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Abstract

In this paper we consider the well-known BPX-preconditioner in con-
junction with adaptive FEM. We present an algorithm which enables
us to compute the preconditioner with optimal complexity by a total of
only O(DoF) additional memory. Furthermore, we show how to com-
bine the BPX-preconditioner with an overlapping Additive-Schwarz-
preconditioner to obtain a preconditioner for finite element spaces with
arbitrary polynomial degree distributions. Numerical examples illus-
trate the efficiency of the algorithms.





1 Introduction

Adaptive FEM is one of the most powerful tool to solve boundary value problems.
Whether we consider low order adaptive h-FEM [AO00, BS01, BR03, Ver96] or
adaptive hp-FEM [AS97, AS98, AS99, Eib06, HS05, MW01], in both cases we ob-
tain approximate solutions of high accuracy for a minimum of degrees of freedom.
However, in order to solve the arrising system of linear equations efficiently we
have to apply good preconditioners. In the last twenty years a lot of precondition-
ers leading to optimal condition number O(1) or almost optimal condition num-
bers have been developed, e.g. see [BPX91, EM07, HKK05, KL04, Nep86, TW05].

In this paper we will not develop a new preconditioner. Instead we consider
the well-known BPX-preconditioner [BPX90, Xu90, Xu92, Zha92] and present a
fast and efficent algorithm to compute this preconditioner in the case of adap-
tive FEM. Moreover, since the applicability of the BPX-preconditioner is re-
stricted to finite element spaces based on piecewise linear functions, we consider
the combination of BPX- with an overlapping Additive-Schwarz-preconditioner
(see [Osw94, EM07, Eib06, SMPZ08]) to overcome this restriction and obtain a
preconditioner for adaptive FEM with arbitrary polynomial degree distribution.

For simplicity of exposition, we will restrict our attention to scalar reaction-
diffusion equations in 3D and adaptive h-FEM on tetrahedral meshes without
hanging nodes.

The key of our implementation is a properly chosen data-structure which enables
us to compute the BPX-preconditioner with optimal complexity and a total of
only O(DoF) additional memory. To our knowledge, this is a new approach to
compute the BPX-preconditioner for an adaptive FEM scenario and we want
to emphasise that our implementation can easily be adapted to adaptive hp-
FEM and other types of equations such as, for example, elasticity equations.
Furthermore, our algorithm does not depend on the dimension of the domain, that
is it can be applied to adaptive 2D-FEM on triangular meshes without changes.
We also expect that our algorithm can be extented to hexahedral meshes as well
as to meshes containing hanging nodes.

2 Model problem and FE-discretization

Let Ω ⊂ R3 be a Lipschitz domain and assume that its boundary Γ = ∂Ω consists
of two disjoint portions,

Γ = ΓD ∪ ΓN ,

where ΓD and ΓN consist of a finite number of disjoint parts of positive measure,
or they are empty, respectively. Let A = [aij]

3
i,j=1 be a coefficient matrix and
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a0 a scalar valued function. Denote by fr the right hand side function and by
gN the boundary conditions on ΓN . Then the classical formulation of our model
problem reads as follows:
Problem 2.1 (model problem - classical formulation). Find a solution u of

−∇ · (A∇u) + a0u = fr in Ω,

u = 0 on ΓD,

〈A∇u, η〉 = gN on ΓN .

Since the more appropriated formulation of this problem is the so called weak
formulation, we write

H1
D(Ω) := {u ∈ H1(Ω) |u|ΓD

= 0}

and consider henceforward the Galerkin formulation of Problem 2.1.
Problem 2.2 (model problem - weak formulation). Find u ∈ H1

D(Ω) such that∫
Ω

∇u · A∇v + a0uvdΩ =

∫
Ω

frvdΩ +

∫
ΓN

gNvdΓ ∀ v ∈ H1
D(Ω).

Throughout the paper we demand A = A(x) to be uniformly symmetric positive
definite for x ∈ Ω. We demand aij, a0 ∈ L∞(Ω) with a0 ≥ α0 > 0 in the case of
ΓD = ∅ and a0 ≥ 0 otherwise. Finally we claim gN ∈ L2(ΓN) and fr ∈ L2(Ω).

Due to these assumptions the bilinear form a : H1
D(Ω)×H1

D(Ω) 7→ R, given by

a(u, v) :=

∫
Ω

∇u ·A∇v + a0uvdΩ,

is symmetric, continuous and coercive and the functional f : H1
D(Ω) 7→ R with

f(v) :=

∫
Ω

frvdΩ +

∫
ΓN

gNvdΓ

belongs to the dual space [H1
D(Ω)]

∗
. Thus the assumptions of Lax-Milgram

[Bra97, Sch98] are satisfied which gives us the existence and uniqeness of a solu-
tion for Problem 2.2.

However, in order to solve Problem 2.2 numerically, we have to discretize it. To
that end we cover the domain Ω with an admissible shape-regular FE-mesh T
consisting of tetrahedra (see, e.g. [Cia76]) and choose a polynomial degree p. On
the reference tetrahedron K̂ we denote with Pp(K̂) the space of polynomials of
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total degree less or equal p and with FK : K̂ → K we denote the affine linear
element map of K ∈ T to K̂. Then we define finite element spaces

Sp(Ω, T ) := {u ∈ H1(Ω) | u|K ◦ FK ∈ Pp(K̂) ∀K ∈ T },
Sp

D(Ω, T ) := Sp(Ω, T ) ∩H1
D(Ω)

and replace the infinite dimensional space H1
D(Ω) by V := Sp

D(Ω, T ) in Prob-
lem (2.2). This gives the finite dimensional problem
Problem 2.3 (Discretized problem). Find u ∈ V such that

a(u, v) = f(v) ∀ v ∈ V .

Now, if we define an Operator A : V 7→ V∗ via

[Au](·) := a(u, ·)

Problem 2.3 becomes equivalent to a finite dimensional operator equation in V∗.
Problem 2.4 (Operator equation). Find u ∈ V such that

Au = f. (1)

3 PCG-algorithm

Since the operator A with [Au](v) := a(u, v) is related to a symmetric posi-
tive definite bilinear form a(·, ·) we can solve Problem (2.4) by the well-known
PCG-algorithm. At this point one usually introduces a basis for the FE-space
V (see Remark (3.2) below). Thus, V and the dual space V∗ equiped with the
corresponding dual basis become equivalent to RN and the PCG-algorithm can
be considered in RN using matrix-vector operations. However, for this paper it is
more convenient to postpone the definition of a basis and to consider the PCG-
algorithm in a slightly more abstract way, namely as an algorithm which operates
in the FE-space V and its dual space V∗. Before we formulate the algorithm, we
define for given u ∈ V a corresponding residuum functional ru ∈ V∗ via

ru := Au− f.

and omit the index u whenever it is clear from the context.
Algorithm 3.1 (PCG).

• Choose an initial guess u ∈ V and compute its residuum functional r ∈ V∗.

• Apply a preconditioner C−1 : V∗ 7→ V:

q = w = C−1r ∈ V .
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• Compute γ = r(w).

• While not converged do
1. v = Aq ∈ V∗
2. α = −γ/v(q) ∈ R
3. u = u+ αq ∈ V
4. r = r + αv ∈ V∗
5. w = C−1r ∈ V
6. γ̂ = r(w) ∈ R
7. q = w + (γ̂/γ)q ∈ V
8. γ = γ̂ ∈ R

An important issue concerning an iterative solver is its convergence rate. In the
case of the PCG-Algorithm (3.1) this convergence rate is strongly related to the
precondioner C−1. If we define the energy norm ‖ · ‖A and the condition number
κ of C−1A via

‖w‖2
A := a(w,w) and κ :=

λmax(C−1A)

λmin(C−1A)
,

then it is a well-known fact that with the initial guess u0 and the exact solution
u∗ of Au = f the i-th initerate ui of the PCG-algorithm (3.1) satisfies

‖ui − u∗‖A ≤ 2

(√
κ− 1√
κ+ 1

)i

‖u0 − u∗‖A.

Remark 3.2. Later we introduce a basis Φ = [φ1, . . . , φN ] for our FE-space V
and the dual basis Ψ = [ψ1, . . . , ψN ] for V∗. With such bases each u ∈ V becomes
equivalent to a vector u ∈ RN

u =
N∑

i=1

uiφi ∈ V ⇔ u = (u1, . . . , uN)T ∈ RN

and, moreover, each f ∈ V∗ becomes equivalent to a vector f ∈ RN

f =
N∑

i=1

f
i
ψi ∈ V∗ ⇔ f = (f

1
, . . . , f

N
)T = (f(φ1), . . . , f(φN))T ∈ RN .

Hence, since the matrix representation of the operator A is a matrix whose k-th
column is the vector representations of Aφk ∈ V∗ with respect to Ψ, we obtain

A : V 7→ V∗ ⇔ A =

 a(φ1, φ1) . . . a(φN , φ1)
...

...
a(φ1, φN) . . . a(φN , φN)

 ∈ RN,N .

With these matrix and vector representations we obtain the equivalences

v = Aq ⇔ v = Aq, γ = r(w) ⇔ γ = wT r, ...

and we end up with the well-known RN -version of the PCG-algorithmn.
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4 Adaptive FEM

Considering Problem 2.2 it is not common practice to start with a highly refined
mesh to compute an approximate solution. Instead we start on a coarse grid
with as few nodes as possible. We compute the corresponding FE-solution and,
thereafter, in order to improve the accuracy of the approximation, we employ
an a-posteriori error estimator which gives us information about the error dis-
tribution and flags all elements with large local error. Next we refine all flagged
elements and obtain a finer mesh. We compute a new approximation of higher
accuracy, estimate the error for this new approximation and in case the approxi-
mation is not sufficently accurate a new iteration of the adaptive loop is begun.
Thus, we obtain a sequence of refined meshes together with FE-solutions of in-
creasing accuracy. That is we have

coarse grid
(0)

- stiff. matrix
(1)

- FE-solution
(2)

-
error est.

(3)
- refined mesh

(4)

?

In this paper we focus on tetrahedral meshes without hanging nodes. A suited
algorithm for local mesh refinement which avoids hanging nodes can be found in
[AMP00].

5 Additive-Schwarz-Method(ASM)

As we have already seen in Section 3, the key to solve the arrising system of linear
equations with only a few PCG-iterations is the definition of a good precondi-
tioner C. The preconditioners which we will consider are the BPX-preconditioner
for the piecewise linear functions of S1(Ω, T ) and an overlapping preconditioner
for the higher polynomial degrees of Sp(Ω, T ). Both preconditioners can be con-
sidered as members of the class of Additive-Schwarz-preconditioner which means
they are completely determined by a not necessarily direct decomposition

V := Sp
D(Ω, T ) =

K∑
i=0

Vi

of our finite element space V into subspaces Vi. The action of such a precon-
ditioner is best described by the realization of C−1r, where r ∈ V∗ denotes the
residuum.
Definition 5.1 (ASM-preconditioner). For each subspace Vi find wi ∈ Vi such
that

a(wi, v) = r(v) ∀v ∈ Vi.
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Then

C−1r :=
K∑

i=0

wi.

We see, the computation of C−1r is equivalent to solve local versions of the orig-
inal problem for all subspaces Vi. However, these subspaces are ordinarily low-
dimensional in contrast to the FE-space V .

In order to analyze ASM-preconditioners we define C2
0 such that

min

{
K∑

i=0

a(ui, ui)
∣∣∣ u =

K∑
i=0

ui, ui ∈ Vi

}
≤ C2

0a(u, u) ∀ u ∈ V (2)

and denote with ρ(E) the spectral radius of the matrix E = [eij]
K
i,j=1 with entries

eij = sup
u∈Vi

sup
v∈Vj

|a(u, v)|√
a(u, u)

√
a(v, v)

∈ [0, 1], (3)

which are the angles between the subspaces V1, ...,VK . With these settings we
are able to derive a bound for the condition number of C−1A.
Theorem 5.2.

κ(C−1A) ≤ C2
0(1 + ρ(E)).

Proof. See Section 10.

6 MDS-BPX

In the following two sections we will introduce the Multilevel-Diagonal-Scaling-
BPX (MDS-BPX) as an additive Schwarz preconditioner for V = S1

D(Ω, T ) and
describe its implementation in detail.

To that end we assume that we are within an adaptive FE-process (see Section 4)
which started on a coarse grid T0 and produced a sequence of nested tetrahedral
meshes

T0 ⊂ T1 ⊂ . . . ⊂ TM = T .

We define

V m := Set of all free vertices on Tm

:= Set of all vertices of Tm which are not located on ΓD,

and we denote with φm
v the hat function on Tm with respect to the vertex v.
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We define one-dimensional subspaces

Vm
v := spanφm

v .

and equip the finite element space V with the basis {φM
v | v ∈ V M}.

Then, in the context of ASM, the MDS-BPX-preconditioner is defined by the
decomposition

V =
M∑

m=0

∑
v∈V m

∗
Vm

v , (4)

where the “∗” indicates that the summation is only over pairwise distinct spaces
Vm

v . For {Tm}Mm=0 arising from a total or a boundary concentraded mesh refine-
ment it is shown that the BPX-preconditioner yields

κ(C−1A) = O(1) for M →∞, (5)

independent on the dimension of Ω (see [Eib06, Xu90, Xu92, Zha92]) and for
adaptive mesh refinements all numerical examples indicate that (5) is valid too.

Due to Definition 5.1 of general ASM-preconditioners, the finite element space
decomposition (4) and the fact that all subspaces Vm

v are one-dimensional spaces,
we compute for a given residuum r ∈ V∗ the BPX-preconditioner as

C−1r =
M∑

m=0

∑
v∈V m

∗
(

r(φm
v )

a(φm
v , φ

m
v )

)
φm

v . (6)

To illustrate Splitting (4) we want to close this section with a one-dimensional
example.
Example 6.1. For Ω = (0, 1), ΓD = ∅, given bilinear form a(·, ·), and given
right hand side functional f we want to solve Problem 2.2. Assume we started
with a coarse grid T0 and that our adaptive FE-algorithm produced a sequence of
meshes T0, ..., T3 as in shown in Figure 1 so far.

According to (4) Example 6.1 induces the splitting

V = S1(Ω, T3) = (V0
1 + V0

2 ) + (V1
1 + V1

2 + V1
3 ) + (V2

1 + V2
3 + V2

4 ) + (V3
1 + V3

4 + V3
5 ).

That is, we start with adding up all subspaces of the coarse grid and thereafter,
since no subspace of T1 is equivalent to V0

1 or V0
2 , we have to add all subspaces of

T1. When we come to the subspaces of T2 we only add V2
1 , V2

3 , V2
4 and omit V2

2

since this subspace is equivalent to V1
2 and hence already a part of our splitting.

Finally we consider the subspaces of T3 and it remains to add V3
1 , V3

4 , V3
5 .
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Figure 1: 1D-example of a sequence of adaptively refined meshes
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Remark 6.2. We number the nodes of TM consecutively from 1 to NM such
that if Nm denotes the number of nodes of Tm the nodes of Tm correspond to the
numbers 1, . . . , Nm for m = 0 . . .M . Thus, due to this isomorphism between the
nodes of Tm and the numbers {1, . . . , Nm} we also write φm

i instead of φm
v for a

vertex v with number i. Similarly we may write Vm
i for Vm

v .

7 Implementation of the MDS-BPX

Now, after we have seen the definition of the BPX-preconditioner, the remaining
question is, how to evaluate the double sum (6) fast and efficiently, which means
with at most O(NM) work and at most O(NM) additional memory, independent
on the number of mesh refinements.

The key of our implementation is a properly chosen data-structure the so called
extended vertex tree table or short EVT-table, which will be introduced in the
following subsection.

7.1 Preliminary work

In order to compute C−1r for a given residuum r ∈ V∗ we need r(φm
v ) and

a(φm
v , φ

m
v ) for several but not all basis functions φm

v .

Since the summation (4) is only over pairwise distinct spaces Vm
v we observe,

that starting with all subspaces V0
v for v ∈ V 0 we have to add for m = 1, . . . ,M

exactly all those subspaces Vm
v which correspond to a vertex v, newly created on

Tm, or one of its parents. That is, for fixed Tm we need r(φm
v ) and a(φm

v , φ
m
v ) for

all the basis functions φm
v , where v is a newly created vertex or a parent of such

a vertex.
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Remark 7.1. Newly created vertex with respect to Tm means that the vertex is
created within the refinment process Tm−1 7→ Tm. In the case m = 0 all vertices
of T0 are called newly created.

Thus, in order to provide all the required r(φm
v ) and a(φm

v , φ
m
v ), we generate an

EVT-table synchronously to the adaptive finite element process. Our EVT-table
contains one row for each node and each of these rows stores two integers and six
real numbers. To be more precisely let us consider the node with number i and
assume that this node appears first on mesh Tm. Furthermore we assume that
its parents have the numbers p1 and p2. Then the i-th row of our table provides
storage space for

r(φm
i ) a(φm

i , φ
m
i ) p1 r(φm

p1
) a(φm

p1
, φm

p1
) p2 r(φm

p2
) a(φm

p2
, φm

p2
)

Since the nodes of T0 have no parents the last columns of the first N0 rows remain
empty.

All but the r(φ∗∗) cells have to be initialized once and thereafter its contents will
never change again. Thus we call the set of cells which do not contain an r(φ∗∗)
entry static cells and the prelimiary work is to initialize the static cells of our
EVT-table.

The static cells of the first N0 rows are initialized directly after setting up the
stiffness matrix for the initial mesh T0. For v ∈ V 0 we only have to copy a(φ0

v, φ
0
v)

from the diagonal of the stiffness matrix into our EVT-table. For v 6∈ V 0 we set
a(φ0

v, φ
0
v) := 1. Thereafter the mesh refinement procedure has to record all newly

created nodes together with the numbers of its parents and after setting up the
stiffness matrix for the refined mesh we run through the rows of our EVT-table
associated with the newly created nodes and copy the required entries a(·, ·)
from the diagonal of the stiffness matrix into our table or set a(φm

v , φ
m
v ) := 1 for

v 6∈ V m, respectively.

Considering Example 6.1 this yields to:

Table 1: EVT-table for Example 6.1.

N Father1 Father2
T0 1 * a(φ0

1, φ
0
1) * * * * * *

2 * a(φ0
2, φ

0
2) * * * * * *

T1 3 * a(φ1
3, φ

1
3) 1 * a(φ1

1, φ
1
1) 2 * a(φ1

2, φ
1
2)

T2 4 * a(φ2
4, φ

2
4) 1 * a(φ2

1, φ
2
1) 3 * a(φ2

3, φ
2
3)

T3 5 * a(φ3
5, φ

3
5) 1 * a(φ3

1, φ
3
1) 4 * a(φ3

4, φ
3
4)

(Note that only the cells with a white background color are part of our data
structure.)
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7.2 Computation of C−1r - Step I

To compute C−1r for a given residuum r ∈ V∗ we assume that the preliminary
work is completed, that is we have a fully initialized EVT-table, such as Table 7.1,
at hand. Then the first step to compute C−1r is to fill all the r(φ∗∗) cells of our
EVT-table. Since we use the standard nodal basis for V and its dual basis for
V∗ the residuum r is given via a vector [r(φM

v )]v∈V M (see Remark 3.2). We also
need r(φm

i ) for m 6= M . These values are not given directly but since we know
the refinement history, we can compute them recursively from rM . At this point
and in order to simplify notation we define the extended version of the residual
vector

rm =
[
rm

1 , . . . , r
m
Nm

]
with rm

i :=

{
r(φm

i ) : if vertex i belongs to V m

0 : otherwise

and we assume that our finite element code provides the extended rM rather than
the compact version which omits the entries r(φm

v ) for v 6∈ V m.

Considering Example 6.1 the T3 section of the corresponding EVT-table 7.1 tells
us:

φ2
1 = φ3

1 +
1

2
φ3

5, φ2
4 = φ3

4 +
1

2
φ3

5, and φ2
i = φ3

i for i 6∈ {1, 4}.

Thus we have

r
(
φ2

1

)
= r

(
φ3

1

)
+

1

2
r
(
φ3

5

)
, r

(
φ2

4

)
= r

(
φ3

4

)
+

1

2
r
(
φ3

5

)
,

and
r
(
φ2

i

)
= r

(
φ3

i

)
for i 6∈ {1, 4}.

Generally spoken, in order to obtain rm−1 from rm we go through the rows i =
Nm−1 + 1, . . . , Nm of our EVT-table and compute for the parents p1 and p2 of
vertex i

rp1+ =
1

2
ri if the vertex with number p1 belongs to V m−1 and

(7)

rp2+ =
1

2
ri if the vertex with number p2 belongs to V m−1.

These operations are performed in place, directly on rm without any auxiliary
vector and finally the first Nm−1 positions of the input vector rm contain the
entries of rm−1.

That is, given an initialized EVT-table and the extended residuum vector rM ,
we fill all r(φm

i ) cells of our EVT-table by the following algorithm:

10



Algorithm 7.2.
for m = M, . . . , 0
{

for i = Nm−1 + 1, . . . , Nm

copy r(φm
i ), r(φm

p1
), r(φm

p2
) from rm into the i-th row of our EVT-table

if m > 0
compute rm−1 from rm

}

Considering Example 6.1 once again, we arrive at:

N Father1 Father2
T0 1 r(φ0

1) a(φ0
1, φ

0
1) * * * * * *

2 r(φ0
2) a(φ0

2, φ
0
2) * * * * * *

T1 3 r(φ1
3) a(φ1

3, φ
1
3) 1 r(φ1

1) a(φ1
1, φ

1
1) 2 r(φ1

2) a(φ1
1, φ

1
1)

T2 4 r(φ2
4) a(φ2

4, φ
2
4) 1 r(φ2

1) a(φ2
1, φ

2
1) 3 r(φ2

3) a(φ2
1, φ

2
1)

T3 5 r(φ3
5) a(φ3

5, φ
3
5) 1 r(φ3

1) a(φ3
1, φ

3
1) 4 r(φ3

4) a(φ3
4, φ

3
4)

7.3 Computation of C−1r - Step II

Now with a complete EVT-table at hand we want to add up all

ŵm
v :=

(
r(φm

v )

a(φm
v , φ

m
v )

)
φm

v

of sum (6). To that end we start with w = 0. The variable m goes step-by-step
from 0 to M and in each step we add all the required contributions ŵm

v of level
m to w. Obviously, the intermediate result

wk :=
k∑

m=0

∑
v∈V m

∗
ŵm

v

is an element of S1(Ω, Tk) and thus its most appropriate representation is the
vector wk = [wk

1, . . . , w
k
Nk

] with

wk =

Nk∑
i=1

wk
i φ

k
i .

That is, we start with w = [0, 0, ..., 0], the vector representation of w = 0 with
respect to the basis {φ0

1, . . . , φ
1
N0
} of S1(Ω, T0) and apply the following algorithm

11



Algorithm 7.3.
for m = 0, . . . ,M

(0) Clear all flags.
(1) Add

∑
v∈V m

∗ ŵm
v to the current w given as w = [wm

1 , . . . , w
m
Nm

] with

w =
Nm∑
i=1

wm
i φ

m
i .

(2) If m < M
decompose w after the S1(Ω, Tm+1) basis such that

w =

Nm+1∑
i=1

wm+1
i φm+1

i

and set w = [wm+1
1 , . . . , wm+1

Nm+1
].

Let us consider parts (1) and (2) of Algorithm 7.3 in detail.

In part (1), all we have to do is to go through the rows i = Nm−1 + 1, ..., Nm of
our EVT-table. From each row we read the numbers p1 and p2 of the parents of
vertex i, compute

wm
i + = r(φm

i )/a(φm
i , φ

m
i ) if vertex i belongs to V m ,

wm
p1

+ = r(φm
p1

)/a(φm
p1
, φm

p1
) if vertex p1 is not flagged and belongs to V m,

wm
p2

+ = r(φm
p2

)/a(φm
p2
, φm

p2
) if vertex p2 is not flagged and belongs to V m,

and finally flag the vertices p1 and p2. All required data can be found in the
i-th row of our EVT-table, the flags are necessary to ensure that we add the
r(φm

pk
)/a(φm

pk
, φm

pk
) terms only once, see Remark 7.5.

In part (2) we convert the current vector representation of w with respect to the
S1(Ω, Tm) basis into a vector representation of w with respect to the S1(Ω, Tm+1)
basis. To do so we have to extent the vector representation [wm

1 , . . . , w
m
Nm

] to
[wm+1

1 , . . . , wm+1
Nm+1

] with

wm+1
i :=

{
wm

i for i ≤ Nm
1
2
(wm

p1
+ wm

p2
) for i ∈ {Nm + 1, . . . , Nm+1}

,

where p1, p2 are the parents of vertex i. Now we have the desired vector rep-
resentation of w with respect to the S1(Ω, Tm+1) basis and once again, all the
required data could be obtained directly from the i = Nm + 1, . . . , Nm+1 rows of
our EVT-table.

12



Remark 7.4. The extension of w to length Nm+1 is mere formality. In general
we start with a vector w of length NM from the very beginning and an extension
as above is simply a change of the upper array index.
Remark 7.5. Consider Example 6.1 and assume that we obtain a mesh T4 by
subdividing the elements (1, 5) and (4, 5) of T3. That is we get

3 2451 6 7

T
4
:

and our EVT-table looks like

N Father1 Father2
...

...
...

...
...

T4 6 r(φ4
6) a(φ4

6, φ
4
6) 1 r(φ4

1) a(φ4
1, φ

4
1) 5 r(φ4

5) a(φ4
5, φ

4
5)

7 r(φ4
7) a(φ4

7, φ
4
7) 4 r(φ4

4) a(φ4
4, φ

4
4) 5 r(φ4

5) a(φ4
5, φ

4
5)

Now, adding all w4
v contributions of (6) means to perform

w+ =
∑
i∈I

(
r(φ5

i )

a(φ5
i , φ

5
i )

)
φ5

i with I = {1, 4, 5, 6, 7}.

However, if we went through the rows of the T4 section of our EVt-table the vertex
with number 5 appears twice as a parent and consequently we would add(

r(φ5
5)

a(φ5
5, φ

5
5)

)
φ5

5

twice. The easiest way to avoid such an undesired doubling is to use a flag for
each node.

8 Numerical example

In this section we present some numerical examples to demonstrate the efficiency
of our BPX-implementation. All examples start with a coarse grid T0 of the
given domain and then we create a sequence of nested meshes by applying the
mesh refinement algorithm of [AMP00]. This algorithm is based on the bisection
of tetrahedra and allows us to construct locally refined meshes without hanging
nodes.
Example 8.1. Let Ω = (0, 1)3, ΓD = (0, 1) × (0, 1) × {0, 1} and ΓN = ∂Ω\ΓD.
Let {Ti}Mi=0 be a sequence of nested meshes on Ω. Find u ∈ V := S1

D(Ω, TM) such
that ∫

Ω

∇u · ∇v + uvdΩ =

∫
Ω

frvdΩ ∀ v ∈ V ,

where the right hand side is given by fr = 1 +
∑3

i=1 x
2
i .
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Table 2: Total mesh refinement, C2
res = 10−6

M Elements DoF It Total[s] Precond[s] Ratio
0 6 8 7 6.1e-05 1.8e-05 0.29
1 14 10 8 8.4e-05 2.4e-05 0.28
2 30 17 8 1.2e-04 3.3e-05 0.28
3 70 31 9 2.2e-04 5.4e-05 0.24
4 166 58 11 5.0e-04 1.0e-04 0.20
5 414 120 12 5.1e-04 9.1e-05 0.17
6 990 256 15 1.4e-03 2.1e-04 0.14
7 2.420 554 16 3.5e-03 4.3e-04 0.12
8 5.718 1.251 17 8.8e-03 1.1e-03 0.12
9 13.460 2.768 19 2.6e-02 3.4e-03 0.13

10 30.960 6.172 19 6.1e-02 7.7e-03 0.12
11 70.932 13.617 20 1.5e-01 1.9e-02 0.12
12 158.904 30.809 20 3.6e-01 5.1e-02 0.14
13 355.674 65.614 21 8.5e-01 1.3e-01 0.15
14 782.288 146.532 21 1.9e+00 3.1e-01 0.15
15 1.717.898 317.675 21 4.4e+00 7.0e-01 0.16
16 3.723.834 681.607 22 1.0e+01 1.7e+00 0.16
17 8.067.178 1.466.444 22 2.3e+01 3.8e+00 0.16
18 17.284.898 3.191.462 22 5.4e+01 8.5e+00 0.15
19 37.051.776 6.646.901 22 1.4e+02 2.9e+01 0.21

We consider two different scenarios. At first we consider the case where the mesh
Ti+1 is derived from Ti by a total mesh refinement. Thereafter, in a second run,
we employ a standard residuum error estimator to refine only those elements with
high local error and hence obtain a sequence of locally refined meshes.

All iterations start with an initial guess u = 0 and we use the PCG-algorithm in
conjunction with our implementation of the BPX-preconditioner to reduce the
initial residual (measured in the Euklidean norm) by a given factor Cres. That is
we iterate until r2

i < C2
resr

2
0.

The results of the experiments are collected in Table 2 and Table 3.

The column “Elements” shows the number of tetrahedra and “DoF” denotes the
dimension of the finite element space S1

D(Ω, TM). The column “It” gives the
number of PCG iterations required to reduce the residual by Cres. “Total” is the
computing time of the PCG algorithm including the application of the precondi-
tioner and the column “Precond” contains the time to execute the preconditioner.
Finally the column “Ratio” gives the quotient of “Total” and “Precond”.

As we can see, the preconditioner leads to small iteration numbers and its eval-
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Table 3: Adaptive mesh refinement, C2
res = 10−8

M Elements DoF It Total[s] Precond[s] Ratio
1 6 8 8 1.1e-04 2.2e-05 0.20
2 11 9 7 7.7e-05 2.0e-05 0.26
3 16 11 9 9.2e-05 2.7e-05 0.29
4 23 14 9 1.1e-04 3.2e-05 0.29
5 32 18 10 1.4e-04 4.4e-05 0.31
6 46 24 10 9.1e-05 3.0e-05 0.33
7 108 39 12 1.7e-04 4.5e-05 0.26
8 182 58 13 2.7e-04 6.4e-05 0.23
9 298 97 14 4.4e-04 9.2e-05 0.21

10 508 152 16 8.1e-04 1.5e-04 0.18
15 8.040 1.694 22 1.7e-02 2.3e-03 0.13
20 108.055 21.227 26 3.3e-01 4.4e-02 0.13
25 1.209.941 227.229 28 4.1e+00 6.9e-01 0.16
30 12.934.018 2.382.662 28 5.3e+01 9.5e+00 0.17

uation takes only a fraction of the total computing time of the PCG-algorithm.
Most computing time is required for the multiplication of the stiffness matrix
A with a vector q, where in our implementation this multiplication is done by
multiplications of the stored local stiffness matrices AK with subvectors qK of q
and assemblation of all the local vectors vK = AKqK .

The memory to store our EVT-table is O(NM), where NM denotes the number
of vertices of the current mesh TM and considering our algorithm as well as the
results of our numerical experiments we see that the computing time to execute
the preconditioner is of order O(NM) too. However, this computing time is to
some extent affected by memory cache effects.

9 Higher polynomial degrees

Up to now we considered finite element spaces V = S1(Ω, T ). However, often it is
useful to apply Sp(Ω, T ) with p > 1 or even a hp-version of FEM, where different
elements may have different polynomial degrees. Thus the question arrises how
to construct a preconditioner for such a setting where higher polynomial degrees
appear.

As in the previous sections, we assume that we have a sequence of nested meshes
T0 ⊂ T1 ⊂ . . . ⊂ TM and we define for v ∈ V M the patch ωM

v := ∪{K ∈ TM | v ∈
K} which is the closure of the union of all elements K ∈ TM with v as one of its
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vertices. Moreover we define for each v ∈ V M a subspace

Sv = {u ∈ Sp(Ω, TM) | suppu ⊂ ωM
v }.

Then, in the context of ASM, the splitting

Sp(Ω, TM) = S1(Ω, TM) +
∑

v∈V M

Sv

defines an overlapping preconditioner with κ(C−1A) = O(1). If we decompose
S1(Ω, TM) further, such that

Sp(Ω, T ) =
M∑

m=0

∑
v∈V m

∗
Vm

v +
∑

v∈V M

Sv,

we obtain a preconditioner for Sp(Ω, TM) which can be considered as a combina-
tion of BPX- and overlapping preconditioner. Thus, due to Definition (5.1) we
get for a given residuum r ∈ V∗ the preconditioned residuum C−1r by using the
BPX-routine from the previous sections to compute

M∑
m=0

∑
v∈V m

∗
(

r(φm
v )

a(φm
v , φ

m
v )

)
φm

v

and adding wv ∈ Sv for all v ∈ V M , given by

a(wv, u) = r(u) ∀u ∈ Sv.

That is, after applying the BPX-routine we have to solve a linear system of
equations for each subspace Sv. However, these linear systems of equations are
low-dimensional and for a fixed subspace Sv, the corresponding system matrix is
s.p.d. and always the same. Only right hand sides change.

There are two possible strategies to implement the preconditioner

1. Runtime optimal strategy: We compute a Choleky decomposition once for
each system matrix of the Sv-subproblems. We store these Choleky de-
compositions and reduce solving the linear systems of equations to forward
and backward substitutions. Since the polynomial degree p is fixed and
the number of tetrahedra sharing a vertex is bounded by a constant, the
dimension of Sv is also bounded by a constant and hence we have:

additional memory = O(NM).

2. Memory optimal strategy: We compute the Choleky decompositions anew
whenever we have to solve a Sv-subproblem. Since the dimension of Sv is
bounded by a constant we have

computing time for all Cholesky decompositions = O(NM).
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Table 4: Results for Example 9.1

p = 1, C2
res = 10−5 p = 3, C2

res = 10−10

Elements DoF Iterations H1-Err DoF Iterations H1-Err
6 8 2.0e-05 0 5.5e-01 64 7.3e-04 6 4.3e-02

14 10 4.1e-05 1 4.1e-01 105 2.6e-03 15 2.4e-02
30 17 4.0e-05 1 3.3e-01 211 7.2e-03 18 1.3e-02
70 31 8.1e-05 2 2.7e-01 443 2.6e-02 29 1.1e-02

166 58 2.8e-04 5 2.0e-01 950 7.8e-02 40 5.6e-03
414 120 6.4e-04 5 1.5e-01 2.248 2.1e-01 51 3.7e-03
990 256 2.7e-03 8 1.1e-01 5.077 3.0e-01 61 1.9e-03

2.420 554 2.2e-03 9 8.6e-02 11.994 8.1e-01 67 1.1e-03
5.718 1.251 5.2e-03 9 6.6e-02 27.796 2.7e+00 75 6.8e-04

13.460 2.768 1.5e-02 10 5.0e-02 63.978 6.7e+00 81 3.9e-04
30.960 6.172 3.9e-02 11 3.8e-02 145.609 1.5e+01 83 2.4e-04
70.932 13.617 9.3e-02 12 2.9e-02 330.319 3.8e+01 91 1.5e-04

158.904 30.809 2.2e-01 12 2.3e-02 736.750 8.7e+01 92 9.3e-05
355.674 65.614 4.9e-01 12 1.7e-02 1.635.004 2.0e+02 97 6.5e-05
782.288 146.532 1.2e+00 13 1.4e-02 3.594.777 4.7e+02 101 4.8e-05

1.717.898 317.675 2.5e+00 12 1.1e-02 7.864.521 1.2e+03 101 3.5e-05
3.723.834 681.607 6.1e+00 13 8.6e-03 — — — —
8.067.178 1.466.444 1.3e+01 13 6.8e-03 — — — —

17.284.898 3.191.462 3.5e+01 13 5.5e-03 — — — —
37.051.776 6.646.901 8.0e+01 13 4.2e-03 — — — —

Let us consider the following example.
Example 9.1. Let Ω = (0, 1)3, ΓD = ∂Ω. Let {Ti}Mi=0 be a sequence of nested
meshes on Ω. For p = 1, 2, 3 find u ∈ Sp(Ω, TM) with u|∂Ω = cos(x) cos(y) cos(z)
such that ∫

Ω

∇u · ∇v + uvdΩ = 4

∫
Ω

vdΩ ∀ v ∈ Sp
D(Ω, TM).

We start with u = 0 on a coarse grid and apply a total mesh refinement strategy
which gives us a sequence of nested meshes. We use the FE-solution of the current
mesh as initial guess for the FE-solution on the refined mesh and iterate until
the initial residual r0 is reduced by a given factor Cres. That is we iterate until
r2
i < C2

resr
2
0. In the first run we consider the finite element space Sp(Ω, TM) for

p = 1 and therafter we compute the runtime optimal strategy for p = 3.

The results of the experiments are collected in Table 4.

The column “Elements” shows the number of tetrahedra of the considered mesh
and “DoF” denotes the dimension of the corresponding finite element space. The
column “Iterations” gives the number of PCG iterations and the computing time
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required to reduce the initial residual by Cres. Finally the column “H1-Err” shows
the error ‖uFEM − uexact‖H1(Ω) of our finite element solution.

Since the exact solution u = cos(x) cos(y) cos(z) of Example 9.1 is a very smooth
function, the advantage of using S3(Ω, TM) instead of S1(Ω, TM) is a much smaller
error at equal number of degrees of freedom. However, due to the smaller error, we
have to increase C2

res for p = 3 which in turn yields to higher iteration numbers
and, moreover, solving all Sv-subproblems takes a lot of computing time even
if we apply the runtime optimal strategy. On the other hand we have a good
approach for a possible parallelization. These Sv-subproblems are independent
local problems, thus, if we compute them in parallel the computing time for
higher polynomial degrees will decrease significantly.

10 Proof of Theorem 5.2

In this section we want to give a proof for Theorem 5.2. We make use of the
notation of Section 5 and define operators Pi : V 7→ Vi and P : V 7→ V via

a(Piu, v) = a(u, v) ∀v ∈ Vi and P :=
K∑

i=0

Pi. (8)

Thus P = C−1A and we have to derive a bound for

κ(P ) =
λmax(P )

λmin(P )
, (9)

where λmin(P ) = inf
u∈V, u 6=0

a(Pu, u)

a(u, u)
and λmax(P ) = sup

u∈V, u 6=0

a(Pu, u)

a(u, u)
.

Lemma 10.1 (Lemma of Lions). Let C0 be given by (2). Then for all u ∈ V

‖u‖2
A ≤ C2

0a(Pu, u).

Proof. Let u ∈ V and choose a representation u =
∑K

i=0 ui such that

K∑
i=0

‖ui‖2
A ≤ C2

0‖u‖2
A with ui ∈ Vi. (10)

Then, applying (8) and Cauchy-Schwarz-inequality we obtain

‖u‖2
A =

K∑
i=0

a(u, ui) =
K∑

i=0

a(Piu, ui) ≤

(
K∑

i=0

‖Piu‖2
A

)1/2( K∑
i=0

‖ui‖2
A

)1/2

and the claim follows in combination with (10).
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Lemma 10.2. Let ρ(E) be given by (3). Then for all u ∈ V

a(Pu, u) ≤ (1 + ρ(E))‖u‖2
A.

Proof. We observe that for all u ∈ V and i ∈ {0, .., K}

‖Piu‖2
A = a(Piu, Piu) = a(u, Piu).

Hence we have ‖Piu‖2
A ≤ ‖u‖A‖Piu‖A which is

‖Piu‖A ≤ ‖u‖A ∀u ∈ V .

Next we consider

‖(P − P0)u‖2
A =

K∑
i,j=1

a(Piu, Pju) ≤
K∑

i,j=1

eij‖Piu‖A‖Pju‖A.

Since E = [eij]
K
i,j=1 is a symmetric matrix we obtain

‖(P − P0)u‖2
A ≤ ρ(E)

K∑
i=1

‖Piu‖2
A = ρ(E)

K∑
i=1

a(u, Piu)

≤ ρ(E)‖u‖A‖(P − P0)u‖A.

Thus, we finally arrive at

a(Pu, u) = a(P0u, u) + a ((P − P0)u, u)

≤ a(P0u, P0u) + ‖(P − P0)u‖A‖u‖A
≤ (1 + ρ(E))‖u‖2

A.

Lemma 10.1 and Lemma 10.2 together with (9) give he desired bound for the
condition number of P
Theorem 10.3.

κ(P ) = κ(C−1A) ≤ C2
0(1 + ρ(E)).
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