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Chapter 1 

 

Introduction 

 

Transportation is one of the most vital services in modern society. It makes most of 

the other functions of society possible, such as manufacturing and construction, food and 

agriculture, energy supply and distribution, safety and security, access to medical care, and 

tourism and recreation. The future of the nation and the world depends critically on 

transportation systems that are reliable, efficient, safe and environmentally sustainable. 

Real transportation systems are so large and complex that in order to build the science of 

transportation systems it will be necessary to work on fundamental research issues in 

many areas, including:  

• Modelling 

• Optimization, especially robust planning, on-line learning and control. 

• Decomposition, especially how to decompose complex systems to facilitate   

   optimization and decentralized control. 

• Economics and game theory. 

• Simulation and development of virtual laboratory. 

Transportation systems frequently contain fleets of transportation units (TU’s), which 

circulate on networks, carrying people or goods, depending on customer requests. The 

term TU refers to reusable shipping containers and factory equipment such as fork lifts or 

automatic guided vehicles (AGVs), as well as the more traditional types of TU’s such as 

cars, trucks, buses, railcars or airplanes and material handling equipment. 

 

The capacity of a transportation system is directly related to the number of available 

TU’s. Owners and operators of transportation systems invest in TU’s in order to provide 

the capacity to meet demands. Determining the optimal number of TU’s for a particular 

system requires a tradeoff between the ownership costs of the TU’s and the potential costs 

or penalties associated with not meeting some demands. The fleet of TU’s which they are 

available for service at any time (and their locations) depends upon the TU redistribution 

strategy. This provides motivation to avoid operating a system with too few TU’s. On the 

other hand, these TU’s often represent a substantial capital investment either because the 

individual TU’s are expensive or because operation of the system requires large numbers 
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of relatively inexpensive TU’s. A transportation unit standing idle is not earning any 

return on this investment. As the fleet size increases above the capacity required to serve 

demand, the percentage of time that TU’s spend idle increases. This provides motivation 

to avoid unnecessarily large fleets. An important element is the determination of optimal 

(or near optimal) fleet size for a very general class of transportation systems.    

 

Generally, serving a demand results in the relocation of the TU when the demands 

are not balanced and the TU’s are reusable, it is necessary to redistribute the TU’s to 

locations where they can be used again. TU’s that are being repositioned are not available 

to serve demand. Therefore, empty TU distribution strategies have an obvious impact on 

fleet size. When TU’s are plentiful, it makes sense to redistribute them in a way that will 

minimize the direct transportation cost of empty TU movements, but when they are in 

short supply, TU’s may be redistributed so as to serve the most profitable demands, 

perhaps at the expense of additional empty TU movements. This relationship between fleet 

sizing and empty TU distribution decisions has been discussed by Mendiratta (1981). 

There is a substantial history of research on empty TU’s distribution problems, for 

example Baker (1977), much of it motivated by issues in utilization of empty freight TU’s. 

More recently, similar problems encountered in rental TU agencies, trucking operations 

and container freight systems have also been studied, see Wu et al. (1999). The numbers 

of available TU’s of various types are assumed to be specified as data, and the models 

attempt to find the most efficient routing for those TU’s. Such formulations can achieve 

benefits associated with reduced operating costs, but do not address the longer-term 

decisions of investment in the TU fleet. 

 

In this dissertation we are interested in solutions for the so-called fleet-sizing-and-

allocation problem (FSAP). Fleet sizing and allocation problem consists of two 

interdependent parts. The fleet sizing problem is to determine the number of TU’s that 

optimally balances service requirements against the cost of purchasing and maintaining the 

TU. Allocation problem is the process of repositioning TU to serve future transportation 

demand. These two problems are highly related to each other. A fleet unit in our sense is a 

reusable transportation unit (TU) for the realization of a given kind of transportation 

service. Transport operators try to offer low cost and high quality transport services given 

these inherent and institutional restrictions imposed by infrastructure. To offer cheap, 

reliable, fast, flexible and high accessible transport services transport operators apply 

 2



different spatial configurations of transport service networks. One of these typical 

networks is the hub-and-spoke service network. To make the FSAP a little bit more 

tractable we concentrate on logistic systems with a special hub-and-spoke structure. Such 

a structure can be profitable only if there exists concentration of freight volume on some 

service links in the network. Therefore hub-and-spoke networks are very actual and can be 

found e.g. in air freight distribution, two-echelon inventory systems, container distribution 

systems and others. Such networks have been developed with intention to improve 

competitiveness, efficiency and effectiveness of their operations. The main motivation for 

such network structure lies in savings in transportation cost due to concentration of 

volume at the hubs. 

 

Hubs are facilities that serve as switching in transportation and telecommunication 

networks. Hubs may be large facilities such as airports or postal sorting centers, or small 

switching devices in telecommunications networks. In the previous studies there are many 

different design and operational characteristics of these networks have been studied: 

1. The optimal hub location problem, 

2. Optimal routing of freights through the service network, 

3. Performance analysis of hub-and-spoke network,  

    and so on.  

 

The hub location problem consists locating a single hub location when a certain number of 

terminal points are given. Each of these points has a weight (cost) associated with them. 

The process for locating a single hub based on the amount of traffic and cost is quite 

simple. The approach to solving this problem is the same as used in solve a centroid 

problem, this means identifying the point were all weights are balanced. If we locate a hub 

in this point the transportation costs will be minimized, in this case the weights will be 

determined as a function of the truckloads-per-period of time to each branch (spoke). 

Optimal routing systems are essential to assure efficient distribution. Therefor, the 

researchers study the optimal routing to enhance efficiency and reduce costs. Every single 

hub has to go through the network regardless of its destination. It could be bound for the 

other side of the addressed to the neighbor, the hub will have to go trough the distribution 

system, which has a hub-and-spoke structure.  
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It is significant to distinguish two crucial characteristics of most transportation 

systems: they are dynamic because demands on the system change over time, and there is 

uncertainty both in the system performance (e.g. travel times) and in forecasting the 

demands on the system in the future these two characteristics play a key role in the 

interaction between TU utilization and fleet sizing decisions and are the cornerstones of 

models to be developed.  

 

1.1 Overview of the Thesis 

 

In this thesis we will discuss the fleet sizing and allocation problem (FSAP). The 

FSAP is one of the most interesting and hard to solve logistic problems. The FSAP 

consists in the definition of the most appropriate number of TU’s to be maintained by an 

operator/carrier. In general, the problem is focused on the efficient matching between 

supply of transportation capacity and demand for transportation services. The thesis is set 

up as follows. 

 

Chapter 2 consists of a literature review and the specification of fleet sizing divided by 

Beamon and Chen (1998) into three categories: 

i. Simulation Techniques, 

ii. Analytical Techniques, and  

iii. Hybrid Techniques (Simulation and Analytical). 

We also introduce the classification of empty TU distribution models and classification of 

fleet sizing models.  

 

In chapter 3 we begin with a very simple fleet sizing of one-to-one case that can be solved 

by inspection. The purpose of this example is to focus attention on several key issues in 

fleet sizing. The notation and concepts introduced in this case are then extended in order to 

determine the optimal fleet size, which maximize the profitability and minimize the total 

cost. We will also introduce another example for fleet sizing of one-to-many case. In this 

case, we consider the problem of determining the fleet size for a single TU type used to 

transport the items produced at the origin to many destinations. Items are produced in a 

deterministic production cycle, but TU travel times are stochastic. Finally in this chapter 

we apply queueing theory methods to solve the allocation problem in case of stochastic 

demand in the spokes.  
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In chapter 4 we will concentrate on some aspects of how to use transportation resources in 

an optimal way, i.e., we will discuss solution approaches to the problem of the optimal 

size and allocation of transportation resources. In the logistic literature we can find 

manifold models and solution methods dealing with that problem. To optimize a logistic 

system leads as a rule to very complex decision problems. The FSAP consists of two 

interdependent parts – to define the optimal size of a transport fleet and to reallocate 

empty fleet units among the locations of a logistic network. We also concentrate on the 

fleet-sizing-and-allocation problem for single hub networks. Generally, in a hub-and-

spoke transportation network a centralized planner has to find freight routes, frequency of 

service, type of TU’s to be used, and transportation volumes. We will study this problem 

for two cases:  

(1) Renting of additional TU’s from outside the system is not possible, and  

(2) Renting of additional TU’s from outside the system is possible.  

 

In chapter 5 we introduce a genetic algorithm (GA) approach for the fleet sizing allocation 

problem (FSAP) and some definitions for the GA. Since the multi-period, deterministic 

demand problem is NP-hard we suggest to use Genetic Algorithms to solve our problem 

HAS. This approach is suited to handle multiple and nonlinear objective functions as well 

as side constraints. We present the developed genetic representation and use a randomized 

version of the heuristic to generate the initial random population. We design suitable 

crossover and mutation operators for the GA improvement phase. We will also discuss the 

principle of simulation optimization and describe a simulator for hub-and-spoke systems 

and give some examples show the applicability of our simulation optimization approach. 

 
Finally, Chapter 6 contains a summary and conclusions. 
 
 
 

 
 

 

 

 

 

 

 

 5



Chapter 2 

 

Problem Definition and Literature Review  

 

2.1 Literature Review 

 

 The transportation is concerning a large number of complex operations for the freight 

transportation by means of TU’s of different types and several modes, through networks of 

a complicated structure. There is a large body of data explaining how to design and 

operate freight logistics, transportation and distribution systems. The previous 

investigations have addressed strategic or tactical planning issues as well as operational 

activities. Consistently, Kasilingam’s (1998) introduced a book that has been clearly 

explaining the transportation planning models. The methods of distribution systems 

planning have been analyzed by Geoffrion and Powers (1980) and Dejax (1986). Then, 

Waldinger et al. (1991) developed a model for the German Federal Railways (DB). Also, 

Powell and Carvalho (1996) developed a logistics queuing network for distribution of 

empty freight TU’s. Additionally, some of the earliest models for freight transportation 

have been reviewed by Friesz et al. (1983), Harker (1985) and Crainic (1987).  

 

The operational models for the ship routing and related scheduling of TU’s have been 

surveyed by Ronen (1983), Ronen (1993) and Christiansen et al. (2004). Blazewicz et al. 

(1991,1994) investigated the simultaneous scheduling and routing of jobs among identical 

parallel machines in an AGV-served flexible manufacturing system. The authors applied 

their results as a loop layout with makespan objective. Then, Hall et al. (2001) studied the 

effectiveness of three widely used AGV dispatching policies for the objective of 

minimizing the cycle time. Recently, Grunow et al. (2004) introduced a priority-rule based 

dispatching procedure for a container terminal where automated guided vehicles (AGVs) 

with multiple-load capability are used as container transporters. Rana and Vickson (1991) 

discussed the optimal routing for a fleet of containerships operating on a trade route, to 

maximize the liner shipping company’s profit. They formulate the problem as a mixed 

integer non-linear programming model and solve it by using Lagrangean relaxation 

techniques. Fagerholt (1999) studied the problem of determining the optimal fleet and the 

corresponding weekly liner routes and he solved it by employing a set partitioning 

approach as a multi-trip vehicle routing problem. Bendall and Stent (2001) proposed a 
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model of determining the optimal fleet configuration and associated fleet deployment plan 

in a containership hub and spoke application. Crino et al. (2004) described a deterministic 

methodology that provided vehicle routing and scheduling of multi-modal theater 

transportation assets at the individual asset operational level to provide economically 

efficient time definite delivery of cargo to customers for generalized theater distribution 

problems. 

 

The fleet sizing and allocation problem (FSAP) is one of the most interesting and hard 

to solve logistic problems. To make the FSAP a little bit more tractable we concentrate on 

logistic systems with a special hub-and-spoke (HAS) structure. The general efficacy of 

hub-and-spoke networks in truckload trucking has been determined using the results of 

initial testing designs by Taylor et al. (1994).  The authors added that there is a limited 

success by the appropriate use of the configured and managed networks. There are a 

several investigations studied the hub location problem O’Kelly et al. (1995), O’Kelly & 

Btyan (1998), Campbell (1996), Skorin-Kapov et al. (1996) and Pirkul & Schilling (1998). 

Additionally, they suggested that all movement should engage one or more hubs between 

the source and the destination. Campbell et al. (2002) argued that the effect of pricing and 

competition in hub and spoke network design has received insufficient attention in the 

literature. Adler (2005) developed a model framework to provide information on the most 

adaptable and profitable hub and spoke networks available under competition and applied 

it to Western Europe. 

 

 The previous studies classified the Hub-and-Spoke network into four types depending 

on whether hub(s) should be visited between source and destination as illustrated in Figure 

(2.1). In the first type, TU’s movements among destinations are completely independent 

on a hub (Figure 2.1-(a). However, in the second type, TU’s movements are dependent 

only on one hub; TU’s can go to a single hub from which it moves to its destination 

(Figure 2.1-(b). In the third type, TU’s are dependent on two hubs; TU’s has to visit the 

first hub followed by the second hub from which it moves to the final destination (Figure 

2.1-(c). Finally, in the fourth type, some TU’s go to their destination directly without 

visiting any hub whereas the others can go through one or two hubs before reaching the 

final destination (Figure 2.1-(d)). 
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          (a) No hub network                                 (b) Single hub network 

 

 

 

 

 

 

 

             (c) Multiple-hub network                            (d) Multiple-hub hybrid network 

 

Figure 2.1: Hub-and-spoke networks 

 

Most of the previous studies focused on the problem in the context of air freight 

network but there are a limited attempts to study the problems in railroad network. One of 

the earliest researchers in railroad network design problem is Assad (1980), who 

determines the type of trains, the number of trains of each type, and service routes in order 

to minimize the total operating cost. Crainic et al. (1984) and Crainic and Rousseau (1986) 

generalize the model introduced by Assad (1980) by incorporating more decision elements 

into the model such as service routes, service frequency, and composition of trains. 

Extending the previous studies, Keaton (1989, 1992) generalize the problem considered in 

Crainic et al. (1984) and Crainic and Rousseau (1986) by using a decomposition-based 

Lagrangian relaxation approach to find a lower bound for decomposed problems. The hub 

locations and the routing are determined so as to minimize the overall transportation cost. 

Campbell (1994) considered an uncapacitated hub location model where both the 

transportation cost and the fixed cost of establishing hubs are incorporated, and the 

number of hubs is an decision variable. Newman and Yano (2000) is one of the few 

studies that solve the hub location problems in railroad network in order to minimize 

operating costs.  
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A long time usually two control problems are considered for a service system: The 

first, how to decide whether to accept or to reject an arriving client (e.g. Köchel 1997), 

The second, how many servers (resource units) to install, see Shanthikumar et al. (1987). 

Practical needs of modern transportation network lead to a third control problem: How to 

organize transshipments of resource units between the nodes of the network. For instance, 

today’s car rental firms offer the possibility to return a hired unit to an arbitrary location of 

the firm. As a consequence, a significant imbalance between the inflow of hired units and 

demand arises for most of the locations. To overcome these imbalances the natural flow of 

units has to be corrected by reallocations. In scientific literature on design and control of 

transportation networks, the combination of the second and third problem is known as the 

fleet sizing and allocation problem (FSAP). Solving the FSAP requires answering two 

closely connected questions:  

1- How many units should a TU fleet contain (the fleet sizing problem)? 

2- How to redistribute empty TU’s that are not used in a given location among the 

locations of the network (the empty TU reallocation problem)?  

Köchel et al. (2003) developed a queuing network model for movement of units through 

the locations without any control and given some answers to the second and third control 

problems under a given cost and gain structure. They also studied Genetic Algorithms in 

combination with a simulation model to seek optimal fleet size and repositioning policy by 

maximizing the gain in the steady state. Koo et al. (2004) studied a two-phase fleet sizing 

and TU routing procedure. The objective of the procedure is to provide a multiple TU 

routing to complete all the transportation requirements with the minimum fleet size. Phase 

one uses an optimization model to produce a lower bound on the required fleet size, and 

phase two applies a tabu search based heuristic to generate TU routing along with an 

appropriate fleet size. The optimal design and/or the optimal control of dynamic stochastic 

systems are an actual and interesting problem for theoreticians as well as practitioners. At 

present logistics is one of the most important application areas.  

 

There are many different formulations and models to optimize logistic systems. In our 

work we will concentrate on some aspects of how to use transportation resources in an 

optimal way, i.e., we will discuss solution approaches to the problem of the optimal size 

and allocation of transportation resources. In the logistic literature we can find manifold 

models and solution methods dealing with that problem. To optimize a logistic system 

leads as a rule to very complex decision problems. Therefore corresponding models suffer 
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from various simplification assumptions. For instance, most models assume deterministic 

known demand for transportation services. In this case linear and non-linear network 

programming models are applied (cp. Wu et al. 1999). More sophisticated models and 

solution methods assume stochastic demand. Here models from inventory and queueing 

theory are appropriate (Koenigsberg & Lam 1976, Du & Hall 1997). However, in all cases 

no closed-form solutions are available. The majority of papers are dealing with algorithms 

for approximate solutions in the discrete-time case with known demand and infinite 

transportation capacity. The stochastic models decompose the problem with respect to 

time periods and assess the impact of the current decisions on the future through value 

functions. However, because practical fleet management models involve large numbers of 

decision variables and possible load realizations, standard stochastic optimization methods 

are not feasible for computing the value functions. Therefore, most of the stochastic fleet 

management models revolve around the idea of approximating the value function in a 

tractable manner. For stochastic fleet management models see Godfrey and Powell [2002 

(a, b)], Powell et al. (2004), Powell and Topaloglu (2005) and Topaloglu and Powell 

(2006). 

 

2.2 Fleet Size Specification 

 

There are many papers, many classifications, in the area of fleet size specification. One 

of them we want to use here is from Beamon and Chen (1998). The authors divided the 

research in the area of fleet size specification into three broad categories according to the 

solution approach as follows: 

i. Simulation Techniques, 

ii. Analytical Techniques, and  

iii. Hybrid Techniques (Simulation and Analytical). 

 

Simulation Techniques 

The logistic problems are very complicated. To solve realistic problems the most 

appropriate solution technique seems to be simulation. For large problems, simulation 

methods offer the advantage of tractability. Furthermore, simulation enables the planner to 

take a more comprehensive view of the problem domain, making use of heuristics to solve 

additional aspects of the problem that could not be considered using optimization 

approaches. There are a lot of papers deals with this approach. For example, in the field of 
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manufacturing systems we mention the papers by Newton (1985) and Ceric (1990). 

However, simulation is not an optimization tool. In the last decade comes up the idea to 

combine simulation and optimisation and apply the simulation optimization approach. The 

first paper, which applies that approach to some logistic problems seem to be Köchel 

(2003).  

 

Simulation Optimization (SO) is suited for solving such optimization problems, which 

cannot be solved by conventional approaches. Importantly, Köchel et al. (2003) discussed 

the basic principle of simulation optimization and to show the applicability of that 

approach. They also introduced the main ideas of SO and as a concrete realization 

discussed the combination of simulation and Genetic Algorithms. The fleet sizing and 

allocation problem is one of the main decision problems in actual logistic systems. 

Generally, there are many different formulations and models to optimize logistic systems. 

Recently, El-Ashry et al. (2006) introduced some structure for the investigated system and 

optimized corresponding systems by using simulation optimisation.  

 

Analytical Techniques 

There are many papers using analytical techniques for different type of models such 

as: linear/non-linear optimization models, inventory models, queueing models and so on. 

The linear/non-linear Optimization models is designed to compute an optimized solution 

that either maximizes or minimizes a given objective of a model while, at the same time, 

satisfying a set of constraints that may be defined in the model. It is widely used in the 

field of operations research. For example Chien et al. (1989) formulated the integrated 

problem of allocating and delivering as a mixed integer program to generate both good 

upper bounds and heuristic solutions by using Lagrangian-based procedure.  

 

Inventory models like “Economic Order Quantity” (EOQ) is a model that defines the 

optimal quantity to order that minimizes total variable costs required to order and hold 

inventory. Furthermore, Du and Hall (1997) developed an approach derived from existing 

inventory theory techniques to determine the minimum fleet size, subject to meeting the 

maximum allowed long-run stock-out probability. Also, the authors developed a stochastic 

process model considering that the arrival process of loads at locations is independent, 

stationary Poisson processes. Then, the analytical results from these stochastic models are 

compared to the results obtained from Monte Carlo simulations. 
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Queueing models have been applied in a number of technical areas, one of them 

discussed by Johnson and Brandeau (1993). The authors used the M/G/c queuing system 

to design the model of the TU pool, but they used the optimization techniques to solve the 

problem, which performed a unique objective in fleet size specification. Furthermore, Lei 

et al. (1993), performed the analytical fleet sizing study, to design a heuristic procedure, 

derived from the optimization techniques, for determining the production schedules, which  

minimize fleet size requirements. Additionally, one of the earliest papers, used the 

analytical techniques in fleet sizing to introduce an optimization model for determining the 

minimum fleet size requirements, discussed by Maxwell and Muckstadt (1982). 

 

Hybrid Techniques (Simulation and Analytical) 

If we combine the simulation and analytical techniques we get hybrid techniques. 

The hybrid techniques used at least one of analytical techniques and simulation. 

Shanthikumar and Sargent (1983) classified the hybrid simulation and analytic models 

into the following four categories: 

1- A model whose behavior over time is obtained by alternating between using    

             independent simulation and analytic models.  

2- A model where a simulation model and an analytic model operate in parallel over    

             time with interactions through their solution procedures.  

3- A model where a simulation models is used in a subordinate way for an analytic  

             model of the total system.  

4- A model where a simulation model is used as an overall model of the total     

       system and requires analytic solutions as input parameters from the analytic   

       models. 

 

In the previous study by Egbelu (1993) determined the optimal unit load sizes and TU 

fleet size with the objective of minimizing total manufacturing cost. The hybrid solution 

approach used mixed integer programming, numerical search, simulation, and statistical 

analysis. Another a two-stage hybrid approach has been developed for designing material 

handling systems by Mahadevan and Narendran (1994). The first stage is an analytical 

model, which derived from the results obtained by Mahadevan and Narendran (1993) to 

estimate the system fleet size requirements, and the second stage is a simulation model to 

estimate the effects of TU failures and dispatching rules on overall material handling 

system performance. Kasilingam and Gobal (1996) developed an iterative hybrid 
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simulation-analytical approach to determine the fleet size corresponding to the minimum 

sum of idle-time costs of TU’s and machines as well as the waiting times for parts. 

Regardless of the type of the solution approaches used, each approach seeks to determine 

either the minimum or optimal number of required TU’s to obtain a set of system 

parameters, with respect to one or more objectives.  

 

There are many difficult problems, with significant impacts upon the operational and 

economic performance of the system, related to the distribution and movement of empty 

freight TU’s in all model and intermodal transportation systems. The empty traveling in 

fleet management is often done before, after and sometimes during loaded trips. The 

efficient management of TU’s can be improved after the detection of infrastructures and 

TU’s of the operating agency. The transportation units management can be classified into 

two kinds according to loading and emptying. Consistently, the first kind is the loaded-TU 

movements to meet demands, and the second one is the movement of empty TU’s after 

discharging to demand points. Since, the loaded TU movement only generates revenue, the 

enhancement of freight transport efficiency can be achieved by reducing the empty TU 

movement. The planning of empty TU distribution used the optimization models, which 

minimize empty TU movement in order to meet demands and other operation 

requirements.  There is a growing body of investigations about the application of empty 

TU management models to railroad operation. The investigations in this area can be 

divided into two groups. The first one studied the refinements of model structures and 

algorithmic efficiency for empty TU distribution models. The second group investigated 

the real railroad operation utilizing available model structures and algorithms. It has been 

stated that the successful applications of the modeling activities to real railroad operators 

lead to substantial reduction in the operating cost. For example, Gohring et al. (1993) and 

Holmberg et al. (1994). Most recent research on empty vehicle redistribution problem 

utilized nonlinear network programming (see e.g. Beaujon and Turnquist (1991)), 

multistage dynamic networks (see e.g. Cheung and Powell (1996)), logistics queuing 

network (see e.g. Powell and Carvalho (1998)), inventory and queuing theory (see e.g. Du 

and Hall (1997)), simulation-based genetic algorithms (GAs) (see e.g. Köchel et al. 

(2003)). Accordingly, the groupings for the empty TU flow problems have been 

performed as in Figure 2.2. 
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2.3 Classification of Empty TU Distribution Models  

 

The numerous and often very diverse research works which address the empty 

freight TU movements issue can be classified by several criteria such as their main subject 

or as a sub problem of more general transportation or logistic planning problems. Also, 

traditionally, physical, or methodological criteria have been used to classify the empty 

freight TU movements. Suh and Lee (2001) classified the Empty TU distribution model 

into two groups as in Figure 2.2. The first is policy models that cover medium-to-long 

term strategy oriented planning problems. The second is operation models that concentrate 

on shorter-term problems. 

1.Policy Model  

(a) Service Network Design Problem 

(b) The Estimation of Demand  

(c) Fleet Sizing Models  

(d) Prediction of Intercity Freight Flows  

(e) Logistics System Design 

2. Operation Model  

(a) Inventory Management of Empty TU 

(b) Empty TU Allocation  

●Rail Carrier  

- Deterministic Approaches 

- Stochastic Approaches 

- Hybrid Approaches 

●Empty TU Transportation  

●Rail-Multicarrier  

(c) Combined Empty and Loaded TU Allocation 

  ●The Rail Case  

  ●The Motor Carrier case 

  ●Backhauling 

  ●Multimode Distribution Systems 

 

            Figure 2.2: Empty Freight TU Distribution Model Categories 
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The problems are usually defined on a network over which loaded and empty 

movements take place. At some nodes of the network, representing terminals, depots, 

demands and supplies of empty TU’s are specified. The purpose of operational models is 

the efficient management of a given fleet of TU’s: i.e., to decrease the cost of empty travel 

while satisfying the demand adequately. Also the models addressed either the management 

of the inventory of empty TU’s at terminals of the network or the allocation / dispatching 

of empty TU’s to certain origin-destination (O / D) pairs to satisfy the demand. Kraft 

(1994) also proposed four different groupings of rail modeling: tactical operating plan-

development, empty equipment distribution, train-dispatching and advanced train control 

systems, and mechanical component reliability. The author used two groups for the empty 

equipment distribution problem: stochastic and deterministic model formulation.  

 

In the previous studies, there are many papers, which studied the empty TU 

distribution problem, but much of them are limited to deterministic situations (see e.g. 

Crainic 2000). Recently, stochastic programming methods have been used to optimize the 

TU flows. Crainic et al., (1993) considered the empty TU reposition problem in stochastic 

environments. They focused on inland transportation of empty TU between ports, depots 

and individual customers. Cheung and Chen (1998) developed a stochastic model for a 

sea-borne empty TU allocation problem where owned and leased TU’s are considered to 

meet the total transportation demand. Imai and Rivera (2001) deal with fleet size planning 

for refrigerated TU’s where they determine the necessary number of TU’s required to meet 

predicted future transportation demand. Recently, Choong et al., (2002) developed an 

integer programming formulation for empty TU relocation with use of both long and 

short-term leased TU’s. However, the treatment of the short-term leased TU in their study 

is not appropriate, since the cost of the short-term leased TU’s is independent of the lease 

length. Li et al., (2004) studied the empty container allocation in a port with the aim to 

reduce redundant empty TU’s. They consider the problem as a non-standard inventory 

problem with simultaneous positive and negative demand under a general holding cost 

function. 

 

The differences between transportation problems of the industrial firm and freight 

carrier may be exist at the operational level. They are relative to cost and service 

objectives, fleet size, number of terminals and clients, demand forecasting, repetitivity of 

routes and shipments. In addition, the fundamental structure of the models and solution 
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techniques developed for a given problem size are similar even if they applied differently. 

Similarly, policy defining questions may be addressed in a different context for the 

industrial firm and the freight carrier using similar modelling methodologies and 

algorithms. The criteria used to identify the methodology can be classified as follow: 

1-  Modeling assumptions, which can subdivided as follow: 

a- deterministic or stochastic. 

b- time domain. 

      2-  Modeling approach, which can subdivided as follow: 

       a- algebraic formulation for subsequent optimization.    

            b- analytic stochastic models such as queueing models. 

       c- simulation models. 

      3-  Solution techniques, which can subdivided as follow: 

       a- mathematical programming optimization. 

       b- network algorithms. 

       c- stochastic optimization. 

       d- simulation. 

 

The integration of TU fleet sizing decisions with optimization of TU utilization 

investigated by Sarmiento and Nagi (1999). By having direct impact on the level of 

investment in capital resources, the potential benefits from improved utilization of TU’s is 

much larger than would be indicated simply from accounting for reduced operating costs. 

To model the interaction of TU utilization and fleet sizing decisions and recognize two 

crucial characteristics of most transportation systems: they are dynamic because demands 

on the system change over time, and there is uncertainty both in system performance and 

forecasting the demands on the system in the future. The first attempts at modeling this 

problem assumed that the demands and loaded flows of TU’s are known, deterministic and 

independent of time.  

 

Furthermore, Beaujon and Turnquist (1991) focused on development of a model to aid 

in making decisions on fleet sizing in situations where demand fluctuates over time 

(including both deterministic and stochastic changes), and TU travel times are uncertain, 

leading to uncertainty regarding when TU’s will be available to meet demands. The model 

is designed to answer several questions that are of interest in the design and operation of 

vehicle systems: 
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1- How many TU’s should be used in the fleet? 

2- Where should TU pools be located? 

3- How large should these pools be at any given time? 

4- At any given time and location, how should available TU’s be allocated to    

      loaded movements, empty movements and TU pools? 

 

There is also interaction between inventory decisions and TU routing decisions in the 

above mentioned model. To decide how many TU’s in this system be maintained over a 

certain time period at each location is traditionally known as fleeting sizing problem. Wu 

et al. (1999) mentioned that the desired size of fleet can be obtained by ways of buying, 

selling or leasing. Determining the optimal size of a fleet involves decision from three 

different levels of hierarchies. These three different levels of hierarchies are: 

1- The strategic decision which defines the expected level of customer satisfaction, 

determines capital budgets, capacity, model and maximum in-service age of 

vehicles as well as where to locate vehicle depots; 

2- The tactical decisions of TU procurement, disposal and storage, which are generally 

determined in accordance with a capital budgeting plan;  

3- The operational decisions including the assignment of a TU to customer’s request 

and empty TU repositioning strategy, defining the utilization of a TU over its 

lifetime or planning horizon. 

 

The above mentioned three different levels have been extensively investigated 

separately and approached from different ways. The Motivation via the principles of 

engineering economies, replacement analysis is the examination of cash flows and 

economic lives of defender and challengers as well as determination of the replacement 

schedule which optimizes a particular measure of economy. The replacement schedule 

with either finite or infinite time horizon can be decided according to the following steps: 

1- whether to keep the defender or replace it immediately with the current challenger,  

2- which of future challengers to replace with. 

Traditional replacement analysis is age-based tactical decision-making, in other words, no 

asset utilization is concerned explicitly. In the area of transportation logistics, typically, 

TU assignment or TU allocation combined with inventory and routing decisions are solved 

to determine optimal size of a fleet. 
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2.4 Classification of Fleet Sizing Models 

 

Fleet sizing models has been used to deal with the demand for loaded TU’s. 

However, it was observed that the demand for movements between locations was often 

unbalanced. Therefore, empty TU redistribution strategy has become of special interest. In 

the meantime, it has been suggested that transportation demand and TU travel time are 

practically not only dynamic but also uncertain. Thus, the cumulative demand on one time 

at one location will probably exceed the total available TU’s. Also, the previous studies 

assumed that inventory pool act as a buffer against the imbalance in the TU flow. Du and 

Hall (1997) examined different spatial patterns of TU movements, such as one origin and 

one destination, one origin and many destinations (or vice versa), or central-terminal 

network. The previous studies demonstrated two important characteristics of a fleet sizing 

problems as follow: 

1- the spatial traffic pattern served by fleet. 

2- the size of individual shipments relative to the capacity of a single TU. 

 

The spatial pattern of movements can extend from one origin and one destination to very 

complex “many-to-many” traffic patterns. Although the main distinction useful in fleet 

planning is between partial TU loads and full loads, the individual shipments can change a 

small fraction of a TU’s capacity up to multiple full TU’s. Figure (2.3) shows a simple 

classification scheme for fleet sizing problems. This classification explains several types 

of fleet sizing problems.  Daganzo (1999) studied the problem using the transport of full 

TU loads in a “ one-to- many” pattern. This “one-to- many” pattern is considered as TU’s 

movement from one origin to many destinations, and vice versa. Therefore, any TU in the 

fleet may be transported to any destination. Thus the system is not just the collection of 

several simple transport (“one-to-one”) systems. The previous studies performed by 

Koenigsberg and Lam (1976) investigated a problem involving a single origin and 

destination with TU’s moving between them. Their analysis is based on development of a 

cyclic queuing model, supposing exponential terminal and transit times. Furthermore, 

Campbell (1993) studied the one-to-many distribution situation, which except the size of 

the TU’s that deliver to destinations is limited. Figure (2.3) classified the literature on the 

fleet sizing, which includes work on many related problems as follows: 
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                   Figure 2.3: Classification of Fleet Sizing Models 
 
 

Either the Vehicle Routing Problem (VRP) is a complex combinatorial optimization 

problem, which can be seen as a merge of two well-known problems: the Traveling 

Salesman Problem (TSP) and the Bin Packing Problem (BPP). It can be described as 

follows: given a fleet of TU’s with uniform capacity, a single depot, and several costumer 

demands, find the set of routes with overall minimum route cost which service all the 

demands. Most approaches to the VRP depend on heuristics and give approximate 

solutions to the problem (e.g. heuristic based (Kindervater and Savelsbergh, 1997), 

constraint programming (Shaw, 1998), and colony optimization (Gambardella et al., 

1999)). Afterwards, Daganzo (1999) illustrated the situations, which involve “many-to-

many” movements in relation to full TU loads. The author stated that these movements are 

deterministic, scheduled, and applicable in the airlines and transit operations. 

 

 However, stochastic and/or unscheduled operations present more of a problem. Vu 

Tung and Pinnoi (2000) proposed a flexible routing policy for TU’s which is different 

from the company’s fixed routing policy in that for each route, the number and the 

sequence of nodes a TU visits can be different. The suggested policy is formulated into a 

mixed integer program with the objective of minimizing the total operating costs. This 

formulation can be used to derive exact solutions for applications similar to our case. Hall, 

et al. (2001) considered design and operational issues that arise in repetitive manufacturing 

systems served by (AGVs) in loop layouts with unidirectional material flow. Such systems 

are in widespread industrial use, and play an important role in modern manufacturing 

environments. The objective considered is the minimization of AGV fleet size, given the 

minimum steady state cycle time required to produce a minimal job set (or equivalently, 

given the maximum throughput rate).  
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Also study whether the decomposition of a large AGV-served flow shop loop into 

several smaller loops improves productivity the original loop and the decomposed design 

are compared with respect to the minimum cycle time needed for the repetitive 

manufacture of a minimal job set. When there are three or more machines in the loop, 

finding the optimal cycle time is an intractable problem. Also discussed a joint sequencing 

issue that arises in decomposed systems with limited buffers between the loops, and 

analyzed the tractability of all the relevant joint sequencing problems. The general line of 

investigation represented by these various models represents a focus on FSAP. The size of 

the available fleet is specified exogenously. However, one of the important basic questions 

in such systems is the determination of the appropriate number of TU to have. Owning or 

leasing a fleet of TU’s is generally quite costly, so it is natural to try to minimize the size 

of the required fleet.  
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Chapter 3 

 

Continuous Time Deterministic Models 

 

The purpose of this chapter is to present a more aspect explanation of the fleet sizing 

and allocation problem (FSAP) and to indicate the contribution made by this research in 

the context of related research by others. In this chapter we are going to go through a very 

simple fleet sizing of one-to-one case, which is to be solved by inspection. This example 

will cause us to focus attention on several key issues in fleet sizing. Afterwards, the 

notations and concepts introduced in this case are extended in order to determine the 

optimal fleet size, which maximize the profitability and minimize the total cost. 

Subsequently, we generalized the idea of one-to-one case for one-to-many case. Finally, 

we apply queueing theory methods to solve the allocation problem in case of stochastic 

demand in the spokes.  

  

3.1 One-to-One Case 

 

In this case “one-to-one” suppose that there is a single origin and a single 

destination. The single origin may be a production center and the single destination may 

be consumer. Let  represent the demand per time unit for transportation product between 

origin and destination measured in units of TU loads. Assumed that the capacity Q of 

individual TU is small relative to the total demand, so that TU’s are dispatched fully 

loaded. Demand d induces loaded TU flows from origin to destination, which will be 

represented as 

d

X  i.e. X represent the minimum number of TU’s per time unit, necessary 

for demand satisfaction such that:   

         ⎣ ⎦ 1+= QdX  

 

Generally, there are several different types of TU’s available to serve demands, but in this 

example and through this dissertation it will be assumed that all of the TU’s are of the 

same type that means we use a single type of transportation unit (i.e. have the same 

capacity, ownership cost and operating costs). Traveling a loaded TU from origin to 

destination incurs a direct transportation cost, which will be represented as  and 

requires time .  

lC
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The empty movements from destination to origin are denoted Y  and incur a cost  and 

travel time . Overall for each cycle, the travel time is T and the cost is C such that:       

T  =  +    and    C =  + . Figure (3.1) illustrates this system. 

eC

21T

12T 21T lC eC

 

Empty TU movements 

 
 
 
 
 
 
 
 

 1 2

 
Loaded TU movements 

 
 

Figure 3.1:  Scheme for one-to-one system 
 
 

In general, the objective of a business enterprise would be to maximize profit, which 

means to maximize profit and minimize the total cost. In many potential applications, the 

components of the revenues and costs may be measured indirectly and may be quite 

incomplete as measures of the overall profit of an entire business enterprise. However, 

something like revenues are generated by serving demands, while TU ownership, TU 

movements and failure to serve demand generate costs and the objective is to maximize 

the difference. The objective will therefore be referred to as maximizing profitability. This 

terminology is further justified by the fact that is on long-run planning decisions. Such 

decisions could be expected to position the enterprise for future profitability but may be 

only crude approximations to actual profits, which will be determined by short-run 

operating decisions as well.  

 

In the considered one-to-one case, there is only one feasible TU allocation strategy 

and so it is possible to express the profitability as a function of fleet size alone. Let 

 be the number of TU’s in the fleet. TU’s must complete a roundtrip for 

each unit of demand, which they satisfy.  

{ ...,2,1,0=∈ IK }
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Consequently the capacity QS of the system is given by:                    

 

                   QS  = Q K / T  = A K                                                                             (3.1) 

 

where A = Q / T represent the average amount of product shipped by a single TU per time 

unit. The amount of demand, which is served, is the minimum of the capacity and the total 

demand. If the revenue per unit of demand is R then for R (K), the average revenue per 

time unit for fleet size K, it holds: 

 

                            R (K) =                                                       (3.2) 
⎩
⎨
⎧

>
≤

dAKifdR
dAKifKAR

.;
.;

 

Not serving demand results in a cost due to loss of customer good will, backordering costs 

(e.g. temporary storage of goods awaiting shipment) or expedited shipments. In 

calculating the revenues, it was assumed that demand in excess of capacity is lost. 

Therefore, the proper interpretation of the shortage cost in this example is loss of customer 

good will. In many cases, including manufacturing systems, the demand must be satisfied 

somehow. In such cases, the revenue is fixed, but there may be a substantial penalty 

associated with missed or delayed shipments. To be consistent, and avoid double counting, 

it is assumed in this example that the penalty for not serving demand, P , represents 

whatever loss is incurred in excess of the loss of revenue. The total stockout cost  

per time unit is: 

)(KCs

 

                              =                                              (3.3) )(KCs
⎩
⎨
⎧

>
≤−
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Transportation units are only dispatched in response to demand and therefore the direct 

transportation cost  per time unit is: )(KCt

 

                               =                                                 (3.4) )(KCt
⎩
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Finally, if the cost per TU per time unit is V then the TU ownership cost,  per time 

unit is:  

)(KCv

                               =  V K                                                                                    (3.5) )(KCv

 

The gain function per time unit,  or profitability is given by total revenue minus total 

cost; i.e., 

)(Kg

                        ,                                                                   (3.6) )()()( KCKRKg −=

 

where the total cost per time unit C (K) is equal to 

 

                       )()()()( KCKCKCKC vts ++=           

                                           

                                         =                          (3.7) 
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From equation (3.7) we can see that C (K) is a piecewise-linear function. By substituting 

from equations (3.2) and (3.7) in equation (3.6) we can rewrite equation (3.6) as follows: 

 

                                )()()( KCKRKg −=

 

                                         =                   (3.8) 
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Also, from equation (3.8) we can see that g (K) is a piecewise-linear function. Now, the 

purpose is how to determine the optimal fleet size *K  in order to maximize the gain 

function g (K) (i.e. ). )(max Kg
IK∈

Generally, from economic condition we can see that the necessary and sufficient condition 

for  is:      0* >K

VCAPRAgg +>+⇔< .)()1()0(                                                (3.9) 
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That means the cost savings per time unit for a single TU must be greater than the cost per 

time unit for transport by a single TU. To determine the optimal fleet size *K  must be 

satisfy the following condition: 

 

                                                                                     (3.10) IKallforKgKg ∈≥ )()( *

 

From equation (3.8), it is obvious to see that g (K) is concave function.  

To get an algorithm to search the optimal fleet size *K  we consider the figure (3.2).  
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     Figure 3.2: Typical behavior for the gain function g (K) 

 

Let us assume that for the demand d holds      

                          AndAn )1( +≤≤       for a given In∈ . 

If d = n A then from equation (3.8) follows that:   

                          g (n+1) – g (n) = – V < 0 . 

If d = (n+1) A and by using condition (3.9) we get: 

                          0)()()1( >−−+=−+ VCPRAngng  

Only in case  we have to compare the values of g (n+1) and g (n). In 

depending on the value of the difference g (n+1) – g (n) we get the answer

AndAn )1( +<<

*K = n+1 

 25



or *K =n.  Thus the following simple algorithm for definition of the optimal fleet size *K  

is: 

Define  { }AndAnnn .)1(.:0min* +≤≤≥=

               { })1(:0min +≤≤≥= nAdnn  

IF    g ( ) ≥  g ( +1) *n *n

        THEN  *K =  *n

        ELSE  *K = +1. *n

 

Figure (3.2) illustrate the algorithm in the special case when  n = 2  i.e., .  AdA 32 ≤≤

 

Taken together, we can conclude that the simplicity of this example illustrates several key 

ideas: 

1. The profitability of the system can be expressed in terms components (revenue, stockout 

cost, TU ownership cost, and TU movement cost) each of which is a function of fleet 

size. 

2. As long as the marginal value (incremental increase in revenues and decreases in 

stockout and operating costs) of an additional TU is greater than the marginal cost 

(incremental increase in fleet ownership cost) it pays to increase the size of the fleet. 

3. At some point, the marginal value of TU begins to decrease and eventually drops below 

the marginal cost at which point additional TU’s reduce profitability. 

4. The point at which marginal value equals marginal cost is dependent on demand and the 

cost parameters. 

 

3.2 One-to-Many Case 

 

In this case “one-to-many” we consider the problem of determining the fleet size for 

a single type of TU used to transport the items, which produced at a single origin to many 

destinations. The single origin may be a warehouse, manufacturing plant, or distribution 

center and the destinations may be retail outlets, other manufacturing plants, or other 

distribution centers. The origin stores the products, which can be ordered by the 

destinations, which have to serve the demand for these products. The origin else can order 

product from producers or produce the products itself. Empty TU’s are loaded at the 

origin. Afterwards, the loaded TU’s are moved directly to destinations. When the items are 
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assembled, TU’s are emptied, returned directly to the origin, stored in a bank of empty 

TU’s awaiting reloading, and the cycle is repeated. Figure (3.3) shows this system. 

The previous studies investigated that the number of TU’s needed in the system depends 

on many things: 

a- The nature of the items. 

b- Ownership costs of TU’s.  

c- Transportation cost of the items.  

d- Transportation cost of empty TU’s. 

e- Travel times between the origin and destinations. 

f- Shipment schedule and lot sizes of empty and loaded TU’s. 

Daganzo (1999) illustrated a corresponding model for fleet sizing under the following 

assumptions:  

      1- the items are homogeneous (i.e. have similar transportation and inventory costs). 

2- the transport lot size is fixed and small compared to the number of items. 

3- production of the items is in an arbitrary, but deterministic. 

4- the items are demanded and produced at a constant rate. 

5- the items are distributed with identical TU’s. 

6- the items are always enough at the origin. 

7- travel times of TU’s are deterministic.   
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                                Figure 3.3:  Scheme for One-to-Many System 

 
Daganzo investigated the impact of travel time uncertainty, in order to carry out the 

investigation the last assumption was relaxed. The problem is completely deterministic 

when the travel time is certain and the production cycle is also fixed. Accordingly, the 
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obvious solution of the fleet sizing problem require enough TU’s in order to accommodate 

the specified production and transport schedules. In contrast, when TU travel time is 

uncertain, there is a probability that the transport will not arrive in the definite schedule 

time, causing a shortage. Therefore, additional TU inventories must be maintained in order 

to increase the TU fleet size. In conclusion, the optimal fleet size depends mainly on the 

relative costs of extra TU’s in relation to the cost of running out. Consequently, it is not 

easy to determine how many exactly TU’s should be in a given fleet. In the previous 

research there are many ways, which are applicable to general types of transportation 

equipment. We will finish the present subchapter with some formulas for a deterministic 

model for the one-to-many case. Formulas determine the number of transportation units, 

which are else in the origin, the destinations, or in-transit.  

 

Transportation units at the Origin 

The items are produced or stored at the origin at rate R (items / time unit). It is used 

at different destinations, with usage rates iλ  (items / time unit), i=1,...,M. Consequently, 

the total items usages are:    

                                                                                                                     (3.11) ∑
=

=Λ
M

i
i

1
λ

As we said before in the assumptions that enough items will be always available in the 

origin, which means  so that there is a feasible production schedule. Assume that at 

time t a total items Q*are produced or stored at the origin, which is sufficient for L time 

units usage at the destinations such that t < L. Thus Q* is equal to 

Λ≥R

                                                                                                         (3.12) Λ= LQ*

We have to assume that the empty TU’s arrive at the origin continuously and the transit 

times of TU’s between origin and destinations are know with certainty, so that the arrival 

rate of empty TU’s is predictable. Taken together, if production are constant, we will not 

need any TU bank in the origin because each empty TU arrived will be filled immediately 

and sent out again. Therefore, we can calculate the present number of TU’s easily 

according to the following: at the time  t, the origin have Q* items. If the number of items 

per TU is Q, the number of TU’s loading is Q*/Q. The number Qt /Λ  has been shipped 

out, so that the number present in the origin is: 

                    S = Q*/Q - .                                                                  (3.13) Qt /Λ
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From equation (3.12) we can be rewritten (3.13) as follows: 

                             ./)( QtLS −Λ=                                                                         (3.14) 
We can see that as  lead to  as described above. At the other extreme, if 

production were instantaneous,  and 

Lt → 0→S

0→t QLS /Λ→ . That is, we need enough TU’s in 

the origin at all times to hold one complete production cycle of items.  

 

Transportation units at the destinations 

 The destination expend the items at a steady rate instead of using it in production 

cycles. Consequently, the number of TU in these destinations is the same as in the origin 

under the extreme of the continuous production, zero. For purposes of the model, let us 

define a variable iη  as the number of time units usage of a given item carried in inventory 

at destination i to provide a buffer against internal variability in the origin. Then the total 

number of TU’s at the destination i are Qii /ηλ . 

 

Transportation units In-Transit 

 The crucial part of the TU usage cycle is travel times. The travel time is the total 

time from TU leaving the origin until reaching the destination and the time required for 

loading or unloading and repairing TU’s before they can be reused. Accordingly, if the 

transit time from the origin to destination i is  time units, then the total number of TU’s 

in-transit between the origin and destinations are 

iT

QTii /2 λ . 

 

Now we can see that the total fleet size K of TU’s needed in the system is: 

 

                                                                   (3.15) 
QTQtL

QTSK

ii

M

i
i

ii

M

i
i

/)2(/)(

/)2(
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1

ηλ
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++−Λ=

++=

∑
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=

=

 
In conclusion, equation (3.15) calculates the total number of transportation units, which is 

needed in this model under the assumptions that the production process at the origin can 

be adjusted without a penalty to meet the scheduled transport quantities and the items are 

distributed with identical TU’s. 
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In the present section we assumed a fixed number of own TU’s. The fleet sizing 

problem however looks for an optimal number of fleet units. This makes sense only for the 

multi-period situation. To formulate corresponding optimization problems we have to 

adapt the cost structure. For instance we have to introduce some cost for holding a TU as 

well as for an own TU not used during a period. Another problem is the assumption of 

deterministic known demand over the planning horizon. It must be expected however that 

the demand is stochastic. For such a situation queueing theory places as our disposal some 

approaches. We will briefly discuss that topic in the following section 

 

3.3 Queueing Models for the One-to-Many Case 

 

In most realistic problems we have to deal with randomness. Random influences can 

be related to travel times of the TU’s, demand of TU’s by the spokes, and so on. We 

consider the continuous time case and some queueing models. In addition to the transit 

times if demand is also stochastic then queueing theory is an appropriate modelling 

technique (see e.g. Koenigsberg and Lam (1976)). Since analytical solutions are possible 

only under some simplifying assumptions we define the following basic model for the 

single hub model with M spokes (cp. El-Ashry et al. (2006)): 

 

1. The hub has an ample amount of a single product and a fleet of K identical TU’s. 

2. Spoke i generates a demand for a single TU in accordance with a Poisson process 

with parameter λi > 0, i = 1, 2,..., M.  

3. The time for a trip from the hub to spoke i, for unloading and the return trip to the 

hub is an exponentially distributed random variable (r.v.) with parameter µi > 0. 

4. All random variables are independent. 

5. Transportation orders will be served in accordance with first-come-first-served 

(FCFS) policy. 

6. If all TU’s are on the trip arriving transportation orders will be queued. 

7. Following cost and gain parts are considered: 

c  > 0 – fixed cost per time unit for one TU, 

w > 0 – waiting cost per time unit and waiting order, 

cs > 0 – cost per time unit for a used TU. 

R > 0 – revenue for a transportation product unit 
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Now, we will explain the equivalences and differences to the one-to-one model. From 

section 3.1 we can see that the owner cost is equivalent to the fixed cost, i.e., c = V  but 

the differences are transportation cost, stockout cost and revenue. The differences arise 

because in the model from section 3.1 each one of them is calculated according to the 

product unit whereas here the calculation is per TU, i.e.,   

 

                              cs = C . Q ,   w = P .  Q    and    r = R . Q. 

 

Remark 3.3.1 We remark that the defined model is a M/M/K/∞ queueing system with 

parameters λ and µ, where  and ∑ λ=λ
=

M

i
i

1
∑

µ
×

λ
λ

=µ=
=

M

i i

i/)timeservice(E
1

11 .  

 

In this section we consider a random demand. Thus the necessary and sufficient condition 

for the existence of a stationary regime the minimum number of TU is K > a, where          

a = λ/µ. 

 

Now we can derive the gain function g (K), which denotes the expected total gain per time 

unit in the steady-state regime, as: 

 

         g (K) =  r .  E [number of served clients] – { cs  . E [number of busy servers] + c . K +    

                                                                                 w . E [number of waiting clients]}, i.e.,  

 

         g (K) = r . E [number of served clients]  – C(K), 

 

 where  C (K) = cs
  . E [number of busy servers] + c . K + w . E [number of waiting clients]. 

 

We need some important performance measure for M/M/K/∞ queueing system. From 

queueing theory we have following formulas for the different performance measures under 

the existence of the steady-state regime (see e.g. Trivedi 1982): 

 

(i) The average number of busy servers is equal to  

 

                    E [number of busy servers] = a = λ/µ. 
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(ii) The average number of served clients per time unit is equal to  

 

                    E [number of served clients] = λ. 

 

(iii) The average number W (K) of waiting clients is given by  

 

                    W (K)  =  E [number of waiting clients]  

                               =  p0 (K) × aK/K! × K × a / (K - a)2 ,                                      (3.16) 

 

where (K) the probability that the system is empty is given as 0p

 

                                       (3.17) ⎭⎬
⎫
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(iv) For the steady-state probabilities (K) that k jobs respectively to clients are in the    kp

       system it holds 

 

                                   (3.18) 
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⎨
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(v) For the average waiting time WT of a client holds 

        WT (K) = λ  . W (K)
∑ −+−

×
−−⋅µ

=
−

=

1

0
1

1
1 K

k

Kk

K

)!K/(a!k/a)aK()aK()!K(
a .            (3.19) 

(vi) The average number of clients in the system can be computed as   

 

                              L (K) = W (K) + a. 

 

Thus g (K) is equal to  

 

                           g (K) = r . λ – C(K) 

                                    = r . λ – [cs
  . a+ c . K + w . W (K)] ⋅                                        (3.20) 
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We are looking for such a number K* of TU’s, which maximizes the average long-run 

gain per time unit. The corresponding queueing optimization problem (QOP-I) is stated as:  

 

    Maximize g (K) 

  s. t. 

     K > λ/µ;           (QOP-I)   

     K ∈ N. 

 

From equation (3.20) we can see that the maximization of the gain function g (K) is 

equivalent to the minimization of the total cost function C (K), i.e., 

 

                                     )(min)(max KCKg
NKNK ∈∈

⇔  

 

Consequently, instead of solving the optimization problem (QOP-I) we can also solve the 

optimization problem (QOP-II) for the existence of steady-state regime K > a.  

  

    Minimize C(K) 

  s. t. 

     K > λ/µ;           (QOP-II)  

     K ∈ N. 

 

To get a solution algorithm for (QOP-II) we can follow the argumentation in El-Ashry et 

al. (2006). We remember that the criterion function for (QOP-II) is  

 

                     C (K)  =  cs
  .  a+ c . K + w  . W (K).                                                (3.21) 

 

If we could prove that C (K) is integer-convex with respect to K, the design of an 

optimisation algorithm is straightforward. Since c . K is a linear function we have to 

consider W (K) only. We notice that from equation (3.19) follows that performance 

measure WT (K) inherits all properties from W (K).  

Dyer and Proll (1977) proved the following 
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Theorem 3.3.1: 

   

In the M/M/K/∞ system is the performance measure W (⋅) a decreasing integer-

convex functions of K for K ≥ a. 

 

With Theorem 3.3.1 the criterion function C (K) is integer-convex with respect to the 

number K of servers. Now the validity of the following optimisation algorithms lies on 

hand (where we use the notion  for the greatest integer not exceeding a). ⎣ ⎦a

 

Algorithm Optimal Number of Servers (ONS) 

1. Initialisation: 

               K :=  ⎣a⎦ + 1;  C1:= C(K);  C0 := MAX. 

2. WHILE (C1 < C0) DO 

BEGIN 

    K := K+1; 

    C0 := C1; 

    C1 := C(K) 

END. 

3. RETURN  K* = K-1 and  C* = C0. 

 

To demonstrate the algorithm we consider the following example 

 

Example 3.3.1: 

Let M = 4, c = 100 € /day, w = 500 € /day, cs = 50 € /day and r = 1000 € /day. The 

arrival and service rates are given in Table (3.1). From the data in Table (3.1) and the 

formulas in Remark (3.3.1) we calculate λ = 5 day-1, µ = 5 / 6 day-1. Since a = λ/µ =6, we 

need at least 7 servers respectively TU’s. Table (3.2) contains the results of the numerical 

computations.  

 

N 1 2 3 4 
λn [day-1] 0.8 1.2 0.6 2.4 
µn [day-1] 0.5 1.0 0.3 2.0 

 

                    Table 3.1: Arrival and Service Rates for Example 3.3.1 
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 K     )(0 Kp    W (K) C(K) [€ /day] g (K) [€ /day] 

7 0.00157878 3.682978 2 841.489 2 158.5110 
8 0.00214238 1.070945 1 635.4725 3 364.5275 
9 0.00235231 0.391962 1 395.9810 3 604.0190 
10 0.00243174 0.151949 1 375.9745 3 624.0255 
11 0.00246166 0.059066 1 429.5330 3 570.4670 
12 0.00247273 0.022474 1 511.2370 3 488.7630 
13 0.00247670 0.008269 1 604.1345 3 395.8655 
14 0.00247808 0.002924 1 701.4620 3 298.5380 
 

                      Table 3.2: Numerical Results for Example 3.3.1 

 

From the results in table 3.2 we can see the following:  

 

1. The probability  that the system is empty is an increasing function of the server 

number K. From equation (3.17) we deduce  

)(0 Kp

                                   = 0.00247875. 6
0

−−

∞→
== ee)K(plim a

K

2. The average number W (K) of waiting transportation orders in the steady-state regime 

is, as stated in Theorem 3.3.1, a convex function of the number K of TU’s or servers.  

3. The average cost per time unit in the steady-state regime if there are K servers, C (K), is 

a convex function of the number K of TU’s or servers.  

4. The average gain per time unit in the steady-state regime if there are K servers, g (K), is 

a concave function of the number K of TU’s or servers.  

5. The optimal number of TU’s or servers is equal to K* = 10. For the given values of the 

cost parameters and rates underestimation of K* is more dangerous than 

overestimation. 

6. From table 3.2 we can see that the total cost for the optimal fleet size K* is 1375.9745 

and the corresponding gain for the optimal fleet size K* is 3624.0255.  

7. With increasing K function g (K) becomes a linear function with grade                          

– c =  –100 €/day. This follows from the fact that for K > a the expected number of 

served clients is a constant λ and that W (K) goes to zero for K→ ∞. 

 

Obviously the considered model and consequently (QOP-II) are very simple. Several 

generalizations are possible. 
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A) With respect to the distributions. 

In case of arbitrary distribution functions for the inter-arrival and service times we   

get a G/GI/K/∞ system. For such systems Weber (1980) proved 

 

Theorem 3.3.2: 

   

For the G/GI/K/∞ system the performance measures W (⋅) und WT (⋅) are decreasing 

integer-convex functions of K for K ≥ a. 

 

The problem however is that for G/GI/K/∞ systems we have for W and other performance 

measures only approximate formulas. 

 

B) With respect to the distribution laws of the retailers. 

      We assume now that Ai (⋅) and Bi (⋅) denote the distribution function of the generation 

time for transportation orders in location i and the service time by the centre, 

respectively. We assume only that the first moments m1 (Ai) and m1 (Bi) are finite for 

all locations. If λi=1/m1 (Ai) denotes the arrival intensity of transportation orders from 

i then we get a G/GI/K/∞ system by setting 

 

                               ,  ∑ λ=λ
=

M

i
i

1

                              , ∑ ≥⋅λλ=
=

M

i
ii t),t(A/)t(A

1
0

                 and   

                                ∑ ≥⋅λλ=
=

M

i
ii .t),t(B/)t(B

1
0

 

C) With respect to the capacity of the order queue. 

We can assume that no backorders or only a finite number T of backorders is possible. 

Then we get the lost-case models M/M/K/0 or G/GI/K/0 respectively the finite models 

M/M/K/T or G/GI/K/T. 
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D) With respect to the optimization criterion. 

      We can assume other criterion functions as well as other constraints. Thus instead of 

criterion function (3.20) we can consider the criterion: “minimum of expected waiting 

time”. If the company earns some money for each realised transportation then it makes 

sense to take the criterion “expected profit”, where we are looking for the maximum. 

In addition to the constraints in (QOP-II) more constraints are thinkable, as for 

instance: lower bound for expected waiting time; upper bound for P (w. t. > Tw) with 

given upper bound Tw for the waiting time; bounds on the resources of the system 

(maximum number of waiting places and so on); or bounds on the fleet size. 

                              

Problem (QOP-II) is related to the fleet-sizing problem for a special continuous time 

model. In the model behind (QOP-II) we have an implicit allocation of TU’s because we 

assume FIFO service discipline. Another possibility is briefly considered in the following 

model, where we are looking for an optimal permanent allocation of a given number K of 

transportation units to retailers. To give a mathematical correct answer we compare the 

optimal solution for the FIFO discipline with the optimal solution for the permanent 

allocation discipline. For the latter we use a model similar to El-Ashry et al. (2006) and 

the there applied Marginal Analysis (see Appendix A). 

 

Let:                             ∑
=

=
M

i
ii nCnC

1

)()(

denote the total cost in the system for allocation vector n = (n1,..., nM).  

Then we formulate (QOP-III) as follows: 

 

              Minimize C (n) 

 s.t.                  

                                         (QOP-III) ;Kn
M

i
i ≤∑

=1

     ni ≥ ⎣λi / µi⎦ + 1;   

     ni∈ N, i=1,..., M. 

 

This is a non-linear integer optimization problem with convex functions Ci(⋅). We can 

apply Marginal Analysis and define the following algorithm. 
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Algorithm Optimal Allocation of a Fleet (OAF) 

 

1.Initial step: 

For i = 1 to M  DO +1. ⎣ ⎦iiin µλ /)0( =

sum := . )0()0(
1 ... Mnn ++

THEN  IF sum > K  

            THEN “(QOP-III) has no solution. Stop”.  

2. Iteration: 

            k:=1; 

WHILE ( ) DO sumKk −≤

BEGIN  

n(k) := n(k-1) + ei , where ei = (0, 0,..., 1, 0,..., 0)  

                        and i that index, which maximizes    Ci(ni
(k-1)) – Ci(ni

(k-1) + 1) . 

            k := k+1 

            END; 

3. Output: optimal allocation . ),...,( )1()1(
1

* −−= k
M

k nnn

 

The extension of (QOP-III) can be generalized to the consideration of the allocation cost 

as follows: 

 

        Minimize C (n) 

  s.t.          

                                          (QOP-IV) ;Cnc
M

i
ii ≤∑ ⋅

=1

         ni ≥ ⎣λi / µi⎦ + 1; 

         ni∈ N, i=1,..., M. 

 

where ci denotes the cost for the allocation of a single server to location i. 

For (QOP-IV) we have simply to maximize in step 3 of the algorithm Marginal analysis 

the fraction 

  [Ci(ni
(k-1)) – Ci(ni

(k-1) + 1)] / ci . 
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Example 3.3.2: 

 

Let M = 4, c = 100 € /day, w = 500 € /day, cs = 50 € /day. The arrival and service 

rates are given in Table (3.1). From the data in Table (3.1) we calculate a1 = 1.6, a2 = 1.2, 

a3 = 2 and a4 = 1.2. If we have one service system for all clients then the condition for 

existence of the steady-state regime K > a = λ/µ .  Now we have M = 4 isolated service 

systems with a corresponding condition iiii an µλ=> , where ni is the minimum 

necessary number to be allocated to location i, i= 1,...,4. From this condition we obtain 

that the minimum number of TU’s for each location i, i= 1,...,4  is n1 = 2, n2 = 2, n3 = 3 and 

n4 = 2 i.e. the minimum number of TU’s for all locations is 9. To compare the solutions of 

(QOP-III) with that of (QOP-II) we fix the number of TU’s as K = 10. This means that a 

single remaining TU must be allocated. 

 

The question now: To which location should the remaining TU be allocated? To answer 

this question we use algorithm (OAF). We need the functions Ci (.), i = 1,...,4.Tables (3.3) 

to (3.6) contain the results of the numerical computations for each location i, i= 1,...,4 by 

using the following formulas: 
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         Ci (ni)  =  cs . ai+ c . ni + w . Wi (ni).   

  

Location 1: 

ni P0,1 (ni) W1 (ni) C1  (ni) 

2 0.11074197 2.83499443 1697.4972 

3 0.18716578 0.31291063   536.4553 

 

Table 3.3: Numerical Results for location1. 
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Location 2: 

ni P0,2 (ni) W2 (ni) C2  (ni) 

2 0.25 0.675 597.5 

3 0.27472527 0.08791209 403.956 

 

Table 3.4: Numerical Results for location 2. 

Location 3: 

ni P0,3 (ni) W3 (ni) C3  (ni) 

3 0.11111111 0.88888888 844.44444 

4 0.10344828 0.13793104 568.96552 

 

Table 3.5: Numerical Results for location 3. 

Location 4: 

ni P0,4 (ni) W4 (ni) C4  (ni) 

2 0.25 0.675 597.5 

3 0.27472527 0.08791209 403.956 

 

Table 3.6: Numerical Results for location 4. 

                                                   

To obtain the answer we must calculate the difference Ci(ni) – Ci(ni + 1) for each location 

i, i= 1,...,4. After that, the remaining TU will be allocated to the location with maximum 

difference.  

From the results of tables (3.3) to (3.6) we can get the following: 

C1 (2) – C1 (3) = 1161.0419, 

C2 (2) – C2 (3) = 193.544, 

C3 (3) – C3 (4) = 275.47892, 

C4 (2) – C4 (3) = 193.544. 

That means the maximum difference occurs at location one, i.e. the remaining TU must be 

allocated at location one. Thus the optimal allocation of 10 TU’s is n* = (3, 2, 3, 2) with 

total average cost of C (n*) = 536.4553 + 597.5 + 844.44444 + 597.5 = 2575.89974. This 

is about 53,42 % higher than in example 3.3.1. Intuitively this result is clear. In example 

3.3.1 we had a single service system with common waiting queue, whereas here we have 4 

isolated systems. The result shows that pooling resources decreases cost.  
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Now we will apply the other model M/M/K/0. In the present model we have the same 

assumptions in the model M/M/K/∞  but the different here there is no waiting cost and the 

other cost is rejected cost:  

                     cr > 0 –cost per time unit for rejected order of a single TU. 

 

From queueing theory we can define the useful functions as follows: 

Poisson ratio-function is:     

∑
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−
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Erlang-B function is:             EB ( K, a ) = 1 – R ( K, a )  

 

Now we can derive the gain function g (K), which denotes the expected total gain per time 

unit in the steady-state regime, as: 

 

      g (K) =  r .  E [number of accepted clients] – { cs  . E [number of busy servers] + c . K +    

                                                                                 cr . E [number of rejected clients]}. 

        

We consider now steady-state performance measure for M/M/K/0 queueing system (see 

e.g. Gelenbe and Pujolle 1998):  

 

(i) The traffic intensity is defined as  a = λ/µ. 

 

(ii) The average number of arriving clients per time unit is equal to  

 

                    E [number of arriving clients] = λ. 

 

(iii) The average number of accepted clients per time unit is equal to  

 

                    E [number of accepted clients] =  λA = λ . [1 –  EB ( K, a ) ]. 

 

 (iv) The average number of rejected clients per time unit is equal to  

 

                    E [number of rejected clients] =  λR  =  λ .  EB ( K, a ). 
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(v) The average number S of busy servers = the average number L of clients in the system  

 

                    E [number of busy servers] = S = L = λA/µ = a . [1 –  EB ( K, a ) ]. 

 

(vi) For the steady-state probabilities (K) that k jobs respectively to clients are in the    kp

       system it holds 

                                                       (3.22) 
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where (K) the probability that the system is empty is given as 0p

                                                                               (3.23) 
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Thus g (K) is equal to  

  g (K) =  r . λA – { cs  . E [number of busy servers] + c . K +   

                               cr . E [number of rejected clients] }  

 

           =  r . (λ - λR) – { cs  . E [number of busy servers] + c . K +    

                                       cr . E [number of rejected clients] } 

 

           =  r . λ  – { r .  λR +  cs  . S + c . K +  cr . λR }, i.e., 

 

  g (K) = r . λ  – C(K),                                                                                                    (3.24) 

 

 where  C (K) =  λR ( r + cr )+  cs  . S + c . K, i.e., 

 

             C (K) =  EB ( K, a ) [λ ( r + cr ) – a . cs ] +  a . cs + c . K.                                  (3.25) 

 

Messerli (1972) and Harel (1990) proved the convexity of the Erlang-B function with 

respect to the nonnegative integer variable K. Since c . K is a linear function then the 

criterion function C (K) is integer-convex with respect to the number K of servers. 
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From equation (3.24) we can see that the maximization of the gain function g (K) is 

equivalent to the minimization of the total cost function C (K), i.e., 

 

                                     )(min)(max KCKg
NKNK ∈∈

⇔  

 

To solve this problem we can use the same procedure in the M/M/K/∞ system. 

Now we will give a numerical example to demonstrate the algorithm in this system. 

 
Example 3.3.3: 

 

Let M = 4, c = 100 € /day, cr = 500 € /day, cs = 50 € /day and r = 1000 € /day. The 

arrival and service rates are given in Table (3.7). From the data in Table (3.7) and the 

formulas in Remark (3.3.1) we calculate λ = 5 day-1, µ = 5 / 6 day-1. Since a = λ/µ =6, we 

need at least 7 servers respectively TU’s. Table (3.8) contains the results of the numerical 

computations.  

 

N 1 2 3 4 
λn [day-1] 0.8 1.2 0.6 2.4 
µn [day-1] 0.5 1.0 0.3 2.0 

 

                    Table 3.7: Arrival and Service Rates for Example 3.3.3 

 
 

K )(0 Kp  EB (K, a) λR (K) S (K) C (K)        
[€ /day] 

g (K)        
[€ /day] 

7 0.00333175 0.18505491 0.92527455 4.8897 2332.3968 2667.6032 
8 0.00292569 0.12187589 0.60937945 5.2687 1977.5042 3022.4958 
9 0.00270584 0.07514504 0.37572520 5.5491 1741.0428 3258.9572 
10 0.00258910 0.04314180 0.21570900 5.7411 1610.6185 3389.3815 
11 0.00252958 0.02299093 0.11495465 5.8621 1565.5370 3434.4630 
12 0.00250083 0.01136481 0.05682405 5.9318 1581.8261 3418.1739 
13 0.00248778 0.00521793 0.02608965 5.9687 1637.5695 3362.4305 
14 0.00248223 0.00223127 0.01115635 5.9866 1716.0645 3283.9355 

 

                      Table 3.8: Numerical Results for Example 3.3.3 
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From the results in table 3.8 we can see the following:  

 

1. The average cost per time unit in the steady-state regime if there are K servers, C (K), is 

a convex function of the number K of TU’s or servers.  

2. The average gain per time unit in the steady-state regime if there are K servers, g (K), is 

a concave function of the number K of TU’s or servers.  

3. The optimal number of TU’s or servers is equal to K* = 11.  

4. From table 3.8 we can see that the total cost for the optimal fleet size K* is 1565.5370 

and the corresponding gain for the optimal fleet size K* is 3434.4630.  

 

Taken together, we can conclude that the total cost for the optimal fleet size K* in example 

3.3.3 is higher than the total cost for the optimal fleet size K* in example 3.3.1, i.e., the 

system with waiting queue is better than the system without waiting queue.  
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Chapter 4 

 

Single-Period Deterministic Models 

 

4.1  Introduction 

 

We concentrate now on the fleet-sizing-and-allocation problem for single hub 

networks. We formulate the problem as a non-linear integer programming problem, where 

the objective function represents the sum of transportation, inventory, and shortage cost. 

Our presentation which has been discussed by El-Ashry et al. (2006) is organized as 

follows. In Section 4.2 we define a rather general decision problem. Afterwards in Section 

4.3 we investigate a simple model with deterministic demand, fixed number and fixed 

capacity of TU’s. We consider two cases:  

(1) Renting of additional TU’s from outside the system is not allowed, and 

(2) Renting of additional TU’s from outside the system is allowed.  

For that simple model we can prove some interesting results on the optimal allocation.  

 

4.2 Description of a Basic Model and Decision Problem 

 

In the following we imagine the hub and spoke system (HAS system) as a supply 

network for consumable products or services. Fundamental modelling assumptions are 

related to the 

Time flow, which can be continuous or discrete, whereby the elements of the model can 

be stationary or non-stationary; 

Planning horizon – finite or infinite, rolling or fixed; 

Available information – full, partial (adaptive model), no information; 

Decision/control possibilities – ordering policies, policies for transportations between the 

warehouse and the retailers and between the retailers, number of TU’s, leasing of 

additional TU’s from outside or letting of own TU’s, handling of transportation orders 

(priorities), and satisfaction of the demand; 

Goal function – long-run average cost, the total discounted cost, average waiting times, 

fill rates or service rates, and so on. Thereby the goal function may include multiple 

criterions or a single criterion.  
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With respect to the elements of a model we assume the following: 

 

1. There exists a central warehouse, the hub, and M retailers, the spokes. The central 

warehouse stores the products, which can be ordered by the retailers, which have to 

serve the demand for these products. The warehouse else can order product from 

producers or produce the products itself.  

 

2. The central warehouse is described by 

• Number of products, 

• Storage capacities (for all products or for each single product), 

• Ordering policy, 

• Number of own TU’s,   

• Allocation policy of own TU’s and leased TU’s, 

• Cost and gain structure. 

 

3. For the retailers we have to define 

    • The demand process, which can be stochastic or deterministic, 

    • The acceptance-rejection rule for arriving demand, 

    • The ordering policy, 

    • The storage capacities, 

    • The pooling scheme for lateral transports between the     

       retailers, 

    • The cost and gain structure. 

           The retailers may be identical or different with respect to these characteristics.  

 

4. The TU’s we can divide into classes. Such a class is characterised by  

• Transportation times (deterministic or random, identical or different), 

• Transportation capacities (measured in product units), 

• Transportation cost (fixed cost, volume and time proportional cost, other 

functions), 

• Standstill cost for depreciations and so on. 

   Each TU moves from the warehouse to a retailer and back. On the return way a TU    

   can transport for instance packing material and/or empty TU’s. 
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5. Lead times can exist for the supply of products to the warehouse, for transportation 

of product to and between retailers. These lead times may be zero, deterministic or 

random.  

 

6. The cost and gain structure includes 

 • Ordering cost, 

• Fixed cost per time unit and TU for own TU’s, 

• Rental cost per time unit and rented TU, 

• Cost for a transportation per time unit and TU, 

• Waiting cost/shortage cost per time unit for transportation orders and      

   demand, 

• Holding cost for stored product in the warehouse and the retailers, 

• Profit from sold product.  

 

We finish the description of model elements with some remarks on the pooling scheme 

and the acceptance-rejection rule (AR-rule). The AR-rule handles the arriving demand at 

retailers. In the backordering case all demand is accepted, whereas in the lost-sales case 

arriving demand, which cannot be satisfied by available inventory at a retailer, is rejected 

and lost. In the intermediate case exists a waiting queue with finite capacity for waiting 

demand. To increase the quality of service for the whole system the retailers and their 

inventories on hand may be pooled. In case of shortage of product at one retailer and 

available product at another one lateral transportations between retailers of the same pool 

are an alternative. The pooling scheme should describe as well the pooling of retailers into 

groups as the pooling of the inventories at the retailers. The realization of lateral 

transportations requires additional resources. If the lead times for transports from the 

warehouse to retailers are high compared with those between retailers then pooling may be 

decrease cost and increase the quality of service.  However, pooling complicates the 

problem to control the whole system.  

 

Now we can formulate a general decision respectively optimization problem as the 

problem to define for a HAS system 

a. The number of own TU’s, 

b. The number of rented TU’s, 

c. The ordering of the central warehouse,  
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d. The release of transportation orders by the retailers, and  

e. The allocation of TU’s to transportation orders  

 

In such a way that given performance criterions will be optimized. 

 

From the above description of model elements and the formulated general 

optimization problem it is obvious, that in dependence of the concrete assumptions to the 

elements of a model we get a great variety of different models and problems. Most of them 

are not analytically tractable. In the following sections we will consider some models, 

which we have investigated and for which we have at least some algorithms for getting a 

solution. We will move from the simplest case to more realistic models, i.e., from a single-

period model with deterministic demand to a queueing model with continuous time. 

 

4.3 A single-Period Deterministic-Demand Model 

 

We consider the HAS system with a single-period planning horizon, deterministic 

demand, full information, and total cost criterion. To be concrete we assume the 

following: 

 

1. There are a single warehouse and M retailers.  

2. The warehouse has an ample amount of a single product and K TU’s. 

3. The demand at retailer i during the period is known and equal to di, i=1,..., M. Each 

retailer has zero inventory and can order only full TU’s. The cost structure 

comprises for retailer i 

 pi – shortage cost per unit not satisfied demand, 

 hi - holding cost per unit not sold product. 

4. The K TU’s belong to a single class, which is characterized by negligible 

transportation times, transportation capacity Q, and transportation cost ci per TU 

going to retailer i. 

5. The system can rent additional TU’s from outside with the same characteristics as 

the own TU’s, but with cr,i as transportation cost for a rented TU going to retailer i. 

It is natural to assume ci < cr,i  for all i. 

6. We have no lead times. 
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The problem is to allocate the K TU’s to the retailers such that the total cost will be 

minimized. In the following we investigate solutions for that problem with and without the 

possibility to rent TU’s from outside. We start with the case that no TU’s can be rented.  

 

4.3.1 Solutions for the Allocation Problem without Renting Possibilities 

 

To formalize the corresponding optimisation problem we define 

     ni ∈ N = {0, 1, 2, ...} the number of TU’s allocated to retailer i,  

     n = (n1, n2,..., nM) ∈ NM  the allocation-vector, 

     ki(ni) the single-period cost  for retailer i when ni TU’s are allocated, 

     k(n) the total cost for the period under allocation-vector n. 

 

It holds that 

                              (4.3.1) 
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where (x)+ = max(x, 0) for any real x. With these definitions the optimization problem to 

be solved can be reformulated as optimization problem (OP-I): 

For given K∈ N find an allocation-vector n(I), which minimizes the total cost, i.e., 

 

 

         Minimize k(n) 

                  s.t.  

  ;   (OP-I) Kn
M

i
i ≤∑

=1

  ni∈N, i = 1,..., M.  
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Obviously ki(⋅) is a piecewise linear, integer-convex function of ni for i=1,..., M, and, 

consequently, k(⋅) is integer-convex in all its arguments. This convexity property 

considerably simplifies (OP-I). 

  

Let n* = (n1*, n2*,..., nM*) ∈ NM denote that allocation-vector, which solves (OP-I) 

for K = ∞, i.e., we do not take into consideration that the central warehouse has only K 

TU’s. Since goal function k(⋅) is additive with respect to its arguments, ni* minimizes 

function ki(⋅ ) for each i. To calculate ni* we use the first-order differences ∆ki(⋅), which 

are defined as  

  

 ∆ki(ni) := ki(ni+1) – ki(ni),  ni ≥ 0.                              (4.3.3) 

 

From convexity follows that ni* fulfils the two inequalities 

 

               ki(ni*) ≤ ki(ni*+1)   and    ki(ni*) ≤ ki(ni*-1) 

 

 or, equivalently, 

 

              ∆ki(ni*) ≥ 0    and     ∆ki(ni*-1) ≤ 0. 

 

In other words, it holds that 

 

             ni* = argmin{n: ∆ki(n) ≥ 0} = argmax{n: ∆ki(n-1) ≤ 0}.                       (4.3.4) 

 

The characterization of ni* by (4.3.4) is too general for use. With (4.3.1) we get from 

(4.3.3) that 

 

                     (4.3.5) 
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Now we have to distinguish between four cases. 

 

Case 1:       (ni*+1)⋅Q ≤  di.  

 

From the optimality conditions for ni* and (4.3.5) follows 

 

            ∆ki(ni*) = ci – pi ⋅ Q ≥ 0 ≥ ∆ki(ni*-1) = ci – pi ⋅ Q,  

i.e.,       

            ∆ki(ni*) = ∆ki(ni*-1) = ci – pi ⋅ Q = 0.  

This is equivalent to ci = pi ⋅ Q, i.e., the transportation costs for product quantity Q are 

equal to the shortage costs for the same quantity. In other words, to order product 

generates the same cost as not to order. Thus we have a trivial solution ni* = 0. To exclude 

that triviality we introduce  

Assumption (ET) – Efficiency of Transportation:  

ci < pi ⋅ Q   for i = 1,..., M. 

One consequence of assumption (ET) is that in case 1 we get the contradiction 

  ci – pi ⋅ Q > 0 ≥ ci – pi ⋅ Q,  

i.e.,  ni* = 0 is not optimal. 

 

 

Case 2:       ni*⋅Q ≤ di < (ni*+1)⋅Q. 

 

Here we get, taking into account assumption (ET), that 

 

                   ∆ki(ni*) = ci + hi ⋅ Q – (hi + pi) ⋅ (di - ni*⋅Q) ≥ 0 > ci – pi ⋅ Q = ∆ki(ni*-1).  

 

Rearranging terms this is equivalent to the optimality condition  
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Case 3:   (ni*-1)⋅Q ≤ di < ni*⋅Q. 

 

In the same way as for case 2 we get the optimality condition 
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Case 4:       di ≤ (ni*-1)⋅Q. 

 

With assumption (ET) and optimality condition (4.3.4) we get  

                   0 > ci – pi ⋅ Q = ∆ki(ni*) ≥ 0.  

But this is a contradiction. 

We have shown that only the cases 2 and 3 are relevant and that the optimality condition is 

 

          ni* = argmin{n:
ii

iii

ph
Qcp

Q
dn

+
−

≥−+
/)1( } 

                = argmax{n:
ii

iii

ph
Qcp

Q
dn

+
−

≤−
/

}.                                                  (4.3.6) 

 

Remark 4.3.1 

 

The optimality condition (4.3.6) has an important intuitive interpretation. The 

optimal number of ordered quantities Q is at least equal to the integral part  of the 

demand divided by that quantity. If there remains some unsatisfied demand the ordering of 

an additional TU depends on the amount of unsatisfied demand di – ⋅Q and the cost 

factors. Thus the minimization of function ki(⋅ ) represents the classical inventory problem 

with the restriction to order sizes equal to multiples of a given quantity Q.  

n′

n′

Let us return now to problem (OP-I). It is obvious that 

 

                         n(I) ≡ n*   if     .K*n
M

i
i ≤∑

=1
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Otherwise we suggest the following procedure to solve (OP-I): 

 

 1. Calculate n* using (4.3.6). 

 2. REPEAT  

(i) Chose a retailer i.  

(ii) Decrease ni* by one. 

             UNTIL   .K*n
M

i
i ≤∑

=1

 

For the applicability of that procedure we have to answer two questions: 

1. How to chose the retailer i in Step 2(i) ? 

2. Will the search process stop on an optimal solution ? 

The convexity of the goal function allows applying Marginal Analysis (MA) (see Fox 

1966). MA will answer both questions. The given algorithm (MA) and some important 

properties are given in the appendix A. The formulation there is for the maximization of a 

concave and strictly increasing function f. 

We remark that maximization, concavity, and to be strictly increasing for a function f is 

equivalent to minimization, convexity, and to be strictly decreasing, respectively, of 

function (-f). Now we put (-f) = k with k from (4.3.3). Since ki(⋅) is an integer-convex 

function of ni and since from the definition of ni* follows that ki(⋅) is strictly decreasing for 

ni = 0, ..., ni*, i=1, ..., M, algorithm Marginal Analysis (MA) generates an optimal solution 

for (OP-I) by Property 3 in the Appendix A. The general algorithm (MA) substantiates to  

 

Algorithm Marginal analysis for (OP-I)  

                  {to solve (OP-I) in case } K*n
M

i
i >∑

=1

Input :  K; ni* , i=1,..., M. 

1. Initial solution n(0) = (n1
(0), ..., nM

(0)) with ni
(0) =  ni*, i=1, ..., M. 

2. r := 1. 

3. n(r) = n(r-1) - ei , where ei = (0, 0,..., 1, 0,..., 0)  

    and i that index, which minimizes   ∆ki(ni
(r-1)) := ki(ni

(r-1)- 1) – ki(ni
(r-1)),  ni

(r-1) > 0. 

4. Stop if  r =  Otherwise r :=  r+1 and go to 3. ∑−
=

M

i
i .*nK

1

Output :  Allocation vector n. 
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In the above given formulation algorithm (MA) is applied “in reverse”. From Property 3 it 

follows that we stop at the optimal solution. Another approach to solve (OP-I) in case 

is dynamic programming, but sometimes with a considerable higher numerical 

effort. A stolid application of Marginal Analysis naturally solves (OP-I). But, using the 

property that ki(⋅) is piecewise linear, it is easy to speed up the solution process in case 

. For that we sort all retailers such that  

K*n
M

i
i >∑

=1

K*n
M

i
i >∑

=1

 

  -∆k1(0) ≥ -∆k2(0) ≥ ... ≥ -∆kM(0).                                   (4.3.7) 

 

Since ∆ki(ni⋅) = ci – pi ⋅ Q for (ni+1) Q ≤ di the inequalities (4.3.7) are equivalent to  

 

     p1 ⋅ Q - c1 ≥  p2 ⋅ Q - c2 ≥ ... ≥ pM ⋅ Q – cM.                             (4.3.8) 

 

From the inequalities (4.3.8) follows that to retailer 1 will be allocated TU’s until    

  

                     n1 ⋅Q ≤ d1   and   n1 ≤ K.  

Thus                     

                             n´1 := argmax{n: n⋅Q ≤ d1  and  n ≤ K}  

 

denotes a first amount of TU’s allocated to retailer 1 (cp. Remark 4.3.1).  

If  n´1 = K then the process stops. Otherwise, in (4.3.8) we have to replace 

 

                  p1 ⋅Q – c1   by   -∆k1(n´1) = (d1 – n’1 ⋅ Q)⋅(h1 + p1) - c1 - h1⋅Q  

 

and to find for retailer 1 the new place in (4.3.7) respectively (4.3.8).  

 

If                         -∆k1(n´1) ≥ p2⋅Q-c2   

 

then retailer 1 gets a last additional TU, because of    

            

                            -∆k1(n´1+1) = -( c1 + h1 ⋅Q) < pM ⋅Q – cM.  
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Otherwise the process continues with retailer 2 and so on. If in this allocation procedure 

the retailer to be considered next is an already considered retailer (with a first amount n´i 

of allocated TU’s) that retailer gets an additional single TU and is no more considered. We 

describe that allocation procedure by the following algorithm. 

 

Algorithm Optimal Allocation Procedure (OAP-I)  

                    {to solve (OP-I) in case  } K*n
M

i
i >∑

=1

 

Input: K; Q; di, i=1,..., M. 

1. Preliminaries:   n´i = ⎣di/Q⎦, i=1,..., M.1  

2. Initialization:  

        ni := 0, i=1,..., M; nsum := 0. 

3. Sorting:  

      Define a permutation i = (i1,..., iM) of integers 1 to M such that 

   MM iiiiii cQp...cQpcQp −⋅≥≥−⋅≥−⋅
2211 . 

4. Iteration: 

 

WHILE  nsum < K  DO 

a) Allocation-step:  

IF 0
1

=in   AND   0
1

>i'n

THEN        and    nsum:= nsum +  ),(min: '
11

nsumKnn ii −=
1in

ELSE     and  nsum := nsum + 1. 1:
11

+= ii nn

b) Resorting-step: 

Calculate  and find the new position for retailer i1 in the   )n(k ii 11
∆−

 permutated sequence of retailers.  

 

Output : Optimal allocation vector n. 

 

                                                 
1 ⎣x⎦ denotes the greatest integer not exceeding x for any real x. 
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We remark that in case  algorithm OAP-I as well as algorithm Marginal 

Analysis for (OP-I) stops before all retailers are satisfied, i.e., there are some retailers 

without any delivery, independent of their demand values. Such discrepancies between the 

demand and the total transporting capacity can lead to very high costs (cp. the examples). 

To prevent this we next consider a model, where additional TU’s can be rented from 

outside the system. 

K*n
M

i
i >∑

=1

 

4.3.2 Solutions for the Allocation Problem with Renting Possibilities 

 

We assume now that the central warehouse can rent additional TU’s from outside the 

system with the same characteristics as the own TU’s, but with cr,i as transportation cost 

for a rented TU going to retailer i. It is natural to assume iri cc ,≤  for all i. Furthermore, to 

rent a TU will be profitable only if it leads to decreasing costs. A sufficient condition for 

that is to complete assumption (ET) by assumption (ER) – Efficiency of Renting: 

 

cr,i < pi ⋅ Q for i = 1,..., M. 

 

Let r = (r1, r2,..., rM)∈NM denote the allocation-vector for rented TU’s and k(n,r) the total 

single-period cost under the two allocation-vectors n and r. In analogy to (4.3.1) and 

(4.3.2) it holds for n, r∈NM that 
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          (4.3.10) 

 

Again ki(⋅,⋅ ) is a piecewise linear, integer-convex function of ni and ri for i=1,..., N, k(·,· )  

is integer-convex in all its arguments, and we have a second optimisation problem (OP-II): 
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For given K∈N find allocation-vectors n(II) and r*, which minimize the total cost, i.e., 

 

Minimize k(n, r) 

            s.t.  

Kn
M

i
i ≤∑

=1
;    (OP-II) 

ni, ri ∈N, i = 1,..., M.  

 

From the assumption ci < cr,i  for all i it naturally follows that before any TU will be rented 

all own TU’s must be allocated. Thus (OP-II) makes sense only if , which we 

will assume in the following.  

K*n
M

i
i >∑

=1

At first we introduce for each i the differences  

 

                       ∆nki(ni,ri) := ki(ni+1,ri) - ki(ni,ri)    

and  

                       ∆rki(ni,ri) := ki(ni,ri+1) - ki(ni,ri). 

 

From (4.3.9) follows for all i that 
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                                                                                                                           (4.3.10) 

 

and 

    ∆rki(ni,ri) = ∆nki(ni,ri) + cr,i  - ci. 

 

At first sight we can not apply Marginal Analysis to solve (OP-II) because of the 

functions ki(⋅,⋅) depend now on two non-negative integer variables. But it is possible to 

transform these functions in such a way that they will depend on a single variable only. To 

realise that we argue as follows. Obviously, for the optimal solution (n(II), r*) of (OP-II) 

holds ni
(II)+ ri* ≤ ni*, i = 1,..., M, where ni* is from (4.3.6).  
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In case of K = 0 it holds n(II) = (0,..., 0) and r* ≤ n*. Since the number of rented TU’s is 

not limited we can start our procedure to solve (OP-II) with r = n*.  

 

The corresponding cost for retailer i are 

 

     .   
++ −⋅+⋅−+⋅= )dQ*n(h)Q*nd(p*nc*)n,(k iiiiiiii,rii 0

 

If we now replace ni rented TU’s by own TU’s we get cost of 

 

          
++ −⋅+⋅−+⋅+⋅=− )dQ*n(h)Q*nd(p*ncnc)n*n,n(k iiiiiiii,riiiiii

or   

       *).n,(k*)n,(k)cc(n)n*n,n(k iiiii,riiiiii 00 <+−⋅=−  

 

Consequently, since  is a constant and ci < cr,i the cost saving  *)n,(k ii 0

 

             )cc(n)n*n,n(k*)n,(k ii,riiiiiii −⋅=−−0  

 

replacing ni rented TU’s by own TU’s is a linear, strictly increasing function of ni, ni≤ ni*. 

Thus to maximize the gain from replacing rented TU’s by the available K own TU’s we 

can directly apply Marginal Analysis if we put 

 

                         fi(ni) = ni⋅(cr,i – ci),   i = 1,..., M.  

 

Again the solution process can be sped up using the linearity property of fi(ni). For this we 

number the retailers such that 

 

                      cr,1 – c1 ≥ cr,2 – c2 ≥ ... ≥ cr,M – cM > 0.  

 

Then it is obvious that for retailer 1 the number of replaced rented TU’s by own TU’s is 

equal to min{n1*, K}. If K > n1* then retailer 2 replaces min{n2*, K-n1*} rented TU’s. 

Continuing that replacement process until all K TU’s are allocated the process stops at a 
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retailer j ≤ M. Now we must consider two cases – at retailer j all rented TU’s can be 

replaced and not all rented TU’s can be replaced. 

 

In the first case we have 

 

                         n = (n1*,..., nj*, 0,..., 0)    and     r = (0,..., 0, nj+1*,..., nM*)  

 

as up-to now calculated solution of (OP-II). To finish the solution process it remains to 

calculate for retailers i = j+1,..., M the optimal number ri* of rented TU’s. It is obvious 

that the optimality condition for each i is similar to (4.3.6), i.e., ri* can be calculated from 

 

         ri* = argmin{r:
ii

i,rii

ph
Q/cp

Q
d

)r(
+

−
+≥+ 1 } 

              = argmax{r:
ii

i,rii

ph
Q/cp

Q
d

r
+

−
+≤ }.                                                             (4.3.11) 

 

We remark that from (4.3.6) and (4.3.11) follows that 

                              ri* ≤ ni* for i=1,..., M. 

In the second case retailer j cannot replace all rented TU’s by own TU’s. Thus the up-to 

now calculated solution is  

                      n = (n1*,..., nj-1*, nj, 0,..., 0) 

and     

                              r = (0,..., 0, rj, nj+1*,..., nM*)  

with 

                              0 < nj < nj*     and     rj = nj* - nj > 0.  

 

For a retailer j with own and rented TU’s, whereby the number nj of own TU’s is fixed, the 

optimal number rj(nj) of rented TU’s has also to fulfill the optimality condition (4.3.11), 

i.e., 

     rj(nj)  =   argmax{ r : 
jj

j,rjj
j ph

Q/cp
Q
d

nr
+

−
+≤+ }    

            =   argmax{ r : 
jj
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Again it remains to calculate for retailers  i = j+1,..., M  from (4.3.11) the optimal 

numbers ri*. Summarizing these considerations we get an algorithm similar to algorithm 

(OAP-I) for (OP-I).  

 

Algorithm Optimal Allocation Procedure OAP-II  

                    {to solve (OP-II) in case  } K*n
M

i
i >∑

=1

Input:  K; Q; di, i=1,..., M. 

1. Preliminaries :  

Calculate ni* from (4.3.6), i=1,..., M. 

2. Initialization:  

ni := 0, ri := ni*, i=1,..., M; nsum := 0. 

3. Sorting: 

Define a permutation (i1,..., iM) of integers 1 to M such that 

  MM iiriiriir cccccc −≥≥−≥− ,,, ...
2211

. 

4. Iteration: 

WHILE  nsum < K  DO 

a) Allocation-step: 

    ( ) .nnsumnsum;nrr;nsumK,nn iiii
*
ii 111111

::min: +=−=−=  

                  b) Resorting-step: 

Delete i1 from the permutation and renumber the remaining elements. 

5. Final step: 

For i := 1 to M  DO 

IF ri > 0  THEN ri := ri
(II), where ri

(II) is calculated from (4.3.11)  

if ni = 0 and from (4.3.12) otherwise. 

Output : Optimal allocation vector n(II) and r(II). 

 

We want to remark that from the algorithms OAP-I and OAP-II follows that the two 

optimisation problems (OP-I) and (OP-II) can have very different solutions. Nevertheless 

they have a common structural property – there exists at most a single retailer (retailer j in 

OAP-II) with two different transportation modes (if we assume for (OP-I) that no transport 

is a special mode). Of cause it is no problem, having the optimal allocation vectors, to 

calculate the values of the corresponding goal functions.   
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Let us finally consider a simple numerical example. 

 

Example 4.3.1 

 

We assume M = 10 and Q = 10. The cost parameters and two demand vectors are 

given in Table (4.1). Table (4.1) contains also the values for pi Q - ci  and cr,i-ci with the 

corresponding order places in i. The last two rows contain the optimal TU-values, 

calculated from (4.3.6) respectively (4.3.11). We apply now OAP-I and OAP-II to the two 

demand vectors. 

 

 

i 1 2 3 4 5 6 7 8 9 10 

ci 1 2 3 4 5 6 5 4 3 2 

cr,i 10 10 10 10 10 10 10 10 10 10 

hi 1 1 1 1 1 1 1 1 1 1 

pi 3 4 5 6 7 8 9 8 7 6 

di
(1) 12 24 36 48 60 72 60 48 36 24 

di
(2) 100 150 80 30 5 20 200 60 40 90 

piQ-ci 29 38 47 56 65 74 85 76 67 58 

i 10 9 8 7 5 3 1 2 4 6 

cr,i-ci 9 8 7 6 5 4 5 6 7 8 

i 1 2 4 6 8 10 9 7 5 3 

ni* 1 3 4 5 6 8 6 5 4 3 

ri* 1 3 4 5 6 7 6 5 4 3 

 

 

Table 4.1: Data for Example 4.3.1 

 

 

 

 61



(i) Demand vector d(1). 

 

Let us assume K = 25. First we solve (OP-I) applying OAP-I.  

 

1. Preliminaries:      For the present d(1)  we get  

                                n′  =(1, 2, 3, 4, 6, 7, 6, 4, 3, 2).   

2. Initialisation:       ni := 0, i=1,..., M; nsum := 0. 

3. Sorting:                 i = (7, 8, 6, 9, 5, 10, 4, 3, 2, 1).  

4. Iteration: 

(1) nsum = 0 < 25  →        a) n7 = 0 and n´7 > 0 gives n7 = 6, nsum = 6. 

          b) ∆k7(6) = c7 + h7 Q > 0  

              gives i = (8, 6, 9, 5, 10, 4, 3, 2, 1, 7). 

 

(2) nsum = 6 < 25  →        a) n8 = 0 and n´8 > 0 gives n8 = 4, nsum = 10. 

          b) ∆k8(4) = c8+ h8 Q –(h8+p8)(d8-4Q) = -58  

              gives    i = (6, 9, 5, 8, 10, 4, 3, 2, 1, 7). 

 

(3) nsum = 10 < 25 →        a) n6 = 0 and n´6 > 0 gives n6 = 7, nsum = 17. 

           b) ∆k6(7) = c6+ h6 Q –(h6+p6)(d6-7Q) = -2  

               gives i = (9, 5, 8, 10, 4, 3, 2, 1, 6, 7). 

 

(4) nsum = 17 < 25 →        a) n9 = 0 and n´9 > 0 gives n9 = 3, nsum = 20. 

                   b) ∆k9(3) = c9 + h9 Q –(h9+p9)(d9-3Q) = -35         

                       gives   i = (5, 8, 10, 4, 3, 2, 9, 1, 6, 7). 

 

(5) nsum = 20 < 25 →       a) n5 = 0 and n´5 > 0 gives n5 = 5, nsum = 25. 

          b) ∆k5(5) = c5–p5Q = -65  

               gives i = (8, 5, 10, 4, 3, 2, 9, 1, 6, 7). 

 

Output:  n(I) = (0, 0, 0, 0, 5, 7, 6, 4, 3, 0)  

              with   k(n(I), d(1)) = 1 058. 
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Now we allow renting of TU’s, i.e., we apply OAP-II. 

 

1. Preliminaries:    From (4.3.6) we get  

                                   n* = (1, 3, 4, 5, 6, 8, 6, 5, 4, 3).   

2. Initialization:  ni := 0, ri := ni*, i=1,..., M; nsum := 0. 

3. Sorting:     i = (1, 2, 10, 3, 9, 4, 8, 5, 7, 6).  

4. Iteration: 

(1) nsum = 0 < 25   →        a) n1 = 1, r1 = 0, nsum = 1. 

    b) i = (2, 10, 3, 9, 4, 8, 5, 7, 6). 

(2) nsum  = 1< 25   →         a) n2 = 3, r2 = 0, nsum = 4. 

                          b) i = (10, 3, 9, 4, 8, 5, 7, 6). 

(3) nsum = 4 < 25   →         a) n10 = 3, r10 = 0, nsum = 7. 

    b) i = (3, 9, 4, 8, 5, 7, 6). 

(4) nsum = 7 < 25   →         a) n3 = 4, r3 = 0, nsum = 11. 

    b) i = (9, 4, 8, 5, 7, 6). 

(5) nsum = 11< 25   →         a) n9 = 4, r9 = 0, nsum = 15. 

 b) i = (4, 8, 5, 7, 6). 

(6) nsum = 15 < 25   →          a) n4 = 5, r4 = 0, nsum = 20. 

    b) i = (8, 5, 7, 6). 

(7) nsum = 20 < 25   →          a) n8 = 5, r8 = 0, nsum = 25. 

                           b) i = (5, 7, 6). 

5. Final step: 

    n  =  (1, 3, 4, 5, 0, 0, 0, 5, 4, 3) 

    r   =  (0, 0, 0, 0, 6, 8, 6, 0 ,0, 0) 

    r* =  (1, 3, 4, 5, 6, 7, 6, 5, 4, 3) 

                          n(II) =  (1, 3, 4, 5, 0, 0, 0, 5, 4, 3)  and 

                 r(II) =  (0, 0, 0, 0, 6, 7, 6, 0, 0, 0). 

 

Output:   n(II), r(II)  and  k(n(II), r(II), d(1)) = 313,  

               which is 29,58 %  of  k(n(I), d(1)). 
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(ii) Demand vector d(2). 

 

Let us assume now K = 50. Again we solve first (OP-I) applying OAP-I.  

 

1. Preliminaries:    For d(2)  we get  

                                    n´ = (10, 15, 8, 3, 0, 2, 20, 6, 4, 9).   

2. Initialisation:  ni := 0, i=1,..., M; nsum := 0. 

3. Sorting:    i = (7, 8, 6, 9, 5, 10, 4, 3, 2, 1).  

4. Iteration: 

(1) nsum = 0 < 50        →    a) n7 = 0 and n´7 > 0 gives n7 = 20, nsum = 20. 

              b) ∆k7(20) = c7 + h7 Q = 15                                

                  gives i = (8, 6, 9, 5, 10, 4, 3, 2, 1, 7). 

 

(2) nsum  = 20< 50       →    a) n8 = 0 and n´8 > 0 gives n8 = 6, nsum = 26. 

            b) ∆k8(6)  =  c8  + h8 Q = 14  

                           gives i = (6, 9, 5, 10, 4, 3, 2, 1, 8, 7). 

 

(3) nsum  = 26< 50       →    a) n6 = 0 and n´6 > 0 gives n6 = 2, nsum = 28. 

            b) ∆k6(2) =  c6  + h6 Q  = 16  

                           gives i = (9, 5, 10, 4, 3, 2, 1, 8, 7, 6). 

 

(4) nsum  = 28< 50       →    a) n9 = 0 and n´9 > 0 gives n9 = 4, nsum = 32. 

            b) ∆k9(4) =  c9  + h9 Q  = 13  

                           gives i = (5, 10, 4, 3, 2, 1, 9, 8, 7, 6). 

 

(5) nsum  = 32< 50       →    a) n5 = 0 and  n´5 = 0  gives n5 = 1, nsum = 33. 

            b) ∆k5(1) =  c5 + h5 Q  = 15  

                           gives i = (10, 4, 3, 2, 1, 9, 8, 7, 5, 6). 

 

(6) nsum  = 33 < 50       →    a) n10 = 0 and  n´10 > 0  gives n10 = 9, nsum = 42. 

            b) ∆k10(9) =  c10 + h10 Q  = 12  

                           gives i = (4, 3, 2, 1,10, 9, 8, 7, 5, 6). 
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(7) nsum  = 42< 50       →    a) n4 = 0 and  n´4 > 0  gives n4 = 3, nsum = 45. 

            b) ∆k4(3) =  c4 + h4 Q  = 14  

                           gives i = (3, 2, 1,10, 9, 8, 4, 7, 5, 6). 

 

(8) nsum  = 45< 50      →    a) n3 = 0 and  n´3 > 0  gives n3 = 5, nsum = 50. 

            b) ∆k3(5) =  c3 – p3 Q  = -47  

                           gives i = (3, 2, 1,10, 9, 8, 4, 7, 5, 6). 

 

Output:        n(I) = (0, 0, 5, 3, 0, 2, 20, 6, 4, 9)  

                    with  k(n(I), d(2)) = 1 278. 

 

The application of OAP-II gives following results. 

 

1. Preliminaries:    From (4.3.6) we get   

                                   n* = (10, 15, 8, 3, 1, 2, 20, 6, 4, 9).   

2. Initialisation:  ni := 0, ri := ni*, i=1,..., M; nsum := 0. 

3. Sorting:     i = (1, 2, 10, 3, 9, 4, 8, 5, 7, 6).  

4. Iteration: 

(1) nsum =0 < 50  →         a) n1 = 10, r1 = 0, nsum = 10. 

    b) i = (2, 10, 3, 9, 4, 8, 5, 7, 6). 

(2) nsum =10< 50  →         a) n2 = 15, r2 = 0, nsum = 25. 

                          b) i = (10, 3, 9, 4, 8, 5, 7, 6). 

(3) nsum = 25< 50  →         a) n10 = 9, r10 = 0, nsum = 34. 

    b) i = (3, 9, 4, 8, 5, 7, 6). 

(4) nsum = 34< 50   →         a) n3 = 8, r3 = 0, nsum = 42. 

    b) i = (9, 4, 8, 5, 7, 6). 

(5) nsum = 42< 50  →         a) n9 = 4, r9 = 0, nsum = 46. 

    b) i = (4, 8, 5, 7, 6). 

(6) nsum =46 < 50   →         a) n4 = 3, r4 = 0, nsum = 49. 

   b) i = (8, 5, 7, 6). 

(7) nsum = 49< 50   →         a) n8 = 1, r8 = 5, nsum = 50. 

    b) i = (5, 7, 6). 
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5. Final step: 

    n  =  (10, 15, 8, 3, 0, 0, 0, 1, 4, 9) 

     r   =  (0, 0, 0, 0, 1, 2, 20, 5 ,0, 0)  

    r* =  (10, 15, 8, 3, 1, 2, 20, 6, 4, 9) 

            n(II) =  (10, 15, 8, 3, 0, 0, 0, 1, 4, 9) and 

            r(II)  =  (0, 0, 0, 0, 1, 2, 20, 5 ,0, 0). 

 

Output :   

                 n(II), r(II) and   k(n(II), r(II), d(2)) = 395, 

                 which is 30,91% of  k(n(I), d(2)). 

 

The results for Example 4.3.1 show that the solutions of (OP-I) and (OP-II) in general are 

very different. That fact has some consequences for practice – if there exists the possibility 

to rent TU’s the optimal solution differs considerably (dependent on the demand 

realisation) as well as in cost as in the allocation vector from the solution without renting. 

Furthermore, from the algorithm OAP-II follows that the solution for (OP-II) possesses an 

interesting property: There exists at most a single retailer with two different TU-types. The 

demand in all other retailers will be satisfied else by own TU’s or by rented TU’s. This in 

some sense facilitates the organization of the transportation in reality. 

 

Example 4.3.2 

 

In this example we assume that M = 10 and Q = 20. The cost parameters in this 

example = 1.5 the cost parameters in the example (4.3.1) because the capacity of the TU’s 

in this example is double in the previous example but the rented TU’s still have the same 

capacity and the same cost in the previous example and demand vector are given in Table 

(4.2). Table (4.2) contains also the values for pi Q - ci  and cr,i-ci with the corresponding 

order places in i. The last two rows contain the optimal TU-values, calculated from (4.3.6) 

respectively (4.3.11). We apply now OAP-I and OAP-II to the demand vector. 
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i 1 2 3 4 5 6 7 8 9 10 

ci 1.5 3 4.5 6 7.5 9 7.5 6 4.5 3 

cr,i 10 10 10 10 10 10 10 10 10 10 

hi 1 1 1 1 1 1 1 1 1 1 

pi 3 4 5 6 7 8 9 8 7 6 

di
 100 150 80 30 5 20 200 60 40 90 

piQ-ci 58.5 77 95.5 114 132.5 151 172.5 154 135.5 117 

i 10 9 8 7 5 3 1 2 4 6 

cr,i-ci 8.5 7 5.5 4 2.5 1 2.5 4 5.5 7 

i 1 2 4 6 8 10 9 7 5 3 

ni* 5 8 4 2 1 1 10 3 2 5 

ri* 5 8 4 2 1 1 10 3 2 5 

 

Table 4.2: Data for Example 4.3.2 

 

(i) Demand vector d. 

 

Let us assume now K = 30. First we solve (OP-I) applying OAP-I.  

 

1. Preliminaries:     For d we get  

                                     n´ = (5, 7, 4, 1, 0, 1, 10, 3, 2, 4).   

2. Initialisation:   ni := 0, i=1,..., M; nsum := 0. 

3. Sorting:      i = (7, 8, 6, 9, 5, 10, 4, 3, 2, 1).  

4. Iteration: 

(1) nsum = 0 < 30        →    a) n7 = 0 and n´7 > 0 gives n7 = 10, nsum = 10. 

              b) ∆k7(10) = c7 + h7 Q = 27.5                                

                  gives i = (8, 6, 9, 5, 10, 4, 3, 2, 1, 7). 

 

(2) nsum  = 10< 30       →    a) n8 = 0 and n´8 > 0 gives n8 = 3, nsum = 13. 

            b) ∆k8(3)  =  c8  + h8 Q = 26                                                 

                           gives i = (6, 9, 5, 10, 4, 3, 2, 1, 8, 7). 
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(3) nsum  =13< 30       →    a) n6 = 0 and n´6 > 0 gives n6 = 1, nsum = 14. 

            b) ∆k6(1) =  c6  + h6 Q  = 29  

                           gives i = (9, 5, 10, 4, 3, 2, 1, 8, 7, 6). 

 

(4) nsum  = 14< 30       →    a) n9 = 0 and n´9 > 0 gives n9 = 2, nsum = 16. 

            b) ∆k9(2) =  c9  + h9 Q  = 24.5 

                           gives i = (5, 10, 4, 3, 2, 1, 9, 8, 7, 6). 

 

(5) nsum  = 16< 30       →    a) n5 = 0 and  n´5 = 0  gives n5 = 1, nsum = 17. 

            b) ∆k5(0) =  c5 + h5 Q = 27.5 

                           gives i = (10, 4, 3, 2, 1, 9, 8, 7, 5, 6). 

 

(6) nsum  = 17 < 30       →    a) n10 = 0 and  n´10 > 0  gives n10 = 4, nsum = 21. 

            b) ∆k10(4) =  c10 + h10 Q –(h10+p10).(d10 -n10 . Q)  = - 47 

                           gives i = (4, 3, 2, 1,10, 9, 8, 7, 5, 6). 

 

(7) nsum  = 21< 30       →    a) n4 = 0 and  n´4 > 0  gives n4 = 1, nsum = 22. 

            b) ∆k4(1) =  c4 + h4 Q - (h4+p4).(d4 –n4 . Q) = - 44  

                           gives i = (3, 2, 1,10, 9, 8, 4, 7, 5, 6). 

 

(8) nsum  = 22< 30      →    a) n3 = 0 and  n´3 > 0  gives n3 = 4, nsum = 26. 

            b) ∆k3(4) =  c3 +h3 Q  = 24.5 

                           gives i = (2, 1,10, 9, 8, 4, 7, 5, 6, 3). 

 

(9) nsum  = 26< 30      →    a) n2 = 0 and  n´2 > 0  gives n2 = 4, nsum = 30. 

            b) ∆k3(4) = c2 + h2 Q - (h2+p2).(d2 –n2 . Q) = - 27 

                           gives i = (2, 1,10, 9, 8, 4, 7, 5, 6, 3). 

 

Output:  

                 n(I) = (0, 4, 4, 1, 0, 1, 10, 3, 2, 4)  

                 with k(n(I), d) = 894. 
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The application of OAP-II gives following results. 

 

1. Preliminaries:         From (4.3.6) we get   

                                   n* = (5, 8, 4, 2, 1, 1, 10, 3, 2, 5).   

2. Initialisation:  ni := 0, ri := ni*, i=1,..., M; nsum := 0. 

3. Sorting:     i = (1, 2, 10, 3, 9, 4, 8, 5, 7, 6).  

4. Iteration: 

(1) nsum = 0 < 30  →        a) n1 = 5, r1 = 0, nsum = 5. 

    b) i = (2, 10, 3, 9, 4, 8, 5, 7, 6). 

(2) nsum = 5 < 30  →         a) n2 = 8, r2 = 0, nsum = 13. 

                          b) i = (10, 3, 9, 4, 8, 5, 7, 6). 

(3) nsum = 13< 30  →         a) n10 = 5, r10 = 0, nsum = 18. 

    b) i = (3, 9, 4, 8, 5, 7, 6). 

(4) nsum = 18< 30   →        a) n3 = 4, r3 = 0, nsum = 22. 

    b) i = (9, 4, 8, 5, 7, 6). 

(5) nsum = 22< 30  →         a) n9 = 2, r9 = 0, nsum = 24. 

    b) i = (4, 8, 5, 7, 6). 

(6) nsum = 24< 30   →         a) n4 = 2, r4 = 0, nsum = 26. 

   b) i = (8, 5, 7, 6). 

(7) nsum = 26< 50   →         a) n8 = 3, r8 = 0, nsum = 29. 

    b) i = (5, 7, 6). 

(8) nsum = 29< 30   →         a) n5 = 1, r5 = 0, nsum = 30. 

    b) i = (7, 6). 

5. Final step: 

    n  =  (5, 8, 4, 2, 1, 0, 0, 3, 2, 5). 

    r   =  (0, 0, 0, 0, 0, 1, 10, 0 ,0, 0)  

    r* =  (5, 8, 4, 2, 1, 1, 10, 3, 2, 5) 

            n(II) =  (5, 8, 4, 2, 1, 0, 0, 3, 2, 5) and 

            r(II)  =  (0, 0, 0, 0, 0, 1, 10, 0 ,0, 0) 

 

Output :   n(II), r(II) and  k(n(II), r(II), d) = 266,  

                which is 29,75 % of  k(n(I), d). 
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The results for Example 4.3.2 show that the solutions of (OP-I) and (OP-II) in general are 

also very different like in the example (4.3.1). In this example the solution of (OP-I) which 

is 69,95 % of the solution (OP-I) in the example (4.3.1) and the solution of (OP-II) which 

is 67,34 % of the solution (OP-II) in the example (4.3.1) because the capacity is double in 

the example (4.3.2). Taken together, we can conclude that when the capacity of TU is 

increased, the total cost is reduced. 
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Chapter 5 

 

Multiple-Period Models 

 

5.1 Introduction. 

 

In this chapter we will introduce a genetic algorithm (GA) approach for the fleet 

sizing allocation problems (FSAP). Since the multi-period, deterministic demand problem 

is NP-hard we suggest to use Genetic Algorithms to solve our problem HAS. This 

approach is suited to handle multiple and nonlinear objective functions as well as side 

constraints. Genetic algorithms are inspired by Darwin's theory of evolution. A genetic 

search uses the mechanics of natural selection and natural genetics to evolve a population 

into a near optimal solution. We present the developed genetic representation and use a 

randomized version to generate the initial random population. Goldberg (1989) stated that 

Genetic algorithm is a randomized search technique that is based on the natural selection 

process. The author added that the generations of new solutions at starting from an initial 

set of solutions could be obtained by applying genetic operators (crossover and mutation). 

Furthermore, the previous studies by Gen and Cheng, (1997), and Coley (1999) stated that 

the GAs have been successfully implemented to a wide range of combinatorial 

optimization problems. 

 

A GA is heuristic, which means it estimates a solution, but genetic algorithms are 

different from other heuristic methods in several ways. The most important difference is 

that a GA works on a population of possible solutions, while other heuristic methods use a 

single solution in their iterations. Another difference is that the genetic algorithms are 

stochastic, not deterministic. In a few cases, a single period planning problem has been 

discussed by Federgruen and Zipkin (1984) and Chien et al. (1989). In contrast, there are a 

several studies in the multi-period problem stated that the decisions are conduced for the 

specific number of planning periods, or reduced the problem to a single period problem by 

considering the effect of the long term decisions on the short term ones, for example 

Trudeau and Dror (1992), Viswanathan and Mathur (1997), and Herer and Levy (1997). 

Furthermore, Abdelmaguid and Dessouky (2006) investigated that the inventory 

distribution problem (IDP) considers multiple planning periods, both inventory and 

transportation costs as well as the situation in which backorders are allowed acceptable. 
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Thus, backorder decisions are accepted only when there is insufficient TU capacity to 

deliver to a customer or there is a transportation cost saving that is higher than the gained 

backorder cost by a customer.  

 

This subchapter of GA is organized as follows. In section 5.2 we describe the formal 

problem definition of a basic model. Next we introduce the basic idea of genetic algorithm 

in section 5.3. Afterwards we introduce the Basic Description of Genetic algorithm in 

section 5.3.1. Thereafter, the GA representation is illustrated in section 5.3.2. Then, we 

illustrate the designs of the crossover and mutation operators in sections 5.4 and 5.5. 

Finally, we describe the GA implementation in section 5.6. 

 

5.2 Description of a Basic Model  

 

The FSAP for HAS systems was formulated in chapter 4 as a non-linear integer 

programming problem (NLIP). Since a non-linear integer programming problem in multi-

period is very hard to solve we suggest to use Genetic Algorithms. We study a distribution 

system consisting of a single origin may be a warehouse, denoted 0, and M dispersed 

customers. Each customer i faces a different demand  per time period t, maintains its 

own inventory up to capacity , and incurs inventory holding cost of  per period per 

unit and a backorder penalty of  per period per unit on the end of period inventory 

position. We assume that the warehouse has sufficient items that can cover all customers’ 

demands throughout the planning horizon. The planning horizon considers T periods. The 

amount of delivery to customer i in period t, qit = nit .Q, is to be decided. Where nit refer to 

the number of TU’s for a customer i in period t and Q the capacity of TU. We assume that 

K transportation units are available for each period t. 
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The costs for period t in location i under decision nit are represented in the form     

 

                                                   −+ ++= )()(.)( itiitiitititi IPIhncnk

                        

where Iit is the inventory at end of period t. For given Ii0 we can calculate Iit by the 

inventory balance equation  

 

                   TtandMidQnII itititit ,...,1,...,1.1 ==−+= −                  (5.3.1) 

 

The total planned delivery amounts for the customers in a given period are restricted by 

the total TU capacity Qtotal =K.Q.    

                             

Now we can formulate the follow nonlinear integer programming model, [NLIP] as 

follows: 
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Subject to:        

TtandMidQnII itititit ,...,1,...,1.1 ==−+= −             (5.3.3) 
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                                                     (5.3.5) egernit int0≥

 TtandMiCI iit ,...,1,...,1 ==≤               (5.3.6) 

 

The objective function (5.3.2) includes transportation costs and inventory holding 

and shortage costs on the end inventory positions. Constraints (5.3.3) are the inventory 

balance equations for the customers. Constraints (5.3.4) limit of the total TU’s used. 

Constraints (5.3.5) number of TU’s in period t are integer. Constraints (5.3.6) limit the 

inventory level of the customers to the corresponding storage capacity. 
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5.3 Genetic Algorithm 

 

If we are solving a problem, we are usually looking for some solutions, which will be 

the best among others (optimal solution). The space of all feasible solutions (the set of 

solutions among which the desired solution resides) is called search space. Thus each 

point in the search space represents one feasible solution. Each feasible solution can be 

marked by its value or fitness for the problem. Looking for a solution of the problem is 

then equal to looking for some feasible solution with extreme value (minimum or 

maximum) in the search space. At times the search space may be well defined, but usually 

we know only a few points in the search space. The problem is that the search can be very 

complicated. We may not know where to look for a solution or where to start. There are 

many methods one can use for finding a suitable solution, but these methods do not 

necessarily provide the best solution. Some of these methods are hill climbing, tabu 

search, simulated annealing and the genetic algorithm. The solutions found by these 

methods are often considered as good solutions, because it is not often possible to prove 

what the optimum is. We concentrate on genetic algorithm. Next we consider its basic 

elements. 

 

5.3.1 Basic Description of the Genetic Algorithm 

 

The basic concepts of a genetic algorithm are individual, population, population size, 

fitness, elitism, parents, children and genetic operators. We will briefly describe each one 

of the elements of GA as follows:  A single solution is called individual, while a set of 

individual forms a population. Number of individual in a population is called the 

population size.  The capability of the individuals to solve the problem is quantified by 

their fitness, which represents the value of the performance of a solution. The elitism 

consists in individuating the best solutions of a population (elite) according to their fitness, 

and in letting them join the next population directly without any modification. The parents 

are individuals, which can generate a new individual of the next generation (children). The 

generation of new individual or childrens is realized by genetic operators.  

 

The most important of genetic operators are selection, crossover and mutation. The 

selection operator choose parent individual for production of child individual. The 

selection is based on the fitness value of parents i.e. selection according to fitness. The 
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crossover is the method for combining those selected individuals into new individuals i.e. 

crossover to produce new individuals (offspring). Finally, the mutation simply adds some 

noise to an individual child. GA begins with a set of solutions called population. Solutions 

from one population are taken and used to form a new population. Solutions which are that 

selected to form new solutions are selected according to their fitness. Individuals with 

higher fitness have higher probability of generate offspring in next generation. This is 

repeated until some stopping condition is satisfied. There are many ways to describe 

general genetic algorithms.  

 

One possibility is the description by some kind of pseudo-code as follows (see 

http://www.cs.unibo.it/~babaoglu/courses/cas/resources/tutorials/ga/ ) : 

 

1. [Start] Generate random population of P individuals.   

2. [Fitness] Evaluate the fitness function of each individual in the population.  

3. [New population] Create a new population by repeating following steps until the    

                                         new population is complete.  

   a.   [Selection] Select two parents from the current population according to their    

                              fitness.  

b. [Crossover] With crossover probability crossover the parents to form new              

                           individual (children).   

c. [Mutation] With a mutation probability mutate new individual.  

               d.   [Accepting] Place new individual in the new population.  

4. [Replace] Replace the current population with the new population for a further run    

                       of the algorithm.  

5. [Test] If the end condition is satisfied then, stop, and return the best solution found     

                             up to now else go to step 2. 

 

Each iteration of this process is called a generation. The entire set of generation is called a 

run. At the end of a run there are often one or more highly fit individuals in the population. 

Since randomness plays a large role in each run, two runs with different random number 

seeds with generally produce different detailed behaviors.  

Another way is flow chart as in figure 5.1 
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Figure 5.1: Flow chart of the genetic Algorithm 

 

In all cases we have the following steps: 

Initial step: Generate and evaluate an initial population. 

Loop        : WHILE a  stopping criteria is not fulfilled generate a new population and        

                   evaluate the fitness of its solutions. 

Output      : Return the best solutions and their fitness. 

 

 By various parameters and different setting for the initial step and the loop we can 

design a general variety of genetic algorithms. The first question to ask is how to create 

individuals and what type of encoding to choose. We then address Crossover and 

Mutation, the two basic operators of GA. The next question is how to select parents for 

crossover. This can be done in many ways, but the main idea is to select the better parents 

in the hope that the better parents will produce better offspring.  
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5.3.2 Genetic Representation 

 

Genetic algorithm is an iterative procedure that consists of a constant-size population 

of individuals. As refer to figure 5.1 the standard genetic algorithm proceeds as follows:  

First of all, we have to choose the population size P. If the population size is too small, the 

genetic algorithm will converge too quickly to find the optimal solution but if the 

population size is too large, the computation cost may be prohibitive. Afterwards, the 

initial population of individuals is generated randomly or heuristically. Randomly, 

covering the entire range of possible solutions. Heuristically, which means it estimates a 

solution, but GA works on a population of possible solutions. In every evaluation step the 

individuals in the current population are evaluated according to some predefined quality 

criterion, referred to as the fitness, or fitness function. However, it is important to 

distinguish between the evaluation function and the fitness function. While evaluation 

functions provide a measure of an individual's performance, fitness functions provide a 

measure of an individual's reproduction opportunities. 

 

To form a new population, individuals are selected according to their fitness. Selection 

plays an important role in driving the search towards better individuals and in maintaining 

a high genotypic diversity in the population. Selection alone cannot introduce any new 

individuals into the population. These are generated by genetically inspired operators, of 

which the most well known are crossover and mutation. Crossover is performed with some 

probability between two selected individuals, called parents, by exchanging parts of their 

individuals to form two new individuals, called offspring. The mutation operator is 

introduced to prevent premature convergence to local optima by randomly sampling new 

points in the search space.  The new population generated with these operators replaces the 

old population. Stopping criteria, there are many ways to terminate the run of GA. The 

termination condition may be maximal number of generations or the attainment of an 

acceptable fitness level. A critical point when applying GAs to an optimization problem is 

to find a suitable solution that transforms feasible solutions into representations amenable 

to a GA search.  

 

One critical point of a GA is the genetic representation of individuals (see Fleming and 

Zalzala (1997). In the classical form of a GA is representation as a bit-string. We use here 

values of the decision variables. More exactly, we presented the delivery schedule in the 
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form of a two-dimensional matrix n in which each cell contains the number nit of TU’s to 

be delivered to customer i in a given period t. Furthermore, each row in the matrix 

represents a specific customer but the columns represent the planning periods from 1 to T. 

In addition, we considered the delivery amounts as integers in order to simplify the genetic 

search process. This condition which is assumed without loss of generality in this study 

does not prevent the GA from reaching the optimal solutions as well as the customer 

demand values and the customer storage and TU capacities to be integers. The proposed 

GA satisfies the necessary conditions for successful GA implementation by minimizing 

the complete expressive. Consistently, our nonlinear programming formulation as well as 

the delivery number of TU’s are the key decision variables whose values can be easily 

used to determine other interesting variable. Therefore, the sole use of the delivery number 

of TU’s in the representation suffices satisfies the condition of being minimal. Meanwhile, 

the representation is capable of representing every possible solution in the search space 

including the optimal ones. 

 

Example 5.1 

 

This example demonstrate the proposed of GA representation, we assume that M = 4, 

Q = 20 units, 10 TU’s are available to serve the customers in every period for a 4-period 

planning horizon, storage capacity for each customer is 50 units, and inventory holding 

and shortage costs given in table (5.1). At the beginning of the planning period, all 

customers have zero inventory positions. The demand requirements for every period in the 

planning horizon are given in table (5.2).  

 

 
                                                                                     Customer 
                      Costs 
                                                               1             2             3             4    
 
 Unit holding cost (€/unit/period)        0.07        0.07        0.11         0.09 
 
Unit shortage cost (€/unit/period)         2.5          3.1          2.2          2.8 

 

 

 

 

 

 

Table 5.1: Cost Information for Example 5.1 
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Period (t)  

1 2 3 4 

Demand  (d1t) 10 20 15 25 

Demand  (d2t) 30 20 10 35 

Demand  (d3t) 25 35 20 30 

Demand  (d4t) 45 20 30 25 

 
Table 5.2: Distribution Demand Requirements for Example 5.1 

 
                Period                       

1 2 3 4 

1 2 0 0 2 

2 0 3 0 3 

3 3 0 2 1 

   
   

  C
us

to
m

er
 

4 3 0 3 0 

 

                              (a) Genetic Representation of a Sample Solution 
 

                Period                       

1 2 3 4 

1 30 10 -5 10 

2 -30 10 0 25 

3 35 0 20 10 

   
   

  C
us

to
m

er
 

4 15 -5 25 0 

 

   (b) Resultant end of Period Inventory Positions 

 

Table 5.3: Genetic Representation and Solution Interpretation for the Sample Solution 

 79



The genetic representation of this example takes the form of a two dimensional 

matrix with four rows and four columns. Each cell in the matrix defines the scheduled 

number of TU’s for the corresponding customer (given in the row) and the corresponding 

period (given in the column). Table (5.3) describes the sample solution for this sample 

problem. Based on the scheduled number of TU’s, the inventory position variables Iit of 

each customer can be easily determined from equation (5.3.1) as shown in Table ((5.3) b).   

 

5.4 Crossover Operation 

 

Crossover operators are an essential part of GAs as they help in inheriting better 

characteristics from the fittest solutions among generations. Crossover is a genetic 

operator that combines two individuals (parents) to produce a new individual (offspring). 

The idea behind crossover is that the new individual may be better than both of the parents 

if it takes the best characteristics from each of the parents, i.e. the purpose of the crossover 

operation is to create new individuals having greater performance than their parents. 

Crossover occurs during evolution according to a user-definable crossover probability. 

 

5.4.1 Crossover Mechanisms 

 

There are many different kinds of crossover operator, but the general idea of all of 

them is to exchange genetic items between two strings. The power of the GA is mostly due 

to crossover. It is the most important operator to the GA. Diversity is indispensable to 

evolution. The population’s diversity is obtained and maintained by crossover, which 

allows the GA to find better solutions in the search space. Now, shows an example of how 

this could happen in the case of the sample problem presented earlier.  

 

Assume that two matrices n1 = ( )  and  n2 = ( ) are selected as parents for crossover 

operation. 

1
itn 2

itn
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Period  

1 2 3 4 

1 2 4 0 0 

2 2 0 0 0 

3 3 3 0 2 

C
us

to
m

er
 

4 2 3 0 2 

Remaining 
vehicles no.

1 0 10 6 

Period  

1 2 3 4 

1 3 3 0 0 

2 1 1 2 0 

3 2 2 4 0 

C
us

to
m

er
 

4 3 0 3 0 

Remaining 
vehicles no. 

1 4 1 10 

 

           Parent  n1                                                                           Parent  n2  
 

 

5.4.2 Designed Crossover Operator 

 

The crossover is performed in three steps (see Gen and Cheng 1997): 

 

1. Create two temporary matrices n = ( )  and  r = ( ) as follows: itn itr

 

                          = itn ⎣ ⎦2/)( 21
itit nn +      and     rit = ( ) mod 2 21

itit nn +

 

Matrix n keeps rounded average values from both parents, and matrix r keeps track of 

whether any rounding is necessary. 

 

2. Divide matrix r into two matrices r1 = ( )  and  r2 = ( ) such that  1
itr 2

itr

 

                          r = r1 + r2  

 

It is easy to see that there are too many possible ways to divide r into r1 and r2 while 

satisfying above condition. 

 

3. Then we produce two offspring of  and  as follows: '
1n '

2n

 

                             = n + r1   and   =  n + r2 '
1n '

2n

 

 81



 
 
 

 
 
 

 
 
 
 
 

 
                        Matrix n                                                                           Matrix r 
 

 

Period  

1 2 3 4 

1 1 1 0 0 

2 1 1 0 0 

3 1 1 0 0 

C
us

to
m

er
 

4 1 1 1 0 

Period     

1 2 3 4 

1 2 3 0 0 

2 1 0 1 0 

3 2 2 2 1 

C
us

to
m

er
 

4 2 1 1 1 

 
 Period  

1 2 3 4 

1 0 1 0 0 

2 1 0 0 0 

3 0 1 0 0 

C
us

to
m

er
 

4 0 1 0 0 

Period     

1 2 3 4 

1 1 0 0 0 

2 0 1 0 0 

3 1 0 0 0 

C
us

to
m

er
 

4 1 0 1 0 

 
 

 
 

 
 
 
 
 

 
                        Matrix r1                                                                           Matrix r2 

 
 
 

 Period  

1 2 3 4 

1 2 4 0 0 

2 2 0 1 0 

3 2 3 2 1 

C
us

to
m

er
 

4 2 2 1 1 

Remaining 
vehicles 
number 

2 1 6 8 

Period     

1 2 3 4 

1 3 3 0 0 

2 1 1 1 0 

3 3 2 2 1 

C
us

to
m

er
 

4 3 1 2 1 

Remaining 
vehicles 
number 

0 3 5 8 

 
 

 
 

 
 
 
 
 

 
 
 

              
              Offspring                                                                 Offspring  
 

'
1n '

2n
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5.5 Mutation Operation 

 

After selection and crossover, we now have a new population full of individuals. 

Some are directly copied, and others are produced by crossover. In order to ensure that the 

individuals are not all exactly the same, we allow for a small chance of mutation. 

Additionally, the designed crossover operator is not sufficient to investigate such solution 

alternatives. Therefore, the mutation operator is specially designed to investigate it.  

Mutation is a genetic operator used to maintain genetic diversity from one generation of 

the population of individuals to the next. Mutation operators are applied to each child 

solution resulting from the crossover operation. They help the GA to reach further 

solutions in the search space. The idea of the mutation operation is to randomly mutate the 

individual solution and hence produce a new solution that is not very far from the original 

one. 

 

5.5.1 Principle of Mutation:  

 

Having in mind the principle that each individual solution should be mutated with 

a small probability we consider the following four variants for mutation in our problem 

(5.3.2)-(5.3.6). 

 

Variant I:  

Let n be a given solution. Each solution n =(nit), i=1,…,M; t=1,…,T will be mutated as 

follows. For each period t∈T each customer i∈M will be mutated with probability PMut.  

The mutation runs as follows:  

Let RV(M) denote a random variable, which takes values –1 and +1 with equal probability 

0.5. i.e. 

                                 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
=

2121
11

)(MRV  

Then we set: 

                            nit = [nit + RV(M)]+      if    RV(M) = -1  

and  

                             nit =  min(nit + RV(M);KRem )    if   RV(M) = +1 
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Where KRem refer to remaining vehicles number. If we look at the matrix size of the 

solution n, it follows, that, if we mutate every element of the matrix n with probability 

PMut , the probability that the solution n is mutated is growing fast to 1 with increasing 

matrix dimensions. But behind mutation stays the idea that a single individual will be 

mutated with small probability. That is why the probability PMut must be very small. 

However, for variant I holds, for example, if PMut = 0.005 ,  M=15 and T=15, the 

probability, that solution n will be mutated is 0.676. This is too high and we expect that 

variant I will show a bad performance. Therefore another variant must be used in this case. 

 

Variant II:  

We look at each solution n in the whole population and decide with probability PMut’ to 

mutate it. If the answer is “yes” we mutate it as in variant I. Note, that if PMut’ = 1 – that 

means we select every solution for mutation – variant II is same as variant I. Here PMut’ 

can be equal 0.1, 0.01, 0.005 i.e. as for usual GA. 

 

Variant III: 

Let us have Np individual solutions in the population. Then we choose one solution out 

of the population and mutate it. Each solution is equally likely to be selected for mutation. 

That means the probability to mutate a solution PMut’ = 1 / Np. The mutation is done as in 

variant I.  

Let Random (Np) be a function that generates a random integer number in range [1; Np], 

i.e. Random (Np) → [1; Np] and let the probability for each number to be selected is 1/Np. 

i.e. numbers are equally distributed. Then we select one individual to mutate it as follows: 

Individual nr. :=  random (Np ) 

 

Variant IV:  

We consider each individual solution and choose it for mutation as in variant II with 

given probability PMut’.  The mutation is performed as follows: 

For each t ∈ T we randomly choose one customer i ∈ M and mutate him by the following 

equation:                  

                                
⎩
⎨
⎧

+=+
−=+

=
1)());(min(

1)()0;)(max(

Re MRVifKMRVn
MRVifMRVn

n
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That mean for each period we move one vehicle from a customer to the remaining/unused 

vehicles or vice versa to obtain the optimal solution i.e. to obtain the minimum cost. 

 

5.6 Genetic algorithm implementation 

 

In our GA implementation, we use a simple GA search structure with elite 

preservation. The algorithm starts by generating the initial population using the 

randomized version. The size of this population remains constant throughout the 

application of the algorithm. Then the improvement phase of the GA follows by applying 

the designed crossover and mutation operators for a randomly selected pair of solutions 

from the current population. To move from the current population to a new one, the 

selection process followed by the crossover and the mutation operations is repeated a 

number of times equal half the population size. The creation of a new population is 

repeated a number of times called the number of generations. In order not to lose the best 

solutions found throughout the generations due to the randomized selection mechanism, a 

set of the best solutions found are reserved in what is referred to as the elite set. This elite 

set has a fixed size and used to feed the starting population of solutions in every 

generation. In our experimentation, we used the following parameters. Number of 

generations: 1000, population size: 100, crossover probability: 0.5, and mutation 

probability: 0.01 and0.005.  

 

Now we will apply all variants to tested two examples, first for 4 customers 4 periods 

(see example 5.1) and second for 15 customers 15 periods (see example 5.2), with 

mutation probability 0.01 and 0.005. The results data of the GA program see Appendices 

C and D. 

 

Example 5.2 

 

In this example we consider another demonstrate example for the GA representation. 

We assume that M = 15, Q = 20 units, 25 TU’s are available to serve the customers in 

every period for a 15 period planning horizon, storage capacity for each customer is 50 

units, and inventory holding and shortage costs given in table (5.4). At the beginning of 

the planning period, all customers have zero inventory positions. The demand 

requirements for every period in the planning horizon are given in table (5.5). From the 
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results data of the GA program we got the optimal solution n* for each variants and table 

(5.6) show for example the optimal solution  for variant I with  P (Mut) =  0.01. *
In

 

          

 

      

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Holding 
 cost  
(€/U/P) 

0.07 0.06 0.11 0.09 0.07 0.08 0.12 0.09 0.11 0.07 0.06 0.09 0.13 0.10 0.07 

Shortage 
 cost  
(€/U/P) 

2.5 3.1 2.2 2.8 2.5 2.3 2.1 1.5 2.6 2.5 3.2 2.9 2.2 2.3 2.5 

Cost 
Customer

 

Table 5.4 Cost Information for example 5.2 

 

Period 

(t) 
d1t d2t d3t d4t d5t d6t d7t d8t d9t d10t d11t d12t d13t d14t d15t

1 10 30 35 25 30 35 50 35 30 45 30 35 45 30 50 

2 30 40 10 30 40 15 45 35 25 20 25 20 40 50 30 

3 25 35 30 40 35 50 00 40 35 35 30 40 20 20 35 

4 40 30 20 20 45 00 40 30 20 25 50 20 20 30 20 

5 15 30 40 40 50 40 20 40 30 30 20 10 45 15 40 

6 25 20 45 35 25 10 30 20 45 45 40 00 50 45 30 

7 45 10 35 45 10 30 25 50 00 00 30 35 45 40 55 

8 50 15 40 30 30 15 35 20 55 50 20 25 10 20 35 

9 30 35 30 20 50 45 10 50 30 30 15 10 35 05 10 

10 30 45 40 35 20 30 00 25 40 15 00 45 20 45 00 

11 50 10 20 00 10 10 50 25 20 10 15 00 45 10 30 

12 25 50 10 30 00 30 30 30 00 00 35 35 00 35 25 

13 10 30 35 50 30 30 30 10 50 30 00 20 40 30 15 

14 40 25 30 20 25 20 40 00 10 35 40 30 20 50 35 

15 10 20 10 10 30 10 10 20 30 25 10 35 15 00 40 

 

Table 5.5 Distribution Demand Requirements for example 5.2 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 0 0 1 0 1 2 3 2 1 4 1 3 1 2 1 
2 0 2 3 0 1 1 2 1 0 1 3 2 1 1 3 
3 1 0 1 2 1 3 2 2 1 0 3 1 2 1 1 
4 1 1 1 1 1 2 2 3 2 1 1 1 2 1 1 
5 1 1 3 2 1 1 2 1 0 4 0 0 0 0 5 
6 0 1 2 1 1 1 1 0 3 3 0 2 0 2 1 
7 0 2 1 1 3 0 2 0 0 2 4 0 3 1 1 
8 2 1 1 2 3 0 0 4 0 2 3 1 1 0 1 
9 0 2 2 1 0 4 0 2 2 1 0 2 3 0 2 
10 1 2 2 1 1 1 0 3 1 2 0 1 1 2 1 
11 0 2 1 0 0 4 2 1 3 0 0 1 0 3 1 
12 0 1 1 3 1 0 1 1 1 2 1 0 2 2 2 
13 2 2 1 1 2 2 0 3 1 0 4 0 2 1 0 
14 1 0 3 1 1 3 1 1 0 0 2 3 1 2 2 
15 2 2 0 2 0 1 2 1 5 0 0 1 2 1 3 

Remaining 
Vehicles 
number 

14 6 2 7 8 0 5 0 5 3 3 7 4 6 0 

Period Customer 

 
 

Table 5.6 Optimal solution  for example 2 with P(Mut) = 0.01 *
In

 

From the results data of the GA program for illustrative examples (see Appendices C and 

D) we can conclude: 

The mutation probability must be low, to introduce some difference into the solution, 

because the designed crossover operator is actually some kind of averaging operation. If 

the two crossover solutions are quite equal, there is little effect. For example in variant IV, 

the mutation operation modifies only a little bit of the solution. That means little 

difference is introduced into the population. The variant III also only changes one solution 

of the population, that seems to be not enough, although the newly generated solution is 

potentially more different to the previous solution, as all elements nit are possibly to be 

mutated.  

The variants I and II achieve lot better results than variant III and IV, as more difference is 

introduced into the population. This results in better sampling of the solution space, so 

more possibly good solutions can be discovered. If a solution gets worse after the mutation 

operation, it is likely to be discarded in the next operation of the algorithm, as good 

solutions have a higher chance to survive the next iterations. The mutation probability 
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should not be too high, as, if we are already near the optimum; we have to advance toward 

it in smaller steps. With big steps we could advance to fast, and “jump over” the optimum. 

 

From the result data of the GA program for illustrative example with 4 customers 

and 4 periods (see Appendix C) we can see that the data for variant I with PMut = 0.01 hit 

at about 30 iterations a minimum, but then the solution is degenerated by too many 

mutations, resulting that we go away from the minimum. On the other hand, a lower 

probability PMut results in slower advancing towards the optimum. For variant I, with PMut 

= 0.01 it took about 30 iterations to come near to the optimum, with PMut = 0.005, it took 

10 iterations. But from the result data of the GA program for illustrative example with 15 

customers and 15 periods (see Appendix D) we can see that the data for variant I with PMut 

= 0.01 it took about 500 iterations to come near to the optimum, with PMut = 0.005, it took 

about 350 iterations. The difference between variant I and II is, that in variant II not every 

solution is subject to mutation. In the test runs variant I was compared to variant II. The 

results show, that variant II takes less iterations, than variant I, and the speed to reach near 

the optimum seems to be faster. A possible explanation is, that if not all solutions are 

subject to mutation, the good ones are not modified, and better solutions are found via 

crossover instead of mutation. 

 

In general, we can conclude: 

• If we mutate, we should generate a solution that is not so similar to the previous 

one, especially in the beginning of the algorithm. This is to explore the solution 

space. If the new solution is not good, it will be discarded in the next algorithm 

step. If we mutate not enough, we can get stuck at a local optimum, as the 

crossover operation works same averaging. 

•  If we mutate too many solutions, there is a higher chance, that already good 

solutions are mutated and possibly degenerated. If we mutate too few solutions, 

there is not enough difference introduced in the population, for the crossover 

operation to work efficiently. 

So variant II seems to be the best, as it does include variant I with PMut’ = 1 and variant III 

with PMut’=1/Np. Variant II is better than variant IV, because the mutation operation 

generates a solution that is more different than the original one. This seems to be good in 

conjunction with the “averaging” crossover-operation. 
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5.7 General HAS Models - a Simulation Optimization Approach 

 

We briefly discuss the principle of simulation optimization. For more realistic 

models and solutions the broadest applicable approach is simulation. However, simulation 

is not an optimization tool. But we can combine simulation and optimisation and apply the 

simulation optimization approach. Fu (1994) gives a good overview on simulation 

optimisation. The first paper, which applies that approach to some logistic problems seem 

to be Köchel et al. (2003). We describe also a simulator for hub-and-spoke systems and its 

combination with an optimization tool. Some examples show the applicability of our 

simulation optimization approach (see, El-Ashry et al. (2006)). 

 

5.7.1 Simulation Optimization 

 

Solving an optimization problem (OP) by analytical approaches the underlying system 

has to be reduced to an idealized model. However real life distribution network are highly 

complex. Thus an idealization will reduce the correctness of the results of the optimization 

process. Another way to optimize a given system is to simulate the behavior of the 

investigated system under different configurations. By assessing the behavior of the 

system we can get informations about it’s goodness under the given configuration. New 

configurations can be produced, which may be better or lead to a better configuration. 

 

This approach is called the simulation optimization approach. The main improvement 

by using the simulation optimization approach is, there is no need to simplify the real 

problem to an idealized model. Actually it is possible to rebuild most of the real life 

system by simulation software. Furthermore simulation opens new chances in gaining 

system relevant data, since all implemented system details are traceable. Another 

improvement of simulation is that it is possible to deal with huge and even heterogeneous 

models. But depending on the complexity such models will not be solvable by 

deterministic optimization algorithms. We suggest applying simulation optimization, 

where a simulator is coupled with an optimizer. For the optimizer we will investigate some 

heuristic based algorithms like genetic algorithm, tabu search and combinations of 

optimization algorithms. 
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In the following we will investigate the application of simulation optimization to more 

general HAS models.  

 

5.7.2 Fundamentals 

 

The simulation optimization approach can be divided into two parts, the simulation 

and the optimization. While simulation is used to assess a given solution, optimization will 

provide new solutions. To solve a given OP we use the optimization cycle shown in figure 

(5.2). By using knowledge about considered solutions an optimization algorithm creates a 

new solutions for the decision parameters of the model, which has to be solved. Next the 

simulator is configured by the given data for the current solution(s) and he is started. After 

stopping the simulation the collected statistical data are assessed to gain information about 

the goodness of the considered solution(s). The optimization software then will add the 

new solution to the knowledge base and compare it to the other solutions. To stop the 

optimization cycle a stopping condition is assigned. Such conditions may be a given 

number of solutions, an improvement rate etc. 

 

Figure 5.2: Scheme of Simulation Optimization 
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5.7.3 Calculation Assessment Optimization System (CAOS) 

 

To realize the simulation optimization approach we will use “Calculation 

Assessment Optimization System” (CAOS), a software production of the professorships 

“Modeling and Simulation” at the Chemnitz University of Technology (see Kämpf 2004 

& 2005).  

The idea of CAOS is to provide a software system, which separates the 

optimization process from the optimization problem. This means, it is only necessary to 

have information about the problem but not about the optimizing algorithm(s). To solve an 

optimization problem the user of CAOS has to build up a model of the system to which the 

problem is related. Furthermore he has to define the decision parameters and their domain. 

To solve the given optimization problem an optimizer sets up the model with some special 

values for the decision parameters, and the simulation with these settings is started. As the 

result of the simulation we get at least one assessment value, on which the optimization 

decisions are based. CAOS also allows multi criterion optimization; this means it can also 

optimize models, which provide more than one assessment value. All assessment values 

are based on simulation data. The whole environment of CAOS consists of: 

• Optimizer prototypes and some implementations, e.g., tabu search, genetic     

   algorithms, etc., and also combinations of different optimization algorithms, 

• An analysis tool for tracing the optimization process, 

• Model declaration language for building up general models, 

• Prototypes of simulators. 

 

The CAOS software is extensible by implementing new optimization algorithms and by 

defining types of optimization problems. Important is another feature, that any model is 

defined by it’s general structure. CAOS provides a construction kit for any kind of system 

with the same structure.  

In case of the HAS structure this means that only the model elements hub and spoke must 

be declared. The number of spokes, the properties of the instances of model elements can 

be configured with out reengineering the hub and spoke model. Once built up a model of a 

system this design of CAOS brings the advantage of short developing time, when creating 

a special realization of a system. 

In the following we describe the structure and behavior of the general HAS model 
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5.7.4 HAS Simulator 

 

As written above we build up a construction kit for HAS structured simulators. At 

present it is now possible to create HAS models with: 

• a single hub, 

• a nearly infinite number of homogeneous or heterogeneous spokes, 

To realize various structures the simulation software contains the following model 

elements. 

 

5.7.4.1 Model Elements 

 

Product Currently there is only one product to be distributed. (Different products will 

differ in index i. Here we neglect this index because there is only one product.) All 

products are measured in item units a. 

Inventory The amount of any inventory is measured in item units. While the capacity of 

storage in  a spoke is assumed to be finite the hub has an infinite amount of the 

product to be distributed. For ordering reasons the inventory of a spoke is analyzed 

by the inventory position rfuture, which is the inventory level rnow plus deliveries 

from open orders o minus unsatisfied demand d is the inventory repository. 

                          rfuture = rnow  + o – d 

Distance matrix Distances between all the locations (hub and spokes) are measured in x 

distance units.  

Transportation units It is possible to build a model with a number of TU-classes. The 

classes differ with respect to the following adjustable values: 

• Transportation capacity Q (measured in item a), 

• Speed v, 

• Transportation costs per product unit and distance unit  , full
xac ,

• Transportation costs per empty capacity unit and distance unit    penalty
xac ,

   (  maybe less, equal or higer than ), penalty
xac ,

full
xac ,

   • Fixed costs for loading and unloading  and finally loadingc

   • Rental costs for leasing a TU . rentalc
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Hub (central warehouse) Each model, which can be created, has a single hub. 

Furthermore the hub has a TU pool with different TU classes. The number of TU’s 

in each class is a decision variable and can be optimized. In case an order of a 

retailer can not be satisfied, because of there is no TU in the TU pool, the order 

will be back ordered in a waiting queue. For this queue exist different serving 

policies (see 5.7.4.2, note that EDF is not suitable for this queue since there exist 

no waiting times). 

Spoke (retailers) A model of a HAS structure can have a nearly infinite² number M  of 

spokes but minimum one spoke is required. 

            Each spoke can have different, adjustable values for the: 

• Customers arriving process with rate kλ (deterministic or stochastic) 

• Customers  demand dk  (deterministic or stochastic)  

• Customers waiting time  (deterministic or stochastic)  waiting
kt

• Customers serving policy 

• Initial inventory level r 

• Ordering policy (see 5.7.4.2)  

            Furthermore a customer may wait if his demand cannot be satisfied at once, for 

waiting customers exists a waiting queue. 

            Initially each spoke has a given amount of the product (maybe 0) in it’s inventory. 

The spoke will release an order to the hub in accordance with its ordering policy. 

For the case a waiting customer leaves the queue because of he has reached his 

waiting time limit we assume a loss for not satisfied demand  . Finally, 

there are holding costs  for the product in the storage. 

shortage
akc ,

holding
akc ,

5.7.4.2 Control Policies 

To control the product through the HAS distribution network, we use some ordering and 

service policies. 

The order policies are used by the spokes to refill their inventories. Following policy types 

are implemented: 

(s,S) If the level of the observed inventory r is lower than bound s, an order up to level S is 

released. 

 
2 As much as the given hardware resources allow. 
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(s,nQ) If the level of the observed inventory r is lower than bound s, an order of n times 

the amount of Q, the lot size, is released. 

Service policies are used by the hub and the spokes to satisfy waiting customers. In case of 

the hub the customers are the spokes. The hub does not provide the policy EDF, while the 

spokes do not have waiting times for their orders. 

 

FIFO/FCFS (First In First Out / First Come First Serve) The waiting elements of the 

queue will be served in order they entered the queue. 

LIFO/LCFS (Last In First Out / Last Come First Serve) The waiting elements of the 

queue will be served in reverse order they entered the queue. 

 

EDF (Earliest Deadline First) The waiting elements of the queue will be served by their 

remaining waiting time, that means the element with the lowest waiting time will be 

served first (even if it’s below zero!). Elements with the same left waiting time are 

served by FIFO. 

 

SAN (Smallest Amount Next) The waiting elements of the queue will be served by the 

amount of their demand. The elements with the smallest amount will be served first. 

 

BAN (Biggest Amount Next) The waiting elements of the queue will be served by the 

amount of their demand. The elements with the biggest amount will be served first. 

 

Random The waiting elements of the queue will be served in random order. 
 
 
5.7.4.3 Events - Activity Diagrams 

 

The sequence of events describes the evolution of the system in time. The event 

types, which are relevant for the considered hub-and-spoke system, are the arrival of a 

client with defined demand (new demand), the arrival of a TU with product at a spoke (TU 

delivery), and the return of a TU to the hub (TU return). In the activity diagram below we 

show, which activities are related with various events. 
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New demand This event causes all the dynamics in the hub and spoke structure. If it is 

occurred it will involve complex reactions and may initiate new events of the event 

types TU delivery and TU return.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Activity Diagram: Event “New Demand” 

 

After simulating demand and waiting time (these may be stochastic) the demand 

order is queued in the customers waiting list of the current spoke. To satisfy this 

demand the activities shown in figure 5.4 have to be executed. The event “new 

demand” will always generate the time moment for the  following event “new 

demand”. Thus the time evolvement of the model is kept running. 

         Figure 5.4 describes how the demand of any customer can be satisfied (if possible) 

and also what will happen if it cannot be satisfied. Necessary an order of products 

has to be placed. To deal with this the activities of figure 5.5 must be realized. 

Looking closer at the diagram not only tasks for running the simulation are executed, 

but also gain and cost are added to a cost manager. The cost manager will provide 

the assessment of the current HAS configuration. We will consider this part later. 
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Figure 5.4: Activity Diagram: Serve Enqueued Demand 

 

 

When an order has been placed in the order queue of the spoke, transshipment 

decisions are Necessarily to prove and execute (if possible). As shown in figure 5.5 

the transshipment is realized by the event types TU delivery and TU return. We will 

continue with these event types. 
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Figure 5.5: Activity Diagram: Serve Enqueued Orders 
 

TU delivery This event will occur if a TU arrives a spoke. It generates the activities 

shown in figure 5.6. Using one of the available service policies the hub selects the 

spoke fitting to this policy. According to the order(s) of the spoke the repository will 

be filled. If the spoke has more one open order and the amount of the first order 

would not use the whole transportation capacity of a TU, then this capacity will be 

used for further orders of the same spoke because of after the arrival of new product 

waiting customers can be served. To realize this the activities in figure 5.4 will be 

executed.   

 

Delivering products generates costs, which are added to the cost manager. The costs 

for loading and unloading are fixed costs, whereas the costs for transportation are 

proportional to the transported amount of products and the transport distance. The 

distance matrix gives the transport distance.  
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Figure 5.6: Activity Diagram: Event “TU Delivery” 

 

Refilling the inventory implies that customers may be served now. Therefore the 

activities shown in activity diagram 5.4 have to be executed. 

TU return The “TU return” event describes what has to be done, when a TU returns to the 

hub (see figure 5.7). Obviously this includes the reactivation of the hub, so that 

transshipment decisions can be placed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Event “TU Return” 
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5.7.4.4 Assessment 

 

As shown before there are several cost, which are added to a cost manager. 

Additionally to the up to now costs there are some other costs, which are collected over 

the simulation time. First of all there are holding costs costholding , which accrue for each 

spoke for positive inventory. The costs are added at time moments when the inventory 

level changes. These costs are assumed to be proportional to storage time and the 

according amount of products. Furthermore costs for holding TU’s are added to the cost 

manager. These live time costs costTUlivetime accrue on the time a TU exists in the HAS. TU 

live time costs are collected for each TU. 

Since the assessment of current version of simulator is based on a single criterion, all cost 

are combined to a total cost value costtotal, so that: 

 

costtotal = costshortage – gain + costtransporter  

+ costtransportation + costTU live time + costholding 

 

The value of costtotal provides information about the goodness of the current configuration 

of the HAS, comparing it to other configurations the configuration can be assessed. 

Obviously a higher value indicates a worse configuration and a HAS which shall pay has 

to have a negative value. 

 

5.10 Examples 

 

In the present section we report on the simulation optimization of two classes of hub-

and-spoke system – a single hub with four respectively fifty spokes. In all examples we 

assume the same demand process for all spokes. In detail we assume exponentially or 

normally distributed interarrival times of clients with exponentially respectively normally 

distributed demand per client. Similar distributions are assumed for the waiting time 

limits. Time is measured in time units, which may be one hour, one day, and so on. The 

other model parameters are as follows: 

Distances between hub and spokes       -    50 distance units; 

TU capacity                                           -    100 item units; 

Lot size Q                                              -    10 item units; 

TU speed                                               -    1 distance unit per time unit; 
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Transportation cost                     -    0.1 per item unit and distance unit; penalty
xac ,

Transportation cost                    -     2.0 per capacity unit and distance unit; penalty
xac ,

Fixed loading / unloading cost   -    100; loadingc

Service policy of the hub                        -    FIFO; 

Service policy of the spokes                  -     FIFO; 

Ordering policy of the spokes                -    (s, nQ) 

Initial inventory                                      -    zero 

Gain gk                                                                             -      12 per sold item unit; 

Shortage cost                              -    6 per item unit; shortage
akc ,

Holding cost                                -     0.12 per item unit and time unit. holding
akc ,

The decision variables are the number T of TU’s and for the spokes the order levels s and 

the number n of lot size. For the search for an optimal solution we restrict the possible 

values for T to the set 1, 2,..., 10, for s to the set –120, -110, -100,..., 120, and for n to 

the set 1, 2,..., 20. We applied four optimizers – a Genetic algorithm, Tabu search, and 

two hybrid algorithms, which apply the Genetic algorithm and Tabu search in a parallel 

and serial manner. The performance of a solution is estimated by the total cost, which 

accrue as the result of a single simulation run over 100 000 time units with a transition 

phase of 1000 time units. 

The graph in figure (5.8) shows for the single-hub-four-spokes system with N(100,10)-

distributions,  how the optimization process evolves in time under the hybrid parallel 

algorithm. Similar pictures we have for all variants of the applied optimizers and all other 

examples (see Appendix C). Table 5.7 summarizes the results for all four optimizers for 

the single-hub-four-spokes system. There are also given the results when the normal 

distributions are replaced by exponential distributions with parameter 0.1. 

 

Example: 1 Hub x 4 Spokes homogeneous structure - Normal Distribution 

 

Optimization: Hybrid Parallel (N [100;10]) 

Solution number       = 1747 

Number of TU          = 2 

Total Costs               = -23.953 
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Spoke Order Level Order Amount 
1 10 130 
2 0 60 
3 -10 200 
4 0 60 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Simulation Optimization Results for the Four-Spokes-Single-Hub System,     

N (100,10)-Distributions 

 

In the single-hub-fifty-spokes system the decision variable T can vary between 1 and 50. 

Table 5.8 consists the results, but without the policy parameters (see Appendix B for more 

information). 

Considering the results in Table 5.7 and Table 5.8 we can formulate some conclusions. 

1.The two hybrid optimizers and Tabu search outperform the Genetic algorithm. This 

was not to expect and gives a hint to the fact that the parameters of Genetic algorithm 

may be bad adjusted to the considered problem. It is surprising that Tabu search works 

well. 

2. The hybrid serial optimizer performs best, excluding the problem with fifty spokes 

and exponential distribution. 
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3. For the HAS with four spokes the optimization process founds the best solution after 

maximum 2500 considered solutions. For the much more complex problems with fifty 

spokes that maximal number increases up to about 18 000. Also the convergence to a 

good solution is considerably slower. 

4. Very different solutions lead to similar total cost expectations. This can be a hint   

    to the fact that our problem has many local minima with small cost differences. 

 

N (100;10) distribution 
                                    T                                       (s, n)                                  ttotalc cos

Hybrid parallel             2      (10, 13)        (0, 6)         (-10, 20)     (0, 6)        -23.95 
Hybrid serial                9        (0, 6)          (0, 6)           (0, 6)         (0, 6)       -29.77 
Genetic algorithm        4       (-30, 18)      (70, 7)         (0, 7)         (0, 11)     -15.00 
Tabu search                 10       (0, 6)          (0, 6)           (0, 6)         (0, 6)       -29.77 

EXP (0.1) distribution 
Hybrid parallel             6       (50, 9)        (40, 11)       (40, 9)       (40, 10)      -6.84 
Hybrid serial                9        (40, 11)      (40, 11)      (40, 9)        (40, 10)     -6.86 
Genetic algorithm        5        (20, 13)      (20, 13)      (20, 13)      (20, 13)     -4.39 
Tabu search                 10       (50, 9)        (50, 10)      (50, 8)        (50, 11)     -6.79 

 
 

Table 5.7: Results of the Simulation Optimization Approach for 1 Hub and 4 Spokes 
 

 
 

                                         N(100;10)               EXP(0.1) 
                                      T                   T         ttotalc cos ttotalc cos

Hybrid parallel             21        -260.66         50       -82.40  
Hybrid serial                26        -395.75         41        -86.09 
Genetic algorithm        18        -161.40         23        -57.18 
Tabu search                  23        -337.95         42        -85.82 

 
 

Table 5.8: Results of the Simulation Optimization Approach for 1 Hub and 50 Spokes 
 

 

To summarize we can say that the suggested simulation optimization approach works well, 

but we need more empirical material to improve the here-applied optimizers and to prove 

the above given conclusions. 
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Chapter 6 

 

Summary and conclusion 

 

The fundamental premise upon which this dissertation is based is that fleet sizing 

and allocation problems are interdependent, and together have a significant effect on the 

long-run profitability of a transportation system. This relationship has not been adequately 

addressed in previous research in order to realistically model transportation systems, it is 

important to recognize crucial characteristics of most transportation systems; they are 

dynamic because demands on the system change over time, and there is uncertainty both 

in system performance (e.g., travel time), and in forecasting the demands on the system in 

the future. The objective of this research has been to develop a model to aid decisions on 

fleet sizing in situations in which demand fluctuates over time (including both 

deterministic and stochastic changes) and TU travel times over network are uncertain, 

leading to uncertainty regarding when specific TU’s will be available for use to meet 

specific demands.  

 

Chapters 1 and 2 The FSAP has been a widely discussed topic in the literature and the 

specification of fleet sizing divided by previous research into three categories:  

(i) Simulation techniques,  

(ii) Analytical techniques, and  

(iii) Hybrid techniques (Simulation and Analytical).  

We also introduced the classification of empty TU distribution models and Classification 

of fleet sizing models. 

 

In chapter 3 we introduced a simple case “one-to-one case” problems to illustrates the 

following basic principles: 

1. The profitability of the system can be expressed in terms components (revenue, 

stockout cost, TU ownership cost, and TU movement cost) each of which is a 

function of fleet size. 

2. As long as the marginal value (incremental increase in revenues and decreases in 

stockout and operating costs) of an additional TU is greater than the marginal 

cost (incremental increase in fleet ownership cost) it pays to increase the size of 

the fleet. 
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3. At some point, the marginal value of TU begins to decrease (in this case quite 

suddenly) and eventually drops below the marginal cost at which point additional 

TU’s reduce profitability. 

4. The point at which marginal value equals marginal cost is dependent on demand 

and the cost parameters. 

5. TU routing decisions affect profitability both directly through the cost of moving 

the TU’s and indirectly through their impact on the required fleet size.  

6. The recognition of stochastic and dynamic elements of the transportation systems 

has proven to be very important. 

In this chapter we also introduced another example for fleet sizing of one-to-many case. In 

this case, we consider the problem of determining the fleet size for a single TU type used 

to transport the items produced at the origin to many destinations. Items are produced in a 

deterministic production cycle, but TU travel times are stochastic. Finally in this chapter 

we also applied queueing theory methods to solve the allocation problem in case of 

stochastic demand in the spokes. 

 

In chapter 4 we discussed solution approaches to the problem of the optimal size and 

allocation of transportation resources. We concentrate on the fleet-sizing-and-allocation 

problem for single hub networks. Generally, in a hub-and-spoke transportation network a 

centralized planner has to find freight routes, frequency of service, type of TU’s to be 

used, and transportation volumes. We have studied this problem with two cases:  

1. Solutions for the allocation problem without renting possibilities, and  

2. Solutions for the allocation problem with renting possibilities.  

 

In chapter 5 we introduced a genetic algorithm (GA) approach for the fleet sizing and 

allocation problem (FSAP) and some definitions for the GA. We present the developed 

genetic representation and use a randomized version to generate the initial random 

population. We designed suitable crossover and mutation operators for the GA 

improvement phase. We also discussed the principle of simulation optimization and 

describe a simulator for hub-and-spoke systems and give some examples show the 

applicability of our simulation optimization approach.  
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In conclusion, the contributions of this research are as follows: 

 

1.  We concentrated on the fleet-sizing-and-allocation problem for single hub networks 

and discussed solution approaches to the problem of the optimal size and allocation of 

transportation resources.  

 

2.  We studied a HAS problem in a single-period and deterministic-demand for two cases 

are mentioned above. For each case, based on Marginal Analysis, we developed a 

simple algorithm, which gives us the cost-minimal allocation. Examples show that the 

optimal solutions for both two cases above can be very different with respect to the 

optimal allocation as well as the corresponding cost values. 

  

3.  We also studied a HAS problem with continuous time and stochastic demand. To solve   

      this problem, based on Marginal Analysis, we applied queueing theory methods. 

 

4. An approximate solution for the multi-period, deterministic demand model can be 

determined by applying the algorithm for the single-period, deterministic demand in a 

successive way. Since the multi-period, deterministic demand problem is NP-hard we 

suggest to use Genetic Algorithms. Some building elements for these are described. 

 

5.  For the most general situation (e.g., infinite planning horizon with continuous time, 

stochastic demand, stochastic transportation times) we suggest to use simulation 

optimization. To realize the simulation optimization approach we could use the 

software tool CAOS. We used CAOS for two classes of hub-and-spoke system: i. A 

single hub with four spokes, and ii. A single hub with fifty spokes.  

 

6.  In the case of a single hub with four spokes the optimization process founds the best 

solution after maximum 2500 considered solutions. For the much more complex 

problems with fifty spokes that maximal number increases up to about 18 000. Also 

the convergence to a good solution is considerably slower. 
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The conclusions and future studies: 

 

In this dissertation we are studied the solutions for the fleet-sizing-and-allocation problem 

(FSAP) for a single hub and spokes structure (HAS) with a single type of transportation 

units. Also, we considered the transportation units moving directly from the hub to spoke 

and return to the hub.  In the future study we can apply this work in many cases: 

 

 1-  The solutions of FSAP for a single hub and spokes structure with different types of    

            transportation units. 

 

2- The solutions of FSAP for multiple-hub and spokes, or multiple-hub hybrid and 

spokes structure with a single type of transportation units or different type of 

transportation units. 

 

3- We can also study this problem with transshipment (peddling case), which 

involves dispatching transportation units that deliver the items to more than one 

destination per load. 

 

4- To use as optimization tool not only GA, but also other soft-methods like tabu 

search or simulated annealing. 
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Appendix A: Marginal Analysis 

 

We consider here the Marginal Analysis (MA) and some important properties. The 

formulation is for the maximization of a concave and strictly increasing function f. 

 FOX 1966 investigated for the problem  

                 Maximise f(n) =  ∑
=

M

i
ii )n(f

1

                  s.t.  

                 ; Cnc:)n(C
M

i
ii ≤∑ ⋅=

=1

                   ni∈N, i = 1,..., M. 

 

where C>0 and ci >0, i=1, 2, ..., M, the following algorithm: 

 

Algorithm „Marginal analysis“ (MA):  

1. Initialisation: 

r:=0; nr := (0, 0, ..., 0); C r :=0. 

2. Search: 

WHILE C r < C  DO 

     BEGIN 

2.1 r:=r+1. 

2.2 Define index j, which maximises 

       
j

r
jj

r
jj

c
nfnf )()1( 11 −− −+

.  

                                                    2.3 nr := nr-1 + ei. 

                                                    2.4 C r := C r-1 + ci.  

      END. 

3 Output: nr-1 and C r-1. 

 

To describe properties of algorithm (MA) we call an allocation-vector n 

undominated if for all n'∈NM from f(n') ≥ f(n) follows C(n') ≥ C(n). Obviously 

undominated vectors generate the Pareto-front of solutions. The main results of Fox 

(1966) are the following ones. 
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Property1  

If all fi(⋅) are integer-concave and strictly increasing, i=1, 2, ..., M, then algorithm (MA) 

leads to undominated vectors n. 

 

Property 2 

Let all fi(⋅) be integer-concave and strictly increasing, i=1, 2, ..., M. Let n1, n2, ..., nm 

denote the sequence of allocation-vectors generated by algorithm (MA), and let n* denote 

the optimal allocation-vector. Then it holds: 

 

(I) f(nm-1) ≤ f(n*) < f(nm). 

(II) C(nm-1) ≤ C(n*) < C(nm). 

                                 (III)         0 < C(nm) – C(nm-1) ≤  
jj

cmax

 

Property 3  

If, in addition to the conditions stated in Property 2, c1 = c2 = cM = c > 0, then algorithm 

(MA) generates an optimal solution. 

 

Remarks: 

      i.       If Z denotes the set of all optimal allocations then nm-1 must not be an element of 

Z. However,  (I) to (III) give some information on the quality of nm-1. 

ii. For c1 = c2 = cN = c > 0 and C as an integer multiple of  c  the optimal value of 

the criterion f(n*(C)) is concave and strictly increasing with respect to C. 

iii. For a linear criterion f(n) = f1 n1 + ... + fN nN  we have a version of the 

Knapsack-Problem. 

iv. Let the constraints be non-linear, i.e.,  with ci(⋅) convex 

and strictly increasing for i=1, 2, ..., M. If in algorithm  „Marginal analysis“ 

Step 2.2 is replaced by  

∑
=

=
N

i
ii ncnC

1
)()(

,
)n(c)n(c

)n(f)n(f
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jj
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k
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    then Property 1 holds also. 
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Appendix B: Simulation Optimization Results 

 

This appendix contains the simulation optimization results for HAS with four and fifty 

spokes. 

 

I - 1 Hub x 4 Spokes homogeneous structure - Exponential Distribution 

 

Optimization: Hybrid Parallel (Exp [0.1]) 

Solution number      = 565 

Number of TU         = 6 

Total Costs               = -6.843 

 
 

Spoke Order Level Order Amount 
1 50 90 
2 40 110 
3 40 90 
4 40 100 
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Optimization: Hybrid Seriell (Exp [0.1]) 

Solution number       = 1586 

Number of TU          = 9 

Total Costs                = -6.864 

 
 

Spoke Order Level Order Amount 
1 40 110 
2 40 110 
3 40 90 
4 40 100 
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Optimization: GA Generation (Exp [0.1])  

Solution number      = 401 

Number of TU         = 5 

Total Costs               = -4.388 

 
Spoke Order Level Order Amount 

1 20 130 
2 20 130 
3 20 130 
4 20 130 
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Optimization: Tabu Search (Exp [0.1]) 

Solution number      = 370 

Number of TU         = 10 

Total Costs               = -6.786 

 
 

Spoke Order Level Order Amount 
1 50 90 
2 50 100 
3 50 80 
4 50 110 
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II- 1 Hub x 4 Spokes homogeneous structure - Normal Distribution 

 

Optimization: Hybrid Parallel (N [100;10]) 

Solution number       = 1747 

Number of TU          = 2 

Total Costs               = -23.953 

 
 

Spoke Order Level Order Amount 
1 10 130 
2 0 60 
3 -10 200 
4 0 60 
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Optimization: Hybrid Seriell (N [100;10]) 

Solution number      = 1508 

Number of TU         = 9 

Total Costs               = -29.774 

 
Spoke Order Level Order Amount 

1 0 60 
2 0 60 
3 0 60 
4 0 60 
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Optimization: GA Generation  (N [100;10]) 

Solution number      = 85 

Number of TU         = 4 

Total Costs               = -14.999 

 
 

Spoke Order Level Order Amount 
1 -30 180 
2 70 70 
3 0 70 
4 0 110 
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Optimization: Tabu Search (N [100;10]) 

Solution number      = 378 

Number of TU         = 10 

Total Costs               = -29.774 

 

 
Spoke Order Level Order Amount 

1 0 60 
2 0 60 
3 0 60 
4 0 60 
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III- 1 Hub x 50 Spokes homogeneous structure - Exponential Distribution 

Optimization: Hybrid Parallel (E[0.1]) 

Solution number     = 18017 

Number of TU        = 50 

Total Costs              = -82.404 

 
Spoke Order 

Level 
Order 

Amount 
Spoke Order 

Level 
Order 

Amount 
1 50 100 26 50 100 
2 50 90 27 50 110 
3 40 110 28 30 110 
4 40 100 29 40 90 
5 50 90 30 40 100 
6 50 90 31 40 110 
7 50 90 32 50 110 
8 50 100 33 50 100 
9 50 100 34 50 90 
10 40 120 35 50 100 
11 40 110 36 50 90 
12 40 100 37 50 80 
13 50 100 38 50 100 
14 40 100 39 50 90 
15 50 120 40 30 120 
16 50 100 41 40 90 
17 40 100 42 40 100 
18 40 110 43 40 110 
19 50 110 44 50 90 
20 40 100 45 40 90 
21 40 110 46 50 80 
22 50 100 47 50 100 
23 50 90 48 40 110 
24 40 100 49 40 110 
25 40 110 50 50 100 
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Optimization: Hybrid seriell (E[0.1]) 

Solution number      = 10077 

Number of TU         = 41 

Total Costs               = -86.094 

 
Spoke Order 

Level 
Order 

Amount 
Spoke Order 

Level 
Order 

Amount 
1 50 100 26 40 110 
2 30 110 27 30 130 
3 30 110 28 50 90 
4 50 100 29 40 120 
5 50 110 30 50 110 
6 50 100 31 40 90 
7 40 100 32 50 90 
8 40 90 33 40 110 
9 50 100 34 40 100 
10 50 100 35 30 100 
11 50 90 36 40 110 
12 50 90 37 50 110 
13 50 100 38 50 90 
14 50 100 39 40 110 
15 40 110 40 40 110 
16 30 100 41 30 110 
17 50 110 42 40 100 
18 50 110 43 40 100 
19 50 90 44 50 90 
20 40 90 45 40 100 
21 50 100 46 30 110 
22 40 110 47 40 110 
23 60 100 48 50 90 
24 40 100 49 40 100 
25 50 90 50 40 120 
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 Optimization: GA Generation (E [0.1]) 

 Solution number       = 4252 

 Number of TU          = 23 

 Total Costs                = -57.176 

 
Spoke Order 

Level 
Order 

Amount 
Spoke Order 

Level 
Order 

Amount 
1 30 140 26 20 130 
2 30 140 27 20 130 
3 30 130 28 30 140 
4 30 130 29 30 140 
5 30 130 30 30 140 
6 30 130 31 30 140 
7 30 130 32 30 130 
8 30 140 33 30 130 
9 30 140 34 30 130 
10 30 140 35 30 130 
11 30 130 36 30 130 
12 30 130 37 30 130 
13 30 130 38 30 140 
14 30 130 39 30 140 
15 30 130 40 30 140 
16 30 140 41 30 140 
17 30 140 42 40 140 
18 30 140 43 40 140 
19 30 130 44 40 140 
20 30 130 45 50 140 
21 30 140 46 40 140 
22 30 140 47 40 140 
23 30 140 48 40 140 
24 30 140 49 30 140 
25 30 130 50 30 140 
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Optimization: Tabu search (E[0.1]) 

Solution number      = 5764 

Number of TU         = 42 

Total Costs               = -85.816 

 
Spoke Order  

Level 
Order 

Amount 
Spoke Order  

Level 
Order 

Amount 
1 50 100 26 40 110 
2 50 100 27 30 130 
3 50 100 28 50 90 
4 40 90 29 40 120 
5 40 90 30 50 110 
6 50 100 31 40 90 
7 40 100 32 50 90 
8 40 90 33 40 110 
9 50 100 34 50 90 
10 50 100 35 40 110 
11 50 90 36 30 100 
12 40 100 37 40 110 
13 50 100 38 40 110 
14 30 110 39 40 110 
15 40 110 40 40 110 
16 30 100 41 40 110 
17 40 100 42 40 100 
18 50 110 43 40 90 
19 50 90 44 50 100 
20 40 110 45 40 110 
21 50 100 46 50 100 
22 40 110 47 40 110 
23 60 100 48 50 90 
24 40 100 49 40 100 
25 50 90 50 40 120 
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IV- 1 Hub x 50 Spokes homogeneous structure – Normal Distribution 
Optimization: Hybrid Parallel (N [100;10]) 

Solution number       = 9011 

Number of TU          = 21 

Total Costs                = -260.663 

Spoke Order  
Level 

Order 
Amount 

Spoke Order  
Level 

Order 
Amount 

1 -10 180 26 -10 220 
2 0 170 27 60 120 
3 20 60 28 0 60 
4 0 60 29 0 120 
5 10 100 30 10 190 
6 -10 150 31 -50 100 
7 0 60 32 30 170 
8 -10 100 33 10 130 
9 10 100 34 0 60 
10 0 60 35 80 60 
11 0 110 36 110 130 
12 40 80 37 -10 110 
13 0 60 38 -10 200 
14 0 60 39 0 60 
15 100 60 40 0 100 
16 0 140 41 0 190 
17 0 170 42 0 60 
18 -10 100 43 10 60 
19 -20 100 44 0 100 
20 -20 200 45 80 80 
21 60 70 46 0 60 
22 10 160 47 0 150 
23 -30 100 48 0 60 
24 20 120 49 110 100 
25 0 160 50 0 130 
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Optimization: Hybrid Seriell (N [100;10]) 

Solution number       = 9656 

Number of TU          = 26 

Total Costs                = -359.753 

 
Spoke Order  

Level 
Order 

Amount 
Spoke Order  

Level 
Order 

Amount 
1 0 60 26 -10 100 
2 0 60 27 0 60 
3 0 60 28 0 60 
4 0 60 29 0 60 
5 0 60 30 0 60 
6 0 60 31 0 60 
7 0 60 32 -20 100 
8 0 60 33 0 60 
9 0 60 34 0 60 
10 0 60 35 0 60 
11 0 60 36 0 60 
12 0 60 37 0 130 
13 0 60 38 0 60 
14 0 60 39 0 60 
15 0 60 40 0 60 
16 0 60 41 0 60 
17 0 60 42 0 60 
18 0 60 43 0 60 
19 0 60 44 0 60 
20 -10 100 45 0 60 
21 0 60 46 0 60 
22 0 60 47 0 60 
23 0 60 48 0 60 
24 0 130 49 0 60 
25 0 60 50 -10 100 
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Optimization: GA Generation (N [100;10]) 

Solution number      = 498 

Number of TU          = 18 

Total Costs               = -161.399 

 
Spoke Order  

Level 
Order 

Amount 
Spoke Order  

Level 
Order 

Amount 
1 10 130 26 -10 110 
2 10 160 27 -20 120 
3 30 160 28 50 150 
4 50 170 29 120 120 
5 60 110 30 50 90 
6 50 90 31 20 140 
7 50 100 32 0 180 
8 20 130 33 70 130 
9 0 180 34 70 130 
10 60 120 35 60 160 
11 -10 120 36 -30 130 
12 10 180 37 10 170 
13 90 160 38 30 180 
14 20 160 39 70 180 
15 0 200 40 30 190 
16 10 190 41 60 190 
17 40 130 42 70 120 
18 -20 110 43 80 110 
19 90 150 44 50 150 
20 110 150 45 30 150 
21 40 160 46 30 130 
22 50 180 47 70 120 
23 50 130 48 100 100 
24 40 140 49 90 100 
25 40 130 50 90 140 
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Optimization: Tabu search (N [100;10]) 

Solution number       = 9083 

Number of TU          = 23 

Total Costs                = -337.948 

 
Spoke Order  

Level 
Order 

Amount 
Spoke Order  

Level 
Order 

Amount 
1 0 60 26 0 60 
2 0 60 27 0 60 
3 0 60 28 0 60 
4 0 60 29 0 110 
5 0 60 30 0 60 
6 0 60 31 0 60 
7 0 60 32 0 60 
8 0 60 33 0 60 
9 0 100 34 0 60 
10 0 60 35 0 130 
11 -10 100 36 0 130 
12 100 60 37 0 130 
13 0 60 38 0 130 
14 0 60 39 0 60 
15 0 60 40 0 60 
16 0 60 41 -20 200 
17 0 60 42 0 120 
18 0 170 43 10 130 
19 10 160 44 0 60 
20 0 150 45 0 60 
21 0 60 46 0 130 
22 0 130 47 0 60 
23 0 60 48 10 120 
24 0 60 49 10 120 
25 0 200 50 0 60 
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Appendix C: The results data of the GA program for example 5.1 (4 Customers and    

                        4 Periods). 

 

This appendix contains all the result data for 4 customers, 4 periods and four variants 

of mutation with mutation probability 0.01 and 0.005. 

 

 

Period 
Customer 

1 2 3 4 

1 0 1 0 1 

2 1 2 1 2 

3 1 2 1 1 

4 1 2 2 2 

Remaining  

Vehicles no. 7 3 6 4 

 

                  with P(Mut) = 0.01 

 

Period 

*
In

 

 
 
 
 
 
 
 
 
 
 

 
                      with P(Mut) = 0.01 *

IIn
 
 

Customer 
1 2 3 4 

1 0 1 0 1 

2 1 2 1 2 

3 1 2 1 1 

4 1 2 2 2 

Remaining  

Vehicles no. 7 3 6 4 

 

            with P(Mut) = 0.01 *
IIIn

 

Period 
Customer 

1 2 3 4 

1 1 0 0 1 

2 1 2 1 2 

3 2 1 1 1 

4 1 2 2 2 

Remaining  

Vehicles no. 5 5 6 4 

 

  

 

 

*
IV

 

 

 

 

 

               n  with P(Mut) = 0.01 

 

Period 
Customer 

1 2 3 4 

1 0 1 0 1 

2 1 1 2 2 

3 1 2 1 1 

4 1 2 2 2 

Remaining  

Vehicles no. 7 4 5 4 
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Period 
Customer 

1 2 3 4 

1 0 1 0 1 

2 1 2 1 2 

3 1 2 1 1 

4 1 2 2 2 

Remaining  

Vehicles no. 7 3 6 4 

 

                  with P(Mut) = 0.005 *
In

 

                     *
IIn  with P(Mut) = 0.005 

 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

Period 
Customer 

1 2 3 4 

1 0 1 0 1 

2 2 2 1 1 

3 1 2 1 1 

4 1 2 2 2 

Remaining  

Vehicles no. 7 3 6 4 

 

            with P(Mut) = 0.005 *
IIIn

Period 

 

Customer 
1 2 3 4 

1 1 0 0 1 

2 2 2 1 1 

3 2 1 1 1 

4 1 2 2 2 

Remaining  

Vehicles no. 6 5 5 4 

 

  

*
IV

 

 

 

 

 

 

 

               n  with P(Mut) = 0.005 

Period 
Customer 

1 2 3 4 

1 0 1 0 1 

2 1 2 1 2 

3 1 2 1 1 

4 2 1 2 2 

Remaining  

Vehicles no. 7 3 6 4 
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 Min. 
Cost 

Max. 
Cost 

Min. 
Cost 

Max. 
Cost 

Min. 
Cost 

Max. 
Cost 

Min. 
Cost 

Max. 
Cost 

Variant  I Variant  II Variant  III Variant  IV
Iteration 

50 33.53 237.36 33.53 303.01 142.26 142.26 34.93 232.96 
100 33.53 285.66 33.53 142.26 182.3 34.93 402.3 312.43 
150 33.53 246.4 33.53 245.16 73.5 73.5 34.93 93.9 
200 33.53 216.26 33.53 92.5 73.1 73.1 34.93 93.9 
250 33.53 262.68 33.53 169.81 73.1 73.1 34.93 62.8 
300 33.53 187.43 80.56 73.1 169.11 33.53 73.1 34.93 
350 33.53 187.43 33.53 73.1 34.93 33.53 73.1 34.93 
400 73.1 33.53 36.73 33.53 33.53 73.1 34.93 34.93 
450 33.53 127.26 33.53 33.53 73.1 73.1 34.93 34.93 
500 33.53 33.53 33.53 33.53 73.1 73.1 34.93 34.93 
550 33.53 73.57 33.53 33.53 73.1 73.1 34.93 34.93 
600 33.53 33.53 33.53 33.53 73.1 73.1 34.93 34.93 
650 33.53 33.53 34.93 33.53 33.53 73.1 73.1 34.93 
700 33.53 33.53 33.53 33.53 73.1 73.1 34.93 34.93 
750 33.53 33.53 33.53 33.53 73.1 73.1 34.93 34.93 
800 33.53 33.53 33.53 33.53 73.1 73.1 34.93 34.93 
850 33.53 33.53 33.53 33.53 73.1 73.1 34.93 34.93 
900 33.53 33.53 33.53 33.53 73.1 73.1 34.93 34.93 
950 33.53 33.53 33.53 33.53 73.1 73.1 34.93 34.93 
1000 33.53 169.81 33.53 33.53 73.1 73.1 34.93 34.93 

 

Cost for 4 Customers, 4 Periods with P(Mut) = 0.01 

 127



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V1, P(Mut)=0.01
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V3, P(Mut)=0.01
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0

200

400

600

800

1000

1200

1400

1600

1 43 85 12
7

16
9

21
1

25
3

29
5

33
7

37
9

42
1

46
3

50
5

54
7

58
9

63
1

67
3

71
5

75
7

79
9

84
1

88
3

92
5

96
7

Iteration

Cost

Min cost

 Max cost

 

 

 

 

 129



 

 

 

 

 

 

 

    
 

     

 Min. 
Cost 

Max. 
Cost 

Min. 
Cost 

Max. 
Cost 

Min. 
Cost 

Max. 
Cost 

Min. 
Cost 

Max. 
Cost 

50 33.53 286.48 33.53 265.96 119.11 119.11 33.53 169.81 
100 33.53 217.62 33.53 194.02 91.24 115.45 33.53 167.71 
150 33.53 187.43 33.53 187.43 91.24 91.24 33.53 130.56 

Variant  I Variant  II Variant  III Variant  IV
Iteration 

200 169.81 169.81 33.53 187.43 33.53 91.24 91.24 33.53 
250 33.53 187.43 60.92 33.53 72.08 72.08 33.53 33.53 
300 33.53 80.56 33.53 33.53 72.08 72.08 33.53 33.53 
350 33.53 80.56 33.53 33.53 72.08 72.08 33.53 33.53 
400 33.53 167.71 33.53 33.53 72.08 72.08 33.53 33.53 
450 33.53 61.4 33.53 33.53 72.08 72.08 33.53 33.53 
500 33.53 33.53 72.08 33.53 33.53 33.53 33.53 72.08 
550 33.53 33.53 33.53 33.53 33.53 72.08 72.08 33.53 
600 33.53 33.53 33.53 33.53 72.08 72.08 33.53 33.53 
650 33.53 39.13 33.53 33.53 72.08 72.08 33.53 33.53 
700 33.53 33.53 33.53 33.53 72.08 72.08 33.53 33.53 
750 33.53 33.53 33.53 33.53 33.53 72.08 72.08 33.53 
800 33.53 33.53 33.53 72.08 33.53 33.53 33.53 72.08 
850 33.53 54.05 33.53 33.53 72.08 72.08 33.53 33.53 
900 33.53 33.53 33.53 33.53 72.08 72.08 33.53 33.53 
950 33.53 33.53 33.53 33.53 72.08 72.08 33.53 33.53 
1000 33.53 33.53 33.53 33.53 72.08 72.08 33.53 33.53 

 
 

Cost for 4 Customers, 4 Periods with P(Mut) = 0.005 
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0

200

400

600

800

1000

1200

1400

1600

1 38 75 11
2

14
9

18
6

22
3

26
0

29
7

33
4

37
1

40
8

44
5

48
2

51
9

55
6

59
3

63
0

66
7

70
4

74
1

77
8

81
5

85
2

88
9

92
6

96
3

10
00 Iteration

Cost

Min cost
 Max cost

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V4, P(Mut)=0.005

0

200

400

600

800

1000

1200

1400

1600

1 38 75 11
2

14
9

18
6

22
3

26
0

29
7

33
4

37
1

40
8

44
5

48
2

51
9

55
6

59
3

63
0

66
7

70
4

74
1

77
8

81
5

85
2

88
9

92
6

96
3

10
00Iteration

Cost

Min cost
 Max cost

 

 

 

 132



Appendix D: The results data of the GA program for example 5.2 (15 Customers and    

                        15 Periods). 

 

This appendix contains all the result data for 15 customers, 15 periods and four 

variants of mutation with mutation probability 0.01 and 0.005. 

 

 

 

 
     

 
           

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 0 0 1 0 1 1 2 3 2 1 4 3 1 2 1 
2 0 2 3 0 1 1 2 1 0 1 3 2 1 1 3 
3 1 0 1 2 1 3 2 2 1 0 3 1 2 1 1 

Period Customer 

4 1 1 2 1 1 1 2 3 2 1 1 1 2 1 1 
5 1 1 3 2 1 1 2 1 0 4 0 0 0 0 5 
6 0 1 2 1 1 1 1 0 3 3 0 2 0 2 1 
7 0 2 1 1 3 0 3 2 0 0 2 4 0 1 1 
8 2 1 1 2 3 0 0 4 0 2 3 1 1 0 1 
9 0 2 2 1 0 4 0 2 2 1 0 2 3 0 2 
10 1 2 2 1 1 1 0 3 1 2 0 1 1 2 1 
11 0 2 1 0 0 4 2 1 3 0 0 1 0 3 1 
12 0 1 1 3 1 0 0 1 1 1 2 1 2 2 2 
13 2 2 1 1 2 2 0 3 1 0 4 0 2 1 0 
14 1 0 3 1 1 3 1 1 0 0 2 3 1 2 2 
15 2 2 0 2 2 0 1 2 1 5 0 0 1 1 3 

Remaining 
Vehicles 
number 

14 6 2 7 8 0 5 0 5 3 3 7 4 6 0 

 
 

*
In

 

 

 with P(Mut) = 0.01 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 0 1 2 2 0 2 1 1 2 1 4 0 3 0 3 
2 1 1 1 0 3 2 1 0 3 2 0 2 3 1 1 
3 1 1 1 1 2 2 1 1 4 0 1 1 0 2 3 
4 1 0 2 2 2 1 1 1 3 2 0 2 0 2 2 
5 1 2 0 2 4 1 1 1 0 2 1 0 2 2 2 
6 1 0 2 1 1 0 2 2 2 0 3 1 1 1 1 
7 0 1 1 2 2 1 3 1 1 0 2 1 2 1 2 
8 0 0 4 1 4 0 2 1 1 4 0 1 2 0 1 
9 1 1 0 2 0 3 0 3 1 3 1 1 1 2 2 
10 1 0 0 3 1 4 0 3 0 1 1 0 2 2 0 
11 0 1 1 1 2 1 0 1 2 0 4 1 1 2 1 
12 0 2 0 0 3 0 3 0 0 2 2 1 1 2 2 
13 1 3 1 0 1 1 2 3 1 1 0 0 5 2 1 

Period Customer 

14 0 2 1 3 1 1 1 0 3 1 3 1 1 2 1 
15 2 0 1 1 0 1 5 2 1 2 1 2 0 1 3 

Remaining 
Vehicles 
number 

14 9 8 6 1 4 3 1 3 3 4 11 0 3 0 

 
 

*
IIn  with P(Mut) = 0.01 
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 2 3 4 5 6 7 11 1 8 9 10 12 13 14 15 
1 1 1 1 1 1 0 3 4 1 1 3 1 0 3 1 
2 0 3 1 3 1 1 0 0 1 3 1 1 2 2 2 
3 1 1 3 1 0 1 1 2 1 1 4 1 1 2 1 
4 0 3 1 2 0 1 4 1 2 0 1 2 0 2 1 
5 2 2 1 2 3 0 1 2 1 1 1 1 1 1 1 
6 2 0 1 1 0 1 3 1 1 1 1 2 1 1 1 
7 1 1 4 1 1 0 0 1 2 1 2 1 1 1 3 
8 4 0 1 1 1 2 4 0 1 0 1 3 1 0 1 
9 1 0 1 1 1 1 3 2 3 1 2 0 1 2 2 
10 0 2 1 3 0 1 2 1 1 2 1 1 1 1 2 
11 1 1 0 1 4 1 1 0 1 1 1 1 1 0 1 
12 1 1 1 2 1 0 0 2 1 0 1 1 2 2 1 
13 1 0 1 1 1 1 0 5 2 1 3 1 3 1 1 
14 1 4 1 1 1 0 0 0 3 0 0 3 4 1 1 
15 1 1 1 0 2 1 0 0 1 0 3 3 1 6 2 

Remaining 
Vehicles 
number 

8 5 6 4 8 14 3 4 3 12 0 3 5 0 4 

Period 
Customer 

 
 

*
IIIn  with P(Mut) = 0.01 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 0 2 0 1 1 2 3 1 3 1 3 1 1 2 1 
2 0 3 0 1 1 2 1 2 1 1 3 2 2 0 2 
3 1 0 1 2 2 1 1 1 2 1 4 1 2 2 0 
4 1 0 3 0 1 2 3 2 2 0 2 1 1 2 1 
5 0 3 0 4 2 1 1 1 2 1 2 0 1 2 1 
6 1 1 1 2 0 2 1 1 1 1 1 3 1 1 1 
7 2 0 3 1 0 2 1 1 2 1 1 1 2 3 0 
8 0 1 5 1 1 1 0 4 2 0 3 1 1 0 1 
9 1 0 1 2 1 1 1 1 1 1 2 3 3 1 2 
10 1 2 0 2 2 3 0 1 3 0 1 0 1 2 1 
11 1 1 2 1 0 3 3 1 1 0 0 2 0 2 1 
12 0 1 1 0 3 1 1 1 1 3 0 1 1 2 2 
13 3 1 1 1 1 0 1 1 1 6 0 1 1 3 1 
14 1 3 1 1 1 0 3 1 1 2 1 1 2 2 1 
15 1 0 1 1 3 1 3 2 2 1 1 1 1 1 3 

Remaining 
Vehicles 
number 

12 7 5 5 6 3 2 4 0 6 1 6 5 0 7 

Period Customer 

 
 

*
IVn  with P(Mut) = 0.01 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 0 1 2 2 1 1 2 0 4 1 1 2 2 2 1 
2 0 3 2 1 1 1 1 0 3 0 1 3 1 3 1 
3 1 1 1 1 1 2 2 1 2 2 3 0 2 2 0 
4 1 0 2 1 3 2 1 2 2 1 0 2 1 1 2 
5 1 2 2 0 1 2 0 1 2 5 1 0 1 2 1 
6 0 2 1 0 0 2 0 2 1 3 3 1 2 1 0 
7 2 1 1 0 2 2 1 1 1 1 1 3 2 1 1 
8 0 2 4 1 2 1 1 0 1 1 3 4 0 0 1 
9 1 1 2 0 2 0 3 1 2 3 1 0 2 1 2 
10 2 1 0 2 1 0 2 2 4 0 0 1 0 0 4 
11 1 1 0 0 3 4 1 1 0 0 2 1 1 1 

Period Customer 

2 
12 2 0 1 1 1 0 1 1 2 0 3 1 1 2 2 
13 0 1 1 4 2 2 3 0 1 2 2 0 1 2 1 
14 1 0 3 1 2 0 4 1 0 3 0 1 1 3 1 
15 0 0 3 3 1 0 3 2 0 1 3 1 1 2 2 

Remaining 
Vehicles 
number 

13 9 0 8 2 6 2 0 10 0 2 1 5 7 4 

 
 

*
In

 

 

 with P(Mut) = 0.005 
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 4 5 6 7 8 9 11 13 1 2 3 10 12 14 15 
1 0 1 1 3 0 1 1 3 3 1 3 0 2 1 2 
2 1 1 0 4 2 1 0 1 2 2 1 0 4 1 1 
3 0 2 1 0 3 3 1 2 1 0 2 0 1 4 1 
4 0 1 2 1 3 1 3 1 0 2 0 5 1 1 0 
5 1 1 3 1 2 3 0 2 1 1 1 1 0 1 3 
6 0 2 1 1 2 2 0 1 2 2 1 1 1 1 1 
7 0 4 1 1 1 1 1 1 2 0 1 1 2 1 3 
8 1 1 3 0 4 0 4 2 2 0 1 2 0 0 1 
9 1 0 0 2 1 1 2 3 1 3 0 2 2 1 2 
10 2 1 0 3 1 3 0 2 0 2 0 0 0 1 4 
11 1 1 0 2 3 1 1 1 0 2 1 1 1 1 2 
12 1 1 1 1 1 0 2 1 0 0 2 3 1 2 2 

Period Customer 

13 1 1 0 3 2 1 4 1 0 0 1 4 1 1 2 
14 1 2 1 2 0 3 1 2 1 1 0 0 4 2 1 
15 2 1 2 0 1 1 2 0 2 0 0 3 4 1 2 

Remaining 
Vehicles 
number 

6 2 13 6 0 2 13 1 4 7 4 10 1 1 0 

 
 

*
IIn

 

 with P(Mut) = 0.005 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 2 0 1 0 1 2 3 2 1 3 1 1 1 1 3 
2 2 1 1 2 1 0 0 1 1 0 3 1 3 3 1 
3 0 2 1 1 1 2 1 3 1 1 1 1 4 1 1 
4 1 1 0 1 0 1 1 7 1 2 1 0 1 1 0 
5 1 5 1 0 3 1 0 1 3 2 0 0 0 1 3 
6 2 1 1 1 1 1 1 1 2 1 1 1 1 2 1 
7 3 0 1 1 1 1 1 1 3 1 1 1 2 1 2 
8 1 1 3 3 1 1 1 0 1 2 1 3 1 1 1 
9 3 1 0 1 1 1 2 1 1 2 2 0 2 1 1 
10 0 1 1 2 4 1 3 0 0 3 1 0 0 1 1 
11 3 1 1 3 1 2 1 1 0 0 0 1 1 1 1 
12 1 3 0 1 0 1 1 0 3 1 2 2 1 1 1 
13 1 3 1 1 1 4 0 2 0 2 2 1 2 1 1 
14 0 0 2 1 1 2 3 2 3 1 0 1 4 2 0 
15 0 0 2 0 1 3 2 0 0 3 4 2 1 2 2 

Remaining 
Vehicles 
number 

5 5 8 3 9 0 10 5 2 2 3 6 11 5 2 

Period Customer 

 
 

*
IIIn

 

 

 with P(Mut) = 0.005 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 0 2 0 2 0 1 1 2 1 1 2 3 2 4 1 
2 0 1 3 1 1 1 1 2 1 1 1 1 5 1 1 
3 2 0 1 1 1 1 3 3 1 2 1 1 1 2 1 
4 1 1 1 1 2 3 1 1 1 2 1 1 4 0 1 
5 1 2 1 3 2 2 0 2 0 2 1 1 1 2 1 
6 1 1 1 1 3 0 2 0 2 1 2 1 2 1 0 
7 2 0 2 0 3 1 1 1 2 1 2 1 1 2 1 
8 1 1 4 0 1 1 1 4 1 1 3 1 1 0 1 
9 1 1 2 0 3 1 1 1 2 1 3 0 1 1 3 
10 1 1 1 1 3 2 1 1 1 2 1 1 0 0 3 
11 1 0 1 2 3 1 1 1 1 1 1 2 0 2 1 
12 1 1 1 1 1 1 1 1 1 2 1 0 1 3 2 
13 0 0 1 2 1 8 1 0 1 2 0 1 3 1 1 
14 0 0 1 1 0 1 6 1 0 2 3 2 1 3 0 
15 0 0 0 6 0 0 1 1 7 0 1 0 2 1 2 

Remaining 
Vehicles 
number 

13 14 0 4 5 0 9 0 3 0 0 12 1 3 6 

Period Customer 

 
 

*
IVn

 

 with P(Mut) = 0.005 
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 Min. 
Cost 

Max. 
Cost 

Min. 
Cost 

Max. 
Cost 

Min. 
Cost 

Max. 
Cost 

Min. 
Cost 

Max. 
Cost 

50 2205.7 4578.3 1507.5 4513.25 8435.45 9825.3 1108.5 1558.6 
100 1385.55 2803.25 1269.75 3313.4 3827.25 4151.15 950.95 1414.85 
150 1249.2 2408.3 1204.8 2897.95 2608.8 3055.55 908.3 1326.4 
200 1110.75 2613.6 1108.05 1896.5 2075.15 2369.55 903.3 1253.3 
250 986.05 1789.65 967.95 1272.65 1920 2109.25 903.1 1002.1 
300 927.3 1560.5 943.75 1188.85 1595.7 1664.8 903.1 941.25 
350 863.9 1215.1 926.25 1134.5 1586.9 1593.1 903.1 903.9 
400 849 1155.75 926.25 1124.7 1568.4 1759.15 903.1 1085.65 
450 849 1213.75 926.25 926.25 1567.4 1695.35 903.1 903.1 
500 849 1086.1 926.25 926.25 903.1 1553.7 1564.9 903.1 
550 839.2 1064.75 926.25 926.25 1553.7 1553.7 903.1 903.1 

Variant  I Variant  II Variant  III Variant  IV
Iteration 

600 903.1 839.2 861.6 926.25 1109.65 1552.5 1552.5 903.1 
650 839.2 1008.8 926.25 926.25 1552.5 1552.5 903.1 903.1 
700 839.2 896.85 926.25 926.25 1552.5 1552.5 903.1 903.1 
750 839.2 1111.9 926.25 926.25 1552.5 1552.5 903.1 903.1 
800 839.2 1112.2 926.25 926.25 1552.5 1552.5 903.1 903.1 
850 839.2 951.9 926.25 926.25 1552.5 1552.5 903.1 903.1 
900 839.2 839.2 926.25 926.25 1552.5 1552.5 903.1 903.1 
950 839.2 936.25 926.25 926.25 1552.5 1552.5 903.1 903.1 
1000 839.2 963.1 926.25 926.25 1552.5 1552.5 903.1 903.1 

 
 

Cost for 15 Customer, 15 Periods with P(Mut) = 0.01 
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 Min. 
Cost 

Max. 
Cost 

Min. 
Cost 

Max. 
Cost 

Min. 
Cost 

Max. 
Cost 

Min. 
Cost 

Max. 
Cost 

50 1341 2451.1 363.9 2906.6 215.15 6913.15 784.65 2506.95 

Variant  I Variant  II Variant  III Variant  IV
Iteration 

1 6 1
100 1172.95 2513.65 1177.55 2796.4 3341.2 4654.6 1119 1724.75 
150 1072.6 2060.75 2986.3 2986.3 1012.9 1368.15 1086.2 1842.55 
200 1013.35 1660.15 1013.4 1709.55 2672.75 2965.65 1313.3 976.3 
250 934.25 1297.2 924.7 1191.75 2546.1 2709.35 955.4 955.4 
300 887.35 1320.75 888.35 923.95 2478.85 2478.85 955.4 1125.1 
350 856.55 1161.05 883.95 1006.1 2466.9 2467.6 955.4 955.4 
400 843.3 1025.1 883.95 1006.9 2461.95 2466.9 955.4 955.4 
450 843.3 1035.9 883.95 1000.85 2461.95 2461.95 955.4 955.4 
500 843.3 964.2 883.95 883.95 2461.95 2461.95 955.4 955.4 
550 843.3 1025.8 883.95 892.75 2419.05 2419.05 955.4 955.4 
600 843.3 843.3 883.95 883.95 2412.5 2412.5 955.4 955.4 
650 955.4 843.3 843.3 883.95 883.95 2412.5 2412.5 955.4 
700 843.3 854.9 883.95 883.95 2412.5 2412.5 955.4 955.4 
750 843.3 955.4 866.5 883.95 883.95 2412.5 2412.5 955.4 
800 843.3 1039.2 883.95 883.95 2412.5 2412.5 955.4 955.4 
850 843.3 891.7 883.95 883.95 2412.5 2412.5 955.4 955.4 
900 843.3 965.3 883.95 883.95 2412.5 2412.5 955.4 955.4 
950 843.3 952.95 883.95 883.95 2249.5 2249.5 955.4 955.4 
1000 843.3 945.35 883.95 883.95 2249.5 2249.5 955.4 955.4 

 
 

os  C , 1 ds Mu 05 

 

 

C t for 15 ustomer 5 Perio with P( t) = 0.0
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Thesen 

 

1. Transportation is one of the most vital services in modern society. It makes most of the 

other functions of society possible, such as manufacturing and construction, food and 

agriculture, energy supply and distribution, safety and security, access to medical care, 

and tourism and recreation. At present it is more and more necessary to design 

transportation systems that are reliable, efficient, safe and environmentally sustainable. 

 

2.  Real transportation systems are so large and complex that in order to build the science of 

transportation systems it will be necessary to work on fundamental research issues in 

many areas, including: Modeling, Optimization and Simulation.  

 

3.  We are interested in solutions for the so-called fleet-sizing-and-allocation problem 

(FSAP). Fleet sizing and allocation problems are one of the most interesting and hard to 

solve logistic problems. A fleet sizing and allocation problem consists of two 

interdependent parts. The fleet sizing problem is to determine a number of transportation 

units that optimally balances service requirements against the cost of purchasing and 

maintaining the transportation units. The allocation problem is dealing with the 

repositioning of transportation units to serve future transportation demand. These two 

problems are highly related to each other.   

 

4. To make the fleet sizing and allocation problem a little bit more tractable we concentrate on 

logistic systems with a special hub-and-spoke structure. We begin with a brief discussion 

regarding the feasibility of such systems. We discuss the major configuration issues and 

operational concerns associated with the use of hub-and-spoke transportation networks. 

 

5.  We are going to go through a very simple fleet sizing of one-to-one case. This case will 

cause us to focus attention on several key issues in fleet sizing. Afterwards are the 

notations and concepts introduced in this case extended in order to provide us with a 

framework, which will be used for discussion of related research.  
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6.  A first generalization of the one-to-one system is the one-to-many system (a hub –and-

spoke system with transportation only from hub to spokes). As a simple example can 

serve the continuous time situation where a single origin delivers items to many 

destinations. For the case that items are produced in a deterministic production cycle and 

transportation times are stochastic. We consider the problem of determining necessary 

size of a fleet with single type of transportation units (TU’s) to fulfill a given service rate. 

 

7.  We also studied a hub-and-spoke problem with continuous time and stochastic demand.    

      To solve this problem, based on Marginal Analysis, we applied queueing theory methods.  

 

8.  The investigation of the fleet-sizing-and-allocation problem for hub-and-spoke systems is 

started for a single-period, deterministic-demand model. In that the model hub has to 

decide how to use a given number of TU’s to satisfy a known (deterministic) demand in 

the spokes.  

 

9.  We consider two cases:  

   i. Renting of additional TU’s from outside the system is not possible, and 

      ii. Renting of additional TU’s from outside the system is possible. 

For each case, based on Marginal Analysis, we developed a simple algorithm, which gives 

us the cost-minimal allocation. Examples show that the optimal solutions for both two 

cases above can be very different with respect to the optimal allocation as well as the 

corresponding cost values. 

 

10. An approximate solution for the multi-period, deterministic demand model can be 

determined by applying the algorithm for the single-period, deterministic demand in a 

successive way. Since the multi-period, deterministic demand problem is NP-hard we 

suggest to use Genetic Algorithms. Some building elements for these are described. 

 

11. For the most general situation (e.g., infinite planning horizon with continuous time, 

stochastic demand, stochastic transportation times) we suggest to use simulation 

optimization. The simulation optimization approach is divided into two parts, simulation 
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and optimization. Simulation is used to assess a given solution and optimization will 

provide new solutions.  

 

12. To realize the simulation optimization approach we could use the software tool 

“Calculation Assessment Optimization System” (CAOS) developed at the professorship 

“Modelling and Simulation” at the Chemnitz University of Technology.  

 

13. The idea of CAOS is to provide a software system, which separates the optimization 

process from the optimization problem. To solve an optimization problem the user of 

CAOS has to build up a model of the system to which the problem is related. Furthermore 

he has to define the decision parameters and their domain.  

 

14.  Finally, we used CAOS for two classes of hub-and-spoke system:  

(i) A single hub with four spokes, and  

(ii) A single hub with fifty spokes.  

We applied four optimizers – a Genetic Algorithm, Tabu Search, Hybrid Parallel and 

Hybrid Serial with two distributions (Normal Distribution and Exponential Distribution) 

for a customer interarrival times and their demand. 

 

15. From the results of the experiment we can see that:   

(i) In the case single hub-four spokes, the two hybrid optimizers and Tabu search work 

well but we can say that the Tabu search is the best for this case.  

(ii) In the case single hub-fifty spokes, the hybrid serial optimizer performs best. This 

suggests that for complex systems hybrid optimizers outperform non-hybrid ones. 

(iii)The problem of dimension, i.e., with increase number of spokes the computation time 

will increase considerably (from 2500 investigated solutions for four spokes up to 

about 18000 for fifty spokes). 

(iv) Finally, we can say that the suggested simulation optimization approach works well. 
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