
Department of Computer Science

Chair of Computer Architecture

Diploma Thesis

Execution of SPE code in an Opteron-Cell/B.E. hybrid system

Andreas Heinig

Chemnitz, March 11, 2008

Supervisor: Prof. Dr. Wolfgang Rehm

Advisor: Dipl. Inf. Torsten Mehlan

Theses

1. It is possible to establish a heterogeneous Opteron-Cell system across TCP/IP.

2. With PCIe a much better performance could be expected.

3. The SPUFS concepts are transferable to RSPUFS.

4. The concepts may could be generalized to support also other kinds of acceler-
ators.

Abstract

It is a great research interest to integrate the Cell/B.E. processor into an AMD
Opteron system. The result is a system benefiting from the advantages of both pro-
cessors: the high computational power of the Cell/B.E. and the high I/O throughput
of the Opteron.
The task of this diploma thesis is to accomplish, that Cell-SPU code initially resid-
ing on the Opteron could be executed on the Cell under the GNU/Linux operating
system. However, the SPUFS (Synergistic Processing Unit File System), provided
from STI (Sony, Toshiba, IBM), does exactly the same thing on the Cell. The Cell
is a combination of a PowerPC core and Synergistic Processing elements (SPE). The
main work is to analyze the SPUFS and migrate it to the Opteron System.
The result of the migration is a project called RSPUFS (Remote Synergistic Pro-
cessing Unit File System), which provides nearly the same interface as SPUFS on
the Cell side. The differences are caused by the TCP/IP link between Opteron and
Cell, where no Remote Direct Memory Access (RDMA) is available. So it is not
possible to write synchronously to the local store of the SPEs. The synchronization
occurs implicitly before executing the Cell-SPU code. But not only semantics have
changed: to access the XDR memory RSPUFS extends SPUFS with a special XDR
interface, where the application can map the XDR into the local address space. The
application must be aware of synchronization with an explicit call of the provided
”xdr sync” routine. Another difference is, that RSPUFS does not support the gang
principle of SPUFS, which is necessary to set the affinity between the SPEs.
This thesis deals not only with the operating system part, but also with a library
called ”libspe”. Libspe provides a wrapper around the SPUFS system calls. It is
essential to port this library to the Opteron, because most of the Cell applications
use it. Libspe is not only a wrapper, it saves a lot of work for the developer as well,
like loading the Cell-SPU code or managing the context and system calls initiated by
the SPE. Thus it has to be ported, too.

The result of the work is, that an application can link against the modified libspe on
the Opteron gaining direct access to the Synergistic Processor Elements.

Contents

List of Figures v

List of Tables vii

1 Introduction 1

2 Opteron Cell/B.E. Hybrid System 3

2.1 Cell Broadband Engine Architecture 3
2.1.1 Targets and Challenges . 3
2.1.2 Architecture . 5
2.1.3 Cell Multiprocessor Systems . 9
2.1.4 Hardware . 9

2.2 Heterogeneous Multiprocessing in an Opteron-Cell Environment . . . 11
2.2.1 Interconnections . 11
2.2.2 Development Environment . 12
2.2.3 PCIe Coupling . 13
2.2.4 Opteron Cell evaluation Platform 14

3 SPUFS 15

3.1 Introduction . 15
3.2 The SPUFS Concept . 17
3.3 Internal Context . 19
3.4 User-Level Interfaces . 20

3.4.1 System Programing Interface 21
3.4.2 SPE Runtime Management Library 24
3.4.3 Toolchain . 27

3.5 Externally Assisted SPE Library Calls 29

iii

Contents

4 RSPUFS 32

4.1 Targets . 32
4.2 Structure . 33
4.3 The Cell Part: rspufsd . 34

4.3.1 Network Protocol . 34
4.3.2 Services . 36

4.4 The Opteron Part: rspufs . 44
4.4.1 Internal Context . 45
4.4.2 Packet Dispatcher . 45
4.4.3 User-Level Interfaces . 46

System Programing Interface 46
SPE Runtime Management Library 48
Toolchain . 49

4.4.4 Software Emulated Remote Memory Access 49

5 Results 51

5.1 Implementation . 51
5.2 The SPUFS Concepts . 52

5.2.1 Virtual File System . 52
5.2.2 Virtualization . 52

5.3 First Benchmark Results . 53
5.3.1 Software Emulated Memory Access 53
5.3.2 Adding Two Integers . 54

6 Conclusion and Further Work 57

Bibliography 59

A CD-ROM Contents 61

iv

List of Figures

2.1 Cell block diagram . 6
2.2 Single Cell configuration . 9
2.3 Cell dual processor system . 9
2.4 Quad-Cell via Switch . 10
2.5 Interconnect classification . 11
2.6 Tightly coupled Opteron Cell evaluation platform 14

3.1 SPUFS inside the Linux Kernel . 16
3.2 struct spu_context in linux-2.6.22 19
3.3 struct spu_csa in linux-2.6.22 . 20
3.4 The spu_create system call . 21
3.5 The spu_run system call . 24
3.6 SPUFS: Tool Chain . 28
3.7 struct spe_program_handle . 28
3.8 Parameter image for an assisted write call 29
3.9 PPE assisted write system call . 31

4.1 RSPUFS Model . 33
4.2 RSPUFS Protocol . 35
4.3 RSPU S CREATE message . 36
4.4 RSPU S FILELST message . 37
4.5 RSPU S FOPEN message . 38
4.6 RSPU S FRELEASE message . 38
4.7 RSPU S FREAD message . 39
4.8 RSPU S FPREAD message . 39
4.9 RSPU S FWRITE message . 40
4.10 RSPU S FPWRITE message . 40
4.11 RSPU S FLLSEEK message . 41

v

List of Figures

4.12 RSPU S SYSRUN message . 41
4.13 RSPU S XALLOC message . 42
4.14 RSPU S XFREE message . 43
4.15 RSPU S XREAD message . 43
4.16 RSPU S XWRITE message . 44
4.17 The spu_create system call . 45
4.18 RSPUFS: Tool Chain . 49

5.1 Copy memory from Opteron to the Cell 53
5.2 Adding two numbers with mailbox parameter transmission 54
5.3 Adding two numbers with XDR parameter transmission 55

vi

List of Tables

3.1 The SPUFS context (part) . 22
3.2 Cell ABI stop-and-signal code definition 30

4.1 the RSPUFS context (part) . 47

vii

1 Introduction

To satisfy the needs of computing power and to place themselves at the top of the
world market, the processor manufacturers developed processors with increasing clock
rates. This results growing power consumptions. Thus the general trend in processor
development leads to multi-core processors. That means, two or more standard pro-
cessors are located on one chip (resp. die). Typical mainstream processors are the
Intel Core 2 Duo/Quad or the AMD Opteron Processor. On such a multi-core the
performance is not achieved by the clock ratio, but by the ability to execute threads
or programs parallel.

However, the current research uses different types of cores on a single die. This is
called ”heterogeneous multi-core”. The Cell processor is such a chip. In this diploma
thesis heterogeneous has the following definition:

The term heterogeneous or hybrid means a union from two or more different archi-
tectures. The union could be made on one chip or through an interconnect network.

The intention of the Chair of Computer Architecture is to build a heterogeneous node
for the HPC (High Performance Computing) environment. It consists of an Opteron
and a Cell processor, which are tightly coupled. This hardware platform and the Cell
Processor are described in chapter 2. This diploma thesis is an intermediate step
towards this heterogeneous HPC node.

The objective is to write a driver implementing the direct access to the Synergistic
Processing Units (SPUs) of the Cell in the GNU/Linux environment. SPUFS (Syn-
ergistic Processing Unit File System) is a Virtual File System, which implements
this for the PowerPC-Linux running on the Cell. So the main work is to analyze

1

1 Introduction

SPUFS (Chapter 3) and migrate it to the Opteron. The result of the migration is a
project called RSPUFS (Remote Synergistic Processing Unit File System), which is
introduced in Chapter 4.

The current implementation status and some benchmarks are shown in Chapter 5.

2

2 Opteron Cell/B.E. Hybrid System

This chapter introduces the underlying hardware for the Opteron Cell/B.E. Hybrid
System, especially the relatively new Cell Broadband Engine Architecture in sec-
tion 2.1. Thereafter the different hardware development stages are described, be-
ginning with the current development platform for RSPUFS, the main part of this
diploma thesis.

2.1 Cell Broadband Engine Architecture

The Cell Broadband Engine Architecture (Cell/B.E. or even Cell) is a corporate
development from Sony, Toshiba and IBM (”STI”). The original intention was to
develop a processor for the next generation of entertainment electronics, especially
the successor of the Playstation 2 from Sony.

2.1.1 Targets and Challenges

The four developing objectives [1] for the Cell were:

• High Performance

The performance of a system is limited by three barriers:

1. Memory latency and bandwidth

The latency and bandwidth to the main memory, especially dynamic ran-
dom access memory (DRAM), is the greatest barrier for the performance.
If the latency is measured in cycles, a typical single core processor will
wait hundreds of cycles for a memory request. A symmetric multi pro-
cessor (SMP) with shared memory could wait thousands of cycles. This
phenomenon, also known as ”Memory Wall”[2], implies that higher proces-
sor frequencies are not met by decreased DRAM latencies. Observations

3

2 Opteron Cell/B.E. Hybrid System

proved this effect getting worse with each new processor generation.
If a microprocessor has a memory latency of 512 cycles and can fetch
eight 128-byte cache-lines in flight, the maximum memory bandwidth is
two bytes per processor cycle. This memory bandwidth is latency-induced.

However, the challenge was to find a processor organization allowing more
simultaneous memory transactions to increase the memory bandwidth.

2. Power consumption

The power consumption of processors grows more and more to a point
where sophisticated cooling technologies are needed. But a system de-
signed for consumers has some restrictions limiting the cooling capabili-
ties for example the maximum air speed, the maximum box size and the
maximum temperature of the air leaving the box.

One reason for high power consumptions are evolved manufacturing tech-
nologies. It is possible to reduce the size of transistors to a point where
the insulation between Gate, Source and Drain consists of only some atom
layers. Thus tunneling through the Gate and sub-threshold leakage occurs.

Anyway, no lower-power technology is available. So the developers had to
find a way between performance and power efficiency.

3. Frequency and Pipelining

It seems that a point is reached, where further increasing of pipeline depth
and processor frequencies has diminishing returns. An increased pipeline
means always more latches, which increases the instruction latencies. The
penalties associated with the increased instruction execution latency have
to be compensated by the increased frequency and the ability to execute
more instructions. In case of a mispredicted branch instruction, more
pipeline steps are junked in contrast to a short pipeline.

The main challenge was to develop implementations and processor archi-
tectures using a possible small pipeline depth.

• Real-time responsiveness to the user and the network

To achieve a high immersion, the Cell has to react as quick as possible to user
input and network requests. A computer game, for example requires a con-
tinuing updated virtual environment with consistent video, audio and other

4

2 Opteron Cell/B.E. Hybrid System

sensor feedback to the user. Any anomaly diminishes the game experience. Si-
multaneously the Cell should be able to handle the broadband Internet traffic.
This means not only to process communication-oriented, but also Internet spe-
cific workload. Because the Internet is supporting a wide variety of standards,
like many different video streaming formats, any acceleration function must be
programmable and flexible.

• Applicability to a variety of platforms

The primary field of usage for the Cell was originally the next-generation of
entertainment systems. Its strength should be games and multimedia applica-
tions, for Sonys next video game console Playstation 3 and HD devices from
Toshiba.

In order to extend the applicability of the Cell and to start a developing com-
munity, an open software development environment based on the GNU/Linux
operating system has been released.

• Introduction in 2005

One intention of STI was to present the Cell Broadband Engine Architecture in
the year 2005. In consequence only four years of development were available to
achieve the previously mentioned targets. But for developing a new architecture
more than four years are typically needed. This was one reason to use and
improve the existing Power Architecture.

2.1.2 Architecture

The Cell Processor consists of one dual-threaded, dual-issue, 64-bit Power proces-
sor element (PPE) compliant to the Power Architecture. The Power Architecture is
extended with eight cooperative offload processors called ”Synergistic processor el-
ements” (SPE). Additional one memory controller and two interface controllers are
located on the die. Figure 2.1 shows a complete picture about the Cell. The compo-
nents are explained on the following pages.

5

2 Opteron Cell/B.E. Hybrid System

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

ON−chip coherent bus (EIB)

L2

L1 PXU

PPU

PPE bus interface controller

Rambus
FlexIO

memory controller

Dual Rambus
XDR

Figure 2.1: Cell block diagram

Element Interconnect Bus

The twelve elements (1xPPE, 8xSPE, 1xMC, 2xIC) are connected with a special
ring bus called ”Element Interconnect Bus” (EIB). This bus consists of one ring with
four unidirectional channels, two have clockwise direction and two have counter-
clockwise direction. Each channel is 16 Byte wide and can handle a maximum of
three transactions synchronously. The EIB works with a beat1 of the half than the
system clock. This reflects in a bandwidth of 96 Byte per system clock (16 Byte *
12 transaction / 2).

Every element has one 16 Byte read and one 16 Byte write Port. So it is possible
to write and read 16 Byte per beat.

1IBM calls the clock of the EIB ”beat” for a better differentiation from the system clock

6

2 Opteron Cell/B.E. Hybrid System

As a simplification each transfer on the bus takes always eight beats, thus one
transaction is 8 * 16 Byte = 128 Byte long. Every three clocks a ring can start a
new transaction [3]. The data transfer works with single steps through the ring. The
maximum way length is six steps (either clockwise or counter-clockwise with twelve
elements). Long ways diminish the performance of the bus, because transfers cannot
overlap and so the number of parallelism is limited on the channel.

Power Processor Element

The Power Processor Element (PPE) consists of a 512 KiB Level-2-Cache and the
Power Processor Unit (PPU). Among the Power Execution Unit (PXU) the PPU
contains a 32 KiB Level-1-Cache.

The PXU is based on the Power Architecture executing two threads in parallel.
Equipped with an Altivec unit, the PXU is able to process two floating point opera-
tions with double or eight floating point operations with single precision at the same
time. Running on a clock of 3.2 GHz this is equal to 6.4 GFLOPS respectively 25.6
GFLOPS. The instruction set architecture (ISA) is nearly the same as on other 64-
Bit PowerPC based processors. So it is possible to execute normal operating systems
like GNU/Linux unchanged on the Cell.

The main tasks of the PPE are managing the SPEs (Synergistic Processing Elements)
and executing the operating system.

Synergistic Processing Element

The Synergistic Execution Unit (SXU) is similar to a RISC (Reduced Instruction Set
Computing). The register file contains 128 registers of 128 bit. The ISA includes
SIMD (Single Instruction Multiple Data) operations for Integer, Float and Double.
Next to the SXU a 256 KiB local-store (LS) is integrated into the SPU (Synergistic
Processing Unit). The SXU always operates on this local-store, which is also mapped
into the memory map of the Cell. The mapping is not coherent if it is cached in the
system. The program code and all (local) data must fit into the LS. If the applica-
tion accesses addresses in the main memory or other units, DMA (Direct Memory
Access) requests have to be done. DMA is handled by the Memory Flow Controller

7

2 Opteron Cell/B.E. Hybrid System

(MFC) integrated in the Synergistic Processing Element. The processing happens
asynchronously to the SPU. All DMA commands are coherent and use the same
protections and translations provided by the page and segment tables of the Power
Architecture. Addresses can be passed between the PPE and SPE, because these
tables are equal for both. The operating system is able to configure shared memory
and is able to manage all resources in the system in a consistent manner.

The theoretical floating point performance of one SPE is 25.6 GFLOPS at a 3.2
GHz clock. Together with the PPE the Cell has 230.4 GFLOPS peak performance
in single precision.

Memory Flow Controller

DMA is the only way for the SPU (Synergistic Processing Unit) to communicate with
the rest of the Cell. Therefore the MFC is integrated into each SPE. There are three
ways to program the MFC:

1. Executing instructions on the SPE, inserting DMA commands in the queue

2. Issuing a ”DMA list” command with a prepared (scatter-gather) list on the
local-store

3. Insertion of a DMA command in the queue by another processor element (with
the appropriate privilege).

The maximum outstanding DMA commands are 16.

Memory Controller

The Memory Controller of the Cell supports Dual Rambus XDR memory. With two
32-bit memory channels the bandwidth is 25.6 Gbit per second. The EIB delivers a
little bit more bandwidth, there is almost no perceivable contention on DMA transfers
between the units of the Cell.

I/O Controller

The Cell has an integrated high-bandwidth flexible I/O interface (Rambus RRAC
FlexIO). On the physical layer are twelve unidirectional 8-bit wide lanes. Seven are

8

2 Opteron Cell/B.E. Hybrid System

outbound and five are inbound. The I/O-clock is independent of the system clock.
The lanes can be dedicated into two separate logical interfaces, one can operate
coherent (IOIF0).

2.1.3 Cell Multiprocessor Systems

Figure 2.2 shows a typical single Cell processor configuration with FlexIO configured
as two interfaces.

IOIF

XDR

Cell

processor

XDR

IOIF

Figure 2.2: Single Cell configuration

To couple two Cells, one I/O-interface has to be configured for BIF (Broadband In-
terface). Only BIF provides the necessary coherence on the hardware layer. In figure
2.3 a dual Cell is shown.

IOIF

XDR

Cell

processor

XDR XDR

Cell

processor

XDR

IOIFBIF

Figure 2.3: Cell dual processor system

To build a four-way symmetric multiprocessor, glue logic in form of a switch has to
be used (figure 2.4).

2.1.4 Hardware

Except the previously mentioned Playstation 3 from Sony, Mercury Computer Sys-
tems manufacture a PCIe (Peripheral Component Interconnect Express) Cell accel-

9

2 Opteron Cell/B.E. Hybrid System

IOIF

XDR

Cell

processor

XDR XDR

Cell

processor

XDR

IOIF

XDRXDR XDRXDR

IOIF

Cell

processor

Cell

processor
IOIF

BIF BIFSwitch

Figure 2.4: Quad-Cell via Switch

eration card.

IBM sells a dual-Cell SMP Blade (QS21). In their test series the Cell needs one
watt per 1.05 GFLOPS. This is a very power efficient computer platform [4].

Toshiba has developed an acceleration card for PCIe with the name ”SpurseEngine”.
In [5] it is described as:

”The SpursEngine is a highly efficient stream processor. The SpursEngine incor-
porates 4 SPEs, which are the high-performance signal processing processors of Cell
Broadband Engine [...], and hardware video codecs such as MPEG2/H.264. There-
fore you can quickly handle operations (for example: compression/decompression of
video images, physics operations, or computer-graphics) that can not be executed sat-
isfactorily by a single processor. By using the SpursEngine, you can accelerate the
processing of these operations that video applications need.”

10

2 Opteron Cell/B.E. Hybrid System

2.2 Heterogeneous Multiprocessing in an Opteron-Cell

Environment

Within the context of heterogeneous multiprocessing the SPEs of the Cell processor
are seen as accelerator units. The Opteron processor is the main processing unit. The
expected performance of this combination is very high. On the one hand the system
gets advantage from the high I/O throughput of the Opteron and on the other hand
it owns the high computational power from the Cell. The Cell leaks the feature of
parallel I/O processing, because the operating system is running on the PPE. Thus
every I/O request from the SPE is routed through the PPE (confer section 3.5),
which becomes a bottleneck for the SPEs.

Because there was no hardware available supporting the direct coupling of Opteron
and Cell processor, an Ethernet-based connection has been used as intermediate step.
Before taking a closer look at this development platform, different connection types
must be described.

2.2.1 Interconnections

This subsection classifies different types of interconnections. Figure 2.5 shows an
overview.

"south"

IB, Eth IB, Eth PCIe

PCIe IB, Eth IB, Eth PCIe

PCIe

card
adapter

bridge

standard

cluster−level
advanced

direct
localbus

cluster−level

HT

HT

IOIF

IOIF

IOIFHT

Figure 2.5: Interconnect classification

11

2 Opteron Cell/B.E. Hybrid System

The Opteron processor is located on the left and the Cell on the right. The bandwidth
is growing from bottom to top while the latency is decreasing.

Standard cluster-level

A typical representation of the standard cluster-level is Ethernet (Eth) or Infini-
Band(IB). Both using a network to connect several hosts. The adapter cards are
plugged in a PCIe-slot connected to a kind of south-bridge.

Advanced cluster-level

In the advanced cluster-level the ”south”-bridge is omitted on the Opteron side. The
interconnect adapter, which was attatched to PCIe in standard cluster-level, is now
plugged in a direct HyperTransport (HT) slot.

Local bus direct

In localbus direct the Opteron and Cell are coupled directly through the PCIe-bus2.
The Opteron serves as Host endpoint and the Cell as device endpoint.

2.2.2 Development Environment

For develop the operating system driver ”rspufs”, a standard cluster-level connection
is used between a dual-Cell (figure 2.3) Blade and a PowerBook G3. As connection
type Ethernet with TCP/IP protocol was chosen. This decision was based on the
facts, that TCP/IP supports error correction, the detection of duplicate packages,
the preservation of the package ordering and the point to point connection. In view
of the next steps towards a tightly coupled system, these are very important features.
Another reason is Firewalls and VPNs (Virtual Private Network) can handle TCP/IP
traffic very well, thus it was possible to locate both systems on different places on
the campus.

However, this constellation is very far from coupling the x86 Architecture with the
Cell. But the advantage is the PowerBook has the PowerPC Architecture like the

2PCIe is a serial point to point connection and not a bus. But it is software compatible to PCI.
However, it is common to say ”PCIe-bus. ”

12

2 Opteron Cell/B.E. Hybrid System

PPE of the Cell, so no byte ordering problems can occur. The most important ad-
vantage is the low porting effort for the ”libspe” library (see also 3.4.2). Nearly all
applications for the Cell are using this library, thus it is possible to use these appli-
cations nearly unchanged.

After the working PowerBook-Cell system the next step was the connection with
a x86 system. In the first instance a Pentium III Notebook was taken to port the
rspufs and the libspe.

2.2.3 PCIe Coupling

The next step after this diploma thesis would be the usage of a better interconnection
via PCIe (a local bus direct connection type). The result would be not only a bet-
ter performance, but the ability to use RDMA (Remote Dynamic Memory Access).
RDMA is very important, because most parts of the Cell are memory mapped. Thus
these are directly accessible from the Opteron. Unlike the current approach, where
RSPUFS simulates the direct access in software, RDMA provides a hardware based
solution.

The Los Alamos National Laboratories (LANL) working on a project with the name
”Roadrunner”[6], where the Cell and the Opteron is coupled with PCIe, too. The
goal is to place the first high performance computer with more than one PetaFLOPS
in the top-500 super computing list. LANL is planing a ratio of one to one between
Opteron and Cell processors. According to [7], this system provides the application
level library DaCSH (Data Communication and Synchronization Heterogeneous) for
the communication with the PPE only. The SPEs are not directly visible by the
application portion on the Opteron.

However, with the RSPUFS solution a direct access to the SPEs should be granted.
But this platform is only an intermediate step before the targeted ”tightly coupled
Opteron Cell evaluation platform”.

13

2 Opteron Cell/B.E. Hybrid System

2.2.4 Opteron Cell evaluation Platform

This platform is a case study integrating the Cell Broadband Engine Architecture
into an AMD Opteron Platform. Integration means tightly coupling of the processor
buses via an FPGA (Field Programmable Gate Array). The FPGA has to translate
the Hyper Transport (HT) of the Opteron to the Global Bus Interface (GBIF) of the
Cell and vice versa.

In figure 2.6 a simplified structure is shown. Neither the Opteron nor the Cell have
a real ”Northbridge”. On both platforms the memory controller is integrated on the
processor die. So the term ”Northbridge” describes the processor bus I/O interface.

(FPGA)

Bridge

"Northbridge"

IOIF/GBIF

Cell/B.E.

Core 2

Opteron

HT

PPECore 1

"Northbridge"

Figure 2.6: Tightly coupled Opteron Cell evaluation platform

This platform provides more performance than local bus direct. Its bandwidth is
higher3 and the latency is lower, because there are no Southbridges and no double
protocol translation (HT to PCIe and PCIe to GBIF) necessary. However, the main
reason to build this platform is the availability of coherent memory, because HT as
well as GBIF are cache coherent.

All main features of RSPUFS are focused on this platform. If the PCIe coupling
is available and RSPUFS is ported to PCIe, the porting effort to the tightly coupled
Opteron Cell evaluation platform should be very low.

3The peak bandwidth of HT is currently specified (HT 3.0 @ 2.6GHz) at 20.8GB/s and the peak
bandwidth of PCIe (v2.0) is specified at 16GB/s

14

3 SPUFS

The Synergistic Processing Unit File System (SPUFS) is the Linux programming
model for the Synergistic Processing Units of the Cell. It is only available for the
PowerPC branch of the Linux kernel. RSPUFS is built on top of SPUFS. Thus it is
an important part of this thesis to analyze SPUFS.

This chapter shows an overview of the SPUFS concepts and the interface provided
by SPUFS to the application.

3.1 Introduction

To integrate the SPEs into the Linux environment several basic approaches are avail-
able [8].

1. Character Devices

A character device is a simple way to enable applications access to hardware re-
sources. Each SPU would be represented as a character device. For controlling
only read, write and ioctl system calls are required.

However, it will be hard for an application to find unused SPUs if each is
represented as a single device. Furthermore it is very difficult to virtualize the
SPUs on a multi-user system.

2. System Calls

With the definition of a new set of system calls and a new thread space, it
is possible to abstract the physical SPU with ”SPU process”. The advantage
is, that the kernel can schedule these SPU processes and every user is able to
create them without interfering with each other.

A possible high number of new system calls is needed to provide the neces-
sary functionality. To manage another type of processes, kernel infrastructure

15

3 SPUFS

has to be duplicated. Thus changes or an alternative version of system calls
manipulating the process-space like kill or ptrace are required.

3. Virtual File System

Like the system call approach, a virtual file system (VFS) does not require any
device drivers. All resources are stored instead in the main memory. For the
communication between user- and kernel-space, system calls like open, read,
write or mmap are used.

Because of the disadvantages from character devices or the new thread space, IBM
has decided to implement a virtual file system with the name ”SPUFS”. The integra-
tion into the Linux kernel is shown in figure 3.1. The ”spufs”1 kernel driver uses the

Character / Network / Block

device drivers

application

system call interface

ext 2

libfs

proc spufs...

H
a
rd

w
a
re

 L
e
v
e
l

K
e
rn

e
l
L
e
v
e
l

U
s
e
r

L
e
v
e
l

libspe

Hardware
Cell/B.E

Figure 3.1: SPUFS inside the Linux Kernel

VFS interface of Linux represented by libfs. By convention the default mount point is
”/spu”. As shown in the figure, some functionalities are directly exported as system
calls. They are explained in subsection 3.4.1. An application has not deal with the

1spufs in lower-case letters is the name of the Linux kernel driver.

16

3 SPUFS

file system parts directly. A low level library with the name ”libspe” was introduced
by IBM (subsection 3.4.2).

The dotted area in the figure is the device driver layer of the Linux kernel. Even
though SPUFS is not a part of it, it could be considered to belong to this layer. The
reason is SPUFS manages the hardware (SPE) directly, what normally only device
drivers do.

However, SPUFS is more than just a file system or a kind of a device driver. Rather
it is a integration concept of the SPE as accelerator unit in the Linux system.

3.2 The SPUFS Concept

The SPE is a raw resource in the system. For example, only sixteen of these are
available on a Dual-Cell Blade. This amount will may be not enough to fit the needs
of all applications, if many users are working on one system. But this problem is
already solved for the main processing unit, which is virtualized in the operating
system environment. Their every processes is getting its own context, with an image
of the real system stored in the main memory. This context includes:

• Registers

• Program Counter

• Processor Status

• Segment Pointers

• Priority

• Root Directory

• Working Directory

• File Descriptor Table

• Page Table

• ...

17

3 SPUFS

This is the internal view of the context. It is not possible for an application to ac-
cess these entries directly. For modification and status requests the operation system
provides special system calls like getcwd (getting the current working directory) or
nice (setting the priority).

However, the SPUFS provides a similar solution. The only difference is the way
of modifying the internal context. Instead of introducing a high amount of new or
changed system calls, a VFS approach is used. The context components (see section
3.3) are accessible through normal file system calls.

To sum up, the SPUFS concept has two parts: The virtualization of the SPUs and
the export of the context through a VFS interface to the user-space.

18

3 SPUFS

3.3 Internal Context

s t r u c t spu context
{

s t r u c t spu ∗ spu ;
s t r u c t spu s t a t e csa ;
s p i n l o c k t mmio lock ;
s t r u c t addre s s space ∗ l o c a l s t o r e ;
s t r u c t addre s s space ∗mfc ;
s t r u c t addre s s space ∗ cn t l ;
s t r u c t addre s s space ∗ s i g n a l 1 ;
s t r u c t addre s s space ∗ s i g n a l 2 ;
s t r u c t addre s s space ∗mss ;
s t r u c t addre s s space ∗psmap ;
s t r u c t mutex mapping lock ;
u64 ob j e c t i d ;

enum { SPU STATE RUNNABLE, SPU STATE SAVED } s t a t e ;
s t r u c t mutex state mutex ;
s t r u c t mutex run mutex ;

s t r u c t mm struct ∗owner ;

s t r u c t k r e f k r e f ;
wa i t queue head t ibox wq ;
wa i t queue head t wbox wq ;
wa i t queue head t stop wq ;
wa i t queue head t mfc wq ;
s t r u c t f a s yn c s t r u c t ∗ i box f a sync ;
s t r u c t f a s yn c s t r u c t ∗wbox fasync ;
s t r u c t f a s yn c s t r u c t ∗mfc fasync ;
u32 tagwait ;
s t r u c t spu context ops ∗ops ;
s t r u c t work s t ruct reap work ;
uns igned long f l a g s ;
uns igned long event r e tu rn ;

s t r u c t l i s t h e a d g a n g l i s t ;
s t r u c t spu gang ∗gang ;

/∗ s chedu l e r f i e l d s ∗/
s t r u c t l i s t h e a d rq ;
s t r u c t delayed work sched work ;
uns igned long s c h e d f l a g s ;
uns igned long r t p r i o r i t y ;
i n t po l i c y ;
i n t pr i o ;

} ;

Figure 3.2: struct spu_context in linux-2.6.22

The internal context reflects itself in the struct spu_context shown in figure 3.2.
It contains the address configurations of the mappable parts of the SPE, the message
boxes und mfc entries and other housekeeping stuff like reference counters and syn-

19

3 SPUFS

chronization primitives. Scheduling parameters are included in this structure, too.
But the most interesting entries are struct spu *spu and struct spu_state *csa.

Before the SPU code could be executed, the corresponding context has to be bind to
a physical SPU by the SPUFS scheduler. A binded context has a valid *spu entry
pointing to the physical SPU executing it. This structure is the device representation
of the physical SPU.

If a context has no physical SPU, it will be stored in the csa (context safe area)
represented by struct spu_state (confirm figure 3.3).

s t r u c t spu s t a t e
{

s t r u c t s pu l s c s a ∗ l s c s a ;
s t r u c t spu prob l em co l l apsed prob ;
s t r u c t s pu p r i v 1 c o l l a p s ed pr iv1 ;
s t r u c t s pu p r i v 2 c o l l a p s ed pr iv2 ;
u64 spu chnlcnt RW [3 2] ;
u64 spu chnldata RW [3 2] ;
u32 spu mai lbox data [4] ;
u32 pu mai lbox data [1] ;
u64 dar , d s i s r ;
uns igned long suspend time ;
s p i n l o c k t r e g i s t e r l o c k ;

} ;

Figure 3.3: struct spu_csa in linux-2.6.22

The structure contains all the data for suspending and later resuming the SPU pro-
gram execution. This includes the register file, local-store, problem state, privileged
areas, channel status and the data of the inbound and outbound mailboxes.

3.4 User-Level Interfaces

This section discusses in a bottom-up way the interface exported from SPUFS to the
user-space. In 3.4.1 the system programing interface will be introduced and after
this, a library abstracting the low level parts is depicted. At the end of the section
the toolchain for creating PPE programs with embedded SPE code is presented.

20

3 SPUFS

3.4.1 System Programing Interface

The first step for applications is to create a context for each SPE they require.
Creating contexts with the system call spu_create (figure 3.4) is the only operation
available on the spufs root. With the appropriated flag it is possible to influence the
affinity of the SPUs. However, this diploma thesis deals not with affinity or the gang
principle, because it is not (yet) supported by RSPUFS.

#inc l u d e <sys / types . h>
#inc l u d e <sys /spu . h>

i n t spu c r ea t e (const char ∗pathname , i n t f l a g s , mode t mode) ;

Figure 3.4: The spu_create system call

Each context is represented by a directory. The file descriptor for this is the value
returned by spu_create. If the application closes this descriptor, the context gets
destroyed.

The content of the directory are regular files. A subset is listed in table 3.1. The
first column points to the file name, the second to the access permissions and the last
to a short description. Through these files the application gets access to the single
portions of the Cell. The most important entries are:

• mem

The whole local-store is represented by the ”mem”file. Simple I/O system calls
can be used to place data into it.

It is possible to map the local-store into the address space of the application
by calling mmap. If more than one is mapped, it will be possible to move data
between them via memcpy. This results internally in a DMA transfer. More-
over, the mapping has the advantage, that the operating system is not involved
by each access. Besides, this circumstance avoids copying the data twice (first
time in the read/write buffer and the second time from the read/write buffer
to the local-store memory by the Linux kernel).

21

3 SPUFS

File Perm Description
decr r w SPU Decrementer
decr status r w decrementer status
event mask r w event mask for SPU interrupts
fpcr r w floating point status and control register
mbox r - the first SPU to CPU communication mailbox
mbox stat r - length of the current queue
ibox r - the second SPU to CPU communication mailbox
ibox stat r - length of the current queue
wbox - w CPU to SPU communication mailbox
wbox stat r - length of the current queue
mem r w local-store memory
npc r w next program counter
psmap r w problem state area
regs r w register file
signal1 r w signal notification channel 1
signal1 type r w behavior of the signal1 (replace or ”OR”)
signal2 r w signal notification channel 2
signal2 type r w behavior of the signal2
srr0 r w interrupt return address register

Table 3.1: The SPUFS context (part)

• regs

The register file of the SPU is accessible via this entry. Any operation causes
the SPE making a complete halt. But normally there is no need to access the
registers directly during the program execution.

• mbox

”mbox” is the first SPU to CPU communication mailbox. It can only be read
in units of four bytes in non-blocking mode. If there is no data available, read
returns -1 and errno is set to EAGAIN.

• ibox

The second SPU to CPU communication mailbox is ”ibox”. The only difference
to ”mbox” is, that this file can be read in blocking mode.

22

3 SPUFS

• wbox

For the communication from the CPU to SPU ”wbox” has to be used. Only
units of four bytes can be written to this file. If the mailbox is full, write will
block until it is becoming empty. If the file is opened with O NONBLOCK,
the return value is -1 and errno is set to EAGAIN.

• wbox stat / mbox stat / ibox stat

These three files contain the length of the current mailbox queue: how many
words can be written to wbox or read from mbox or ibox without blocking.
read on these files is only possible in units of four bytes. The result is a binary
integer number in big-endian format.

• npc

It is possible to read and write values to the next program counter without
stopping the execution of the SPU. The value is an ASCII string with the
numeric value of the next instruction.

• mfc

The Memory Flow Controller is accessible through this file. With write it is
possible to insert a new DMA requests into the MFC. The MFC Tag Status
Register is returned by reading the file.

• psmap

The whole problem-state area is mappable via mmap the ”psmap” file. The
problem-state area is the memory representation of special parts of the SPE:

– MFC DMA setup and status registers

– PPU and SPE mailbox registers

– SPE run control and status register

– SPE signal notification registers

– SPE next program counter register

After loading the program into the local-store memory the spu_run system call (Fig-
ure 3.5) executes the SPU code.

23

3 SPUFS

#inc l u d e <sys / types . h>
#inc l u d e <sys /spu . h>

i n t spu run (i n t fd , uns igned i n t ∗npc , uns igned i n t ∗ event) ;

Figure 3.5: The spu_run system call

The execution is synchronous. Thus the thread calling spu_run is blocked, while the
SPU code is running. After returning it is possible to execute the system call again
without updating the pointers, because the SPU instruction pointer is written back
to npc. Returning has one or more of the following reasons:

• Wrong usage of spu_run

• SPU was stopped by stop-and-signal

• SPU was stopped by halt

• SPU is waiting for a channel

• SPU is in single-step mode

• SPU has tried to execute an invalid instruction

• SPU has tried to access an invalid channel

It is also possible to start the SPU-code execution by writing the appropriate values
into the ”run control” register, located into the problem-state area. However, it is
recommended to use the spu_run system call.

3.4.2 SPE Runtime Management Library

To provide a further abstraction to the application, a SPE Runtime Management
Library called ”libspe” is provided by IBM. The library interface has changed from
libspe1 to libspe2 since the Cell/B.E. SDK 2.1. The main differences are the way of
executing the SPE code and the context creation. While the execution is synchronous
in libspe2, it is asynchronous in libspe1. The context creation and execution are one
step in libspe1 and several steps in libspe2. In the rest of this thesis ”libspe” always
means the libspe2 interface.

24

3 SPUFS

Libspe is a user-space library, it does not manage physical SPEs. Hardware re-
sources can not be manipulated directly. The library requests SPE resources from
the operating system, taking no concern about how the operating system implements
this. It is also allowed to schedule multiple contexts on one SPE. The operating
system can suspend execution at any point. But all this happens transparently to
the libspe and the user application. Only diminished performance is noticed in cause
of excessive context switches. According to the past sections the spufs Linux kernel
driver does exactly those things.

The last part of this subsection shows an overview of the functionalities provided
by libspe. For a closer look please refer to [9].

SPE context management

Like in SPUFS the first action for an application is to create the number of contexts
it needs. Therefore spe_context_create has to be called. While creating, a library
internal structure gets initialized and the spu_create system call is executed. To
destroy the context spe_context_destroy has to be called.

CPU information

The function spe_cpu_info_get provides an application some basic information
about the system. This includes the number of physical PPEs and SPEs and the
usable SPEs. Usable SPEs can actually be scheduled to run for the application and
are not ”pinned” by the operation system.

SPE program image handling

Before execution, the SPU code has to be loaded. There are two possibilities of
loading the program. The first possibility is loading from an external SPE ELF with
the function spe_image_open. The second possibility is to embed the image into
the PPE executable via an Embedder as described in the toolchain section (section
3.4.3). The image is loaded into the local-store by spe_program_load.

25

3 SPUFS

SPE run control

The function spe_context_run executes the SPE code loaded by spe_program_load.
This function internally executes the system call spu_run provided by SPUFS. Be-
cause this happens synchronously, the calling thread is stopped. In case the program
needs more than one SPE (assume N), it is common to use N +1 threads. N threads
are used for the SPEs and one thread for the main program itself.

When spu_run gives the execution control back, the libspe does not return immedi-
ately. Depending on the return code, callback handlers are executed. This mechanism
is described in detail in section 3.5.

SPE event handling

To receive information caused by the asynchronously running SPE threads,
it is possible to create (spe_event_handler_create) and register event handlers
(spe_event_handler_register). The supported events are:

• SPE EVENT OUT INTR MBOX (data available in the mailbox)

• SPE EVENT IN MBOX (space for new mailbox message available)

• SPE EVENT TAG GROUP (a SPU event tag group signaled completion)

• SPE EVENT SPE STOPPED (SPU program stopped)

SPE MFC proxy command

Libspe provides an interface to initiate DMA transfers from the PPE side. Various
commands, like spe_mfcio_put or spe_mfcio_get, are available to write data in or
out of the local-store directly by the MFC on the SPE.

SPE MFC multi-source synchronization

A multi-source synchronization of a specified SPE is started with the function
spe_mssync_start. The MFC tracks all uncompleted transfers at this SPE. If all
transfers across the local-store and main memory are finished, the spe_mssync_status
function will return zero.

26

3 SPUFS

SPE MFC proxy tag-group completion functions

The completion of DMA requests can be checked with spe_mfcio_tag_status_read.

SPE mailbox functions

Sending and receiving short messages (mails), each with a size of 32-bit, is supported
by libspe, too. The mailbox functions match exactly the entries of the SPUFS virtual
file interface. This shows clearly that libspe is a wrapper for the most parts of the
SPUFS functions.

SPU signal notification functions

The function spe_signal_write can be used to write in the signal notification reg-
isters of the SPU.

Direct SPE access

The local-store is memory mapped by libspe. The application can get access to it
by calling spe_ls_area_get. With spe_ps_area_get it is possible to modify the
problem state area directly.

PPE-assisted library facilities

With the help of the PPE, the SPE can use system calls or other libraries which
are too large for the local-store. The mechanism named ”Externally Assisted SPE
Library Calls” will be explained in section 3.5.

3.4.3 Toolchain

The PPU and SPU instruction set architectures are not compatible. In consequence
the application has to be split into two binaries. It is desirable to combine both
into one single file. Therefore the toolchain from figure 3.6 can be used. The SPE
executable becomes embedded by the ”SPE Embedder” (ppu-embedspu) into a PPE
object file. Then this object can be linked with other PPE objects to a single PPE
executable file. The libspe library can load those embedded images into the local-
store of the SPE.

27

3 SPUFS

SPE Object

Compiler
SPE

SPE Source PPE Source

PPE
Compiler

PPE ObjectSPE Libraries

PPE Executable

PPE

Embedder
SPE

Linker

Linker
SPE

PPE Object

SPE Executable

PPE Libraries

Figure 3.6: SPUFS: Tool Chain

The embedder is a shell script building the embedded SPU image. This process
consists of three steps. The first step is copying the whole SPU Elf file into a read-
only section. The second step is to filter special ” EAR ” symbols and write them
in form of a table into a seperate data section. With those symbols it is possible to
access corresponding symbols in the PPU program. The last step is the creation of
”struct spe_program_handle” (figure 3.7).

typede f s t r u c t spe program handle
{

uns igned i n t hand l e s i z e ;
vo id ∗ e l f image ;
vo id ∗ toe shadow ;

} spe program handle t ;

Figure 3.7: struct spe_program_handle

This structure is a handle for the SPU image in the PPU program. The pointers
elf_image and toe_shadow are set to the sections created in step one and two. This
structure could be directly loaded from libspe with spe_program_load.

28

3 SPUFS

3.5 Externally Assisted SPE Library Calls

The SPE is designed to handle computational workload. However, outside the com-
pute kernels functionalities are needed like allocating memory or printing status in-
formations. The operating system is running on the PPE. Thus a direct call of the
necessary system calls is not possible. To not abandon these functionality, the Ap-
plication Binary Interface (ABI) [10] specifies PPE assisted library calls.

This section describes the interface with the help of the example in figure 3.9 on
page 31. In line 40 the string ”Hello PPE!” has to be written to standard output.
Therefore a stub for the write system call is provided (line 27). To perform the
assisted call the SPE has to construct a local-store memory image with the input
and output parameters. Each parameter must be padded to a quadword boundary.
For the write system call the image has the format shown in figure 3.8.

pad pad pad

pad pad pad

pad pad pad

size_t count

char * buf

int fd
0

16

32

Figure 3.8: Parameter image for an assisted write call

The structure in line five implements this. After creating and filling it with the pa-
rameters, __send_to_ppe is called. The arguments of this function are signalcode,
opcode and a pointer to the previously created local-store memory image holding the
parameters. The pair signalcode and opcode are selecting the library function. All
possible signal codes are shown in table 3.2. The system call write is included into
POSIX.1 with the Opcode 27 (table 3-7 in [10]). To signal the PPE the ”stop-and-
signal” machine instruction [11] has to be executed by the SPE. The ABI defines
that the next 32-bit are the assisted call message. This message is a combination
of the opcode in the upper byte and the address of the local-store memory image in
the lower byte (line 15). To avoid changing the program code at runtime, a helper
function is created on the stack (lines 16-20). The machine code of ”stop-and-signal”
has only zeros in the instruction bits. Thus the signalcode could be directly used as
command. Subsequently the assisted call message, a ”nop” and a ”return” is written.

29

3 SPUFS

Signal Code Description
0x0000 Data executed as an instruction.
0x2000-0x20FF Return from main or exit. The return code is encoded in

the least significant byte.
0x2100 ISO/IEC C99 library callback.
0x2101 POSIX.1 library callbacks.
0x2102 POSIX.1b library callbacks.
0x2103 Operating-System-Dependent system calls.
0x2105 Libea callbacks.
0x2106-0x21FF User defined callbacks.
0x2200-0x220F SPE isolation mode errors.
0x3FFE Stack overflow detected.
0x3FFF Debugger breakpoint.

Table 3.2: Cell ABI stop-and-signal code definition

By the execution of this stack function (line 24) the SPE stops and the PPE gets
signaled.

On the PPE this reflects a return from spu_run. In the case of the example, the
return value is 0x2701. The Runtime Management Library (libspe) calls the POSIX.1
library handler, which is reading the assisted call message to get the desired function
and the appropriate parameter list. The pointer to the parameter list can be found
by adding the value of npc to the start address of the local-store. After executing the
library function, the npc has to be incremented by 4 Byte. The return values must
be copied into the local-store memory image. If the assisted call generates errors by
setting errno, this value has to be stored in the third word element of the quadword.
The SPE execution is resumed by calling spu_run again.

This little example has shown the way for assisted callbacks implemented in the
libspe. But it is also possible to define own functions. The callback handler could be
registered with spe_callback_handler_register.

30

3 SPUFS

1 #inc l u d e <sys / types . h>
2 #de f i n e SPE POSIX1 CLASS 0x2101
3 #de f i n e SPE POSIX1 WRITE 27
4 i n t errno ;
5 typede f s t r u c t {
6 i n t fd ;
7 uns igned i n t pad0 [3] ;
8 char ∗ buf ;
9 uns igned i n t pad1 [3] ;

10 uns igned i n t count ;
11 uns igned i n t pad2 [3] ;
12 } wr i t e t ;
13 vo id s end to ppe (uns igned i n t s i gna l code , uns igned i n t opcode , vo id ∗ data)
14 {
15 uns igned i n t combined = ((opcode << 2 4) | ((uns igned i n t) data & 0x00FFFFFF)) ;
16 vec to r uns igned i n t s top func = {
17 s igna l code ,
18 combined ,
19 0x4020007F ,
20 0x35000000
21 } ;
22 vo id (∗ f) (vo id) = (vo id ∗)& stopfunc ;
23 asm(”sync ”) ;
24 f () ;
25 errno = ((uns igned i n t ∗) data) [3] ;
26 }
27 s s i z e t wr i t e (i n t fd , char ∗buf , s i z e t count)
28 {
29 s s i z e t ∗ r e t ;
30 w r i t e t data ;
31 data . fd = fd ;
32 data . buf = buf ;
33 data . count = count ;
34 r e t = (s s i z e t ∗) &data ;
35 s end to ppe (SPE POSIX1 CLASS , SPE POSIX1 WRITE, &data) ;
36 r e t u rn ∗ r e t ;
37 }
38 i n t main ()
39 {
40 wr i t e (1 , ”He l lo PPE!\n” , 1 1) ;
41 }

Figure 3.9: PPE assisted write system call

31

4 RSPUFS

The integration of the SPE as accelerator component into the PowerPC Linux envi-
ronment was demonstrated in the last chapter. This integration was based on SPUFS,
which contains the concepts virtualization of the SPEs and the functionality export
via a VFS approach. However, this solution was only available for the Cell system.

Within the migration process of SPUFS from the PPE to the Opteron as main pro-
cessing unit, the RSPUFS project was founded. RSPUFS stands for ”Remote SPU
File System”. The name was chosen, because of the remote location of the SPEs and
the usage of the original SPUFS on the remote host.

The first part of this chapter introduces RSPUFS. In the next parts, a closer look
into the internals is provided.

4.1 Targets

The main target of RSPUFS is the support of SPUs in the Opteron Linux kernel.
To minimize the porting effort of existing applications the same interface like on
the native Cell has to be provided. This means adapting the concepts of SPUFS to
RSPUFS.

However, this is only one side. The other is to port the runtime management li-
brary ”libspe”, too. Because of the recommendation from IBM to use this library to
program the Cell, it is required by most of the applications.

32

4 RSPUFS

4.2 Structure

RSPUFS consists of two parts: A daemon running on the PPE of the Cell with the
name ”rspufsd” and a virtual file system driver called ”rspufs”1 in the Opteron Linux
kernel. These components are displayed in figure 4.1.

ext 2

libfs

proc... ext 2

libfs

proc...

U
s
e
r

L
e
v
e
l

K
e
rn

e
l
L
e
v
e
l

H
a
rd

w
a
re

 L
e
v
e
l

n
e
tw

o
rk

s
ta

c
k

Hardware

spufs

Hardware
Opteron

system call interface

application

n
e
tw

o
rk

s
ta

c
k

rspufs

Cell/B.E.

rspufsd

dedicated link (Ethernet, TCP/IP)

system call interface

(iii)

(iii)

(iii)

(ii)

(ii)

(ii)

(ii)

(ii)

(i)

(i)

libspe

Character / Network / Block

device drivers

Character / Network / Block

device drivers

Figure 4.1: RSPUFS Model

A complete Linux system is running on the Opteron as well as on the Cell. Both
are connected through an Ethernet link. It is possible to use the Cell in the normal
way. The only difference is a further user-space process, the rspufsd, which uses the
unmodified SPUFS. The reason for the decision not modifying SPUFS on the Cell
side is the better assignment of errors, which occur during the development. All
errors are based on the daemon, which is very easy to debug, because it is running in
the user-space, where normal debuggers are working. In contrast, a fatal error in the
kernel-space always results in a ”kernel oops”. If the kernel detects a problem, it kills

1According to ”spufs”, ”rspufs” in lower-case letters means always the Linux kernel driver.

33

4 RSPUFS

the involved processes and prints an oops message used by kernel developers to fix
programing errors. In the oops state some internal resources are no longer available
to avoid damage on the system. The whole VFS may not work and no data can be
stored or loaded anymore. The only option is to reboot the system. Thus it is very
uncomfortable to develop in the kernel-space.

On the Opteron side, the spufs driver is exchanged with rspufs, which only pro-
vides the interface. Any resource request is transmitted to the daemon on the Cell.

The dotted arrows in the figure 4.1 are an example for a communication, where
the application running on the Opteron write to the Cell. The numbers will be ex-
plained in the next section.

The parts of RSPUFS are not just two program pieces, but a differentiation of the
functionality. The rspufsd implements the hardware access (bottom half) to the SPEs
and the rspufs kernel driver provides the user interface (top half).

4.3 The Cell Part: rspufsd

The whole RSPUFS concept works like a proxy. In figure 4.1 the application requests
a resource from the rspufs kernel driver (i), which translates this to a network pack-
age and send it to the Cell (ii). The rspufsd decodes the package and reexecute the
request on the Cell (iii). The results are transmitted back to the Opteron and the
application (not displayed in the figure).

The main tasks of rspufsd could be described as: provide a service infrastructure
and handle SPU requests.

In the next subsections the network protocol and the provided services are depicted.

4.3.1 Network Protocol

The RSPUFS network protocol was build on top of TCP/IP. In contrast to the
stream-orientation of TCP/IP, RSPUFS is message based. The structure of the

34

4 RSPUFS

message is shown in figure 4.2. The white parts are the header and the grey is the
payload.

Service Tag Size Data

1 Byte 2 Byte 4 Byte Size − 8 Byte1 Byte

Flags

Figure 4.2: RSPUFS Protocol

The header fields have the following meaning:

• Flags

A message must not, but can have one or more of these flags:

RSPU F OK The request was processed without errors. The result
can be found in the data field.

RSPU F ERROR An error occurs while the execution of the request.
The 4-Byte error is placed into the first four data
bytes.

RSPU F FIN This is a marker for the last package of the current
session. Thereafter the connection gets closed.

RSPU F NOREP The message is only a notification. No answer is ex-
pected.

RSPU F ASYNC If a message is outside the normal data flow, it will be
marked with this flag.

If neither RSPU F OK nor RSPU F ERROR is set, the message will be service
request. Otherwise it is a response.

• Service

Each message has to belong to exactly one service. The services are shown in
section 4.3.2. In the normal data flow the Opteron requests services from the
rspufsd, which is responding to this. The daemon is free in the decision, which
service it responds first. It is only important to respond with the right Service-
and Tag-number.

However, that does not mean the messages can overlap. Both sides have to
ensure, that it is send as a whole and not in parts.

35

4 RSPUFS

• Tag

Every request gets an own Tag. Thus it is possible to assign the incoming
answers to the appropriate request.

• Size

The Size field contains the length of the total message. To get the length of the
payload, the size of the header (8 byte) has to be subtracted.

4.3.2 Services

As mentioned in the past section, the communication inside RSPUFS is service ori-
entated. Thereby the rspufsd has the server and rspufs the client role.

The client requests a service. The server is processing this request and is sending the
response back. If the flag RSPU F OK is set, the execution will be successful. If an
error occurres, RSPU F ERROR will be set. By now only the client is allowed to
initiate requests (this is called ”normal” or ”synchronous” data flow). But the proto-
col contains all necessary features to support asynchronous requests from the server.

In the rest of this subsection all services provided by rspufsd are described.

RSPU S CREATE

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG 0x000000080x02

Flags Service Tag Size

4 Byte1 Byte 1 Byte 2 Byte 4 Byte 4 Byte

0x00 0x00 0xTAG Flags Mode Name

RSPU_S_CREATE Request

RSPU_S_CREATE Response

X Byte

0x0000010 + X

Figure 4.3: RSPU S CREATE message

By convention, RSPU S CREATE is the first message after the established TCP
connection. ”Flags”, ”Mode” and ”Name” (figure 4.3) are the parameters of the

36

4 RSPUFS

spu_create system call (confirm figure 3.4 on page 21) submitted by the application.

The daemon uses these parameters to execute the system call on the Cell-side again.
If the context creation is successful, the response message will set only RSPU F OK
without any data. Possible error scenarios are a malformed or already existing con-
text name or invalid flags for spu_create.

Every context gets its own TCP/IP connection. Thus RSPFUS can differ the con-
texts just with the port, where the requests are coming in.

After the creation of the SPU context all other services are available.

RSPU S FILELST

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG

RSPU_S_FILELST Request

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0xTAG0x02

0x01

0x01

0x00000008

4 Byte 4 Byte

mode file 1Number of Files

X Byte

Name 2

X Byte

Name 1> 0x0000000C

RSPU_S_FILELST Response

Figure 4.4: RSPU S FILELST message

In order to be flexible, if changes in SPUFS are made, the context entries would not
be hard-coded into RSPUFS. The client has to request instead (figure 4.4) the list
of all file entries. This list is generated on demand by the server for the context
directory.

The respond contains the number of files with their access modes and names. The
end of each name could be found by a ’\0’ character.

37

4 RSPUFS

RSPU S FOPEN

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG

RSPU_S_FOPEN Request

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0xTAG0x02

0x02

0x02

4 Byte

Flags File Name

X Byte4 Byte

RSPU_S_FOPEN Response

Remote File Descriptor0x0000000C

0x0000000C + X

Figure 4.5: RSPU S FOPEN message

To open a context entry the service RSPU S FOPEN (figure 4.5) has to be used.
This is generic for all SPUFS context items. The submitted file name must include
the context name.

If the file is available and can be opened with the requested flags, the descriptor,
returned by the open system call, will be the response.

RSPU S FRELEASE

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0xTAG0x02 0x03

RSPU_S_FRELEASE Request

RSPU_S_FRELEASE Response

0x03

4 Byte

Remote File Descriptor

0x00000008

0x0000000C

Figure 4.6: RSPU S FRELEASE message

Context entries opened with RSPU S FOPEN could be closed by RSPU S FRELEASE
(figure 4.6). To avoid, that private descriptors of rspufsd get closed, a list is used
tracking all file descriptors opened by the Opteron.

38

4 RSPUFS

RSPU S FREAD

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0xTAG0x02

RSPU_S_FREAD Request

0x04

4 Byte

Remote File Descriptor

RSPU_S_FREAD Response

0x00000010

0x04

Size

4 Byte

0x00000008 + Size Data

Size Byte

Figure 4.7: RSPU S FREAD message

RSPU S FREAD (figure 4.7) is a generic service to read from any file provided by
SPUFS. Of cause, this file must have the ”r” permission (confirm table 3.1 on page
22). The read is performed on the requested file descriptor with the specified size.
All restrictions have to be respected, for example a read from the mailboxes is only
possible in a quantity of four bytes.

RSPU S FPREAD

Size

Data

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0xTAG0x02 0x05

0x05

4 Byte

Remote File Descriptor

RSPU_S_FPREAD Response

RSPU_S_FPREAD Request

0x00000018

4 Byte 8 Byte

PositionSize

0x00000008 + Size

Figure 4.8: RSPU S FPREAD message

RSPU S FPREAD (figure 4.8) is nearly the same as RSPU S FREAD. The only
difference is the read on a specific position in the file.

39

4 RSPUFS

RSPU S FWRITE

Data Read

X Byte

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0xTAG0x02

4 Byte

Remote File Descriptor

4 Byte

RSPU_S_FWRITE Response

0x0000000C

RSPU_S_FWRITE Request

0x06

0x06

Bytes Written

0x0000000C + X

Figure 4.9: RSPU S FWRITE message

This service is the analogue to RSPU S FREAD, but the read system call is ex-
changed with write. Again, all restrictions on the files within the context has to be
respected.

The amount of the written data is returned by this service (figure 4.9).

RSPU S FPWRITE

X Byte

Data

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0xTAG0x02

4 Byte

Remote File Descriptor

4 Byte

RSPU_S_FWRITE Response

0x0000000C

RSPU_S_FWRITE Request

0x07

8 Byte

0x00000012 + X

Bytes Written

Position0x07

Figure 4.10: RSPU S FPWRITE message

RSPU S FPWRITE (figure 4.10) is the pwrite system call version of RSPU S FWRITE.
As in RSPU S FPREAD it is possible to specify the position for writing within the
file.

The services RSPU S FPREAD and RSPU S FPWRITE are intensively used by
RSPUFS for reading and writing whole local store pages within the software emu-
lated DMA support.

40

4 RSPUFS

RSPU S FLLSEEK

Offset

Offset

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0xTAG0x02

4 Byte

Remote File Descriptor0x00000018

4 Byte 8 Byte

0x08

0x08

RSPU_S_FLLSEEK Request

RSPU_S_FLLSEEK Response

Whence

8 Byte

0x00000010

Figure 4.11: RSPU S FLLSEEK message

With RSPU S FLLSEEK (figure 4.11) it is possible to change the offset of the file
descriptor.

This service is not often used. It is only provided for compatibility reasons.

RSPU S SYSRUN

RSPU_S_SYSRUN Response

RSPU_S_SYSRUN Request

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0xTAG0x02

4 Byte

0x09

0x09 NPC

4 Byte4 Byte

NPC Status Return Value

0x0000000C

0x00000014

4 Byte

Figure 4.12: RSPU S SYSRUN message

RSPU S SYSRUN (figure 4.12) starts the execution of the SPU code. The parame-
ters and return values match exactly those of the spu_run system call.

The processing of this service is completely different to the other. Because the system
call is blocking, it has to be executed in a separate thread to avoid the stall of the
whole daemon. If spu_run returns, the thread will be destroyed and the results will
be transmitted back to the Opteron. In the meantime other services can be served
by rspufsd.

41

4 RSPUFS

RSPU S XALLOC

RSPU_S_XALLOC Response

RSPU_S_XALLOC Request

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0xTAG0x02

4 Byte

0x0000000C

4 Byte

0x0A

0x0A

Size

Remote Address0x0000000C

Figure 4.13: RSPU S XALLOC message

RSPU S XALLOC (figure 4.13) is the first service that does not match any function-
ality provided by SPUFS. The purpose of this service and the next three services is
to provide an Opteron application the ability to access the main memory of the Cell
system.

To allocate the XDR memory, RSPU S XALLOC has to be used. This service is
associated with the current context. If the context becomes destroyed, the memory
will be freed. The binding to the context is a simplification to keep track of the usage
of the memory. The allocation is available for all SPU contexts created by RSPFUS.
Thus the memory can be shared by multiple SPEs, which is needed for collective
operations like matrix multiplication. The disadvantage is, that SPEs from other
Opteron applications can use this memory, too, if they get the pointer to it. This
behavior is not possible on SPUFS, because each application has their own address
space. But in RSPUFS every program of the Opteron is represented by the daemon
with only one address space. This problem could be solved with forking after each
new connection. Thereby each child process gets its own address space with the dis-
advantage, that the SPEs cannot use the main memory together.

The only way to really solve this problem is the migration of rspufsd into the kernel-
space.

42

4 RSPUFS

RSPU S XFREE

RSPU_S_XFREE Response

RSPU_S_XFREE Request

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0xTAG0x02

4 Byte

0x0000000C0x0B

0x0000000C

Remote Address

0x0B

Figure 4.14: RSPU S XFREE message

The whole allocated memory is freed by using the RSPU S XFREE service (figure
4.14). It is not possible to free only a part.

The application programmer has to ensure, that no SPE is using this memory any-
more. Any access to the released memory results in a segmentation fault.

RSPU S XREAD

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0xTAG0x02

0x0C

4 Byte 4 Byte

RSPU_S_XREAD Request

RSPU_S_XREAD Response

0x0C

Remote Address Offset Size

4 Byte

0x00000014

0x0000008 + Size

Size

Data

Figure 4.15: RSPU S XREAD message

With RSPU S XREAD (figure 4.15) the allocated memory can be written from the
Opteron. If the combination of ”Offset” and ”Size” was outside the allocated region,
the daemon would return an error.

43

4 RSPUFS

RSPU S XWRITE

Data

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0x00 0xTAG

Flags Service Tag Size

1 Byte 1 Byte 2 Byte 4 Byte

0xTAG0x02

4 Byte

Remote Address0x0D

0x0D 0x0000008

0x00000010 + X

RSPU_S_XWRITE Response

RSPU_S_XWRITE Request

4 Byte

Offset

Figure 4.16: RSPU S XWRITE message

Last but not least, the service RSPU S XWRITE (figure 4.16) allows the client to
write to the allocated memory.

4.4 The Opteron Part: rspufs

As top half of RSPUFS the kernel driver rspufs provides the VFS interface to ac-
cess the SPEs from the Opteron. The main task is to provide the same behavior as
SPUFS on the Cell.

In contrast to the daemon, which can use the Cell like any other application, the
only way for the Opteron to use the SPEs is through the provided services from
rspufsd. However, the big challenge is the different byte order of both systems. The
Opteron has Little- and the Cell Big-endian. Thus the bytes have to be swapped
after receiving and before sending inside the kernel driver.

Because the kernel cannot make any assumptions on the type of the data the ap-
plication wants to access, the application has to order the bytes itself.

In this section the internal context and the management of network packages are
depicted first, followed by the changes/extensions of the SPUFS interface. There-
after the software emulated Cell memory access is described in subsection 4.4.4.

44

4 RSPUFS

4.4.1 Internal Context

s t r u c t r spu context
{

s t r u c t socke t ∗ sock ;
s t r u c t semaphore comm sem ;
s t r u c t k r e f k r e f ;
s p i n l o c k t t ag l o ck ;
u i n t 16 t tag next ;
u i n t 8 t want c lo se ;

s t r u c t mem mmap
{

vo id ∗ bu f f e r ;
uns igned long o f f s e t ;
s t r u c t r s p u f s f i l e i n f o ∗ f i ;
s p i n l o c k t l ock ;
i n t syncd ;
s t r u c t inode ∗ inode ;

} mem mmap;

s t r u c t xdr mmap
{

vo id ∗ bu f f e r ;
uns igned long o f f s e t ;
u i n t 32 t s i z e ;
s p i n l o c k t l ock ;
i n t syncd ;
s t r u c t inode ∗ inode ;
i n t 3 2 t remote addr ;

} xdr mmap ;

i n t d i s p a t ch e r i d ;
s t r u c t semaphore dispatch sem ;
s t r u c t l i s t h e a d d i s p a t c h l i s t ;
s t r u c t complet ion d i spatch comple te ;

} ;

Figure 4.17: The spu_create system call

Most of the internal rspufs context (figure 4.17) consists of network specific parts like
the TCP/IP socket ”sock” or the Packet Dispatcher entries. Other important entries
are ”mem mmap” and ”xdr mmap”, which are used to support memory mapping.

4.4.2 Packet Dispatcher

One core component is the Packet Dispatcher, which is running as a separate kernel
thread. Its task is to receive and deliver messages from the rspufsd as fast as possi-
ble. Receiving a message in the stream orientated TCP/IP is not straight forward.
The recv operation on a socket does not always return the requested size. In most

45

4 RSPUFS

cases it is necessary to recall it to get the rest of the bytes. The explanation of this
phenomenon is, that this kernel returns back the current buffer content. When there
are not all bytes arrived or the message is just to large to fit completely into the
buffer, only the existing bytes are returned.

Thus the receiving implementation has the following steps:

1. Receiving until the eight header bytes are arrived.

2. Transform the values in the host byte order.

3. Receiving until the message is completed.

If the message is a response to a previous request, it will be put in a queue imple-
mented as a simple list. The function sending the request traverses this list, searching
for the matching Tag and Service (confirm figure 4.2). If the message is found, it
will be deleted from the queue. These functionalities are implemented in the function
comm_getpack, which is called by comm_send.

4.4.3 User-Level Interfaces

System Programing Interface

The system programming interface is nearly the same as in SPUFS. An application
has to create the contexts with spu_create and executes them with spu_run, too.
The creation results in a new context directory in the rspufs root with the content
shown in table 4.1. One difference to the SPUFS entries (confirm table 3.1) is a new
entry called “xdr“. Another is the semantic of “mem“. In the next points they are
explained:

• mem

The usage is exactly the same as in SPUFS, but the memory mapping is software
emulated (confer section 4.4.4), because TCP/IP provides no RDMA features.

In consequence the behavior is a little bit different to a hardware based support.
First there is no coherency of the mapping. That means, if the Opteron is
writing on the same local-store region as the Cell, the next write back will
overwrite all the changes made by the Cell. This cannot be influenced by

46

4 RSPUFS

File Perm Description
decr r w SPU Decrementer
decr status r w decrementer status
event mask r w Event mask for SPU interrupts
fpcr r w floating point status and control register
mbox r - the first SPU to CPU communication mailbox
mbox stat r - length of the current queue
ibox r - the second SPU to CPU communication mailbox
ibox stat r - length of the current queue
wbox - w CPU to SPU communication mailbox
wbox stat r - length of the current queue
mem r w local-store memory
npc r w next program counter
regs r w register file
signal1 r w signal notification channel 1
signal1 type r w behavior of the signal1 (replace or ”OR”)
signal2 r w signal notification channel 2
signal2 type r w behavior of the signal2
srr0 r w interrupt return address register
xdr r w main memory interface

Table 4.1: the RSPUFS context (part)

the application, because it happens implicitly before each spu_run or when
accessing a page different the current one.

However, the application should only operate with the local-store memory map-
ping, when the SPU is not running.

• xdr

Running on the Opteron, an application cannot access the main memory of the
Cell. Thus a special interface is provided by RSPUFS.

After opening the ”xdr” entry, it is possible to mmap it in shared mode into the
application address space. With the size parameter of this system call, the
amount of memory can be set. There is no limitation, but any request higher
than the physical amount of memory on the Cell results in swapping.

Of cause, the address returned by mmap is only the address on the Opteron. To
get the Cell equivalent an ioctl with the parameter ”RSPU GETADDR” has

47

4 RSPUFS

to be performed.

Unlike the implicit synchronization of the local-store mapping, the application
can do it explicitly by calling ioctl with the parameter ”RSPU SYNC”.

The main memory access is software emulated (section 4.4.4), too. Thus there
is also the restriction, that Cell and Opteron could not work on the same page
without the loss of data.

• ”generic”

All the other entries are handled by generic functions inside the VFS imple-
mentation of RSPUFS. They are transforming the parameters into an RSPUFS
message requesting the appropriate service. On the Cell side the rspufsd dele-
gates it to the SPUFS.

SPE Runtime Management Library

To support the XDR mapping the library interface was improved with a new set of
functionalities:

1. void * xdr_mmap(spe_context_ptr_t spe, void * start, size_t length,

int prot)

XDR memory could be requested with this function. The return value points to
the mapping in the application address space, which is not equal to the address
on the Cell. The Cell address could be requested with xdr_getaddr.

The mapping could neither be extended nor reduced later. When another
amount is required, it has to be freed and newly mapped. It is only allowed to
have one mapping per context.

2. int xdr_unmap(spe_context_ptr_t spe)

If the memory is not used anymore, the application had to call xdr_unmap.

3. int xdr_getaddr(spe_context_ptr_t spe)

The address of the XDR memory mapping on the Opteron differs from the
address of the allocated memory on the Cell. The address on the Cell can
be requested by calling xdr_getaddr. If this address is passed to the SPE
program, it will be able to access the XDR memory, too.

48

4 RSPUFS

4. int xdr_sync(spe_context_ptr_t spe)

A call of xdr_sync synchronizes the mapping explicitly.

Toolchain

SPE Object

Compiler
SPE

SPE Source x86 Source

x86
Compiler

x86 ObjectSPE Libraries

Embedder
SPE

Linker

Linker
SPE

SPE Executable

x86

x86 Librariesx86 Object

x86 Executable

Figure 4.18: RSPUFS: Tool Chain

In figure 4.18 the toolchain is displayed, which produces an x86 executable with
integrated SPU code. Therefore the original Embedder (figure 3.6 on page 28) was
modified to produce x86 object code.

4.4.4 Software Emulated Remote Memory Access

The possibility to map the local-store into the local address space is very important,
because the libspe uses this feature extensively. It is not only desirable to memory
map the local-store, but the XDR main memory, too. This is necessary to make the
operands, for example a huge matrix, accessible through the Cell. With TCP/IP no
hardware support is available to provide this functionality on the Opteron. Thus it
has to be emulated in software by RSPUFS.

Therefore the internal RSPUFS context has two structures: struct mem_mmap and

49

4 RSPUFS

struct xdr_mmap (confirm figure 4.17 on page 45). If the application calls the mmap

system call, the page tables will be configured, but without memory assignment. This
is called ”Demand Paging” [12]. Demand Paging follows a lazy evaluation (or lazy
loading) strategy. If a page fault occurs, the page will bounded on physical memory.
RSPUFS uses this mechanism. The physical memory is represented by buffer with
exactly the length of one page. When a page fault occurs, the buffer is mapped to
the faulting page and the previous mapping becomes destroyed. Thus only one page
is physically represented all the time. This behavior was chosen, because it is the
only possibility to minimize the amount of Cell memory mirrored on the Opteron.
This is very important, because in view of the Cell the buffer is like a none coherent
cache. Any data written to the memory region the Opteron is currently working on,
results in the loss of this data.

The write back of the buffer happens, when:

• local-store mapping:

– accessing a page other than the current one,

– spu_run is called,

• XDR mapping:

– accessing a page other than the current one,

– the application calls the RSPU SYNC ioctl.

Thereafter the buffer gets unmapped. Thus any access to the memory results in a
page fault. This has the advantage, that in meantime the Cell can modify it without
the loss of data. If the next page fault occurs, the Opteron will get the actual version
of the memory.

50

5 Results

This chapter shows the results of the diploma thesis. The implementation status of
RSPUFS will be described in 5.1. Whether the SPUFS concepts could be respected,
will be depicted in 5.2. Last but not least, some benchmarks are shown in section
5.3.

5.1 Implementation

The migration process is nearly completed in the current RSPUFS implementa-
tion. Missing features are the poll system call and the memory mapping support
of the problem-state area and the MFC multi-source synchronization facility, but
these are not necessary for the libspe, because alternative code inside the library
will be used, when it is not possible to memory-map these areas. Ony the function
spe_read_tag_status_noblock is not available, because poll is used their.

The porting from libspe is far away from completion. Currently the following parts
are ported to the Opteron:

1. Program loading

2. Program execution

3. Mailboxing

4. POSIX.1 assisted Callbacks

All calls using the main memory (confer table 3-7 [10]) are not supported,
because it is not possible to access the Opteron memory from the Cell side. For
example, if the mmap is mapping a file into the main memory, the Cell could
never access it.

However, the current implementation allows to execute simple SPU-codes on the
Opteron.

51

5 Results

5.2 The SPUFS Concepts

This section examines the compliance of the SPUFS concepts to RSPUFS.

5.2.1 Virtual File System

As shown in table 4.1 on page 47 the VFS interface was ported to the Opteron.
Except the functions mentioned in the last section, the RSPUFS provides the fully
operational SPUFS interface.

Moreover, a method for accessing the main memory of the Cell is available, which is
very important for most of the applications to exchange the operands.

5.2.2 Virtualization

Even though virtualization is an important concept of SPUFS, it was never men-
tioned in the RSPUFS chapter. The simple reason is, that RSPUFS is not dealing
with it. Nevertheless this concept is supported by RSPUFS implicitly.

The virtualization is completely done by the native SPUFS on the Cell. Double virtu-
alization would happen if RSPUFS would virtualize the SPEs, too. Thus scheduling
issues can occur, when the Opteron suspends a context, which the Cell is resuming.

However, the current approach creates the illusion, that any desired amount of phys-
ical SPEs is present.

52

5 Results

5.3 First Benchmark Results

5.3.1 Software Emulated Memory Access

To benchmark the software emulated memory access, a program executed on the
Opteron copies an array from the main memory into the mapped Cell memory. In
figure 5.1 the result is shown. The axis of abscissas shows the copied size in bytes
and the axis of ordinates the required time in micro seconds. The time measurement
includes only the time for the memcpy function call.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

t [
µs

]

size [Byte]

Memcpy() from Opteron memory to Cell memory

Opteron Cell Hybride

Figure 5.1: Copy memory from Opteron to the Cell

The graph possesses steps of approximately 0.55ms every 4096 Byte. This is the time
for one page fault.

53

5 Results

5.3.2 Adding Two Integers

In figure 5.2 and figure 5.3 the results of the addition of two integers (a + b = z)
are shown. The addition was executed 1000 times (axis of abscissas) on the Opteron
(black line) and 1000 times on the Cell (gray line). The measured time in micro
seconds was printed on the axis of ordinates.

In the first figure the parameters are transmitted with the mailbox functionality.
That means two sending operations (a and b) and one receiving operation (z).

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 100 200 300 400 500

t [
µs

]

n

Add with mailbox operants

Opteron Cell Hybride
Native Cell System

Figure 5.2: Adding two numbers with mailbox parameter transmission

On average the Hybrid needs 6.1ms and the Cell 4.4ms for loading the program
code, creating the context, transmitting the operands and performing the addition
operation on the SPE. The timer is set to 1000 HZ on both systems. Thus a peak of
one milli second is equal to one schedule.

54

5 Results

In the second figure (5.3) the operands are transfered through the XDR main memory.

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 100 200 300 400 500

t [
µs

]

n

Add with XDR operants

Opteron Cell Hybride
Native Cell System

Figure 5.3: Adding two numbers with XDR parameter transmission

The average values are 7.0ms for the Hybrid and 4.4ms for the Cell. In the XDR
case occurs three page faults, but in the mailbox case only one. Thus the mailbox
version possesses a better performance when running under RSPUFS.

Measurements have shown that a service request took 0.15ms in average. The XDR
program version require 12 service requests and the mailbox version 19 service re-
quests, both without all page faults. If the page fault time and the service time is
subtracted, the result will be:

mailbox case: 6.1ms − 1 · 0.55 − 19 · 0.15 = 2.70ms

XDR case 7.0ms − 3 · 0.55 − 16 · 0.15 = 2.95ms

That shows, the performance is nearly equal. Thus the page fault is the limiting

55

5 Results

factor. The remaining time includes the loading of the program, the calculations of
libspe and the service processing inside the Opteron kernel.

However, what do these results mean for the PCIe coupling? To answer this question,
the following points have to be noticed:

1. With PCIe the ”rspufsd” is no more needed, because all parts necessary for
managing the SPE can be memory-mapped into the Opteron address space.

2. PCIe has a lower latency than Ethernet.

The latency of the Gigabit Ethernet TCP connection is 0.05ms1. Three quarter of
RSPUFS is managing packages. Thus the assumption can be made, that a service
needs 0.025ms calculation time. Together with the assumption, that PCIe has a
latency of less than a half of TCP, a service will take 0.05ms (0.025ms + 0.25ms).

Back to the addition of the two numbers, the expected PCIe execution time would
be:

mailbox case: 6.1ms − 1 · 0.55 − 19 · 0.05 = 4.60ms

XDR case 7.0ms − 3 · 0.55 − 16 · 0.05 = 4.55ms

To sum up, with PCIe it should be possible to shrink or eliminate the differences in
the execution time between Opteron and Cell completely.

1average value measured with NetPIPE (http://www.scl.ameslab.gov/netpipe/)

56

http://www.scl.ameslab.gov/netpipe/

6 Conclusion and Further Work

This thesis shows the way for integrating the Synergistic Processing Elements of the
Cell into the Opteron system. The Opteron is the main processing unit, supported
by the SPE accelerator components. Ethernet (TCP/IP) was chosen as interconnect
network, because it was a simple and available connection method at the beginning
of this thesis. One key feature of the used TCP/IP protocol is the similarity to a
PCIe link, which replaces the Ethernet in the future.

RSPUFS was implemented along this diploma thesis to realize the software inte-
gration of the SPEs into the Opteron Linux environment. RSPUFS is the migration
result of SPUFS, the driver integrating the SPEs on the native Cell. The SPUFS
concepts, which consist of virtulalization of the SPE and the VFS approach to access
the components of the SPE, are preserved by RSPUFS.

The first test results show, that the current performance of RSPUFS is up to 72%
of SPUFS for adding two integer numbers. This value includes the whole program
execution time consisting of context creation, loading the SPU-code to the Opteron,
submitting the arguments and the execution of the addition on the Cell. The per-
formance decreases with the increased size of the operands, because multiple page
faults on the Opteron will occur. It is shown, that with the availability of a RDMA
capable interconnection (like PCIe) the performance could be 98% or even more.

However, RSPUFS successfully integrates the SPE into the Opteron Ecosystem.

Further Work

The further work around RSPUFS includes:

1. To complete the porting of libspe to the Opteron.

57

6 Conclusion and Further Work

2. Extend the RSPUFS-protocol to support a daemon and libspe running in 64bit-
mode.

3. Port the rspufs kernel driver to Linux-2.6.24, where the architecture branches
of ”x86” and ”x86 64” are merged.

4. Use direct PCIe coupling between Opteron and Cell.

Within the development of RSPUFS, the idea was born to use the SPUFS concepts
to integrate other types of accelerators into the Linux environment. Currently every
vendor uses his own proprietary interface. One example is the Tesla[13] GPGPU
(General Processing Graphic Processing Unit) from NVIDIA, which is currently only
programmable through CUDA[14]. CUDA is a C language development environment
for NVIDIA graphic accelerators including a compiler, drivers and a runtime library.

However, if an application requires different accelerators, it will have to use dif-
ferent interfaces and libraries. Thus it is desired to have a common interface for all
accelerator types. In a seperate work it has to be prove, that it is possible to use the
SPUFS concepts for other accelerators creating a common Accelerator File System
(ACCFS).

58

Bibliography

[1] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM J. Res. Dev.,
49(4/5):589–604, 2005.

[2] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of
the obvious. Computer Architecture News, 23(1):20–24, 1995.

[3] Meet the experts, david krolak on the cell broadband engine eib bus. http:

//www-128.ibm.com/developerworks/power/library/pa-expert9/.

[4] Ibm doubles down on cell blade, press release. http://www-03.ibm.com/press/
us/en/pressrelease/22258.wss.

[5] Spursengine. http://en.cellusersgroup.com/modules/spursengine/.

[6] Roadrunner project. http://www.lanl.gov/orgs/hpc/roadrunner/index.

shtml.

[7] John A. Turner et al. Roadrunner applications team: Cell and hybrid results to
date. Technical report, Los Alamos National Laboratory, October 2007.

[8] Arnd Bergmann. The Cell Processor Programming Model. LinuxTag, June 2005.

[9] SPE Runtime Managment Library Version 2.2. CBEA JSRE Series. IBM Cor-
poration, September 2007.

[10] Cell Broadband Engine Linux Reference Implementation Application Binary In-
terface Version 1.2. CBEA JSRE Series. IBM Corporation, October 2007.

[11] Synergistic Processor Unit Instruction Set Architecture Version 1.2. IBM Cor-
poration, January 2007.

59

http://www-128.ibm.com/developerworks/power/library/pa-expert9/
http://www-128.ibm.com/developerworks/power/library/pa-expert9/
http://www-03.ibm.com/press/us/en/pressrelease/22258.wss
http://www-03.ibm.com/press/us/en/pressrelease/22258.wss
http://en.cellusersgroup.com/modules/spursengine/
http://www.lanl.gov/orgs/hpc/roadrunner/index.shtml
http://www.lanl.gov/orgs/hpc/roadrunner/index.shtml

Bibliography

[12] Andrew S. Tanenbaum. Modern operating systems. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1992.

[13] Nvidia high performance computing solutions. http://www.nvidia.com/

object/tesla_computing_solutions.html.

[14] Nvidia cuda project. http://www.nvidia.com/object/cuda_home.html.

60

http://www.nvidia.com/object/tesla_computing_solutions.html
http://www.nvidia.com/object/tesla_computing_solutions.html
http://www.nvidia.com/object/cuda_home.html

A CD-ROM Contents

The diploma thesis includes a CD-ROM with the following contents.

doc/

This directory contains an electronic copy of the diploma thesis in PDF and PostScript
format.

testapps/

• addlibspe2.tar.bz2

Addlibspe2 is the test application, which is used to add two numbers with
operants submitting through the mailbox functionality.

• addlibspe2-xdr.tar.bz2

This is the pendant to ”addlibspe2.tar.bz2”, but with usage of the XDR-interface
to share the operants.

• common.tar.bz2

All programs using the Makefile-Definitions and the common header of this
package.

• xdrcpy.tar.bz2

This is the application used for the measuring of the page fault time.

• tools.tar.bz2

Generic tools for measuring execution timings of a whole program are included
in this archive.

61

Appendix

toolchain/

In this directory the modified Embedder and the migrated libspe can be found.

RSPUFS/

This folder contains the sources of the rspufsd and a patched Linux kernel (version
2.6.22) with integrated rspufs file system driver.

62

Thesis Declaration

I hereby declare that the whole of this diploma thesis is my own work, except where
explicitly stated otherwise in the text or in the bibliography. I declare that it has not
been submitted in whole, or in part, for any other degree.

Chemnitz, March 11, 2008

Andreas Heinig

63

	List of Figures
	List of Tables
	Introduction
	Opteron Cell/B.E. Hybrid System
	Cell Broadband Engine Architecture
	Targets and Challenges
	Architecture
	Cell Multiprocessor Systems
	Hardware

	Heterogeneous Multiprocessing in an Opteron-Cell Environment
	Interconnections
	Development Environment
	PCIe Coupling
	Opteron Cell evaluation Platform

	SPUFS
	Introduction
	The SPUFS Concept
	Internal Context
	User-Level Interfaces
	System Programing Interface
	SPE Runtime Management Library
	Toolchain

	Externally Assisted SPE Library Calls

	RSPUFS
	Targets
	Structure
	The Cell Part: rspufsd
	Network Protocol
	Services

	The Opteron Part: rspufs
	Internal Context
	Packet Dispatcher
	User-Level Interfaces
	System Programing Interface
	SPE Runtime Management Library
	Toolchain

	Software Emulated Remote Memory Access

	Results
	Implementation
	The SPUFS Concepts
	Virtual File System
	Virtualization

	First Benchmark Results
	Software Emulated Memory Access
	Adding Two Integers

	Conclusion and Further Work
	Bibliography
	CD-ROM Contents

