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Task of the Thesis

The task of this diploma thesis is the evaluation and improvement of the collective
all-reduce operation on the InfiniBandTM QLogic InfiniPath QLE7140 Host Channel
Adapter. Since a wide rang of parallel applications depend on this operation, an
efficient implementation for the given hardware is of high importance. The QLogic
InfiniPath QLE7140 Host Channel Adapter (HCA) will be analyzed and compared to
the Mellanox InfiniHost III Lx HCA. Based on the results of the analysis, optimiza-
tions for all-reduce algorithms shall be proposed. Known all-reduce algorithms will
be investigated theoretically, using well-known communication models and practically
on clusters. Finally a new algorithm shall be proposed.
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Theses

I A InfiniBandTM onload architecture can outperform an offload architecture
on modern host hardware.

II The LogGP model can predict the behavior of all-reduce algorithms accurate
enough for large messages on InfiniBandTM HCAs.

III There cannot exist a general non-adaptive all-reduce algorithm which is
optimal in all possible scenarios.

IV OFED RDMA-CM offers an easy way to use multicast over InfiniBandTM

and can be combined with PSM point to point messages.

V The Open MPI library’s send and receive overhead for the PSM interface is
very low.

VI Open MPI offers an easy way to implement new collective algorithms.
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1 Introduction

In recent years, clusters of workstations using commodity networks as interconnect
have become a preferred platform for high performance computing (HPC). In com-
bination with the open source operating system Linux and the Message Passing In-
terface (MPI) standard clusters of workstations have emerged as a powerful solution
for solving scientific and business problems. Not only the lower costs but also the
familiarity to a wide range of computer scientists and technicians, robustness, the
accessibility of hard- and software designs and open standards make clusters based
on commodity hardware the preferred choice for many scientific and business com-
puting solutions. This trend is reflected by the number of cluster systems in the
Top 5001 computing list (see Figure 1.1). Beginning with a small number in 1998,
cluster systems now dominate the list of the 500 fastest public known supercom-
puters of the world. The downside is that one workstation can only host a limited

Figure 1.1: Top500 System Architectures over Time (image taken from www.top500.
org)

number of CPUs and memory. This is compensated by connecting hundreds or even
thousands of them through an interconnect. Since most HPC applications need to

1http://top500.org/
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1 Introduction

communicate between their processes to synchronize and share data, the network is
a critical component in terms of application speed, scalability and cluster efficiency.
Thus, the interconnect should provide a high bandwidth and low latency to match
the interprocess communication needs of the applications. In the beginning clusters

Figure 1.2: Top500 System Interconnect Family over Time (image taken from www.
top500.org)

were most likely connected through a standard 100Mbit Ethernet network which was
eventually replaced by 1Gbit and will certainly be replaced by 10Gbit in the near
future. Being the most used and therefore cheapest network technology, Ethernet
was the first choice for cost efficient clusters. In recent years InfiniBandTM gained
a raising market share (as of November 2008 28% of the Top500 supercomputer use
InfiniBandTM cp. Figure 1.2) by providing a much higher performance in terms of
latency and bandwidth in comparison to Ethernet while simultaneously usually be-
ing cheaper than any other high performance interconnect technology like Myrinet
or Quadrics.

Today, interprocess communication of an application is most likely handled by an
MPI library which provides an Application Programming Interface (API) to hide
the complexity of communicating over a network and to make the application itself
more hardware independent and therefore portable. One of those functions is the
all-reduce operation. It is used to calculate a result from input values of a number of
processes so that after the operation has finished all processes know the result. For
example all processes of an application could search for the minimum of a function for
different input values. After each process computed the result for its input values the

2
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1 Introduction

minimum is determined by suppling these results to the all-reduce operation which
returns the minimum of all results. A five year survey of a productive supercomputer
system at the University of Stuttgart revealed that over 40% of the execution time of
MPI routines was spent in the functions MPI Allreduce and MPI Reduce [7]. Thus,
the MPI Allreduce() function can have a heavy impact on the performance of an
application and should therefore be as fast as possible under the given environment.
The goal of this thesis is to find an optimal all-reduce algorithm for the QLogic
InfiniPath QLE7140 InfiniBandTM host channel adapter .

1.1 Organization of this Document

The first part of this thesis gives an introduction and theoretical background to the
MPI standard, the all-reduce operation, InfiniBandTM and performance models. In
the second part, the QLogic InfiniPath QLE7140 InfiniBandTM adapter and its prop-
erties are evaluated through a series of microbenchmarks. Based on these benchmarks
and the theoretical background from Chapter 1, several all-reduce algorithms are then
presented end evaluated in Chapter 3. In Chapter 4 a new all-reduce algorithm is
proposed and in Chapter 5 the results of this work are summarized.

1.2 The MPI Standard

MPI stands for Message Passing Interface. It specifies a portable standard for the
communication between distinct processes by messages. In 1994 the MPI-Forum re-
leased the first version: MPI-1.0 [8], defining the syntax and semantics of all elemental
message passing functions like point-to-point (P2P) communication or collective op-
erations. Besides clarifying and correcting errors in MPI-1 resulting in MPI-1.3 in
2008 the MPI Forum released MPI-2.0 [9] in 1997. MPI-2.0 extended the standard
by defining process creation and management, one-sided communications, extended
collective communications, external interfaces and parallel I/O. MPI-2.1 was released
in September 2008 containing clarifications and corrections to MPI-2.0. At the mo-
ment, the MPI-Forum is discussing additions2 to the MPI-2.2 standards which will
eventually lead to the new MPI-3.0 standard.

1.2.1 Point-To-Point Communication

The basic P2P communication operations are send and receive. The processes are
identified by a unique ID called rank and different messages are distinguished by
a tag. The MPI standard defines blocking and non-blocking P2P operations. The
blocking MPI Send and MPI Recv functions return, when the data transfer finished

2Up to date information can be found on http://meetings.mpi-forum.org/.
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1 Introduction

successfully. Thus, the application calling either of these functions has to wait while
the data is transferred over the network. This may take a considerable amount of time
which could have been used for computation by the application. For this reason the
MPI standard also defines the non-blocking MPI Isend and MPI Irecv operations.
These functions return immediately after initiating the send or receive operation.
This allows the application to compute while waiting for the transfer operation to
finish. Before the send buffer may be used again and the receive buffer is read
the application must ensure that the operations are finished. This is accomplished
by querying the MPI library for the status of the operation with special calls like
MPI Wait.

1.2.2 Collective Operations

Message passing operations in which all processes of a group participate are called col-
lective operations. They must be called by all processes of one group with matching
arguments. The group of processes is defined by a unique data type called communi-
cator which also provides a context for the operation. Generally, collective operations
can be in one of the following classes:

All-To-All All processes contribute to and receive the result of the operation. Exam-
ples: MPI Alltoall, MPI Allgather, MPI Allreduce

All-To-One All processes contribute to the result of the operation but only one re-
ceives it. Examples: MPI Gather, MPI Reduce

One-To-All One process sends data to all other processes. Examples: MPI Bcast,
MPI Scatter

Others Operations that do not fit into one of the above. Example: MPI Barrier

At the moment, the MPI standard specifies only blocking collection operations. In
recent years Höfler et al. proposed non-blocking collective operations to rise applica-
tion level performance [10].

The MPI Allreduce() Function

The MPI Allreduce() function is one of the most used collective operation in scien-
tific computing [11, 7]. A common task in parallel programming is the accumulation
of values across all members of a defined group of processes. Therefore, every par-
ticipating process provides data which is combined by an accumulation operation.
The result is either returned to one or all processes. The MPI standard defines three
reduction operations: MPI Reduce(), MPI Allreduce() and MPI Reduce scatter().
The MPI Reduce() call returns the result to the buffer of a specified root process.

4



1 Introduction

MPI Reduce scatter() combines the values and scatters the result over the partici-
pating processes. The MPI Allreduce() operation is specified as follows:

MPI ALLREDUCE( sendbuf, recvbuf, count, datatype, op, comm)

sendbuf IN starting address of send buffer (choice)
recvbuf OUT starting address of receive buffer (choice)
count IN number of elements in send buffer (non-negative integer)
datatype IN data type of elements of send buffer (handle)
op IN operation (handle)
comm IN communicator (handle)

int MPI Allreduce(void* sendbuf, void* recvbuf, int count,
MPI Datatype datatype, MPI Op op, MPI Comm comm)

It accumulates the elements of the data in sendbuf of each process in the communica-
tor comm by applying the operation in op and returns the result in the recvbuf of each
process. The parameters comm, op, datatype and count must be identical for each
participating process. The sendbuf can be equal to the constant MPI IN PLACE.
If this is the case the original data of each process is taken from recvbuf instead of
sendbuf to minimize the amount of memory. Figure 1.3 shows the content of the send
(IN) and receive (OUT) buffers before and after the MPI Allreduce() call for three
processes (P0 to P2). The accumulation operation op can be either user defined or
one of a predefined list of commutative and associative operations:

MPI MAX - maximum
MPI MIN - minimum
MPI SUM - sum
MPI PROD - product
MPI LAND - logical and
MPI BAND - bit-wise and
MPI LOR - logical or
MPI BOR - bit-wise or
MPI LXOR - logical xor
MPI BXOR - bit-wise xor
MPI MAXLOC - maximum value and location
MPI MINLOC - minimum value and location

5



1 Introduction

Figure 1.3: MPI Allreduce() Data Distribution

1.2.3 Existing MPI Implementations

Besides MVAPICH23 the most commonly used open source MPI-2 implementation
with support for InfiniBandTM is Open MPI4. MVAPICH2 is based on MPICH25

and developed mostly at the Ohio State University. Open MPI was intruduced in
2004 [12] as an all new MPI-2 implementation by a consortium of academic, research,
and industry partners. It is influenced by code bases of LAM/MPI [13], LA-MPI [14]
and FT-MPI [15]. The component-based design of Open MPI provides an easy way
for developers and researchers to extend and modify the library. Thus, in this thesis,
Open MPI is used to evaluate, develop and test collective MPI algorithms.

1.3 Open MPI

In 2003 developers of LAM/MPI, LA-MPI and FT-MPI decided to create a new
flexible open source MPI-2 implementation from scratch to combine different strong
points of the existing implementations and new concepts in one project. One of the
main goals is to prevent ”the forking problem” by allowing uncomplicated community
and 3rd party involvement in the development process and providing a production
quality research platform. Other goals are high user-friendliness, portable efficiency
through a component architecture and the ability to safely act on environment varia-
tions like hardware defects or resource changes [12]. This section provides an overview
of the MPI implementation Open MPI.

1.3.1 Architecture

Open MPI is split into three main parts, the Open MPI layer (OMPI), the Open Run-
Time Environment (ORTE) and Open Portability Access Layer (OPAL). OMPI in-
cludes all MPI semantics like data types, functions and communicators and is heavily
optimized to provide high performance message passing. ORTE acts as an interface
to the back-end run-time system and provides services to OMPI as the identification

3http://mvapich.cse.ohio-state.edu/
4http://www.open-mpi.org/
5http://www-unix.mcs.anl.gov/mpi/mpich1/index.htm
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and allocation of resources, process to node mappings, launch of processes, data con-
version, error management, simple message passing and user notification. A more
detailed description of the ORTE architecture and functions is provided in [16, 17].
OPAL provides portable helper functions like memory management, IO operations,
processor and memory affinity, high resolution timers and different C macros and
utility classes. For more details see [17]. Both OMPI and ORTE use one of the key
features of Open MPI to be able to utilize different hardware: the Modular Compo-
nent Architecture (MCA).

Modular Component Architecture

Open MPI uses a component architecture to allow the user to change the behavior
and extend the MPI library at run time. This architecture also allows Open MPI
to choose the fastest communication interface available at a given host without the
need of recompiling or relinking. The MCA manages several independent subsystems
called MCA frameworks for each major functionality of Open MPI.

Figure 1.4: Open MPI Modular Component Architecture

Each framework has a targeted set of functionality such as P2P data transfer,
collective operations or resource management for which it provides a well defined
API. The implementation of a framework is called a component. Each framework
can host several components to access different hardware or run different algorithms
(see Figure 1.4). The framework is responsible for selecting, loading, using and
unloading the components. Components are selected at run time based on parameters
supplied by the user or automatically determined attributes like the fastest available
interconnect or the number of processes in a communicator. Each selected component
returns a module with pointers to framework specific functions and module specific
data.

7
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1.3.2 Point-To-Point Communication Design

The P2P communication in Open MPI is implemented in layers [18] utilizing the
component architecture as shown in Figure 1.5. In 2005 Barret et al. showed that
this approach introduces only a very small measurable overhead [19]. The topmost
Point-to-point Messaging Layer (PML) provides all MPI P2P semantics like syn-
chronous and asynchronous message passing needed by higher level MPI functions
and applications. This message passing includes message buffering, matching and
scheduling of transfers. Depending on the available hardware the PML uses either
the OB1 or CM6 component.

Figure 1.5: Open MPI Layered Point-To-Point Communication Architecture

OB1 Component

The OB1 component implements message matching and scheduling within the MPI
layer and uses the Byte Transfer Layer (BTL) framework for message transfers. The
Byte Management Layer (BML) is primarily used in initialization and BTL com-
ponent selection and later bypassed for higher performances. The BTL framework
includes components for several interconnects like InfiniBandTM (OpenIB7), Myrinet
(GM), Ethernet (TCP) and shared memory (SM).

CM Component

The CM component is designed for interconnect APIs which are capable of supporting
MPI communication protocols. CM only handles memory management for requests
and buffer management for buffered sends. Anything else needed for MPI’s P2P se-
mantics is implemented in the components of the Matched Transport Layer (MTL)

6PML names do not have any official meaning
7using the OFED API see Section 1.4.5
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framework which acts as interface between the CM component and the actual hard-
ware. At the moment, the MTL framework supports Myricom MX, Cray Portals and
Qlogics PSM library. In order to provide a high message passing performance, the
MPI message matching logic and the transfer is left to the hardware libraries. This
allows for completely asynchronous transfers without the need for progress threads
in the MPI layer which control the data transfer.

1.3.3 Collective Operations Framework

The framework responsible for all collective operations in Open MPI is called COLL.
This framework allows the implementation of new collective algorithms in components
with little knowledge of the Open MPI internals. Collective routines can use MPI P2P
functions, other collective components and direct hardware access. The component is
selected on communicator creation and returns a module containing function pointers.
These functions are called by top-level MPI collective functions like MPI Allreduce()
after validating the parameters given to the function. The communicator is always
bound to the selected and the BASIC component if the selected component does not
implement all collective operations.

At the creation of a new communicator (e.g. at start-up MPI COMM WORLD
or by calling MPI Comm create) each components query function is called. This
function must return a priority value (from 0 to 100) based on the properties of
the processes in the communicator (e.g. the interconnection type). The component
may allow the user to override the priority through a command line parameter or a
special configuration file. The COLL component with the highest priority is then se-
lected by the framework and its initialization method is called. This method prepares
the components module for its operation (e.g. allocate memory, setting up network
connections or benchmark and pre-compute communication patterns). When the
initialization is finished, the module including pointers to the implemented functions
and data types is returned. These functions are called whenever a collective oper-
ation is executed on the communicator. On destruction of the communicator (e.g.
by calling MPI Comm free) the finalization method of the module is called. This
function frees all occupied resources of the module.

1.3.4 Properties and Behavior

For interconnects which are not capable of supporting MPI communication protocols,
Open MPI handles the message transfer through the BTL framework. Even though
the components for different interconnects use different methods for the message
transfer some communication patterns are the same. One of this pattern is the
distinction in eager and rendezvous protocol.

9
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Eager and Rendezvous Protocol

In order to transfer small messages as fast as possible, Open MPI uses the ea-
ger protocol. This protocol allows for the sending of messages to the peer with-
out informing it in advance. All processes have a buffer for this kind of messages
where incoming data is stored temporarily and later copied to its destination de-
fined by its associated tag. For big messages, these buffers may be too small,
or operating system and/or network limitations may not allow this kind of trans-
fer. In this case, Open MPI switches to the rendezvous protocol at a certain mes-
sage size. In this protocol, the sender needs to request and wait for an acknowl-
edgment from the receiver before transferring any data. This allows the receiver
to allocate appropriate resources prior to receiving any message. For the OpenIB
component, the rendezvous protocol is used for messages bigger than 12288 bytes.
This size can be changed by the user through the MCA command line parameter
btl openib eager limit. A detailed description and evaluation of both protocols can
be found in [20].

RDMA Transfers

The OpenIB component uses RDMA to transfer small messages eagerly. How-
ever, RDMA connections are valuable resources and thus Open MPI only estab-
lishes a RDMA connection to peers which have sent more than 16 short mes-
sages. This number can also be changed by the user through the parameter
btl openib eager rdma threshold.

Both parameters must be considered when benchmarking the performance of different
HCAs since they may significantly influence the measurements.

1.4 Infiniband

The InfiniBandTM Architecture (IBA) was originally designed by the Infiniband
Trade Association8 to provide a high speed I/O interface for directly connecting
CPUs and thus eliminating buses like PCI and networks like Ethernet. The aim of
this industry standard is to provide low-latency and high bandwidth communication
by using RDMA and user level communication which avoids the costs for entering
kernel functions. The specification was first released in September 2000 as version
1.0. Over the time errors were corrected and new features were included resulting in
the last official release of version 1.2.1 in January 2008 [1]. The specification is freely
available on the Infiniband Trade Association homepage.

8http://www.infinibandta.org/
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Today, InfiniBandTM is mostly used as interconnect network in high performance
computing and storage area networks.

1.4.1 Topology and Components

The IBA defines a network for interconnecting endpoints being either complex pro-
cessing nodes called Host Channel Adapters (HCA) or I/O nodes called Target Chan-
nel Adapters (TCA). The CAs are connected through a switched fabric consisting of
switches and routers as shown in Figure 1.6. The routers connect different subnets
which are managed by a subnet manager. CAs can belong to one or more subnets.
Switches and CAs can be connected to one or more switches. Thus, if one connec-
tion fails or is saturated the subnet manager can assign new routes in the subnet for
point-to-point connections.

In this thesis the term HCA is used for the InfiniBandTM connection device in a
standard computer.

Figure 1.6: InfiniBandTM Fabric Subnet (taken from [1])

1.4.2 Addressing of Endpoints

An endpoint in the InfiniBandTM fabric can have several CAs which may have more
than one physical port. Thus, on the startup of the CA each port gets a Local ID
(LID) assigned by the subnet manager, which is unique in the local subnet and used
by the switches to dispatch packets. Besides the Local ID each port also has a Global
ID (GID) which can be used in the optional Global Route Header to address CAs in
other subnets. This GID is only processed by routers.

11
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1.4.3 Point-to-Point Communication

The InfiniBandTM communication stack consists of five layers as can be seen in Figure
1.7. In the fifth layer the management protocols and any number of other upper level
protocols are placed. A queue based model is used in the interface between upper
level protocols and the transport layer.

Figure 1.7: InfiniBandTM Architecture Layers (taken from [1])

Queues

The foundation of communication over InfiniBandTM for consumers (e.g. an appli-
cation) are the work queues (see Figure 1.8). A consumer can post so called Work
Requests (WR) to that queues, which will be executed by the hardware. The queue
for receive operations and the one for send operations are always created together
and thus are referred to as Queue Pair (QP). Submitting a WR to one of the queues
creates a Work Queue Element (WQE) in that queue. After the Channel Adapter
processed the WQR a Completion Queue Element (CQE) is posted to the Completion
Queue (CQ). Consumers can create several independent QPs which can be associated
to one or more created CQs. In order to identify Queue Pairs, each Queue Pair has
a Queue Pair Number (QPN). As the example in Figure 1.9 shows, more than one
consumer per node and HCA is allowed and one consumer can use multiple distinct
QPs.

12
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Figure 1.8: InfiniBandTM Queue Pairs and Completion Queue (taken from [1])

Figure 1.9: InfiniBandTM CA with Two Applications and Three QPs (taken from [1])

13
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Operations

The receive queue supports only the RECEIVE operation which requires a local
address as parameter. This address specifies the location of the receive buffer in the
local memory were the incoming data from remote SEND operations is stored. After
the data is successfully stored in the receive buffer a CQE is posted to the CQ.

The send queue supports three classes of operations: SEND, Remote Direct Mem-
ory Access (RDMA) and Memory Binding. The WR for a SEND operation must
include a memory address where the data to be sent is stored. The data is then
sent to the receiver which places it accordingly to its queued RECEIVE WQE. For
RDMA operations the sender must have received a remote memory address and the
associated R-key from the receiver. The R-key acts as security token and is issued by
the remote CA. When the remote CA receives an RDMA request with an address the
associated R-key is verified before issuing the operation. Thus, an RDMA operation
does not need a pre-posted receive work request on the receiver side. InfiniBandTM

supports three types of RDMA operations:

RDMA-WRITE with a local address, remote address and R-key as parameters writes
the data of the local buffer to the remote address.

RMDA-READ with a local address, remote address and R-key as parameters reads
data from the remote memory address and stores it in the local buffer

ATOMIC reads and updates the data at the remote address atomically and stores
the read data in a local buffer

The Memory Binding operation registers a specified range of memory for RDMA
access and returns the corresponding R-key. The R-key can then be transferred to
remote nodes to allow them to access this memory region.

Types of Service

Each Queue Pair can be configured for a certain type of service which defines how the
local and remote QPs interact. Both QPs must be configured for the same type of
service. Table 1.1 gives an overview. The type of service is based on three attributes.

Connection Oriented QPs are connected with exactly one other QP. WRs posted
to that QP are being send to the established destination QP. QPs that are not
Connection Oriented are datagram QPs which can send and receive to/from any
other datagram QP on any node.

QPs in the Acknowledged type of service return responses when they receive messages
and therefore the data delivery is reliable. The response messages can be positive
(ACK), negative (NAK) or contain response data. The Unacknowledged type
does only guarantee that the delivered data is not corrupted.
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Service Type Connection Oriented Acknowledged Transport Type

Reliable Connection (RC) yes yes IBA

Unreliable Connection (UC) yes no IBA

Reliable Datagram (RD) no yes IBA

Unreliable Datagram (UD) no no IBA

RAW Datagram (RAW) no no RAW

Table 1.1: InfiniBandTM Types of Service

The RAW transport mode allows the consumer to use the Channel Adapter as a
data link engine for raw packets between nodes to support legacy protocols and
networks.

1.4.4 Hardware Multicast

The IBA also describes an unreliable hardware multicast in both IBA and RAW
transport mode. This feature however is optional and thus may not be supported
by all InfiniBandTM HCAs, switches and routers. Since the hardware multicast can
be initiated by only one send operation, the overhead at the sender is very low in
comparison to the overhead created by separately sending the same data to hundreds
of nodes. Another benefit of using multicast is the reduction of bandwidth usage and
contention. The multicast packets are duplicated by switches only when necessary,
which eliminates multiple identical packets traveling through the same physical link.
However, the unreliability is a big drawback and forces the consumer to verify the
receipt of the data at the receiver if reliability is necessary.

1.4.5 Verbs

The IBA defines a set of semantics called Verbs for the consumer to interact with
the host channel adapter. The Verbs are not an API but an abstract definition of
the IBA functionality which allows operating system vendors to design their own
API for user programs. This lead to the implementation of different verbs APIs by
several HCA developers (e.g. the Mellanox verbs API) which reduced the portability
of user programs greatly. Thus, the OpenIB Alliance was founded in June 2004
by several hardware developers to develop a complete standardized InfiniBandTM

software stack including a common verbs API. In 2006 the name was changed to
OpenFabrics Alliance9 and the aim was shifted to develop a unified, cross-platform,
transport-independent open source software stack for RDMA based interconnects
called the OpenFabrics Enterprise Distribution (OFED). The following list shows all

9http://www.openfabrics.org/
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(simplified) function needed in the appropriate order to establish a connection and
send a message over InfiniBandTM with the OFED v1.3 API:

1. ib dev=ibv get device list() - get a list of HCAs
2. context=ibv open device(ib dev) - create context for first HCA
3. prot domain = ibv alloc pd(context) - create/pin down protection domain

for buffer memory
4. compl q = ibv create cq(context) - create the CQ
5. ibv reg mr(prot domain,address,buffer size) - register memory buffers for

data to be send or received
6. q pair = ibv create qp(prot domain,compl q) - create a QP and initialize

to state Reset (RST)
7. ibv modify qp(q pair,RST->INIT) - modifies QP state from RST to Init
8. ibv modify qp(q pair,rLID,rQPN,INIT->RTR) - modifies QP state from

Init to Ready to Receive (RTR) from remote LID and QPN
9. ibv modify qp(q pair,RTR->RTS) - modifies QP state from RTR to Ready

to Send (RTS)
10. ibv post recv(q pair,wr) - post receive request with WR containing address

of receive buffer
11. ibv post send(q pair,wr) - post send request with WR containing address of

send buffer
12. ibv poll cq(compl q) - polls CQ for events
13. ibv dereg mr(address) - deregister buffers
14. ibv destroy qp(q pair) - destroy QP
15. ibv destroy cq(compl q) - destroy CQ
16. ibv dealloc pd(prot domain) - destory PD
17. ibv close device(ib dev) - close HCA

In order to ease the programming of RDMA capable devices, the OpenFabrics Al-
liance introduced the RDMA Connection Manager API (RDMA-CM). Similar to the
programming of Ethernet interfaces, RDMA-CM supports sockets with servers and
clients but uses QPs for the message transfer. To be able to use the RDMA-CM func-
tions, the ipoib (allows to run traditional internet protocol over InfiniBandTM ) and
rdma cm module must be loaded into the Linux kernel. RDMA-CM simplifies the
usage of multicast over the InfiniBandTM fabric as well (for a native InfiniBandTM

implementation see [21]). The following list shows all needed functions to join a mul-
ticast group and send and receive multicast messages. Functions which are called
by the server only are highlighted in red and those called only by the clients are
highlighted in green.
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1. rdma channel=rdma create event channel() - create a new rdma channel
2. rdma create id(rdma channel,rdma id,RDMA PS UDP - create

rdma id for UDP transfers and associate it with rdma channel
3. rdma bind addr(rdma id,src addr) - bind rdma id to local RDMA de-

vice(s) specified by src addr
4. rdma resolve addr(rdma id,src addr,mcast addr) - map local RDMA de-

vice(s) to mcast addr (”0.0.0.0” at the moment)
5. rdma get cm event(rdma channel, rcm event) - receive resolve event
6. rdma ack cm event(rcm event) - acknowledge resolve event
7. rdma join multicast(rdma id,mcast addr) - join multicast group with

mcast addr being ”0.0.0.0” to get a free multicast group IP10

8. rdma get cm event(rdma channel, rcm event) - receive multicast join
event

9. MPI Bcast(rdma mcast ip) - Broadcast multicast group IP received from
the event to all clients

10. rdma join multicast(rdma id,rdma mcast ip) - join multicast group
11. prot domain = ibv alloc pd(rdma id->verbs) - create/pin down protec-

tion domain for buffer memory
12. cq = ibv create cq(rdma id->verbs) - create the CQ
13. rdma create qp(rdma id,prot domain) - create a QP initialized to state

Ready to Send (RTS)
14. ibv reg mr(prot domain,address,buffer size) - register memory buffers for

data to be send or received
15. ibv create ah(qp ctx->pd, rcm event->param.ud.ah attr) - create Ad-

dress Handel (AH) for send operations
16. rdma ack cm event(rcm event) - acknowledge multicast group join event
17. ibv post recv(rdma id->qp,wr) - post receive request with WR containing

address of receive buffer
18. ibv post send(rdma id->qp,wr) - post send request with WR containing

address of send buffer
19. ibv poll cq(rdma id->qp) - polls CQ for events
20. rdma leave multicast(rdma id,rdma mcast ip) - leave the multicast group
21. ibv destroy ah(ah) - deregister AH
22. rdma destroy qp((rdma id) - destroy QP
23. rdma destroy qp((rdma cq) - destroy CQ
24. ibv dereg mr(address) - deregister buffers
25. ibv dealloc pd(prot domain) - destory PD

10http://lists.openfabrics.org/pipermail/general/2007-January/032303.html
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1.4.6 Host Channel Adapter

The aim of this thesis is to optimize the all-reduce operation for the QLogic InfiniPath
QLE7140 HCA. The main difference of this HCA to others is the onload architecture
which in contrast to the offload architecture proposed in the IBA does not have an
ASIC (Application Specific Integrated Circuit) which is responsible for processing
work requests. The QLogic InfiniPath QLE7140 HCA uses the host CPU for these
tasks and only provides data integrity checks. While this approach introduces more
overhead in the CPU, the work requests and their data can be processed more quickly
by modern CPUs and thus should lead to a smaller latency. In order to compare the
performance of the onload architecture with an offload architecture the Mellanox
InfiniHost III Lx HCA is taken as reference in the evaluations. Both HCAs shall be
introduced in this section.

QLogic InfiniPath QLE7140 HCA

Figure 1.10: QLogic InfiniPath QLE7140 HCA (taken from [2])

The QLogic InfiniPath QLE7140 (see Figure 1.10) is a single data rate (SDR)
InfiniBandTM to PCI Express x8 Host Channel Adapter [2]. It is able to transfer
up to 10Gbit/s over its port, includes a Serializer/Deserializer (SERDES) and has a
configurable MTU with a maximal size of 4096 bytes. It is compatible to standard
IBA 1.2 compliant fabrics and cables and is able to communicate with HCAs from
different hardware suppliers like Mellanox, Cisco, SilverStorm and Voltaire through
the OFED software stack. This HCA does not support the sending of inline messages.

The used onload architecture forces the host CPU to prepare all packages with
appropriate headers before placing them in the memory for the HCA to process and
send over the fabric. The host CPU is also responsible for error handling. This
introduces more overhead to the host CPU which reduces the time for overlapping
communication and computation. On the other hand this leads to a reduced latency
because of the faster processing capabilities of modern CPUs. The HCA only provides
data integrity checks.
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There was another version of this HCA (QHT7140) which used the HTX interface
to communicate with the host processor and host memory over the HyperTransport
link. This version is no longer available from QLogic.

Mellanox InfiniHost III Lx HCA

Figure 1.11: Mellanox InfiniHost III Lx HCA (taken from [3])

The Mellanox InfiniHost III Lx MHES18-X HCA [3] (see Figure 1.11) is also a SDR
InfiniBandTM to PCI Express x8 Host Channel Adapter supporting up to 10Gbit/s.
It includes a SERDES, has a configurable MTU with a maximal size of 2048 bytes is
compatible to IBA version 1.2 and supports the inline sending of 28 bytes. This HCA
uses the mem-free feature of the Mellanox ASIC. This technology allows hardware
developers to use host memory to save connection context information instead of
memory directly on the HCA. This allows for a cheaper HCA but can also lead to a
slower performance if the context is not in the HCAs cache [22].

The HCA’s ASIC supports up to 16 million QPs and CQs and handles the creation
of InfiniBandTM packages, RDMA access and memory protection along with address
translation. This frees the host CPU from the communication overhead.

Comparison of both HCAs

Gilad Shainer of Mellanox compared both HCAs under different conditions in [23]
and [24] He found that the Mellanox InfiniHost III Lx HCAs outperform the QLogic
InfiniPath QLE7140 HCAs. However, he did not state if he used the OFED or the
PSM (see Section 1.4.7) API for the QLogic InfiniPath QLE7140 HCAs which greatly
influences their performance as Section 2.2.1 and 2.2.2 will show. In [25] and [26]
Greg Lindahl of QLogic compared both HCAs. He found that the QLogic InfiniPath
QLE7140 HCAs outperform the Mellanox InfiniHost III Lx HCAs under the given
conditions. However, the compared clusters were equipped not only with different
HCAs but also with different CPUs and other hardware. In [27] QLogic compares
the application level performance of the SDR QLogic InfiniPath QLE7140 HCAs to
different Mellanox DDR HCAs on similar hardware. In Chapter 2 the results of
several microbenchmarks of both HCAs on identical hardware will be compared.
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1.4.7 PSM InfiniPath Messaging API

Besides the OFED 1.3 API a consumer can use another API to communicate be-
tween hosts equipped with a QLogic InfiniPath QLE7140 HCA: the proprietary PSM
InfiniPath Messaging API developed by QLogic. This low-level user-level interface is
only available for the InfiniPath family of QLogic HCAs. It implements an intra-node
shared memory (SM) and inter-node communication protocol, which are completely
transparent to the consumer. Thus, the consumer does not need to know if another
process runs locally or on a remote machine to send a message over the PSM in-
terface. Current implementations of the PSM interface (version 2.2.1) support only
single threaded applications.

After initializing endpoints the Matched Queue (MQ) interface can be used to send
and receive messages. The MQ interface semantics are consistent with those defined
by the MPI 1.2 standard for messages passing between two processes. Thus, incoming
messages are stored according to their tags to preposted receive buffers. While the
”PSM Programmer’s Manual” [28] is only available from QLogic under an NDA, the
development package can be downloaded from the QLogic homepage11. This package
includes an example and header files, which are well documented.

The following list shows all (simplified) functions needed in the appropriate order
to create all endpoints and send a message to another endpoint using the PSM API
and its Matched Queues interface:

1. psm init - initialize the PSM library
2. psm uuid generate(uuid) - generate unique global job ID
3. OOB12 broadcast of the UUID to every process
4. psm ep open(uuid, ep, myepid) - open local endpoint returns ep and myepid
5. psm mq init(ep,mq) - initialize local MQ interface
6. OOB exchange of epids into rm eps
7. psm ep connect(ep,rm eps,epaddrs) - connects the local endpoint to end-

points in rm eps and returns epaddrs
8. psm mq irecv(mq,TAG,in,size,reqr) - posts non-blocking receive request for

message with TAG
9. psm mq send(mq,epaddrs[i],TAG,out,size,reqs) - send content of out

buffer with TAG to epaddrs[i]
10. psm mq wait(reqr) - wait for receive to finish
11. psm mq finalize(mq) - close MQ
12. psm ep close(ep) - close EP
13. psm finalize - close PSM

11http://www.qlogic.com/
12Out Of Band
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1.5 Performance Models

In order to analyze, optimize and predict the run-time of collective algorithms, dif-
ferent parallel communication and computation models have been proposed. Good
models use the smallest possible number of parameters but also model the com-
plexity of the analyzed system as exact as possible. The performance of collective
algorithms depends on several parameters like message size, number of processes,
network topology and characteristics, application communication patterns, proces-
sor speed, operating system noise[29] and many more. Since collective operations
can include computation, both communication and computation aspects have to be
considered.

In this section different well known models which can predict the behavior of col-
lective algorithms are introduced.

1.5.1 Hockney Model

The Hockney model [30] was proposed by R. Hockney in 1994 and is used in a slightly
extended manner by Rabenseifner et al. [5, 4, 31] to estimate the cost of different
collective algorithms. The model defines the time needed to transfer a message be-
tween two processes as α+ βm, where α is the latency per message regardless of the
size, β the transfer time per byte and m the number of bytes. For collectives which
also do computation like the reduce operation γ represents the computation cost per
byte to complete the operation locally on any process. Thus, the time needed to
transfer a message is α + nβ. A linear reduce in which all processes send data to
the root process simultaneously and the root node processes the data needs a time
of α+ (P − 1)nβ + Pnγ.

1.5.2 LogP

The LogP model [32] was proposed by Culler et al. in 1993. It is designed for small
point-to-point messages in a central switch based network of distributed memory
processors and the fact that CPU speed - in terms of bandwidth and latency - is
much faster than network speed. Network contention is not considered.

The LogP model abstracts the network through four parameters:

• L - the latency

• o - the communication overhead

• g - the gap between two successive messages

• P - the number of involved processes
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The latency is hereby defined as the upper bound of the time needed to send a message
from one NIC to another. The communication overhead is differentiated in the send
overhead os and receive overhead or being the time the host CPU is occupied by
sending or receiving a message. This is relevant for InfiniBandTM because of different
send and receive overheads as is shown in Section 2.6 . Thus, the time needed to
send a small message from one node to another according to LogP is os + L + or.
The gap indirectly defines the communication bandwidth which is at most bL/gc. As
the gap and send overhead overlap when multiple successive messages are being send
only the maximum of both affects the transfer time. The time for a linear reduce in
this model is os + L+ (P − 1) max{or, g}.

The model was tested and verified by different studies [33, 34, 35]. Since it can only
model small messages, LogP cannot be used for modelling all aspects of all-reduce
algorithms.

1.5.3 P-LogP

The parameterized LogP [36] (P-LogP) model is an extension of LogP to model
messages of different sizes. It was proposed by Kielman et al. in 2000. In this
model the send and receiver overhead os,or and the gap g are parameterized by
the message size m. So two successive message of size m need a time of os(m) +
max{os(m), g(m)}+L+ or(m) to be sent from one node to another. The time for a
linear reduce in this model is os(m) + L+ (P − 1) max{or(m), g(m)}.

The goal of Kielman et al. was to create a model which eases the measurement of
parameters (see Section 1.5.4 for further details) but in the process complicated the
usability and reduced the accuracy of the parameters.

1.5.4 LogGP

As an addition to the LogP Model Alexandrov et al. proposed the LogGP model
in 1995 [37]. LogGP addresses the incorrect modeling of big messages in LogP by
introducing the new parameter G. G is defined as time per byte for long messages.
Thus, the time needed to send a message of m bytes from one node to another is
L+ os + or + (m− 1)G. For successive messages from one node only the maximum
of the send overhead os and the g overlap need to be considered, since both times
overlap. As modern interconnects like InfiniBandTM reach a higher bandwidth for
big messages than for small ones (see bandwidth benchmarks in Section 2.2.1) this
model is more accurate than LogP for big messages. The time for a linear reduce in
this model is os + L+ (P − 1)(max{or, g}+ (m− 1)G).
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LogGP Measurement

While the development and evaluation of collective algorithms can be based on the
pure model, the decision which algorithm to use for which network at which mes-
sage size can only be done with the knowledge of the real parameter values of the
model. Over the time different measurement methods for LogGP parameters have
been proposed. The recent ones will be described in this section.

In 2000 Kielmann et al.[38] proposed a measurement for the P-LogP model which
includes redefined LogP parameters. The gap g(0) is determined from the transmis-
sion frequency of a large number of zero byte messages. The send overhead os can
be measured directly by taking the time for the send operation to finish. This send
is used to measure the round trip time by waiting until the second process answered.
In order to determine the receive overhead or the first process sends a message to
the second process, waits longer than the round trip time and then measures the
time between the call and the return of the receive operation. Thus, or reflects the
time needed to copy the message from a temporary buffer to the receive buffer. The
gap g for a message size of 1 byte and the latency L is finally calculated using the
determined parameters.

Bell et al. [39] proposed a benchmark for the LogGP model in 2003 redefining
the latency to an end-to-end latency (EEL).The EEL corresponds to RTT/2 for
small messages. They use a similar approach to measure g. Instead of posting sends
one after one the sending process tries to keep non-blocking sends posted until all
messages have been send. The average time for sending big messages is taken and cut
by g to determine the per-byte gap G. os is determined by adding a delay between
the start and the completion of a send request. This delay is increased until it effects
the communication time, thus revealing os.

In 2007 Höfler et al. [40] introduced a new method which avoids network flood-
ing and contention and measures all parameters instead of computing some of them.
This avoids the propagation of first level errors. The benchmark introduces a param-
eterized round trip time (PRTT). The PRTT depends on the number n of successive
send operations with one replay after the last message, the delay between each post
d and a message size m. The PRTT (1, 0,m) for sending a single message of size m
is:

PRTT (1, 0,m) = 2(L+ 2o+ (m− 1)G)

The general PRTT (n, d,m) is then:

PRTT (n, d,m) = PRTT (1, 0,m)+(n−1)∗max{o+d,Gall} with Gall = g+(m−1)G

The overhead can now be calculated by determining PRTT (1, 0,m) and
PRTT (n, d,m) for a d > Gall:

o =
PRTT (n, d,m)− PRTT (1, 0,m)

n− 1
− d
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In order to determine g and G PRTT (1, 0,m) and PRTT (n, d,m) are measured for a
large number of different values of m resulting in many values for Gall = g+(m−1)G.

Gall =
PRTT (n, d,m)− PRTT (1, 0,m)

n− 1

Fitting the function f(m) = g + (m − 1)G to the measured values for Gall finally
reveals g and G. While two values would have be enough for the fitting, with the
huge number of results anomalies like protocol switches can be detected.

1.5.5 LogfP

As several studies [41, 42] discovered, InfiniBandTM HCAs with offload architecture
behave differently from the predictions of LogP models. The reason for this be-
havior are the HCA processors which show pipelining effects and parallel sending
abilities [41]. Thus, Höfler et al. proposed a new model for small messages over
InfiniBandTM : LogfP [43]. Instead of using a static overhead parameter like the
LogP model, LogfP uses a function to describe the pipeline startup. For this func-
tion two parameters have to be measured. omin is determined by measuring the
overhead for a reasonable high number of processes and is divided through the num-
ber of processes. omax is determined by measuring the overhead for sending one
message to one other process. Then the function can be written as:

o(P ) = omin +
omax

P

The measured number of processes for which o is the smallest is represented by the
parameter f . It is assumed that f multiple messages can be sent in parallel before
g affects the transfer time. Thus, the time for sending a message to P nodes can be
modeled as:

∀(P ≤ f) : T (P ) = L+ P ∗ os(P ) + or(1)
∀(P > f) : T (P ) = L+ os(P ) + or(1) + max{(P − 1) ∗ os(P ), (P − f) ∗ g}

In the linear reduce operation each process sends one message to the root. Thus, this
reduce algorithm cannot take advantage of the pipeline startup.

T (P ) = L+ os(1) + max{(P − 1) ∗ or(P − 1), (P − 1)g}

1.5.6 Lop

The Lop model was proposed by Höfler and Rehm [35] as another model for small
messages over InfiniBandTM with the limitation that one node can only send one
message to another node. Although the number of messages is limited to one, the
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number of receiving nodes is not. This model is valid for example for broadcast
with small messages, barrier or round-based algorithms. The model introduced the
parameter h for the time the processor of the HCA needs to process a message. Since
this parameter cannot be measured by the host CPU, it is hidden together with g in
the L(P ) parameter which is now dependent on the number of participating nodes.
The model assumes that o� L(P ) ∀P ∈ N .

1.5.7 Conclusion

Several studies have shown that the different Log models are capable of predicting
the performance of collective algorithms well. The only model which can evaluate the
full spectrum of message sizes for all-reduce algorithms is LogGP. Thus, this model is
used to analyze the all-reduce algorithms. However, none of the presented models can
handle SMP nodes heterogeneous communication channels directly. For SMP nodes
with multiple processes on one node, modifications to these models will be necessary.
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This chapter will present the properties found by benchmarking the QLogic Infini-
Path QLE7140 HCAs. The used benchmark environments will be presented in the
beginning. After that each microbenchmark will be described shortly and its results
will be compared to Mellanox InfiniHost III Lx HCAs and in some cases also to
Voltaire HCA 410Ex HCAs.

2.1 Benchmark Environment

The performance of the QLogic InfiniPath QLE7140 HCAs was evaluated on two
different clusters which will be described shortly below. For a better understanding
of the differences of the on- and offload architecture the results are compared to
Mellanox InfiniHost III Lx HCAs. The different benchmark suites and the used MPI
implementation Open MPI were compiled with the GCC 4.1.2 using the supplied
configure and Make files.

2.1.1 Jack

Jack is a local hardware evaluation cluster for different HPC hardware. The bench-
marks were conducted on a subset of 8 nodes equipped with two dual core Intel
Xeon 5130 2GHz CPUs with 4MiB level-2 cache, 2 GiB RAM, one QLogic Infini-
Path QLE7140 HCA and one Mellanox InfiniHost III Lx HCA. A Voltaire ISR 9024
InfiniBandTM switch connects only the HCAs of these 8 nodes with each other. The
operating system is Scientific Linux 5.0 based on Red Hat Enterprise Linux 5 using the
2.6.18-8.1.3.el5 kernel with the official QLogic InfiniPath2.2.1-RHEL-x86 64 drivers.
These also supply OFED 1.2 which is used for the Open MPI OpenIB interface for
both HCA types. MPI Benchmarks were run on Open MPI 1.2.8.

2.1.2 Darwin

Darwin1 is a 585 node HPC cluster located at the University of Cambridge, which
entered production service in February 2007. The benchmarks were executed on up to
50 nodes, which are equipped with two 3 GHz dual core Intel Woodcrest processors,
8 GiB of RAM and connected by QLogic InfiniPath QLE7140 HCAs.

1http://www.hpc.cam.ac.uk/
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2.1.3 CHiC

In order to evaluate the performance of all-reduce algorithms locally in large scale the
”Chemnitzer High Performance Linux Cluster” (CHiC)2 at the Chemnitz University
of Technology was used. Each of the 530 processing nodes consists of 2 Dual AMD
Opteron 2218 CPUs, at least 4 GiB of RAM, a Voltaire HCA 410Ex (using the
Mellanox InfiniHost III Lx ASIC) and two Gigabit Broadcom Corporation NetXtreme
BCM5704 Ethernet NICs. OFED 1.2 is used as OpenIB interface for Open MPI.
Since each processing node is diskless the critical parts of the Linux operating system
(Scientifc Linux 4.4) resides in the main memory. Less critical parts, home and
project directories as well as applications are all imported over the parallel filesystem
Lustre3.

2.2 Uni-Directional Latency and Bandwidth Benchmarks

The Ohio State University (OSU) MPI Benchmark 3.1 was used to measure the
latency and bandwidth of the HCAs on the Jack cluster. Since it is a synthetic
benchmark, real world applications do not necessarily show a comparable behavior.
Prior to all measurements, all OSU benchmarks send some warm-up messages to
minimize the effects of connection initialization on the results.

2.2.1 Bandwidth

The bandwidth test is carried out by sending 64 messages of the same size with the
asynchronous non-blocking point-to-point function MPI Isend from the sender to the
receiver. After the receiver got all messages by using the asynchronous MPI Irecv
function, it sends a 4 byte message back to sender. The bandwidth is then calculated
based on the time the sender started to send the first message until it received the
reply form the receiver and the number of bytes sent by the sender. This process is
repeated several times to get an average value of the bandwidth. The time impact
of the 4 bytes reply is included which decreases the measured bandwidth compared
to the real bandwidth especially for small messages. On the other hand the usage of
MPI Isend utilizes the pipelining capabilities of InfiniBandTM HCAs which may not
be comparable to real world applications but for example optimized collective MPI
operations [41].

Figure 2.1 shows the bandwidth between two processes on distinct hosts. One
can clearly see, that using the OpenIB interface instead of the PSM interface for
the QLogic InfiniPath QLE7140 HCAs results in a massive decrease in bandwidth
usage. Compared to the Mellanox InfiniHost III Lx HCAs the InfiniPath HCAs

2http://www.tu-chemnitz.de/chic/
3http://www.lustre.org/
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bandwidth usage over PSM increases fast to its maximum of 956.33 MiB/s with
940MiB/s at a message size of 8KiB. The Mellanox InfiniHost III Lx HCAs bandwidth
reaches more than 900MiB/s at a message size of 1MiB with 913MiB/s. The highest
bandwidth of 968MiB/s is reached at a message size of 4MiB. For a better comparison
of the bandwidth characteristics of different interconnects the N/2 benchmark can be
applied. It defines the message size at which the examined interconnect reaches half
of its maximum bandwidth. For the PSM interface the QLogic InfiniPath QLE7140
HCAs reach N/2 at a message size of 659 bytes and 4775 bytes when using OpenIB.
The Mellanox InfiniHost III Lx HCAs pass N/2 at 4289 bytes.

The default message size at which the PSM libraries switch from the eager to
the rendezvous protocol is 64000 bytes. This value can be changed by environment
variables [28]. The decreased bandwidth at a message size of 64KiB is most likely
caused by the switch between those two protocols. Changing the default switch
message size to a different value results in a bandwidth drop at this value. Open
MPIs OpenIB BTL switches between eager and rendezvous protocol at 12288 bytes.
This is also most likely the reason for the slightly decreased slope of the bandwidth
usage for the Mellanox InfiniHost III Lx HCA and decreased bandwidth utilization
over OpenIB for the QLogic InfiniPath QLE7140 HCAs.
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2.2.2 Latency

The OSU latency benchmark performs a ping-pong test using MPI Send and
MPI Recv. The time the master needs to send a message to the worker process
and receive a message of the same size from the worker process is taken and divided
by two. Many iterations of this process are carried out for one message size and the
average is returned as latency. (Note: In this benchmark the latency is defined as
the time needed for a message of a certain size to be transferred from an applica-
tion on one node to a remote application on another node. Thus, in this case the
latency includes the send and receive overhead as opposed to benchmarks for certain
performance models (see Section 2.6 below).

Figure 2.2 shows the latency for a message between two processes on distinct
hosts. Like in the bandwidth benchmark the PSM interface outperforms the OpenIB
interface for QLogic InfiniPath QLE7140 HCAs. In order to transfer a message with
a payload of 1 byte the QLogic InfiniPath QLE7140 HCAs need 2.1µs while the
Mellanox InfiniHost III Lx HCAs need 3.4µs. Up to a message size of 64KiB the
latency of the QLogic InfiniPath QLE7140 HCAs using the PSM interface is 38%
smaller than the latency of the Mellanox InfiniHost III Lx HCAs. For messages sizes
over 64KiB the advantage drops to 10% for a message size of 1MiB. The bigger the
messages the smaller is the impact of the processing time overhead of the Mellanox
InfiniHost III Lx HCAs ASIC on the latency. Thus, the advantage of the faster
onload CPU processing of the QLogic InfiniPath QLE7140 HCAs vanishes for bigger
messages.

2.2.3 Conclusion

The bandwidth and latency benchmarks showed that the PSM interface should
be preferred over OpenIB for the communication over QLogic InfiniPath QLE7140
HCAs. Therefore, all following benchmarks, tests and discussions will be based on
the PSM interface. They also demonstrated that especially for small and medium
messages the QLogic InfiniPath QLE7140 HCAs outperform the Mellanox InfiniHost
III Lx HCAs as also indicated by the big difference in the N/2 values of both.

2.3 Bi-directional Bandwidth

The OSU bi-directional bandwidth benchmark uses the non-blocking MPI functions
MPI Isend and MPI Irecv and performs the same operations on both processes. For
each message size, 64 MPI Irecvs are posted before the corresponding 64 MPI Isends
are invoked on both sides. After that the processes wait for all send and receive
operations to finish with MPI Waitall. The root process measures the time before
the first post of MPI Irecv occurred and after MPI Waitall returned for all send and
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Figure 2.2: OSU 3.1 MPI Latency Benchmark Comparison between QLogic Infini-
Path QLE7140 and Mellanox InfiniHost III Lx HCAs

receive operations. The difference of these two times is used to calculate the effective
bandwidth. This is done several times for all message sizes to ensure an accurate
measurement.

In order to compare bi-directional with uni-directional bandwidth, the results of
the uni-directional benchmarks from above are included in Figure 2.3. The QLogic
InfiniPath QLE7140 HCAs reach a bi-directional peak performance of 1617MiB/s
with a N/2 value of 1090 bytes, profiting from the switch between eager and ren-
dezvous protocol. The Mellanox InfiniHost III Lx HCAs reach a bi-directional peak
performance of 1590MiB/s with an N/2 value of 13214 bytes. In general the bi-
directional bandwidth never reaches two times of the uni-directional bandwidth but
would still outperform two sequential send operations between processes over one
interconnection. Comparing the bandwidth of one QLogic InfiniPath QLE7140 HCA
in the bi-directional case with one in the uni-directional case the bandwidth loss can
reach up to 38% at a message size of 64 bytes. See Figure 2.4 for more details.

2.4 Multiple Process Bandwidth

The OSU multiple bandwidth test measures the bandwidth between multiple pairs
of processes. This benchmark uses the same algorithm as the bandwidth benchmark
described in Section 2.2.1 for each pair. After all pairs finished the measurement, the
longest time taken of all pairs is used by the master process to calculate the total
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bandwidth.
In this case all pairs were equally distributed over two nodes sharing one

InfiniBandTM connection. The results of the benchmark are shown in Figure 2.5
for QLogic InfiniPath QLE7140 HCAs and in Figure 2.6 for the Mellanox Infini-
Host III Lx HCAs. The latter profiteers greatly by using two instead of one process
to send data. The N/2 value (see Table 2.1) decreases to a fourth. The decrease
of bandwidth utilization at 16KiB is caused by the Open MPI’s switch from eager
to rendezvous protocol. The bandwidth usage of the QLogic InfiniPath QLE7140
HCAs also benefits from increasing the sending processes. However, using multiple
processes the Mellanox InfiniHost III Lx HCAs are still slower for small and medium
sized messages compared to the QLogic InfiniPath QLE7140 HCAs using the same
amount of processes.
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The benchmarks show that sending out data using multiple cores of a node increases
the bandwidth especially for small and medium sized messages, which also results in
reduced N/2 values which can be seen in Table 2.1. This knowledge can be used to
increase the performance of collective operations by allowing multiple processes on
one node to send simultaneously or using multiple threads in the MPI library to send
the data of one process. A similar analysis was done by R. Kumar et al. in 2008 [44]
for QLogic InfiniPath QLE7140 and Mellanox MT25208 DDR HCAs. They found
comparable results for bi-directional bandwidth usage.
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HCA Number of Processes N/2 in byte

Mellanox InfiniHost III Lx

1 4289
2 1063
3 829
4 725

QLogic InfiniPath QLE7140

1 659
2 426
3 386
4 351

Table 2.1: Overview over N/2 for Different Numbers of Sending Processes
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2.5 Overlapping Communication and Computation

MPI provides the means (e.g. non-blocking send operations like MPI Isend) to over-
lap communication with computation to achieve better application level performance.
In order to benchmark the impact on communication performance when parallel com-
putation threads or processes are on the same host, the OSU bandwidth and latency
benchmarks were modified. While benchmarking the bandwidth or latency between
two processes the modified test also measures the combined memory bandwidth of
n OpenMP threads which run the STREAM [45] triad benchmark. The synthetic
STREAM benchmark measures the performance of four long vector operations where
one is the triad operation: a(i) = b(i) + q ∗ c(i). It was designed to explicitly mea-
sure the memory bandwidth of a system and its impact on the processing speed by
eliminating the possibility of data re-use in CPU registers or caches.

2.5.1 Overlapping Impact on Bandwidth
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Figure 2.7: QLogic InfiniPath QLE7140 : OSU 3.1 MPI Overlapping 1 Communica-
tion Thread and 3 Computation Threads Bandwidth Benchmark

Figure 2.7 and 2.8 show the result of the combined benchmarks for the Jack system
with three computation and one communication thread on each node. One additional
gray line shows the bandwidth utilization of both HCA types without computational
influence on the nodes.

Since the Xeon 5130 CPUs do not have a memory controller on the CPU die and
thus the one in the northbridge is shared between two dual core CPUs, the results
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Figure 2.8: Mellanox InfiniHost III Lx : OSU 3.1 MPI Overlapping 1 Communication
Thread and 3 Computation Threads Bandwidth Benchmark

of this benchmark are not necessarily comparable to more modern CPUs with an
internal memory controller.

While the memory bandwidth of the receiver is directly influenced by the commu-
nication for both HCAs, the memory bandwidth of the QLogic InfiniPath QLE7140
HCAs sender does not change much until the message size reaches 1MiB. This can be
advantageous in a master/worker scenario where the workers send their results back
to the master while computing another work unit. Apart from that the bandwidth of
the QLogic InfiniPath QLE7140 HCAs still outperforms the Mellanox InfiniHost III
Lx HCAs. A reason for this may be that the host CPU can handle memory access
better than the ASIC on the Mellanox InfiniHost III Lx HCAs and the memory bus
is less often needed for synchronization between QLogic InfiniPath QLE7140 HCA
and CPU memory access.

In order to measure the impact of a system which is fully saturated by computation
threads on the communication, the benchmarks were repeated with 4 computation
threads and 1 communication thread. The results of these benchmarks are presented
in Figure 2.9. Despite utilizing more bandwidth than the Mellanox InfiniHost III Lx
HCAs the benchmark results for the QLogic InfiniPath QLE7140 HCAs for messages
over 128B were completely random over multiple benchmark runs.
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Figure 2.9: OSU 3.1 MPI Overlapping 1 Communication Thread and 4 Computation
Threads Bandwidth Benchmark

2.5.2 Overlapping Impact on Latency

Figure 2.10 shows the latency for four computation and one communication thread
on each node. As with the bandwidth usage also the latency of the QLogic InfiniPath
QLE7140 HCAs was different for each run when the message size exceeded 128B. The
computation threads have a clear influence. Compared to the original latency test
(see 2.2.2) the latency is much higher.

In 2004 Lui et al. proposed another communication/computation overlap bench-
mark in [46] based on the latency benchmark. The sender posts non-blocking send
and non-blocking receive operations, enters a computation loop and then waits for
the send and receive operations to finish. The maximum time in the computation
loop which does not increase the latency is then taken as the potential of overlapping
communication and computation. Essentially the maximum time in the computa-
tion loop tc corresponds to tc = tRTT − or where tRTT is the round-trip time and or

the time for the receive overhead, as long as no host intervention (e.g. rendezvous
protocol handling by the MPI library) is necessary for the communication.

2.5.3 Summary

As expected, parallel computation and communication activities influence each other.
Nevertheless, overlapping should be considered whenever possible to maximize the
usage of resources and therefore increase the application level performance or the
performance of collective accumulation operations like all-reduce .
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Figure 2.10: OSU 3.1 MPI Overlapping 1 Communication Thread and 4 Computa-
tion Threads Latency Benchmark

2.6 Round Trip Time, Send and Receive Overhead

In order to measure the parameters for communication and computation models,
different benchmarks have been proposed (see Section 1.5). In this section the pa-
rameters determined by different measuring methods will be presented.

In order to be able to predict the performance of MPI Allreduce() as precisely as
possible and since some MPI Allreduce() uses the MPI functions to send and receive
messages instead of using the native operations for the network, the parameters will
also be measured using the MPI functions.

The LogGP benchmarks were conducted on Jack and CHiC. The CHiC was chosen
to be able to verify the LogGP predictions of the all-reduce algorithms in large scale
since the resources on David were limited. The LoP benchmarks were executed on
David.

2.6.1 P-LogP Model Benchmarks

In order to measure the P-LogP parameter the MPI P-LogP benchmark4 from Kiel-
mann and Bal [38] was used. Measurement method and algorithm have been de-
scribed in Section 1.5.4 above.

Table 2.2 shows the results of the benchmark for a message size of 1 byte. The
gap per byte G was calculated by dividing the gap for a reasonable big message

4http://www.cs.vu.nl/albatross/#software
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size through the number of bytes. In this case G was calculated of the gap for
a message size of 1 MiB. As one can see, the P-LogP benchmark determines 0 as
latency and a huge gap of 5µs respectively 6.9µs for both Mellanox InfiniHost III Lx
and Voltaire HCA 410Ex HCAs. This is obviously an error due to the unawareness of
the benchmark of the offload feature. Nonetheless, using the parameters determined
the predicted time to send a message from one node to another in the LogGP model is
quite accurate for messages over 1KiB for the Voltaire HCA 410Ex HCAs as shown
in Figure 2.12. For the QLogic InfiniPath QLE7140 HCAs (see Figure 2.11), the
LogGP model over-estimates the duration for messages smaller than 256KiB by up
to 40%, but predicts the time for all other message sizes quite well.

Parameter QLogic Mellanox Voltaire
L 1.7µs 0.0µs 0.0µs
os 0.8µs 0.6µs 7.2µs
or 0.7µs 0.5µs 0.6 µs
g 1.8µs 5µs 6.9µs
G 0.0012µs 0.00128µs 0.0011µs

Table 2.2: P-LogP Parameter Results for the P-LogP Model Benchmark over Open
MPI for a Message Size of 1 byte

2.6.2 LogGP Model Benchmarks

The microbenchmark used to determine the LogGP parameters was developed by
Höfler et al. [40] and is available as part of the Netgauge5 tool. The used algorithm
is described in detail in 1.5.4.

Table 2.3 shows the measured LogGP values for the different HCAs. Using these
parameters in the LogGP model for the QLogic InfiniPath QLE7140 HCAs as shown
in Figure 2.13 reveals a very accurate prediction for message sizes between 2048
and 64000 bytes. For messages over 64000 bytes the transfer needs more time than
predicted because of the rendezvous protocol. The determined parameters for the
Voltaire HCA 410Ex HCAs show good accuracy for messages bigger than 32KiB (see
Figure 2.14). Over the whole spectrum of message sizes the parameters determined by
the P-LogP benchmark show greater accuracy even though the measured parameter
for the Voltaire HCA 410Ex HCAs cannot be right. The accuracy at greater message
sizes is caused by the dominance of the gap per byte.

The high deviations for small messages are caused by different measurement meth-
ods used by Netgauge, the P-LogP benchmark and the OSU MPI latency benchmark
and overlapping of the send overhead, the latency and the receive overhead. So does

5http://www.unixer.de/research/netgauge/
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Netgauge measure an RTT of 6.087092µs for a message size of 1 byte over the QLogic
InfiniPath QLE7140 HCAs while the determined LogGP parameters for this message
size add up to an RTT of 2 ∗ (3.0434µs+ 0.7797µs+ 0.9587µs) = 9.5636µs.

Parameter QLogic Mellanox Voltaire
L 3.0434µs 4.74134 µs 5.3157 µs
os 0.7797µs 0.96 µs 7.08µs
or 0.9587µs 1.38 µs 6.8493µs
g 0.9µs 1.4 µs 0.00265µs
G 0.001154µs 0.021143 µs 0.001024µs

Table 2.3: LogGP Parameter Results for the LogGP Model Netgauge Benchmark
over Open MPI
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Figure 2.13: Comparison of OSU Latency Benchmark and LogGP Predictions for
QLogic InfiniPath QLE7140 HCAs

2.6.3 LoP Model Benchmarks

The benchmarks to measure the parameters for the LoP model were developed by
T. Höfler [41]. For this thesis, these were adapted for the PSM interface, OpenIB
and MPI. Since the purpose of this thesis is the optimization of an MPI collective
function which may use MPI Send and MPI Recv, the overhead of the MPI library
must be considered as well. It has been shown [41] that pipelining effects of the HCAs
can greatly reduce the time needed for communication between multiple processes.
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Figure 2.14: Comparison of OSU Latency Benchmark and LogGP Prediction for
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Thus, the parameters are not only measured for 1:1 communication but also for 1:n
and n:1.

Figure 2.15 and 2.16 presents the result of the send and receive post overhead
measurements for different numbers of combined posts. Compared with the native
PSM posts, the MPI library overhead adds 0.15µs. Also the onload architecture of
the QLogic InfiniPath QLE7140 HCAs does benefit from posting multiple requests
simultaneously, the offload architectures of the Mellanox InfiniHost III Lx HCAs
outperforms it for send requests of 1 byte greatly.

In order to measure the impact of the message size on the send and receive overhead
the benchmarks were extended. The results for 10 combined posts are shown in
Figure 2.17 and 2.18. The switch between eager and rendezvous protocol by the
PSM library drastically reduces the measured time needed for posting a send request
for the QLogic InfiniPath QLE7140 HCAs. Nonetheless, the CPU is still involved in
the transfer.

Figure 2.19 shows the MPI RTT for different message sizes of the QLogic InfiniPath
QLE7140 HCAs. The benchmarks were performed on the David cluster. Up to 10
processes the RTT per process shrinks steadily to about 38% of the 1:1 RTT.
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2.7 Conclusion

The benchmarks revealed that the onload architecture of the QLogic InfiniPath
QLE7140 HCAs can strongly outperform the Mellanox InfiniHost III Lx HCAs in
bandwidth usage and latency for small and medium sized messages. The downside
are higher send and receive overheads which on the other hand can be reduced by
faster CPUs and faster buses. Using more than one process on multi-core systems to
send data increases the bandwidth utilization and therefore should be considered for
collective communication in particular for small and medium message sizes. While
overlapping communication with computation has side effects on both, the overall
application level performance should still be higher than their serial execution. An
optimal all-reduce algorithm for QLogic InfiniPath QLE7140 HCAs would therefore
use the PSM interfaces non-blocking operations to send small and medium messages
to as many peers simultaneously by as many processes of the same node as possible.
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The all-reduce operation has been extensively studied in the past and still is an object
of interest to several groups. Different hardware, networks and application level usage
patterns require different all-reduce algorithms to optimally run MPI Allreduce() .
Thus, there exist many implementations for different requirements. In this chapter
the most commonly used and some promising proposed algorithm will be presented
and analysed.

As Patarasuk and Yuan proved (see [6]) in 2009, the minimum number of commu-
nicated atomic data items needed to complete an all-reduce operation is 2 ∗ (P − 1),
where P is the number of participating processes. Here, an atomic data item is the
biggest possible payload of one message. For more details see Section 3.5. For big
messages, the bandwidth usage of an all-reduce algorithm is of great importance. The
algorithm must ensure that only the lowest amount of data possible is transferred
over the network. This may be achieved by sending multiple medium sized messages
as long as the latency and overhead impact on the overall transfer time is small.
The algorithm should also be designed to avoid network contention. Such algorithms
can be called bandwidth optimal. The algorithm presented in Section 3.5 is such a
bandwidth optimal algorithm for tree network topologies. For small messages, an
all-reduce algorithm should be latency optimal. In the case of small messages the
latency may have a great impact on the overall transfer time of a message. Thus, the
algorithm should send only the minimum number of messages needed to finish the
all-reduce operation. Another important parameter to consider is the time needed
for the computation of the accumulation operation. For complex operations or big
operands the computation should be divided over all processes to compute the re-
sult as fast as possible. This is in some cases achieved by Rabenseifners algorithm
presented in Section 3.3.

The following algorithms will be evaluated in the LogGP model which represents
the time needed for all processes to finish. Therefore, the model is extended to
also incorporate the computation time C per byte. The size of a message will be
represented by m. Full bi-directional bandwidth is assumed as well as a contention
free network. To reduce the complexness of the time functions, we introduce some
new parameters. The parameter α represents the maximum of os and g since both
parameters can overlap when sending consecutive messages:

α = max{os, g}
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The parametrized γ(m) represents the maximum of os + mC and g to reflect the
overlapping of g by messages which are sent after the computation of the accumulation
operation:

γ(m) = max{os +mC, g}

3.1 Linear

The linear algorithm is the most basic MPI Allreduce() implementation and is used
as fallback function in Open MPI. The algorithm calls the reduce function, which
reduces the data of all participating processes to the root process, followed by a
broadcast of the result from the root to all other processes.

By using optimized reduce (see [4, 42, 47]) and broadcast (see [48]) algorithms this
can be the preferred method for a small amount of processes and small messages,
even though the root process implies a bottle-neck in terms of communication and
computation.

In [49] Mamidala et al. proposed an adaptive version of all-reduce for InfiniBandTM

based on the combining tree algorithm for the reduce phase. The algorithm handles
the situation where not all processes start the all-reduce operation at the same time
and thus may have to wait valuable time for other late processes.

LogGP Prediction If the reduce and the broadcast functions are implemented with
a linear algorithm, the following formulas give a measure for the communication
time. For the reduce, all processes expect of the root send their data in parallel to
the root. Thus the time for the reduce is affected by os and L only once. The root
must compute the accumulation operation for the data of all processes. After this is
done it broadcasts the data to all other processes. In the linear case this is done by
sending the result to each processes one after another. Thus, the last process receives
the results after the root sent the message to the first process in os + (m− 1)G and
to all others in or + L+ (P − 2)(α) + (P − 2)(m− 1)G.

LogGPreduce(P ) =os + L+ (P − 1)(or + (m− 1)G) + PmC

LogGPbroadcast(P ) =os + or + L+ (P − 2)α+ (P − 1)(m− 1)G

Since the broadcast follows right after the reduce and the reduction operation, the first
send of the broadcast operation is influenced by the computation of the accumulation
operation and g. Therefore, it needs a time of γ(Pm) + (m− 1)G. This leads to the
following LogGP function for the linear case:

LogGP (P ) =os + or + 2L+ γ(Pm) + (P − 2)α+ (P − 1)(or + 2(m− 1)G)

46



3 MPI Allreduce() Algorithms

3.2 Recursive Doubling

In order to solve linear equations, Recursive Doubling techniques have already been
used by the English mathematician J.J. Sylvester in 1853 [50]. As an algorithm
for collective MPI operations it was analyzed by Thakur et al. in [4]. For Recur-
sive Doubling the number of processes participating in the all-reduce operation is of
importance. One can distinguish between the ”power-of-two” and the ”non-power-of-
two” case.

3.2.1 Power-of-Two Case

Recursive Doubling can be run in log2 P steps if P , the number of participating
processes, is a power-of-two. Basing on the distance, in each step pairs of processes
are created, which exchange their data and apply the reduce operation on it. Figure
3.1 shows an example for 8 processes. In the first step processes with a distance of
1 exchange their data and perform the reduction on it. In the second step processes
that are a distance of 2 apart exchange the reduced data from the last and reduce
it. In the third step processes with a distance of 4 exchange their data reduced in
the second step and apply the reduce operation on it. Thus, after three steps all
processes own the same result of the reduction operation. In the power-of-two case
log2P ∗ P full sized data messages have to be communicated using bi-directional
transfers, which can reduce the available bandwidth for both processes as shown in
Section 2.3. This algorithm is used by MVAPICH2 1.0.2 for small and medium sized
messages when the number of participating processes equals a power-of-two.

LogGP Prediction In the first step s = 1 each process can immediately start to send
without computing the reduce operation or waiting for g. Sending and receiving can
be done in parallel. Therefore, each process must wait only for one full message
transfer:

LogGPs=1(P ) = os + (m− 1) ∗G+ or + L

After that, each process must compute the reduction of the data vector received in
the last step, send the result and receive a new data vector. Each process can start
sending after processing the data vectors and the send overhead or after waiting for
g, whichever takes longer. Thus, one intermediate step can be described in LogGP
as:

LogGP1<s<=log2 P (P ) = γ(m) + (m− 1) ∗G+ or + L

After (log2 P ) − 1 intermediate steps each process finishes the all-reduce operation
by calculating the reduction of the received data:

LogGPs=(log2 P )+1(P ) = mC
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Therefore, the complete algorithm can be described in the LogGP model with the
following function:

LogGP (P ) =(log2 P − 1)γ(m) + os + log2 P (or + L+ (m− 1)G) +mC

Figure 3.1: Recursive Doubling (image taken from [4])

3.2.2 Non-Power-of-Two Case

If the number of processes does not equal a power-of-two the total number of steps
is bounded by 2 blog2 P c, if the algorithm compensate for the non-power-of-two pro-
cesses in each step [4]. Another method of handling this case is to eliminate the
non-power-of-two processes before the start of the process and send the result of the
reduction to them after it finished. This technique was proposed by Rabenseifner for
his algorithm (see Section 3.3). Therefore, the number of processes is reduced to a
power-of-two value: P ′ = 2blog2 P c and the rest r = P −P ′ is the number of processes
which are removed in the first step. This is done by letting the first 2r processes send
pairwise from each odd rank to the even (rank−1) their data. The even ranks reduce
the received data with their own and perform the algorithm of the power-of-two case
together with the P − 2r ranks. After they have finished, the even ranks send the
result to the odd.

LogGP Prediction If one uses the elimination technique, the first send of the
recursive-doubling algorithm is influenced by the computation and g. In the ad-
ditional last step, the send is also influenced by the computation. Thus, the LogGP
function in the non-power-of-two case is:

LogGP (P ) =os + or + L+ (m− 1) ∗G
+ ((log2 P ) + 1)(γ(m) + (m− 1) ∗G+ or + L)
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3.3 Rabenseifner

Figure 3.2: Example for Rabenseifners Algorithm (image taken from [5])

Rabenseifner proposed this algorithm in 2004 (see [5]) for an optimized reduce
load balance in communication and computation. It is similar to an algorithm devel-
oped by Geijn in 1994 for reduce [51]. Rabenseifners method uses a reduce-scatter
implemented as recursive input vector halving and distance doubling followed by
an all-gather operation using recursive output vector doubling and distance halving.
The purpose of the reduce-scatter operation is to reduce the elements of the input
vector of all processes and scatter the element i to the process i. The all-gather func-
tion places the ith element sent by process i in the receive vector of all participating
processes at the ith position.

3.3.1 Preparation

Like Recursive Doubling this only works for a number of processes which equals
power-of-two. So in the first step the number of processes P must be cut down to
a power-of-two value P ′ = 2blog2 P c. The rest r = P − P ′ must be removed for the
time being. So the first 2r processes pairwise send from each even rank to the odd
(rank+ 1) the second half of their input vector and each odd rank sends its first half
to the even (rank − 1). Each process of the 2r reduces its half of the vector and the
odd ranks send the result back to the even ranks. The remaining P −2r and the first
r even processes are then assigned new ranks′ and the recursive input vector halving
and distance doubling can be performed.

LogGP Prediction The exchange of the m
2 data vectors can be done in parallel.

After that, the even ranks can reduce their half and have to wait for the odd ones to
finish the reduction and the transfer. Thus, if the number of processes is not a power
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of two the needed time in the LogGP model for the preparation is:

LogGP = (os + (
m

2
− 1)G+ or + L) + (γ(

m

2
) + (

m

2
− 1)G+ or + L)

3.3.2 Reduce-Scatter: Recursive Vector Halving and Distance Doubling

In the first step, the even ranks′ send the second half of their buffer to the rank′+ 1
and the odd send the first half of their buffer to rank′−1. Each process performs the
reduction operation between their local buffer and the receive buffer. The reduced
half is then used in the next step. For the next (log2 P

′)−1 steps, the buffer is halved
and the distance between the processes is doubled in each step. After that, each of
the P ′ processes has the result for 1

P ′ of the global reduction vector.

LogGP Prediction In each step the number of transferred and reduced data items
is halved. Thus, the number of data items to process in step s is m

2s . The number of

items to process in all steps is then
∑log2 P ′

s=1 ( m
2s ). In each step, each process sends and

receives data in parallel. For the power-of-two case, the first step is not influenced by
g or computation. For the non-power-of-two case, the first step of the reduce-scatter
function is not influenced by both either. The reason is that the r even ranks had to
wait for the r odd ranks to transfer the result of their accumulation back to the even
ranks. This transfer already included γ(m

2 . Thus, the first step of the reduce-scatter
operation in the LogGP model is:

LogGPs=1 = os + or + L+
m

2
G

All following steps are influenced by the computation of the last step. The combined
LogGP function for the steps s = 2 to s = log2 P

′ is then:

LogGP (P ′) =
log2 P ′∑

s=2

(γ(
m

2s−1
) + or + L+ (

m

2s
− 1) ∗G)

In the last step of the reduce-scatter function, only the accumulation must be com-
puted:

LogGPs=(log2 P ′)+1(P ′) =
m

2(log2 P ′)
C

3.3.3 All-Gather: Recursive Vector Doubling and Distance Halving

Now all processes need to exchange their 1
P ′ result with the others to get the complete

reduction result. So in each of the log2 P
′ steps the processes of distance 2step−1

exchange 2step−1 results, leading to the complete result vector after log2 P
′ steps.
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LogGP Prediction Like in the reduce-scatter part, the processes exchange m
2s data

in each step in parallel. The first step of the all-gather operation is influenced by g
or the computation of the last reduce-scatter step:

LogGPs=1(P ′) = or + L+ γ(
m

2log2 P ′
) +

m

2log2 P ′
G

All following steps are only influenced by the maximum of os and g. The combined
LogGP function for the steps s = 2 to s = log2 P

′ is then:

LogGP (P ′) =
log2 P ′∑

s=2

(α+ or + L+ (
m

2s
− 1) ∗G)

3.3.4 Finalization

If the number of processes had to be reduced in the first step the complete result
vector is now send to the r removed processes.

LogGP Prediction This causes another delay of one send done by r processes in
parallel:

LogGP (P ) = α+ (m− 1)G+ or + L

3.3.5 Summary

While neither being bandwidth nor latency optimal, for the power-of-two case at the
moment there exists no a more balanced algorithm for all-reduce which involves all
processes in the communication and computation process more equally. Figure 3.2
shows an example for 13 processes. The vectors are divided in P ′ sections in this case
A,B,...,H for each rank as indicated by A−Hrank.
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LogGP Prediction In the power-of-two case, Rabensteiners all-reduce algorithm
needs a time of:

LogGPp2(P ) =os + or + L+
m

2
G

+
log2 P∑
s=2

(γ(
m

2s−1
) + or + L+ (

m

2s
− 1) ∗G)

+ or + L+ γ(
m

2(log2 P )
) +

m

2(log2 P )
G

+
log2 P∑
s=2

(α+ or + L+ (
m

2s
− 1)G)

=os + 2(log2 P )(or + L) +
m

2
G

+
log2 P∑
s=2

(α+ γ(
m

2s−1
) + 2(

m

2s
− 1)G)

+ γ(
m

2(log2 P )
) +

m

2(log2 P )
G

=os + 2(log2 P )(or + L) +
m

2(log2 P )
G+

m

2
G+ γ(

m

2(log2 P )
)

+
log2 P∑
s=2

(α+ γ(
m

2s−1
) + 2(

m

2s
− 1)G)

For the non-power-of-two case :

LogGPnp2(P ) =LogGPp2(P ′) + os + α+ γ(
m

2
) + 3((

2
3
m− 1)G+ or + L)

3.3.6 Optimizations

In [31] more efficient algorithms to reduce the number of processes to a power-of-two
number were presented by Rabenseifner and Träff. Nonetheless, decreasing the num-
ber of processes participating in the all-reduce process introduces load imbalances in
communication and computation between the processes. This excludes valuable com-
munication and processing resources which could have led to a faster execution. The
Binary Blocks algorithm tries to minimize the load imbalances and should therefore
be described in the next section.
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3.4 Binary Blocks

If the number of processes is not a power-of-two the algorithm described above leads
to load imbalances by excluding processes from the communication and computation.
Therefore, Thakur et al. developed an extension to Rabenseifners method called
Binary Blocks [4].

3.4.1 Preparation

Regardless of the number, the processes are decomposed into a minimum number of
blocks with power-of-two processes (see Figure 3.3 for an example).

3.4.2 Reduce-Scatter: Recursive Vector Halving and Distance Doubling

Each block runs the reduce-scatter as described above for Rabenseifners approach.
The blocks finish after log2 Pblock steps and, starting with the smallest block, the
results of the reduce-scatter is split into n segments where n is the number of processes
in the next bigger block. These segments are then sent to the processes in the next
bigger block which reduce them.

3.4.3 All-Gather: Recursive Vector Doubling and Distance Halving

Before the smaller blocks can start their all-gather operation, they have to receive
the results of the reduction from the next larger blocks as shown in the example in
Figure 3.3. After each block has finished the all-gather phase, all processes possess
the same result of the all-reduce operation.

3.4.4 Summary

Although the load imbalance is smaller than in Rabenseifners algorithm for the non-
power-of-two case, it is still created by different sizes of blocks. The bigger the
difference in the number of processes between two successive blocks the bigger the
imbalance is - especially in the low range of exponents. Smaller blocks have to wait
for bigger ones until they finish the reduction, which wastes valuable computation
and communication resources. Thus, if the maximum difference between the number
of processes of two successive Binary Blocks is small this algorithm can perform well.

Example In the example the Binary Blocks algorithm is run with 12 processes
(numbered from 1 to 12) and 8 data elements (A to H) per process. The 12 processes
are separated in blocks of 8,4 and 1 processes. Block 3 and 2 start with the reduce-
scatter operation by pairwise exchanging half of their data items (A to D and E
to H respectively) and accumulate them. Thus after the first step, process 0 owns

53



3 MPI Allreduce() Algorithms

Figure 3.3: Example for Binary Blocks Algorithm (image taken from [4])

the result of the reduction of the data items A to D of rank 0 and 1 (indicated by
A−D0−1). Each block further halves the data and exchanges it with a rank which has
twice the distance of the rank from the last step. The number of steps s is determined
by the number of processes in the block: sblock = log2 Pblock). Thus, in block 3 rank
0 owns the result of the accumulation of data element A of all processes in block 3
(A0−7). In block 2 rank 8 owns the result of the accumulation of data element A
and B of the 4 processes in this block (A−B8−11) after two steps. This rank is now
ready to receive the data elements A and B from rank 12 in block 3. After receiving
both elements it reduce them and sends the result of A to rank 0 and the result of B
to rank 4 in block 3. Rank 0 and 4 accumulate the received element with their local
element. Thereby both ranks finish the reduce-scatter phase by owning the result of
the reduction over all processes for their element.

In the all-gather phase, all processes pairwise exchange the results of the reduction
in sblock steps similar to the reduce-scatter algorithm. The synchronization in the
all-gather phase is done so that always two processes of a block send half of the data
each to one process in the smaller block.

LogGP Prediction The communication and computation time in LogGP for the
single blocks is the same as for the power-of-two case in Rabenseifers approach. Since
communication and computation are done separately in parallel in each block, the
run-time of the biggest block of size Pbmax = 2blog2 P c dominates the overall run-time
of the all-reduce operation.

The additional time for the synchronization inside the reduce-scatter operation can
vary very strongly. In the worst case one process has to send its data to log2(P − 1)
other processes. In the best case one process only needs to transfer its data to
two other processes. Thus, the additional time needed for the synchronization in
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the reduce-scatter part depends on the maximum difference between the number of
processes of two successive blocks and the number of blocks b. The synchronization
time in the reduce-scatter phase is limited by the upper bound of:

LogGPrs−sync(P ) = d(b− 1)(P ′ − 1)(γ(m) + (m− 1)α+ (m− 1)G+ or + L)e

where m and P ′ depend on the block sizes. The first send to another process may be
influenced by the last accumulation of the sender. The synchronization time in the
all-gather phase is always done by two processes which send the result of the reduce
of their block to one process of the next smaller block. Thus the synchronization
time in the all-reduce phase is limited by the upper bound of

LogGPag−sync(P ) = dγ(mC) + (b− 2)α+ b− 1(L+ or + 2(
m

2
− 1)G)e

where m depends on the block sizes. The send from the biggest block is influenced
by the last reduce-scatter accumulation operation.

Thus, the LogGP function for the Binary Blocks algorithm is:

LogGP (P ) =LogGPRabenseifner(Pbmax)
+ d(b− 1)(P ′ − 1)(γ(m) + (m− 1)α+ (m− 1)G+ or + L) + γ(mC)

+ (b− 2)α+ b− 1(L+ or + 2(
m

2
− 1)G)e

For the example shown in Figure 3.3, the schematic run-time for each block is shown
in Figure 3.4 and the exact LogGP time of the synchronization will be discusses below.

Time for Intra Block Data Exchange & Accumulation

Time for Block Synchronization Accumulation

Block 3

Block 2

Block 0

Time for Intra Block Data Exchange

Time for Block Synchronization Exchange

Figure 3.4: Time needed for the Binary Blocks Example in 3.3

A red square symbolizes the time needed for a intra block exchange and the ac-
cumulation operation of one data element. Thus computation and communication
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time for one data element are the same in this example. In each step the number of
data elements is halved, which halves the communication and computation time. The
accumulation operation of the reduce-scatter synchronization (green) can be done in
parallel, therefore it influences the run-time only once for each block. The four blue
squares in block 0 represent the time for the sending of two data elements each. After
a process has received and accumulated its data element(s) it can immediately start
synchronizing with the next bigger (reduce-scatter state) or next smaller (all-gather
state) block. Thus the time showed in Figure 3.4 is valid for the slowest process. The
LogGP time for the synchronization in the reduce-scatter part for this example is:

LogGP (12) = 4 ∗ (α+ (
m

4
− 1)G) + or + L+ γ(

m

4
) + α+ 2(

m

8
− 1)G+ or + L

For the all-gather part:

LogGP (12) = γ(
m

8
) + 2 ∗ (

m

8
− 1)G+ or + L+ α+ 2 ∗ (

m

2
− 1)G

3.5 Bandwidth Optimal Algorithm

In 2009 Patarasuk and Yuan proposed an bandwidth optimal all-reduce algorithm
for tree network topologies [6]. Therefore, they combined Rabenseifners approach of
realizing the algorithm by a reduce-scatter followed by an all-gather operation, both
using logical ring based algorithms, with a method proposed by Faraj et al. in [52] to
construct a contention-free logical ring. While the algorithm is bandwidth optimal
even on SMP clusters, it is not optimal in the latency term and thus should not be
used for small messages.

3.5.1 Finding a contention-free logical ring

In order to find a contention-free logical ring, the network topology must be provided
for the algorithm as a tree graph G = (S ∪M,E) where M is the set of machines
and S the set of switches. Let G′ = (S,E′) be a subgraph of G which only contains
the switches and the links between them. Using Depth First Search the switches
are denoted as s0, s1, ..., s|S|−1 where si is the ith switch discovered in G′ as demon-
strated in Figure 3.5 . Let the Xi machines connected to switch si be numbered as
ni,0, ni,1, ..., ni,|Xi|−1. If no machine is connected to switch si then |Xi| shall be 0. The
contention-free logical ring is now n0,0 → ...→ n0,|X0|−1 → n1,0 → ...→ n1,|X1|−1 →
... → n|S|−1,0 → ... → n|S|−1,|X|S|−1|−1 → n0,0. [52] If the machines run only one
process each, X can be directly mapped to the processes. SMP machines can be
approximated as another switch connected to the processes only if the processes were
assigned consecutive ranks by the MPI library.

56



3 MPI Allreduce() Algorithms

Figure 3.5: Contention-free Ring of Switches (image taken from [6])

3.5.2 Reduce-Scatter

For the reduce-scatter operation, each process splits the input vector in P segments
seg0, seg1, ..., segP−1. In the first step ranki sends seg(i−1) mod P to rank(i+1) mod P .
Each process reduces the received segment with its local segment, overwriting the
local segment with the result. For the next j steps, ranki sends seg(i−j) mod P to
rank(i+1) mod P . After P − 1 steps ranki has the result of the complete reduction in
segi of its vector. Figure 3.6 shows an example for 3 processes.

Figure 3.6: Example for a Reduce-Scatter Operation Implemented as Ring

LogGP Prediction In each of the P − 1 steps each process sends and receives m
P

data segments in parallel and reduces m
P data segments. In the first step, all processes

can immediately send their segment and receive another in parallel:

LogGPs=1(P ) = (os + or + L+ (
m

P
− 1)G)

After that, each processes must compute the reduction of the data segment received in
the last step and the local data, send the result and receive a new data segment. Each
process can start sending after processing the data segment and the send overhead
or after waiting for g whichever takes longer. Thus, one intermediate step can be
described in LogGP as:

LogGP1<s<P−1(P ) = γ(
m

P
) + or + L+ (

m

P
− 1)G
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After P − 2 intermediate steps each process finishes the reduce-scatter by computing
the reduction on the last segment:

LogGPs=P−1(P ) =
m

P
C

Thus, the time needed for the reduce-scatter is:

LogGPred−scat(P ) =(P − 2)(γ(
m

P
) + or + L+ (

m

P
− 1)G)

+ (os + or + L+ (
m

P
− 1)G+

m

P
C)

3.5.3 All-Gather

The all-gather algorithm distributes the results of each segment in the same fashion:
Starting with j = 0 in step j ranki sends seg(i+j) mod P to process rank(i−1) mod P .
After P − 1 steps each process obtained the result of the all-reduce operation.

LogGP Prediction The time for the all-gather LogGP is similar to that of the
reduce-scatter since it uses the same ring algorithm to gather the results of the
reduction. The first step is influenced by the last step of the all-gather part:

LogGPs=1(P ) = (γ(
m

P
) + or + L+ (

m

P
− 1)G)

All other P − 2 steps can be carried out in the time:

LogGP (P ) =(P − 2)(α+ or + L+ (
m

P
− 1)G)

Thus, the time needed for the all-gather part in the LogGP model is:

LogGPall−gather(P ) = γ(
m

P
) + (P − 2)(α) + (P − 1)(or + L+ (

m

P
− 1)G)

3.5.4 Summary

As shown in Section 2.2.1 the latency per byte is smaller for bigger message sizes,
thus sending only the segments increases the latency in comparison to algorithms
like Recursive Doubling for small and medium messages. For big messages however,
the latency is affected much less by splitting up the message in smaller segments.
Therefore, this algorithm should be used for big messages.
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LogGP Prediction Since the all-gather starts right after the reduce-scatter the fist
send of it is still affected by the computation time of the last reduce. Thus, the time
needed for the bandwidth optimal algorithm is the sum of the first and intermedi-
ate steps of the reduce-scatter algorithm, the first step of the all-gather operation
influenced by the last computation and the rest of the all-gather steps: :

LogGP (P ) =os + or + L+ (
m

P
− 1)G

+ (P − 2)(γ(
m

P
) + or + L+ (

m

P
− 1)G)

+ γ(
m

P
) + (P − 2)(α) + (P − 1)(or + L+ (

m

P
− 1)G)

=os + γ(
m

P
) + 2(P − 1)(or + L+ (

m

P
− 1)G) + (P − 2)(α+ γ(

m

P
))

3.6 Hierarchical and Heterogeneous Algorithms

Modern clusters are built of many SMP machines. This leads to heterogeneity of the
message transfer medium. Processes on the same machine share a common memory
while processes on two different machines need to communicate over a considerably
slower network. For this reason hierarchical algorithms have been proposed. These
algorithms use different methods for local and global communication and reduction
by combining fast shared memory algorithms with fast network algorithms. For big
messages a leader based scheme should perform better than a method which sends
from all processes of one node to all processes of another. In the leader based scheme
all local processes reduce their buffers before one process per node exchanges the
data with other nodes. For small messages the benchmarks in Chapter 2 showed that
simultaneous transfers increase the effective bandwidth and cut the latency by up to
38% and thus may reduce the time needed for the all-reduce function.

In 1999 Sistare et al. [53] proposed a shared memory all-reduce algorithm for large-
scale SMP machines. Another hierarchical algorithm was developed by Tipparaju et
al. [54]. Their shared memory all-reduce is a combination of a shared memory reduce
followed by a broadcast.

3.7 Verification of the LogGP Prediction

Since only the Recursive Doubling algorithm is implemented in Open MPI 1.2.8 it
was chosen to verify its LogGP model function:

LogGP (P ) =(log2 P − 1)γ(m) + os + log2 P (or + L+ (m− 1)G) +mC

59



3 MPI Allreduce() Algorithms

In order to measure the time for different message and process sizes the IMB1 3.2 was
used. After two MPI Barriers IMB simply measures the time for several consecutive
MPI Allreduce() calls and divides it by the number of performed operations. The
used operation is MPI SUM on double values. The used method leads to shorter exe-
cution times in comparison to real applications since the occurrence of process skew is
very unlikely and processes may be able start a new all-reduce operation while others
have not yet finished the last one. IMB uses the MPI SUM operation on MPI FLOAT
data. Measurements with the STREAM [45] benchmark compiled with GCC 4.1.2
and −O3 show a performance of 2844.44MiB/s on the CHiC and 2942.81MiB/s on
the Jack cluster for a summation operation of double values. Thus, the computation
time per byte C for the Jack is 0.000324µs and for the CHiC 0.000335µs.
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Figure 3.7: Recursive Doubling LogGP Prediction and IMB Benchmark for 8 Pro-
cesses on 8 Nodes using QLogic InfiniPath QLE7140 HCAs

Figure 3.7 and 3.8 show the LogGP prediction of the Recursive Doubling algorithm
for different message sizes between 8 processes on 8 nodes in comparison to the mea-
sured run-times by IMB 3.1. The parameters determined by the P-LogP benchmark
predict the runtime accurately for message sizes of up to 128 bytes for the QLogic
InfiniPath QLE7140 HCAs and up to 64 bytes for the Voltaire HCA 410Ex HCAs.
The Netgauge parameters on the other hand lead to a high overassessment of the
runtime for messages smaller than 1KiB and 8KiB respectively. For bigger messages
the predicted run-time is up to 50% lower than the measured. One big influence in
the case of Recursive Doubling is the bi-directional bandwidth. As shown in Chapter

1Intel MPI Benchmark http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm
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2, the bandwidth for one HCA while sending data bi-directionally can be up to 38%
smaller than the bandwidth reached while only one HCA is sending. In order to
reflect the lower bandwidth the gap per byte G can be increased by 20%. This leads
to a more accurate prediction of the run-time.
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Figure 3.8: Recursive Doubling LogGP Prediction and IMB Benchmark for 8 Pro-
cesses on 8 Nodes using Voltaire HCA 410Ex HCAs

In Figure 3.9 the prediction and measurement for a message size of 4KiB and
different numbers of processes on the CHiC can be seen. 4KiB were chosen since
the Netgauge over- and the P-LogP parameters underestimated the run-time for 8
nodes for this message size. As more nodes participate in the operation the prediction
of Netgauge becomes more accurate but tends to underestimate the time for more
processes. The P-LogP underestimate the time for all numbers of processes. One
reason for this is most likely the architecture of the CHiCs InfiniBandTM fabric as a
fat-tree. Another reason may have been network contention created by applications
of other users on the CHIC.

Summary

While the predicted run-time is not accurate for all message sizes the LogGP function
gives a very good description of the behavior of the Recursive Doubling algorithm on
two different clusters with different HCAs.
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Figure 3.9: Recursive Doubling LogGP Prediction and IMB Benchmark for a Message
Size of 4096 bytes using Voltaire HCAs

3.8 Conclusion

Algorithms like Recursive Doubling or Rabenseifners cannot profit from the pipeling
of the InfiniBandTM HCAs because of the distributed reduction, which has to be done
in each step before another message can be sent. The linear algorithm and in some
cases the Binary Blocks algorithm may be able to benefit form the pipeling effects
when it synchronizes different blocks.

Table 3.1 gives an overview over the presented all-reduce algorithms and their time
in the extended LogGP model. As stated in the beginning of this section there exists
no algorithm which is optimal for all message sizes and number of processors. Using
the time functions and the LogGP parameters, one can predict the optimal algorithm
for all pairs of processes and message sizes. Figure 3.10 shows the optimal algorithm
for message sizes between 1 byte and 1MiB, 1 to 550 processes and an multiplication
of double values. The Binary Blocks algorithm needs to much time to synchronize
in this scenario but is the optimal algorithm in some cases if the accumulation oper-
ation is more expansive. As assumed, the linear algorithm is the fastest for a very
small number of processes and messages. For message sizes smaller than 1024 bytes,
the Recursive Doubling algorithm is the best in most cases. However, with increas-
ing message sizes and process numbers Rabenseifners algorithm is often faster then
Recursive Doubling. For message sizes over 1024 bytes Rabenseifners algorithm is
slowly superseded by the Bandwidth Optimal algorithm. With bigger message sizes
the later is faster for larger numbers of processes. Rabenseifners algorithm is the
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fastest in nearly all cases where the number of processes equals a power-of-two.

Figure 3.10: LogGP Prediction for Message Sizes between 1 byte and 1KiB (a) and
1KiB and 1MiB (b)

Thus, the MPI implementation should choose the best algorithm for the given
parameters. For this purpose Faraj and Yuan proposed an automatic generation and
tuning system for MPI collective communication routines [55]. Open MPI supports
several tuned algorithms and can choose an optimal one at the time of creation of a
communicator or by user interference [56].
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Algorithm LogGP (P )

Linear
os + or + 2L+ γ(Pm) + (P − 2)α
+ (P − 1)(or + 2(m− 1)G)

Recursive Doubling*
(log2 P − 1)γ(m) + os

+ log2 P ((m− 1)G+ or + L) +mC

Rabenseifner*

os + 2(log2 P )(or + L) +
m

2(log2 P )
G+

m

2
G

+ γ(
m

2(log2 P )
)

+
log2 P∑
s=2

(α+ γ(
m

2s−1
) + 2(

m

2s
− 1)G)

Binary Blocks

LogGPRabenseifner(Pbmax)
+ d(b− 1)(P ′ − 1)(γ(m) + (m− 1)α
+ (m− 1)G+ or + L) + γ(mC)

+ (b− 2)α+ b− 1(L+ or + 2(
m

2
− 1)G)e

Bandwidth Optimal
os + γ(

m

P
) + 2(P − 1)(or + L+ (

m

P
− 1)G)

+ (P − 2)(α+ γ(
m

P
))

Table 3.1: LogGP Time of All-reduce Algorithms (* power-of-two case)
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4 Reduce Followed by a Practical Constant-Time
Broadcast

In 2006 Siebert proposed a practical O(1) broadcast in [48, 57] using the multicast
feature of the underlying network. Utilizing this broadcast can result in a very fast
all-reduce operation because all processes are ready to receive when the root process
finished the reduction operation and thus eliminate the major problem of the proposed
multicast broadcast: late processes. The reduction to the root can be implemented in
different ways depending on the message size, number of processes and complexity of
the reduction. Various reduce algorithms have been proposed and analysed in several
studies in the past [4, 42, 47].

4.1 Practical Constant-Time Broadcast

In the past, several broadcast algorithms based on multicast have been proposed
[58, 59]. If the used multicast implementation was unreliable the authors proposed
acknowledging (ACK) messages to be sent from the peers back to the sender after
successfully receiving the message. The sender waits for all ACKs and retransmits
the message using reliable P2P communication to peers which did not respond after
a certain timeout. Another method are NACK messages which are sent from the
receivers to the sender if no message was received in a certain amount of time. Both
methods significantly increase the overhead for the broadcast operation and may
introduce performance bottlenecks. Another problem is the timeout. Choosing a
timeout which is too small results in sending unnecessary message retransmissions.
A too big value leads to bad performance.

Therefore, Siebert proposed a broadcast algorithm based on multicast which does
not rely on ACK or NACK messages. Confronted with the problem that multicast
datagrams often get lost when the receiver is not ready to receive them, Siebert split
the broadcast in two steps. A common reason for single processes to not be ready
to receive is process skew caused by process scheduling or interrupts [29]. In the
first step the root process is delayed by a predetermined amount of time (e.g. user
controlled MCA parameter for Open MPI or adaptively adjusted at run-time) to
ensure that most of the receiving processes are ready to receive. Another method to
ensure that all receiving processes are ready to receive is a barrier operation. However,
Sieber found that a barrier would result in a slower broadcast than using a delay[48].
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After the delay the root process uses multicast to send the data to all other involved
processes. Each process keeps a record of successful received data fragments. The
second step insures that all processes which may have missed some fragments receive
them now. This is done by the fragmented chain broadcast algorithm which defines a
predecessor and successor in a virtual ring topology. Each process sends successfully
received fragments to its predecessor as soon as possible. Whether those fragments
were received during the multicast stage or from the successor through P2P transfer
in the second step does not matter. After all fragments have been received and sent
to the predecessor the process can finalize the broadcast and cancel or ignore any
outstanding receive requests.

Figure 4.1: Steps of the Broadcast: 1. Multicast 2. Fragmented Chain Broadcast

If a process did not receive the data in the first step it has to wait until its predeces-
sor sent the data in the second step. This operation can be called a penalty round. If
the predecessor did also not receive data in the multicast step the number of penalty
rounds increases. In the worst case the number of penalty rounds scales with the
number of processes. For the all-reduce algorithm this is possible but highly unlikely
since all processes must have sent their data to the root process and therefore must
already be waiting for the multicast of the result. Thus, the only reasons for the data
to not reach single processes is network contention or an error on the hardware level.

The two steps of the algorithm are shown for 8 processes in Figure 4.1. In the
first multicast step rank 4,5 and 8 do not receive the multicast. Thus,in the second
chained step rank 4 and 8 receive the message in the first penalty round from their
predecessor and rank 5 receives the message in the second penalty round from rank
4.

In an all-reduce operation which uses a reduce and this broadcast one can skip
the delay of the root process since all other processes must have send a message in

66



4 Reduce Followed by a Practical Constant-Time Broadcast

the reduce operation. In this case, the reduce operation acts also as a barrier. A
prototype has been implemented and should be described in detail below.

4.2 Prototype Implementation

The prototype is implemented on top of MPI, using the MPI library’s MPI Reduce
and non-blocking MPI Isend and MPI Irecv functions. Therefore, it can be used
with any MPI implementation. The multicast MPI Bcast code of Höfler and Siebert
[57] was used as a starting point and modified for RDMA-CM functions. The pro-
totype provides a struct rdma qp ctx which serves as context for all operations. The
prototype also exports three functions which can be used by any program:

• RMC Init(struct rdma qp ctx *mc qp ctx, MPI Comm comm)
connects the calling process to a new multicast group as described in Section
1.4.5. The root acts as server. The function initialises and allocates all neces-
sary buffers and preposts receive requests. The receive requests must be posted
with a buffer size 40 bytes larger than the actual multicast payload since the
GRH is added to the buffer in front of every payload for UD QPs. Thus, the
first 40 bytes will be ignored when data in the receive buffer is copied to its
destination.

• RMC Finalize(struct rdma qp ctx *mc qp ctx, MPI Comm comm)
leaves the multicast group, frees the allocated memory and destroys the QPs
and CQs.

• RMC Allreduce(void *sendbuf, void *recvbuf,
int count,MPI Datatype datatype, MPI Op
op, MPI Comm comm,struct rdma qp ctx
*mc qp ctx)
executes the actual all-reduce algorithm. Beside rdma qp ctx, all parameters
are identical to the MPI definition of MPI Allreduce() (e.g. MPI IN PLACE
is possible for *sendbuf ). RMC Allreduce calls MPI Reduce which returns the
result in recvbufand of the root. The result is then broadcasted to all other
processes using RMC Bcast.

The function RMC Bcast(void *buff, int count, MPI Datatype datatype,
int root, MPI Comm comm,struct rdma qp ctx *mc qp ctx) executes the
multicast followed by a fragmented chain algorithm. Beside rdma qp ctx, all parame-
ters are identical to the MPI definition of MPI Bcast. Since the size of the send buffer
may be bigger than the MTU supported by the used HCA, the algorithm supports
sending and receiving of fragments. Each fragment has a status which indicates if
the fragment is owned by the process, if it has been received via reliable send and if
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it has been sent to the successor. They also have a sequence number and broadcast
id attached in order to identify the position and to ensure that no multicast messages
from previous broadcasts corrupt the buffer. The root process sends each fragment
after attaching the sequence number and broadcast id to the buffer to the multicast
group, while all other ranks call the function recv send raw message. This func-
tion polls for received multicast messages. It also calls MPI Irecv and, if a fragment
has already been received, calls MPI Isend to send this fragment to the next process.
If a fragment has been received through multicast, the sequence number and broad-
cast id are analyzed and the fragment is then handled accordingly. After the root
has finished the multicast send, it also calls recv send raw message to send the
fragments reliable to rank 1.

4.2.1 Complications

In some cases it is possible that the root node sends faster than a receiving process
is able to copy the data of the multicast receive buffer to a local one. In this cases
the data of the last sent operation is lost or corrupted and must therefore be received
using reliable message transfer. Using multiple multicast receive buffers should help
avoid these problems.

4.3 Testing

The prototype was tested using OFED 1.3 and Open MPI 1.2.8 which was configured
to use the PSM library to send messages over the QLogic InfiniPath QLE7140 HCAs.
Apart from the complications mentioned above, the tests where successful.
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5 Conclusion and Future Work

This thesis analysed the QLogic InfiniPath QLE7140 HCA and its onload architecture
and compared the results to the Mellanox InfiniHost III Lx HCA which uses an offload
architecture. As expected, the QLogic InfiniPath QLE7140 HCA can outperform the
Mellanox InfiniHost III Lx HCA in latency and bandwidth terms on our test system in
various test scenarios. The benchmarks showed, that sending messages with multiple
threads in parallel can increase the bandwidth greatly while bi-directional sends cut
the effective bandwidth for one HCA by up to 30%. Thus, collective operations for
InfiniBandTM should be made aware of SMP machines and none full bi-directionally
bandwidth.

Different all-reduce algorithms where evaluated and compared with the help of the
LogGP model. The comparison showed that new all-reduce algorithms can outper-
form the ones already implemented in Open MPI for different scenarios. Especially
the bandwidth optimal algorithm proposed by Patarasuk and Yuan shows great po-
tential for big messages and should therefore be tested and implemented in Open
MPI.

The thesis showed that one can implement multicast algorithms for InfiniBandTM

easily by using the RDMA-CM API. However, the author was not able to find a
complete documentation of all functions and properties of the RDMA-CM API. Thus,
for a better understanding and faster implementation of algorithms based on the
RDMA-CM API a documentation needs to be written. The implemented prototype
needs to be further optimized and analyzed.

Throughout this work some Open MPI all-reduce COLL component algorithms
were developed but in the end discarded, since they did not proof to be faster than
currently available algorithms.
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Acronyms

ACK Acknowledged

AH Address Handler

API Application Programming Interface

ASIC Application Specific Integrated Circuit

BML Byte Management Layer

BTL Byte Transfer Layer

CM Connection Manager

COLL Collective Component

CQ Completion Queue

CQE Completion Queue Element

DDR Double Data Rate

EEL End-to-End Latency

EP End Point

GID Global ID

HCA Host Channel Adapters

HPC High Performance Computing

IBA InfiniBandTM Architecture

IMB Intel MPI Benchmark

LID Local ID

MPI Message Passing Interface

MQ Matched Queue

70



Acronyms

MTL Matched Transport Layer

NACK Not Acknowledged

NAK Not Acknowledged

NDA Non-Disclosure Agreement

OFA OpenFabrics Alliance

OFED OpenFabrics Enterprise Distribution

OMB OSU MPI Benchmark

OMPI Open MPI layer

OPAL Open Portability Access Layer

ORTE Open Run-Time Environment

OSU Ohio State University

P2P Point to Point

PD Protection Domain

PML Point-to-point Messaging Layer

PRTT Parameterized Round Trip Time

QPN Queue Pair Number

QP Queue Pair

RAW Raw Datagram

RC Reliable Connection

RDMA-CM RDMA Connection Manager

RDMA Remote Direct Memory Access

RST Reset

RTR Ready to Receive

RTS Ready to Send

RTT Round Trip Time
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Acronyms

SDR Single Data Rate

SERDES Serializer/Deserializer

SM Shared Memory

TCA Target Channel Adapters

UC Unreliable Connection

UD Unreliable Datagram

WRE Work Queue Element

WR Work Request
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Appendix A

Benchmarks

A.1 Implementation Notes for the Benchmarks

For native PSM or OpenIB benchmarks the out of band MPI Barrier synchronization
(in this case over ethernet) proved to influence the benchmarks heavily because of
high latency of the Ethernet network. Therefore, the synchronization has been made
within the benchmarked network itself.

Using preposted receive requests for OpenIB reduced the RTT significantly com-
pared with the RTT passed when the receive requests where posted only when a
incoming send was expected. For the Mellanox InfiniHost III Lx HCA using the
inline send feature of small messages reduced the RTT further.
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