
 

 

 
 
 

Electronic Properties of 
Phthalocyanines Deposited on H-Si(111)  

 

 

 

 

Dissertation 

zur Erlangung des akademischen Grades 

doctor rerum naturalium 

(Dr. rer. nat.) 

 

 

 

 

vorgelegt 

der Fakultät für Naturwissenschaften der Technischen Universität Chemnitz 

 

 

 

 

von M. Sc. Phys. Mihaela Gorgoi 

geboren am 27. November 1976 in Zalau 

 

 

 

 

Chemnitz, eingereicht am Dezember 2005 

 



Bibliografische Beschreibung 

 

 2

Bibliografische Beschreibung 
 

M.Sc. Phys. Mihaela Gorgoi 

Electronic Properties of Phthalocyanines Deposited on H-Si(111) 
Technische Universität Chemnitz 
Dissertation (in englischer Sprache), 2005 

Im Rahmen dieser Arbeit wurden vier Phthalocyanine untersucht: Metallfreies-Phthalocyanin 
(H2Pc), Kupferphthalocyanin (CuPc) und Fluor-substituiertes Phthalocyanin (F4CuPc und F16CuPc). 
Das Ziel dieser Arbeit ist die Charakterisierung der elektronischen und chemischen Eigenschaften 
der Grenzflächen zwischen diesen Molekülen und Silizium. 

Die Moleküle wurden durch organische Molekularstrahldeposition (OMBD) im 
Ultrahochvakuum auf wasserstoffpassivierte Si(111)-Substrate aufgedampft. Oberflächensensitive 
Messmethoden wie Photoemissionsspektroskopie (PES), Bremsstrahlung Isochromaten 
Spektroskopie (BIS oder IPES - Inverse Photoemissionsspektroskopie) und Spektroskopie der 
Röntgen-Absorptions-Feinstruktur (NEXAFS – Near Edge X-Ray Absorption Fine Structure) 
wurden zur Charakterisierung eingesetzt. Um eine Zuordnung der verschiedenen Komponenten in 
PES und IPES zu ermöglichen, wurden Methoden der Dichtefunktionaltheorie zur theoretischen 
Berechnung eingesetzt.  

Die Energieniveauanpassung an der Grenzfläche zwischen der organischen Schicht und der 
H-Si-Grenzfläche, sowie die Transportbandlücke von H2Pc, CuPc, F4CuPc und F16CuPc wurden 
mit Hilfe von PES und IPES bestimmt. 

Die NEXAFS-Messungen ermöglichten eine genaue Bestimmung der Molekülorientierung 
relativ zum Substrat. Die Auswertung der Daten zeigte unterschiedliche Molekülorientierungen in 
dünnen und dicken Filmen. Diese Änderungen wurden mit dem bandverbiegungsähnlichen Verlauf 
der HOMO-und LUMO-Positionen in Verbindung gebracht. Zusätzlich zu diesem Verhalten wiesen 
die Grenzflächen auch einen Grenzflächendipol auf, welcher durch die unterschiedlichen 
Austrittsarbeiten der Kontaktmaterialien hervorgerufen wird. Der Einfluss des Grads der 
Flouridierung wird durch eine ähnlichen Zunahme der Elektronenaffinität (EA),  der Austrittsarbeit 
(φ) und der Ionisierungsenergie (IE) bestätigt. 

Die elektronischen Eigenschaften von Metall/organische-Schicht-Grenzflächen und von 
organischen Schichten unter Sauerstoffeinfluss wurden mit Hilfe von PES und IPES untersucht. 
Die Ag/Pc Grenzflächen zeigten eine Mischung aus HOMO-LUMO-Verschiebungen und 
Grenzflächendipolbildung. An den  Ag/H2Pc- und Ag/F16CuPc- Grenzflächen wurde ein 
Ladungstransferkomplex gebildet. Auf der CuPc-Schicht physisorbiert das Ag lediglich und im Fall 
von F4CuPc wird Ladung zu Ag transferiert, wobei eine andauernde n-Typ-Dotierung an der 
Grenzfläche erzeugt wird. In Analogie zum Fall der  Pc/H-Si Grenzfläche wiesen die Dipole, die 
hier gefunden wurden, eine lineare Abhängigkeit von EA, φ und IE auf und können durch die 
Differenz zwischen den Austrittsarbeiten vorausgesagt werden. 
Das Verhalten der dicken organischen Schichten unter Sauerstoffeinfluss kann in zwei Gruppen 
eingeteilt werden. Eine Gruppe, bestehend aus H2Pc und F4CuPc, wies nur schwache 
Wechselwirkung auf und der Sauerstoff physisorbiert auf der Pc-Schicht. Die beiden anderen 
Moleküle, CuPc und F16CuPc konnten einer Gruppe starker Wechselwirkung zugeordnet werden. 
CuPc bildet einen Ladungstransferkomplex mit Sauerstoff und auf F16CuPc wird eine polarisierte 
Schicht gebildet. 
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(PES), Inverse Photoemission (IPES), NEXAFS. 
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Chapter 1. Introduction 
 

 

 Organic–inorganic structures represent a new class of devices that can combine 

desirable physical properties characteristic of both organic and inorganic components. 

Inorganic materials offer the potential for a wide range of electronic properties, substantial 

mechanical hardness, and thermal stability. Organic molecules, on the other hand, can 

provide high fluorescence efficiency, large polarizability, mechanical flexibility, ease of 

processing, structural diversity and lower processing costs. The ability of these materials 

to transport charges (holes and electrons) due to the π-orbital overlap of neighbouring 

molecules provides their semiconducting and conducting properties. The self-assembling 

or ordering of these organic materials enhances this π-orbital overlap and is the key to 

improvements in carrier mobility. An extensive review of the properties and applications of 

molecular films displaying semiconducting properties has been published by Forrest 

[For97]. A couple of directions have been defined such as the development of organic light 

emitting diodes (OLEDs), organic photovoltaic (OPV) solar cells and organic field-effect 

transistors (OFETs). In recent years there has been growing interest in the field of OLEDs 

for their luminous efficiencies [Sha99] and low operating voltages [Bal99]. As an example, 

ongoing studies of OLEDs [Zho05] prepared by organic vapor phase deposition (OVPD), a 

method suitable for high volume production of devices, show a quantum efficiency of 

(7.0±0.1) % at a luminous efficiency of 25 cd/A. This is promising for high-throughput 

manufacturing of OLED displays.  

There has been a tremendous effort to produce white light emission, full colour 

displays, flexible and transparent devices. Since these aims were achieved, OLEDs are 

currently brought to market as displays in car radios, mobile phones, mp3 players etc. 

[Ole04]. The remaining challenge is the fabrication of large area displays.  

Simultaneously with the success of OLEDs, interest in organic photovoltaic devices has 

risen sharply. Therefore quite a large number of studies related to PV solar cells 

appeared. The photovoltaic effect in molecular materials was first observed in single 

layers of polyaromatic crystalline materials such as anthracene [Vol13], and 

phthalocyanine derivatives commonly used as dyes [Sea82]. Pc’s close structural 

relationship to chlorophyll [Mck98], which performs the sunlight harvesting function for the 
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solar energy conversion process, photosynthesis, gives further encouragement to their 

use in solar cells. However, new device architectures had to be found to compensate for 

the poor conversion efficiency and transport properties of these organic layers. In 1986, a 

breakthrough was realised with Tang’s double layer PV cell, based on a perylene 

derivative, PTCBI, and copper phthalocyanine [Tan86]. It is important to mention that this 

combination of dyes absorbs up to 70% of the solar spectrum. Nowadays studies have 

proven that PV solar cells based on organic materials can achieve relatively good 

efficiencies compared to silicon based ones which reach values of approximately 30%. 

Xue et al. demonstrated that using a structure of an organic tandem PV cell formed by 

stacking two hybrid planar-mixed heterojunction cells in series based on CuPc and C60 

can reach power conversion efficiencies of (5.7±0.3)% [Xue04]. Heterostructures 

containing materials from the perylene class and H2Pc were also investigated for solar cell 

applications [Heu02].  

In the light of the present investigations of the organic materials application in PV 

solar cells, the combination of a silicon substrate and Pc is quite promising. Silicon 

represents the inorganic semiconductor that is the base of the inorganic solar cells 

produced nowadays. Although the conversion efficiencies reached using only silicon are 

quite high (approx 26%), the devices are bound to the predicted theoretical limit of about 

30% [Mei04]. One of the most important reasons that limit the efficiency of silicon based 

solar cell is the range of the absorbed light. Carriers are created when the crystalline 

silicon absorbs photons with energy similar with its band gap of 1.12 eV. However, the 

higher energy photons are absorbed through different processes depending on their 

energy range. By introducing another material, an organic layer which has a larger band 

gap, a wider absorption range for the PV solar cell is enabled. Thus higher conversion 

efficiency could be obtained.  

In addition to OLEDs and PV solar cells, the semiconducting properties of some 

organic materials enable promising technologies for organic field-effect transistors 

(OFETs). The Pc class is one of the investigated groups. For example, CuPc is one of the 

organic materials intensely studied for such applications due to its large charge carrier 

mobility [Bao96, Zei05].  

Due to the rising interest in the development of organic based devices, the need of 

clarifying studies on the electronic properties of the organic materials appeared. Improving 

the performance of such devices demands a detailed understanding of the transport and 

optical processes that take place in the devices. This is achieved only through a 

fundamental understanding of the electronic structure of the constituent molecules and the 

molecular thin film. A typical device consists of organic layers sandwiched between a top 
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metal contact and an inorganic/organic semiconductor with a back metal contact. In this 

scheme it is very important to be able to predict the relative energies of the highest 

occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) 

of the organic semiconductors at the interface and surface as they represent the barriers 

for holes and electrons at the interface. Moreover, the difference between HOMO and 

LUMO determines the transport gap Et of the organic material.  

In the light of the described application of organic materials, this thesis 

concentrates on describing the interfaces created between four different phthalocyanine 

(Pc) materials (H2Pc, CuPc, F4CuPc and F16CuPc) and hydrogen passivated silicon (H-Si) 

as hybrid systems for devices such as PV solar cells.  

The thesis is structured as follows. Chapter 2 holds a general description of the electronic 

properties of molecular semiconductors as well as the properties of the materials 

investigated here: the Pc materials and silicon. A theoretical background of the employed 

acquisition techniques is presented in chapter 3 as well as a short description of the data 

analysis. The following chapter 4 depicts the experimental set-ups and the sample 

preparation e.g. the substrate treatment and the conditions of organic molecular beam 

deposition (OMBD). Chapter 5 concentrates on determining the electronic properties of 

Pc/H-Si interfaces correlated with the average molecular orientation in thin and thick 

layers of Pc. The reactivity of the Pc materials is evaluated in contact with silver and 

molecular oxygen in chapter 6. Concluding remarks are given in chapter 7. 
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2 Chapter 2. Theoretical Background  
 

 

In the following chapter several basic notions of organic and inorganic 

semiconductors will be discussed. The organic materials, namely phthalocyanines, 

involved in this work will be presented, as well as the inorganic substrate – silicon. 

 

2.1 Molecular semiconductors 

 

In contrast to the covalent bonding in inorganic materials, the forces within organic 

solids are relatively weak. The molecules that compose an organic solid interact via Van 

der Waals forces and π-π overlapping [Atk94]. The molecules themselves consist of 

atoms held together by covalent bonds. The atoms are mainly carbon, nitrogen, oxygen 

and hydrogen. The overlap between the atomic orbitals of the molecule bonding atoms 

creates bonds which exhibit two types of symmetry: localised σ bonds and delocalised π 

bonds. Single bonds exhibit σ symmetry while double bonds exhibit one set of σ 

symmetry and one set of π symmetry.  

Molecular semiconductors are a class of organic solids that are generally regarded as 

materials with poor electrical conductivity [Sim85]. They intrinsically contain few carriers 

and exhibit poor overlap between orbitals of neighbouring molecules therefore charge 

cannot pass rapidly from molecule to molecule. Conduction occurs via tunnelling and 

hopping between molecular sites. 

Unfortunately up to now, no complete analytic model was found to describe the behaviour 

of molecular semiconductors in electric measurements correlated with their electronic 

structure. One of the most suitable ways in investigating this correlation is studying their 

interfaces with different inorganic materials using methods that characterize their 

electronic properties. Such techniques are e. g. photoemission and inverse 

photoemission. They allow the description of the density of occupied and unoccupied 

states hence the electronic properties.  

 



Theoretical Background 

 

 10

2.1.1 Electronic Structure 

 

The electronic properties of the molecular semiconductors are determined by the 

atomic structure of the molecule and the molecule-molecule interaction. The formation of 

electronic levels in a single molecule and in a molecular solid is displayed in Figure 2.1 

[Ish99]. In the case a), the molecular orbitals are formed by combining the atomic orbitals 

of all the atoms contained in a molecule. Therefore as the number of atoms comprised in 

a molecule increases, the complexity of the resulting molecular orbitals increases as well. 

Figure 2.1 a) shows a sketch of the potential well formed by the atomic nuclei and the 

electrons. The potential wells of the nuclei are merged in the upper part and form a broad 

well. The deep atomic orbitals (the core levels) are still localized in atomic wells. The 

upper atomic orbitals interact and form the localized σ and delocalized π molecular 

orbitals. The topmost part of the well represents the vacuum level (VL). The difference 

between the highest occupied molecular orbital (HOMO) and VL corresponds to the 

ionisation energy (IE). The energy separation from the lowest unoccupied molecular 

orbital (LUMO) to VL stands for the electron affinity (EA).  

Figure 2.1 b) presents the case of the 

molecular solid where molecules interact by 

weak Van der Waals forces. The top part of 

the occupied valence states and the lower 

unoccupied states are usually localized in 

each molecule and have narrow 

intermolecular bandwidth [Kao81, Gut67]. 

Thus the electronic structure of an organic 

solid often preserves that of a molecule and 

the validity of band theory is limited. The 

top of the occupied states and the bottom 

of the unoccupied states are frequently denoted as HOMO and LUMO, reflecting the 

correspondence with the molecular state. However, experiments have proven that the 

energy levels are quite different in molecules and organic solid. Schlettwein et al. [Sch94] 

summarizes the HOMO position of several Pcs in gas phase, solution and solid state. The 

displayed values are different from state to state. The explanation lies in the physics of 

charged excitation and transport in organic molecular solids, which is dominated by 

localization and polarization phenomena. Because of the low dielectric constant of 

organic materials, the electronic polarization has a significant impact on the energy level 

 

Figure 2.1 Electronic structure of a) a molecule 
and b) a molecular solid. After Ishii et al. 
[Ish99]. 
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of the transport states (HOMO and LUMO). The energy contribution due to polarization 

can be as large as 1 eV [Hil00]. Several phenomena contribute to polarization and 

reorganization of molecular levels upon addition or removal of a charged particle: (1) 

electronic polarization of the surrounding molecules, which accounts for most of the 

screening of the central charge, (2) molecular relaxation, which accounts for 

conformational changes of the molecular ion due to the charge, (3) lattice relaxation, 

which accounts for the response of the structure of the molecular film to the presence of 

the charge. The molecular relaxation (∼100 meV) and the lattice relaxation (∼10 meV) are 

small compared to the electronic polarization component (∼1 eV). 
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Figure 2.2 a) A molecular solid which suffers ionisation by hole injection (photoemission process) 
and electron injection (inverse photoemission process); b) ionisation energy (IE) and electron 
affinity (EA) of the gas phase and the levels of the relaxed molecular ions in the condensed 
phase, including the polarization energies P+ and P- for holes and electrons, respectively. 

Similar to inorganic semiconductors, the transport gap Et, or single-particle gap, of the 

molecular film is the energy difference between the electron transport state and the hole 

transport state, and is the minimum energy necessary to create an uncorrelated electron-

hole pair infinitely separated in the bulk of the material. As shown it is equal to the 

difference between the ionisation energy (IE) and the electron affinity (EA) of the gas 

phase molecule reduced by the sum P of the energies of electronic polarization and 

molecular lattice relaxation. The IE value in a condensed phase is different from that of an 

isolated molecule due to the multielectronic effects. When a charge carrier is brought into 

molecular solid, its field polarizes the surrounding molecules (Figure 2.2 (a)). A secondary 

polarization field created by polarized molecules contribute to the total self-consistent 

polarization clouds that surround each charged particle. Formation of these polarization 

clouds is associated with the stabilization energy P+ for cations and P- for anions (Figure 

2.2 (b)). The relation between the transport gap Et and P= P+ + P- is given by:  
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condensed phase condensed phase

t + - + -

IE EA

E = IE -EA - (P +P ) = (IE -P ) - (EA +P )
14243 14243

      Eq. 2.1 

Since Coulomb interactions are long-ranged, polarization clouds can extend over many 

lattice constants and P, and hence Et, can be significantly different at a free surface, near 

a metal-organic interface, in thin organic layers and in the bulk [Tsi01].  

The optical gap (Eopt) corresponds to the formation of a Frenkel exciton with the electron 

and hole on the same molecule. The difference between Et and Eopt yields the binding 

energy of the exciton [Hil00].  

 

2.1.2 Phthalocyanines 

 

In this thesis, four molecules were studied, namely metal-free phthalocyanine 

(H2Pc), copper phthalocyanine (CuPc) and differently fluorinated copper phthalocyanines 

(F4CuPc and F16CuPc) (Figure 2.3 (a), (b), (c) (d)).  

a) b) c) d) 

Figure 2.3 a) Metal free phthalocyanine, b) copper phthalocyanine c) and d) fluorinated copper 
phthalocyanines.  

Phthalocyanines are a broad class of molecules which share a common large 

polyaromatic ring (abbreviated Pc for the phthalocyanato anion C32H16N8
2-). Since their 

discovery by Linstead in 1934 [Lin34], phthalocyanines have been used in applications as 

diverse as in artist paint, as an ordinary printing dye in colour printing devices and in 

manufacture of recordable CD’s. There is an ongoing research to make use of Pcs in gas 

sensors [Wri89, Sno89], optoelectronics [Tan86], organic field effect transistors [Tak02] 

and photodynamic treatment of cancer [Bon95, Coo95]. Their popularity is proven by an 

overwhelming number of articles and books see e.g. [Mck98, Lez89, Mos83].  

Pcs are organometallic complexes that have intense colour, are stable at temperatures 

up to a few hundreds degrees Celsius and exhibit a high chemical stability (resistance to 

C32H18N8C32H18N8 C32CuH16N8C32CuH16N8 C32CuF4H12N8C32CuF4H12N8 C32CuF16N8C32CuF16N8
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chemicals). The central cavity of the Pc ring can accommodate as many as 70 different 

elemental ions [Mck98], complex oxides such as TiO or VO or hydrogen for the metal-free 

variety. The geometry of the molecule is planar for small metal phthalocyanines (MPc) 

and H2Pc, but a pyramidal configuration is obtained when the ions are too large to be 

accommodated in the central cavity, as is the case for PbPc, VOPc, etc.  

The weakness of the π-π interactions within organic Pc crystals results in a variety of 

polymorphic forms. Planar phthalocyanines (H2Pc and MPcs where M = Co2+, Cu2+, Mn2+, 

Zn2+, Fe2+) are isomorphic and adopt similar polymorphic forms. The major polymorphs 

are α, β and X-Pcs, but up to 10 crystal species have been identified in literature [Lez89]. 

 

Figure 2.4 Crystal structures of MPc and H2Pc a) α form, b) β form.  

Both the α and β crystallites adopt a herringbone structure in the monoclinic system, 

where the molecules are stacked along the b-axis (Figure 2.4), while the φ angle between 

the molecular plane and the stacking axis is different for both forms. The α form 

crystallises in the C2/c space group [Jan92] while the β form belongs to the P21/a space 

group [Rob36] and the corresponding φ values are 25° and 45 - 46°, respectively. The 

unit cell of α form contains four molecules and has the following cell parameters: 

a=23.9Å, b=3.8Å and c=25.9Å. On the other hand, the β form unit cell contains two 

molecules and the cell parameters are: a=19.6Å, b=4.8 Å and c=14.6 Å. The α form is 

metastable and can be obtained as small crystallites by the acid-paste method, 

precipitation or mechanical grinding [Erc67]. The β form is commercially available and is 

a = 23.9 Å

b = 3.8 Å

3.4 Å

b-axis

a-axis

c-axis

a-axis
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the thermodynamically stable phase of MPc; it can usually be obtained by annealing the 

metastable α form [Sim85]. 

 

2.1.2.1 Pc Thin Films  

 

Vacuum deposited thin Pc films were investigated on a large number of different 

substrates e.g. metals and semiconductors. In the present work, planar Pcs deposited on 

hydrogen passivated silicon are studied. The UHV deposition usually leads to small 

spherical crystallites of the α form. The orientation of these crystallites depends on two 

factors: (i) the nature of the substrate and (ii) the thickness of the film. If there is negligible 

interaction between the Pc and the substrate, the crystallites adopt a "parallel b-axis 

configuration" shown in Figure 2.5 (a). This was proven by glancing angle XRD, showing 

a repeat distance equal to the width of a Pc molecule [Dog92, Has92], and by 

spectroscopic methods [Kol97, Dow91]. The same configuration was found for CuPc 

deposited on relatively rough H-Si(111) and H-Si(001) [Nak01]. In thicker films (>1 μm) of 

H2Pc [Nes94] and CuPc [Has92], the b-axis is perpendicular to the substrate (Figure 2.5 

(b)). Interaction with the substrate can modify the orientation of the phthalocyanine 

crystallites.  

 

Figure 2.5 Different orientations of α-form a) parallel, b) perpendicular and c) standing b-axis 
configuration.  

Early work by Ashida et al. showed that CuPc tends to lie flat when deposited at room 

temperature on KCl, due to electrostatic forces between K+ and the electron-rich bridging 

nitrogens [Ash66]. Although the crystals are still of the α form, they adopt a standing b-

axis orientation in that case, where the b-axis is tilted by 26° with respect to the substrate 

(Figure 2.5 (c)).  

b-axis
b-axis b-axis

a) b) c)

b-axisb-axis
b-axisb-axis b-axisb-axis

a) b) c)
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Even though it was assumed that Pcs have a tendency to adopt the presented crystalline 

structures, a recent STM investigation of CuPc on Si (111) revealed that while the lattice 

parameters of the α-phase are retained the molecules adopt a "slipped-stack" order, i.e. 

the molecules in adjacent columns have an identical orientation, rather than a 

herringbone structure (see Figure 2.6 (a)) [Hie00]. On the other hand, one of the 

chlorinated derivatives of CuPc, namely CuPcCl16 was found to lie flat on KCl and 

graphite [Iri97, Uye72]. The stacks are identical in orientation and the b-axis is in a 

standing configuration (Figure 2.6 (b)).  

a) 

 

 

b) 

Figure 2.6 a) CuPc orientation taken from [Hie00]; b) CuPcCl16 orientation as determined in [Iri97]. 

 

2.1.2.2 Pc Energy Band Structure 
 

Early studies show calculations of the energy band structure of a few metal Pcs 

using principally extended Hückel methods [Sin77, Suk69, Mat71, Dev68]. As would be 

expected from the molecular structure (Figure 2.4), the size of the interaction between the 

constituent molecules, as measured by the exchange integral, is larger along the b axis 

(along the stack) than along the other two axes. For example, the energy band structure 

of H2Pc has been calculated within the tight binding approximation using Hückel-type 

molecular orbitals [Che69]. The HOMO belongs to the au representation. This labelling is 

similar to the s-p notation of the atomic orbitals and is based on their symmetry 

properties. On the other hand, the unoccupied states have several levels in the same 

energy range and the interaction between bands of the same symmetry must be 

considered. The lowest empty orbitals b2g* and b3g* are separated by only 0.09 eV. 

Consequently there will be significant mixing of the two levels in the solid state. The 

bandwidths for H2Pc were also calculated and they are strongly dependent upon the 

26.5º26.5º
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direction considered. The reference directions are the three directions of the reciprocal 

lattice a*, b*, c* in k space. The bandwidths are varying from a few meV for directions 

parallel to a* and c* axes, to 30-100 meV along the b* axis.  

The energy band calculations for the other metal Pcs reveal similar assignments as found 

for H2Pc. Due to the progress in the theoretical approaches, more advanced studies on 

Pcs electronic structure appeared. Most of them are based on density functional theory 

(DFT) methods which provide a more accurate description of the energy levels of the 

molecules. The calculated energy positions are in better agreement with the experimental 

data provided by photoemission and inverse photoemission.  

The experimental studies on Pc 

electronic structure started at 

an early point in time due to the 

fast development of 

photoemission and almost 

simultaneous to the theoretical 

calculations. In Figure 2.7 we 

give as an example the 

photoemission spectrum of 

gaseous CuPc taken from ref. 

[Ber79]. The first two peaks are 

assigned to a1u and a2u 

symmetries, the first one arising 

from the carbon rings and the 

second having some nitrogen character [Ber79]. Quite a high amount of studies followed 

investigating the occupied states of Pc’s. Due to the more recent development of inverse 

photoemission the unoccupied states were also investigated [Yos01, Gao01]. However, 

the peak assignments are not yet clearly stated. By comparison with the theoretical 

calculations one may assign the first peak as mainly arising from the carbon rings.  

 

2.2 Silicon 

 

In the present work, hydrogen passivated silicon (111) was used as substrate. The 

passivation was obtained by wet chemical etching in hydrofluoric acid solution. The 

details of preparation will be presented later on, in chapter 4. In the following paragraph 

some details about silicon and the hydrogen passivated silicon surface will be given. 

 
Figure 2.7 Photoemission spectrum of gaseous CuPc 
(taken from ref. [Ber79]).  

a2u 

a1u 
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Silicon is the predominant semiconductor material used in the microelectronics industry, 

mostly due to several important properties. Silicon can be produced in single crystal form 

with an extreme purity, it forms an excellent surface oxide and its electronic properties 

can be tuned through doping. Silicon is a covalent solid that crystallizes in a diamond 

cubic lattice structure. At the surface, silicon is reactive due to the dangling bonds that 

remain upon truncating the bulk. Due to these dangling bonds the surface reconstructs, 

minimizing its energy. The resulting surface structure differs significantly from the bulk. 

For example, the (111) surface reconstructs into a complex (7x7) structure that contains 

49 surface atoms in the new surface unit cell. After reconstruction the resulting surface is 

highly reactive and thus not stable in air. Therefore any experiments involving such a 

surface are performed in ultra high vacuum (UHV) conditions. To render it stable in air, 

the silicon surface can be covered with hydrogen. Several recipes have been developed 

to terminate the silicon surface with silicon hydride groups (Si-H) [Wel02]. Most of them 

involve exposure to dilute, aqueous hydrofluoric acid solutions. Most of these recipes are 

patented and world-wide spread, from research laboratories to large-scale 

microfabrication facilities.  

 

a) b) 

Figure 2.8 a) The H-Si(111) surface structure. The golden spheres 
represent the silicon atoms and the white ones the hydrogen atoms. 
Reproduced after [Ben02]; b) LEED pattern of H-Si(111)-1x1 obtained at 
45 eV.  

The presence of hydrogen atop of silicon passivates the surface and changes the surface 

reconstruction. The silicon atoms terminated with hydrogen do not reconstruct, therefore 

the surface silicon atoms preserve their bulk like periodicity. In Figure 2.8 (a) the structure 

of the hydrogen terminated silicon (111) surface (H-Si(111)-1x1) is shown. The low 

energy electron diffraction (LEED) pattern presented in Figure 2.8 (b) confirms the 1x1 

reconstruction of the surface.  

Due to its low reactivity, the H-Si surface is preferred for organic molecular beam 

deposition (OMBD) since it favours ordered arrangement of the organic molecules.  
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2.2.1 Electronic Structure 

 

The silicon electronic structure has been thoroughly investigated up to now by 

both theoretical and experimental methods. Figure 2.9 displays the band structure of 

silicon [Car66]. As shown, the silicon band gap is an indirect one (Γ→X direction), the 

maximum of the valance band being on the Γ point and the minimum of the conduction 

band being on the X point.  

The value of the transport gap Eg
ID is 

1.12 eV. The other interband critical 

points are observed at the following 

energy positions: E0’ and E1 at 

approximately 3.4 eV, E2 at about 4.2 

eV and E1’ at 5.2 eV.  

The electronic structure of the (111) 

surface of silicon is also well known 

[Cir75, Sch78]. Moreover, hydrogen 

chemisorption on this surface has 

also been systematically investigated 

[App76, Ho77, Ben02].  

The hydrogen passivation by wet 

chemical treatment raised some difficulties in obtaining a surface equivalent to the one 

acquired by UHV chemisorption of atomic hydrogen on a silicon (7x7) reconstructed 

surface. Nevertheless the obstacles were overcome and studies investigated not only the 

flatness and cleanliness of the surface but also its electronic properties [Bou92, He96].  

 

 

 

Figure 2.9 Silicon band structure.  
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3 Chapter 3. Techniques of Investigation 
 

 

Several acquisition techniques have been employed in the investigation of the Pc 

systems described in this work. The theoretical background of each method is described, 

with emphasis on the processing of the experimental data. 

 

3.1 Photoemission Spectroscopy 

 

Photoemission is based on the photoelectric effect, being one of the most used 

experimental techniques for gaining information on the electronic structure of materials. 

The sample is irradiated by photons (ideally highly monochromatic) and the emitted 

electrons are analyzed with respect to their kinetic energy (and to their direction of 

propagation in angular resolved photoemission). 

 A simple sketch of the phenomenon is displayed by 

Figure 3.1. When photons in the ultraviolet spectral range 

are used, the technique is called UV photoelectron 

spectroscopy (UPS). When X-rays are used for excitation, 

the technique is called X-ray photoelectron spectroscopy 

(XPS) or ESCA (Electron Spectroscopy for Chemical 

Analysis). Nowadays, the availability of synchrotron 

radiation allows the use of a wide spectral range of 

excitation energies that is why in the present work the 

valence band photoemission (VB-PES) and core level 

photoemission (CL-PES) terminology will be used. 

In photoemission experiments on solids, only electrons 

originating from a thin surface layer of the sample are 

normally used in the analysis of the spectra, which makes 

photoemission a surface sensitive technique. The reason is that only the electrons which 

leave the sample without loosing energy are directly carrying information about the 

electronic structure. The probability for an electron to leave the sample without inelastic 

 
Figure 3.1 Sketch of the 
photoemission process. Blue 
- core level, orange - valence 
band, yellow - conduction 
band.  
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scattering is proportional with the mean free path or electron escape depth. The electron 

escape depth is a function of the electron kinetic energy, being only in the order of a few 

nm [Car96]. The large number of electrons which undergo inelastic scattering processes 

form the secondary electron background in a photoemission spectrum. 

In a PES experiment, the photocurrent results from the excitation of electrons by the 

electromagnetic field from the initial state i (with wave function Ψi) to the final state f (with 

wave function Ψf). Considering H0 the Hamiltonian of the solid in the ground state and the 

ionizing radiation field as a perturbation Hint, the transition probability per unit time is given 

by Fermi’s Golden Rule 

( )π
Ψ Ψ δ ωh

22w = H E -E -fi f int i f ih
 Eq. 3.1 

The Hamiltonian for the interaction between an electron and electromagnetic radiation 

with a vector potential A can be written as: 

( )⋅ ⋅int
1H = +

2mc
A p p A  Eq. 3.2 

where p is the momentum of the electron. The vector potential A is perpendicular to the 

propagation direction of the photons. Also it is assumed that the vector potential is not 

modified by the interaction with the medium into which it penetrates in order to produce 

the photoemission current. With the explicit k – dependence expression 3.1 becomes: 

2π δ( )Ψ Ψ ωh
h

fi f f int i i f i
2w = , H , E -E -k k  Eq. 3.3 

Equation 3.3 leads to an expression for the photocurrent. Assuming that the matrix 

element and the densities of states are constant at fixed hω one obtains: 

) ( ) ( )ω ∝ Ψ Ψ δ ω δ φ∑h h
2

f f int i i f i f
i

N(E, , H , E -E - E -E +k k  

( )∝ Ψ Ψ δ φ
2

f f int i i i f, H , DOS(E ) E -E +k k  
Eq. 3.4 

where φ is the work function of the sample. This equation reveals that the distribution of 

photoemitted electrons in the PES experiment is approximately proportional to the density 

of initial states DOS(Ei). Also this relation shows a dependence on the various angular 

momenta of the involved electrons. 

For the interpretation of the photoemission process, the so-called ‘three-step 

model’ [Bes64] was proven to be useful [Lut93, Huf95]. In this model the photoemission 

process is separated into three incoherent steps. In a first step the photon is absorbed 

and the excitation of the electron takes place. In a second step this electron passes 

through the sample to the surface. In the third step the electron escapes through the 
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surface into vacuum. A more rigorous theoretical approach to the photoemission process 

is given by the ‘one-step model’ [Mah70]. This model considers the excitation from an 

initial state (Bloch wave in the crystal) into a damped final state near the surface. This 

damping takes into account the short mean free path of the electrons in the solid. In most 

of the theoretical treatments of photoemission, an infinitely short time for the removal of 

the photoelectron is assumed, this being referred to as the sudden approximation. The 

time for the photoemission process depends on the velocity of the escaping electron and 

therefore the sudden limit is best suited for high excitation energies [Mar95]. With 

increasing electron energy the mean free path increases and the electrons come from 

increasingly larger distances from the surface. Thus the sudden approximation should 

always be corrected for extrinsic losses [Hed98]. In the case of an interacting N-electron 

system, the sudden approximation assumes that the photoelectron is decoupled from the 

(N-1)-electron state and therefore doesn’t carry information about it [Kev01]. 

The absorption of a photon with energy hω causes the excitation of an N-electron system 

which is described by the initial state wave function Ψi(N) with energy Εi(N) into a final 

state ion characterized by Ψf(N-1,k) with Ef(N-1,k), plus a photoelectron with kinetic 

energy Ekin; k denotes the initial level from which the electron was removed. Thus the 

conservation of energy is described by  

 Eq. 3.5 

and the binding energy with respect to the vacuum level is expressed as 

 Eq. 3.6 

If it is assumed that the remaining (N-1) electrons have the same spatial distributions and 

energies in the final state as they had in the initial state before the emission of the 

electron (frozen-orbital approximation), then the binding energy equals the negative 

orbital energy of the emitted electron.  

 Eq. 3.7 

This approximation is Koopmans’ Theorem [Ert85]. This theorem neglects relaxation of 

the remaining electrons and also relativistic as well as correlation effects. Hence, in a 

better description these terms should also be taken into account. 

A different approach used in treating the photoemission process is represented by the 

adiabatic approximation. The adiabatic approximation is approached in the case of 

threshold ionization of a certain electronic level. Generally this applies for low kinetic 

energy of photoelectrons. In the adiabatic limit the photoelectron is assumed to leave the 

system slowly so that the electrons from or near the excited atom change their energy by 

slowly adjusting to the effective atomic potential in a self-consistent way [Stö83]. Thus, at 

φ φk 0 cath sampleE = eV + -

( ) ( ) ( )V
B f iE k =E N-1,k -E N

( ) εV
B kK.T.E k = -
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any moment, the system is in a state of equilibrium. The correlation between the 

photoemitted electron and remaining inner electrons is very strong in the case of an 

adiabatic transition [Tho84].  

 Further details on the theoretical approaches to photoemission can be found in 

several dedicated books [Huf95, Sch03].  

 For a better understanding of the experiment of photoemission let us consider 

Figure 3.2 which shows schematically how the energy-level diagram and the energy 

distribution of photoemitted electrons relate to each other. Electrons emitted from the 

valence band can be found at binding energies of several eV while those from core levels 

contribute between 10 ~ 1500 eV. In the case of a metal, EF is in the conduction band 

(half filled) and has a separation φ (work function) from VL. At the low energy end of the 

spectrum a sharp feature is observed, which originates from emission of electrons that 

have been inelastically scattered in the solid and no longer contain any specific structural 

or chemical information. On this background core level lines can be seen. Not shown are 

the Auger lines which also appear. Because φ of solids are usually in the range of a few 

eV, photons in the ultraviolet and X-ray energy range are necessary for PES experiments.  

 
Figure 3.2 Schematic energy level diagram and energy 
distribution of photoemitted electrons.  

Besides the energy levels that can be determined through a photoemission experiment, 

there are two other parameters that come into play in the evaluation of the data. The first 

one is the intensity of the peaks in a photoemission spectrum. This intensity depends on 

the surface density of the corresponding element, the different photoionisation cross-
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sections for electrons from various molecular orbitals, the mean free path of the electrons 

in the sample and spectrometer transmission function. The second parameter is the full 

width half maximum (FWHM) of the peaks. The FWHM has its origin in intermolecular 

energy-band dispersion, hole-vibration/phonon coupling, lifetime broadening and dynamic 

polarisation, and site dependence of the relaxation energy and molecule/substrate 

interaction. Although the evolution of these parameters may present valuable information 

due to their origins, one has to be careful when evaluating them.  

 

3.2 Inverse Photoemission Spectroscopy 

 

Unlike photoemission spectroscopy, inverse photoemission spectroscopy (IPES) 

has a much shorter history. It actually started with the work of the two major promoters of 

this method Dose [Dos77, Den79] who developed the experimental set-up and Pendry 

[Pen80, Pen81] who initiated the theoretical work. 

IPES uses the effect that electrons impinging on a solid surface may 

emit radiation. A sketch of the phenomenon is shown in Figure 3.3. 

The recorded radiation is in the range of ultraviolet light and the 

electrons have kinetic energies below 20 eV. Since the energy 

dependent elastic mean-free path of low-energy electrons is about 

10 to 20 Å [Sea79], IPES is very surface sensitive. 

IPES gives access to the empty electronic states in the energy 

region above the Fermi level. An electron with well-defined kinetic 

energy Ekin and well-defined angle of incidence θ impinges on the 

sample and couples to states in the solid, which are lying above the 

vacuum level Evac of the sample. From this initial state with energy Ei 

and wave vector ki the electron decays radiatively to lower lying 

unoccupied electronic final states with energy Ef and wave vector kf. 

In the IPES experiment the emitted photons with quantum energy 

ωh  are detected for a photon take-off angle α. For this process the conservation of 

energy is 

ωhi fE =E +  Eq. 3.8 

and the momentum conservation is 

i f= + +k k G q  Eq. 3.9 

 
Figure 3.3 Sketch 
of the inverse 
photoemission 
process.  
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where G – is a reciprocal lattice vector. For photon energies below 100 eV the wave 

vector of the photon q remains small compared to the size of the Brillouin zone, so G and 

q can be neglected in Eq. 3.9. Therefore the radiative transition occurs vertically (ki = kf) 

as a so-called direct transition (Figure 3.4). In an IPES experiment with fixed photon 

energy ωh  the intensity of the radiation (count rate of the emitted photons) is measured 

as a function of the final state energy Ef for an angle of incidence θ of the electrons and a 

photon take-off angle α. In such a spectrum a peak should appear at energies Ef, where a 

direct transition between two bands separated by ωh  is possible. The natural width of the 

peaks is determined by the finite lifetime of the final states. A typical spectrum for a metal 

has its onset at the Fermi level EF and shows an energy dependent, nearly structureless 

background, which stems mainly from radiative transitions after electron – hole pair 

production. 

EF is the Fermi level, below 

which all states are occupied 

and above which all states are 

unoccupied at 0o K. It should 

be taken into account that in 

contrast to the photoemission 

process, where the initial state 

is occupied and the final state 

is unoccupied, the inverse 

photoemission process 

involves two initially 

unoccupied states. Due to a limited number of final states Ef, the count rates are much 

lower in the case of inverse photoemission spectroscopy than for ultraviolet 

photoemission spectroscopy. 

IPES has two operating modes. The densities of final states are determined either by 

keeping the energy of photons constant and sweeping the electron energy – the 

isochromat mode, or by keeping the incident electron energy constant and measuring the 

photon spectrum – the constant initial state mode.  

The experiments presented in this work are performed in the isochromat mode. A more 

explanatory diagram of the IPES - a specific one for the isochromat mode is presented in 

Figure 3.5. On the left part and in the middle of the figure the electronic structures for the 

cathode and for the sample are represented.  
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Figure 3.4 IPES process in a metal.  
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Figure 3.5 Energy diagram for isochromat IPES.  

The sample is considered to be an organic semiconductor. φcath and φsample are the work 

functions of the cathode and of the sample, respectively. In thermal equilibrium the 

chemical potentials align and therefore the Fermi levels of the sample and the cathode 

will align. When a voltage V0 is applied to the cathode, the situation presents itself as 

shown in Figure 3.4, where the Fermi level of the cathode is displaced upward by an 

energy eV0. An electron, which is thermionically emitted from the cathode, is accelerated 

to the sample, and at the sample it has a kinetic energy 

 Eq. 3.10 

relative to the vacuum level Evac. From the initial state Ei the electron decays to the 

unoccupied state Ef emitting a photon. Ef in this case is LUMO. The final energy of the 

electrons becomes: 

 Eq. 3.11 

Sweeping the voltage V0 and recording the resulting photons give rise to an image of the 

density of unoccupied states between the Fermi and vacuum level, as it is presented in 

the right-hand side of Figure 3.5. The recorded spectrum shows photon intensity as a 

function of the kinetic energy of the impinging electrons, hence the peaks corresponding 

to LUMO and LUMO+1 are placed at Ek0 and Ek1. Thus a certain kinetic energy 

corresponds to the Fermi level as well. In order to determine the position of the Fermi 

level, a reference measurement is required, since this level is within the transport gap of 

the semiconductor sample. The reference measurement is performed on a metal, usually 

one with unoccupied d levels. A clear shoulder in the photon intensity is expected in the 

φ νf 0 cathE = eV + -h

φ φk 0 cath sampleE = eV + -
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IPES spectra of metals for the Fermi level [Woo83]. If the starting voltage is set at VF for 

the Fermi energy in the above formula, then the following expression is obtained: 

φ= ν −F catheV h  Eq. 3.12 

and the energy position of the final states with respect to the Fermi level becomes: 

f 0 FE = eV - eV  Eq. 3.13 

Based on this equation the densities of final states e.g. LUMO are determined with 

respect to the Fermi level. 

 

3.2.1 Matrix Elements 

 

For practical and computational reasons, inverse photoemission and 

photoemission are considered inverse processes in quantum mechanics. By time 

reversing symmetry, the probability of an incident electron in a solid occupying a state i 

undergoing a transition to an unoccupied state f and emitting a particular photon is the 

same as the reversed photoemission process, in which this photon excites the electron 

from f to i. In each case the current is measured rather than individual states, and this 

leads to a phase – a space factor between the expressions for the photon flux in inverse 

photoemission and the electron flux in ultraviolet photoemission, which are also giving the 

related cross section expressions. Starting with the golden rule (Eq. 3.1), the cross 

section for the inverse photoemission process is given by 

Ψ Ψσ ∝ ∑
2

ph f int i
f

H  Eq. 3.14 

where σph is the cross section, the sum is taken over all final states, Ψf and Ψi are the final 

and initial wave functions, with Hint being the interaction Hamiltonian. The transition matrix 

element: 

Ψ Ψfi f int iM = H  Eq. 3.15 

is taking into consideration all the possible states after the interaction, representing the 

weight of any state in a spectrum and is in proportion with the probability of current 

density linking the final and initial states. 

= ⋅∫ 3
fi fiM J d rA  Eq. 3.16 

where A is the electromagnetic vector potential and 

Ψ ∇Ψ − Ψ ∇Ψ* *
fi f i i f

1
J = e

2
( )  Eq. 3.17 
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being the probability of current density. The total cross section for the inverse 

photoemission process is much smaller than the one for ultraviolet photoemission due to 

the large difference in the total number of final states for the emitted particle in each case. 

Considering the fact that the cross sections are proportional to the wavelength of the 

electron and photon for inverse photoemission and for photoemission, respectively, the 

compared efficiency of these processes can be approximated [Hil97]: 

π⎛ ⎞σ
≈ = ≈⎜ ⎟⎜ ⎟σ ⎝ ⎠

2 2 2
ph ph ph -4

2 2
el el el

4 E
10

2mc E

k
k

 Eq. 3.18 

From an experimental point of view, this value points out that the count rates recorded in 

the inverse photoemission process are much lower than the ones taken in a 

photoemission process. In consequence, the detector for IPES must have a high 

sensitivity. 

 

3.3 VB-PES and IPES Spectra Evaluation 

 

The evaluation of the VB-PES and IPES spectra was performed using the diagram 

shown in Figure 3.6.  
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Figure 3.6 Determination of energy band diagram using VB-PES and IPES.  

The sketch is based on experimental data recorded for the CuPc/H-Si system. Several 

electronic properties can be determined for silicon and CuPc. The ionisation energy (IE) 
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is evaluated by subtracting the width (W) of the PES spectra from the excitation energy of 

21.2 eV. Then subtracting the difference between the highest occupied molecular orbital 

(HOMO) cut-off and the Fermi level position from IE, the work function (Φ) is obtained. 

The electron affinity (EA) is obtained by deducting from Φ the lowest unoccupied 

molecular orbital (LUMO) cut-off position after deconvolution measured relative to EF. 

Last but not least, the transport gap Et is evaluated from the HOMO-LUMO cut-offs. In 

addition, rigid shifts of the secondary electron cut-off positions provide information about 

interface dipoles between the substrate and the molecular layer. 

The IPES spectra require a special treatment due to the poor resolution of the IPES 

set-up (0.4 eV) which broadens the features extensively. More about the experimental 

IPES set-up will be described in chapter 4. The treatment of the IPES spectra consists of 

a deconvolution of the features using a Gaussian function with a full width half maximum 

(FWHM) of 0.4 eV. A detailed description of the LUMO edge determination for the CuPc 

case is illustrated in Figure 3.7.  
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Figure 3.7 The IPES spectrum of CuPc thin film 
together with convoluted and deconvoluted individual 
peaks that contribute to the overall intensity.  

First the background described by a cubic polynomial function in the IPES spectra (20 nm 

CuPc deposited onto H-Si(111)) is subtracted. Exponential backgrounds were also 

investigated. However, the choice of background has a negligible influence on the LUMO 

energy position. The IPES data were then fitted with Gaussian functions using nonlinear 

least-squares fitting techniques. The widths of the fitted peaks were then deconvoluted 
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using a Gaussian function with a FWHM of 0.4 eV accounting for the IPES resolution. 

Then, the cut-off of the resulting deconvoluted LUMO feature was used in the 

determination of the transport gap and of the electron affinity.  

In the case of the VB-PES spectra no deconvolution was performed since the 

experimental resolution has a value of 0.15 eV and does not influence to such an extent 

the recorded features. The FWHM of the peaks in photoemission is much larger than the 

resolution unlike in IPES where the FWHM of the peaks is in the same range as the 

experimental resolution. 

The evaluation of VB-PES and IPES spectra of the organic/inorganic 

semiconductor systems requires some introductory remarks about the formation of 

organic/inorganic interfaces. The most known and documented interfaces are the 

metal/inorganic semiconductor ones [Mön90] and thus their formation will be shortly 

described here.  

Unfortunately, the metal/organic semiconductor interfaces or organic/inorganic 

semiconductor interfaces are less detailed. However nowadays, due to the growing 

interest in the applications of organic semiconductors, there are a large number of articles 

studying these interfaces. Evidencing different behaviours than the metal/inorganic 

semiconductor interfaces, the metal/organic semiconductor interfaces created an ongoing 

debate over their formation.  
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Figure 3.8 Formation of a metal-semiconductor contact. a) the nonequilibrium situation before 
contact is made. All energies are referred to the vacuum level (VL) b) Vbi accommodated over 
the formation of interface dipole; c) Vbi accommodated over band bending; d) same case as b) 
but including the effect of the image potential (after [Cam03]).  

Figure 3.8 summarizes the configurations of the metal-semiconductor contacts. The 

semiconductor considered here is an intrinsic one. The starting point in the description of 

the interface between a metal and an inorganic semiconductor [Sze81] is to define the 

energy difference between the respective Fermi energies of the isolated materials – the 

built-in potential Vbi (Figure 3.8 (a)). When contact is made, equilibrium dictates that 

charge flows from one material to the other, until the Fermi levels align. There are two 

extreme cases to consider. The first one shown in Figure 3.8 (b) is the formation of an 
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interfacial dipole at the interface between the metal and the semiconductor. The second 

case is the one presented in Figure 3.8 (c) where the transferred charge occupies dopant 

levels in the bulk. That yields the Schottky-Mott rule [Sze81] which states that the vacuum 

levels align at the interface, and then the additional charge resides in a depletion region 

created by ionizing donor or acceptor dopants and causes band bending. In addition, it 

must be accounted for the image potential [Twa82] that attracts the charges back towards 

the interface; this case is shown in Figure 3.8 (d). 

The difficulty in analysing the experimental data of metal/organic semiconductor 

interfaces in the light of classic theory (Figure 3.8) occurs from several reasons. One of 

them is the failure of the Schottky-Mott rule [Ish99, Kah03]. The difference in vacuum 

levels is attributed to interface dipoles, for which values between 0.2-1 eV were found for 

several metal-organic interfaces using photoemission spectroscopy. Another reason is 

the occurrence of a ‘‘band bending’’-like electrostatic energy shift for organic layers which 

was observed in many metal-organic systems [Hil00-2, Knu04]. In most cases this shift is 

confined to a regime of only a few nanometres, which cannot be accounted for using the 

conventional band bending theory of inorganic semiconductors. These issues have been 

found at the inorganic/organic semiconductor interfaces as well and will be discussed 

later on for each specific case. 

 When identifying the cases described in Figure 3.8 (b) (c) and (d), we have to 

consider Figure 3.6 again. The formation of only an interface dipole (Figure 3.8 (b)) will 

create in the recorded VB-PES spectra as a function of layer thickness a rigid shift in 

secondary electron region at the first deposition. No other energy shifts in the HOMO or 

LUMO position will be present. Thus all the electronic properties that define the deposited 

material will be constant. However, when a band bending like behaviour is observed as in 

Figure 3.8 (c), continuous and almost parallel shifts are observed in all VB-PES features: 

the secondary electron cut-off, the positions of all HOMOs and LUMOs. Consequently the 

work function will change. The width W of the VB-PES spectra will be constant during the 

thickness dependent measurements and thus IE will remain constant. EA will be constant 

as well as the transport gap Et. In the final case shown in Figure 3.8 (d), due to the effect 

of the image potential the spectra recorded as a function of thickness will show shifts of 

the HOMO and LUMO positions towards the Fermi level besides the rigid shift in the 

secondary electron cut-off. This will result in a variation of the transport gap Et and of IE 

and EA. The work function Φ is the only one that remains constant.  
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3.4 NEXAFS 

 

Near Edge X-Ray Absorption Fine Structure, NEXAFS, spectroscopy refers to the 

absorption fine structure close to an absorption edge, about 30eV around the actual 

edge. This region usually shows the largest variations in the X-ray absorption coefficient 

and is often dominated by intense, narrow resonances [Stö92]. NEXAFS is also called   

X-Ray Absorption Near Edge Structure, XANES. Today, the term NEXAFS is typically 

used for soft X-ray absorption spectra and XANES for hard X-ray spectra.  

 Opposite to the related X-ray photoemission 

spectroscopy (XPS or ESCA) technique, where 

the photon energy is fixed and the electron 

intensity is measured as a function of electron 

kinetic energy, in NEXAFS the X-ray energy is 

scanned and the absorbed X-ray intensity is 

measured. NEXAFS spectra can be recorded in 

different ways. The most common methods are 

transmission and electron yield measurements. 

The measurements presented here were taken in 

total electron yield (TEY) detection mode. The 

absorbed X-ray intensity is not measured directly 

in TEY measurements, but rather the 

photoelectrons that are created by the absorbed 

X-rays. X-rays are absorbed through excitations of core electrons to empty states above 

Fermi level and the vacuum level (Figure 3.9). The created holes are then filled by Auger 

decay (dominant in the soft X-ray region over X-ray fluorescence). The intensity of the 

emitted primary Auger electrons is a direct measure of the X-ray absorption process and 

is used in so called Auger electron yield (AEY) measurements, which are highly surface 

sensitive, similar to XPS. As they leave the sample, the primary Auger electrons create 

scattered secondary electrons which dominate the total electron yield (TEY) intensity.  

The TEY cascade involves several scattering events and originates from an average 

depth, the electron sampling depth L. Electrons created deeper in the sample lose too 

much energy to overcome the workfunction of the sample and therefore do not contribute 

to the TEY. The sampling depth L in TEY measurements is typically a few nanometres, 

while it is often less than 1 nm for AEY measurements. 

Figure 3.9 X-ray absorption process 
accompanied by Auger decay.  
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Figure 3.10 Schematic potential of a diatomic molecule that undergoes an 
absorption process.  

 The NEXAFS phenomenology is based on the X-ray absorption with the excitation of 

core electrons into unoccupied atomic/molecular orbitals. Figure 3.10 displays a 

schematic potential of a diatomic molecule that undergoes an absorption process. The 

plotted potential assumes positive values at the periphery of the molecule. The barrier is 

due to an additional centrifugal term 2h 2l(l+1) /(2mr )  in the molecular potential which 

arises when the Schrödinger equation is written in spherical coordinates. The transitions 

lead to a pronounced fine structure, the so called NEXAFS resonances. A NEXAFS 

spectrum placed on the right hand side of Figure 3.10 displays a diversity of pronounced 

resonances which correspond to electronic transitions of a 1s initial state to Rydberg or 

unfilled final states near VL. At the ionisation energy, corresponding to the threshold for 

transitions to continuum states a step-like increase in X-ray absorption is expected. The 

unoccupied molecular orbitals (MO) are marked as σ* and π*. For the neutral molecule, 

the π* states typically lie above the vacuum level but in this case the π* states are pulled 

down by the electron-core hole interaction [Stö92]. 

Due the localization of the core hole which is created at a certain atom the unoccupied 

states are projected on this atom. In the soft X-ray regime (K-edges of C, N, O) NEXAFS 

transitions are governed by dipole selection rules and consequently the absorption cross 

sections show a polarization dependent angular anisotropy. Consequently, polarization 
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dependent NEXAFS measurements allow the determination of the orientation of 

molecular adsorbents. 

3.4.1 Molecular Orientation 

 

The NEXAFS resonant intensities show a dependence on the orientation of the electric 

field vector E given by the dipole selection rules. As shown in Figure 3.11 (a), the 

resonance intensity associated with a specific molecular orbital final state is largest if the 

E vector points in the direction of that molecular orbital. The intensity vanishes if the E 

vector is perpendicular to the direction of the orbital. The spatial orientation of the σ* and 

π* orbitals is presented as well for the benzene molecule. In this case, the atoms are 

arranged in a plane and thus the σ* system is characterized by this plane.  

a) b) 

Figure 3.11 a) Polarization dependence on the intensities of σ* and π* resonances for benzene 
lying flat on Ag(110) [Sol91]. b) Coordinate system defining the geometry of π* orbitals as 
vectors.  

The π* orbitals can be represented by a vector perpendicular to the plane of the atoms. 

The mathematical formalism that allows the determination of the molecular orientation is 

developed for these cases: σ* orbitals represented by planes and π* orbitals by vectors. 

Since phthalocyanine molecules are planar and thus similar to benzene, the next 

paragraph will describe the formalism for π* orbitals as vectors. 

The intensity of the resonances I is given by the oscillator strength which is the energy 

integral of the X-ray absorption cross section σx. Considering the angular dependence of 

specific resonances, it can be assumed that the resonance shape will be constant and 

only their peak height will change.  

As a result the intensity I can be written as 
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Eq. 3.19 

Where e is a unit vector in the direction of the electric field vector E, p is the momentum 

operator, i  is the 1s initial state and f  the molecular orbital final state of transition. For 

elliptically polarized synchrotron radiation the electric field has two components: 

 Eq. 3.20 

k is the momentum of the X-rays and ω is the frequency of the electromagnetic wave. For 

expressing the intensity conveniently the degree of linear polarisation P is introduced. P 

characterises the intensity or energy density of the electromagnetic field in the orbit plane 

and it has the following expression: 

 
Eq. 3.21 

Then the total resonance intensity is given by 

 Eq. 3.22 

Assuming linearly polarized light, the transition intensity associated with the matrix 

element of interest can be written as 

 Eq. 3.23 

For a 1s initial state and a vector final state orbital the matrix element points in the 

direction of the final state orbital i.e. the direction of maximum orbital amplitude, and thus 

eq.3.23 becomes 

 Eq. 3.24 

Where the index ν denotes the π* vector final state and δ is the angle between the electric 

field vector E and the direction O
r

 of the final state molecular orbital (Figure 3.11 (b)). The 

orientation of the final state orbital is given by a polar angle α and an azimuthal angle φ. 

The reference frame in Figure 3.11 (b) is the coordinate system (x,y,z) of the sample. The 

X-rays are incident on the sample in the (x,z) plane which, in practice, is the horizontal 

plane of the electron orbit in the storage ring. The dominant component E|| of the electric 

field vector E of the elliptically polarized synchrotron radiation lies in this plane. It is tilted 

from the surface normal by an angle θ which is equal to the X-ray incidence angle. By 

expressing the angle δ as a function α, φ and θ, the resonance intensity becomes: 
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Eq. 3.25 

where A is a constant which describes the absolute angle integrated intensities. 

 

3.4.2 Data Evaluation 

 

The data evaluation in NEXAFS consists of several steps. The first step is the 

normalization of the recorded spectra to the beam current. It is a necessity since the 

beam current in a synchrotron facility drops exponentially in time. Then, the spectra are 

divided by the NEXAFS spectra of the clean substrate prior to the deposition of the 

organic material. In this way any contribution from the additional absoption from the 

beamline optical components is subtracted. At this point, depending at which θ angle the 

π* resonance have a maxima or a minima, the spectra may be treated in two specific 

ways that enable minimization of the parameters that enter the fitting procedure. The 

taken directions will be specified for each Pc in the next chapter. As a final step, using eq. 

3.25, the determined resonance intensities are fitted as a function of the unknown 

parameters: α and φ.  

It must be noted that parameter Α which is a system constant has an already established 

value of 1.7 determined for the PTCDA molecule in ref. [Gav05]. The NEXAFS 

measurements were performed on the same UHV chamber and at the same beam line, 

the Russian –German beam line in BESSY. 

 

3.5 Density Functional Theory 

 

Although this method is not an experimental method of investigation, it is included 

here since it was employed in the investigation of the phthalocyanines electronic 

structure.  

The density functional theory-based methods derive from the quantum mechanics 

research from the 1920’s, especially the Thomas-Fermi-Dirac model, and from Slater’s 

work in quantum chemistry in the 1950’s. The main approach of DFT is modelling the 

electron correlation via general functionals of the electron density. Following the work of 
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Kohn and Sham [Koh65], the approximate functionals employed by current DFT methods 

divide the electronic energy into several terms: 
T V J XCE = E +E +E +E         Eq. 3.26 

where ET is the kinetic energy term arising form the motion of the electrons, EV includes 

terms describing the potential energy of the nuclear-electron attraction and of the 

repulsion between pairs of nuclei, EJ is the electron-electron repulsion term, and EXC is 

the exchange correlation term and includes the remaining part of the electron-electron 

interactions. All terms except the nuclear-nuclear repulsion are functions of ρ, the electron 

density. ET+EV+EJ correspond to the classical energy of the charge distribution ρ. The EXC 

accounts for the remaining terms in energy: the exchange energy arising from the 

antisymmetry of the quantum mechanical wavefunction and the dynamic correlation in the 

motion of the individual atoms. EXC is determined entirely by the electron density and is 

usually divided into separate parts referred to as the exchange and correlation parts. 

( ) ( ) ( )ρ ρ ρXC X CE =E +E         Eq. 3.27 

The two components on the right hand side of Eq. 3.27 are termed exchange functionals 

and correlation functionals, respectively.  

Pure DFT methods are defined by pairing an exchange functional with a 

correlation functional. For example, the well-known BLYP functional pairs Becke’s 

gradient-corrected exchange functional with the gradient-corrected correlation functional 

of Lee, Yang and Parr [Lee88]. The B3LYP method employs three parameter hybrid 

functionals revised by Becke [Bec93] (B3) and uses the non-local correlation provided by 

the LYP expression [Lee88], and VWN (Vosko, Wilk and Nusair) functional III for local 

correlation [Vos80].  

 The computations of Pc molecules performed in this work employed DFT method 

based on B3LYP functional implemented in Gaussian 98 software package [Gau98]. A 

more detailed description will be given in each case. 
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4 Chapter 4. Experimental 
 

4.1 UHV Set-ups 

 

All the measurements discussed in this thesis were performed in ultra high vacuum 

(UHV) environment. Three UHV systems were used in the process, from which two are in 

Chemnitz and the third one at BESSY Berlin. The first UHV system that will be described 

is the one that served for all the VB photoemission experiments shown here. As shown in 

Figure 4.1 it consists of five chambers: the analysis chamber (ARUPS 10), the organic 

molecular beam deposition (OMBD) chamber, current-voltage/capacitance-voltage 

(IV/CV) measurement and metallization chamber, the sample reservoir chamber and the 

plasma chamber. The plasma chamber serves as a load-lock as well. The analysis 

chamber contains an angle resolved electron analyzer (VG ARUPS10), a He discharge 

lamp, and an X-ray source with Al and Mg dual anodes for photoemission studies, and 

low electron energy diffraction (LEED). The overall resolution of the spectrometer 

determined using a polycrystalline Ag(111) film grown on hydrogen-passivated Si(111) 

surface is 0.15 eV for the He I line (21.2 eV). 
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Figure 4.1 UHV system employed in the photoemission experiments.  



Experimental 

 38

The base pressure of the analysis chamber is 2·10-10 mbar. OMBD as well as metal 

evaporation are performed from Knudsen cells in the preparation chamber the base 

pressure of which is better than 1·10-9 mbar. Samples are introduced into the chamber 

using the load-lock. The star shape connection between chambers, all connected to the 

sample reservoir chamber allows transfer of samples without breaking the vacuum. Up to 

seven samples can be stored in the sample reservoir chamber at once. All the VB-PES 

spectra taken in ARUPS 10 were recorded in normal emission. 

The second UHV system was 

employed for the inverse 

photoemission experiments. 

The system is composed of 

three chambers: the analysis 

chamber, the preparation 

chamber and the load lock 

(Figure 4.2). The analysis 

chamber is equipped with the 

IPES set-up, LEED optics 

and an argon sputter gun (not 

shown). The IPES 

experimental set-up working 

in the isochromat mode is a 

“home” built system. The 

IPES set-up consists of two main components: the low energy electron gun and the 

Geiger-Müller detector which are mounted on a CF 160 mm flange. The fixed-energy 

photon detector [Pri88] consists of a Geiger-Müller tube with a magnesium fluoride (MgF2) 

window filled with a gas mixture containing ethanol and argon. The ionisation energy of 

ethanol and the transmission function of the MgF2 provide a value of 10.9 eV as the 

nominal detection energy of the detector. A low energy electron gun [Erd82] was used to 

produce a mono-energetic electron beam. The overall IPES instrumental resolution, 

estimated from the width of the Fermi edge measured on an Ar sputtered nickel sample is 

0.4 eV. All the IPES spectra were recorded at normal incidence of the electron beam with 

a current density in the range of 10-6 A/cm2. This value is low enough in order not to 

damage the organic film. The base pressure of the analysis chamber and the preparation 

chamber is 8.5·10-10 mbar and 1.9·10-9 mbar, respectively. The preparation chamber 

contains Knudsen cells which are used as evaporation sources for the organic materials 

and metals. 
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Figure 4.2 UHV system for IPES experiments.  
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The third UHV system was the MUSTANG experimental station (Figure 4.3) at BESSY. 

This chamber was engaged in the NEXAFS measurements presented here. The 

experiments were performed at the Russian-German Beam Line using a plane-grating 

monochromator. This beam line provides a  linear polarization factor P of 0.98.  

MUSTANG is a system consisting 

of a preparation and an analysis 

chamber to perform 

photoemission spectroscopy and 

NEXAFS measurements. The 

station is equipped with a SPECS 

Phoibos 150 analyser. The 

detector has a mean radius of 

150 mm and nine single channel 

electron multipliers and is 

arranged at 45° with respect to 

the incident beam. The 

preparation chamber is equipped with a LEED system, a differential pumped ion source, 

two electron beam evaporators, a quartz microbalance, a quadrupole mass spectrometer 

and a gas inlet system. Inside the load lock chamber there is a sample magazine that can 

store up to six samples under HV conditions and also inside the preparation chamber it is 

possible to keep up to four samples under UHV conditions. The base pressure in the 

analysis and preparation chamber is 2·10-10 mbar. 

 

4.2 Sample Preparation 

 

Silicon p-type, (111) oriented, with a doping concentration of approximately 1.5·1015 cm-3 

was used as the substrate. The wafers were provided by Siltronic AG. Sublimed H2Pc 

and CuPc provided by Sensient Imaging Technologies GmbH (former SynTec) were 

employed with no further purification. The fluorinated derivatives of CuPc, F4CuPc and 

F16CuPc, were synthesized and purified by sublimation at the University of Bremen. They 

were available with the help of Dr. Wilfried Michaelis and Prof. Dr. Derck Schlettwein. 

 

 

 
Figure 4.3 MUSTANG experimental station.  
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4.2.1 Hydrogen passivation of silicon 

 

The passivation process consists of a wet chemical etching in a HF 40% solution [Yas94].  

The detailed steps of the process 

are shown in Figure 4.4. The first 

two steps are standard cleaning 

methods that were developed by 

Werner Kern at RCA laboratories 

[Ker78, Ker93]. RCA 1 is a 

procedure for removing organic 

residue and films from silicon 

surface. The decontamination 

works based on sequential 

oxidative desorption and 

complexing with H2O2-NH4OH-

H2O. RCA 2 further cleans the 

silicon surface by removing any 

metal ions present there. In 

between the steps the sample was 

rinsed with deionised H2O. The 

silicon surface was hydrogen terminated by a 30 seconds immersion in a 1:30 mixture of 

HF 40% and H2O. The 1x1 reconstruction of the surface was checked by LEED as shown 

in chapter 2. 

 

4.2.2 Molecular and Metal Films 

 

The organic materials were evaporated in UHV from 

boron nitride crucibles. The Knudsen cells and the 

crucibles were extensively degassed prior to usage by 

annealing to temperatures up to 3500 C. The films were 

prepared by OMBD on silicon substrates that were kept 

at room temperature. The organic films were deposited 

at rates of 0.2-1 nm/min monitored by a quartz 

microbalance situated in the vicinity of the sample. The 
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Figure 4.4 The hydrogen passivation procedure.  

Pc 
Temperature  
        (oC) 

H2Pc 310 

CuPc 315 

F4CuPc 290 

F16CuPc 270 

Table 4.1 Pcs average 
evaporation temperatures.  
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average evaporation temperatures of the Pcs are shown in Table 4.1. The thickness 

calibration was performed subsequently by means of ex situ ellipsometry. The topography 

of the films was recorded by means of atomic force microscopy (AFM). The AFM 

topographic image of 20 nm of H2Pc deposited on H-Si(111) is shown in Figure 4.5 (a). 

The estimated roughness has a value of 1.35 nm. The crystalline clusters of H2Pc have a 

diameter of approximately 0.1 μm estimated from line profiles. The topographic image of 

20 nm of CuPc on H-Si (Figure 4.5 (b)) shows the formation of crystalline clusters with 

sizes of approximately 60-70 nm. Compared to H2Pc, the film is much smoother, having a 

roughness of 0.8 nm.  

 

c) d) 
Figure 4.5 AFM topographic image of 20 nm of a) H2Pc, b) CuPc c) F4CuPc and d) F16CuPc 
deposited on H-Si.  

a) b) 
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The next image (Figure 4.5 (c)) displays the AFM topography of F4CuPc. The roughness 

of the film has a value of 2.3 nm value which is quite large compared to the other Pc 

films. The crystalline clusters of F4CuPc have sizes of about 0.1 μm. At last Figure 4.5 (d) 

contains the topographic image of a thin film of F16CuPc. There is quite a large difference 

in the morphology of this material compared to the others. The main reason is the size of 

the crystalline clusters which are approximately 0.16 μm in diameter. The roughness 

estimated from line profiles is found to be approx 1.3 nm.  

The metal under study in this thesis is silver provided by ChemPur GmbH and has a 

purity of 99.9%. Ag was evaporated from the same type of source as used for the organic 

materials. The temperature of evaporation was around 800o C and the deposition rate 

was about 1nm /min. 

 

4.2.3 Gas Exposure 

 

The freshly prepared organic films were exposed in situ to molecular oxygen supplied by 

Messer Griesheim GmbH. The amount of oxygen leaked in the chamber was estimated 

using a cold cathode pressure gauge in order not to ionize the oxygen molecules. The 

estimation was expressed in Langmuir units considering the following formula: 

 Eq. 4.1 

This formula assumes a sticking coefficient equal to 1 for the gaseous system in 

discussion. 

 

⋅ ×-61L =1 10 torr 1sec
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5 Chapter 5. Electronic Properties of Pc/H-Si 
Systems 

 

 

The following chapter deals with the characterisation of the interface formation 

between the four phthalocyanines H2Pc, CuPc, F4CuPc and F16CuPc, and hydrogen 

passivated silicon. Their electronic properties are determined by means of VB-PES and 

IPES. Molecular orientation is also estimated by means of NEXAFS.  

5.1 H2Pc/H-Si 

 

Figure 5.1 depicts the thickness dependent photoemission and inverse 

photoemission spectra of H2Pc deposited on H-Si(111).  

a) b) 

Figure 5.1 a) VB-PES thickness dependent measurements on H2Pc/H-Si(111); b) IPES 
thickness dependent measurements on H2Pc/H-Si(111).  

The spectra were normalized with respect to the highest peak and shifted vertically for 

clarity. The HOMO and LUMO peak and onset positions are marked by vertical bars. The 
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lowest spectra in both images a) and b) of Figure 5.1 correspond to hydrogen passivated 

silicon. If we analyze the spectra of the first deposited layer of H2Pc, we observe that only 

the HOMO and the LUMO features are visible. This may suggest a lying down orientation 

of the molecules, since the thickness of 0.5 nm corresponds to approximately a 

monolayer of H2Pc. The higher binding energy features in VB-PES and in IPES are not 

visible at this point. In IPES this could be a consequence of either the low cross section of 

the unoccupied states of H2Pc in IPES or the low quantum efficiency of the technique 

(Chapter 3). Further on to the next thicknesses all the characteristic features of H2Pc 

become better resolved in both VB-PES and IPES spectra. The full width half maximum 

(FWHM) of the HOMO feature decreases as the H2Pc thickness increases, starting from a 

value of 0.57 eV at 0.5 nm and reaching a value of 0.49 eV at 20 nm of H2Pc. This 

indicates a better ordering of the molecules in thicker films. Calculations of the band 

structure for the β-metal free phthalocyanine suggest that the FWHM of the HOMO and 

LUMO are in the range of 0.1-0.4 eV along the molecular stacks where the molecules 

have the greatest π-π overlap [Ort98].  

The FWHM of the HOMO observed 

for individual phthalocyanine 

molecules in the gas phase has a 

value of 200 meV [Sch01]. In the 

gas phase, molecule-molecule 

interaction is negligible and as a 

consequence the observed HOMO 

does not have a contribution from 

the vibrational coupling of adjacent 

molecules. Thus, in the present 

case due to the large values of the 

FWHM found at 0.5, 1.2 and 2.5 nm 

of H2Pc, band formation is 

observed from the early stages of 

deposition. 

On the other hand, with increasing 

layer thickness small shifts appear 

in the HOMO and LUMO positions. 

These shifts evolve in opposite 

direction, namely the HOMO feature moves away from the Fermi level and the LUMO 

moves away as well from the Fermi level. This behaviour is similar to the interface dipole 
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Figure 5.2 Peak and cut-off positions of HOMO and 
LUMO as a function of H2Pc layer thickness.  
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case that includes the effect of image potential described in the previous chapter 3. 

Caution must be taken here since this effect is characteristic to organic/metal interfaces. 

Tsiper et al. [Tsi02] assigned such shifts to different electronic polarization energies found 

at the interface and at the surface of PTCDA films deposited on Ag and Au. 

The evolution of both peak and cut-off positions for HOMO and LUMO as a function of 

layer thickness is shown in Figure 5.2. Not only HOMO and LUMO shift but also the 

higher BE features are shifting in similar parallel way. The occurrence of such collective 

and parallel shifts of the VB-PES and IPES features indicates that no chemical interaction 

is present at the H2Pc / H-Si interface. The shape preservation of H2Pc characteristic 

features as a function of film thickness also points to negligible chemical interaction.  

The HOMO and LUMO cut-offs were determined with respect to the Fermi level by a 

linear extrapolation of the low energy edge of the HOMO and of the deconvoluted LUMO 

features (see chapter 3). The shifts show a saturation tendency above 6 nm of H2Pc 

thickness, reaching a final value of (0.2 ±0.07) eV. At thicknesses above 6 nm, the 

transport gap determined as the difference between the onset positions of HOMO and 

LUMO is found to be (2.2 ± 0.2) eV. The manner in which the transport gap was derived 

is illustrated by Figure 5.3.  

The VB-PES and IPES experimental 

data for 20 nm of H2Pc were scaled 

in order to be plotted in the same 

graph. Additionally the charge 

density contours of the HOMO and 

LUMO are included in the upper 

panel of the figure.  

The contours were determined via a 

calculation of the density of states 

(DOS) of one H2Pc molecule 

assumed to be in a gaseous state. 

The code employed for this 

computation was the Gaussian ‘98 

package [Gau98], using the B3LYP 

method and 6-31G(d) basis set. 

Prior to the calculation the geometry 

optimisation of the molecule was performed using a smaller basis set e.g. 3-21g and the 

same method. Such a calculation of the DOS is quite important since it can predict the 

number and nature of the states contributing to each feature in an experimental spectrum 
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Figure 5.3 Et determination for H2Pc.  
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and thus allowing a qualitative assignment of those features. On the other hand, such 

comparison between calculations for a single molecule and experimental data on films of 

molecules gives an estimation of the interaction that exists in a molecular solid. Figure 5.4 

a) and b) displays a comparison of the VB-PES and IPES experimental spectra and 

calculated molecular orbitals (MO) of H2Pc. The experimental spectra correspond to 20 

nm thick films of H2Pc. No cross section effects were included in the simulation of the VB-

PES and IPES spectra. 

The calculated MO energy positions are obtained with respect to the vacuum level. Their 

positions were scaled to the Fermi level by subtracting the experimentally determined 

work function of the organic material. Figure 5.4 (a) contains the experimental and 

simulated VB-PES spectra. The Gaussian functions used to generate the simulated 

spectra have a FWHM of 0.5 eV. The calculated positions of MO were shifted away from 

the Fermi level by 0.48 eV in order to fit the calculated HOMO with its experimentally 

determined position. The experimental and simulated IPES spectra are shown in Figure 

5.4 (b). The experimental data are displayed together with the fit and the deconvoluted 

spectra.  

a) b) 
Figure 5.4 a) Experimental and simulated VB-PES spectra of H2Pc; b) Experimental and 
simulated IPES spectra of H2Pc. The vertical lines in figures a) and b) mark the energy positions 
of the calculated MO.  

The FWHM of the deconvoluted LUMO (0.63 eV) was taken into account for the 

simulation of the calculated MO. The simulated spectra were shifted away for the Fermi 

level by approximately 0.65 eV for the calculated LUMO peak position to fit with 

experimental one. However, we have to note that the first peak in the IPES spectra is 
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composed of two states as judged from the DFT calculation. In the case of the density of 

unoccupied states the LUMO presented in the upper panel of Figure 5.3 is the lowest 

energy position occurring from the calculation and shown in Figure 5.4. Both HOMO and 

double state LUMO have π character and they correspond to au and b2g, b1g MOs 

respectively, in agreement with literature [Ort90]. Although there is a mismatch in the 

energy positions of the simulated and experimental spectra, in general there is quite a 

good agreement in their line shapes. This proves the weak inter-molecular interaction 

present in the organic material. 

Going further with the analysis of the experimental data, the evolution of the electronic 

parameters described in chapter 3 as a function of film thickness is displayed in Figure 

5.5 (a). The energy scale is with respect to the vacuum level and thus any present 

decrease e.g. EA will result in an apparent increase of the data points. At zero coverage 

the parameters for the hydrogen passivated silicon were introduced in the plot. The top of 

the valence band (VBM) of H-Si is placed at 0.8 eV from the Fermi level. The bottom 

position of the conduction band of H-Si was calculated by subtracting from the known 

transport gap of silicon (1.12 eV) the VBM position. Since silicon is an indirect 

semiconductor, the position of the conduction band minimum (CBM) is not situated on the 

perpendicular direction to the (111) plane (see chapter 2 section 2.2.1). Thus IPES at 

normal incidence does not probe the CBM, but a local minimum of the conduction band.  
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Figure 5.5 a) EA, φ, IE as a function of H2Pc layer thickness; b) Energy band diagram of the 
H2Pc/H-Si interface. The surface band bending of the substrate was omitted.  

The electron affinity (EA) of the surface shown in Figure 5.5 (a) reveals a sudden 

decrease upon the first H2Pc deposition. This indicates a charge transfer at the interface 
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between the two materials from H2Pc towards H-Si. EA continues to decrease until the 

H2Pc thickness reaches 6 nm. From that thickness on, EA is constant at (2.74±0.2) eV. 

This suggests a closed H2Pc layer. The charge transfer at the interface is accommodated 

by the formation of an interface dipole of Δ=-0.11 eV which is evident from the change 

displayed by the work function (φ) (Figure 5.5 (a)). However, the range in which φ 

changes is smaller than the EA one, φ remaining constant at a value of (4.04±0.07) eV 

after 2.5 nm H2Pc thickness. The total interface dipole has a value of -0.18 eV. 

Considering the φ of H-Si which has a value of (4.22±0.07) eV and subtracting the φ of 

H2Pc we can obtain the exact value of the interface dipole. Thus the φ of the organic 

material is the driving force behind the formation of the interface dipole. The IE 

fluctuations accounting for the changes in the HOMO position and the interface dipole, 

are resulting in only a slight decrease and then increase of the IE to a value of 

(4.96±0.07) eV which corresponds to the thick H2Pc material [Kim00]. In conclusion 

Figure 5.5 (b) shows the schematic representation of the energy levels at the H2Pc/H-Si 

interface which for simplicity does not include the band bending at the H-Si surface. The 

barrier heights for electrons and for holes at the interface can be estimated to be 0.78 eV 

and 0.08 eV, respectively.  

 

5.2 CuPc/H-Si 

 

Figure 5.6 depicts the thickness dependent ultraviolet photoemission and inverse 

photoemission spectra of CuPc deposited on H-Si(111). The spectra in Figure 5.6 (a) 

middle panel were normalized with respect to the peak placed at 6.5 eV binding energy 

and shifted vertically for clarity. The H-Si spectrum was normalized to its highest peak in 

this case. The HOMO and LUMO peak and onset positions are marked by vertical bars. 

The three VB-PES characteristic peaks for CuPc already appear at very low coverage 

(0.5 nm) unlike in the H2Pc case where at this thickness only HOMO is visible. All the 

peaks shown are gradually shifting with increasing CuPc thickness while the relative 

distance between the peaks remains unchanged. This indicates that no chemical 

interaction occurs during the interface formation process. Furthermore, no marked 

changes in the peak shape of the HOMO as well as LUMO features are observed. The 

values of the full width half maximum (FWHM) for the HOMO and the LUMO are almost 

constant as a function of film thickness and have values of 0.50 eV and 1.1 eV without 

deconvoluting with the instrumental resolution, respectively.  
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a) b) 
Figure 5.6 a) VB-PES thickness dependent measurements on CuPc/H-Si(111); b) IPES 
thickness dependent measurements on CuPc/H-Si(111).  

As previously discussed for H2Pc, when band structure is formed, the FWHM of HOMO 

takes values from 0.1 to 0.4 eV [Ort89]. Consequently the broadening of the HOMO even 

at a low CuPc coverage suggests the development of a band structure i.e. molecule-

molecule interaction. Zooming into the HOMO region as shown on the right hand side of 

Figure 5.6 (a), a strong shift of the HOMO peak and onset positions towards higher 

binding energies is observed with increasing thickness. The overall value of the shift is 

approximately (0.4 ±0.07) eV. The same amount of shift is found in the LUMO position as 

a function of thickness as shown in Figure 5.6 (b). Similar to the VB-PES case, the CuPc 

features appear for 0.5 nm and become better resolved for higher thicknesses. The 

LUMO shifts towards the Fermi level with increasing film coverage. The same shift is 

observed in the higher binding energy MO’s of the IPES spectra. Above 15 nm CuPc 

coverage the energy shift saturates. At this point the CuPc layer has reached the 

characteristics of the bulk like organic material. The CuPc molecular bulk configuration 

presents the HOMO state at ~ 1.6 eV binding energy (BE) and two other molecular levels 

at higher BE [Sch94] with respect to the Fermi level. On the other hand, in the left hand 

panel of Figure 5.6 (a) the secondary electrons display a movement of the vacuum level 

which is in the same range of thicknesses as the HOMO-LUMO shifts.  

Figure 5.7 summarizes the resulting HOMO – LUMO peak and onset positions as a 

function of film thickness and with respect to the Fermi level.  
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The HOMO – LUMO peak to peak 

difference calculated for all 

coverages is approximately (3 ± 

0.2) eV.  

The transport gap determined as 

the difference between the onset 

positions of LUMO and HOMO is 

found to be approximately (2.2 ± 

0.2) eV (Figure 5.8). This value is 

in rather good agreement with the 

one determined by Hill et al. 

[Hil00] using UPS-IPES (2.3 ± 0.4) 

eV, but somewhat larger than the 

one determined by cyclic 

voltammetry [Sim85] (1.71 ÷ 1.84 

eV). In the upper panel of Figure 

5.8 the charge density contours of 

the HOMO and LUMO are 

displayed. The HOMO contains 

two states having almost the same 

energy. One corresponds to electrons 

with spin up and one to electrons with 

spin down (alpha and beta). The LUMO 

contains four states grouped in two 

pairs. The states in the pair have the 

same energy position. Each pair 

matches the spin up and spin down 

electrons. Thus the shown contours 

correspond to the highest and lowest in 

BE respectively. The two charge 

density contours were derived from the 

DFT calculation for a CuPc single 

molecule. Both HOMO and LUMO have 

π character. The two and four states 

correspond to a1u and eg MO, 
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Figure 5.7 Peak and cut-off positions of HOMO and 
LUMO as a function of H2Pc layer thickness.  
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respectively. The computation was performed in a similar manner to H2Pc (subchapter 

5.1), but the geometry optimisation procedure was different. To be precise, due to the odd 

number of valence electrons, CuPc had to undergo a frequency calculation in order to 

estimate the bonds strength within the molecule. Then, the check point file of this 

calculation was employed as input in the geometry optimisation calculation of the 

molecule. Finally the MO’s and their energy levels were estimated by the same method 

and basis set as for H2Pc. The simulated spectra based on the calculated energy level 

around the gap compared to the experimental ones are presented in Figure 5.9 (a) and 

(b). Analogous to H2Pc, the lineshapes of the simulated spectra are in good agreement 

with the experimental ones confirming once more the weak intermolecular interaction in 

the film. However, the expected energy mismatch is found here again. In the first step, 

the spectra were scaled to the Fermi level by subtracting the experimental work function 

φ.  

a) b)  
Figure 5.9 a) Experimental and simulated VB-PES spectra of CuPc; b) Experimental and 
simulated IPES spectra of CuPc. The vertical lines in figures a) and b) mark the energy positions 
of the calculated MO.  

Afterwards, the simulated VB-PES spectrum was shifted by 0.37 eV away from the Fermi 

level in order to match the calculated HOMO position to the experimental one. 

Alternatively, the simulated IPES spectrum was shifted by 0.48 eV away from the Fermi 

level for the computed LUMO position to overlap on the experimental one. Consequently 

the energy difference between the simulated and experimental states amounts to 0.85 

eV. The computer-generated VB-PES and IPES spectra employed Gaussian functions 
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with FWHM of 0.45 eV. The FWHMs were determined from fitting the experimental 

HOMO and deconvoluted LUMO.  

At the present moment there is an ongoing discussion about the computed states for 

CuPc. Several articles that present theoretical calculations claim that there is a 3d-like 

state in the HOMO-LUMO gap [Lia01] placed at the Fermi level [Bia03]. However, there is 

only one article containing experimental data that sustains this hypothesis [Dow04]. 

Downes et al. show resonant soft X-ray emission data measured on a thick film of CuPc 

that exhibit a state placed in the HOMO-LUMO gap. In the present work the assumption 

of the existence of such a state is excluded since no evidence in the experimental data is 

found whatsoever. This conclusion is sustained by the present DFT calculations and 

other publications [Loz04, Roc90].  

Considering the interface formation of CuPc and H-Si, Figure 5.10 (a) summarizes the 

electronic properties of the CuPc film surface as a function of the deposited thickness. 

The dashed lines are plotted as guide to the eye. When 0.5 nm of CuPc is deposited a 

sudden change of EA and IE occurs. Proceeding to larger CuPc thicknesses EA and IE 

remain constant. On the other hand, the work function decreases approximately linearly 

as a function of thickness. 
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Figure 5.10 a) EA, φ, IE as a function of CuPc layer thickness; b) Energy band diagram of the 
CuPc/H-Si interface. The surface band bending of the substrate was omitted.  

Figure 5.10 (b) summarizes the measurements by showing the energy band diagram of 

CuPc/H-Si(111) interface. The determined values for thick CuPc layer (20 nm) are: 

IE=(4.82±0.07) eV, Φ=(3.88±0.07) eV and EA=(2.66±0.2) eV. A change of (0.34±0.07) eV 

in the vacuum level position at the interface is measured as well. There is no rigid shift of 

the secondary electron cut-off and thus following the definition given in the previous 

chapter 3, no absolute interface dipole. The onset positions of the HOMO and LUMO 

0 5 10 15 20
5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0
 electron affinity
 work function
 ionisation energy

 

 E
ne

rg
y 

/ e
V

Thickness / nm



Electronic Properties of Pc/H-Si Systems 

 53

were employed in order to sketch the energy band diagram and to calculate the values of 

the electronic properties. The determined interface barriers for electrons and for holes are 

1.3 eV and 0.26 eV respectively. In the case of H-Si(111), the onset position of the VBM 

was taken into consideration for determining the IE=(5.02±0.07) eV and Φ=(4.22±0.07) of 

the surface. The VBM is obtained in the direction perpendicular to the (111) plane of 

silicon. However, the conduction band minimum is not situated in the same direction 

[Mön95] as discussed in the previous subchapter 5.1 H2Pc/ H-Si.  

The energy shift that appears at the H-Si(111)/CuPc interface might have several 

explanations. As already discussed for metal-organic interfaces [Ish99] the formalism of 

electrostatic band bending model can hardly explain the formation of these interfaces.  
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Figure 5.11 The Schottky formula applied in the CuPc case. The charge 
carrier density as a function of the depletion width.  

Figure 5.11 displays the dependence of the charge carrier density as a function of the 

depletion width for this particular case. Applying Poisson’s equation as for inorganic 

semiconductors, using a depletion width of 15 nm, the built-in potential calculated from 

the difference of Φ of H-Si and CuPc, and the reported relative dielectric constant of 

CuPc (about 5) [Deb92], the charge carrier density is found to be very high i.e.1⋅1024 cm-3. 

Consequently the results of such an interpretation would be unreasonable since the 

intrinsic carrier concentration of CuPc [Mck98] was previously estimated to be ~107 cm-3.  
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Even though the conventional band bending model is quite unlikely to explain the energy 

shifts at the CuPc/H-Si interface, this model was not completely ruled out in previous 

publications [Shi98, Paa03]. The formation of inorganic-organic semiconductor interfaces 

is still under discussion. Possible factors which can affect the interfacial layer are 

chemical interaction, polarization in the molecular layer and a surface rearrangement. 

The appearance of the energy shift due to charge transfer occurring as a result of 

chemical interaction may be excluded since the distance between the gradually shifting 

peaks as well as their lineshape remains unchanged. In the case of chemical interaction 

the appearance or disappearance or at least changes in the lineshape of features in the 

valence band is expected. Polarization in the molecular layer is consistent with such 

energy shifts in the HOMO position as found by Peisert et al. [Pei02] and initially 

considered for other organic molecules as well i.e. perylene derivatives [Hil00]. The 

distribution of charge on the molecules changes with the changing of environment from 

the hydrogen passivated silicon substrate to the thick CuPc film. Moreover, the 

distribution of charge on the molecules is also influenced by the slightly different 

arrangement of the molecules in the vicinity of the substrate compared with the ones in 

the thick film. Furthermore the surface roughness of the substrate may also play a role in 

the overall molecular arrangement. Nakamura et al. [Nak96] determined the growth mode 

of CuPc on a NH4F passivated Si(111) substrate. The molecular column of CuPc was 

found to be parallel to the surface on a relatively rough substrate, while the column was 

found perpendicular to the Si(111) plane on an atomically flat substrate. The hydrogen 

passivation involving HF immersion was already proven to produce a relatively rough 

substrate surface [Bur88, Hig90]. Considering that the FWHM values of the HOMOs are 

not changing, the adsorption geometry of CuPc molecules may be estimated. The 

molecules seem to form clusters even at a monolayer coverage, which would grant them 

already bulk like properties and result in band formation. Peisert et al. [Pei02] determined 

that CuPc on polycrystalline gold behaves in a similar way. Comparing the polycrystalline 

gold surface and the H-Si(111) surface a common characteristic is found: namely the 

relative large roughness of both substrates. Although the wet chemical treatment based 

on HF dip gives an ideally hydrogen terminated surface, this surface is non-uniform 

[Hig91]. By means of STM the estimated value of the roughness is about 2-3 Å. This may 

favour the clustering of the molecules in the first monolayers. However, measurements on 

CuPc/H-Si system using a slightly different hydrogen passivation of silicon show the 

same energy shifts [Gor05]. This indicates that the surface roughness of the substrate 

does not play a major role for the energy shifts at the interface.  
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Several other studies have shown that the molecules change their orientation as a 

function of layer thickness [Ish98, Pei01, Yam02]. An incomplete overlapping of the CuPc 

molecules results in a partial superposition of the π orbitals. As a consequence, when a 

change in molecular orientation occurs, it will result in a change of the intermolecular 

interaction and will affect of the π-electron system. As determined before from DFT 

calculations and in agreement with literature HOMO and LUMO features correspond to π-

character molecular orbitals [Sch94, Yos01]. Consequently any change of molecular 

orientation will influence the recorded VB-PES and IPES spectra and the HOMO and 

LUMO features, respectively. Following this hypothesis angular dependent NEXAFS was 

performed on the CuPc/H-Si(111) system, namely on two different thicknesses of CuPc. 

Figure 5.12 displays the CuPc N1s excitation spectra for a) 2 monolayers and b) 20 nm 

thickness as a function of the angle of incidence θ ( normal incidence θ = 900 ) of the 

synchrotron radiation. 
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Figure 5.12 a) N1s excitation spectra a) 2 monolayers of CuPc and b) 20 nm of 
CuPc as a function of θ the angle of incidence; The lower energy features (398-403 
eV) represent the π* resonances, whereas those features above 403 eV are related 
to the σ* resonances.  

The intensity of the π* (relative to the σ* one) resonances has maxima at θ=1350 (Figure 

5.12 (a)) and θ=850 (Figure 5.12 (b)). However, the intensity and features of σ* resonance 

are still visible at the given incidence angles. This suggests the presence of short range 

ordering in both cases. 
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The quantitative analysis of the NEXAFS excitation spectra for CuPc based on the 

explanations given in chapter 3 is provided in Figure 5.13 (a) and (b). The procedure 

used for the determination of the normalized intensities consists of several steps. First of 

all, the NEXFAS spectra were normalized such that they coincide for photon energies far 

below and far above the N 1s absorption edge. Hence the procedure accounts for the 

collection efficiency. Subsequently, each π* region of the NEXAFS N 1s excitation spectra 

was fitted with Lorentian functions [Stö92]. The intensity of the first π* peak was then 

plotted as a function of the radiation incidence angle and the maximum and minimum of 

the π* intensities determined. In this case both a) and b) NEXAFS spectra display a 

clearer maximum in the π* intensities as a function of incidence angle than a minimum. 

Consequently, to minimize the parameter number in eq. 3.25, a normalization of all π* 

resonant intensities to the maximum one was used in the fitting session.  

a) b) c) 

Figure 5.13 Normalized resonance intensity of the π* orbitals (the highest intensity feature in the 
N1s excitation spectra in Figure 5.12 (a) ad (b)) as a function of the incidence angle of the 
synchrotron radiation of a) 2 monolayers and b) 20 nm of CuPc; c) average molecular orientation 
of CuPc in 2 monolayers (ML) and 20 nm.  

Figure 5.13 (a) and (b) exhibits the normalized resonance intensity of the π* orbitals as a 

function of the incidence angle of the synchrotron radiation. The data points are fitted 

using Eq. 3.25 and the average tilt-angle for each case is calculated. The 3-fold symmetry 

of the silicon substrate is lifted by the surface roughness and as a consequence the 

model used for the fit contains an azimuthal dependence as well.  

 Due to the sampling depth of 

NEXAFS which is extremely 

large (approximately 20 nm) 

compared to the size of a 

molecule, the determined 

 Tilt angle α Azimuthal angle φ 

2 ML 700±20 1080 ±30 

20 nm 900±10 450±20 

Table 5.1 Calculated angles from the fit of the π* resonance 
intensities for 2 monolayers and 20 nm of CuPc.  

0 30 60 90 120 150 180

0.7

0.8

0.9

1.0
 experimental data
 fit

N
or

m
al

iz
ed

 In
te

ns
ity

 o
f π

∗  / 
a.

 u
.

θ / degrees
0 30 60 90 120 150 180

0.2

0.4

0.6

0.8

1.0

 experimental data
 fit

N
or

m
al

iz
ed

 In
te

ns
ity

 o
f π

*  / 
a.

 u
.

θ / degrees

2 ML

20 nm

2 ML

20 nm



Electronic Properties of Pc/H-Si Systems 

 57

molecular orientation is an average one (Figure 5.13 (c)). The calculated values of the tilt 

angles α and the azimuthal angles φ are displayed in Table 5.1. As shown, the CuPc 

molecules change their orientation above a certain film thickness. This points to weaker 

interaction strength between the CuPc molecules in a film than between the CuPc 

molecules and the substrate. If the interactions would be similar in strength, such a 

change of molecular orientation would not have taken place.  

In conclusion NEXAFS spectra reveal a change in the molecular orientation of CuPc from 

monolayer range to thick films. Thus the rearrangement of the CuPc molecules is most 

likely the reason for the observed energy shifts at the CuPc/H-Si(111) interface, since the 

energy shifts are independent of surface treatment and surface roughness. 

 

5.3 F4CuPc/H-Si 

 

Similarly to H2Pc and CuPc, VB-PES and IPES experiments were performed on thin 

films of F4CuPc deposited on H-Si. The thickness dependent spectra are displayed in 

Figure 5.14 (a) and (b).  

a) b) 

Figure 5.14 a) VB-PES thickness dependent measurements on F4CuPc/H-Si(111); b) IPES 
thickness dependent measurements on F4CuPc/H-Si(111).  

The VB-PES spectra corresponding to F4CuPc were normalized to the peak placed at 6.5 

eV BE and then shifted upwards for clarity. The H-Si VB-PES was normalized to its 

highest peak. The IPES spectra were not normalized. The characteristic features of the 

material appear at the first deposition and become better resolved at higher thicknesses.  

9 8 7 6 5 4 3 2 1 018 16 2 1 0

  

Binding Energy / eV

 

 

N
or

m
al

iz
ed

 In
te

ns
ity

 / 
a.

u.

 

 

 

 

 

20 nm

15 nm

11 nm

5.7 nm

3.7 nm

2.5 nm

1.2 nm

0.5 nm
H-Si

0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 In
te

ns
ity

 / 
a.

 u
.

 

E - E Fermi / eV



Electronic Properties of Pc/H-Si Systems 

 58

When analysing the shapes of the VB-PES spectra (Figure 5.14 (a)) with respect to the 

previous systems H2Pc and CuPc (Figure 5.15), we can observe the high resemblance 

between them in the low BE region. However, in the high BE energy the shapes are 

changed. Thus the fluorine atoms contribute mainly to the higher BE components. On the 

other hand, the shapes of the IPES spectra are highly alike to the ones belonging to H2Pc 

and CuPc. The straightforward conclusion would be that fluorine atoms have a much 

smaller contribution to the unoccupied states.  

 

Figure 5.15 VB-PES spectra corresponding to 20 nm of H2Pc, CuPc, F4CuPc and F16CuPc.  

This is somewhat expected due to the high electronegativity of fluorine. In the molecule, 

fluorine probably has a high tendency to attract the electrons from the core and thus 

forms negatively charged branches, inducing a quadrupole moment in the molecule.  

Advancing in the data analysis, the left hand side of Figure 5.14 (a) displays the 

secondary electron region. This region detects whether there is any change in the 

vacuum level position. In this case, an abrupt interface dipole is formed upon the first 

deposition. The value of the dipole is Δ=0.30 eV. However, the secondary electron cut-off 

does not remain constant and continues to change until the thickness reaches 3.7 nm 

where it saturates. The shift has a value of 0.2 eV. The charge flows from H-Si to F4CuPc. 

The dipole is formed in an opposite direction to the ones formed by CuPc and H2Pc. It 

seems that the presence of fluorine in the molecule reverses the charge flow at the 

interface. That is again expected due to the high electronegativity of fluorine. The total 

value of the interface dipole is Δ=0.50 eV.   
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Considering the right hand panel of Figure 5.14 (a), we detect that the HOMO shifts 

towards the Fermi level by approximately 0.1 eV as the F4CuPc thickness is increased. A 

saturation point is reached above 6 nm thickness. The HOMO FWHM values are 

decreasing with increasing thickness suggesting a smaller degree of disorder in thicker 

films and a more defined environment. In the IPES spectra, the LUMO (Figure 5.14 (b)) 

shows approximately the same behaviour as HOMO. A similar shift occurs in its position 

with the LUMO moving away from the Fermi level. Figure 5.16 summarizes the resulting 

HOMO – LUMO peak and onset positions as a function of film thickness with respect to 

the Fermi level. The HOMO–LUMO peak-to-peak difference calculated for all coverages 

is approximately (2.85 ± 0.2) eV.  

The transport gap estimated from 

the HOMO and deconvoluted LUMO 

onsets (see subchapter 3.3) has a 

value of (1.95 ± 0.2) eV.  

A schematic of the transport gap 

determination procedure is 

displayed in Figure 5.17. A DFT 

calculation on a single F4CuPc 

molecule was performed precisely in 

the same manner as for CuPc using 

the same type of geometry 

optimisation procedure, method and 

basis set (subchapter 5.2).  

The charge distribution contours 

shown in the upper panel of Figure 

5.17 were created as a result of this 

calculation. Exactly as in the case of 

CuPc, the calculated HOMO and 

LUMO of F4CuPc contain two and 

four states respectively and have π character. The two and four states correspond to au 

and eg MO, respectively. The simulated spectra based on the calculated energy level 

around the gap compared to the experimental ones are displayed in Figure 5.18 (a) and 

(b). The computer generated spectra were rescaled with respect to the Fermi level by 

subtracting the experimental work function from the computed energy positions. The 

Gaussian functions used in the convolution of the calculated energy levels have FWHM of 

0.46 eV and 0.44 eV for the VB-PES and IPES simulations, respectively. The presented 

 
Figure 5.16 Peak and cut-off positions of HOMO and 
LUMO as a function of F4CuPc layer thickness.  
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comparison shows quite good agreement in terms of lineshapes between the simulated 

and experimental spectra. Nevertheless, in this case as before there is a mismatch 

between the calculated energy positions and the experimental ones.  

The simulated VB-PES spectrum was 

shifted away from the Fermi level by 

0.81 eV in order to match the HOMO 

position onto the experimental one, 

while the simulated IPES spectra were 

shifted towards the Fermi level by 0.05 

eV for overlapping the calculated 

LUMO position with the experimental 

one. Thus the mismatch in the 

transport gap mounts to 0.76 eV. This 

underestimation of the transport gap in 

DFT calculations is a known issue for 

this type of computation. Up to now, 

there has been no publication with 

detailed theoretical calculations of the 

F4CuPc molecule.  

a) b) 
Figure 5.18 a) Experimental and simulated VB-PES spectra of F4CuPc; b) Experimental and 
simulated IPES spectra of F4CuPc. The vertical lines in figures a) and b) mark the energy 
positions of the calculated MO.  

 

Figure 5.17 Et determination for F4CuPc.  
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Continuing the experimental data evaluation, Figure 5.19 (a) presents the evolution of the 

electronic properties of the interface (EA, φ, IE) as a function of the F4CuPc layer 

thickness. At the zero point of thickness again the experimental data corresponding to H-

Si were introduced. Upon the first deposition of F4CuPc the EA of the surface decreases 

suddenly. Since the features of F4CuPc for this thickness are already quite clearly seen in 

the IPES spectrum, the measured EA corresponds directly to the organic layer with only 

very little influence from the H-Si. Judging further the change observed in EA, we can 

estimate the influence of the substrate. For the next thicknesses up to 3.7nm of F4CuPc, 

EA increases slightly until it reaches saturation at a value of (3.65±0.2) eV.  

    a) b) 

Figure 5.19 a) EA, φ, IE as a function of F4CuPc layer thickness; b) Energy band diagram of the 
F4CuPc/H-Si interface. The surface band bending of the substrate was omitted.  

This change accounts for the formation of an interface dipole and includes also the LUMO 

band bending like shift. At this point we can estimate the total barrier for electrons at the 

interface as being 0.78 eV. φ and IE are both increasing as a function of F4CuPc 

thickness and reach the saturation values φ=(4.71±0.07) eV and IE = (5.55±0.07) eV at 

3.7 nm. The change in IE incorporates the vacuum level rigid shift (0.3 eV) and the small 

HOMO shift (0.1 eV). Further, up to the saturation point it also incorporates the 

continuous shift found at the vacuum level (secondary electron cut-off). The total barrier 

for holes can be estimated and has a value of 0.05 eV. φ is directly measuring the 

presence of the total interface dipole (0.5 eV) that relaxes over a charge transfer from H-

Si to F4CuPc. At last, Figure 5.19 (b) summarizes all the determined parameters in the 

energy band diagram for the F4CuPc/H-Si interface. The conduction band minimum of H-

Si is not included in the band diagram due to reasons previously explained. Compared to 
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the CuPc/H-Si interface, the F4CuPc/H-Si interface presents a combination of weak band 

bending like behaviour and interface dipole formation. 

Considering the behaviour of H2Pc and CuPc in comparison with that of F4CuPc, such a 

trend in the interface dipole could be predicted by scaling it to the electronegativity and 

electron affinity of the substitute atoms when deriving the F4CuPc molecule from CuPc. 

When calculating the average value of the electronegativity and electron affinity / 

molecule (Figure 5.20), we observe the same trend as found in the experimental 

determination of EA of the molecule. The average electronegativity of the molecules was 

determined by the geometric mean of the atomic values of their constituents as described 

by Pauling [Mön95]. On the other hand, the average electron affinity of the molecules was 

calculated by the arithmetic mean of the atomic values.  

Consequently such a 

prediction is consistent with 

the observed linear variation 

of the interface dipole as a 

function of EA, φ and IE for the 

different Pcs (Figure 5.36). On 

the other hand, the change in 

direction of the energy shifts in 

the HOMO and LUMO levels 

at the interface when 

switching from CuPc to 

F4CuPc points to the following 

conclusion. The fluorine atoms 

compensate the effect of the 

copper atom in F4CuPc. While 

at the H2Pc/H-Si interface we find no energy shifts, when Cu atom appears in the H2Pc 

molecule forming CuPc, HOMO and LUMO do shift. Similarly, when CuPc is modified by 

four atoms of fluorine, HOMO and LUMO shift in opposite direction. This type of atom 

switching leads to a charge redistribution in the molecule and thus influences the π-π 

overlapping. As a result, a change in the molecular orientation will be induced that 

produces energy shifts in electronic levels. The direction of the shifts in the HOMO-LUMO 

positions is influenced by the electron affinity of the atoms that modify the molecules, in 

this case Cu and F. The values of electron affinities belonging to these atoms are: H:        

-0.75 eV, Cu: -1.22 eV and F: -3.4 eV. More will be discussed at the end of this chapter, 

where also a comparison to F16CuPc will be introduced.   

 
Figure 5.20 Comparison of the experimentally determined 
EA and the calculated mean values of electronegativity and 
electron affinity / molecule.  
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Determining the origin of the band bending like behaviour found here also involved testing 

the classic theory of band bending. A plot of the charge carrier density as a function of the 

depletion width is shown in Figure 5.21. Applying the Schottky formula in this case 

yielded the following data: given a shift of 0.1 eV and thus a built-in potential of 0.1 V, and 

a depletion width of 6 nm, the resulting charge carrier density amounts to 1.4x1024 cm-3. 

This value is totally unrealistic for an organic material. Thus the classic theory of inorganic 

semiconductor interfaces can not be applied in this case.  
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Figure 5.21 The Schottky formula applied in the F4CuPc case. The charge carrier 
density as a function of the depletion width.  

As previously discussed for CuPc such a shift can have several origins based on the 

factors which can affect the interfacial layer. The chemical interaction can be ruled out 

since the appearance or disappearance or at least changes in the lineshape of VB 

features are not observed. Then polarisation in the molecular layer was another cause 

discussed for CuPc. It can appear also in this case, however, it can be caused by a 

change in the molecular orientation in the vicinity of the substrate and in thicker films. 

Such a change in orientation affects the π-π overlapping and thus the VB-PES and IPES 

spectra. The result would be shifts in the molecular orbitals as observed here. To confirm 

the hypothesis of shifts generated by changes in the molecular orientation as a function of 

thickness, angular dependent NEXAFS measurements were performed at two different 

F4CuPc thicknesses.  
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a) b) 
Figure 5.22 a) N1s excitation spectra a) 2 monolayers of F4CuPc and b) 20 nm 
of F4CuPc as a function of θ the angle of incidence; the lower energy features 
(398-403 eV) represent the π* resonances, while those features above 403 eV 
are related to σ* resonances.  

 

a) b) c) 

Figure 5.23 Normalized resonance intensity of the π* orbitals (the highest intensity feature in 
the N1s excitation spectra in Figure 5.22 (a) and (b)) as a function of the incidence angle of the 
synchrotron radiation of a) 2 monolayers and b) 20 nm of F4CuPc; c) average molecular 
orientation of F4CuPc in 2 monolayers (ML) and 20 nm.  

The N 1s excitation spectra of a) 2 monolayers and b) 20 nm thickness as a function of 

the angle of incidence θ of the synchrotron radiation are displayed in Figure 5.22 (a) and 

(b). As already described for CuPc, the spectra underwent subsequent normalization prior 

to the final quantitative analysis. The normalization procedure for the 2 monolayers of 
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F4CuPc was exactly the same as for CuPc due to the presence of a maxima in the π* 

resonance intensities (θ=1150). Consequently Figure 5.23 (a) displays the ratio of the 

resonance intensities and the maximum resonance intensity. On the other hand, the 

resonance intensities for 20 nm of F4CuPc show only a minimum and therefore the 

normalization procedure was changed. Instead of the ratio the difference of spectra was 

used. Namely, the N 1s excitation spectra corresponding to the minimum π* intensity was 

subtracted from all the N 1s NEXAFS spectra. This type of procedure is also well 

documented and widely used [Stö92]. The resulting dependence is shown in Figure 5.23 

(b). The fit of the resonant intensities shown in Figure 5.23 for 2 monolayers and 20 nm 

was performed using Eq. 3.25. Since there was no possibility to obtain a good fit of the 

resonant intensities by taking into account the 3 fold symmetry of the silicon substrate, 

the conclusion that the symmetry was lifted by the substrate roughness was reached. 

Thus the results contain besides the tilt angle α, an azimuthal angle φ (Table 5.2). This 

azimuthal angle may be considered as the angle formed by the in plane projection of the 

π vector of the molecule and the plane of the incident radiation. Unfortunately this 

azimuthal angle can not be recalculated with respect to any of the substrate directions 

due to experimental reasons (the cut directions of the samples are not known).  

As before the displayed angles 

are pointing to an average 

orientation of the molecules. In 

conclusion, F4CuPc has a 

different molecular orientation 

than CuPc. While CuPc in 2 ML 

is tilted with respect to the 

substrate, F4CuPc adopts a 

more standing configuration. This suggests a weaker interaction of F4CuPc with the 

substrate than found for CuPc. Moreover, in thicker films while CuPc molecules are 

standing, F4CuPc molecules are tilting. Such a behaviour definitely points to the fluorine 

atoms playing the major role in the orientation of the molecules. The change in molecular 

orientation from thin to thick film points to molecular relaxation achieved above a certain 

layer thickness. This indicates a larger molecule/substrate interaction than 

molecule/molecule interaction. If the molecule/molecule interaction would be greater than 

the molecule/substrate interaction then there would be no change in the molecular 

orientation as a function of film thickness. Certainly here the strength of the interaction 

between the F4CuPc molecule and H-Si can be classified as the weakest when compared 

to the CuPc/H-Si and F16CuPc/H-Si interaction. This assertion can be made due to the 

 Tilt angle α Azimuthal angle φ 

2 ML 900±30 550 ±50 

20 nm 600±10 820±40 

Table 5.2 Calculated angles from the π* resonance 
intensities fit for 2 monolayers and 20 nm of F4CuPc.  
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standing geometry of the F4CuPc molecule in the 2 monolayers film, a geometry which 

presents the smallest probability of interaction between the π orbitals of F4CuPc and the σ 

orbitals of the H-Si surface.  

 

5.4 F16CuPc/H-Si 

 

The last interface discussed here is formed by hexadecafluorinated copper 

phthalocyanine (F16CuPc) and H-Si. The thickness dependent VB-PES and IPES spectra 

are displayed in Figure 5.24 (a) and (b) respectively. At the first glance, the spectra show 

a totally different behaviour when compared to H2Pc, CuPc and even F4CuPc. The energy 

shifts present are large with respect to the previously described ones. In the left hand side 

panel where the VB-PES spectra are, one can observe that at 0.5 nm thickness the 

characteristic features of F16CuPc [Knu04] are already present similar to CuPc and 

opposite to H2Pc and F4CuPc. However, at the same thickness in IPES, the features are 

not as distinct. This could be a consequence of either the low cross section of the 

unoccupied states of F16CuPc in IPES or the low quantum efficiency of the technique 

(Chapter 3) as mentioned before. The HOMO and the higher BE states are shifted 

towards the Fermi level as a function of layer thickness.  
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Figure 5.24 a) VB-PES thickness dependent measurements on F16CuPc/H-Si(111); b) IPES 
thickness dependent measurements on F16CuPc/H-Si(111).  



Electronic Properties of Pc/H-Si Systems 

 67

2 1 EF18 17 16 10 8 6 4 2 0

 

Binding energy / eV

F16CuPc

F4CuPc

CuPc

H2Pc

  

 N
or

m
al

iz
ed

 In
te

ns
ity

 / 
a.

 u
.

 
Figure 5.25 VB-PES spectra corresponding to 20 nm of H2Pc, CuPc, F4CuPc and 
F16CuPc.  

The shape of the VB-PES features is quite distinct from the characteristic ones 

belonging to H2Pc, CuPc and even F4CuPc (Figure 5.25). Thus the higher BE 

components are modified by the high number of fluorine atoms contained now by the 

molecule. The energy shift of the HOMO amounts to 0.6 eV. A similar evolution takes 

place in the IPES spectra where the LUMO shifts away from the Fermi level with the 

same amount of energy. The shift shows a saturation tendency above 15 nm of F16CuPc. 

Compared to the previously discussed materials, the HOMO-LUMO shift of F16CuPc is 

opposite to that for CuPc. The transport gap remains approximately constant within the 

experimental error at a value of (1.8±0.2) eV. The peak-to-peak difference is constant as 

well and has a value of approximately (2.8±0.2) eV (Figure 5.26). If we consider the 

secondary electron region, we can observe that when the first layer is deposited a rigid 

shift is already observable. The shift has a value of 0.60 eV. This type of behaviour is 

accounted for the formation of an interface dipole at the F16CuPc/H-Si interface. At higher 

thicknesses the secondary electron cut-off continues to shift as a function of thickness 

reaching a final value for approximately 5.7 nm of F16CuPc. The total value of the 

interface dipole is Δ=1.20 eV and has the same direction as detected for F4CuPc.  

It is opposite to the interface dipoles determined at the H2Pc/H-Si and CuPc/H-Si 

interfaces. This clearly indicates that the added fluorine atoms play an important role in 

the formation of the interface. The presence of a high number of fluorine atoms changes 

the electronic fingerprint of the molecule as shown in Figure 5.25.  
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The shape of the VB-PES features is 

different from the ones found for the 

other Pcs. Consequently the fluorine 

atoms contribute to all of the MOs 

that generate the VB-PES features. 

On the other hand, the band gap of 

the molecule is also affected by this 

modification since its determined 

value (Figure 5.27) is smaller than Et 

of CuPc and F4CuPc.  

The DFT calculations performed for 

this molecule show a contribution of 

the fluorine atoms to the HOMO and 

LUMO and predict a smaller band 

gap as well (2.07 eV). An illustration 

of this statement can be found in the 

representation of the HOMO and 

LUMO charge distributions shown in 

the upper panel of Figure 5.27.  

The shapes of the charge 

distributions include the fluorine 

atoms in both cases.  

The DFT computation was performed 

as described for CuPc (one molecule 

in a gas phase) since the F16CuPc 

molecule displays the same odd 

number of valence electrons. A 

comparison of the calculated states 

and the VB-PES and IPES 

experimental spectra is presented in 

Figure 5.28 (a) and (b). The spectra 

are referenced to the Fermi level as 

discussed before. The HOMO and 

LUMO experimental features are 

attributed to a1u and eg MO, 

respectively. Similarly to CuPc and 
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F4CuPc, HOMO and LUMO contain two and four states, correspondingly. The VB-PES 

and IPES simulated spectra employed Gaussian functions with FWHM of 0.51 eV and 

0.52 eV as resulted from the fits (see description for the other molecules).  
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Figure 5.28 a) Experimental and simulated VB-PES spectra of F16CuPc; b) Experimental and 
simulated IPES spectra of F16CuPc. The vertical lines in figures a) and b) mark the energy 
positions of the calculated MO.  

An inequality in the energy positions of the calculated and experimental spectra appeared 

once more. The HOMO was shifted by 1.2 eV away from the Fermi level and LUMO was 

shifted towards the Fermi level by 0.22 eV for obtaining the overlap of the spectra. The 

similar line shapes obtained for both computer-generated and experimental VB-PES and 

IPES spectra demonstrate that also for this material the inter-molecular bonds are weak. 

Comparing these simulations to the ones obtained for H2Pc, CuPc and F4CuPc, we can 

assert that here there is less agreement between experiment and theory. This probably 

indicates that the high number of fluorine atoms needs a slightly different theoretical 

approach. 

No publication has been found that investigates the F16CuPc molecule by means of 

theoretical calculations.  

Moving forward in the analysis of the spectra given in Figure 5.24, one can derive 

the evolution of the electronic properties as a function of film thickness as displayed in 

Figure 5.29 (a). At the zero point the electronic properties of H-Si were included once 

more. The changes that appear in EA, φ and IE are opposite to the previously discussed 

ones of other Pcs. EA, φ and IE are all increasing. The difference between the EA value 

of the first layer of F16CuPc and the one corresponding to H-Si amounts to 0.46 eV. As 
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the thickness increases, EA increases further. The thickness range of the increase 

extends to 3.7 nm of F16CuPc. Above this thickness EA becomes approximately constant 

to a value of (4.52±0.2) eV which corresponds to the organic material. Judging from the 

energy band diagram shown in Figure 5.29 (b), the EA includes both the large interface 

dipole and the 0.6 eV shift of LUMO. The total barrier height for electrons amounts to 0.02 

eV. 
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Figure 5.29 a) EA, φ, IE as a function of F16CuPc layer thickness; b) Energy band diagram of the 
F16CuPc/H-Si interface. The surface band bending of the substrate was omitted. 

The variation in EA at the interface has a value of about 0.6 eV which is the exact 

difference between the interface dipole and the LUMO shift. The work function φ behaves 

similarly to EA in terms of direction of change and range of thickness where the change 

takes place. φ increases suddenly by 0.6 eV upon the first deposition indicating the 

formation of an interface dipole. The extent of the interface dipole can be estimated by 

the observed continuous increase of φ within 3.7 nm. Above 3.7 nm, φ is constant at 

(5.42±0.07) eV. The final value of the interface dipole is Δ=1.20 eV. IE increases in the 

same range of thickness of 3.7 nm. Upon the first deposition, IE increases by 

approximately 1.3 eV value which stands for the barrier for holes at the interface (0.7 eV) 

and the rigid shift of the vacuum level (0.6 eV). Then IE continues to increase. Above 3.7 

nm of F16CuPc, IE reaches a constant value of (6.32±0.07) eV which corresponds to that 

of thick F16CuPc [She01]. Also in this case as determined for EA, IE contains the interface 

dipole contribution and the HOMO shift, namely the variation observed for IE is given by 

the 0.6 eV difference between them.  
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Figure 5.29 (b) summarizes the evolution of the interface between F16CuPc and H-Si. The 

energy band diagram shows the presence of both interface dipole and band bending like 

behaviour similar to the previous case of CuPc. The interface dipole formation is driven 

by the difference in φ of the two materials. Thus it can be explained in a similar way to 

Figure 3.8 (b). However, the additional presence of the energy shifts of the HOMO and 

LUMO features as a function of layer thickness requires another explanation.  
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Figure 5.30 The Schottky formula applied in the F16CuPc case. The charge 
carrier density as a function of the depletion width.  

On the other hand, the band bending like energy shifts of the HOMO and LUMO can not 

be accounted for considering the classical theory of inorganic semiconductors.  

As discussed for CuPc which presents the same type of behaviour but bending in 

opposite direction, the value of the shift in such a range of thickness would give an 

unreasonable concentration of carriers in the organic material. 

Figure 5.30 illustrates the Schottky formula for F16CuPc. Thus the charge carrier density 

calculated this way amounts to 2·1024 cm-3. Due to the unrealistic value of the charge 

carrier density obtained this way, we must take into consideration other types of 

phenomena that could induce such behaviour. In the previous case of F4CuPc the 

presence of smaller shifts and in opposite direction to CuPc can be attributed to the 

presence of fluorine atoms which are compensating the so-called effect of the copper 
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atom. While in CuPc the change in molecular orientation from monolayer range to thick 

film is producing the energy shifts around the gap, in F4CuPc the same observed change 

in the molecular orientation has a less visible effect due to the presence of four fluorine 

atoms. However, the situation of the F16CuPc material is quite different.  

Since classic theory of band bending can not account for this type of shift, the molecular 

orientation of the molecules was taken into consideration. As discussed before for CuPc 

and F4CuPc, it is known that a change in the orientation of the molecules can influence 

the energy positions of the molecular orbitals by influencing the π-π overlapping. 

Therefore NEXAFS measurements were also employed in the characterisation of thin and 

thick films of F16CuPc.  
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Figure 5.31 a) N1s excitation spectra a) 2 monolayers of F16CuPc and b) 20 
nm of F16CuPc as a function of θ the angle of incidence; the lower energy 
features (398-403 eV) represent the π* resonances, while the features above 
403 eV are related to the σ* resonances.  

The N 1s excitation spectra of a) 2 monolayers and b) 20 nm thickness as a function of 

the angle of incidence θ of the synchrotron radiation are displayed in Figure 5.31 (a) and 

(b). Judging by the small intensity of the π* features obtained with respect to the σ* 

features in both films, the molecules are rather well ordered. The previously discussed 

molecules CuPc and F4CuPc show comparable intensities in the π* and σ* features and 

that suggests the presence of short range ordering in both cases. The normalization 

procedure for the 2 monolayers and 20 nm of F16CuPc was the same as for the thick film 

(20 nm) of F4CuPc due to the presence of a minimum in the π* resonance intensities in 
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both cases. Consequently Figure 5.32 (a) and (b) display the difference of the resonance 

intensities and the minimum resonance intensity. Namely, the N 1s excitation spectra 

corresponding to the minimum π* intensity was subtracted from all the given N 1s 

NEXAFS spectra. The fits of the resonant intensities are displayed as well. Also in this 

case, the substrate symmetry was not helpful for the fits. Any employment of the reduced 

formulas [Stö92] for substrates with higher symmetry failed. Thus the same conclusion 

has been reached that the roughness lifts the symmetry of the substrates.  
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Figure 5.32 Normalized resonance intensity of the π* features (the highest intensity feature in the 
N1s excitation spectra in Figure 5.31 (a) and (b)) as a function of the incidence angle of the 
synchrotron radiation of a) 2 monolayers and b) 20 nm of F16CuPc; c) average molecular 
orientation of F16CuPc in 2 monolayers (ML) and 20 nm.  

Therefore the fits were performed using Eq. 3.25. The resulting tilt angles α and 

azimuthal angles φ are shown in Table 5.3. The listed values can only be considered as 

representing an average molecular orientation in the films. Opposite to CuPc and 

F4CuPc, the F16CuPc molecules are almost lying flat on the substrate.  

 However, there is a different 

molecular orientation when 

comparing a thin film (2 ML) to a 

thick one (20 nm). As discussed 

for the previous two molecules 

CuPc and F4CuPc, the strength 

of the interaction between the 

molecule and the substrate is 

larger than the one developed between the F16CuPc molecules in a film. Any other 

situation would lead to no change in molecular orientation. As for the classification of the 

interaction strength between the F16CuPc molecule and H-Si compared to the other two 

 Tilt angle α  Azimuthal angle φ 

2 ML 260±20 840±50 

20 nm 100±20 00±0.30 

Table 5.3 Calculated angles from the π* resonance 
intensities fit for 2 monolayers and 20 nm of F4CuPc.  
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molecules we can say that by far this one is the strongest one. Due to the almost lying flat 

position of the molecule, the interaction probability between the F16CuPc π orbitals and H-

Si σ orbitals is the highest.  

The found change in molecular orientation, when passing from a thin to a thick layer, is 

quite important in the context of the photoemission data since such changes in the 

molecular orientation may induce energy shifts of the MOs. 

 

5.5 The Influence of the Fluorine Atoms 

 

The starting point in establishing the influence of the fluorination on the interfaces 

discussed above will be a summary of the electronic properties of all the molecules 

(Table 5.4).  

Slightly lower IE, Φ and EA values can be observed for CuPc than for H2Pc. The 

difference amounts to approximately 0.15 eV. This is expected when taking into account 

the electron affinity of the centre Cu atom (1.22 eV) [Hot75, Bil98] which is lower than the 

EA of the two hydrogen atoms (2·0.756 eV) in H2Pc.  

Thus the addition of a Cu atom to the H2Pc molecule brings additional charge (valence 

electrons) and decreases the overall EA of the resulting molecule (CuPc). Then again, 

the addition of fluorine to the CuPc molecule increases EA as shown in Table 5.4 for the 

fluorinated Pcs. Considering that the EA of a fluorine atom has a value of 3.2 eV and an 

electronegativity of 4 eV (Pauling scale), an overall increase in EA of a molecule is 

expected. To prove this we calculated the mean value of the electron affinity and 

electronegativity of each molecule based on the corresponding values of each atom. The 

obtained values are displayed in Figure 5.33. The CuPc and H2Pc mean values are 

approximately the same, while the ones belonging to F4CuPc and F16CuPc are larger, 

their increase depending on the number of fluorine atoms. Thus we can conclude that the 

presence of the fluorine atoms increases the EA of the molecule and influences the 

 Φ / eV IE / eV  EA / eV 

H2Pc  (4.04 ± 0.07) (4.96 ± 0.07) (2.74 ± 0.2) 

CuPc  (3.87 ± 0.07) (4.82 ± 0.07) (2.65 ± 0.2) 

F4CuPc  (4.70 ± 0.07) (5.55 ± 0.07) (3.60 ± 0.2) 

F16CuPc  (5.42 ± 0.07) (6.32 ± 0.07) (4.52 ± 0.2) 

Table 5.4 Electronic properties of Pcs.  
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interaction mode of the molecule with the H-Si substrate. On the other hand, the resulting 

transport gaps show a dependence on the degree of fluorination as well.  
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Figure 5.33 Comparison of the experimental determined EA and the calculated 
values of electron affinity and electronegativity of each molecule. The electron 
affinity calculus was performed by averaging the known atomic values and the 
electronegativity calculus by geometric mean of the atomic values.  

To be precise Et of CuPc and H2Pc has the same value of (2.2±0.2) eV, then Et 

decreases with the increasing number of fluorine atoms in the molecule, e.g. (1.95±0.2) 

eV for F4CuPc and (1.8±0.2) eV for F16CuPc. This trend is more or less preserved in the 

values of the DFT estimated gaps of these materials (Figure 5.34). Here it is important to 

mention that the DFT estimated gaps may be better compared to the photoemission 

peak-to-peak determined band gaps since these have no polarisation contribution (P- , 

P+). The presence of the same value for Et of CuPc and H2Pc is expected since there is 

no metal contribution to their HOMO and LUMO [Yos01]. In addition, the HOMO and 

LUMO of the fluorinated molecules are extended over the fluorine atoms as shown in the 

charge distributions from Figure 5.34. This clearly indicates that the fluorine modification 

of phthalocyanines plays a major part in the band gap, EA and IE modifications. This 

situation can be analyzed based on the high electronegativity of the fluorine atoms. 

Fluorine having an electronegativity of 4 eV, which is maximum on the Pauling scale, 

induces additional charge of positive sign on the π system of the Pc’s. Therefore IE 

increases as a function of the number of fluorine atoms. However, when addressing the 

EA increase of the Pc molecules upon fluorine modification, the electron affinity of fluorine 

(EAF) must be taken into account (Figure 5.33).  
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Figure 5.34 The DFT estimated transport gaps of H2Pc, CuPc, F4CuPc and F16CuPc and their 
HOMO and LUMO charge distributions.  

The EAF has a value of 3.2 eV resulting in a different slope of the increasing EA function 

than the IE one. Thus the transport gap varies with the increasing number of fluorine 

atoms. 

1.5 2.0 2.5 3.0 3.5 4.0 4.5

Optical absorption

H2Pc  

CuPc  

F4CuPc  

F16CuPc  

 

ε 2 / 
a.

u.

Energy / eV

1.75 eV

1.76 eV

1.76 eV

1.60 eV

 
Figure 5.35  Imaginary part of the dielectric function (ε2) for H2Pc, CuPc, 
F4CuPc and F16CuPc. The spectra were rescaled in order to be plotted in 
the same graph. Marked with vertical line are the first absorption peaks 
whose positions correspond to the optical gaps.  
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A similar behaviour is found in the values of the optical gaps. Figure 5.35 contains the 

imaginary part of the dielectric function ε2 for the Pcs/H-Si systems obtained from 

spectroscopic ellipsometry measurements. The H2Pc and CuPc dielectric functions are 

taken from ref. [Gor04-1, Gor04-2]. In the energy range of 1.4 eV up to 2.4 eV the Q 

absorption band of Pcs resides [Lez89]. The first absorption peak placed at lower energy 

corresponds to the optical gap of the organic material. The determination of the optical 

gap is not a subject of the present work thus further details can be found in dedicated 

literature. The values of the optical gaps, calculated gaps as well as the values for the 

transport gaps and peak to peak gaps are shown in Table 5.5.  

 

 Et / eV Eopt / eV Ecalc / eV Epeak-to-peak / eV 

H2Pc (2.2 ± 0.2) 1.75 2.14 (3.2 ± 0.2) 

CuPc (2.2 ± 0.2) 1.76 2.18 (3 ± 0.2) 

F4CuPc (1.95 ± 0.2) 1.76 2.19 (2.85 ± 0.2) 

F16CuPc (1.8 ± 0.2) 1.60 2.07 (2.78 ± 0.2) 

Table 5.5. Transport gaps, optical gaps, DFT estimated gaps and peak-to-peak VB-PES 
and IPES estimated gap of phthalocyanines.  

The change in the total interface dipoles is driven by the change in work function Φ. Thus 

the total interface dipoles that arise at the interfaces scale linearly with the work function 

Φ of the Pcs. We considered the total interface dipole as given by the sum of the abrupt 

dipole that forms at the interface upon the first organic deposition and the continuous shift 

that appears upon further depositions. Figure 5.36 shows a plot of the total interface 

dipole formed at Pcs/H-Si interfaces as a function of the EA, Φ and IE of each Pc. The 

dashed lines are linear fits to the experimental points. The slopes of the linear fits are 

0.78, 1 and 1.03, respectively. Such a strong change in the interface dipole due to 

fluorination was observed as well for the fluorinated Pcs deposited on Au [Pei02-2]. The 

same linear dependence of IE and Φ was observed, namely the calculated slope for IE 

has a value of 1. A comparison of the present data and the data obtained for the Pcs/Au 

interfaces from ref [Pei02-2] is displayed in Figure 5.36. Taking a closer look at the φ 

dependence, we can observe that when the total interface dipole is zero, φ has a value of 

approximately 4.26 eV. This is extremely close to the determined φ value for H-Si which is 

(4.22±0.07) eV.  
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Figure 5.36 Total interface dipoles formed at Pcs/H-Si interfaces as a 
function of EA, φ and IE of the Pcs. Where the total interface dipole is 0, Φ 
has a value of 4.22 eV which corresponds to H-Si. The data points for 
Pcs/Au are taken from ref. [Pei02-2].  

This is a clear indication that the interface dipole can be predicted by knowing the 

difference in φ of the materials. However, the slope of the linear dependence has another 

origin proportional to the degree of fluorination.  
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Figure 5.37 The HOMO and LUMO parallel shifts formed at Pcs/H-Si 
interfaces as a function of EA, φ and IE of the Pcs. These continuous 
shifts are the ones attributed to the band bending-like behaviour.  
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Comparing the results obtained for the two types of substrates we can conclude that the 

slope values are quite similar and thus lead to the following assertion. The behaviour of 

the molecules in contact with different materials e.g. interface energy shifts, is driven by 

their degree of fluorination. 

On the other hand, besides the interface dipole formation found at the interfaces, we also 

found a band bending like behaviour for the CuPc, F4CuPc and F16CuPc molecules. A 

plot of the parallel shifts of HOMO and LUMO as a function of EA, φ and IE of the Pcs is 

shown in Figure 5.37. As observed there is a linear dependence between these shifts and 

the electronic parameters of the organic materials. As the parameters increase due to the 

degree of fluorination of the molecule, the HOMO-LUMO shifts are changing direction, 

basically turning form an upward direction found for CuPc (the negative value here) to a 

downward one as determined for F4CuPc and F16CuPc. The slopes of the linear fits of the 

experimental points are 0.51 for EA, 0.64 for φ and 0.66 for IE.   

 

5.6 Summary 

 

In this chapter VB-PES, IPES and NEXAFS were employed in the monitoring of the 

interface formation between H2Pc, CuPc, F4CuPc, F16CuPc and H-Si(111). The energy 

level alignment was determined in each case and thus parameters such as EA, φ, IE and 

Et were also estimated within the accuracy of the technique. A comparison was made 

between the VB-PES and IPES phthalocyanine characteristic spectra and the simulated 

ones resulting in a rather good agreement. The simulations were convoluted based on 

the DFT calculation of the energy levels for one molecule. A qualitative assignment of the 

HOMO and LUMO was achieved. Mixed cases of interface dipole formation and band 

bending like behaviour were found at these interfaces. Here the interface dipoles can be 

predicted by the φ difference of the Pc and the H-Si substrate. On the other hand, the 

band bending like behaviour was found to depend on the change in molecular orientation. 

The NEXAFS results point at a change in the molecular orientation when passing from a 

thin layer of Pc e.g. 2 monolayers to a thick layer of Pc e.g. 20 nm. Moreover, the 

direction of the band bending is found to be dependent on the molecular degree of 

fluorination.  

 

 



Chemical Stability of Pcs 

 80

 

 

6 Chapter 6. Chemical Stability of Pcs 

 

 

The determination of the chemical stability of the phthalocyanine materials was 

achieved in the present work by studying their interaction with a metal and a gas. The 

metal chosen for this investigation was silver (Ag) since it is mostly investigated as 

contact material in electronic devices [Wu04]. The interface properties and energy level 

alignment are particularly important due to their role in the injection of carriers into the 

organic layer. Therefore there are many studies concerning this topic. However, most of 

them concentrate on organic-on-metal systems. For example, the CuPc/Au interface 

shows low chemical interaction [Pei02], strong shifts of all electronic levels are present for 

the early stages of CuPc deposition on Au. This behaviour is attributed to final state 

screening effects. A large interface dipole is present as well. Another case studied is the 

interface formation of F4CuPc/Ag(111) and F4CuPc/polycrystalline Ag [Sch04]. There a 

new occupied electronic state placed at 0.4 eV confirms a negative charge transfer from 

the silver substrate to the organic semiconducting material. An extreme case is present at 

the F16CuPc/Al interface where a strong chemical interaction is present [She01-2]. This 

leads to the formation of an abrupt insulating (F16CuPc)3Al layer. On the other hand, the 

same article describes the interface formation of Al on F16CuPc (metal-on-organic). In this 

case an extended insulating layer appears. Its thickness is thus found to depend strongly 

on the interface formation sequence. 

The present work concentrates on the metal-on-organic systems studied by means of 

photoemission and inverse photoemission. 

The selected gas was molecular oxygen (O2) due to several reasons. The most 

important of them are the following. Being the most important component of the 

atmosphere, oxygen is also the main factor that could produce degradation of electronic 

devices containing organic materials. Hence most of the electronic devices are covered 

by a protective layer. Another more specific reason would be that oxygen acts as a 

doping material for several phthalocyanines e.g. CuPc, having as a result a large 

increase in their conductivity [Mck98]. Such behaviour has been established by current-

voltage (IV) investigations. However, photoemission investigations have not been 

employed sufficiently in determining the influence of molecular oxygen on the electronic 
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properties of the organic materials. Consequently in this work, thick films (∼ 20 nm) of Pcs 

are exposed to molecular oxygen and the change in their electronic properties is 

monitored. 

Before proceeding to the experimental data analysis of the Ag/Pc interfaces, the VB-

PES spectrum of Ag/H-Si(111) is described. Figure 6.1 (a) contains such a spectrum. It is 

important to consider the properties of this system since some of the displayed feature 

will arise later on in the spectra of thicker Ag films on Pcs. As shown in the middle panel 

of Figure 6.1 (a) the features appearing in the energy range from 4 to 7 eV are the 4d 

states of Ag which usually indicate the metallic behaviour of the film. Another sign of such 

behaviour is the presence of the sp band that gives rise to the Fermi level [Arr02] (Figure 

6.1 (a) right hand panel).  

 a) b) 

Figure 6.1 a) VB-PES spectrum of Ag/H-Si(111); b) IPES spectrum of polycrystalline Ag – taken 
from ref. [Rei84].  

The work function of Ag obtained from the secondary electron region has a value of 

(4.35±0.07) eV. This is in agreement with literature, namely the determined value for 

polycrystalline Ag - 4.27 eV [Dwe71]. On the other hand, Figure 6.1 (b) displays the IPES 

spectra of polycrystalline Ag. At this point it must be noted that the spectra contain a 

broad feature centred at approximately 2 eV [Rei84], a feature that will later on appear in 

the IPES spectra of the Ag deposited on Pc. 

 At this point several experimental notes are needed. The following chapter 

discusses the VB-PES and IPES spectra of incremental Ag deposition on Pc thin films 

and incremental oxygen exposure of Pc thin films. The analysis of these spectra was 

extended by also plotting the FWHM, intensity and area of HOMO as a function of Ag 

layer thickness and oxygen exposure. In this case, the intensity and area plots require 
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careful attention due to the sensitivity of the VB-PES experiment to the alignment of He 

lamp, sample and analyser. The large scattering present in the intensity points is mostly 

due to the stepwise type of experiment. Since the Ag deposition was performed in 

another UHV chamber, the sample position was changed each time. The positioning of 

the sample was achieved each time by maximising the counts at a given energy position, 

usually the HOMO peak position. However, there is no guarantee that the same exact 

position of the sample is obtained and this is visible in the intensity fluctuations that are 

observed.  

 

6.1 Ag/Pc Interfaces 

 

6.1.1 Ag/H2Pc 

 

The VB-PES and IPES spectra measured for incremental coverages of Ag on 

H2Pc are shown in Figure 6.2 (a) and (b) respectively. The VB-PES spectra were 

normalized with respect to the intensity at about 6.9 eV and shifted vertically for clarity. In 

the left hand panel of Figure 6.2 (a) following the secondary electron cut-off, we observe 

that Φ starts with an initial value of (3.9±0.07) eV.  
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Figure 6.2 a) Thickness dependent VB-PES measurements on Ag/H2Pc/H-Si(111); b) thickness 
dependent IPES measurements on Ag/H2Pc/H-Si(111).  
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As the Ag thickness increases, Φ decreases to (3.7±0.07) eV, a value which is kept up to 

3.2 nm Ag coverage. Above this thickness Φ increases up to a final value of (4.05±0.07) 

eV at 50 nm. Thus the interface dipole ranges from -0.2 eV to +0.15 eV. The evolution 

does not show signs of reaching a saturation point. The final Φ value is quite close to that 

of polycrystalline Ag [Dwe71] as mentioned above. Since that value is not reached, a 

saturation point for the electronic properties of Ag on H2Pc is not reached. The middle 

panel of Figure 6.2 (a) depicts the main features of H2Pc and their evolution upon Ag 

deposition. The 4d bands of Ag occurring in the range from 4 to 7 eV BE, become 

observable from 6.4 nm on and grow in intensity as the Ag thickness increases. Thus 

metallic Ag is formed. For a better view of the Ag characteristic features we plotted the 

VB-PES spectra corresponding to the bare H2Pc film and to 30 nm of Ag on H2Pc. The Ag 

spectra was shifted by 0.17 eV in order to overlap the dip present at 7.4 eV BE in both 

spectra given that this feature was not affected by the Ag deposition. Clear differences 

generated by Ag can be seen in the BE region from 4 to 7 eV (Figure 6.3). The VB-PES 

spectra contain overlapped signals from H2Pc and Ag even at 50 nm of Ag.  

Since the photoelectron 

escape depth at 10-20 eV 

kinetic energy is about 1-1.5 

nm [Car96] the conclusion can 

be reached that Ag does not 

form a closed film. This proves 

the developing clusters on the 

organic layer.  

In the right hand panel of 

Figure 6.2 (a) we observe the 

HOMO of H2Pc suddenly 

shifting by 0.3 eV away from 

the Fermi level upon the first 

Ag deposition. The HOMO 

position then remains fixed up 

to 6.4 nm where a small 

feature at 0.64 eV B.E. is visible. While this feature grows in intensity and finally develops 

a clear Fermi step at 50 nm of Ag, the still visible H2Pc HOMO shifts back towards the 

Fermi level by about 0.2 eV. Following Figure 6.2 (b) we note that the LUMO presents the 

same sudden shift of 0.3 eV towards the Fermi level upon the first Ag deposition. This 
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Figure 6.3 Comparison between VB-PES spectra 
corresponding to bare H2Pc and to 30 nm of Ag on H2Pc.  
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position is preserved up to 3.2 nm. The characteristic features of the organic material are 

smeared out by its convolution with the density of unoccupied states of Ag.  

a) b) 
Figure 6.4 a) FWHM of H2Pc HOMO as a function of Ag thickness; b) the height and area of 
HOMO as a function of Ag thickness.  

However, the smearing out of the features takes place simultaneously with the 

appearance of the Fermi edge and of the 4d states in VB-PES spectra. This sustains the 

idea of an overlapping of IPES signals belonging to H2Pc and Ag. The Fermi level is not 

resolved in the IPES spectra due to the low electron beam currents used in the 

experiment. At this point we should note that the beam currents used for obtaining the 

IPES spectrum of Ag from Figure 6.1 (b) are in range of 15 μA. 

The evolution of FWHM of HOMO as a function of Ag thickness is shown in Figure 6.4 

(a). The FWHM is approximately constant within the experimental error. Thus there is 

almost no influence on the HOMO FWHM due to the Ag layer. Moreover, the plot in 

Figure 6.4 (b) shows the behaviour of the height and area of the HOMO as a function of 

the Ag thickness. Both height and area of HOMO are almost constant as a function of Ag 

thickness, although the last Ag thickness reaches 50 nm. There is hardly any attenuation 

present. Taking into consideration the penetration depth of VB-PES which is 1-1.5 nm 

and the previous assertion we can conclude that Ag does not form a closed layer on top 

of H2Pc. Considering the morphology of the organic one can assume that Ag fills up the 

gaps in the H2Pc and afterwards at higher Ag thickness clusters are formed.  

Figure 6.5 (a) and (b) summarize the properties of the Ag/H2Pc interface by 

presenting the evolution of the electronic properties and the resulting energy level 
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alignment. As already described for φ, its value decreases by 0.2 eV upon the first two Ag 

depositions. This behaviour indicates the creation of new species on the surface of the 

H2Pc film due to the Ag atoms.  
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a) b) 
Figure 6.5 a) Evolution of IE and Φ for the Ag/H2Pc interface as a function of Ag thickness b) 
energy band diagram of the Ag/H2Pc interface.  

The change in φ is simultaneous with the 0.3 eV energy shifts present in the HOMO-

LUMO levels. Such sudden shifts in both MO and in the same direction especially 

towards higher BE indicate a charge transfer from H2Pc to Ag atoms. Electrons flowing 

from H2Pc towards Ag create positively charged organic layers resulting in an increased 

binding energy for all states (Figure 6.2 (a) middle panel). This is confirmed by the 

sudden increase of IE upon the first silver deposition (Figure 6.5 (a)). It is quite surprising 

in view of the fact that that the electron affinity of Ag atom is quite low (1.3 eV) compared 

to the EA of H2Pc (2.74±0.2) eV. The interaction of Ag atoms with H2Pc molecules at 

early stages of Ag deposition is thus quite strong and unexpected. Such behaviour 

suggests the formation of a charge transfer complex at the interface. As soon as the 

quantity of Ag increases and Ag clusters are created, an additional negative charge 

arises at the surface. In a similar way a small intensity feature appears at 0.64 eV BE. 

This indicates that the direction of the electron charge transfer is reversed. As a 

consequence the still visible HOMO of the organic material shifts by 0.2 eV back towards 

the Fermi level. Thus we can conclude that the Ag/H2Pc interface formation can not be 

described only in terms of physisorption. Additional mechanisms are present at the very 

first deposition step indicating a considerably stronger interaction between the Ag atoms 

and H2Pc molecules, i. e. the formation of a charge transfer complex. 
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6.1.2 Ag/CuPc 

 

Figure 6.6 (a) and b) depicts the thickness dependent VB-PES and IPES spectra 

of Ag deposited on CuPc. The lowest VB-PES and IPES spectra correspond to 20 nm of 

freshly prepared CuPc and both exhibit the characteristic peaks of CuPc as shown in the 

previous chapter. The left hand side panel of Figure 6.6 (a) represents the secondary 

electron region as a function of Ag thickness. Thus changes of the vacuum level position 

can be determined and implicitly the variations in the surface work function Φ.  
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Figure 6.6 a) Thickness dependent PES measurements on Ag/CuPc/H-Si(111); b) thickness 
dependent IPES measurements on Ag/CuPc/H-Si(111).  

In the right hand side panel of Figure 6.6 (a) we observe that the HOMO maintains its 

position up to 3.2 nm of Ag. Above that thickness, the HOMO shifts continuously towards 

the Fermi level until the Ag thickness reaches 23 nm. Moreover, the other higher BE 

HOMOs are also shifting towards the Fermi level (middle panel of Figure 6.6 (a)). The 

shift has a value of approximately 0.2 eV. It should be noted as well that at 3.2 nm of Ag a 

small feature arises at about 0.5 eV BE. As the Ag thickness increases, the feature gains 

intensity and develops into a Fermi step, hence the change in IE. Simultaneously specific 

Ag features namely the 4d bands arise in the energy region from 4 eV up to 7 eV. The 

presence of these bands starting with 6.4 nm of Ag proves the formation of metallic Ag. 

To bring out to light the characteristic features of Ag we plot in Figure 6.7 a comparison 
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between VB-PES spectra corresponding to bare CuPc and to 23 nm of Ag on CuPc. As 

before the spectra were shifted in such a way that the dips which are not influenced by 

the Ag layer and present at approximately at 8 eV BE overlap.  

 Surprisingly the VB-PES 

characteristic features of CuPc 

do not smear out in such a 

manner as the IPES 

characteristic features do 

(Figure 6.6 (b)). Still we can 

observe a similar behaviour of 

the LUMO in the early stages 

of Ag deposition. The LUMO 

resides at its value with respect 

to the Fermi level up to 1.6 nm 

of Ag, where the CuPc features 

are already diminishing. Since 

the IPES spectrum of 

polycrystalline Ag contains a 

rather broad feature centred at 

2 eV [Rei84], we can not assume that at thicker Ag films the peak at 1.25 eV is still the 

LUMO of CuPc. Moreover, the Fermi edge is not resolved here as well as found before 

for H2Pc. Therefore we conclude that also in this case the IPES spectra show a 

convolution of unoccupied CuPc and Ag states.  

The evolution of the FWHM, height and area of CuPc HOMO is also plotted in 

Figure 6.8 a) and b). When comparing the data to H2Pc, here we find a larger scattering 

in the experimental points in both plots. FWHM is constant within 0.1 eV, a value which is 

lower than the experimental resolution. The height and the area of HOMO are also 

constant as the Ag thickness is increasing which again point to cluster formation atop the 

organic and no diffusion into the CuPc film.  

The evolution of Φ and IE as a function of Ag coverage as well as the energy 

band diagram are displayed in Figure 6.9 (a) and (b), respectively. In this case Φ initially 

has a value of (3.8±0.07) eV which is approximately constant up to 3.2 nm of Ag. Then Φ 

evolves to a final value of (4±0.07) eV for 23 nm of Ag which is quite close to the reported 

value for polycrystalline Ag (4.27±0.07) eV [Dwe71].  
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corresponding to bare CuPc and to 30 nm of Ag on CuPc.  
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a) 
b) 

Figure 6.8 a) FWHM of CuPc HOMO as a function of Ag thickness; b) the height and area of 
CuPc HOMO as a function of Ag thickness.  
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Figure 6.9 a) Evolution of IE and Φ for the Ag/CuPc interface as a function of Ag thickness; 
b) energy band diagram of the Ag/CuPc interface.  

This suggests the existence of a similar morphology of Ag on CuPc and H2Pc and that 

further Ag depositions are needed to reach a saturation point in the electronic properties 

of the Ag layer on top of CuPc. The interface dipole estimated from the change in Φ has a 

value of 0.2 eV. The IE only varies slightly as a function of Ag thickness up to 1.6 nm. 

When the 3.2 nm Ag thickness is reached, metallic Ag is present and consequently IE is 

identical to φ.  
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On the other hand, no chemical reaction is present at this interface since there is no sign 

of filling of unoccupied states of CuPc from an early stage of Ag deposition. The energy 

shift of all the higher B.E. HOMOs towards the Fermi level starting from 3.2 nm of Ag 

indicates the presence of a negatively charged layer at the surface. The appearance of a 

small intensity feature at 0.5 eV B.E. for 3.2 nm of Ag indicates charge transfer from Ag to 

the CuPc molecules. The additional negative charge provided by the Ag clusters acts as 

an accelerating electric field for the photoelectrons, resulting in shifts of the VB-PES 

features towards Fermi level. This interaction is rather weak since the overall shift of the 

molecular orbitals amounts to 0.2 eV. Thus we can presume that Ag is physisorbed on 

the surface of CuPc. 

 

6.1.3 Ag/F4CuPc 

 

Following the same description procedure as for the other two Pcs, in Figure 6.10 

(a) and (b) the thickness dependent VB-PES and IPES spectra of Ag deposited on 

F4CuPc are presented. 
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Figure 6.10 a) Thickness dependent VB-PES measurements on Ag/F4CuPc/H-Si(111); b) 
thickness dependent IPES measurements on Ag/F4CuPc/H-Si(111).  

A sudden change in the secondary electron region (left hand panel of Figure 6.10 (a)) as 

well as in the HOMO position is visible after the first Ag deposition. This is quite similar to 

the shifts found at the Ag/H2Pc interface. In the VB characteristic features of F4CuPc 
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displayed in the middle panel of Figure 6.10 (a), one can observe a shift away from the 

Fermi level of all of them including HOMO upon the first Ag deposition.  

The shift amounts to 0.2 eV. 

Above 0.1 nm of Ag, the HOMOs 

continue to shift away from the 

Fermi level until approximately a 

thickness of 3.2 nm of Ag is 

reached. The additional shift has 

a value of 0.1 eV. Consequently 

the final value of the change in 

the HOMO position amounts to 

0.3 eV. When the Ag thickness 

attains 3.2 nm, a small intensity 

feature arises at approximately 

0.67 eV BE. Further on, this 

feature develops into the Fermi 

edge while in the range of 4 to 7 

eV BE the 4d states of Ag 

emerge. An illustration of the 4d 

states is found in the comparison of the freshly prepared F4CuPc layer and the thickest 

Ag film on F4CuPc (Figure 6.11).  

a) b) 

Figure 6.12 a) FWHM of F4CuPc HOMO as a function of Ag thickness; b) the height and area of 
F4CuPc HOMO as a function of Ag thickness.  

 
Figure 6.11 Comparison between VB-PES spectra 
corresponding to bare F4CuPc and to 26 nm of Ag on 
F4CuPc.  
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In this case unlike in the previous two organic materials, the spectra of the Ag layer was 

shifted horizontally as to overlap the feature found at 8 eV, feature which is not affected 

by the Ag deposition.  

At this point at 3.2 nm of Ag, metallic Ag is formed on the surface of the organic film. 

Since the recorded VB-PES spectra show features from both materials F4CuPc and Ag 

even at 26 nm Ag coverage, we can conclude that the Ag layer is not closed and Ag 

clusters are formed. This conclusion is also sustained by the FWHM, height and area 

behaviour showed in Figure 6.12. Unlike the previous cases, here FWHM (Figure 6.12 

(a)) is constant at about 0.47 eV up to 6.4 nm Ag thickness and subsequently is 

increasing to 0.61 eV. The height and area of HOMO (Figure 6.12 (b)) are dropping 

following functions with two different slopes. These findings point to a slight diffusion of 

the Ag atoms into the organic layer. The slope found from a thickness higher than 3.2 nm 

of Ag has a larger value than the one found at lower Ag thicknesses. This indicates the 

formation of larger Ag clusters than in the previous cases H2Pc and CuPc. However, the 

morphology of the F4CuPc film does not seem to account for the smearing out of the 

HOMO feature above 6.4 nm of Ag. Judging by the high roughness of the organic film, 

the feature should be at least at the same intensity displayed in the VB-PES spectra of 

the same thickness of Ag on H2Pc or CuPc. Since this is not the case (Figure 6.12), one 

can conclude that the chemistry of the interface is slightly different from the previously 

investigated ones.  

Turning our attention back to Figure 6.10 (b), the shifts in the HOMO levels are 

reproduced in the LUMO levels of the IPES spectra as well. Of course at thicker Ag 

coverage we deal with the same overlapping of the two IPES signals – one due to the 

F4CuPc and the other one coming from the Ag film. Above 1.6 nm of Ag the IPES 

features are smeared out. In conclusion the analysis of the interface properties 

considering both VB-PES and IPES spectra will concentrate on the Ag thicknesses up to 

3.2 nm.  

Studying the changes in φ, a total interface dipole of 0.37 eV can be determined. 

Figure 6.13 (a) shows the evolution of φ and IE as a function of Ag thickness. Therefore, it 

can be observed that upon the first Ag deposition there is a drop in φ by 0.2 eV, similar to 

the energy shifts of the HOMO-LUMO level. φ has an initial value of (4.55±0.07) eV. While 

the Ag thickness increases, φ continues to decrease reaching a final value of (4.18±0.07) 

eV. Thus the interface dipole formed at this interface has a value of 0.37 eV. The 

secondary electron cut-offs seem to reach a saturation level when 6.4 nm Ag thickness is 

reached. φ determined for the final Ag layer is close to the previous φ value for the H2Pc 
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and CuPc cases, indicating an analogous morphology of Ag atop the organic layer. On 

the other hand, IE is constant up to the point when the critical Ag thickness is reached 

(3.2 nm).  

a) b) 
Figure 6.13 a) Evolution of IE and Φ for the Ag/F4CuPc interface as a function of Ag thickness; 
b) energy band diagram of the Ag/F4CuPc interface.  

This finding is highly important since it proves that here there is no case of charge 

transfer complex formation as shown for Ag/H2Pc interface.  

The presence of simultaneous energy shifts of the HOMO and LUMO levels with respect 

to the Fermi level and towards a higher BE is similar to the already discussed Ag/H2Pc 

interface. Only a charge transfer from the F4CuPc molecules to Ag can justify such 

behaviour. This was previously assigned to the formation of a charge transfer complex. 

However such a “modification” of the molecules would immediately alter IE. This is not 

the case here as mentioned above. Thus Ag atoms are doping the organic materials 

conferring it a more n-type character. Moreover, the continuous shift of HOMO-LUMO 

levels to higher BE over a range of Ag thicknesses is due to a continuous input of Ag 

atoms diffusing into the organic material. The electronic properties of the interface are 

summarized in Figure 6.13 (b). 
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panel of Figure 6.14 (a) contains the characteristic features of F16CuPc that upon Ag 

deposition shift towards higher BE in a similar way to H2Pc and F4CuPc. However, the 

value of the shift is slightly smaller – 0.17 eV.  

a) b) 
Figure 6.14 a) Thickness dependent VB-PES measurements on Ag/F16CuPc/H-Si(111); b) 
thickness dependent IPES measurements on Ag/F16CuPc/H-Si(111).  

The critical Ag thickness above where the 4d states arise is the same as before – 3.2 nm 

of Ag. A better view of the 4d region placed within 4 to 7 eV is given in the comparison of 

the freshly deposited F16CuPc and the thickest Ag film shown in Figure 6.15. Similarly to 

previous plots of this type, the spectrum belonging to the Ag film of 26 nm was shifted in 

order to overlap the dip placed at approximately 9 eV BE, since this feature is placed 

outside the influence of Ag 4d features.  

In the right hand panel of Figure 6.14 (a), for 3.2 nm Ag thickness there is a small 

intensity feature arising at approximately 0.4 eV. However, this feature is no well defined 

into a Fermi edge until the Ag thickness reaches 13 nm.  

In the IPES spectra the same value of shift as in the HOMO position is found. The LUMO 

shifts towards the Fermi level and thus following the movement of the HOMO in the 

direction of higher BE. Unexpectedly, the IPES characteristic features of F16CuPc are still 

visible up to 6.4 nm and even 13 nm when enhancement is employed. Such behaviour 

may be due to a different morphology of Ag atop the organic material. However, the 

features are diminishing, namely their FWHM is increasing and their intensity decreasing. 

As already established for the other Pcs, the IPES spectra are a convolution of two 

signals. This case also subscribes to this assertion. 

2 1 EF17 16 15 14 8 7 6 5 4 3 2 1 0

 

 

Binding energy / eV

 

F16CuPc

0.1 nm

0.2 nm

0.4 nm

0.8 nm

1.6 nm

3.2 nm

6.4 nm

13 nm
26 nm

 

 

 

 N
or

m
al

iz
ed

 In
te

ns
ity

 / 
a.

 u
.

0 1 2 3 4 5 6 7 8

x 2.6

x 2.6

x 1.6

 

N
or

m
al

iz
ed

 In
te

ns
ity

 / 
a.

 u
.

E - EFermi / eV

x 1.2

F16CuPc

0.1 nm
0.2 nm
0.4 nm

0.8 nm

1.6 nm

3.2 nm

6.4 nm

13 nm
26 nm



Chemical Stability of Pcs 

 94

 Considering the electron escape 

depth we can conclude once 

more that also here the surface 

of the F16CuPc film is not 

completely covered with Ag 

when the thickness reaches 26 

nm. However, metallic Ag is 

created starting with 3.2 nm 

thickness. Thus we can deduce 

that Ag clusters are formed on 

top of the organic film.  

Analysing the FWHM, height and 

area of the F16CuPc HOMO 

Figure 6.16 can be obtained. 

The FWHM increases by about 

0.05 eV compared to the original 

value (Figure 6.16 (a)). This 

reveals an undefined environment, a lower degree of ordering at the surface upon Ag 

deposition than in the F16CuPc film and a slight diffusion of the Ag atoms into the organic.  

a) b) 
Figure 6.16 a) FWHM of F16CuPc HOMO as a function of Ag thickness; b) the height and area of 
F16CuPc HOMO as a function of Ag thickness.  

The height and area of HOMO show a linear decrease having two different slopes as a 

function of Ag thickness in a similar way to F4CuPc. This attenuation of the HOMO feature 

 
Figure 6.15 Comparison between VB-PES spectra 
corresponding to bare F16CuPc and to 26 nm of Ag on 
F16CuPc.  
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points to continuously growing clusters of Ag on the surface of the film evolving towards a 

closed layer of Ag. Since HOMO is still visible at 23 nm of Ag, it is clear that a close layer 

is not formed yet.  

Proceeding further with the analysis of the experimental data, the electronic 

properties of the interface are calculated as a function of Ag thickness and displayed in 

Figure 6.17 (a). Altogether with this representation, the energy band diagram 

corresponding to the Ag/F16CuPc interface is shown in Figure 6.17 (b). 

a) b) 

Figure 6.17 a) Evolution of IE and Φ for the Ag/F16CuPc interface as a function of Ag thickness; 
b) energy band diagram of the Ag/F16CuPc interface.  

Focussing on the evolution of φ, it can be observed that it has an initial value of 

(5.48±0.07) eV. Upon the first Ag deposition, there is a sudden shift of 0.17 eV of the 

secondary electron cut-off which then drops the value of φ to (5.31±0.07) eV. Further 

deposition of Ag layers decreases φ even more. A saturation point is reached at 13 nm of 

Ag. φ takes a value of (4.95±0.07) eV. Surprisingly, this value is closer to the published φ 

value of Ag(111) 4.74 eV [Dwe73]. This indicates that Ag on top of F16CuPc forms a much 

more ordered structure than when deposited on the other molecules. Considering the 

morphology of the organic (Figure 4.5 (d)) which shows larger crystallites than in the 

other Pcs, a better ordering of the Ag may be favored. The interface dipole that forms at 

this interface has a total value of 0.53 eV. It is important to note that the shift by 0.17 eV 

of the secondary electrons take place simultaneously with the energy shift of HOMO and 

LUMO. This behaviour suggests a similarity between this system and Ag/F4CuPc, which 

is a slight n-type doping for the first layer, i.e. the Fermi level is moving within the gap. 

Diffusion of Ag atoms is also expected. However, following the evolution of φ we can see 

bare 0.1 0.2 0.4 0.8 1.6 3.2 6.4 13 26
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

 

Thickness / nm

Io
ni

sa
tio

n 
E

ne
rg

y 
/ e

V

 

 W
or

k 
Fu

nc
tio

n 
/ e

V

AgAgFF1616CuPcCuPc

HOMO

LUMO

5.48

1

0.8

0.17

Film Thickness / nm
0 10 263.2

4.95

EFermi

0.17

0.36

Δ = - 0.53 eV
AgAgFF1616CuPcCuPc

HOMO

LUMO

5.48

1

0.8

0.17

Film Thickness / nm
0 10 263.2

4.95

EFermi

0.17

0.36

Δ = - 0.53 eV



Chemical Stability of Pcs 

 96

that φ decreases with increasing Ag thickness. This is also found for IE. Therefore we can 

conclude that at thicker Ag films, charge transfers from F16CuPc to Ag. A charge transfer 

complex is formed. 

 

6.1.5 The Influence of the Fluorine Atoms 

 

As starting point we can consider the comparison between the VB-PES spectra of 

the freshly deposited organic materials and the spectra of the thick Ag films displayed in 

the two figures Figure 6.18 and Figure 6.19.  

 

Figure 6.18 VB-PES spectra corresponding to 20 nm of H2Pc, CuPc, 
F4CuPc and F16CuPc.  

 

 

Figure 6.19 VB-PES spectra corresponding to 30, 23, 26 and 26 nm of Ag 
on H2Pc, CuPc, F4CuPc and F16CuPc, respectively.  
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As observed in the region extending from 4 to 7 eV BE (Figure 6.19 middle panel) the 4d 

bands (Figure 6.1 (a)) are visible. Their intensity is quite similar for H2Pc, CuPc and 

F4CuPc, but in the case of F16CuPc the intensity of the 4d bands is more pronounced. 

The Fermi level is observable in all cases. Metallic Ag is formed on top of all the organic 

films. On the other hand, the features of the organic materials are still visible at the shown 

Ag thicknesses which are larger than 20 nm. This is a clear proof that Ag does not form a 

closed film atop the Pcs. The HOMO feature seems to have different intensities in each 

case. The largest attenuation is present in the case of F4CuPc.  

Figure 6.20 shows the 

difference obtained by 

subtracting the freshly 

prepared VB-PES organic film 

from the thick Ag layer 

performed for each material. 

The trend displayed by this 

figure may be associated with 

the size of the organic 

crystallites determined by AFM 

(Figure 4.5). The dimension of 

the crystallites for H2Pc, CuPc 

and F4CuPc is approximately 

100 nm while the F16CuPc 

crystallites are about 160 nm. 

This larger crystallite size in the 

case of F16CuPc may favour a 

much more ordered structure for the deposited Ag and thus resulting in an increase in the 

intensity of the Ag VB-PES features. Such an assertion is sustained by the determined φ 

of F16CuPc which is closer as value to the Ag(111) one [Dwe73].  

As shown already for the interfaces with H-Si, the fluorination plays a major role in 

the chemistry of the interface. Even though here, at the Ag/Pc interfaces, the behaviour 

found is profoundly different from the Pc/H-Si ones, the interface dipole shows a linear 

dependence on the EA, φ and IE of the molecules. Figure 6.21 (a) and (b) display the 

dependence. The slopes of the linear functions used to fit the experimental data of 

interface dipoles as a function of EA, φ and IE are 0.38, 0.49, and 0.49, respectively. 

Similarly to the previously discussed interfaces Pc/H-Si, the interface dipole found at the 

Ag/Pc interface is increasing as a function of the number of fluorine atoms. 
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a) b) 

Figure 6.21 Interface dipoles formed at Ag/Pcs interfaces a) as a function of EA of the Pcs and b) 
as a function of φ and IE of the Pcs.  

However, the slopes are almost half of the values determined in the previous case 

indicating a different type of interaction at the Ag/Pc interfaces. Considering the linear 

function that describes the variation of the interface dipole as a function of φ, we can 

obtain φ for which the interface dipole would be zero. The resulting φ has a value of 4.19 

eV, which is close to the one determined for polycrystalline Ag - 4.27 eV [Dwe71]. Hence, 

knowing the difference in φ of the materials, one can predict the interface dipole that 

might appear at the interface.  

Since the increasing number of fluorine atoms in the Pc molecules induces an increase in 

their EA, they will also play a role in the interaction found at the interface with Ag. It 

seems that here the estimated charge transfers are much stronger than in the H-Si case. 

This can be understood by considering the electron affinity of Ag atom (1.21 eV) and the 

electron affinity of H-Si (3.9 eV). As EA increases when changing the contact material 

from Ag to H-Si, also the slopes are increasing but not in the same proportion. In 

conclusion, the electron affinity of the atoms is the driving force of the changes found at 

the Ag/Pc interfaces.  
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6.2 Oxygen Exposed Phthalocyanines 

 

A survey of the literature points out that most of the phthalocyanine materials are 

quite stable under the influence of molecular oxygen and that the conductivity of the films 

is usually increased by the presence of oxygen. Early work reports an enhancement in 

the photoconductivity of H2Pc and CuPc as a function of oxygen exposure [Bor57]. The 

explanation of such behaviour comes much later when Dahlberg et al. discussed the 

formation of electron acceptor surface states on CuPc and NiPc films exposed to oxygen 

[Dah80]. Their experimental data sustain the theoretical model of charge transfer from the 

Pc ring to O2, and thus the formation of charge transfer species at the surface of the film. 

This behaviour has been exploited further in investigations of CuPc for gas sensing 

applications [Zho98]. However, the techniques involved in the characterisation of Pc 

layers seldom contained photoemission and inverse photoemission although this 

combination allows the determination of the electronic properties at the exposed surface. 

In the following paragraph the oxygen exposed phthalocyanines are investigated by 

means of VB-PES and IPES. Figure 6.22, Figure 6.23, Figure 6.24 and Figure 6.25 (a) 

and (b) contain the experimental spectra of VB-PES and IPES of H2Pc, CuPc, F4CuPc 

and F16CuPc. The characteristic features for all Pcs are present in the lower spectra of 

VB-PES and IPES plotted in black.  
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a) b) 
Figure 6.23 Incremental oxygen exposure of CuPc a) VB-PES and b) IPES spectra.  

 

a) b) 
Figure 6.24 Incremental oxygen exposure of F4CuPc a) VB-PES and b) IPES spectra.  

 

a) b) 
Figure 6.25 Incremental oxygen exposure of F16CuPc a) VB-PES spectra; b) IPES spectra.  
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At the first glance, one can say that the specific Pc features hardly change upon oxygen 

exposure. There are no new features arising due to oxygen presence and thus no strong 

interaction. As the oxygen quantity increases, the only observable change is the decrease 

in the intensity of the HOMO and LUMO features and a slight increase of their FWHM.  

a) b) 

Figure 6.26 a) H2Pc and b) F4CuPc EA, φ and IE of the surface as a function of the oxygen 
exposures.  

a) b) 

Figure 6.27 a) FWHM of H2Pc HOMO as a function of oxygen exposure; b) the height 
and area of H2Pc HOMO as a function of oxygen exposure.  

This behaviour is consistent with the assessment that the oxygen molecules adsorb on 

the surface of the organic layer without any chemical interaction whatsoever. The 

physisorption model is valid for the H2Pc and F4CuPc molecules where no other shifts in 

the HOMO-LUMO energy positions occur. Figure 6.26 (a) and (b) shows the electronic 

properties of the surface as function of oxygen exposure for these two molecules. No 

changes are present. In addition for both molecules an increase of approximately 0.05 eV 
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is observed in the FWHM and a similar slope decrease in height and area of HOMO 

(Figure 6.27 (a) (b), Figure 6.28 (a) (b)).  
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Figure 6.28 a) FWHM of F4CuPc HOMO as a function of oxygen exposure; b) the height 
and area of F4CuPc HOMO as a function of oxygen exposure.  

However, in the case of CuPc and F16CuPc a different situation appears. 

Analysing in a greater detail the VB-PES and IPES spectra of CuPc one can observe that 

the HOMO-LUMO levels are both shifting by 0.1 eV upon the first oxygen exposure. The 

HOMO is shifting away from the Fermi level and LUMO is shifting towards the Fermi 

level.  

a) b) 

Figure 6.29 a) CuPc and b) F16CuPc EA, φ and IE of the surface as a function of the oxygen 
exposures.  

Such behaviour is consistent with a charge transfer from the CuPc molecules to the 

oxygen ones. Since upon further oxygen exposure no other energy shift occurs, the 

probability of a charge transfer complex formation on the surface is quite high. The 
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evolution of the surface electronic parameters is displayed in Figure 6.29 (a). Both IE and 

EA increase by 0.1 eV and afterwards remain constant. φ is invariable along the oxygen 

exposures of the organic film.  

a) b) 

Figure 6.30 a) FWHM of CuPc HOMO as a function of oxygen exposure; b) the height and 
area of CuPc HOMO as a function of oxygen exposure.  

Besides this, the HOMO presents a stronger drop in intensity as a function of the oxygen 

exposure (Figure 6.30 (b)) than H2Pc and F4CuPc show and this indicates a larger 

interaction between oxygen molecules and CuPc. While the FWHM of H2Pc and F4CuPc 

HOMO display an increase of about 0.05 eV, here the FWHM of CuPc HOMO increases 

only by half 0.025 eV.  

On the other hand, for the fluorine derivative of CuPc, F16CuPc the surface 

interaction with oxygen is more complicated. Here, HOMO and LUMO levels are both 

shifting simultaneously as a function of oxygen exposure and towards the Fermi level. 

This leads to a decrease of the band gap at the surface by 0.25 eV. The HOMO FWHM is 

increasing here more than found for the other oxygen exposed Pcs, namely by 0.1 eV 

(Figure 6.31 (a)). The height and area of HOMO are dropping faster than found for H2Pc 

and F4CuPc but lesser than in the CuPc case (Figure 6.31 (b)). Thus the strength of the 

interaction between the oxygen molecules and F16CuPc is also classified as stronger than 

what was found for H2Pc and F4CuPc and weaker than found for CuPc. Moreover, the 

surface work function φ is increasing with the oxygen exposure by 0.15 eV (Figure 6.29 

(b)). As a result of this band gap change, IE is almost constant within the experimental 

error and EA is increasing by 0.13 eV.  
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a) b) 
Figure 6.31 a) FWHM of F16CuPc HOMO as a function of oxygen exposure; b) the height 
and area of F16CuPc HOMO as a function of oxygen exposure.  

This behaviour is characteristic to the creation of a polarized layer at the surface of the 

film. It is somewhat expected since both oxygen and fluorine are atoms that have 

extremely high electron affinities. 

 It seems that the interactions found between molecular oxygen and 

phthalocyanines can be divided into two groups. The first group could be the one of the 

lowest interaction. The lowest interaction is found on the surface of H2Pc and F4CuPc 

where oxygen is physisorbed. Then the second group may include CuPc and F16CuPc 

which show a stronger interaction with oxygen. CuPc forms a charge transfer complex 

with oxygen and on the surface of F16CuPc a polarized layer occurs. The presence of 

these two groups can not be predicted by calculating the phthalocyanines 

electronegativities since the values found scale with the degree of fluorination (Figure 

5.33). However the charge redistribution within the molecule due to the copper atom and 

the fluorination might be a factor that contributes to the formation of these two groups. 

 

6.3 Summary 

 

This chapter investigated the chemical stability of the Pc’s under incremental metal 

deposition and gas exposure. Here, the metal used was Ag and the gas was molecular 

oxygen. The techniques involved in the characterisation of these interfaces were VB-PES 

and IPES. 
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In the case of the Ag/Pc interfaces, the energy level alignment was determined for 

each organic material. Changes in the electronic parameters EA, φ and IE were also 

evaluated. Metallic Ag was formed on all the organic materials and the Fermi level was 

observed. In all the cases, since the features of the Pc are still visible at Ag thicknesses 

larger than 20 nm it can be concluded that Ag does not form a closed layer atop the 

organic. On the other hand, interface dipoles form at all the Ag/Pc interfaces and show a 

linear dependence on the electronic parameters. The determined φ for a 0 interface dipole 

is close to the polycrystalline Ag value and thus the φ difference is the driving force 

behind the interface dipole formation. Charge transfer complexes are formed at the 

Ag/H2Pc and Ag/F16CuPc interfaces. A weak interaction is found between Ag and CuPc 

and thus Ag may be considered as physisorbed on the CuPc surface. Charge transfer 

from F4CuPc to Ag and a continuous n-type doping are determined in this case. 

In the case of the oxygen exposed Pcs, the evolution of electronic properties of 

the surfaces was followed as function of oxygen exposure. Two groups were found, 

classified by their interaction strength with oxygen. H2Pc and F4CuPc form the group 

which shows the weakest interaction with oxygen. Consequently oxygen is physisorbed 

atop the organic. The second group is composed of the other two Pc, CuPc and F16CuPc. 

CuPc shows the strongest interaction with oxygen and thus forms a charge transfer 

complex. F16CuPc displays a weaker interaction than CuPc, however showing a band gap 

modification. A polarized layer is formed atop of F16CuPc. No link has been found 

between these two types of groups and the degree of fluorination of the molecules. 

However the redistribution of charges in the molecules due to the copper and fluorine 

atoms might play a role in the formation of these two types of groups. 
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7 Chapter 7. Conclusions 

 

 

The primary aim of this work was the in situ investigation of the energy level 

alignment of the interfaces formed by four phthalocyanine materials – H2Pc, CuPc, 

F4CuPc and F16CuPc and H-Si(111) as hybrid structures, e.g. for solar cells. In addition, 

the chemical stability of these organic materials in contact with Ag and molecular oxygen 

was also studied. The techniques involved in the investigations were mainly surface 

sensitive VB-PES and IPES. However, further insight was given by the NEXAFS 

investigation which determined the molecular orientation of CuPc, F4CuPc and F16CuPc 

on H-Si.  

For the preparation of the hydrogen passivated silicon a standard cleaning and 

passivating procedure was used [Yas94]. The surface reconstruction was investigated by 

LEED and the surface roughness by STM. The organic films as well as the metal ones 

were prepared in situ by OMBD. The surface morphology of the Pcs was studied by AFM. 

The interface formation of Pc/H-Si, Ag/Pc and oxygen/Pc was probed by incremental 

variation of the thickness/quantity of material. Each step was investigated by means of 

VB-PES and IPES. The NEXAFS excitation spectra were recorded at different organic 

film thickness, thus allowing the detection of changes in molecular orientation from thin to 

thick film.  

 The energy level alignment at the H2Pc, CuPc, F4CuPc, F16CuPc and H-Si(111) 

interfaces was determined by following the HOMO, LUMO and secondary electron cut-off 

evolution as a function of Pc thickness. Implicitly the progress of the electronic properties 

EA, φ and IE of the surface was pursued. Since there is a very small amount of 

publications dealing with IPES investigations of Pcs compared to the PES ones, the EA 

evolution is a new element that comes into play in the description of interfaces. The final 

values obtained for IE for all the molecules are in close agreement to the published ones 

[Kim00, Pei03]. The transport gaps for thick Pc films were calculated along with EA, φ, IE, 

and the barriers for holes and electrons at the interfaces. CuPc and H2Pc transport gap 

are in close agreement with previous publications [Hil00]. However, for the F4CuPc and 

F16CuPc molecules there are no records of their transport gaps. Electronic properties of 

single molecules were calculated using density functional theory methods. The calculated 
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densities of occupied states and unoccupied states were compared and discussed with 

respect to the experimental ones and proved to be in rather good agreement with them. 

When compared to published results, H2Pc calculations are well established [Ort90] and 

in agreement with the present DFT calculation. On the other hand, the CuPc computed 

states are in an ongoing debate at present due to the presence of the copper atom which 

complicates the situation. Some theoretical calculations claim a 3d-like state in the gap 

placed at the Fermi level [Lia01, Bia03]. However, there is only one article containing 

experimental data that sustain this hypothesis [Dow04]. In the present work the 

experimental data excludes the presence of such a state. This is sustained by the present 

DFT calculations for CuPc and other publications [Loz04, Roc90]. In the case of F4CuPc 

and F16CuPc molecules no records containing detailed theoretical calculations were 

found. A qualitative assignment of HOMO and LUMO was performed based on the DFT 

computations.  

For all three molecules CuPc, F4CuPc and F16CuPc, the molecular orientation with 

respect to the substrate was determined in 2 monolayer and 20 nm thick films. The 

evaluation of the data showed different molecular orientation in the thin and thick films. 

This type of approach was scarcely employed in past publications. Considering hydrogen 

passivated silicon as substrate, there are several studies that probe H2Pc [Nes94] and 

CuPc [Nak01, Has92] configuration. However, the film thicknesses employed in these 

studies is much larger than in the present study and thus no direct comparison can be 

made. Still, it is important to point out that different orientations emerged in thin films 

(about 50 nm) and in thick films (>1 μm). Consequently the present results complete the 

picture of orientation of organic molecules on inorganic semiconductor surfaces. The 

change in orientation was correlated with the band bending like behaviours that emerged 

at these interfaces. In addition to the band bending like behaviour, the interfaces show 

also an interface dipole which is driven by the work function difference between the 

contact materials. The influence of the degree of fluorination is confirmed in the similar 

increase of the EA, φ and IE as well as of the calculated electron affinity and 

electronegativity/molecule. The found band gap modification due to fluorination is also 

discussed. These types of changes were also found at the interfaces formed between a 

gold substrate and CuPc, F4CuPc, F16CuPc [Pei02, Pei03] and thus prove the similar 

influence of the fluorination upon the interfaces. 

The incremental Ag deposition on phthalocyanines was investigated in a similar 

way to the Pc/H-Si interfaces. Ag was chosen since it is one of the mostly investigated 

contact materials in electronic devices [Wu04]. The tools of choice were VB-PES and 

IPES. The energy level alignments of the Ag/Pc interfaces were determined and the 
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evolution of φ and IE was probed. The interfaces show a mixture of HOMO-LUMO shifts 

and interface dipole formation. Ag clusters are formed atop all the organic layers. A 

charge transfer complex is formed in the case of Ag/H2Pc and Ag/F16CuPc interfaces. Ag 

is physisorbed atop the CuPc. Charge transfers from F4CuPc to Ag creating a continuous 

n-type doping at the interface. The charge transfer found at Ag/F4CuPc interface is 

analogous to the one found at F4CuPc/Ag discussed in ref. [Sch04]. Similar to the Pc/H-Si 

interfaces, the interface dipoles found here show a linear dependence on the EA, φ and 

IE and can be predicted by the difference in the work functions. In a comparable way as 

found for Pc/H-Si interfaces, this result shows the influence of the fluorination.  

The stepwise oxygen exposure of thick films of H2Pc, CuPc, F4CuPc and F16CuPc 

was studied by VB-PES and IPES. The data evaluation provided the evolution of EA, φ 

and IE. Two groups of behaviours were determined. The weak interaction group is 

represented by H2Pc and F4CuPc, Pcs on which oxygen is physisorbed. The strong 

interaction group contains the other two molecules CuPc and F16CuPc. CuPc forms a 

charge transfer complex with oxygen and on top of F16CuPc a polarized layer is formed. 

CuPc behaviour in the presence of oxygen is in agreement with published data [Dah80]. 

No link was found between these two types of groups and the degree of fluorination of the 

molecules. However the charge redistribution within the molecules due to the copper and 

fluorine atoms might play a role in the formation of these two types of groups.  

In summary, the present results constitute a comprehensive database on the 

electronic properties of four phthalocyanines: H2Pc, CuPc, F4CuPc, and F16CuPc and 

their different interfaces. Tracking the evolution of the electronic parameters as a function 

of the functionalisation of the molecules in three different cases (Pc deposition on H-Si, 

Ag deposition on Pc films and Pc oxygen exposure) allowed information extraction on the 

influence of fluorination.  
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13 Erratum 
 

The following part contains corrections to the present work concerning an error that 

occurred in the deconvolution software used in the evaluation of the IPES spectra. The code error 

was found after the defence took place. The error generated a wrong estimate of the LUMO cut-off 

and thus the derived electronic parameters i.e. the band gap Et and EA based on these values 

required corrections. 

 

List of Changes: 
 

 Figure 3.7 Chapter 3. Techniques of Investigations, Subchapter 3.3 VB-PES and IPES 

Spectra Evaluation at page 28 should be displayed as: 
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Figure 13.1 The IPES spectrum of CuPc thin film 
together with convoluted and deconvoluted individual 
peaks that contribute to the overall intensity.  

 Figure 5.1 a) b) Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.1 H2Pc 

at page 43 should be displayed as: 
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a) b) 
Figure 13.2 a) VB-PES thickness dependent measurements on H2Pc/H-Si(111); b) 
IPES thickness dependent measurements on H2Pc/H-Si(111).  

where the cut-off positions in the IPES are closer to the Fermi level. 

 

Figure 5.2 Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.1 H2Pc at 

page 44 should be displayed as: 
 

 

 

The following paragraph on page 45: 

”At thicknesses above 6 nm, the transport 

gap determined as the difference between 

the onset positions of HOMO and LUMO is 

found to be (2.2 ± 0.2) eV.” should be read 

as: 

“At thicknesses above 6 nm, the transport 

gap determined as the difference between 

the onset positions of HOMO and LUMO is 

found to be (1.9 ± 0.2) eV.” 
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Figure 13.3 Peak and cut-off positions of HOMO 
and LUMO as a function of H2Pc layer thickness. 
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Figure 5.3 Chapter 5. Electronic 

properties of Pc/H-Si System, 

Subchapter 5.1 H2Pc at page 45 should 

be displayed as: 

 

 

 

 

 

 
Figure 5.4 b) Chapter 5. 

Electronic properties of Pc/H-Si System, 

Subchapter 5.1 H2Pc at page 46 should 

be displayed as: 

a) b) 
Figure 13.5 a) Experimental and simulated VB-PES spectra of H2Pc; b) Experimental and 
simulated IPES spectra of H2Pc. The vertical lines in figures a) and b) mark the energy positions 
of the calculated MO.  

 

The following phrase at page 46:“The FWHM of the deconvoluted LUMO (0.63 eV) was 

taken into account for the simulation of the calculated MO.” should be read as: “The FWHM of the 

deconvoluted LUMO (0.84 eV) was taken into account for the simulation of the calculated MO.” 
 

Figure 5.5 a) and b) Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.1 

H2Pc at page 47 should be displayed as: 

 
Figure 13.4 Et determination for H2Pc.  
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a) b) 

Figure 13.6 a) EA, φ, IE as a function of H2Pc layer thickness; b) Energy band diagram of the 
H2Pc/H-Si interface. The surface band bending of the substrate was omitted.  

  

 The following phrase at page 47: “From that thickness on, EA is constant at (2.74±0.2) 

eV.” should be read as: “From that thickness on, EA is constant at (3.0±0.2) eV.” 

  

 The following phrase at page 48: “The barrier heights for electrons and for holes at the 

interface can be estimated to be 0.78 eV and 0.08 eV, respectively.” should be read as: “The 

barrier heights for electrons and for holes at the interface can be estimated to be 0.38 eV and 0.08 

eV, respectively.” 

  

 Figure 5.6 b) Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.2 CuPc/H-

Si at page 49 should be displayed as: 

a) b) 
Figure 13.7 a) VB-PES thickness dependent measurements on CuPc/H-Si(111); b) 
IPES thickness dependent measurements on CuPc/H-Si(111).  
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 The following phrase at page 50:” The transport gap determined as the difference between 

the onset positions of LUMO and HOMO is found to be approximately (2.2 ± 0.2) eV (Figure 5.8). 

This value is in rather good agreement with the one determined by Hill et al. [Hil00] using UPS-

IPES (2.3 ± 0.4) eV, but somewhat larger than the one determined by cyclic voltammetry [Sim85] 

(1.71 ÷ 1.84 eV).” should be read as: “The transport gap determined as the difference between the 

onset positions of LUMO and HOMO is found to be approximately (1.8 ± 0.2) eV (Figure 5.8). This 

value is somewhat smaller than the one determined by Hill et al. [Hil00] using UPS-IPES (2.3 ± 

0.4) eV, but in rather good agreement with the one determined by cyclic voltammetry [Sim85] (1.71 

÷ 1.84 eV).” 

  

 Figure 5.7 Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.2 CuPc/H-Si 

at page 50 should be displayed as: 

  

 Figure 5.8 Chapter 5. Electronic properties 

of Pc/H-Si System, Subchapter 5.2 CuPc/H-Si at 

page 50 should be displayed as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The following phrase at page 51: “The computer-generated VB-PES and IPES spectra 

employed Gaussian functions with FWHM of 0.45 eV.“ should be read as: “The computer-

generated VB-PES and IPES spectra employed Gaussian functions with FWHM of 0.45 eV and 

0.8 eV respectivey.” 
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Figure 13.8 Peak and cut-off positions of 
HOMO and LUMO as a function of H2Pc 
layer thickness.  
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 Figure 5.9 b) Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.2 CuPc/H-

Si at page 51 should be displayed as: 

a) b)  
Figure 13.10 a) Experimental and simulated VB-PES spectra of CuPc; b) Experimental and 
simulated IPES spectra of CuPc. The vertical lines in figures a) and b) mark the energy positions 
of the calculated MO.  

 Figure 5.10 a) and b) Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.2 

CuPc/H-Si at page 52 should be displayed as: 
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Figure 13.11 a) EA, φ, IE as a function of CuPc layer thickness; b) Energy band diagram of the 
CuPc/H-Si interface. The surface band bending of the substrate was omitted.  

 The following phrases at page 52-53:”The determined values for thick CuPc layer (20 nm) 

are: IE=(4.82±0.07) eV, Φ=(3.88±0.07) eV and EA=(2.66±0.2) eV.[…] The determined interface 

barriers for electrons and for holes are 1.3 eV and 0.26 eV respectively.” should be read as: “The 
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determined values for thick CuPc layer (20 nm) are: IE=(4.82±0.07) eV, Φ=(3.88±0.07) eV and 

EA=(3.0±0.2) eV.[…] The determined interface barriers for electrons and for holes are 0.93 eV and 

0.26 eV respectively.” 

  

 Figure 5.14 b) Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.3 

F4CuPc/H-Si at page 57 should be displayed as: 

a) 
b) 

Figure 13.12 a) VB-PES thickness dependent measurements on F4CuPc/H-Si(111); 
b) IPES thickness dependent measurements on F4CuPc/H-Si(111).  
  

 Figure 5.16 Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.3 

F4CuPc/H-Si at page 59 should be displayed as: 

 

 The following phrase at page 59: “The 

transport gap estimated from the HOMO and 

deconvoluted LUMO onsets (see subchapter 

3.3) has a value of (1.95 ± 0.2) eV.” should be 

read as: “The transport gap estimated from the 

HOMO and deconvoluted LUMO onsets (see 

subchapter 3.3) has a value of (1.85 ± 0.2) 

eV.” 

 

 The following phrase at page 59: “The 

Gaussian functions used in the convolution of 

the calculated energy levels have FWHM of 

0.46 eV and 0.44 eV for the VB-PES and IPES 

simulations, respectively.” should be read as: 

“The Gaussian functions used in the 
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Figure 13.13 Peak and cut-off positions of 
HOMO and LUMO as a function of F4CuPc 
layer thickness.  
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convolution of the calculated energy levels have FWHM of 0.46 eV and 0.60 eV for the VB-PES 

and IPES simulations, respectively.” 

 

 

 

 

 

 Figure 5.17 Chapter 5. Electronic 

properties of Pc/H-Si System, Subchapter 5.3 

F4CuPc/H-Si at page 60 should be displayed 

as: 

 

 Figure 5.18 b) Chapter 5. Electronic 

properties of Pc/H-Si System, Subchapter 5.3 

F4CuPc/H-Si at page 60 should be displayed 

as: 

 

 

 

a) b) 
Figure 13.15 a) Experimental and simulated VB-PES spectra of F4CuPc; b) Experimental and 
simulated IPES spectra of F4CuPc. The vertical lines in figures a) and b) mark the energy 
positions of the calculated MO.  

 The following phrase at page 61: “For the next thicknesses up to 3.7nm of F4CuPc, EA 

increases slightly until it reaches saturation at a value of (3.65±0.2) eV.” should be read as: “For 
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the next thicknesses up to 3.7 nm of F4CuPc, EA increases slightly until it reaches saturation at a 

value of (3.7±0.2) eV.” 

 

 Figure 5.19 a) b) Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.3 

F4CuPc/H-Si at page 61 should be displayed as: 

a) b) 

Figure 13.16 a) EA, φ, IE as a function of F4CuPc layer thickness; b) Energy band diagram of the 
F4CuPc/H-Si interface. The surface band bending of the substrate was omitted.  
 

 The following phrase at page 61: “At this point we can estimate the total barrier for 

electrons at the interface as being 0.78 eV.” should be read as: ”At this point we can estimate the 

total barrier for electrons at the interface as being 0.58 eV.” 

 

 

 

 Figure 5.20 Chapter 5. 

Electronic properties of Pc/H-Si 

System, Subchapter 5.3 F4CuPc/H-

Si at page 62 should be displayed 

as: 
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Figure 13.17 Comparison of the experimentally 
determined EA and the calculated mean values of 
electronegativity and electron affinity / molecule.  
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 Figure 5.24 b) Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.4 

F16CuPc/H-Si at page 66 should be displayed as: 

a) b) 
Figure 13.18 a) VB-PES thickness dependent measurements on F16CuPc/H-Si(111); b) IPES 
thickness dependent measurements on F16CuPc/H-Si(111).  

 

 

 

 

 

 Figure 5.25 Chapter 5. Electronic 

properties of Pc/H-Si System, Subchapter 

5.4 F16CuPc/H-Si at page 67 should be 

displayed as: 

 

 
 The following phrase at page 67: 

“The transport gap remains approximately 

constant within the experimental error at a 

value of (1.8±0.2) eV.” should be read as: 

“The transport gap remains approximately 

constant within the experimental error at a 

value of (1.6±0.2) eV.” 
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Figure 13.19 Peak and cut-off positions of HOMO 
and LUMO as a function of F16CuPc film thickness.  
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 Figure 5.26 Chapter 5. Electronic 

properties of Pc/H-Si System, Subchapter 

5.4 F16CuPc/H-Si at page 68 should be 

displayed as: 
 

 The following phrase at page 69: 

”The VB-PES and IPES simulated spectra 

employed Gaussian functions with FWHM 

of 0.51 eV and 0.52 eV as resulted from 

the fits (see description for the other 

molecules).” should be read as: “The VB-

PES and IPES simulated spectra 

employed Gaussian functions with FWHM 

of 0.51 eV and 0.82 eV as resulted from 

the fits (see description for the other 

molecules).” 

 

 Figure 5.27 b) Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.4 

F16CuPc/H-Si at page 69 should be displayed as: 
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b) 

Figure 13.21 a) Experimental and simulated VB-PES spectra of F16CuPc; b) Experimental and 
simulated IPES spectra of F16CuPc. The vertical lines in figures a) and b) mark the energy 
positions of the calculated MO.  

 The following phrase at page 69: “The difference between the EA value of the first layer of 

F16CuPc and the one corresponding to H-Si amounts to 0.46 eV. As the thickness increases, EA 

 
Figure 13.20 Et determination for F16CuPc.  
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increases further. The thickness range of the increase extends to 3.7 nm of F16CuPc. Above this 

thickness EA becomes approximately constant to a value of (4.52 ± 0.2) eV which corresponds to 

the organic material. Judging from the energy band diagram shown in Figure 5.29 (b), the EA 

includes both the large interface dipole and the 0.6 eV shift of LUMO. The total barrier height for 

electrons amounts to 0.02 eV.” should be read as: “The difference between the EA value of the 

first layer of F16CuPc and the one corresponding to H-Si amounts to 0.85 eV. As the thickness 

increases, EA increases further. The thickness range of the increase extends to 3.7 nm of 

F16CuPc. Above this thickness EA becomes approximately constant to a value of (4.72 ± 0.2) eV 

which corresponds to the organic material. Judging from the energy band diagram shown in Figure 

5.28 (b), the EA includes both the large interface dipole and the 0.6 eV shift of LUMO. The total 

barrier height for electrons amounts to 0.22 eV.” 

 

 Figure 5.28 a) and b) Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.4 

F16CuPc/H-Si at page 70 should be displayed as: 

a) b) 

Figure 13.22 a) EA, φ, IE as a function of F16CuPc layer thickness; b) Energy band diagram of the 
F16CuPc/H-Si interface. The surface band bending of the substrate was omitted. 

 Table 5.4 Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.5 The 

Influence of the Fluorine Atoms at page 74 should be displayed containg these values: 

 Φ / eV IE / eV  EA / eV 

H2Pc  (4.04 ± 0.07) (4.96 ± 0.07) (3.06 ± 0.2) 

CuPc  (3.87 ± 0.07) (4.82 ± 0.07) (3.02 ± 0.2) 

F4CuPc  (4.71 ± 0.07) (5.55 ± 0.07) (3.70 ± 0.2) 

F16CuPc  (5.42 ± 0.07) (6.32 ± 0.07) (4.72 ± 0.2) 

Table 13.1 Electronic properties of Pcs.  
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 Figure 5.32 Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.5 The 

Influence of the Fluorine Atoms at page 74 should be displayed as: 
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Figure 13.23 Comparison of the experimental determined EA and the 
calculated values of electron affinity and electronegativity of each molecule. 
The electron affinity calculus was performed by averaging the known atomic 
values and the electronegativity calculus by geometric mean of the atomic 
values.  

  

 Table 5.5 Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.5 The 

Influence of the Fluorine Atoms at page 76 should be displayed containg these values: 

 Et / eV Eopt / eV Ecalc / eV Epeak-to-peak / eV 

H2Pc (1.9 ± 0.2) 1.75 2.14 (3.2 ± 0.2) 

CuPc (1.8 ± 0.2) 1.76 2.18 (3.04 ± 0.2) 

F4CuPc (1.85 ± 0.2) 1.76 2.19 (2.92 ± 0.2) 

F16CuPc (1.6 ± 0.2) 1.60 2.07 (2.95 ± 0.2) 

Table 13.2. Transport gaps, optical gaps, DFT estimated gaps and peak-to-peak VB-PES 
and IPES estimated gap of phthalocyanines.  

 The following phrase at page 77: “The slopes of the linear fits are 0.78, 1 and 1.03, 

respectively.” should be read as: “The slopes of the linear fits are 0.87, 1 and 1.03, respectively.” 

 

 Figure 5.36 Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.5 The 

Influence of the Fluorine Atoms at page 78 should be displayed as: 
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Figure 13.36 Total interface dipoles formed at Pcs/H-Si interfaces as a 
function of EA, φ and IE of the Pcs. Where the total interface dipole is 
0, Φ has a value of 4.22 eV which corresponds to H-Si. The data points 
for Pcs/Au are taken from ref. [Pei02-2].  

 Figure 5.37 Chapter 5. Electronic properties of Pc/H-Si System, Subchapter 5.5 The 

Influence of the Fluorine Atoms at page 78 should be displayed as: 
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Figure 13.24 The HOMO and LUMO parallel shifts formed at 
Pcs/H-Si interfaces as a function of EA, φ and IE of the Pcs. 
These continuous shifts are the ones attributed to the band 
bending-like behaviour.  

 The following phrase at page 78: “The slopes of the linear fits of the experimental points 

are 0.51 for EA, 0.64 for φ and 0.66 for IE.” should be read as:”The slopes of the linear fits of the 

experimental points are 0.58 for EA, 0.64 for φ and 0.66 for IE.” 
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 The following phrase at page 85:”It is quite surprising in view of the fact that that the 

electron affinity of Ag atom is quite low (1.3 eV) compared to the EA of H2Pc (2.74±0.2) eV.” 

should be read as: “It is quite surprising in view of the fact that that the electron affinity of Ag atom 

is quite low (1.3 eV) compared to the EA of H2Pc (3.06±0.2) eV.” 
 

 Figures 6.5 b), 6.9 b), 6.13 b) and 6.17 b) Chapter 6. Chemical stability of Pcs, pages 85, 

88, 92 and 95 should be displayed as: 

 

 

Figure 13.25 b) energy band diagram of the 

Ag/H2Pc interface.  

Figure 13.26 b) energy band diagram of the 

Ag/CuPc interface.  
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Figure 13.27 b) energy band diagram of the 

Ag/F4CuPc interface.  
Figure 13.28 b) energy band diagram of the 

Ag/F16CuPc interface. 
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 The following phrase at page 97: ”The slopes of the linear functions used to fit the 

experimental data of interface dipoles as a function of EA, φ and IE are 0.38, 0.49, and 0.49, 

respectively.” should be read as: “The slopes of the linear functions used to fit the experimental 

data of interface dipoles as a function of EA, φ and IE are 0.41, 0.49, and 0.49, respectively.” 
 

 Figure 6.21 Chapter 6. Chemical stability of Pcs, Subchapter 6.1.5 The Influence of the 

Fluorine Atoms at page 98 should be displayed as: 

 

Figure 13.29 Interface dipoles formed at Ag/Pcs 

interfaces a) as a function of EA of the Pcs. 

  

 Figure 6.26 a) and b) Chapter 6. Chemical stability of Pcs, Subchapter 6.2 Oxygen 

Exposed Phthalocyanines page 101 should be displayed as: 

a) b) 

Figure 13.30 a) H2Pc and b) F4CuPc EA, φ and IE of the surface as a function of the oxygen 
exposures.  
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 Figure 6.29 a) and b) Chapter 6. Chemical stability of Pcs, Subchapter 6.2 Oxygen 

Exposed Phthalocyanines page 102 should be displayed as: 

a) b) 

Figure 13.31 a) CuPc and b) F16CuPc EA, φ and IE of the surface as a function of the oxygen 
exposures.  
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