
Interconnection Optimization for
Dataflow-Architectures

Nico Moser, Carsten Gremzow, Matthias Menge
Technical University of Berlin, Faculty IV - Computer Science and Electrical Engineering,

Institute of Computer Engineering and Microelectronic

Abstract— In this paper we present a dataflow processor
architecture based on [1], which is driven by controlflow
generated tokens. We will show the special properties of
this architecture with regard to scalability, extensibility,
and parallelism. In this context we outline the application
scope and compare our approach with related work.
Advantages and disadvantages will be discussed and we
suggest solutions to solve the disadvantages. Finally an
example of the implementation of this architecture will be
given and we have a look at further developments.
We believe the features of this basic approach predestines
the architecture especially for embedded systems and
system on chips.

I. INTRODUCTION

Dataflow processors boomed for the first time in the
1980s when they were analyzed for use in the supercom-
puting community (e.g. [4]). During that time the pure
dataflow computing model with asynchronous instruction
scheduling was the preferred approach. One problem
of dataflow processors is the memory connection. Fre-
quent memory access and the lack of registers and
caches (compared to von Neumann architectures) make
pure dataflow archtitectures vulnerable to bad memory
performance. So the increasing processor-memory gap
hits dataflow architectures harder then von Neumann
based architectures. Even though this architecture got
out of focus the original reason for this research (data
parallelism) and the analyzed techniques didn’t.
In today’s state of the art microprocessors adapted tech-
niques can be found primordially developed for dataflow
architectures. The most important is multithreading
whose origin can be found in dataflow processors [5].
Principal aim of this technique is to increase parallelism
in processors based on von Neumann architectures.
A new application field arised for processor architectures
in the 1990s, when embedded systems gained impor-
tance. As the first embedded processors were very slim
designs (like ARM RISC-based processors) because of
the special constraints for embedded systems, the present

development of embedded processors points to more
powerful architectures. Changed application scenarios
(e.g. audio or video decoding [8]) with data intensive
tasks require processors that can manage a lot more
parallelism than early embedded processors.
Another trend in the processor industry is the integration
of components on chiplevel previously on boardlevel.
These system on chip design should be supported by the
processor architecture.
In addition to that a more flexible architecture is neces-
sary if an application specific instructionset processor
should be realized. The functionality of these special
embedded processors are adapted to the application
running on them.
The last trend this architecure is influenced by is the real-
ization of embedded processors using field programming
gate arrays (soft intellectual property). The reconfigura-
tion capabilities of FPGAs opened a wide spectrum of
applications for a processor architecture.

In following section we will outline the overall register
transfer level architecture of the synZEN processor.
Section three will focus on a number of critical aspects
during datapath / interconnect design and the respective
realization for FPGAs as the target technology. After
describing the current prototype implementation and
its essential properties, we will draw conclusions from
the current state of work and outline the main project
objectives for the immediate future.

II. ARCHITECTURE

In figure 1 the simplified registertransfer level struc-
ture of a controldriven dataflow processor is shown.
The program counter, instruction memory, instruction
register, and the branch processing unit are depicted on
the left (some simplification were made [no memory
managment unit, cache] for a better overview). The rest
of the picture shows the function units, load and store
units, and the registerfile resp. constant unit. All of these
units are connected with the crossbar switch which is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Multimedia ONline ARchiv CHemnitz

https://core.ac.uk/display/153228194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


BPU ALU LD ST

IR

In
st
ru
ct
io
n

M
em
or
y

PC

+1

addr data addr data

Reg
Const

Fig. 1. Base architecture of the controlflow driven dataflow processor

shown above them and exchange there consumed and
produced data across it. It is possible to use several
instances of the units which is indicated by the shadow
units. One particular feature of this architecture is the
ring buffers on the data output of function units. They
facilitate to distribute data temporarily with the positive
side effect of shrink the registerfile and especially its port
count. Common superscalar RISC and VLIW architec-
tures tend to need much more ports than those planned
for this controlflow driven dataflow architecture.
In one instruction several, parallel transport operations
are encoded. These operations connect two units to
make a dataexchange possible. Each of them contains
one source address as well as one destination address
for connecting the datapath between them and control
information for the function units that belong to both
addresses. Every port of every unit has a unique address.
Processing one instruction begins with loading the in-
structon from the instruction memory into the instruc-
tion register. The transport operations are read and the
adresses are decoded so that the datapath can be set.
A bold line in figure 1 shows one such datamovement.
The source address encoded in the considered transport
operation is the output of the register file the destination
address is the left input port of the arithmetical logical
unit (ALU). The control information decoded in the
transport operation in this case could be the operation
of the ALU for the destination address and the register
number for the source address.

As soon as all operands are transfered to the destina-
tions the function units generate the results. If there is
one operand missing, the function unit stalls and waits
until the operand appears in the operand register of that
function unit. After generating the result it is written to

the ring buffer, from where it can be used for further
processing.

The transport triggered architecture [6] is based on a
similar approach but uses different techniques. It requires
special trigger register. It doesn’t support chaining (sec-
tion 3.1). In addition there are no ring buffers forcing
the function units to stall in some cases.

III. INTERCONNECTION NETWORK

The interconnect network shown in figure 1 is a basic
approach which guarantees maximum scalability and
flexibility. It is very similar to a crossbar switch. In order
to link an interconnection network like a crossbar switch
a lot of hardware resources are necessary. The lack of
tristate buffer in modern FPGA (the last FPGA series
with tristate buffer from XILINX were the Virtex II Pro
for which XILINX offered a crossbar switch IP) let this
resourceproblem escalate.
Instead of a true crossbar switch two alternatives are pre-
sented. In figure 2a the simplified scheme of a peripheral
approach is shown and in figure 2b centralized approach
is depicted. Both have in common the extensive use of
logic structures on an FPGA because the implementation
of the busstructure is based on multiplexer.
The source and destination addresses are decoded di-
rectly on the connection switches if the peripheral ap-
proach is used. A multiplexer net1 has to evaluate every
databit and every port. In addition to that the same
has to be done for the control information, too. For
every transportoperation two units that select the port
are needed. One for the readaddress and one for the
writeaddress. There are some possibilities to reduce the

1there are more efficient bus infrastructures [7] but FPGA solutions
are restricted to multiplexers



sourcedestination

address

control
information

data

(a) peripheral

data

port
select

address

port
select

(b) centralized

Fig. 2. Network managment

cost of the interconnection network. We will point them
out in the next sections. There are implicit ones that
reduces the traffic and allow a more efficient use of the
interconnection network and there are explicit ones that
reduce the complexity by design decisions.

A. Chaining

One of the most important features of the in this
paper specified processor architecture is the arbitrary
connection between two function units. It is possible to
chain function units in any order of choice of the user.
This control driven chaining is also called soft chaining.
It is initialized by an transport operation and uses one
explicit bus of the interconnection network. After the
operation this connection is closed and the bus is released
to realise an other connection.
Beside this very common use there are other possibilities
to connect function units. Figure 3a depicts operand
backcoupling. This connection allows to lead back the
result operand directly to one input operand register.
Such functionality could be used by the accumulation
operation. Another possibility is shown in figure 3b:
direct coupling. This works similar to the previous
mentioned method. Instead of directing the result to the
function unit it is routed to an other function unit. In
the shown example the result from a multiplier is routed
to operand register of an ALU. It can be used to map
a multiply accumulate (MAC) operation, which is often
used in data intensive tasks like signal processing, on

it. Both methods use connections with limited flexibility
bypassing the network (grey highlighted ares in the fig-
ures). These connections allow only one destination for
the operands. But they realize very common operation
chains and they release the network, because they are
not driven by transport operations directly but by side
effects of previous operations. If an operand is forwarded
to a function unit, control information is sent with it.
This information can be used to activate these bypass
connections by setting a status register or a sticky bit
(suggested by the squares on the grey background).
Because these connections can be established for several
cycles, these methods are called hard chaining.
The third hard chaining technique we present is result
sharing 3c.

It allows the explicit reuse of a generated operand by
several transition operations. Therefore a sticky bit eval-
uated by the ring buffer has to be set from the operation
that generates the operand. Without these functionality
a multiple reuse is only possible with an intermediate
transition of the operand to the register file. That means
a higher latency for direct following data operations and
more transition operations on the network.
The last shown hard chaining method constant storing
(figure 3d) uses no bypass connection but a sticky bit.
For a continuous use of a constant in the same function
unit the transport operation has to forward the constant
to on operand register of the function unit and has to set
the sticky bit (similar to the other methods).
Once set hard chaining connections can be annulled
explicitly by a transport operation or implicitly by a side
effect of one, if this connection is not required.

B. Reducing port count and connectivity

The number of ports per unit is often given by the
functionality of the unit. Arithmetical and logical units
realize dyadic operation: they process to operands and
generate one operand. For the register file that means
in data intensive applications more read than write ac-
cesses. In addition to that a lot of operands are directly
consumed from ringbuffer by function units. That means
in summary a minimum access to the register file, so
that the number of ports can reduced compared to other
architectures.
The network does not have to be fully connected.
Reducing the connectivity means loosing flexibility in
code generation but with alternating distribution of con-
nections between busses there should be minimal trade
offs in connectivity therefore large economization of
hardware costs.



ALU

(a) Operand
backcoupling

ALUMUL

(b) Direct coupling

ALU

(c) Result sharing

ALU

c

(d) Constant storing

Fig. 3. Hard chaining methods

BPU

IR

(a) Transport operation
controlled

BPU
IR

(b) Instruction register
controlled

Fig. 4. Alternative branch processing unit implementations

C. Branch processing unit

The functioning of the branch processing unit in
figure 4a is very similar to the other function units.
It consumes two operands for comparison with each
other and one branch address. The BPU is controlled
by the information sent with the transport operation.
One branch operation needs three transport operations
respectively three ports to the network.
An alternative approach is depicted in figure 4b. The
BPU is controlled directly by an operation in the in-
struction register. Hence the capacity of the instruction
register has to be extended beyond the demand for the
transport operations, but the need for ports is reduced

down to two. For statically known addresses this BPU
needs one cycle like the initially presented BPU. For
dynamically processed branches addresses it takes two
cycles: the first to store the address and the second to
process the branch.

D. Serialization

Another possibility of complexity reduction is datap-
ath serialization of the interconnection network [3]. The
structure of modern FPGA series allows to implement
the necessary shift registers with up to 64 Bit in ele-
mentary structures (Configuration Logic Blocks) [9]. In
case of serialization the network must be clocked higher
than the function units.

IV. PROTOYPE IMPLEMENTATION

We started to design a prototype, where functionality
is reduced to a coprocessor system. It is shown in figure
5.
Data access is memory management unit driven (not
shown in figure 5) and instruction memory is controlled
by the main processor.
Six busses are provided for data transportation. There
are three function units (two ALUs2 and one multiplier),
one register file with 16 entries, one instruction register
controlled BPU and one store unit. Because the three
function units altogether consume six operands, we de-
cided to implement three load units. For streaming tasks
they are planned with burst mode.
All function units provide constant storing and result
sharing. There are also two direct coupling connections
planned: One between the multiplier and ALU1 and
one between ALU1 and ALU2. The network isn’t fully
connected as you can see by the missing squares in the
network matrix in figure 5. Grey filled squares belong to

2multiple function unit instances are depicted as grey shadows
behind the first instance of function units with the same functionality



STLDMULBPU ALU
IR

In
st

ru
ct

io
n

M
em

or
y

PC

Reg
Const

Main Processor

Fig. 5. Prototype design of synZEN

different instances. The number of connections between
ports and busses conforms to frequency of use and the
number instances of function units. For instance the BPU
is less frequently used than the multiplier in dataflow
intensive tasks and there are two instances of ALU
compared to one of multiplier. Therefore the ports of
BPU and ALU exhibit fewer connections than the ports
belonging to the multiplier.

Altogether there are 19 destination and 8 source ports.
To address all ports in one transport operation five bits
for destination and three bits for source are nedded as
shown in figure 6. Four additional bits per endpoint are
provided for control information (e.g. 16 registers in the
register file have to be addressed). Altogether 16 bit are
needed for one transport operation, when nine bits are
used for the destination and seven bits for the source
part.

IR

addr addrctrl ctrl
destination source

Transport OperationsBranch Operation

Fig. 6. Transport operation

V. ARCHITECTURAL PLANNING

Obviously the availability of at least one common
compiler tool chain such as the GNU Compiler Collec-
tion (GCC) is mandatory for efficient, practical evalu-
ation and testing of a prototype processor architecture.

The LLVM infrastructure eases the task of GCC compiler
backend generation (and also code optimization) a great
deal. Using the LLVM bytecode as an intermediate
program representation serves the purpose of construct-
ing and programming the controlflow driven dataflow
architecture. The corresponding tools are not directly
integrated into the LLVM tool flow as e.g. compiler
optimization passes or as a code generating backend.

Since the synZEN represents a scaleable processor
architecture with variable amount of computation and
interconnect resources, a code generating backend for the
LLVM would need to know about the actual processor
outline (be created each specific resource configuration)
and be created on a dynamic basis. Instead, we have
chosen to implement an independent, integrated code
analysis and synthesis tool called LLILA-AS (Low Level
Intermediate Language Analysis and Architecture Syn-
thesis). It parses LLVM bytecode as well as assembly
source and is responsible for processor layout planning
and code generation.

a) Architecture Planning: Simple basic block level
dataflow analysis and subsequent code scheduling (with-
out resource constraints) is used to get a first impression
of average and peak code parallelism. In turn, this infor-
mation is used to guide unit and interconnect allocation.
LLVM instruction scheduling is repeated under resource
constraints to compute the set of all possible parallel
operation constellations. As a first measure, the applied
scheduling algorithms (based on a modified list schedul-
ing algorithm) try to make best usage of the processor’s
capabilities of soft and hard chaining as well as result
sharing. Aside from the above measures, cross basic
block optimizations and speculative code execution have
been implemented to enhance execution performance.



Applying ILP techniques, an optimal layout of each
individual ALU instance is achieved.

VI. CONCLUSION

In this paper we presented a controlflow driven
dataflow architecture. In our work we focus to adjust
the datapathes between function units to FPGA structures
and showed the possibilities of (hard) chaining methods
in that context.
An register transfer level description of the synZEN in
VHDL is soon to be completed. Target architecture is
a XILINX Virtex 4 SX 35. We expect first test results
within several weeks and believe that an implementation
with more units than synZEN is achievable.
An other important aspect of further investigation is the
automated code generation. With LLILA-AS we have
a powerful framework for automated instruction coding
and code emitting.

There are also some possibilities to refine or extend
the basic concept. One thinkable extension is condi-
tional transport operation (similar to predication in Intel
Itanium). Also datapath serialization appears to a very
promising task for the immediate future.

REFERENCES

[1] M. Menge: Zen 1 - Prozessor mit kontrollflussgesteuertem Daten-
fluss, Technical Report 21, TU Berlin , 2003.

[2] H. Corporaal: Microprocessor Architectures: From VLIW to TTA,
Wiley, J,1997.

[3] H. Sasaki, H. Maruyama, H. Kobayashi, T. Nakamura, H.
Tsukioka, N. Shoji:Reconfigurable Synchronized Dataflow Pro-
cessor, In: Design Automation Confer- ence, 2000. Proceedings
of the ASP-DAC 2000. Asia and South Pacific. (January 2000)
27–28

[4] K.-Q. Luc and K.B. Irani: A High Performance Dataflow Pro-
cessor for Multiprocessor Systems, In: Workshop on the Future
Trends of Distributed Computing Systems in the 1990s, 1988.
Proceedings. (September 1988) 438–444

[5] Jurij Silc, Borut Robic and Theo Ungerer: Asynchrony in parallel
computing: From dataflow to multithreading, Technical Report,
Jozef Stefan Institute, 1997.

[6] H. Corporaal: Design of Transport Triggered Architectures, In:
VLSI, 1994. ’Design Automation of High Performance VLSI
Systems’. GLSV ’94, Proceedings. (March 1994) 130–135

[7] R. Mäkelä, J. Takala and O. Vainio: Analysis of Different bus
Architectures for Transport Triggered Architectures, In: Proc.
21st Norchip Conference. (November 2003) 56–59

[8] S. Sair and Youngsoo Kim: Designing Real-Time H.264 De-
coders with Dataflow Architectures, In: Third IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and
System Synthesis, 2005. CODES+ISSS ’05. (September 2005)
291–296

[9] Xilinx: Using Look-Up Tables as Shift Regis-
ters (SRL16) in Spartan-3 Generation FPGAs,
http://www.xilinx.com/bvdocs/appnotes/xapp465.pdf, Edition
1.1, (May 2005)


