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Abstract

The object of this thesis is a graphic based interface to endoreversible thermo-
dynamics. It is meant to enable the user to visually create endoreversible systems
and add the properties of the system by choosing features from a list and in form
of equations. Then an equation system is built and the power output and efficiency
of the endoreversible system is calculated and plotted. To illustrate the functions of
the interface, some examples of heat and chemical engines are discussed.
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1 Introduction

Energy transformation processes occurring in reality are always irreversible. In many
cases these irreversibilities are important for a realistic description of such processes.
Equilibrium thermodynamics, as it evolved during the 19th century, is not capa-
ble of considering irreversibilities in an adequate way. It concentrates on reversible
processes and systems in equilibrium. In doing so it became a powerful theory but
irreversible processes are often approximated as (quasi-static) sequences of equilibria
and the irreversibilities are neglected. However, in reality processes are not designed
to be reversible or quasi-static, because the desired finite rates for energy transfor-
mation require finite and thus irreversible fluxes. Thus the irreversibilities cannot be
neglected in a precise description.

One attempt to overcome this classical thermodynamic view has been developed
during the last 30 years. It has been labelled endoreversible thermodynamics [19, 20].
In endoreversible thermodynamics a non-equilibrium system is divided into a set of
reversible subsystems, which interact with each other by exchanging energy. All
the irreversibilities occur in the interactions between the subsystems. Thus for the
subsystems itself all the powerful tools and techniques of conventional equilibrium
thermodynamics can be used while at the same time dissipative processes are no
longer neglected.

In this work an application called ‘ETA-Graphics’ is presented which enables the
user to visually create endoreversible systems by drawing their general structure, i.e.
several subsystems connected by interactions. For each interaction the properties,
such as energy fluxes, have to be set. Then the application is capable of doing
some calculations for the system. The power output and efficiency of engines can be
calculated and plotted against each other. It is also possible to change the values of
parameters needed for this calculations and thus easily investigate the behaviour of
the system under different conditions.

Chapter 2 gives an introduction to the concept of endoreversible thermodynamics
in general and the mathematical methods behind it. A first simple example illustrates
the use of the theory and its advantages compared to equilibrium thermodynamics.

In chapter 3 the structure of the application and its components is described in
detail as well as the way ‘ETA-Graphics’ is intended to be used.

Some heat engines are then discussed in chapter 4. It mainly focuses on the
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1 Introduction

Curzon-Ahlborn engine in different variants. A single Curzon-Ahlborn engine as well
as one with a heat leak and staged Curzon-Ahlborn engines are considered and their
behaviour under different circumstances is investigated both analytically and with
the help of ‘ETA-Graphics’.

Chapter 5 deals with chemical engines which have a similar structure as the
Curzon-Ahlborn heat engine. Nevertheless its structure is not equal and thus there
are differences in the general performance of these engines. Single as well as staged
chemical engines are considered.

A short conclusion together with an outlook about further improvements of the
application is given in chapter 6.

2



2 Endoreversible thermodynamics

In general an endoreversible system is a network of reversible subsystems that ex-
change energy. The mathematical description of such an endoreversible system is
quite easy. It consists of a set of balance and transport equations forming an equa-
tion system. Thus it is similar to electrical networks where the relations between the
currents and voltages are defined by the Kirchhoff rules.

However, for endoreversible systems things are a bit more complicated, since
energy is not the only quantity that is exchanged. Each energy flux is accompanied
by a flux of an extensity, that acts like a carrier for the energy. Such an extensity
could, for instance, be the entropy, the angular momentum or the particle number.

A detailed description of endoreversible thermodynamics was published by K.
H. Hoffmann et al. in [17] and [15]. In the following I will give an introduction
to endoreversible thermodynamics and the mathematical description based on these
articles.

2.1 A formal description

The basic building blocks of an endoreversible system are thermal equilibrium sub-
systems. They are described by their state variables. Because of the equilibrium of
the subsystems, one has some freedom in the choice of these state variables. Consider
for example an ideal gas. Its state can be described for instance by the volume and
the pressure but also by the volume and the entropy. To simplify the theory a special
choice of state variables, namely the energy picture, is useful. In this description
the energy is considered to be a function of all the other extensive thermodynamic
variables of a system.

In the following, Xα
i will denote the extensive thermodynamic variables of sub-

system i, like the volume Vi and the particle number Ni, all of which are counted
by α. There may be some thermodynamic variables, for example the surface of the
subsystem, that are not truly extensive, but for the sake of simplicity here they are
called extensive, too. Due to endoreversibility the entropy Si of subsystem i is a
well-defined state variable and belongs to the extensive quantities. Thus the state of
the subsystem is uniquely described by the set of its extensities Xα

i and the energy

3



2 Endoreversible thermodynamics

is

Ei = Ei(X
α
i ). (2.1)

The energy E is not only the internal energy of the subsystem, but it can also
include translational kinetic energy, rotational kinetic energy or potential energy in
one or more external fields. Elastic energy could also be included. In each case the
proper extensive variables have to be included in the set of extensities. Even pure
mechanical systems are covered with this description, which is very convenient for
instance in the combined treatment of dynamic and thermodynamic systems.

Each extensity has a corresponding intensity. Since the subsystems are in thermo-
dynamic equilibrium, all the standard equilibrium relations hold. Thus the conjugate
intensive variables can be obtained from 2.1:

Y α
i =

∂Ei(X
α
i )

∂Xα
i

. (2.2)

The conjugate intensive variable for example for the extensity entropy Si would be
the temperature Ti and the corresponding intensity for the angular momentum Li

would be the angular velocity ωi.

With this definitions the Gibbs equation becomes

dEi =
∑

α

Y α
i dXα

i . (2.3)

Due to the Gibbs equation 2.3 each influx of an extensity Jα
i = Ẋα

i into the
system carries an accompanying influx of energy Iα

i with

Iα
i = Y α

i Jα
i . (2.4)

For example a heat flux q is carried by an entropy flux q/T and an angular mo-
mentum flux M (torque) carries an energy flux ωM , where ω is the angular velocity.

2.1.1 Endoreversible systems

With these definitions it is possible to give a more precise description of endoreversible
systems:

Endoreversible systems are networks of reversible subsystems that exchange en-
ergy through interactions between them.

4



2.1 A formal description

Each subsystem i is characterised by a number of contact points through which
the subsystem receives or discards energy. Each energy flux is transported by an ex-
tensity Xα

i , for example volume or entropy. The contact points for the same extensity
in one subsystem are counted by r.

Thus each contact point has three functions assigned to it (Y α,r
i , Jα,r

i , Iα,r
i ), where

Iα,r
i is the flux of energy, Jα,r

i is the accompanying flux of the extensity and Y α,r
i is

the corresponding thermodynamic intensity for this contact point. Due to endore-
versibility these three functions are always related by

Iα,r
i = Y α,r

i Jα,r
i . (2.5)

There are two possible types of reversible subsystems, reservoirs and engines,
which are described more precisely now.

Reservoirs

A reservoir is a thermodynamic system in equilibrium, which is characterised by
either

• given intensities Y α
i : Reservoirs of this kind are infinite, i.e. the in- or outflux of

extensities does not change the value of the intensities Y α
i . An example would

be an infinite heat bath with constant temperature.

• its extensities Xα
i and its energy function Ei(X

α
i ): Reservoirs of this kind are

finite and their intensities can be determined with the help of the energy func-
tion: Y α

i = ∂Ei/∂Xα
i . Due to its internal equilibrium the intensities are uniform

throughout the whole reservoir, i.e. the intensities Y α,1
i = Y α,2

i = · · · ≡ Y α
i are

equal for all contacts r. From the balance equation for the extensities and the
energy one finds

Ẋα
i =

∑
r

Jα,r
i (2.6)

and
Ėi =

∑
α,r

Iα,r
i =

∑
α,r

Y α,r
i Jα,r

i =
∑

α

Y α
i

∑
r

Jα,r
i =

∑
α

Y α
i Ẋα

i . (2.7)

Thus extensities are neither destroyed nor produced within a finite reservoir.

Engines

Engines are reversible subsystems, which transform energy, for example from thermal
energy into mechanical energy. Its contact variables are related by special balance re-
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2 Endoreversible thermodynamics

quirements for the extensities and the energy, such that neither energy nor extensities
are produced or deposited within an engine.

For engines operating in a steady state the balance equations are

0 =
∑

r

Jα,r
i (2.8)

for the extensities and
0 =

∑
α,r

Iα,r
i =

∑
α,r

Y α,r
i Jα,r

i (2.9)

for the energy flux.

For cyclic engines with cycle time ttot the requirements are

0 =

ttot∫
0

dt
∑

r

Jα,r
i (2.10)

for the extensity fluxes and

0 =

ttot∫
0

dt
∑
α,r

Iα,r
i =

ttot∫
0

dt
∑
α,r

Y α,r
i Jα,r

i (2.11)

for the energy flux.

If the cycle time can be divided into branches during which the energy and carrier
fluxes remain constant, the integrals can be divided into sums as follows:

0 =
∑

b

tb
∑

r

Jα,r
i,b (2.12)

for the carrier fluxes and

0 =
∑

b

tb
∑
α,r

Iα,r
i,b =

∑
b

tb
∑
α,r

Y α,r
i,b Jα,r

i,b (2.13)

for the energy flux.

Interactions

The interactions describe how energy is exchanged between the contact points of
two subsystems. The contact points are connected by the interactions in a way
such that each contact point belongs to one specific interaction. The interactions

6



2.2 Example: The Novikov engine

are characterised by the set of contact points they connect and the extensity Xα
i ,

through which energy is exchanged. There are two kinds of interactions - reversible
and irreversible ones. For reversible interactions only the two contact points for
the exchanged extensity are needed. In case of irreversible interactions, entropy is
produced. Thus at least one additional contact is needed in which the produced
entropy can be deposited. The only exception would be an irreversible interaction,
for which the carrier is entropy. In this case the produced entropy can be lead through
the main interaction and there is no additional contact needed.

Energy and some of the extensities (like angular momentum) are conserved quan-
tities by nature, while others (like the particle number of chemical species) are not.
In complete interactions all the conserved quantities must balance to zero.

The two types of interactions are characterised as follows:

• reversible: The intensities at the connected contact points are equal, Y α,r
i =

Y α,r
j .

• irreversible: The interaction is defined by a transport law which gives either
the flux of energy

Iα,r
i (2.14)

or the corresponding flux of an extensity

Jα,r
i (2.15)

at each of the involved contacts. Both, energy and extensity flux, are functions
of the intensities, the extensities (for reservoirs) and of additional external
parameters. The energy fluxes are different at the two connected contacts and
thus the difference specifies the amount of energy that is deposited into the
additional contact for irreversible interactions.

2.2 Example: The Novikov engine

Now the formalism of endoreversible thermodynamics described above is applied to
a first simple example.

The Novikov engine [18] is, like the Curzon-Ahlborn engine treated later (section
4.1), a system consisting of a reversible, continuously working Carnot engine [3],
which is connected with two infinite heat reservoirs. The internal temperatures of
this Carnot engine are TiH and TiL, with TiH > TiL. The Carnot engine is in direct
contact with the heat bath of the lower temperature TL. Thus the lower temperature

7



2 Endoreversible thermodynamics

Figure 2.1: The Novikov engine consisting of a reversible Carnot-like engine, which
is coupled irreversibly with the high temperature heat bath TH. The
connection with the low temperature heat bath TL is reversible.

at the Carnot engine equals the temperature of the external heat bath, TiL = TL.
The coupling to the external bath of higher temperature TH is irreversible and is
characterised by a finite heat conductance K. Figure 2.1 shows the structure of the
Novikov engine. The two external heat baths are considered to be infinite and thus
an in- or outflux of energy does not change their temperatures.

In the picture of endoreversible systems the Novikov engine consists of one engine
- the Carnot engine - and a couple of reservoirs. Both heat baths are infinite reser-
voirs characterised by an intensity, namely their temperature. The Carnot engine
transforms a part of the thermal energy received from the high temperature bath
into mechanical energy. Let us assume that a shaft is driven with constant angular
velocity ωD. Then there are two more reservoirs needed – one that absorbs the energy
transmitted by the angular momentum of the shaft (subsystem 4, see figure 2.2) and
another one to fix the engine such that the shaft rotates and not the engine itself
(subsystem 3). For the sake of simplicity both of these reservoirs are considered to
be infinite and in direct contact with the engine. The interaction between the engine
and the latter of the two reservoirs is characterised by an angular velocity ωC = 0.

The interactions between these subsystems are characterised as follows: For the
direct contact between the engine and the low temperature heat bath the extensity
is the entropy S and thus the corresponding intensity is the temperature TL. The
flux of energy (or heat flux) qL is not limited by the reservoir but by the balance
equations of the engine (as we will see later). The flux of entropy accompanying the
heat flux is qL/TL. Since the interaction is reversible this is all that is needed to fully
describe it.

8



2.2 Example: The Novikov engine

Figure 2.2: The Novikov engine in ‘ETA-Graphics’. Subsystem 0 represents the en-
gine, subsystems 1 and 2 are the high and low temperature heat baths
and subsystems 3 and 4 are angular momentum reservoirs.

The interaction between the engine and reservoir 3 is defined by the extensity
LC (angular momentum) and the intensity ωC (angular velocity). Since ωC = 0, the
energy flux IC = ωCMC, where MC is the angular momentum flux (torque), equals
zero. However, the angular momentum flux MC does not equal zero.

The interaction between the engine and reservoir 4 is characterised by the angular
momentum LD and the angular velocity ωD. Thus the energy flux is ID = ωDMD,
where MD is the flux of angular momentum. The energy flux ID represents the
mechanical power output of the Novikov engine and thus a quantity of interest in
further calculations.

Between the high temperature heat bath and the engine there is an irreversible
interaction. The energy flux is defined by a transport law for heat. Let us assume
Newtonian heat conduction, i.e. the energy flux is qH = K(TH − TiH), where K is
a constant heat conductance. Since entropy is the extensity of this interaction, the
produced entropy due to irreversibility can be absorbed by the contact at the engine
and there is no additional reservoir needed in this case. Thus the entropy flux at the
contact at the engine is K(TH − TiH)/TiH, while at the contact point at the reservoir
the entropy flux is K(TH − TiH)/TH, which is bigger since TH > TiH.

With these subsystems and interactions the Novikov engine is fully described and
the balance equations for the Carnot engine can be set up.

9



2 Endoreversible thermodynamics

The balance equation for the energy flux (equ. 2.9) gives

0 = qH − qL − ωDMD = K(TH − TiH)− qL − ωDMD (2.16)

and from the balance equations for the extensity fluxes (equ. 2.8) one gets

0 = MC −MD and (2.17)

0 =
qH

TiH

− qL

TL

=
K(TH − TiH)

TiH

− qL

TL

. (2.18)

Solving the equation system containing equations (2.16), (2.17) and (2.18) one
obtains:

qL =
TL

TiH

K(TH − TiH) (2.19)

MD = MC (2.20)

ωD =
K(TH − TiH)(1− TL

TiH
)

MC

. (2.21)

Thus the engine’s power output P becomes

P = ωDMD = K(TH − TiH)(1− TL

TiH

). (2.22)

The maximum power is determined by setting the derivative of P with respect to TiH

equal to zero:

0 =
dP

dTiH

= K

(
THTL

T 2
iH

− 1

)
, (2.23)

from which we obtain TiH =
√

THTL. Inserting this temperature into equation 2.22
gives the maximum power output,

Pmax = K(
√

TH −
√

TL)2. (2.24)

Using equation 2.19 the efficiency for a Novikov engine can be written as

η =
qH − qL

qH

= 1− qL

qH

= 1− TL

TiH

. (2.25)

Thus the efficiency at maximum power, i.e. with TiH =
√

THTL, is

η(Pmax) = 1− TL√
THTL

= 1−
√

TL

TH

. (2.26)

Note that the efficiency at the point of maximum power output does not depend on
the heat conductance K but only on the bath temperatures TH and TL.

10



2.2 Example: The Novikov engine

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7
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Figure 2.3: Power vs. efficiency for a Novikov engine working between the tem-
peratures TH = 650◦C and TL = 25◦C. The maximum efficiency is
ηmax = 1 − TL/TH = 0.68 and the efficiency at maximum power is
η(Pmax) = 1−

√
TL/TH = 0.43.

A plot of the power over the efficiency for a Novikov engine can be seen in figure
2.3. The ratio between the temperatures of the external reservoirs for this curve is
TL/TH = 0.32. Thus the efficiency at maximum power output is η(Pmax) = 0.43.

Since the efficiency depends linearly on the inverse temperature T−1
iH , the max-

imum efficiency cannot be calculated by setting the derivative with respect to TiH

equal to zero. But from the power-efficiency curve one can see, that the maximum
efficiency for a Novikov engine can be obtained by solving the equation P = 0 for
TiH:

0 = K(TH − TiH)(1− TL

TiH

) → T
(1)
iH = TH, T

(2)
iH = TL. (2.27)

For T
(2)
iH the efficiency equals zero. Therefore the maximum efficiency is at T

(1)
iH :

ηmax = 1− TL

TH

. (2.28)

Thus the maximum efficiency equals the Carnot efficiency, which is quite reasonable,
since the Novikov engine becomes a simple Carnot engine when TiH = TH.
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3 ETA-Graphics

The aim of this graphic based interface to endoreversible thermodynamics is to en-
able users to visually construct an endoreversible system by drawing subsystems
(reservoirs and engines) and connecting them with interactions. By specifying the
interactions, i.e. by choosing the extensity and its corresponding intensity and in-
serting the energy and carrier flux, the (thermodynamic) properties of the system
are set.

The application is called ‘ETA-Graphics’, where ETA stands for ‘Endoreversible
Thermodynamics Application’ and also referrs to the Greek letter η, which is used
as a symbol for the efficiency. This seems suitable, since the efficiency is calculated
by ‘ETA-Graphics’.

3.1 Software requirements

Since the interface is developed in Java, one needs the Java Runtime Environment
(JRE) version 5.0 update 14 or a newer version to run ‘ETA-Graphics’. The JRE is
available for free at java.com. A second requirement is Wolfram Mathematica [22] to
perform the calculations. The application is developed and tested with version 6.0.0
but it may run with older versions as well. Without Mathematica the endoreversible
systems can still be created but the calculations cannot be performed.

3.2 Components of the interface

3.2.1 Main window

The main window contains different areas. The drawing panel is the area where the
endoreversible system is constructed by the user. At the beginning it is a plain white
area. To draw a new subsystem the ‘Add Subsystem’ button has to be selected. Then
a new subsystem can be drawn by pressing the left mouse button and dragging the
occurring circle to the wanted size. As the mouse button is released, the ‘New system’
dialogue appears (see fig. 3.1), where the system type, i.e. reservoir or engine, has

13



3 ETA-Graphics

Figure 3.1: The dialogue for a new subsystem in ‘ETA-Graphics’. In this dialogue
the user has to choose, whether the new subsystem is a reservoir (left
screenshot) or an engine (right screenshot). If engine is chosen, the type
has to be selected as well, i.e. whether it is a steady state engine or a
cyclic engine.

to be selected. For engines it is then possible to set whether it is a steady state or
a cyclic operating engine. If ‘Engine’ is selected as system type the shape of the
subsystem changes from a circle to a square. Thus engines and reservoirs can be
easily distinguished. All subsystems are labelled with an index that is shown at their
centre.

Interactions are added by choosing the ‘Add Interaction’ button and then click-
ing on the subsystem, from which energy is transported to another subsystem. As
the first subsystem is selected two parallel arrows representing the interaction occur
and a second system, where the energy is transported to, can be selected by clicking
into another subsystem. As soon as both subsystems are chosen a dialogue appears,
where the properties of the interaction can be set (see section 3.2.2). The third sub-
system, where the produced entropy for irreversible interactions is deposited to, is
added after setting the properties of the interaction. But it is only added in case of
irreversibility.
The interactions are labelled with letters, which are shown next to the arrows. Each
interaction is represented by two parallel arrows illustrating both, the flux of energy
and the flux of the corresponding extensity. The energy arrow is red and the second
arrow’s color is defined by the extensity that is transported through this interaction.
If the interaction is irreversible, it splits up into two arrows - one for the entropy pro-
duced due to irreversibility and one for the carrier chosen in the properties dialogue
(see for example interaction A in fig. 3.2).

The intensities get an index according to the system and the interaction they
belong to, i.e. the first index is the number of the system and the second index is the
letter of the interaction. If the interaction is reversible the intensities at both of the
connected systems are equal. Therefore they only get the index of the interaction
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3.2 Components of the interface

Figure 3.2: Main window of ‘ETA-Graphics’. In the upper left corner the buttons
needed for drawing the subsystems and interactions can be seen. In the
upper right corner there is the drawing area. The interaction table is
situated at the bottom of the main window.

they belong to.

Other elements of the main window are a table, where all the interactions and
its properties are listed, and the buttons needed for creating a system and the calcu-
lations.

3.2.2 Interaction properties dialogue

With the help of the interaction properties dialogue (see fig. 3.3) the extensity of the
interaction is chosen from a list. The corresponding intensity is added automatically.
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3 ETA-Graphics

Figure 3.3: The interaction properties dialogue of ‘ETA-Graphics’. In this dialogue
the extensity and the intensity of the interaction and the interaction type,
i.e. direct contact or transport law, are chosen. If the interaction is
irreversible, the energy and extensity fluxes have to be set. If the system
is cyclic, determination of the cycle time is needed, too.

(It is also possible to select the intensity first and then the corresponding extensity
is automatically set.) Below the extensity there is a check box that gives the user
the possibility to choose whether the extensity is conserved at this interaction. In
addition it is possible (but not necessary) to assign values to the intensities at the
two connected subsystems. The buttons to do this are right next to the intensities.

If the user wants to choose an extensity that is not listed, there is the possi-
bility to select ‘Add another extensity’ from the drop down list. Then a dialogue
appears where a new extensity as well as the corresponding intensity and symbols for
both of them have to be entered. There is also a check box where the user decides
whether the new quantity should be included in the power output needed for the
efficiency calculation. The user can also choose the color, in which the arrows for
this extensity should be painted. The new extensity-intensity-set is stored in the file
‘extensities.xml’ so that it need not be added again.

The next field gives the opportunity to choose whether the interaction should be
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reversible (selection ‘Direct contact’) or irreversible (selection ‘Transport law’). In the
reversible case the two subsystems are in direct contact without external limitations
with regard to the energy and carrier flux. However, internal balance requirements
can limit the amount of energy transported.
In case of irreversibility the interaction is defined by a transport law either for the
exchanged energy or the extensity that carries the energy. In the dialogue there are
four fields, in which transport laws for the energy or the carrier at the two connected
subsystems respectively can be inserted. If ‘Conserved quantity’ is selected, the
carrier fluxes at the connected systems have to be equal. Thus only one of the fields
for carrier fluxes is enabled and the second one is filled automatically.
If the energy flux at one contact point is set, the corresponding extensity flux is added
automatically and vice versa. That is possible because energy and extensity flux are
connected by equation 2.5.

For irreversible interactions a third subsystem is added to the interaction. It is
a reservoir, where the produced entropy or the dissipated energy is deposited to. If
the extensity is a conserved quantity, the amount of dissipated energy is calculated
automatically from the difference between the energy fluxes at the two connected
subsystems. If the extensity is not a conserved quantity, there are three possibilities
to set the amount of dissipated energy. As soon as both energy fluxes are set, the
dissipated energy is calculated automatically. The second way is to specify only one
energy flux and the percentage of the total energy that is transported to the extra
reservoir. For example one can set that 5 per cent of the total energy is transformed
into heat due to dissipation processes. The third possibility is to give an equation
for the dissipated energy and one energy flux.

If the extensity for an irreversible interaction is entropy, it is possible to deposit
the additionally produced entropy via the main interaction and there is no third
contact needed.

3.2.3 Interaction table

In the interaction table at the bottom of the main window (see figure 3.2), all in-
teractions of the system are listed. In the first column one can find the labels of
the interaction. The second column shows which subsystems are connected by this
interaction. The extensity, through which energy is transported, and the colour, in
which its arrow is drawn, are also listed (column 4 and 5) as well as the corresponding
intensities at the connected contact points (column 3). The last four columns contain
the fluxes of energy and of the extensity at the two main contacts of the interaction.

If an interaction is irreversible the part of the interaction for the dissipated energy
is also listed in the table in an extra row. Since it is not a single interaction that
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3 ETA-Graphics

connects two subsystems, all the cells, which represent quantities at the subsystem
where the interaction starts, remain empty. In column 2 only the subsystem, which
takes the produced entropy, is listed.

If the interaction is reversible, the fluxes of energy and an extensity are equal at
both ends of the interaction. Thus they are only printed once in the interaction table
and the field for the fluxes at the beginning of the interaction are empty.

The interaction table is also the place where interactions can be edited or deleted.
By selecting an interaction and then right-clicking, a menu with the options ‘Delete
Interaction’ and ‘Edit Interaction’ is opened. When ‘Edit Interaction’ is chosen, the
same dialogue as for a new interaction appears but the fields are already filled with
the current properties of the interaction. Then these properties can be changed. If
‘Delete Interaction’ is chosen from the menu, the selected interaction is removed. If
the removed interaction was irreversible, the reservoir for the dissipated energy is
removed as well if it has no other interactions. It is not possible to edit or delete
the row, which contains the part of an interaction for entropy deposition, on its own.
These rows can only be changed via the main interaction they belong to.

3.2.4 Solution window

By pushing the ‘Calculate’ button an equation system is created. For each engine in
the system the balance equations - one for the energy flux and one for each extensity
flowing in and out of the engine - are formed (see section 2.1.1). All these equations
are put into one equation system, which is then solved by Mathematica [22]. The
variables, for which the system should be solved, can be entered in the ‘Solve for’
field above the ‘Calculate’ button. If this field is left blank, the application chooses
the variables by itself, observing the following rules:

1. The number of variables chosen equals the number of balance equations.

2. First of all the variables occurring in the equation for the power output of the
engines are chosen, i.e. from those interactions, whose extensities are chosen to
be considered for the power output. These variables are chosen first because
the power output is the quantity of interest in most cases. For the Novikov
engine this would be ωD and MD.

3. Then, if needed, the variables from the other output (e.g. heat) are considered
following a hierarchy according to their position. That means variables at
engines are chosen before those at reservoirs and before external parameters.
For the Novikov engine this gives qL.
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Figure 3.4: The solution window of ‘ETA-Graphics’. The solutions of the equation
system can be seen at the top of the window. In the middle the efficiency
and the power output of the system are displayed and at the bottom of
the window the power vs. efficiency plot is shown.

4. If there are still variables needed afterwards, i.e. the number of balance equa-
tions is still bigger than the number of variables, then the variables from the
input equations are considered. For the Novikov engine there are no more vari-
ables needed, since there are only three balance equations (one for the energy,
one for entropy, and one for angular momentum) and there are two variables
from the power output equation and on from the heat output.

The solutions for the equation system, which are calculated using Mathematica,
are then shown in a new window (see fig. 3.4). This window also contains some more
components. It is possible to calculate the efficiency and the power output of an
endoreversible engine and plot these two quantities against each other. In order to
get this plot some additional input is needed. Therefore after pressing the ‘Plot Power
vs. Efficiency’-button the user is asked to assign values to the variables occurring in
the equations for efficiency and power (see fig. 3.5). One variable has to be chosen as

19



3 ETA-Graphics

Figure 3.5: The dialogue for the input of values for the variables occurring in the
efficiency and power equation. One of the variables has to be chosen as
the parameter for the plot and a range for this parameter has to be set.
For all other variables the input of a value is needed.

the parameter, which changes within a user-specified range to produce a parametric
plot of the power versus the efficiency. The equations for the power output and the
efficiency are both shown in the solution window beneath the solution of the equation
systems.

There is another button, which can be used to change the input made for the
plot. After pressing the ‘Change parameters’-button the same window as for the
initial input occurs but the current values are shown. Thus they can be changed and
it is easy to get the plot for different combinations of values.

3.3 Menu structure

3.3.1 File menu

Load and save

It is possible to save an endoreversible system created in ‘ETA-Graphics’. By selecting
the ‘Save’ menu item the current system is stored as an XML-file. All the subsystems
and its interactions as well as the properties of the interactions are saved.
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With the ‘Load’ menu item these files can be loaded into ‘ETA-Graphics’. The
system is drawn to the drawing panel and the interaction properties are written in
the interactions table. Then this system can be edited and calculations can be made.

Properties

In the properties dialogue some settings needed for Mathematica have to be made.
If the application is running on Windows or Mac OS X the directory, where the
MathKernel can be found, has to be set. On Unix this is not necessary.

The properties dialogue is shown automatically when the application is started for
the first time. Then the settings are saved since normally there is no need to change
them again. Only if the directory of the MathKernel changes (e.g. after installing a
newer version) the settings have to be updated via the menu item ‘Properties’.

Reset

The reset menu item can be used to delete the current system completely. The
drawing panel is cleared as well as the interactions table. The application is set back
to its initial configuration which it has after the start of ‘ETA-Graphics’. The image
files produced during the calculations are also deleted.

All of this is also done when a new system is loaded from an XML-file and when
the user quits the application.

Quit

When the ‘Quit’ menu item is chosen, the reset is run to delete the image files
produced in background and the application is exited.
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4 Heat engines

In this chapter some more complex heat engines are investigated with the help of
‘ETA-Graphics’ to show how it works and what results can be achieved using it. The
focus lies on different types of Novikov and Curzon-Ahlborn engines. Different heat
transfer laws (sec. 4.4) are considered as well as heat leaks (sec. 4.2 and 4.3.2) and
combinations of two heat engines (sec. 4.3).

4.1 The Curzon-Ahlborn engine

The Curzon-Ahlborn engine [9] is a heat engine that transforms heat into mechanical
power. It consists of a cyclic Carnot engine operating between the higher temperature
TiH and the lower temperature TiL. The Carnot engine is coupled with two heat
reservoirs at the constant temperatures TH and TL and the coupling is irreversible
and obeys the Newtonian heat transfer law. Figure 4.1 shows the schematic structure
of a Curzon-Ahlborn engine. Part of the thermal energy influx is transformed into
mechanical energy. In this example it is assumed that a shaft is driven with angular
velocity ω. For the sake of simplicity the mechanical interactions are considered to
be reversible, i.e. there is for instance no loss of energy through friction. Thus the
finite-rate heat transfers between the heat reservoirs and the engine are the only
irreversibilities occurring in this system.

4.1.1 Analytical approach

Curzon-Ahlborn engines have been widely discussed in literature. The maximum
power output as well as the optimal efficiency and optimal operation paths have
been investigated (see, for instance, [13, 16, 19, 20]).

The heat transferred between the high temperature reservoir and the engine is
given by

QH = KHtH(TH − TiH) (4.1)

and the heat transferred between the engine and the low temperature reservoir is
given by

QL = KLtL(TiL − TL). (4.2)
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4 Heat engines

Figure 4.1: The Curzon-Ahlborn engine consisting of a reversible engine in the centre
with the working temperatures TiH and TiL and two infinite heat baths
with temperatures TH and TL. The couplings between the engine and the
two reservoirs are irreversible.

The total cycle time for the engine is denoted with ttot. The time spent in the
isentropic branches of the cycle is considered to be negligible. Thus the total cycle
time can be divided into tH and tL; ttot = tH + tL. tH is the time during which the
heat from the high temperature reservoir is transported to the engine while during
the time tL heat is transferred to the low temperature reservoir.

According to equation 2.11 the energy fluxes of the Carnot engine subsystem
balance during a whole cycle:

0 = QH −QL −W, (4.3)

where W is the work performed by the engine.

The balance equation for the carrier (see equation 2.10), i.e. the entropy, can be
written as

0 = ∆SH −∆SL =
QH

TiH

− QL

TiL

. (4.4)

Combining equations 4.3 and 4.4 one obtains

W = QH −QL = QH(1− TiL

TiH

) = QH(1− τ), (4.5)

where τ is defined as TiL/TiH.
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With 4.1, 4.2 and 4.4 τ can be written as

τ =
QL

QH

=
KLtL(TiL − TL)

KHtH(TH − TiH)
=

KLtL(τTiH − TL)

KHtH(TH − TiH)
. (4.6)

Solving 4.6 for TiH and inserting into 4.5 yields

W = (1− τ)(TH −
TL

τ
)

KHKLtHtL
KHtH + KLtL

= CTHη
ηC − η

1− η
(4.7)

with the efficiencies

ηC = 1− TL

TH

and (4.8)

η = 1− TiL

TiH

= 1− τ (4.9)

and

C =

(
1

KHtH
+

1

KLtL

)−1

=

(
1

KHtH
+

1

KL(ttot − tH)

)−1

. (4.10)

Now the maximum power output per cycle can be obtained by setting both
(∂W/∂η)tH and (∂W/∂tH)η to zero. Since C depends only on tH and not on η the
problem factorises nicely.

The condition (∂W/∂η)tH = 0 gives a relation between the branch times and the
heat conductance coefficients:

tH
tL

=

√
KL√
KH

. (4.11)

The second condition, (∂W/∂tH)η = 0, leads to the Curzon-Ahlborn efficiency

η(Wmax) = ηCA = 1−
√

TL/TH (4.12)

at maximum work. The maximum work can be obtained by inserting 4.11 and 4.12
into 4.7:

Wmax = ttot
KHKL(√

KH +
√

KL

)2 (√TH −
√

TL

)2

. (4.13)

Comparisons with real power plants showed that the Curzon-Ahlborn efficiency
is much more realistic than the Carnot efficiency ηC. Tables with comparisons can
for instance be found in a paper by Curzon and Ahlborn [9] or in the book ‘Advanced
Engineering Thermodynamics’ by Bejan [2].

The maximum efficiency can be obtained by setting W (η) (equation 4.7) equal
to zero:

ηmax = ηC = 1− TL

TH

. (4.14)
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Figure 4.2: The Curzon-Ahlborn engine in ‘ETA-Graphics’. Subsystem 0 represents
the engine, subsystems 1 and 2 are the heat baths, and subsystems 3 and
4 are reservoirs for mechanical quantities.

4.1.2 The Curzon-Ahlborn engine in ‘ETA-Graphics’

Figure 4.2 shows a screenshot of the engine’s structure in ‘ETA-Graphics’. The square
in the centre represents the Carnot engine and the circles with number 1 and 2 are the
two infinite heat reservoirs. In addition there are two reservoirs needed: One (system
4) that takes the mechanical energy outflux of the Carnot engine and one (system 3)
to fix the engine. This fixation is needed because otherwise the engine and the shaft
would rotate antipodal. Since the angular velocity at the reservoir representing the
fixation is zero, the engine gets no energy influx through this interaction. There is also
a mathematical explanation for the need of system 3. Since the fluxes of extensities
within the engine balance to zero (see equation 2.10), the angular momentum flux
from the engine to system 4 would be zero (and thus the energy flux) if there was no
additional system 3.
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The four interactions of the system are characterised as follows:
For the interactions A and B the extensity is the entropy S and thus the corresponding
intensity is the temperature T . Both of these interactions are irreversible but since
their extensity is entropy the additionally produced entropy can be lead through the
Carnot engine and there is no additional system needed to deposit it. The heat that
is absorbed by the engine through interaction A is

QA = KHtH(T1A − T0A) (4.15)

with T1A ≡ TH and T0A ≡ TiH. The corresponding carrying extensity at the Carnot
engine is

S0A =
KHtH(T1A − T0A)

T0A

. (4.16)

For interaction B the heat leaving the engine is set to

QB = KLtL(T0B − T2B) (4.17)

with T0B ≡ TiL and T2B ≡ TL. The corresponding extensity flux at the Carnot engine
is

S0B =
KLtL(T0B − T2B)

T0B

. (4.18)

The interactions C and D are both assumed to be reversible.
The energy flux at interaction C equals zero because the angular velocity ωC is zero
(mechanical fixation of the engine). However, the flux of the extensity, i.e. the
angular momentum flux L̇C = MC, is not zero.
For interaction D the energy flux is defined as the product of angular velocity and
torque, ωDMD. Thus the corresponding flux of the extensity is MD.

With these properties the Curzon-Ahlborn engine is fully characterised. By push-
ing the ‘Calculate’ button the equation system containing the system’s three balance
equations for energy, entropy and angular momentum flux is solved for ωD, MD and
T0B. One gets:

ωD =
KHtH(T1A − T0A + KL(T0A−T1A)T2BtL

KH(T0A−T1A)tH+KLT0AtL
)

MCttot
(4.19)

MD = MC (4.20)

T0B =
KLT0AT2BtL

KH(T0A − T1A)tH + KLT0AtL
. (4.21)

Now the power output and the efficiency of the engine can be calculated and plot-
ted against each other by pressing the ‘Plot Power vs. Efficiency’ button. The result-
ing equations for the power output and the efficiency calculated by ‘ETA-Graphics’
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Figure 4.3: Power vs. efficiency curve for the Curzon-Ahlborn engine working be-
tween the temperatures TH = 650◦C and TL = 25◦C. The efficiency at the
point of maximum power is η(Pmax) = 1−

√
TL/TH = 0.43 and the max-

imum efficiency is the Carnot efficiency, ηmax = ηC = 1− TL/TH = 0.68.

are

P = KH

(
T1A − T0A −

KLT2B(T1A − T0A)

KLT0A −KH(T1A − T0A)

)
and (4.22)

η =
KL(T0A − T2B)−KH(T1A − T0A)

KLT0A −KH(T1A − T0A)
. (4.23)

Then the user has to decide which of the variables in the power and efficiency
equation should be the parameter for the plot. This parameter is then changed within
an user-specified range in order to get the plot. The user is also asked to give values
for the constants and parameters in the power and efficiency equation.

The resulting plot can be seen in figure 4.3. The temperature T0A was chosen as
the parameter for this plot. The ratio TL/TH is 0.32 and thus the power maximum is
reached at the efficiency η(Pmax) = 1−

√
TL/TH = 0.43 and the maximum efficiency

is ηmax = ηC = 1− TL/TH = 0.68, which is the Carnot efficiency.
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Figure 4.4: The structure of a Curzon-Ahlborn engine with heat leak. The leak is in-
cluded as an irreversible interaction between the external heat reservoirs.
The heat leak has no influence on the power output of the engine but on
the efficiency.

4.2 Heat engines with heat leaks

In real heat engines it is not avoidable to loose some of the heat via heat leaks. For
example through the walls of combustion chambers and engines heat is lost. These
losses significantly influence the performance of the engines and therefore should not
be neglected.

In figure 4.4 the structure of an extended Curzon-Ahlborn engine with a heat
leak is shown. Part of the heat coming out of the high temperature reservoir is going
directly to the low temperature reservoir.

This heat leak has neither an influence on the balance equations nor on the work
output of the engine. However, it affects the efficiency of the engine since the heat lost
through the leak is included in the work or energy input that is needed to calculate
the efficiency. Thus the efficiency is given as

η =
Wout

Qin + Qleak

. (4.24)

Let us assume the heat transfer law for the heat leak as well as for the two other
irreversible heat transfers is the Newtonian heat transfer law, i.e. the amount of heat
is proportional to the temperature difference (Qleak = Kleakttot(TH − TL)).
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Figure 4.5: Power vs. efficiency plot for the Curzon-Ahlborn engine with heat leak
working between the temperatures TH = 650◦C and TL = 25◦C. The heat
conductances are KH = KL = 1 and Kleak = 0.1.

Thus the the efficiency becomes

η =
P

QH + Kleakttot(TH − TL)
. (4.25)

Figure 4.5 shows a plot of the average power (work per cycle time) P versus the
efficiency η. The plot shows the loop-type behaviour for engines with heat leaks,
which is remarkably different from the behaviour of engines without heat leak. The
operation points of maximum power and maximum efficiency are close together, but
the efficiency maximum is much smaller than the Carnot efficiency.

If the temperature TiH is high, i.e. close to TH, QH is small and thus the power
output is very small, too. Since the heat lost through the heat leak remains constant,
the efficiency approaches zero. The second case where the efficiency vanishes is when
the temperature TiH gets smaller and thus equal to TiL. In this case the power output
of the engine approaches zero (cf. power-efficiency plot of a Curzon-Ahlborn engine
without heat leak; fig. 4.3). Since again the heat lost through the heat leak remains
constant, the efficiency approaches zero.
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4.3 Staged heat engines

Figure 4.6: A two-staged Curzon-Ahlborn engine working between the temperatures
TH and TL. The waste heat of the upper engine is totally used as the heat
source of the lower engine. The couplings between the two engines and
between the reservoirs and the engines are irreversible.

4.3 Staged heat engines

In the chapters before only single Carnot-like engines were considered. However, in
many applications several energy transformation devices are coupled. For example
in power plants the waste energy of a high temperature cycle is often used as the
heat source of a low temperature cycle. In this chapter the combination of two
endoreversible engines will be investigated with the help of ‘ETA-Graphics’.

Two Curzon-Ahlborn engines are combined in a way, such that the waste heat
from the first engine is totally used as the heat source of the second engine. The
engines are operating between a high temperature reservoir TH and a low temperature
reservoir TL (see figure 4.6).

Rubin and Andresen discussed this kind of staged heat engine in great detail [21]
and found that for a Curzon-Ahlborn engine operating between the temperatures TH

and TL the efficiency at maximum total power output does not change if the single
engine is replaced by two Curzon-Ahlborn engines.
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Chen and Wu [6, 5] also investigated systems of two and more combined Curzon-
Ahlborn engines and calculated the efficiency as well as the total power output.
In [5] Chen also investigated staged Curzon-Ahlborn engines with heat leaks, which
show the same qualitative behaviour as single Curzon-Ahlborn engines with a heat
leak.

4.3.1 A two-staged Curzon-Ahlborn engine in ‘ETA-Graphics’

Figure 4.7 shows a staged heat engine consisting of two Curzon-Ahlborn engines.
The interactions C, G, and H are characterised by a Newtonian heat transfer law of
the form

qi = Ki(TiH − TiL), (4.26)

where TiH is the higher temperature at the beginning of the arrow and TiL is the
lower temperature at the end of the arrow. Ki is the heat conductance coefficient for
the interaction i. Interactions A, B, E, and F are direct contacts, for which angular
momentum is the extensity and angular velocity the corresponding intensity. At
interactions A and E the angular velocities equal zero, ωA = ωE = 0, since these
interactions represent the fixation of the engines.

A plot of the power over the efficiency for a two-staged Curzon-Ahlborn engine
can be seen in figure 4.8. It has the same shape as for a single Curzon-Ahlborn engine
with the only difference that the maximum power output for the two-staged engine
is 2/3 of the power output of a single engine if the heat conductances Ki are equal.
That can easily be understood. The thermal resistance of a single Curzon-Ahlborn
engine is 1/KH +1/KL, which becomes 2/K if KH = KL = K. For the staged engine
the thermal resistance is 1/KH + 1/KM + 1/KL = 3/K (for KH = KM = KL = K).
Thus the thermal resistance of the staged Curzon-Ahlborn engine is 1.5 times higher
than that of single engine, which leads to 2/3 of the power output [21].

4.3.2 A two-staged Curzon-Ahlborn engine with heat leak

Now a heat leak is added to the staged Curzon-Ahlborn engine investigated before.
In ‘ETA-Graphics’ it is included as an irreversible interaction between the high and
the low temperature reservoirs. The energy flux for this interaction is

qleak = Kleak(TH − TL). (4.27)

In figure 4.9 the influence of the heat conductance Kleak on the shape of the
power-efficiency plot is shown. The shape of the curve converges to the shape of the
power-efficiency curve of the engine without heat leak the smaller Kleak becomes.
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Figure 4.7: A two-staged Curzon-Ahlborn engine in ‘ETA-Graphics’. Subsystems 1
and 6 are the heat reservoirs, subsystems 0 and 5 are the two engines and
subsystems 2 to 4 and 7 are angular velocity reservoirs. The interactions
C, G, and H are irreversible and the interactions A, B, E, and F are
reversible.

4.4 Heat transfer laws

So far only the Newtonian heat transfer law has been considered both for the Novikov
and the Curzon-Ahlborn engine. Other heat transfer laws are possible as well and in
general they are more complicated than the Newtonian heat transfer law. The form
of the transfer law significantly influences the behaviour of endoreversible systems.
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Figure 4.8: Power-efficiency plot for a two-staged Curzon-Ahlborn engine. The
point of maximum power output lies at the efficiency η(Pmax) = 1 −√

(TL/TH) = 0.43 and the maximum efficiency is ηmax = 1−TL/TH = 0.68.

This can be seen in the power vs. efficiency curve (fig. 4.10).

In the following an overview over some heat transfer laws, that are used in liter-
ature in general and for Novikov and Curzon-Ahlborn engines in particular, is given.
All of them have in common that the energy flow depends on the temperatures of
the two contacts connected.

4.4.1 Newtonian heat transfer law

The Newtonian heat conduction has already been used in section 2.2 and 4.1. It
is a linear heat transfer law that assumes the heat flow to be proportional to the
temperature differences of the two connected contacts:

q = K(T1 − T2). (4.28)

Because of its simplicity this heat transfer law has been widely used to study the
performance of endoreversible systems [5, 6, 9, 21]. It is a good approximation for
heat fluxes in solids. But it can also be applied to other heat transfer mechanisms
like convection if the temperature differences are small, since a dominating linear
term frequently occurs in the Taylor expansion of more general, non-linear transfer
laws.
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Figure 4.9: Power-efficiency plot for a two-staged Curzon-Ahlborn engine with heat
leak. To show the dependency on the heat conductance of the heat leak,
Kleak is set to a) Kleak = 0.5, b) Kleak = 0.1, c) Kleak = 0.01, and d)
Kleak = 0.001.

4.4.2 Radiation

Electromagnetic radiation from a hot body like the sun can serve as a heat source
for an endoreversible engine. For systems operating at high temperatures radiation
is the major transfer mechanism for heat. Typically it is described by the Stefan-
Boltzmann law for black-body radiation. Then the heat flux between two radiating
bodies at temperatures T1 and T2 is given by

q = K1T
4
1 −K2T

4
2 , (4.29)

where the coefficients K depend on the Stefan-Boltzmann constant, the emittances
of the two radiating bodies, and geometry factors.

This heat transfer law is typical for solar collectors.
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Example: Novikov engine with radiation

For a Novikov engine with radiation instead of a Newtonian heat transfer law the
balance equations are slightly different. The equation for the heat flux between the
high temperature bath and the engine is

qH = KHT 4
H −KiHT 4

iH, (4.30)

while the heat flux between the engine and the low temperature heat bath remains
qL, like in section 2.2.

Thus the balance equation for the energy fluxes is

P = qH − qL = KHT 4
H −KiHT 4

iH − qL (4.31)

and the balance equation for the entropy gives

KHT 4
H −KiHT 4

iH

TiH

=
qL

TL

. (4.32)

From equations 4.31 and 4.32 follows

P = (KHT 4
H −KiHT 4

iH)

(
1− TL

TiH

)
. (4.33)

The efficiency can easily be obtained from equation 4.33:

η =
P

qH

= 1− TL

TiH

. (4.34)

The efficiency is linearly dependent on T−1
iH in a way such that the maximum

efficiency is reached for the highest possible temperature Tmax
iH . Since TiH cannot be

higher than the temperature of the high temperature heat bath, we get: Tmax
iH = TH

and thus again the maximum efficiency equals the Carnot efficiency:

ηmax = ηCA = 1− TL

TH

. (4.35)

Using equations 4.34 and 4.33, the power as a function of η can be obtained:

P (η) =

(
KHT 4

H −KiH

(
TL

1− η

)4
)

η. (4.36)

A plot of the power over the efficiency for a Novikov engine with radiation can
be seen in figure 4.10. One can see that the point of maximum power for a Novikov
engine with radiation lies at a higher efficiency than the one for a Novikov engine
with Newtonian heat transfer.
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4.4.3 Fourier heat transfer law

The Fourier heat transfer law assumes that the heat flow is proportional to the
difference of the inverse temperatures,

q = K

(
1

T2

− 1

T1

)
, (4.37)

where K is an Onsager coefficient.

The power-efficiency plot for a Novikov engine with a Fourier heat transfer law
between the high temperature reservoir and the engine can be seen in figure 4.10.
The efficiency at maximum power is η(Pmax) = 0.5(1− TL/TH).

4.4.4 Dulong-Petit

In some cases the heat transfer is a combination of different laws mentioned before.
For example conductive as well as radiative components can occur together and
neither of them can be ignored. The so-called Dulong-Petit law,

q = K(T1 − T2)
n, (4.38)

is an attempt to describe a combined conductive-convective and radiative heat trans-
fer in a simplified fashion. K is a proportionality constant and the exponent n is
usually in the range between 1.1 and 1.6 [10]. Angulo-Brown and Páez-Hernández
[1] obtained good results using the Dulong-Petit law with n = 5/4 for investigating
the Curzon-Ahlborn model. They predicted theoretical efficiencies for power plants
that were very close to the observed efficiencies.

The power-efficiency plot for a Novikov engine with a Dulong-Petit heat transfer
law between the high temperature reservoir and the engine can be seen in figure 4.10.
For this curve the parameter n is set to 1.25.

4.4.5 Generalised heat transfer law

A generalised heat transfer law is of the form

q = K1T
n
1 −K2T

m
2 (4.39)

which includes the Newtonian (n = m = 1 and K1 = K2 = K), the Fourier (n =
m = −1 and K1 = K2 = K), and the radiative (n = m = 4) heat transfer law as
special cases.

Generalised heat transfer laws have been investigated e.g. by Gordon [12].
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Figure 4.10: Power vs. efficiency for a Novikov engine with different heat transfer
laws. The temperatures of the external heat baths are the same. Thus
the maximum efficiency is ηmax = 0.68. For better comparability the
power is normalised, so that the maximum power is 1. The efficien-
cies at maximum power are: 0.43 for Newtonian heat transfer, 0.51 for
radiation, 0.34 for Fourier heat transfer, and 0.4 for Dulong-Petit heat
transfer with n = 1.25.

4.4.6 A Novikov engine with different heat transfer laws

Figure 4.10 shows the power-efficiency plot for a Novikov engine with different heat
transfer laws characterising the interaction between the high temperature heat bath
and the engine. For better comparability P/Pmax instead of P is plotted. It can
be seen, that the shapes of the curves are slightly different. For example the point
of maximum power output is reached at different efficiencies while the maximum
efficiency remains the Carnot efficiency.

The same plot was made for a Novikov engine with a heat leak. For each of the
four heat transfer laws the parameters of the engine are chosen in a way such that
the maximum power output was equal. The heat leak for all four systems is defined
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Figure 4.11: Power vs. efficiency for a Novikov engine with different heat transfer
laws and a heat leak. The temperatures of the external heat baths are
the same for each curve. In the plot on the left side the parameter Kleak

is 0.35 and in the right plot it is 1.0, i.e. more heat is lost through the
leak. (For the Dulong-Petit heat transfer n = 1.25.)

as an irreversible interaction between the two external heat baths. It is characterised
by Newtonian heat transfer with the heat conductance Kleak:

qleak = Kleak(TH − TL). (4.40)

In case of heat leak the maximum efficiency depends on the heat transfer law. It
is biggest for radiation and smallest for the Fourier heat transfer law.
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5 Chemical engines

Another important group of endoreversible engines are chemical engines. The ex-
changed extensities for chemical engines, i.e. the particles, can for instance consist of
electrons (e.g. in solar cells) or molecules (e.g. gas exchange in the respiratory sys-
tem). Biological systems, electro-chemical, and photochemical devices are examples
for chemical engines.

In this chapter a special kind of chemical engines is discussed. In the way they
operate they are similar to the heat engines discussed before. In heat engines temper-
ature differences are transformed into work while in the chemical engines presented
here, work is generated because of differences in the chemical potential. Chemical
potential and particle transfer are then comparable to temperature and heat transfer.

5.1 Analytical approach to a chemical engine

Chemical engines have been widely discussed and compared to Curzon-Ahlborn en-
gines in terms of power output and performance measures [7, 11, 14]. In the following
the detailed structure of a chemical engine as well as the calculation of the power
output and efficiency are presented.

Figure 5.1 shows an endoreversible heat engine next to an endoreversible chemical
engine. The heat engine is the Curzon-Ahlborn engine discussed in section 4.1 and
the chemical engine was designed with a comparable structure. The similarities imply
that the same set of endoreversible reasoning as for heat engines can be applied to
chemical engines. Analogue to the transport equations for heat the particle flows are
given by

JH = hH(µH − µiH) and (5.1)

JL = hL(µiL − µL), (5.2)

where JH denotes the particle flow between the high chemical potential reservoir and
the engine and JL denotes the particle flow between the engine and the low chemical
potential reservoir. However, in the scheme of endoreversible thermodynamics heat
transfer and particle transfer are not the same. While the heat transfer is a form of
an energy flux, the particle transfer is a flux of an extensity. Thus the behaviour of
a chemical engine is different from that of a heat engine.
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5 Chemical engines

Figure 5.1: Comparison of a Curzon-Ahlborn engine on the left side and a chemical
engine on the right side. Both consist of an engine, which is connected
irreversible with two external infinite reservoirs.

The balance equations for such a chemical engine differ slightly from those of the
Curzon-Ahlborn engine:

0 = µiHJH − µiLJL − P, (5.3)

0 = JH − JL. (5.4)

Equation 5.4 follows directly from the mass conservation law, i.e. the particle flows
have to add up to zero. Therefore it is convenient to set JH = JL ≡ J .
Thus, with the help of equations 5.1 and 5.2, the power output becomes

P = J(µiH − µiL) = J

(
µH − µL − J

(
1

hH

+
1

hL

))
(5.5)

and the efficiency for such a chemical engine is given by

η =
P

µHJ
= 1− µL

µH

− J

µH

(
1

hH

+
1

hL

)
. (5.6)

To get the point of maximum power output, the first derivative of P with respect
to J is set zero:

∂P

∂J
= µH − µL − 2J

(
1

hH

+
1

hL

)
= 0. (5.7)
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Figure 5.2: Power vs. efficiency plot for a chemical engine with the parameters
hH = hL = 1 and the ratio µL/µH = 1/4. The maximum efficiency is
ηmax = 0.75 and the efficiency at the point of maximum power output is
η(Pmax) = 0.5ηmax = 0.375.

Thus the optimal particle flux is

Jopt = (µH − µL)
hHhL

2(hH + hL)
. (5.8)

By inserting 5.8 into 5.5 the maximum power is obtained:

Pmax = (µH − µL)2 hHhL

4(hH + hL)
. (5.9)

The efficiency at the point of optimal particle flux is

η(Jopt) = 1− µL

µH

− µH − µL

2µH

=
1

2

(
1− µL

µH

)
. (5.10)

The maximum efficiency for this system is at the point J = 0:

ηmax = 1− µL

µH

. (5.11)
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Thus the efficiency for the operation point with maximum power output is half of
the maximum efficiency.

Also the maximum efficiency is of the same structure as the Carnot efficiency with
the difference that here the ratio between the low and high temperature is exchanged
for the ratio between the low and high chemical potential.

Combining equations 5.5 and 5.6 gives an equation for the power depending on
the efficiency:

P (η) =

(
1

hH

+
1

hL

)−1

ηµH(µH − µL − ηµH). (5.12)

A plot of the power versus the efficiency can be seen in figure 5.2. For this curve the
ratio µL/µH is 1/4 and thus the maximum efficiency is ηmax = 1 − µL/µH = 0.75.
The efficiency at maximum power is η(Pmax) = 0.5(1− µL/µH) = 0.375.

5.1.1 Chemical engines in ‘ETA-Graphics’

The model of a chemical engine in ‘ETA-Graphics’ is shown in figure 5.3. It is
similar to the Curzon-Ahlborn engine except that the heat reservoirs are exchanged
for particle reservoirs. The high chemical potential reservoir is denoted with 1 and
the low chemical potential reservoir is denoted with 4. Interaction C is characterised
by the carrier flow JH. Interaction D is characterised by the carrier flow JL. With
the notation of ‘ETA-Graphics’ the particle flows become

JH = hH(µ1C − µ0C) and (5.13)

JL = hL(µ0D − µ4D), (5.14)

where µ1C is equivalent to µH, µ0C ≡ µiH, µ0D ≡ µiL and µ4D ≡ µL. Since both of
these interactions are irreversible, entropy is produced. To deposit this entropy and
part of the energy, additional reservoirs are included (subsystems 6 and 7 in figure
5.3).

The energy fluxes at interaction C are

I1C = hH(µ1C − µ0C)µ1C and (5.15)

I0C = hH(µ1C − µ0C)µ0C (5.16)

at the beginning and the end of the interaction arrow respectively. For the energy at
the additional subsystem 6 follows:

I6F = I1C − I0C = hH(µ1C − µ0C)(µ1C − µ0C) = hH(µ1C − µ0C)2. (5.17)

The energy fluxes at interaction D are defined in an analogous way.
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Figure 5.3: A chemical engine in ‘ETA-Graphics’. Subsystem 1 and 4 are high and
low chemical potential reservoirs. Subsystem 2 and 3 are reservoirs with
angular velocity as the intensity and subsystems 6 and 7 are the reservoirs
where the entropy, produced at the irreversible interactions C and D, is
deposited.

Interactions A and B are direct contacts between the engine and the reservoirs
with angular momentum L as the extensity and angular velocity ω as the correspond-
ing intensity. In the following only the angular momentum flux, i.e. the torque M ,
appears.

By solving the balance equations for ωB, MB and µ0D with ‘ETA-Graphics’ one
gets the following solutions:

ωB =
hH(µ1C − µ0C)(hL(µ0C − µ4D)− hH(µ1C − µ0C))

hLMA

, (5.18)

MB = MA, (5.19)

µ0D =
hH(µ1C − µ0C)

hL

+ µ4D. (5.20)
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Figure 5.4: Structure of a two-staged chemical engine. The circles represent the two
engines, the first one working between the chemical potentials µH1 and
µL1 and the second one between µH2 and µL2. The waved lines represent
irreversible interactions and P1 and P2 denote the power output of the
engines.

Thus the power output P becomes

P = ωBMB =
hH(µ1C − µ0C)(hL(µ0D − µ4D)− hH(µ1C − µ0C))

hL

. (5.21)

5.2 Staged chemical engines

This section deals with two-staged chemical engines. The same chemical engines as
in the section before are used but now two of them are coupled in a way such that the
reservoir with the lower chemical potential of the first engine is replaced by a second
engine. Thus the particle flux leaving the first engine is totally used as the particle
source of the second engine. This structure is similar to that of the two-staged heat
engine discussed in section 4.3.

Chen et al. [8] presented a cyclic operating two-staged chemical engine. Here the
same calculations are made for a steady-state engine.
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The structure of a two-staged engine can be seen in figure 5.4. It operates between
a reservoir of high chemical potential µH and a reservoir of low chemical potential µL.
The particle flow between the high potential reservoir and the first engine is denoted
with JH and is of the form

JH = hH(µH − µH1). (5.22)

Analogue the particle fluxes between the two engines and between the second engine
and the low chemical potential reservoir are

JM = hM(µL1 − µH2) and (5.23)

JL = hL(µL2 − µL). (5.24)

Because of the conservation of mass and the restriction that no mass is trans-
ported through the power output contacts, all three particle fluxes are equal. Thus
it is convenient to introduce J ≡ JH = JM = JL.

The corresponding energy fluxes are µHJ at the high chemical potential reservoir,
µH1J at the first engine’s contact point with high chemical potential, µL1J at the low
chemical potential contact point of the same engine and so on.

The energy balance equations for the two coupled engines are

P1 = µH1J − µL1J and (5.25)

P2 = µH2J − µL2J. (5.26)

Thus the total power output is

P = P1 + P2 = J(µH1 + µH2 − µL1 − µL2). (5.27)

With equations 5.22, 5.23 and 5.24 we obtain

P = J

(
µH − µL − J

(
1

hH

+
1

hM

+
1

hL

))
. (5.28)

Maximising with respect to J gives the optimal particle flux:

∂P

∂J
=

(
µH − µL − 2J

(
1

hH

+
1

hM

+
1

hL

))
= 0 (5.29)

Jopt =
hHhMhL

2(hMhL + hHhL + hHhM)
(µH − µL). (5.30)

By inserting the result from 5.30 into the power equation 5.28 one gets

Pmax = (µH − µL)2 hHhMhL

4(hMhL + hHhL + hHhM)
. (5.31)
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Figure 5.5: Power-efficiency plot for a two-staged chemical engine with µL/µH = 1/4.
For the point of maximum power output the efficiency is η(Pmax) =
0.5(1−µL/µH) = 0.38 and the maximum efficiency is ηmax = 1−µL/µH =
0.75.

The efficiency for this system can be written as the ratio of the mechanical power
output and the chemical energy influx:

η =
P

µHJ
= 1− µL

µH

− J

µH

(
1

hH

+
1

hM

+
1

hL

)
(5.32)

and thus the efficiency at the point of maximum power output is

η(Jopt) = 1− µL

µH

− µH − µL

2µH

=
1

2

(
1− µL

µH

)
. (5.33)

This result, which is the same as for the single chemical engine described in
section 5.1, shows that the efficiency at the point of maximum power output does
not depend on the staging of the engines but only on the ratio of the outer chemical
potentials between which the engine is working.

Also the maximum efficiency for the staged engine is

ηmax = 1− µL

µH

(5.34)

like for the single chemical engine described before.
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An equation for the power depending on the efficiency can be obtained by com-
bining equations 5.28 and 5.32:

P (η) =

(
1

hH

+
1

hM

+
1

hL

)−1

ηµH(µH − µL − ηµH). (5.35)

A curve of the power over the efficiency can be seen in figure 5.5. It has the same
shape as for a single chemical engine with the only difference that the power output
of the staged chemical engine is lower than that of the single engine if the coefficients
hi are all equal (i.e. hH = hM = hL). Comparing equations 5.12 and 5.35 gives the
scaling factor between the power for a single chemical engine and the power of two
connected chemical engines:

Pstaged =
1

hH
+ 1

hL

1
hH

+ 1
hM

+ 1
hL

Psingle. (5.36)

Thus the power output of a two-staged engine is 2/3 of the power output of a single
engine for hH = hM = hL.

5.2.1 Staged chemical engines in ‘ETA-Graphics’

Figure 5.6 shows the structure of a two-staged chemical engine in ‘ETA-Graphics’.
Subsystem 1 represents the high chemical potential reservoir and subsystem 8 repre-
sents the low chemical potential reservoir. Subsystems 0 and 5 are the two chemical
engines. The interactions C, E, and H are characterised by the particle flows accord-
ing to equations 5.22 to 5.24. These interactions are irreversible and the produced
entropy cannot be deposited via the two contact points of this interaction. Thus for
each of these interactions an additional subsystem is added (subsystems 9 to 11).
Interactions A, B, F, and G represent direct contacts between the engines and the
reservoirs with angular momentum as their extensity and angular velocity as the
corresponding intensity.
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Figure 5.6: A two-staged chemical engine in ‘ETA-Graphics’. Subsystems 0 and 5
are the two chemical engines. Subsystem 1 is the high chemical potential
reservoir and subsystem 8 is the low chemical potential reservoir.
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6 Conclusion

In this work I presented ‘ETA-Graphics’, an interface to endoreversible thermody-
namics. Its structure and functions were presented and analytical results for some
heat and chemical engines were compared with the results produced by the appli-
cation. The application is capable of doing evaluations for steady state or cyclic
engines and infinite reservoirs. The efficiency as well as the total power output of an
engine can be calculated and plotted against each other. So far it is not possible to
include finite reservoirs into systems created with ‘ETA-Graphics’. Since finite reser-
voirs would cause differential equations, they would lead to much more complicated
calculations.
Sometimes the automatic choice of variables for which the equation system should be
solved is not good enough. Especially for staged systems it happens that the equation
system cannot be solved for the chosen variables but this can be easily fixed. The
user just has to choose the variables himself or at least change some of the proposed
ones.

Curzon-Ahlborn and Novikov-like heat engines in different constellations have
been investigated in great detail with ‘ETA-Graphics’ (section 2.2 and chapter 4).
For example Rubin and Andresen [21] showed, that the efficiency of an endoreversible
Curzon-Ahlborn heat engine does not change when the single engine is replaced
by two combined Curzon-Ahlborn engines working between the same temperatures.
In the system with the staged heat engines the waste heat of the first engine is
totally used as the heat source of the second engine. The power output, however,
decreases because of the higher heat resistance of the system. These results have
been reproduced with the help of ‘ETA-Graphics’.
The influence of a heat leak, formerly described in [4, 13], has been discussed as well
as the influence of different heat transfer laws. The heat leak causes a closed loop in
the power-efficiency plot and the efficiency at maximum power output as well as the
maximum efficiency decrease with increasing amount of heat lost through the leak.
Different heat transfer laws, like Radiation, Newtonian, and Fourier heat transfer,
influence the shape of the power-efficiency curve. The efficiencies at maximum power
output differ while the maximum efficiency stays constant for the same external bath
temperatures.

The second group of engines, which have been discussed in this work, are chemical
engines. They are similar to Curzon-Ahlborn engines in their structure but they also
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6 Conclusion

show some not negligible differences. The heat transfer laws for heat engines have
the same structure as the particle transfer laws for the chemical engines. However,
in the picture of endoreversible thermodynamics the particle transfer is an extensity
flow while the heat transfer is an energy flow. Thus the balance equations for the
engines are slightly different, which leads, for instance, to different power-efficiency
curves.
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