ‖q − p2‖ > ‖p1 − p2‖ ⇐⇒ 2 λ > 2 ⇐⇒ λ > 1.

We now show that if mi is the midpoint of [pj, pk], where {i, j, k} = {1, 2, 3}, then

the discs D(mi, 1), i = 1, 2, 3, cover D(q, λ). At first we check whether mj , mk ∈ C(mi, 1).

Indeed,

‖mi −mj‖ =
∥

∥

∥

pj + pk

2
− pk + pi

2

∥

∥

∥
=

1

2
‖pj − pi‖ = 1.

Thus we get that the discs D(mi, 1), i = 1, 2, 3, cover conv {p1, p2, p3}. In order to

complete the proof, it remains to show that D(m3, 1) covers the circular arc arc(p1, p2; q),

say. Let us assume that q ≡ 0 and write C1 := C(0, λ), C2 := C(m3, 1). We consider the

homothety ϕ mapping the circle C1 into the circle C2, i.e.,

ϕ : x 7−→ m3 +
1

λ
x;

see Lemma 3.2.4. Then the center of ϕ is s =
λ

λ− 1
m3, which belongs to the ray of

R−
0 (m3), i.e., s lies on the half plane HS−

p3
(p1, p2). We will prove that s 6∈ D(m3, 1) and

s 6∈ D(0, λ). Assume that s ∈ D(m3, 1). This is equivalent to

1 ≥ ‖m3 − s‖ = ‖m3 −
λ

λ− 1
m3‖ =

1

λ− 1
‖m3‖ =

1

2 (λ− 1)
‖p1 + p2‖ ⇐⇒

2 (λ− 1) ≥ ‖p1 + p2‖ ⇐⇒ 2λ ≥ ‖p1 + p2‖ + 2.
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The last inequality contradicts the triangle inequality referring to T (p1, p2,−p2). Assum-

ing that s ∈ D(0, λ), we get

‖s‖ =
λ

λ− 1
‖m1‖ =

λ

2 (λ− 1)
‖p1 + p2‖ ≤ λ⇐⇒ 2 (λ− 1) ≥ ‖p1 + p2‖,

again a contradiction.

Further on, let x1 belong to the circular arc arcλ(p1, p2; q) of C1 not containing p3.

If L(s, x1) ∩ C1 = {x1, y1}, then x1 is between s and y1. This follows from the fact that

s belongs to the same half-plane with respect to L(p1, p2) containing the circular arc

arcλ(p1, p2; q). If ϕ(x1) = x2, then x2 ∈ C2 and

x2 = m3 +
1

λ
x1 ⇐⇒ x2 =

λ− 1

λ
s+

1

λ
x1.

Since λ > 1, we state that the point x2 is between s and x1. Let L(x1, x2)∩C2 = {x2, y2}.
This means that x2 is between s and y2. Moreover, we have that y2 = ϕ(y1), equivalent

to the fact that y2 is between s and y1. Thus we have that the points s, x2, x1, y2, y1

are located on the line L(x1, x2) in this order or in the order s, x2, y2, x1, y1. But the

second situation is impossible, because the points x1 and y2 lie on different half-planes

with respect to L(p1, p2). Therefore x1 is between x2 and y2, equivalent to the fact that

D(m3, 1) covers the circular arc arcλ(p1, p2; q).

The next theorem describes the geometric meaning of the maximal radius R3(D) of

all homothetes of the unit disc D in a strictly convex normed plane that can be covered

by 3 translates of D.

Theorem 3.2.2. If (M2, ‖ · ‖) is a strictly convex normed plane with unit disc D, then

the quantity R3(D) is the maximal circumradius of equilateral triangles with side-length

2.

Proof. If λ is the maximal circumradius of all equilateral triangles of side-length 2, we

will prove that the disc D(0, λ+ ε), where ε > 0, cannot be covered by three translates

of the unit disc D. Let T (p1, p2, p3) be an equilateral triangle of side-length 2 inscribed

in D(0, λ). If ϕ is the homothety which maps C(0, λ) into C(0, λ+ ε) with ϕ(p1, p2, p3) =

p′1, p
′
2, p

′
3, then T (p′1, p

′
2, p

′
3) is equilateral and of side-length 2+ 2ε

λ
. Assume that D(0, λ+ε)

can be covered by the translates D1, D2, and D3 of D. If p′1 ∈ D1, say, then p′2, p
′
3 6∈ D1,

by the monotonicity lemma. If p′2 ∈ D2, say, then p′3 6∈ D2. Therefore p′3 ∈ D3. For
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{i, j, k} = {1, 2, 3}, let arc(p′i, p
′
j; 0) be a circular arc of C(0, λ+ ε) between the points p′i

and p′j which does not contain p′k. Then the monotonicity lemma and Lemma 3.1.3 imply

that any point of arc(p′i, p
′
j ; 0) does not belong to Dk. Let bd D1 ∩ C(0, λ+ ε) = {q1, q3}

and q1 ∈ arc(p′1, p
′
2; 0), q3 ∈ arc(p′1, p

′
3; 0). Note that if q1 ≡ q3, then q1 ≡ q3 ≡ p1, which

means that D(0, λ+ ε) cannot be covered by D1, D2, and D3. By Lemma 3.2.1 we have

that q1 ∈ D2 and q3 ∈ D3. Thus we obtain T (q1, q2, q3) inscribed in C(0, λ + ε) such

that q1 ∈ arc(p′1, p
′
2; 0), q2 ∈ arc(p′2, p

′
3; 0), q3 ∈ arc(p′3, p

′
1; 0), q1 6= p1, q1 6= p2, q2 6= p2,

q2 6= p3, q3 6= p3, q3 6= p1, and the sides of T (q1, q2, q3) are of length ≤ 2. Moreover, it is

easy to see that the interior of conv {q1, q2, q3} contains the origin 0. Let T (q1, q2, q3) be

positively oriented, say. Construct an equilateral triangle T (u1, u2, u3) of side-length 2,

which is positively oriented and such that L(u1, u2) is parallel to L(q1, q2). According to

[72, Proposition 33], for a given segment [u1, u2] there exists exactly one such triangle.

Let C(0, µ) be a translate of the circumcircle of T (u1, u2, u3). Then µ ≤ λ. If v1, v2, v3

are the images of u1, u2, u3 with respect this translation, let v′1, v
′
2, v

′
3 be the images of

v1, v2, v3 with respect to the homothety mapping C(0, µ) into C(0, λ+ ε). Thus we obtain

that T (v′1, v
′
2, v

′
3) is an equilateral triangle inscribed in C(0, λ+ ε) and having side-length

2(λ+ε)
µ

> 2, where the side [v′1, v
′
2] is parallel to [q1, q2]. Therefore the side [v′1, v

′
2] lies

in the open half-plane with respect to L(q1, q2) which contains the origin 0. The third

vertex v′3 of T (v′1, v
′
2, v

′
3) either belongs either to the circular arc arcλ+ε(q1, q3; 0), or to

arcλ+ε(q2, q3; 0). But both these cases contradict the monotonicity lemma.

The next proposition gives an upper bound on R3(D), where D is the unit disc in

a strictly convex normed plane. This upper bound strengthens the second inequality in

(3.4) for the case that B is centrally symmetric and strictly convex.

Proposition 3.2.1. In a normed plane (M2, ‖ · ‖) with unit disc D we have R3(D) ≤ 4
3

if D is strictly convex, and R3(D) = 4
3

if bd D is an affine regular hexagon.

Proof. Let ±p,±q,±(p + q) be the vertices of a hexagon which is regular in the norm

(i.e., an affine regular hexagon with sides of the same Minkowskian length) and inscribed

in the unit circle C = bd D. Note that this is possible; see, e.g., the survey [72, § 4].

The triangle with vertices 4
3
p − 2

3
q, −2

3
p + 4

3
q, and −2

3
(p + q) is equilateral with

side-length 2 and inscribed in 4
3
C. Therefore, if C is strictly convex, we have R3(D) ≤ 4

3
,

and R3(D) = 4
3

holds if C is an affine regular hexagon.

In case of four covering discs we shall see that, somehow analogous to the con-
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siderations up to now, regular quadrangles inscribed to a circle will play an essential

role.

Remark 3.2.1. It is easy to check that the points p1, p2, p3, and p4 (see the proof of

Lemma 3.2.3) form a parallelogram all whose sides are of Minkowskian length 2 and

whose two diagonals have the same length. The proof of Lemma 3.2.3 also implies that

for any given direction such a parallelogram with two sides parallel to this direction can

be constructed.

Theorem 3.2.3. If, in a strictly convex normed plane, C(xi, 1), i = 1, 2, 3, 4, and C are

determined as in Lemma 3.2.3, then C(xi, 1) with i = 1, 2, 3, 4 is a covering of C.

Proof. In view of the constructions of C(xi, 1), i = 1, 2, 3, 4, it is enough to prove that,

e.g., D(x1, 1) covers the circular arc of C with endpoints p1 and p4 . This can be verified

quite similar as in the proof of Theorem 3.2.1, using the homothety that maps C(0, λ)

into C(x1, 1).

Based on Remark 3.2.1, the next theorem can be proved in the same way as Theorem

3.2.2.

Theorem 3.2.4. In a strictly convex normed plane with unit disc D, the quantity R4(D)

is the maximal circumradius of all parallelograms whose four sides are of Minkowskian

length 2, and whose two diagonals have the same length.

3.3 Regular 4-coverings

According to the famous conjecture of Hadwiger, completely confirmed only for the planar

case, any convex body in the plane can be covered by 4 smaller positive homothets of

itself. The smallest possible ratio of those four homothets is attained in case of the

so-called regular 4-covering. This regular 4-covering was constructed by Lassak [53] in

order to prove that the smallest possible ratio is
√

2
2

. In this section we continue the

investigations of Lassak on regular 4-coverings and derive further properties of them.

3.3.1 Properties of a regular 4-covering

We start with the construction of a regular 4-covering. For that purpose the notions of

quasi-dual and dual parallelograms are needed. Two parallelograms P and Q in M2 are
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said to be quasi-dual if the sides of P are parallel to the diagonals of Q and the sides of

Q are parallel to the diagonals of P , i.e., the parallelograms P and Q are quasi-dual if

and only if for some possible denotations of the vertices of P and Q (e.g., by p1, p2, p3, p4

and q1, q2, q3, q4, respectively) the relations

(p1−p2) ‖ (q2−q4), (p2−p3) ‖ (q1−q3), (q1−q2) ‖ (p1−p3), (q2−q3) ‖ (p2−p4) (3.5)

hold. The following lemma is proved in [53].

Lemma 3.3.1. Let P and Q be parallelograms in (M2, ‖ · ‖) with vertices p1, p2, p3, p4

and q1, q2, q3, q4, respectively. If they are quasi-dual, then

(i) any three conditions of (3.5) imply the fourth one;

(ii)
‖p1 − p2‖
‖q2 − q4‖

=
‖p2 − p3‖
‖q3 − q1‖

= λ,
‖q1 − q2‖
‖p1 − p3‖

=
‖q2 − q3‖
‖p2 − p4‖

= µ and λ µ =
1

2
.

Also the next statement was proved by Lassak.

Lemma 3.3.2. ([53, Lemma 4]) Every convex body in the plane has a pair of inscribed

quasi-dual parallelograms, where a diagonal of one of them can be of any given direction.

Now we are ready to give a description of a regular 4-covering as it is constructed

in [53].

Let K be a convex body in the Euclidean plane. According to [53, Lemma 4]

there exist points p1, q1, . . . , p4, q4 lying in this order in bd K such that p1, . . . , p4 are

the vertices of the parallelogram P , q1, . . . , q4 are the vertices of the parallelogram Q,

the parallelograms P , Q are quasi-dual, and λ ≤
√

2
2

, where λ is determined by the first

equation of (ii) in Lemma 3.3.1.

Let
L(q4, p1) ∩ L(p2, q2) = {t1}, L(q1, p2) ∩ (p3, q3) = {t2},

L(q2, p3) ∩ L(p4, q4) = {t3}, L(q3, p4) ∩ L(p1, q1) = {t4};
(3.6)

see Figure 3.4.

Furthermore, let ϕi with i = 1, . . . , 4 be the homothety with center ti and ratio

λ. Then ∪4
i=1ϕi(K) is a covering of K, called a regular 4-covering and denoted by

cov(P,Q, λ). Moreover, for i = 1, . . . , 4 the covering ϕi(K) contains the intersection

point of the diagonals of P ; see [53, § 3].
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Figure 3.4: A regular 4-covering.

Theorem 3.3.1. In the Euclidean plane, let there be given a convex body K of diameter

1. If cov(P,Q, λ) is a regular 4-covering of K, then the smallest homothetical copy of K,

which contains cov(P,Q, λ), is of diameter 2λ.

Proof. Let the vertices p1, . . . , p4 and q1, . . . , q4 of P and Q, respectively, be placed on

bd K as shown in Figure 3.4. Let ti, i = 1, . . . , 4, be determined by (3.6), and ϕi be the

homothety with center ti and ratio λ. Then cov(P,Q, λ) = ∪4
i=1Ki, where Ki = ϕi(K),

i.e.,

Ki = (1 − λ)ti + λK. (3.7)

Since ϕi({qi−1, qi+1}) = {pi, pi+1} (the subscripts of p and q are meant modulo 4),

we have

pi = (1 − λ)ti + λqi−1, pi+1 = (1 − λ)ti + λqi+1. (3.8)

The equations (3.7) and (3.8) yield

K1 = p2 − p3 +K3. (3.9)



3.3. Regular 4-coverings 73

Consider the point x = (1 − λ)t3 + λq1 on the boundary of K3. Thus by (3.8) we

get

x− 1

2
(p1 + p3) =

1

2
(p3 − p1) − λ(q2 − q1) =

1

2
(p3 − p1) − λµ(p3 − p1),

where µ is determined in Lemma 3.3.1. Since λµ = 1
2
, we obtain that x coincides with

the intersection point of the diagonals of P . Therefore the point

q′1 = p2 − p3 +
1

2
(p1 + p3) = p2 +

1

2
(p1 − p3)

lies on the boundary of K1; see (3.9). In the same way one can prove that q′2 = p2+
1
2

(p3−
p1) ∈ bd K2, q

′
3 = p4 + 1

2
(p3−p1) ∈ bd K3, and q′4 = p4 + 1

2
(p1−p3) ∈ bd K4. Moreover,

the points q′1, . . . , q
′
4 form a parallelogram. We may assume that the intersection point of

the diagonals of Q coincides with the origin 0. Thus we get

p2 − p3 = 2λq1, p2 − p1 = 2λq2. (3.10)

Let K = 1
2

(p1 + p3) + 2λK. Since q1 ∈ bd K we have that

1

2
(p1 + p3) + 2λq1 =

1

2
(p1 + p3) + (p2 − p3) = p2 +

1

2
(p1 − p3) = q′1

belongs to the boundary of K. Since the points q2, q3, and q4 also belong to bd K, we

obtain that q′2, q
′
3, q

′
4 ∈ bd K.

Now we shall prove that ∪4
i=1Ki ⊂ K. From (3.7), (3.8), and (3.10) we have

K1 = (1 − λ)t1 + λK = p2 − λq2 + λK =

p2 − 1
2

(p2 − p1) + λK = 1
2

(p1 + p2) + λK.

(3.11)

Let u ∈ K1, say. Then there exists a point v ∈ K such that u = 1
2

(p1 + p2) + λv,

by (3.11). The convexity of K implies that v′ = 1
2

(q1 + v) ∈ K. Therefore the point

u′ = 1
2

(p1 + p3) + 2λv′ belongs to K. Since

u− u′ =
1

2
(p1 + p2) + λv − (

1

2
(p1 + p3) + λ(q1 + v)) =

1

2
(p2 − p3) − λq1 = 0,

we obtain that u ∈ K.

Assume that there exist a positive number λ′ < λ and a point y such that K∗ =

y + 2λ′K contains ∪4
i=1Ki. Our aim is to obtain a contradiction. Since q′i ∈ Ki, we have

q′1, . . . , q
′
4 ∈ K∗. This means that there exist four points q′′1 , . . . , q

′′
4 ∈ K with
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q′i = y + 2λ′q′′i , i = 1, . . . , 4. (3.12)

Clearly, these four points are vertices of a parallelogram. Moreover, the equations (3.12)

imply

2λ′(q′′1 − q′′2 ) = p1 − p3 = 1
µ

(q1 − q2) and

2λ′(q′′2 − q′′3 ) = p2 − p4 = 1
µ

(q2 − q3).

(3.13)

Since 2λ′µ < 2λµ = 1, we have

‖q′′1 − q′′2‖E > ‖q1 − q2‖E and ‖q′′2 − q′′3‖E > ‖q2 − q3‖E, (3.14)

where ‖ · ‖E is the usual Euclidean norm. Let [y1, y2] be an affine diameter of K parallel

to L(q1, q2). Then, obviously, the Euclidean lengths of all chords of K parallel to [y1, y2]

and lying in the same half-plane with respect to the affine hull of [y1, y2] monotonously

decrease when their distance to [y1, y2] increases. Therefore it is impossible that there

exists a parallelogram with vertices q′′1 , . . . , q
′′
4 from K with the properties (3.13) and

(3.14).

The above theorem refers to all convex bodies not necessarily being centrally sym-

metric. But if we restrict ourselves to centrally symmetric convex bodies, we can better

clarify how the four homothets are placed to each other, as well as with respect to the

original body. First we prove two lemmas. The first one can easily obtained from the

monotonicity lemma, and we omit its proof.

Lemma 3.3.3. Let C be the unit circle in a normed plane (M2, ‖ · ‖), and [p1, q1], [p2, q2]

be parallel chords of C having the same length in the norm such that the origin o does

not belong to the open half-plane determined by L(p1, q1) and containing p2 and q2. If

p1 ≺ p2 ≺ q2 ≺ q1, then the segments [p2,
1

‖p1−q2‖ (p1 − q2)], [q2,
1

‖q1−p2‖ (q1 − p2)] belong

to C and contain the points p1 and q1, respectively.

Lemma 3.3.4. Let C be the unit circle of a normed plane (M2, ‖ · ‖), and P be a paral-

lelogram inscribed in C whose diagonals do not intersect at the origin. Then two opposite

sides of P are segments on the unit circle C.

Proof. Let p1, p2, p3, p4 be the vertices of P , i.e., we have ‖p1−p2‖ = ‖p4−p3‖. Consider

the case when the origin 0 does not belong to the open half-plane determined by L(p1, p2)
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and containing p3 and p4. Lemma 3.3.3 implies that the segments [p2, p3] and [p4, p1] are

contained in C. Let now the origin 0 belong to the open half-plane determined by L(p1, p2)

and containing p3 and p4. Then, for the parallelogram with vertices −p1, p3, p4,−p2, we

apply the above case and obtain that the segments [−p1, p3] and [−p2, p4] belong to

C. Since L(p3, p4) is parallel to L(−p1,−p2), only the following relations are possible:

p1 ≺ p2 ≺ −p1 ≺ p3 ≺ p4 ≺ −p2 or p1 ≺ p2 ≺ p3 ≺ −p1 ≺ −p2 ≺ p4. On the other hand,

L(p1,−p2) ‖ L(p2,−p1) and L(p1, p4) ‖ L(p2, p3). Therefore the convexity of C implies

that the points p1, p4,−p2 as well as the points p2, p3,−p1 are collinear. Thus, again the

convexity of C yields that [p1, p4] and [p2, p3] are contained in C.

Lemma 3.3.5. Let cov(P,Q, λ) be a regular 4-covering of the unit disc D of the normed

plane (M2, ‖ · ‖). Then the diagonals of P and Q intersect at the origin 0.

Proof. Let p1, p2, p3, p4 be the vertices of P , q1, q2, q3, q4 be the vertices of Q, and p1 ≺
q1 ≺ . . . ≺ p4 ≺ q4. Assume that neither the diagonals of P nor the diagonals of Q

intersect at the origin. Then, by Lemma 3.3.4, two opposite sides of P are segments on

the unit circle C, say [p1, p2] and [p3, p4]. Again by Lemma 3.3.4, [q1, q2] or [q1, q4] is a

segment on C. If [q1, q2] is that segment, then the points p1, q1, p2, q2 are collinear. But

P and Q are quasi-dual, i.e., L(q1, q2) ‖ L(p1, p3). This contradicts the fact that P is

a parallelogram. Therefore the diagonals of at least one of the parallelograms P or Q

intersect at the origin. Suppose that the diagonals of Q do not intersect at the origin.

Then Lemma 3.3.4 implies again that [q1, q2] and [q3, q4] (or [q2, q3] and [q4, q1]) belong

to C. Thus we get p2 ∈ [q1, q2] and p4 ∈ [q3, q4] (or p1 ∈ [q4, q1] and p3 ∈ [q2, q3]). Since

L(p2, p4) ‖ L(q2, q3) (or L(p1, p3) ‖ L(q1, q2)), by Lemma 3.3.2 and Lemma 3.3.1 we obtain

µ = 1, which is impossible. Analogously, if the diagonals of P do not intersect at the

origin, then λ = 1, which is also impossible.

Theorem 3.3.2. In a normed plane, let ∪4
i=1D(xi, λ) be a regular 4-covering of a disc

D(x, µ) derived from the quasi-dual parallelograms with vertices p1, p2, p3, p4 and q1, q2, q3, q4;

see again Figure 3.5. Then, for i = 1, . . . , 4 (and x5 ≡ x1, p5 ≡ p1), we have

(i) {x, pi} ∈ C(xi, λ) ∩ C(xi+1, λ);

(ii) C(x1, λ) and C(x3, λ) touch each other, as also C(x2, λ) and C(x4, λ) do;

(iii) xi is the midpoint of [pi, pi+1];

(iv) the points x1, x2, x3, x4 form a parallelogram P ′ of side-length µ which is in-

scribed in C(x, µ), and a parallelogram Q′ exists which is also inscribed in C(x, µ) such

that P ′ and Q are quasi-dual.
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Proof. Without loss of generality we assume that x ≡ 0. If ti, i = 1, . . . , 4, are determined

as in (3.5), then the homothety ϕi with center ti and ratio λ
µ

maps D(0, µ) into D(xi, λ).

Since xi = ϕi(0), we have xi = (1− λ)ti. On the other hand, the origin 0 is the midpoint

of [q2, q4] and ϕ1({q4, q2}) = {p1, p2}. Thus we see that x1 is the midpoint of [p1, p2]. By

Lemma 3.3.1 we have ‖p1 − p2‖ = 2λ. From here we get ‖x1‖ = λ. In the same way

one can prove that ‖x2‖ = ‖x3‖ = ‖x4‖ = λ. The last statement of Theorem 3.3.2 is

evident.

3.3.2 A lattice covering of the plane based on a regular 4-

covering

A lattice of vectors in M2 is the collection L = L(u, v) of integer-coefficient linear com-

binations of a pair of linearly independent vectors u and v. The pair {u, v} is called

the basis of the lattice L, and the parallelogram spanned by u and v is said to be the

respective basis parallelogram. A lattice covering of the plane is a covering of the plane

whose members are translates of a given convex body, where the translation vectors are

taken from the lattice. A covering of the plane with circles of radius λ has margin µ,

0 ≤ µ ≤ λ, provided the plane remains covered if any circle of the covering is replaced

by the concentric circle of radius λ− µ.

Let ∪4
i=1D(xi, λ) be a regular 4-covering of the unit disc D of a strictly convex

normed plane. If L = L(x2 − x1, x4 − x1), then D(x1, λ) + L is a lattice covering of the

plane. We call this covering a regular 4-covering of the plane generated by ∪4
i=1D(xi, λ).

From Theorem 3.3.2 we immediately obtain the following properties.

Proposition 3.3.1. Let D(x, λ) + L be a regular 4-covering of the plane, where D(x, λ)

is a circle in a strictly convex normed plane and L = L(u, v). Then

(i) the margin of D(x, λ) + L is zero;

(ii) D(x, λ) + L(u+ v, u− v) and D(u+ x, λ) + L(u+ v, u− v) are packings of the

plane.

Let D(x, λ)+L be a lattice covering of the plane, where D(x, λ) is a disc of a strictly

convex normed plane. The Voronoi region of D(x, λ) is the set of points whose distances

from x do not exceed the distance from the center of any other disc of the covering

D(x, λ)+L. The gray area of D(x, λ) is the closure of the set of points in D(x, λ) which

belong to no other disc of the covering D(x, λ). Various properties of Voronoi regions
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Figure 3.5: A regular 4-covering of a strictly convex normed plane.

and of gray areas of discs D(x, λ) in the Euclidean subcase are given in [13]. Here we

give some properties of the Voronoi region and the gray area of D(x, λ) if D(x, λ) + L is

a regular 4-covering of a strictly convex normed plane.

Proposition 3.3.2. Let D(x1, λ)+L be a regular 4-covering of a strictly convex normed

plane generated by ∪4
i=1D(xi, λ); see Figure 3.5. If V is the Voronoi region of D(x1, λ)+L

and G is its gray area, then

(i) G ⊂ V ⊂ D(x1, λ);

(ii) V and G are symmetric with respect to x1;

(iii) the family of translates of V, obtained by the basis vectors of the lattice L, is a

tiling of the plane;

(iv) the Voronoi region V and the gray area G are inscribed in C(x1, λ);

(v) the boundary of the gray area G is the union of four circular arcs of the covering;

(vi) the convexity of V implies that it is parallelogram.

Proof. Let C(xi, λ) ∩ C(xi+1, λ) = {0, pi}. The inclusions G ⊂ V and V ⊂ D(x1, λ) follow

from the fact that the bisector of [x1, x2] between the points 0 and p1, say, belongs to

D(x1, λ)∩D(x2, λ), and also that 0, p1 ∈ B(x1, x2) implies (iv). Since, in view of Theorem

3.3.2, we have ‖x1 − x4‖ = 1
2
‖p1 − p3‖ = 1, the distance between the centers of C(2x1 −
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x4, λ) and C(x4, λ) equals 2, which is strictly larger than 2λ. Therefore C(2x1 − x4, λ)

and C(x4, λ) have no points in common. Thus also (v) is proved. In order to prove (vi),

we note that every line parallel to [x1, x2] intersects B(x1, x2) in exactly one point; see

[72, Proposition 15]. If this point belongs to the part of B(x1, x2) between 0 and p1, then

it lies neither in the open half-plane bounded by L(0, p1) and containing x1, nor in its

opposite half-plane. Therefore, this part is a segment, and the proof of (vi) is done. The

statements (ii) and (iii) are evident.

3.4 Configurations of Minkowskian circles related to

covering problems

3.4.1 Configurations of Minkowskian circles related to a regular

4-covering

Let (M2, ‖ · ‖) be a strictly convex normed plane, and C(xi, λ), i = 1, . . . , 4, be four

circles passing through a point p such that C(xi, λ) and C(xi+1, λ) do not touch each

other, where x5 ≡ x1. Then C(xi, λ) and C(xi+1, λ) have exactly one second intersection

point, denoted by pi+1. The next theorem clarifies what configuration is obtained if the

second intersection points of these circles lie on one circle. More precisely, we have

Theorem 3.4.1. In a strictly convex normed plane, let there be given four circles C(xi, λ),

i = 1, . . . , 4, passing though a point p such that C(xi, λ) and C(xi+1, λ) do not touch each

other, whereas C(xi, λ) and C(xi+2, λ) touch each other (x5 ≡ x1, x6 ≡ x2). If pi+1

(p5 ≡ p1) is the second intersection point of C(xi, λ) and C(xi+1, λ), and p1, p2, p3, p4 lie

on the same circle of radius µ > λ, then ∪4
i=1D(xi, λ) is a regular 4-covering of D(p, µ).

Proof. Without loss of generality we can assume that p ≡ 0. Consider the circles C(0, µ)

and C(xi, λ). Then we have C(0, µ) ∩ C(xi, λ) = {pi, pi+1}. Thus Lemma 1.2.5 implies

that if γ is the arc of C(0, µ) between pi and pi+1 that does not contain the remaining

points of the set {p1, . . . , p4}, and γ′ is the arc of C(xi, λ) with endpoints pi, pi+1 that

does not contain 0, then γ ∈ conv γ′. This means that ∪4
i=1D(xi, λ) is a covering of

D(0, µ). The property that the circles C(xi, λ) and C(xi+2, λ) touch each other implies

that x1, x2, x3, x4 form a parallelogram whose diagonals intersect at 0 (cf. Lemma 1.2.6).

Thus, by Lemma 1.2.7, we get
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x1 + x2 = p2, x2 + x3 = p3,

x3 + x4 = p4, x4 + x1 = p1;

whence

p1 − p2 = x4 − x2, p2 − p3 = x1 − x3,

p2 + p4 = x1 + x2 + x3 + x4, p1 + p3 = x1 + x2 + x3 + x4.
(3.15)

Therefore the points p1, p2, p3, p4 form a parallelogram with diagonals intersecting at

0. Moreover, its sides are parallel to the diagonals of the parallelogram obtained by

x1, x2, x3, x4. The equations (3.15) imply that ‖p2 − p3‖ = ‖p1 − p2‖ = 2λ. Thus we

obtain that xi+1 is the midpoint of [pi, pi+1]. If R+
xi

(0) ∩ C(0, λ) = {qi}, then the points

q1, q2, q3, q4 form a parallelogram which is quasi-dual to that with vertices p1, p2, p3, p4.

Now it is easy to see that ∪4
i=1D(xi, λ) is a regular 4-covering of D(0, µ).

3.4.2 Miquel configurations of circles of equal radii

More general than in the previous subsection, we consider configurations {C(xi, λ), i =

1, . . . , 4} in which the first intersection points of C(xi, λ) and C(xi+1, λ), with x5 ≡ x4, do

not coincide. For such configurations in strictly convex normed planes the next theorem

holds. This theorem was also proved by Asplund and Grünbaum in [6], but under the

additional assumption that the plane be smooth. In the Euclidean subcase this theorem

is known as Miquel’s Six-Circles Theorem.

Theorem 3.4.2. In a strictly convex normed plane (M2, ‖ · ‖), let there be given four

circles C(xi, λ), i = 1, . . . , 4, such that C(xi, λ) and C(xi+1, λ), with x5 ≡ x1, have exactly

two intersection points pi+1 and qi+1, where p5 ≡ p1 and q5 ≡ q1. Then the points

p1, . . . , p4 lie on the same circle of radius λ if and only if q1, . . . , q4 lie on the same circle

of radius λ.

Proof. Without loss of generality we assume that pi ∈ C(o, λ), i = 1, . . . , 4. By Lemma

1.2.7 we have

x1 + x2 = p2 + q2

x2 + x3 = p3 + q3

x3 + x4 = p4 + q4

x4 + x1 = p1 + q1

and

x1 = p1 + p2

x2 = p2 + p3

x3 = p3 + p4

x4 = p4 + p1.

(3.16)
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The equations (3.16) imply that qi = pi + pi+1 + pi+3 = p1 + p2 + p3 + p4 − pi+2, where

i = 1, . . . , 4 and p6 = p2, p7 = p3. Since ‖pi‖ = λ, we get ‖p1 + p2 + p3 + p4 − qi‖ = λ,

which means that qi ∈ C(p1 + p2 + p3 + p4, λ).

Now we consider a configuration of circles in an arbitrary normed plane a configu-

ration of circles which is described in the above theorem. Let p1, . . . , p8 be eight points.

To every point pi, i = 1, . . . , 8, we assign a vertex of a cube. Consider the six quadruples

of points that correspond to the vertices of each facet of the cube, e.g.,

(p1, p2, p3, p4), (p1, p2, p5, p6), (p2, p3, p7, p6),

(p3, p4, p8, p7), (p1, p4, p8, p5), (p5, p6, p7, p8).
(3.17)

If five of the quadruples in (3.17) are concyclic, then this configuration is called a Miquel

configuration. If for four points there exists a circle containing them, we say that these

four points form a concyclic quadruple. Thus, Theorem 3.4.2 can be rewritten as follows:

in a strictly convex normed plane, in any Miquel configuration of circles with equal

radii all six quadruples are concyclic. Such a configuration of circles is called (83, 64)-

configuration because it is formed by 8 points and 6 circles, any of these points lying on 3

circles, and any circle passing through 4 of these points. Theorem 3.4.2 can be extended

to all normed spaces, but we need some preliminaries. According to Theorem 2.4 in

[8] (see also [72, Proposition 22]) the intersection I of two circles C(p, λ) and C(q, µ) in

(M2, ‖ · ‖) can only have the following forms:

(i) I = ∅;

(ii) I = C(p, λ) = C(q, µ);

(iii) I consists of two closed, disjoint segments (one of them or both may be reduced to

a point) lying on the opposite sides of the line G through p and q;

(iv) I consists of two segments (one of them or both may be reduced to a point) with

common point p1 or p2, where {p1, p2} = G ∩ C(p, λ).

Note that if λ = µ and p 6= q, (iii) or (iv) occur if and only if ‖p−q‖ ≤ 2λ. If the plane is

strictly convex, then the intersection of C(p, λ) and C(q, λ) consists of exactly two points

if and only if ‖p− q‖ < 2λ. If ‖p− q‖ = 2λ, then C(p, λ)∩C(q, λ) consists of exactly one

point.
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In a normed plane, let the circles C(p, λ) and C(q, λ) intersect properly, and let

their intersection consist of the segments I1 and I2 (possibly degenerate). If the point

r1 belongs to I1, we call the point r2 = p+ q − r1 the conjugate of r1 with respect to the

circles C(p, λ) and C(q, λ). If the intersection of both circles consists only of one point

(i.e., in (iv) the two segments are reduced to points that coincide), then this point is the

conjugate of itself. Clearly, we have r2 ∈ I2, and r1 is the conjugate of r2. If the plane

is strictly convex and C(p, λ) ∩ C(q, λ) = {r1, r2}, then r1 and r2 are conjugates of each

other.

Let there be given a circle C(x, λ). Let the points p1, . . . , p4 be placed on C(x, λ) in

this order. Then the monotonicity lemma implies that ‖pi − pi+1‖ ≤ 2λ for i = 1, . . . , 4

and p5 = p1. Therefore the circles C(pi, λ) and C(pi+1, λ) intersect. Clearly, the point x

belongs to C(pi, λ ∩ C(pi+1, λ) for every i = 1, . . . , 4. Let yi be the conjugate point of x

with respect to C(pi, λ) and C(pi+1, λ). We call the configuration of circles

C(y1, λC), . . . , C(y4, λ), C(x+ λ) (3.18)

the Miquel configuration induced by the points p1, . . . , p4.

Remark 3.4.1. If (3.18) is the Miquel configuration induced by the points p1, . . . , p4

which lie on C(x, λ), then we can speak about the conjugate point of pi+1 with respect to

the circles C(yi, λ) and C(yi+1, λ), where y5 = y1. Indeed, since yi ∈ C(pi, λ) ∩ C(pi+1, λ),

we have that pi, pi+1 ∈ C(yi, λ), which yields pi+1 ∈ C(yi, λ) ∩ C(yi+1, λ).

Theorem 3.4.3. In a normed plane (M2, ‖ · ‖) with unit circle C, let there be given a

circle C(x, λ). Let the points p1, . . . , p4 be placed in this order on C(x, λ), and let

C(y1, λ), . . . , C(y4, λ), C(x, λ) (3.19)

be the Miquel configuration induced by the points p1, . . . , p4. If p′i+1 is the conjugate point

of pi+1 with respect to C(yi, λ) and C(yi+1, λ), then the points p′i lie on a circle of radius

λ, where i = 1, . . . , 4, p′5 = p′1, p5 = p1, and y5 = y′5; see Figure 3.6.

Proof. Without loss of generality we assume that x = 0. Since the points p1, . . . , p4

induce the Miquelian configuration (3.19), we have

yi = pi + pi+1, i = 1, . . . , 4. (3.20)
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Figure 3.6: Miquel’s Theorem

On the other hand, the points pi+1 and p′i+1 are conjugate with respect to C(yi + λ) and

C(yi+1, λ). Therefore we get

pi+1 + p′i+1 = yi + yi+1, i = 1, . . . , 4. (3.21)

Thus, from (3.20) and (3.21) we obtain

p′i+1 = yi + yi+1 − pi+1 = pi + pi+1 + pi+2 = p1 + . . .+ p4 − pi+3, (3.22)

where p6 = p2, p7 = p3. Hence ‖p′i+1 − (p1 + . . .+ p4)‖ = ‖pi+3‖ = λ.

Remark 3.4.2. If the plane (M2, ‖ · ‖) in Theorem 3.4.3 is strictly convex, then pi+1

and p′i+1 are the intersection points of C(yi, λ) and C(yi+1, λ). In such a case, Theorem

3.4.3 appears to be a reformulation of Theorem 3.4.2. Restricted to the strictly convex

case, Theorem 3.4.3 is, however, more general than Theorem 3.4.2. If the points p1

and p3 are opposite with respect to C(x, λ), then from (3.20) we have ‖y1 − y2‖ = 2λ and

‖y3−y4‖ = 2λ (under the assumption that x = 0). This means that C(y1, λ) and C(y2, λ),

as well as C(y3, λ) and C(y4, λ), have exactly one common point. In other words, if two

pairs of circles corresponding to the quadruples in Theorem 3.4.2 have only one point in

common, Theorem 3.4.2 is also true.
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3.4.3 Miquel configurations of circles having arbitrary radii

In this subsection we consider Miquel configurations consisting of circles of arbitrary radii.

It is our aim to ascertain whether the theorem of Miquel holds for such configurations. A

crucial role in our investigations plays the fact that any strictly convex, smooth normed

plane is a Möbius plane; this is proved Section 3.1, see Theorem 3.1.1 there. For our

purpose we need more facts about Möbius planes.

Let Σ = (P,C) be a Möbius plane. A set of generalized circles having a unique

common generalized point form a parabolic bundle. If the following statement (F) holds

in a Möbius plane Σ, then Σ is called an (F)-plane1:

(F) Every generalized circle that touches three different generalized circles of

a parabolic bundle belongs to the same bundle.

It is easy to check that every strictly convex, smooth normed plane is an (F)-plane. For

a Möbius plane the notions of concyclic quadruple of generalized points and a Miquelian

configuration of generalized circles are defined as in the previous subsection, i.e., the

generalized points p1, p2, p3, p4 ∈ P are said to be concyclic if there exists a generalized

circle C ∈ C containing them. The generalized points p1, . . . p8 ∈ P form a Miquelian

configuration if five of the quadruples

(p1, p2, p3, p4), (p1, p2, p5, p6), (p2, p3, p7, p6),

(p3, p4, p8, p7), (p1, p4, p8, p5), (p5, p6, p7, p8).
(3.23)

are concyclic. If in any Miquelian configuration in a Möbius plane (P,C) all six quadru-

ples are concyclic, then (P,C) is said to be a Miquelian Möbius plane.

Let Σ and Σ′ be two Möbius planes. If there exists a one-to-one correspondence

σ : Σ → Σ′ mapping concyclic generalized points into concyclic generalized points,

and non-concyclic generalized points into non-concyclic ones, then Σ and Σ′ are called

isomorphic and σ is said to be a homography from Σ to Σ′. Clearly, the isomorphism

between Möbius planes is an equivalence relation. Note also that if a Möbius plane is an

(F)-plane, then all planes isomorphic to it are (F)-planes, too.

We mention that a class of Möbius planes can be constructed in an algebraic way.

Let F and E ⊃ F be commutative fields and [E : F] = 2. One can consider the elements

of E ∪ {∞}, where ∞ is a formal symbol, as generalized points and define generalized

1Coming from the German word ”Fährte“.
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circles (usually called chains) as sets

{x ∈ E ∪ {∞}|p− r

q − r
:
p− x

q − x
∈ F ∪∞},

where p, q, and r are three pairwise different points from E. Then the so-defined incidence

structure is a Möbius plane (see [11, § 2]) and we denote it by Mo(F,E). Note also that

in the classical case F = R, E = C, and Mo(F,E) is the inversive plane.

Let now (M2, ‖ · ‖) be a strictly convex, smooth normed plane, and consider this

plane as a Möbius plane Σ = (P,C). A homography ϕ in Σ that is involutory and leaves

the generalized points of a generalized circle C fixed such that no other generalized point

is fixed is called inversion with respect to the generalized circle C. It is clear that such

a homography exists at least for the Euclidean subcase.

Proposition 3.4.1. In a strictly convex, smooth normed plane, let ϕ be an inversion

with respect to the circle C with center x. Then ϕ(x) = ∞.

Proof. Assume that ϕ(x) = x′ 6= ∞. Clearly, x 6= x′. Let L(x, x′) ∩ C = {p1, p2} and

ϕ(∞) = y. Then y 6= x and y 6= ∞. We distinguish the following cases:

(1) y 6∈ L(x, x′). Then the image of L(p1, p2) is a circle passing through p1, p2, and

x′, a contradiction.

(2a) y ∈ L(x, x′) and y is interior with respect to C. Consider the circle C1 with

center x+y

2
and radius ‖x−y‖

2
. Clearly, C1 ∩ C = ∅. On the other hand, ϕ(C1) = C ′

1 is a

line through x′. If the point x′ is interior with respect to C, then C ′
1 ∩C 6= ∅. This is not

true, and thus we obtain that x′ is exterior with respect to C. Let G be a supporting line

of C through x′, and let G∩C = {z}. If ϕ(G) = C2, then C2 is the circle through x, y, z,

and C2 ∩ C = {z}. Denote by x2 the center of C2. Since (M2, ‖ · ‖) is strictly convex,

the point x2 lies on L(x, z). Therefore x2 is the midpoint of the segment [x, z]. If the

line H supports C2 at x, then H is parallel to G, by the fact that (M2, ‖ · ‖) is smooth.

Let H ∩C = {q1, q2}. If ϕ(H) = C3, then C3 is the circle through q1, q2, x
′. Moreover, G

supports C3 at x′ and C2 ∩C3 = ∅. If q2 lies in the half plane HS+
x′(x, z), the circular arc

of C3 between q1 and x′ has to intersect C2, a contradiction.

(2b) y ∈ L(x, x′) and y is exterior with respect to C. Let C1 be the circle with

center x+y

2
and radius ‖x−y‖

2
, and let C1 ∩ C = {q1, q2}. According to [8, Theorem 2.4]

(cited also in Subsection 3.4.2), the points q1 and q2 lie in the different half-planes with
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respect to L(x, y). Note that the intersection point of L(q1, q2) and L(x, y) is x′, since

ϕ(C1) = L(q1, q2). Thus we get that x′ is interior with respect to C. Consider the circle

C2 through x′ and y with center x′+y

2
. If G supports C2 at x′, the points x and y lie

on opposite sides of G. Let C2 ∩ C = {t1, t2}. Then the segment [t1, t2] has to intersect

L(x, y). Denote the respective intersection point by t. Since ϕ(C2) = L(t1, t2), the point

t has to coincide with x. Due to the fact that t and x lie in different half-planes with

respect to G, again we get a contradiction.

Remark 3.4.3. In [96], Stiles defined the inversion with respect to the unit circle C of a

normed plane as a mapping ϕ of M2 \ {0} onto itself that maps a point x 6= 0 onto the

point 1
‖x‖2 x. He proved that if the inversive image of some line is a circle, then (M2, ‖·‖)

is Euclidean. Theorem 3.4.5 below shows that Stiles’ definition of inversion and ours are

only equivalent in the Euclidean case.

For the proof of Theorem 3.4.5 we also need the following characterization of the

Euclidean plane, proved in [9].

Theorem 3.4.4. A normed plane with unit circle C is Euclidean if and only if

x, y ∈ C, inf{‖αx+ (1 − α)y‖ : 0 ≤ α ≤ 1} =
1

2
⇒ x+ y ∈ C.

Theorem 3.4.5. Let (M2, ‖ · ‖) be a strictly convex, smooth normed plane, and let there

exist the inversion ϕ with respect to some circle of (M2, ‖·‖). Then the plane is Euclidean.

Proof. Without loss of generality we can assume that in (M2, ‖·‖) there exists an inversion

with respect to the unit circle C of (M2, ‖ · ‖). Let p1, p2 be points on C and x be a point

on [p1, p2] such that the segment [p1, p2] supports 1
2
C at x. Let H be the supporting

line of C at 2x. The smoothness of (M2, ‖ · ‖) implies that H is parallel to L(p1, p2).

Since ϕ(∞) = 0, the inverse image H ′ of H is a circle through 0. On the other hand,

ϕ(2x) = 2x. Therefore the circle H ′ passes through 2x. Further on, the plane (M2, ‖ · ‖)
is strictly convex, and this means that 2x is the unique common point of C and H .

Hence there do not exist common points of H and H ′ except for 2x, and the line H

appears to be supporting H ′ at 2x. Thus the strict convexity of (M2, ‖ · ‖) implies that

the center of H ′ lies on L(0, 2x). But 0, 2x ∈ H ′, and therefore H ′ = x + 1
2
C. Let

L(p1, p2)∩ (x+ 1
2
C) = {q1, q2}, R+

q1
(0)∩H = {q′1}, and R+

q2
(0)∩H = {q′2}. For the points

q′1 and q′2 the equations

‖2x− q′1‖ = 1, ‖2x− q′2‖ = 1 (3.24)
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hold. Since the inversive image of any line through 0 is the same line, we have ϕ(q1, q2) =

{q′1, q′2}. Consider G′ = ϕ(G), where G = L(p1, p2). Clearly, G′ is a circle through

0, p1, p2, q
′
1, q

′
2. Thus we obtain that G′ = 2x + C; see (3.24). Therefore the quadrangle

with vertices 0, p1, 2x, and p2 is a metric parallelogram (i.e., a quadrangle with opposite

sides of equal lengths). But in a strictly convex normed plane every metric parallelogram

is a parallelogram (see [72, Proposition 12]), i.e., we get that x is the midpoint of [p1, p2].

Thus, in view of Theorem 3.4.4 the proof is complete.

Theorem 3.4.6. If Miquel’s theorem holds in a strictly convex, smooth normed plane

(M2, ‖ · ‖), then this plane is Euclidean.

Proof. Consider Σ = (M2, ‖ · ‖) as a Möbius plane. According to the Theorem of Smid

and van der Waerden (see [90] and [11, § 5]), this plane is isomorphic to a Möbius plane

Σ′ = Mo(F,E), where F is a commutative field and E is a quadratic extension of F.

Denote by θ the corresponding homography from Σ to Σ′. The plane (M2, ‖ · ‖) is an

(F)-plane, therefore Σ′ is also an (F)-plane. But Theorem 5 in [10] states that if Σ′ is an

(F)-plane, then E is a separable extension of F. If C is the unit circle of (M2, ‖ · ‖), then

let θ(C) = C′. Since E is a separable extension of F, there exists exactly one homography

ψ of Σ′ being an involution that fixes only the points of C′; see [47], but also [11, § 4.7].

Therefore θ−1ψθ is the inversion with respect to C. Thus Theorem 3.4.5 implies that

(M2, ‖ · ‖) is Euclidean.

Remark 3.4.4. Consider four pairs from the set of points p1, . . . , p8 such that the points

in every such pair are different and every point belongs to exactly one pair, e.g.,

(p1, p2), (p3, p4), (p5, p6), (p7, p8).

These four pairs can be combined as pairs in six ways. Thus we obtain the quadruples

(p1, p2, p3, p4), (p1, p2, p5, p6), (p1, p2, p7, p8),

(p3, p4, p5, p6), (p3, p4, p7, p8), (p5, p6, p7, p8).
(3.25)

If five quadruples in (3.25) are concyclic, then such a configuration is called a Bundle

configuration. The statement that all six quadruples in a Bundle configuration are con-

cyclic (see Figure 3.7) is known as the Bundle theorem. If Miquel’s theorem holds in a

Möbius plane, then also the Bundle theorem holds there; see [90] and [11, § 5]. But the
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Figure 3.7: Bundle Theorem.

converse implication is not always true; see again [11, § 5]. In [89] the following theorem

is given: if in a strictly convex, smooth normed plane (M2, ‖ · ‖) the Bundle theorem

holds, then (M2, ‖ · ‖) is Euclidean. Thus we can derive another proof of our Theorem

3.4.6.

3.5 Visibility in packing of balls

Let K be a convex body in Md and p+K and q +K be two disjoint translates of K. A

translate r+K is said to lie between p+K and q+K if r+K overlaps none of p+K and

q+K and there exist points x ∈ (p+K) and y ∈ (q+K) such that [x, y]∩ (r+K) 6= ∅.
Assume that r+K lies between p+K and q+K. For x ∈ (p+K) and y ∈ (q+K), the

segment [x, y] is said to be stably blocked by r +K if [x, y] ∩ int (r +K) 6= ∅.
Let F be a family of translates of K packed between disjoint translates p + K

and q + K. Then p + K and q + K are called visible from each other in the packing

{p+K, q+K}∪F if there exist points x ∈ (p+K) and y ∈ (q+K) such that the segment

[x, y] intersects no element of F. Otherwise p + K and q + K are said to be concealed

from each other by F.

In this section we shall deal with translates of a centrally symmetric convex body

K, and then we can assume that K is the unit ball B (unit disc D in the planar case) of

a normed space (Md, ‖ · ‖).
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The concealment number δ((Md, ‖ · ‖)) is defined as the infimum of λ > 0 satisfying

the following condition: for B(p, 1) and B(q, 1) being disjoint, the inequality ‖p− q‖ > λ

implies that B(p, 1) and B(q, 1) can be concealed from each other by packing translates

of B between them. If ‖p− q‖ ≥ 4, then B(p, 1) and B(q, 1) are concealed by B(p+q

2
, 1),

which implies that for any norm

δ((Md, ‖ · ‖)) ≤ 4.

It is also easy to check that δ(E2) = 2
√

3. In [48] more consideration about δ(E2) can

be found. It is our aim in this section to continue the investigations in [48] by proving

several results on concealment numbers for two-dimensional normed spaces.

It should be also noticed that the visibility in crowds of translates of a convex body

can be studied with the help of the corresponding visibility graph. For such an approach

we refer to [49].

3.5.1 Special and very special triangles

We say that a triangle with vertices p, q, r ∈ (M2, ‖ · ‖) is a special triangle with base

[p, q] if ‖p − r‖ = ‖q − r‖ = 2 and δ(r,L(p, q)) = 1. When we refer to T (p, r, q) as

a special triangle we shall assume that [p, q] is its base. If T (p, r, q) is special, then

T (p, p+ q − r, q) is also special but with different orientation. Any translate of a special

triangle is a special triangle.

Proposition 3.5.1. For any direction there exists a special triangle with base parallel

to this direction. All special triangles with the same orientation and bases parallel to a

given direction are corresponding to each other with respect to some translation.

Proof. Let G and G′ be two parallel lines such that δ(G,G′) = 1. Take r ∈ G′ and let p

and q be the only two points where G cuts C(r, 2). Then T (p, r, q) is a special triangle.

Similarly, another special triangle with the same base but with different orientation can

be constructed by considering G′ in the other half-plane defined by G. The second part

of the lemma follows from the construction of T (p, r, q).

Proposition 3.5.2. Let T (p, r, q) be a special triangle and let t ∈ L(p, q) be such that

δ(r,L(p, q)) = ‖r − t‖ = 1. Then r − t ⊣ p− q and t = αp+ (1 − α)q, with 1
4
≤ α ≤ 3

4
.

Proof. Assume that t = αp + (1 − α)q. Then ‖r − t‖ ≤ ‖r − (µp + (1 − µ)q)‖ for

every µ ∈ R. Taking µ = α − λ, we get that ‖r − t‖ ≤ ‖r − t + λ(p − q)‖ for every
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λ ∈ R, i.e., r − t ⊣ p − q. Moreover, 1 = ‖r − t‖ = ‖α(r − p) + (1 − α)(r − q)‖ ≥
|‖α(r − p)‖ − ‖(1 − α)(r − q)‖| = 2||α| − |1 − α||, which implies that 1

4
≤ α ≤ 3

4
.

Proposition 3.5.3. If T (p, r, q) is a special triangle, then 2 ≤ ‖p− q‖ ≤ 4. Moreover,

‖p − q‖ = 2 if and only if the unit circle C is a parallelogram and L(p, q) is parallel to

some of the diagonals of C.

Proof. Let T (p, r, q) be a special triangle. Then ‖p− q‖ ≤ ‖p− r‖ + ‖r − q‖ = 4. From

Proposition 3.5.2 it follows that there exists t ∈ [p, q] such that ‖r− t‖ = 1. This implies

that ‖p−q‖ = ‖p−t‖+‖q−t‖ ≥ ‖p−r‖−‖r−t‖+‖q−r‖−‖r−t‖ = 2. Suppose now that

‖p− q‖ = 2. Without loss of generality we can assume that r = 0. Let t = αp+ (1−α)q

be as in Proposition 3.5.2. Then 2 = ‖p‖ = ‖t+ (1 − α)(p− q)‖ ≤ 1 + 2(1 − α), which

implies α ≤ 1
2
. On the other hand, 2 = ‖q‖ = ‖t + α(q − p)‖ ≤ 1 + 2α, and then

α = 1
2
. Therefore the eight points ±(p+q)

2
, ±(p−q)

2
, ±p

2
, ±q

2
belong to C, which implies that

C is the parallelogram with vertices ±p±q

2
. Conversely, assume that C is a parallelogram

with vertices ±u, ±v, and let T (p, r, q) be a special triangle such that 〈p, q〉 is parallel to

〈u,−u〉. Then, either {p, q} = {r − u+ v, r + u+ v} or {p, q} = {r − u− v, r + u− v}.
In both cases, ‖p− q‖ = ‖2u‖ = 2.

Remark 3.5.1. Attaining the bound 4 in Proposition 3.5.3 does not fix the shape of C.

Consider in M2 the points r = (1, 0), u = (1
2
, 1), and v = (−1

2
, 1), and let ‖ · ‖ be any

norm whose unit circle C contains r and [u, v], and r ⊣ u + v. For p = u + v and

q = −u− v, the triangle T (p, r, q) is special and ‖p− q‖ = 4.

Let T (p, r, q) be a special triangle, and [α1, α2] be the largest interval such that

‖r − (αp + (1 − α)q)‖ = 1 for α ∈ [α1, α2]. From Proposition 3.5.2 it follows that

[α1, α2] ⊂ [1
4
, 3

4
]. Moreover, α1 = α2 if and only if the unit circle C does not contain a

segment parallel to L(p, q). We call T (p, r, q) a very special triangle if 1
2
∈ [α1, α2]. In

other words, a special triangle T (p, r, q) is very special if L(r, p+q

2
) ⊣ L(p, q).

Proposition 3.5.4. A normed plane (M2, ‖ · ‖) is Euclidean if and only if every special

triangle is a very special triangle.

Proof. Obviously, in the Euclidean plane every special triangle is a very special triangle.

Conversely, assume that every special triangle is a very special triangle. If x, y ∈ C are

such that inf{‖αx+(1−α)y‖ : 0 ≤ α ≤ 1} = 1
2
, then the triangle T (2x, 0, 2y) is special,

and therefore very special, which gives that ‖x+ y‖ = 1. Theorem 3.4.4 implies that the

plane is Euclidean.
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3.5.2 The concealment number in the planar case

Let C be the unit circle of (M2, ‖ · ‖) and let p ∈ C. The concealment number of the

direction L(0, p), denoted by δp, is defined as the infimum of µ > 2 such that the unit

disc D and its translate D(µp, 1) can be concealed from each other by packing translates

of D. Clearly, δp = δ−p and δ((M2, ‖ · ‖)) = sup{δp : p ∈ C}.

Proposition 3.5.5. For any p ∈ C, 2 ≤ δp ≤ 4. Moreover, δp = 2 if and only if C is a

parallelogram with p as a vertex.

Proof. It is obvious that δp ≥ 2. Since D and D(4p, 1) are concealed by D(2p, 1), we have

that δp ≤ 4.

Assume now that δp = 2. Then for every n ∈ N there exists 2 < µn ≤ 2 + 1
n

such that D and D(µnp, 1) can be concealed. Therefore, for each n there exists an

xn such that D(xn, 1) is between D and D(µnp, 1), and D(xn, 1) ∩ [0, µnp] 6= ∅. Let

αnp ∈ D(xn, 1) ∩ [0, µnp]. Then 1 ≤ αn ≤ µn − 1, ‖xn‖ ≥ 2, ‖xn − µnp‖ ≥ 2, and

‖xn − αnp‖ ≤ 1, which implies that

µn = ‖αnp‖ + ‖µnp− αnp‖ ≥ ‖xn‖ − ‖xn − αnp‖ + ‖xn − µnp‖ − ‖xn − αnp‖ ≥ 2.

Since µn → 2 as n → ∞, it follows that αn → 1 and xn → x with ‖x‖ = ‖x − 2p‖ = 2

and ‖x− p‖ = 1. We thus get that C is the parallelogram with vertices ±p, ±(x− p).

Conversely, assume that C is a parallelogram with vertices ±p, ±q. Then, for any

µ > 2, {D(µ

2
p+q, 1),D(µ

2
p−q, 1)} conceals D and D(µp, 1), which implies that δp = 2.

Remark 3.5.2. It is easy to give examples showing that the identity δp = 4 does not

determine the shape of C.

The next theorem relates a special triangle with the concealment number of the

direction of its base.

Theorem 3.5.1. Let p, q ∈ (M2, ‖ · ‖).

(i) If [p, q] is the base of a special triangle, then δ p−q

‖p−q‖
≥ ‖p− q‖.

(ii) If [p, q] is the base of a very special triangle, then δ p−q

‖p−q‖
= ‖p− q‖.

(iii) If ‖p − q‖ < 4 and [p, q] is the base of a special triangle that is not very special,

then δ p−q

‖p−q‖
> ‖p− q‖.
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Proof. (i) Let p, q ∈ (M2, ‖ · ‖) be such that [p, q] is the base of a special triangle, and

let p̄ = p−q

‖p−q‖ . Then [0, ‖p − q‖p̄] is also the base of a special triangle. To prove that

δp̄ ≥ ‖p − q‖ we shall assume, on the contrary, that there exists 2 < µ < ‖p − q‖ such

that D and D(µp̄, 1) can be concealed by a family of translates of D. We shall get a

contradiction.

Let D(x, 1) be such that neither D nor D(µp̄, 1) are overlapped by it, and D(x, 1)∩
[0, µp̄] 6= ∅. Then ‖x‖ ≥ 2 and ‖x − µp̄‖ ≥ 2. Moreover, x /∈ [0, µp̄], because in the

other case ‖p − q‖ > µ ≥ 4, contradicting Proposition 3.5.3. Let x1 ∈ D(x, 1) ∩ [0, µp̄].

We can assume that x − x1 ⊣ p̄, since any x′1 ∈ L(0, p̄) such that x − x′1 ⊣ p̄ satisfies

‖x − x′1‖ ≤ ‖x − x1‖, and then x′1 ∈ D(x, 1). Let p1 = x−x1

‖x−x1‖ , q1 = p1 + µp̄, and

q′1 = p1 + ‖p− q‖p̄. Let y ∈ L(p1, q1) be such that T (0, y, p− q) is a special triangle. Now

we distinguish two situations:

(a) The line L(0, p̄) supports D(x, 1), i.e., x ∈ L(p1, q1), and x is strictly between p1

and q1. Thus x = p1 + λp̄, with 0 < λ < µ. Since ‖y‖ = 2 ≤ ‖x‖, it follows from Lemma

1.2.3 and the convexity of D that y is between p1 and x. Again it follows from Lemma

1.2.3 that

2 ≤ ‖x− µp̄‖ ≤ ‖x− (p− q)‖ = ‖x− ‖p− q‖p̄‖ ≤ ‖y − ‖p− q‖p̄‖ = 2,

and then ‖x− µp̄‖ = ‖x− ‖p− q‖p̄‖ = 2. But from the identity

(‖p− q‖ − λ)(x− µp̄) = (µ− λ)(x− ‖p− q‖p̄) + (‖p− q‖ − µ)p1

it follows that 2(‖p− q‖− λ) ≤ 2(µ− λ) + ‖p− q‖− µ, which gives ‖p− q‖ ≤ µ, against

the hypothesis.

(b) The segment [0, µp̄] is stably blocked by D(x, 1). Then x lies in the interior of

the parallelogram with vertices 0, p1, q1, and µp̄. Therefore x is also an interior point of

the parallelogram with vertices 0, p1, q
′
1, and p− q. Assume that x ∈ conv {0, y, p− q}.

Then, from Lemma 1.2.2, we get

4 ≤ ‖x‖ + ‖x− µp̄‖ ≤ ‖x‖ + ‖x− (p− q)‖ ≤ ‖y‖ + ‖y − (p− q)‖ = 4.

Therefore ‖x‖ = ‖x− µp̄‖ = ‖x− (p− q)‖ = 2, which implies that the segment [0, p− q]

belongs to C(x, 2), contradicting that [0, µp̄] is stably blocked by D(x, 1). Therefore, either

x ∈ conv {0, y, p1} or x ∈ conv {p− q, y, q′1}. The first situation is impossible because if

x′ = R+
x (0) ∩ L(p1, q1), then x′ ∈ [p1, y], which implies the absurdity 2 ≤ ‖x‖ < ‖x′‖ ≤

‖y‖ = 2. The second situation is also impossible because taking x′′ = R+
x (p−q)∩L(p1, q1),
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we have that x′′ ∈ [y, q′1], and then 2 ≤ ‖x − µp̄‖ ≤ ‖x − (p − q)‖ < ‖x′′ − (p − q)‖ ≤
‖y − (p− q)‖ = 2, which is absurd, too.

(ii) Assume that [p, q] is the base of a very special triangle, and let x be such that

T (0, x, p− q) is a very special triangle. Then T (0, p− q − x, p− q) is also a very special

triangle; therefore 1
2
(p−q) ∈ C(x, 1)∩C(p−q−x, 1), and L(0, p−q) supports both circles

at this point. This implies that [x, p− q − x] ⊂ D(x, 1) ∪ D(p− q − x, 1). Since for any

u ∈ D, v ∈ D(p− q, 1) the segment [u, v] intersects the segment [x, p − q − x], we have

that {D(x, 1),D(p− q − x, 1)} conceal D and D(p − q, 1). Therefore, ‖p − q‖ ≥ δ p−q

‖p−q‖
.

Part (i) completes the proof.

(iii) Assume that T (p, r, q) is a special triangle which is not very special such that δ p−q

‖p−q‖
=

‖p−q‖. We shall see that ‖p−q‖ = 4. We have that the line L(r, 1
2

(p+q)) is not normal

to L(p, q). Let L be a line through 1
2

(p + q) with L(r, 1
2

(p + q)) ⊣ L. Since L 6= L(p, q)

and L does not pass through r, then L intersects either the segment [r, q] or the segment

[r, p]. Assume, without loss of generality, that L intersects [r, q] in a point w which is

different to r and q. Since d(r, L) > 1, we have ‖w − q‖ < 1. Let w′ = p + q − w. Then

w′ ∈ L∩D(p, 1). For n ∈ N, let qn = q+ 1
n
(q−p). Then ‖p−qn‖ = (1+ 1

n
)‖p−q‖ > ‖p−q‖.

Since δ p−q

‖p−q‖
= ‖p − q‖, there exists a point between q and qn, still denoted by qn, such

that D(p, 1) and D(qn, 1) can be concealed. Moreover, since L meets the interior of

D(q, 1), for sufficiently large n also L meets D(qn, 1). Hence there exists an xn such that

D(xn, 1) is between D(p, 1) and D(qn, 1), and D(xn, 1) intersects L in a point tn. Thus

‖p− xn‖ ≥ 2, ‖qn − xn‖ ≥ 2, and ‖tn − xn‖ ≤ 1. Letting n tend to infinity, we have that

(for a subsequence, if necessary) xn → x and tn → t, such that ‖p−x‖ ≥ 2, ‖q−x‖ ≥ 2,

‖t−x‖ ≤ 1, and t ∈ [w′, w] ⊂ L, which implies that d(x, L) ≤ 1, and then x 6= r. Without

loss of generality we can assume that x is in the same half-plane defined by L as r is. In

the other case we can consider r′ = q+p−r instead of r. Let L′ = (r− 1
2
(p+q))+L. Thus

x is between the lines L and L′. Let Lp and Lq be lines through p and q, respectively,

parallel to L(r, 1
2
(p + q)). We shall see that x is between Lp and Lq. On the contrary,

assume first that Lq is between r and x. Let L̄ be the line parallel to L that supports

D(q, 1) at a point q̄ ∈ Lq between L and L′. Then L 6= L̄, because w ∈ L and ‖w−q‖ < 1.

If x is between L and L̄, then [x, t] cuts [q, q̄] at an interior point of D(q, 1), which is

contradictory. Then assume that x is between L̄ and L′. Since d(q, L′) ≤ ‖q − r‖ = 2

and d(q, L̄) = 1, we have that d(L̄, L′) ≤ 1. Let Lx be the line through x parallel to

Lq, and let {x̄} = L̄ ∩ Lx. Then x̄ ∈ D(x, 1), and [x̄, t] cuts the interior of D(q, 1),
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Figure 3.8: A special triangle T (p, r, q) with ‖p− q‖ = 4 that is not very special.

which is again contradictory. On the other hand, if Lp is between x and r, then [x, t]

trivially intersects D(p, 1). Therefore x is between Lp and Lq and between L and L′. But

then, from Lemma 1.2.3 it follows that x ∈ conv {p, q, r}. Let {z} = L(p, q) ∩ L(r, x),

and let 0 ≤ µ < 1 be such that x = µr + (1 − µ)z. Consider the convex function

f(λ) = ‖p− z + λ(z − r)‖+ ‖q − z + λ(z − r)‖. Then f(1) = ‖p− r‖+ ‖q − r‖ = 4 and

f(µ) = ‖p−x‖+‖q−x‖ ≥ 4, which implies that 4 ≤ f(0) = ‖p−z‖+‖q−z‖ = ‖p− q‖.
Finally, Proposition 3.5.3 gives ‖p− q‖ = 4.

Remark 3.5.3. In view of Theorem 3.5.1(iii), Figure 3.8 gives an example of a normed

plane (M2, ‖ · ‖) and a special triangle T (p, r, q) with ‖p− q‖ = 4 that is not very special

with δ p−q

‖p−q‖
= ‖p− q‖.

We will give a geometric characterization of all the directions for which the con-

cealment number is precisely determined. For that reason we need the following

Lemma 3.5.1. Assume that p1, p2, q1, q2 are four distinct points on the unit circle C of

(M2, ‖ · ‖) such that p1 ≺ q1, p2 ≺ q2, p1 ≺ p2, and p1+q1

2
= p2+q2

2
= x with 0 < ‖x‖ < 1.

Then the points p1, p2, −q1, −q2 are aligned and the segment containing them belongs to

C.

Proof. From the hypothesis it follows that the four points are in one of the following

locations: (a) p1 ≺ q1 ≺ p2 ≺ q2; (b) p1 ≺ p2 ≺ q2 ≺ q1; (c) p1 ≺ p2 ≺ q1 ≺ q2. Case (a)
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is impossible because the segments [p1, q1] and [p2, q2] have the point x in common. The

same reason and the convexity of the unit disc imply that in case (b) the four points are

aligned, which implies that the segment [p1, q1] belongs to C and then ‖x‖ = 1, against the

hypothesis. Finally, assume that (c) occurs. Since ‖x‖ > 0, we have that p1 6= −q1 and

p2 6= −q2. Then {p1, q1,−p1,−q1} and {p2, q2,−p2,−q2} define two parallelograms with

vertices in C such that the sides [p1,−q1] and [p2,−q2] are parallel and of equal length,

and the sides [p1, q1] and [p2, q2] meet at the midpoint x. Moreover, {p1, p2, q1, q2} define

another parallelogram with the sides [p1, p2] and [q1, q2] parallel. From the convexity

of the unit disc it follows that no vertex of any of these parallelograms can be in the

interior of any other parallelogram. Therefore, either [p1, q1] is parallel to [p2, q2], which

contradicts ‖x‖ < 1, or the points p1, p2, −q1, −q2 are aligned, and then the segment

that contains them belongs to C.

Theorem 3.5.2. The base [p, q] of a special triangle in a normed plane (M2, ‖ · ‖) with

‖p− q‖ < 4 is the base of a very special triangle if and only if at least one of the chords

of the unit circle C having 1
4
(q − p) as midpoint is normal to L(p, q).

Proof. Let T (p, r, q) be a special triangle with ‖p − q‖ < 4, and let u = 1
2
(r − p),

v = 1
2
(q − r). Then u, v ∈ C, 1

2
(u+ v) = 1

4
(q − p) and u− v = r− 1

2
(p+ q). Assume now

that T (p, r, q) is very special. Then u−v ⊣ p−q, and therefore the chord of C defined by

u and v has 1
4
(q − p) as midpoint and is orthogonal to L(p, q). Conversely, assume that

u′, v′ ∈ C are such that 1
2
(u′ + v′) = 1

4
(q− p) and u′ − v′ ⊣ p− q. If {u′, v′} = {u, v}, then

r− 1
2
(p+ q) ⊣ p− q, and T (p, r, q) is very special. On the other hand, if {u′, v′} 6= {u, v},

then u, v, u′, v′ are four different (recall that ‖p − q‖ < 4) points in C such that the

midpoints of the chords [u, v] and [u′, v′] coincide. Let ≺ be an orientation of the plane

such that u ≺ v. Without loss of generality we can assume that u′ ≺ v′. If u ≺ u′, then

from Lemma 3.5.1 it follows that u, u′, −v, and −v′ are in a segment contained in C.

This segment is parallel to u + v, and therefore it is also parallel to q − p. Moreover,

the point 1
2
(u − v) belongs to this segment and then u − v ⊣ q − p, which implies that

T (p, r, q) is very special. If u′ ≺ u, we get the same result.

For strictly convex normed planes, Busemann and Kelly defined reflections in a line

as isometries having this line as line of fixed points; see [27, p. 127]. They also proved

that a reflection in every line exists if and only if the plane is Euclidean; cf. [27, p. 140,

Theorem 25.3]. But the reflection in a line G exists if and only if for every circle with

center on G the following holds: there exists a chord C of that circle such that all chords
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Figure 3.9: Not always the condition δ p−q

‖p−q‖
= ‖p− q‖ implies the existence of reflections

in the line L(p, q).

parallel to C are bisected by G; see [27, p. 140, Theorem 25.2]. Note that if one circle

with center on G has this property, then all such circles have it. If a line G admits a

reflection ϕ, then for every point x 6∈ G we have L(x, ϕ(x)) ⊣ G, and the midpoint of

[x, ϕ(x)] lies on G; see [27, p. 128, Theorem 23.4∗]. Thus Theorem 3.5.2 and Theorem

3.5.1(ii) imply

Corollary 3.5.1. Let p, q ∈ (M2, ‖ · ‖), and [p, q] be the base of a special triangle with

‖p − q‖ < 4. If the line L(p, q) admits a reflection (i.e., (M2, ‖ · ‖) is strictly convex),

then

δ p−q

‖p−q‖
= ‖p− q‖.

Remark 3.5.4. The example in Figure 3.5.2 shows that the condition δ p−q

‖p−q‖
= ‖p− q‖

not always implies the existence of reflections in the line L(p, q) .

Remark 3.5.5. A different approach to reflections in normed planes can be found in

[67] and [68]. In contrast to the approach of Busemann and Kelly the reflections in lines

there are defined as affine transformations that are nor necessarily isometries.
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1985) North-Holland Publ. Co., Amsterdam, 1987, 331-337.

[55] Lebesque, H.: Sur le problème des isopérimètres et sur les domaines de largeur
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[84] Riemann, B.: Über die Hypothesen, welche der Geometrie zu Grunde liegen,

Abh. Königlichen Gesellschaft Wiss. Göttingen 13 (1868).

[85] Rund, H.: The Differential Geometry of Finsler Spaces, Die Grundlehren der

Mathematischen Wissenschaften, Bd. 101, Springer-Verlag, Berlin, 1959.

[86] Sachs, H.: Ebene isotrope Geometrie, Vieweg, Braunschweig-Wiesbaden, 1987.

[87] Sallee, G. T.: The maximal set of constant width in a lattice, Pacific J. Math.

28 (1969), 669–674.

[88] Sallee, G. T.: Maximal areas of Reuleaux polygons, Canad. Math. Bull., 13

(1970), 175–179.

[89] Santos, F.: Inscribing a symmetric body in an ellipse Inform. Process. Lett.

59 (1996), 175-178.

[90] Smid, L. J., Waerden, B. L. van der: Eine Axiomatik der Kreisgeometrie

und der Laguerregeometrie, Math. Ann. 110 (1935), 753-776.
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