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Report

With this thesis we bring some new results and improve some existing ones in
conjugate duality and some of the areas it is applied in.

First we recall the way Lagrange, Fenchel and Fenchel - Lagrange dual problems
to a given primal optimization problem can be obtained via perturbations and we
present some connections between them. For the Fenchel - Lagrange dual problem
we prove strong duality under more general conditions than known so far, while
for the Fenchel duality we show that the convexity assumptions on the functions
involved can be weakened without altering the conclusion. In order to prove the
latter we prove also that some formulae concerning conjugate functions given so far
only for convex functions hold also for almost convex, respectively nearly convex
functions.

After proving that the generalized geometric dual problem can be obtained via
perturbations, we show that the geometric duality is a special case of the Fenchel
- Lagrange duality and the strong duality can be obtained under weaker condi-
tions than stated in the existing literature. For various problems treated in the
literature via geometric duality we show that Fenchel - Lagrange duality is easier
to apply, bringing moreover strong duality and optimality conditions under weaker
assumptions.

The results presented so far are applied also in convex composite optimization
and entropy optimization. For the composed convex cone - constrained optimiza-
tion problem we give strong duality and the related optimality conditions, then we
apply these when showing that the formula of the conjugate of the precomposition
with a proper convex K - increasing function of a K - convex function on some
non - empty convex set X ⊆ Rn, where K is a non - empty closed convex cone in
Rk, holds under weaker conditions than known so far. Another field were we apply
these results is vector optimization, where we provide a general duality framework
based on a more general scalarization that includes as special cases and improves
some previous results in the literature. Concerning entropy optimization, we treat
first via duality a problem having an entropy - like objective function, from which
arise as special cases some problems found in the literature on entropy optimization.
Finally, an application of entropy optimization into text classification is presented.
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Chapter 1

Introduction

Duality has played an important role in optimization and its applications especially
during the last half of century. Several duality approaches were introduced in the
literature, we mention here the classical Lagrange duality, Fenchel duality and ge-
ometric duality alongside the recent Fenchel - Lagrange duality, all of them being
studied and used in the present thesis. Conjugate functions are of great importance
for the latter three types.

Within this work we gathered our new results regarding the weakening of the suf-
ficient conditions given until now in the literature that assure strong duality for the
Fenchel, Fenchel - Lagrange and, respectively, geometric dual problems of some pri-
mal convex optimization problem with geometric and inequality constraints, show-
ing moreover that the latter dual is actually a special case of the second one. Then
we give duality statements also for composed convex optimization problems, with
applications in multiobjective duality, and for optimization problems having entropy
- like objective functions, generalizing some results in entropy optimization.

1.1 Duality: about and applications

Recognized as a basic tool in optimization, duality consists in attaching a dual
problem to a given primal problem. Usually the dual problem has only geometric
and/or linear constraints, but this is not a general rule. Among the advantages of
introducing a dual to a given problem we mention also the lower bound assured by
weak duality for the objective value of the primal problem and the easy derivation of
necessary and sufficient optimality conditions. Of major interest is to give sufficient
conditions that assure the so - called strong duality, i.e. the coincidence of the
optimal objective values of the two problems, primal and dual, and the existence of
an optimal solution to the dual problem.

Although there are several types of duality considered in the literature (for in-
stance Weir - Mond duality and Wolfe duality), we restricted our interest to the
following: Lagrange duality, Fenchel duality, geometric duality and Fenchel - La-
grange duality. The first of them is the oldest and perhaps the most used in the
literature and consists in attaching the so - called Lagrangian to a primal minimiza-
tion problem where the variable satisfies some geometric and (cone -) inequality
constraints. The Lagrangian is constructed using the so - called Lagrange multi-
plicators that take values in the dual of the cone that appears in the constraints.
Fenchel duality attaches to a problem consisting in the minimization of the sum
of two functions a dual maximization problem containing in the objective function
the conjugates of these functions. The conjugate functions started being inten-
sively used in optimization since Rockafellar’s book [72]. A combination of
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8 CHAPTER 1. INTRODUCTION

these two duality approaches has been recently brought into light by Boţ and

Wanka (cf. [8,92]). They called the new dual problem they introduced the Fenchel
- Lagrange dual problem and it contains both conjugate functions and Lagrange
multiplicators. Moreover, this combined duality approach has as particular case
another famous and widely - used duality concept, namely geometric programming
duality. Geometric programming includes also posynomial programming and sig-
nomial programming. Geometric programming is due mostly to Peterson (see,
for example, [71]) and it is still used despite being applicable only to some special
classes of problems.

To assure strong duality there were taken into consideration various conditions,
the most famous being the one due to Slater in Lagrange duality and the one
involving relative interiors of the domains of the functions involved in Fenchel du-
ality. There is a continuous challenge to give more and more general sufficient
conditions for strong duality. An important prerequisite for strong duality in all
the mentioned duality concepts is that the functions and sets involved are convex.
Another direction which brought some interesting results regarding the weakening
of the assumptions that deliver strong duality has been opened by the generalized
convexity concepts.

Depending on the functions involved in the primal optimization problems we
can distinguish different non - disjoint types of optimization problems. For in-
stance there are differentiable optimization, linear optimization, discrete optimiza-
tion, combinatorial optimization, complex optimization, DC optimization, entropy
optimization and so on. When a composition of functions appears in a problem it
is usually classified as a composite optimization problem. To the class of the com-
posite optimization problems belong also many problems of the already mentioned
types where the objective or constraint functions can be written as compositions of
functions.

Applications of the duality can be detected in both theoretical and practical
areas. Even if mentioning only a few fields where duality is successfully present
one could not avoid multiobjective optimization, variational inequalities, theorems
of the alternative, algorithms, maximal monotone operators from the first category,
respectively economy and finance, data mining and support vector machines, image
recognition and reconstruction, location and transports, and many others.

1.2 A description of the contents

In this section we present the way this thesis is organized, underlining the most
important results contained within. The name of the present chapter fully represents
its contents. After an overview on duality and its applications and this detailed
presentation of the work we recall some notions and definitions needed later. Let
us mention that all along this thesis we work in finite dimensional real spaces.

The second chapter deals with conjugate duality, introducing more general as-
sumptions that assure strong duality for some primal - dual pairs of problems than
known so far in the literature. It begins with a short presentation of the way dual
problems are obtained via perturbations. Given a primal optimization problem
consisting in minimizing a proper convex function subject to geometric and cone -
inequality constraints, for suitable choices of the perturbation function one obtains
the three dual problems we are mostly interested in within this work, namely La-
grange, Fenchel and Fenchel - Lagrange. The relations between these three duals
are also recalled. Then we give the most general condition known so far that assures
strong duality between the primal problem and its Fenchel - Lagrange dual (cf. [9]).
We prove that, in the special case when the primal problem is the ordinary convex
programming problem this new condition becomes the weakest constraint qualifica-
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tion known so far that guarantees strong duality in that situation (see also [32,72]).
The last part of the chapter deals with the classical Fenchel duality. We show that
it holds under weaker requirements for the functions involved (cf. [11,14]), i.e. when
they are considered only almost convex (according to the definition introduced by
Frenk and Kassay in [36]), respectively nearly convex (in the sense due to Ale-

man in [1]). In order to prove this we give also some other new results regarding
these kinds of functions and their conjugates. A small application of these new
results in game theory is presented, too.

The aim of the third chapter is to show that geometric programming duality
is a particular case of the recently introduced Fenchel - Lagrange duality. First
we show that the generalized geometric dual problem (cf. [71]) can be obtained
also via perturbations (cf. [13]). Then we determine the Fenchel - Lagrange dual
problem of the primal problem used in geometric programming (cf. [48]) and it
turns out to be exactly the geometric dual problem known in the literature (cf. [15]).
Specializing also the conditions that guarantee strong duality one can notice that
the requirements we consider are more general than the ones usually considered
in geometric programming, as the functions and some sets are not asked to be
also lower semicontinuous, respectively closed, like in the existing literature. We
have collected some applications of the geometric programming from the literature,
including the classical posynomial programming, and we show for each of these
problems that they do not have to be artificially transformed in order to fulfill the
needs of geometric programming, as they may be easier treated by means of Fenchel
- Lagrange duality. Moreover, when studying them via the latter, the strong duality
statements and optimality conditions for all of these problems arise under weaker
conditions than considered in the original papers.

In the fourth part of our work we give duality statements for some classes of
problems, extending some results in the second chapter. First we deal with the so
- called composed convex optimization problem that consists in the minimization
of the composition of a proper convex K - increasing function with a function K -
convex on the set where it is defined, subject to geometric and cone inequality con-
straints, where K is a closed convex cone. Strong duality and optimality conditions
for such problems are proven under a weak constraint qualification (cf. [9]). The
unconstrained case delivers us the tools to rediscover the formula of the conjugate
of the precomposition with a proper K - increasing convex function of a K - convex
function on the set where it is defined, which is shown to remain valid under weaker
assumptions than known until now. Another application of the duality for the
composed convex optimization problem is in multiobjective optimization where we
present a new duality framework arising from a more general scalarization method
than the usual linear one widely used (cf. [10]). The linear, maximum and norm
scalarizations, usually used in the literature, turn out to be particular instances of
the scalarization we consider. New duality results based on the Fenchel - Lagrange
scalar dual problem are delivered.

The second section of this chapter deals with problems having entropy - like
objective functions. Starting from the classical Kullback - Leibler entropy measure∑n

i=1 xi ln(xi/yi), which is applied in various fields such as pattern and image recog-
nition, transportation and location problems, linguistics, etc., we have constructed
the problem of minimizing a sum of functions of the type

∑k
i=1 fi(x) ln(fi(x)/gi(x))

subject to some geometric and inequality constraints. One may notice that this ob-
jective function contains as special cases the three most important entropy measures,
namely the ones due to Shannon (cf. [83]), Kullback and Leibler (cf. [59]) and,
respectively, Burg (cf. [24]). After giving strong duality and optimality conditions
for such a problem we show that some problems in the literature on entropy opti-
mization are rediscovered as special cases (cf. [12]). An application in text classifi-
cation is provided, which contains also an algorithm that generalizes an older one



10 CHAPTER 1. INTRODUCTION

due to Darroch and Ratcliff (cf. [16]).
An index of the notations and a comprehensive list of references close this thesis.

1.3 Preliminaries: definitions and results

We define now some notions that appear often within the present work, mentioning
moreover some basic results called later. As usual, Rn denotes the n - dimensional
real space for any positive integer n, R = R ∪ {±∞} the set of extended reals,
R+ = [0,+∞) contains the non - negative reals, Q is the set of real rationals
and N is the set of positive integers. Throughout this thesis all the vectors are
considered as column vectors and an upper index T transposes a column vector to
a row one and viceversa. The inner product of two vectors x = (x1, . . . , xn)T and
y = (y1, . . . , yn)T in the n - dimensional real space is denoted by xT y =

∑n
i=1 xiyi.

Denote by “5” the partial ordering introduced on any finite dimensional real space
by the corresponding positive orthant considered as a cone. Because there are in
the literature several different definitions for it, let us mention that by a cone in Rn

we understand (cf. [44]) a set C ⊆ Rn with the property that whenever x ∈ C and
λ > 0 it follows λx ∈ C. We use also the notation “=” in the sense that x = y if
and only if y 5 x.

We extend the addition and the multiplication from R onto R according to the
following rules

a + (+∞) = +∞ ∀a ∈ (−∞,+∞], a + (−∞) = −∞ ∀a ∈ [−∞,+∞),
a(+∞) = +∞ and a(−∞) = −∞ ∀a ∈ (0,+∞],
a(+∞) = −∞ and a(−∞) = +∞ ∀a ∈ [−∞, 0),
0(+∞) = 0(−∞) = 0.

Let us mention moreover that (+∞) + (−∞) and (−∞) + (+∞) are not defined.
Given some non - empty subset X of Rn we denote its closure by cl(X), its

interior by int(X), its border by bd(X) and its affine hull by aff(X), while to write
its relative interior we use the prefix ri. We need also the well - known indicator
function of X, namely δX : Rn → R which is defined by

δX(x) =

{
0, if x ∈ X,
+∞, if x /∈ X,

and the support function of X,

σX : Rn → R, σX(y) = sup
x∈X

yT x.

Notice that σX = δ∗X . When C is a non - empty cone in Rn, its dual cone is given
as

C∗ =
{

x∗ ∈ Rn : x∗T x ≥ 0 ∀x ∈ C
}

.

For a function f : Rn → R we have the effective domain dom(f) = {x ∈ Rn : f(x) <
+∞} and the epigraph epi(f) = {(x, r) ∈ Rn × R : f(x) ≤ r}. The function f is
said to be proper if one has concomitantly dom(f) 6= ∅ and f(x) > −∞ ∀x ∈ Rn.
We also reserve the notation f̄ for the lower semicontinuous envelope of f .

Take the function f : Rn → R. It is called convex if for any x, y ∈ Rn and any
λ ∈ [0, 1] one has

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y),

whenever the sum in the right - hand side is defined. When X is a non - empty
convex subset of Rn the function g : X → R is called convex on X if for all x, y ∈ X
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and all λ ∈ [0, 1] one has

g(λx + (1 − λ)y) ≤ λg(x) + (1 − λ)g(y).

Let us moreover notice that if f : Rn → R takes the value g(x) at any x ∈ X, being
equal to +∞ otherwise, f is convex if and only if X is convex and g is convex on
the set X. We call f : Rn → R concave if −f is convex and g : X → R concave
on X if −g is convex on X. We have epi(f̄) = cl(epi(f)). For x ∈ Rn such that
f(x) ∈ R we define the subdifferential of f at x by ∂f(x) = {x∗ ∈ X∗ : f(y)−f(x) ≥
〈x∗, y − x〉 ∀y ∈ Rn}.

When C is a non - empty closed convex cone in Rn, a function f : Rn → R is
called C - increasing if for x, y ∈ Rn fulfilling x − y ∈ C, follows f(x) ≥ f(y). If,
moreover, whenever x 6= y we have f(x) > f(y), the function is called C - strongly
increasing. Consider a non - empty convex set X ⊆ Rn and a non - empty closed
convex cone K in Rk. When a vector function F : X → Rk fulfills the property

∀x, y ∈ X ∀λ ∈ [0, 1] ⇒ λF (x) + (1 − λ)F (y) − F
(
λx + (1 − λ)y

)
∈ K,

it is called K - convex on X. In order to deal with conjugate duality we need first
to introduce the conjugate functions. For ∅ 6= X ⊆ Rn and a function f : Rn → R
we have the so - called conjugate function of f regarding the set X defined as

f∗
X : Rn → R, f∗

X(x∗) = sup
x∈X

{
x∗T x − f(x)

}
.

When X = Rn or dom(f) ⊆ X the conjugate regarding the set X turns out to
be the classical (Legendre - Fenchel) conjugate function of f , denoted by f ∗. This
notion is extended also for functions defined on X as follows. Let g : X → Rn. Its
conjugate regarding the set X is

g∗X : Rn → R, g∗X(x∗) = sup
x∈X

{
x∗T x − g(x)

}
.

Concerning the conjugate functions we have the following inequality known as
the Fenchel - Young inequality

f∗
X(x∗) + f(x) ≥ x∗T x ∀x ∈ X ∀x∗ ∈ Rn.

If A : Rn → Rm is a linear transformation, then by A∗ : Rm → Rn we denote
its adjoint defined by (Ax)T y∗ = xT (A∗y∗) ∀x ∈ Rn ∀y∗ ∈ Rm. Let us also note
that everywhere within this work we write min (max) instead of inf (sup) when the
infimum (supremum) is attained and for an optimization problem (P ) we denote
its optimal objective value by v(P ).
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Chapter 2

Conjugate duality in scalar
optimization

Within this chapter we improve some general results in conjugate duality which gen-
eralize earlier statements given in the literature. Consider an optimization problem
that consists in the minimization of a function subject to geometric and cone -
inequality constraints. First we sketchily present the way perturbation theory is
applied in duality and we recall the particular choices of the perturbation function
that deliver us the Lagrange, Fenchel and, respectively, Fenchel - Lagrange dual
problems to the considered primal. As the first two of them are widely - known
and used, while the last one is very recent, being a combination of the other two,
we focus on it. The second section has as its climax the introduction of a new
constraint qualification that guarantees strong duality between the primal problem
and its Fenchel - Lagrange dual. Under this new constraint qualification we deliver
also necessary and sufficient optimality conditions. We prove that this new con-
straint qualification becomes, when the primal problem is the so - called ordinary
convex program (cf. [72]), the weakest constraint qualification that assures strong
duality in this special case. The final section of this chapter brings into attention
new results involving some generalizations of the convexity. Some important results
concerning conjugate functions known so far to be valid only for convex functions
are proven also when the functions involved are almost convex or nearly convex.
Finally we show that even the classical duality theorem due to Fenchel is valid when
the functions involved are only almost convex, respectively nearly convex.

2.1 Dual problems obtained by perturbations and
relations between them

2.1.1 Motivation

Various duality approaches and frameworks have been considered in literature, and
in each case the challenge was to bring the weakest possible condition whose ful-
filment guaranteed the annulment of the duality gap that normally exists between
the optimal objective value of the primal and of the dual, respectively. One of
the methods successfully used to introduce new dual problems was the one using
perturbations. Wanka and Boţ (cf. [92]) have shown that the well - known dual
problems usually named Lagrange dual and, respectively, Fenchel dual can be ob-
tained by appropriately perturbing the given primal problem. Moreover, choosing
a perturbation that combines the ones used to obtain the two mentioned dual prob-
lems, they have obtained a new dual problem to a given primal one, namely the

13



14 CHAPTER 2. CONJUGATE DUALITY IN SCALAR OPTIMIZATION

Fenchel - Lagrange dual problem, consisting in the minimization of a function with
both geometric and inequality constraints. As within this thesis we give results
concerning all the three dual problems mentioned above, this introductory section
is necessary for better understanding the connections between these dual problems.

2.1.2 Problem formulation and dual problems obtained by
perturbations

Take X a non - empty subset of Rn and C a non - empty closed convex cone in Rm.
Consider the functions f : Rn → R and g = (g1, . . . , gm)T : X → Rm. The primal
optimization problem we consider in this section is

(P ) inf
x∈X,

g(x)∈−C

f(x).

Definition 2.1 Any x ∈ X fulfilling g(x) ∈ −C is said to be a feasible element to
the problem (P ). Moreover, x is called an optimal solution for (P ) if the optimal
objective value of the problem is attained at x, i.e. f(x) = v(P ).

The set A = {x ∈ X : g(x) ∈ −C} is called the feasible set of the problem (P ).
To be sure that the problem makes sense, we assume from the very beginning

the feasible set nonempty and moreover that it and dom(f) have at least a point
in common. Thus v(P ) < +∞. Let us also remark that the function g could be
defined on any subset of Rn containing X without affecting our future results.

Using an approach based on the theory of conjugate functions described by
Ekeland and Temam in [31], we construct different dual problems to the primal
problem (P ). In order to do it, let us first consider the general unconstrained opti-
mization problem

(PG) inf
x∈Rn

F (x),

with F : Rn → R. Let us consider the perturbation function Φ : Rn × Rm → R
which has the property that Φ(x, 0) = F (x) for each x ∈ Rn. Here, Rm is the
space of the perturbation variables. For each p ∈ Rm we obtain a new optimization
problem

(PGp) inf
x∈Rn

Φ(x, p).

For any p ∈ Rm, the problem (PGp) is a perturbed problem attached to (PG). In
order to introduce a dual problem to (PG), we calculate the conjugate of Φ which
is the function Φ∗ : Rn × Rm → R,

Φ∗(x∗, p∗) = sup
x∈R

n,
p∈R

m

{
(x∗, p∗)T (x, p) − Φ(x, p)

}
= sup

x∈R
n,

p∈R
m

{
x∗T x + p∗T p − Φ(x, p)

}
.

Now we can define the following optimization problem

(DG) sup
p∗∈Rm

{−Φ∗(0, p∗)}.

The problem (DG) is called the dual problem to (PG) and its optimal objective
value is denoted by v(DG).

This approach presents an important feature: between the primal and the dual
problem weak duality always holds. The following statement proves this fact.
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Theorem 2.1 (weak duality) (cf. [31]) The following chain of inequalities is always
valid

−∞ ≤ v(DG) ≤ v(PG) ≤ +∞.

Our next aim is to show how this approach can be applied to the constrained
optimization problem (P ). Therefore, take

F (x) =

{
f(x), if x ∈ X and g(x) ∈ −C,
+∞, otherwise.

It is easy to notice that the primal problem (P ) is equivalent to

(PG) inf
x∈Rn

F (x),

and, since the perturbation function Φ : Rn × Rm → R satisfies Φ(x, 0) = F (x) for
each x ∈ Rn, this must fulfill

Φ(x, 0) =

{
f(x), if x ∈ X and g(x) ∈ −C,
+∞, otherwise.

(2. 1)

For special choices of the perturbation function Φ we obtain different dual prob-
lems to (P ) as shown in the following.

First let the perturbation function be (cf. [8, 92])

ΦL : Rn × Rm → R, ΦL(x, q) =

{
f(x), if x ∈ X and g(x) − q ∈ −C,
+∞, otherwise,

with the perturbation variable q ∈ Rm. The formula of the conjugate of this func-
tion, Φ∗

L : Rn × Rm → R is

Φ∗
L(x∗, q∗) =





sup
x∈X

{
x∗T x + q∗T g(x) − f(x)

}
, if q∗ ∈ −C∗,

+∞, otherwise.

The dual obtained by the perturbation function ΦL to the problem (P ) is

(DL) sup
q∗∈Rm

{−Φ∗
L(0, q∗)},

which has actually the following formulation

(DL) sup
q∗∈C∗

inf
x∈X

[
f(x) + q∗T g(x)

]
.

One can immediately notice that the problem (DL) is actually the well - known
Lagrange dual problem to (P ).

Take now the perturbation function

ΦF : Rn × Rn → R, ΦF (x, p) =

{
f(x + p), if x ∈ X and g(x) ∈ −C,
+∞, otherwise,

with the perturbation variable p ∈ Rn. Its conjugate function is

Φ∗
F (x∗, p∗) = f∗(p∗) − inf

x∈A

{
(p∗ − x∗)T x

}
= f∗(p∗) + σA(x∗ − p∗),

and the corresponding dual problem to (P ),

(DF ) sup
p∗∈Rn

{−Φ∗
F (0, p∗)},
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turns out to be

(DF ) sup
p∗∈Rn

{−f∗(p∗) − σA(−p∗)}.

It is easy to remark that the primal problem may be rewritten as

(P ) inf
x∈R

[f(x) + δA(x)],

and the latter dual problem is actually

(DF ) sup
p∗∈Rn

{
− f∗(p∗) − δ∗A(−p∗)

}
,

which is the Fenchel dual problem to (P ) (cf. [72]).
Thus we have obtained via the presented perturbation theory two classical dual

problems to the primal problem (P ) by appropriately choosing the perturbation
function. The natural question of what happens when one combines the two per-
turbation functions considered above has been answered by Boţ and Wanka in a
series of recent papers beginning with [92]. They took the perturbation function

ΦFL : Rn × Rn × Rm → R,

ΦFL(x, p, q) =

{
f(x + p), if x ∈ X and g(x) − q ∈ −C,
+∞, otherwise,

with the perturbation variables p ∈ Rn and q ∈ Rm. ΦFL satisfies the condition
(2. 1) required in order to be a perturbation function to the problem (P ) and its
conjugate is

Φ∗
FL(x∗, p∗, q∗) =





f∗(p∗) + sup
x∈X

{
(x∗ − p∗)T x + q∗T g(x)

}
, if q∗ ∈ −C∗,

+∞, otherwise.

The dual problem that arises in this case is

(DFL) sup
p∗∈R

n,

q∗∈R
k

{
− Φ∗

FL(0, p∗, q∗)
}
,

which is actually

(DFL) sup
p∗∈R

n,
q∗∈C∗

{
− f∗(p∗) − (q∗T g)∗X(−p∗)

}
,

where by qT g we denote the function defined on X whose value at any x ∈ X is equal
to
∑m

j=1 qjgj(x), with q = (q1, . . . , qm)T . Because of the way it was constructed this
problem has been called (cf. [92], see also [9] and [15]) the Fenchel - Lagrange dual
problem to (P ). As we shall see later it can be obtained also by considering the
Lagrange dual problem to (P ) and then the Fenchel dual to the inner minimization
problem.

Between the optimal objective values of the three dual problems attached to (P )
we take into consideration and the primal problem itself there hold the following
relations (see also Theorem 2.1, [8, 92])

v(DFL) ≤ v(DL)
v(DF )

≤ v(P ).

Between v(DL) and v(Dp) no general order can be given, see [8] or [92] for examples
where v(DL) > v(Dp) and, respectively, v(DL) < v(Dp). Sufficient conditions to
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assure the fulfillment of the inequalities above as equalities were already given in the
literature, see, for instance, [8] or [92]. We are interested to close the gap between
v(DFL) and v(P ), i.e. to give sufficient conditions to guarantee the simultaneous
satisfaction of the inequalities above as equalities and moreover the existence of an
optimal solution to the dual problem. The next section deals with this problem and
its connections in the literature.

2.2 Strong duality and optimality conditions for
Fenchel - Lagrange duality

2.2.1 Motivation

Introduced by Wanka and Boţ (cf. [92]), the Fenchel - Lagrange dual problem is
a combination of the well - known Lagrange and Fenchel dual problems. Although
new, it has proven to have some important applications, from multiobjective op-
timization (cf. [8, 18, 19, 89–91, 93]) to theorems of the alternative and Farkas type
results (cf. [22]). Moreover, we show in the third chapter of the present thesis that
the well - known and widely used geometric programming duality is a special case
of the Fenchel - Lagrange duality, so all its applications can be taken over, too. For
a given primal optimization problem consisting in the minimization of a function
with both geometric and inequality constraints, the initial constraint qualification
considered in order to achieve strong duality between the primal and the new dual
problem was based on the well - known condition due to Slater. Then these results
have been refined in [15] and generalized in [9]. In the latter paper the inequality
constraints are considered over some non - empty closed convex cone and the new
constraint qualification may work also when the cone has empty interior, while the
classical constraint qualification due to Slater fails in such a situation, as it asks the
cone to have a non - empty interior.

2.2.2 Duality and optimality conditions

To the given primal optimization problem (P ) we have introduced three dual prob-
lems, two of them being widely used and known, while the third, their combination,
has been recently introduced. In order to give the strong duality statement for
the pair of problems (P ) - (DFL) we need to introduce a constraint qualification,
inspired by the one used in [37]. Further, unless otherwise specified, consider more-
over X a non - empty convex set and that f is a proper convex function and g a C
- convex function on X. First we give an equivalent formulation of the constraint
qualification considered in [37], which is in this case

(CQFK) 0 ∈ ri(g(X ∩ dom(f)) + C).

Lemma 2.1 Let U ⊆ X a non - empty convex set. Then

ri(g(U) + C) = g(ri(U)) + ri(C).

Proof. Consider the set

M = {(x, y) : x ∈ U, y ∈ Rm, y − g(x) ∈ C},
which is easily provable to be convex. For each x ∈ U consider now the set Mx =
{y ∈ Rm : (x, y) ∈ M}. When x /∈ U it is obvious that Mx = ∅, while in the
complementary case we have y ∈ Mx ⇔ y − g(x) ∈ C ⇔ y ∈ g(x) + C, so we
conclude

Mx =

{
g(x) + C, if x ∈ U,
∅, if x /∈ U.
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Therefore Mx is also convex for any x ∈ U . Let us see now how we can characterize
the relative interior of the set M . According to Theorem 6.8 in [72] we have (x, y) ∈
ri(M) if and only if x ∈ ri(U) and y ∈ ri(Mx). On the other hand, for any x ∈ ri(U),
y ∈ ri(Mx) means actually y ∈ ri(g(x) + C) = g(x) + ri(C), so we can write further

ri(M) = {(x, y) : x ∈ ri(U), y − g(x) ∈ ri(C)}.

Consider now the linear transformation A : Rn ×Rm → Rm defined by A(x, y) = y.
Let us prove that A(M) = g(U) + C. Take first an element y ∈ A(M). It follows
that there is an x ∈ U such that y−g(x) ∈ C, which yields y ∈ g(U)+C. Reversely,
for any y ∈ g(U) + C there is an x ∈ U such that y ∈ g(x) + C, so y − g(x) ∈ C.
This means (x, y) ∈ M , followed by y ∈ A(M).

Finally, by Theorem 6.6 in [72] we get

ri(g(U) + C) = ri(A(M)) = A(ri(M)) = g(ri(U)) + ri(C). �

According to this lemma, the constraint qualification (CQFK) is equivalent to

(CQR) ∃x′ ∈ ri(X ∩ dom(f)) such that g(x′) ∈ − ri(C).

This condition is sufficient to assure duality between (P ) and (DL), but in or-
der to close the gap between (P ) and (DFL) we introduce the following constraint
qualification

(CQ) ∃x′ ∈ ri(dom(f)) ∩ ri(X) : g(x′) ∈ − ri(C).

Remark 2.1 Notice, using eventually Theorem 6.5 in [72], that the validity of
(CQ) guarantees the satisfaction of (CQR). We are now ready to formulate the
strong duality statement.

Theorem 2.2 (strong duality) (see [9]) Consider the constraint qualification (CQ)
fulfilled. Then there is strong duality between the problem (P ) and its dual (DFL),
i.e. v(P ) = v(DFL) and the latter has an optimal solution if v(P ) > −∞.

Proof. First we deal with the Lagrange dual problem to (P ), which is

(DL) sup
q∗∈C∗

inf
x∈X

[
f(x) + q∗T g(x)

]
.

According to [37], the convexity assumptions introduced above and the fulfill-
ment of the condition (CQFK) (or (CQR), due to Lemma 2.1) are sufficient to
assure the coincidence of v(P ) and v(DL), moreover guaranteeing the existence of
an optimal solution q∗ to (DL) when v(P ) > −∞. As (CQ) implies (CQFK) (see
Lemma 2.1 and Remark 2.1), v(P ) and v(DL) coincide, the latter having moreover
a solution when v(P ) > −∞.

Now let us write the Fenchel dual problem to the inner infimum in (DL). For any
q∗ ∈ C∗, q∗T g is a real-valued function convex on X, so in order to apply rigourously
Fenchel’s duality theorem (cf. [72]) we have to consider its convex extension to Rn,

q̃∗T g, which takes the value +∞ outside X. As dom(q̃∗T g) = X and ri(dom(f)) ∩
ri(X) 6= ∅, we have by Fenchel’s duality theorem (cf. Theorem 31.1 in [72])

inf
x∈X

[
f(x) + q∗T g(x)

]
= inf

x∈Rn

[
f(x) + q̃∗T g(x)

]
= sup

p∗∈Rn

{
− f∗(p∗) − q̃∗T g

∗

(−p∗)
}

.

It is not difficult to notice that q̃∗T g
∗

(−p∗) = (q∗T g)∗X(−p∗), so it is straightforward
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that

v(P ) = sup
q∗∈C∗

inf
x∈X

[
f(x)+q∗T g(x)

]
= sup

q∗∈C∗,
p∗∈R

n

{
−f∗(p∗)−(q∗T g)∗X(−p∗)

}
= v(DFL).

In case v(P ) is finite, because of the existence of an optimal solutions for the La-
grange dual, we get

v(P ) = sup
q∗∈C∗

inf
x∈X

[
f(x) + q∗T g(x)

]
= inf

x∈X

[
f(x) + q∗

T
g(x)

]
.

Further, by Fenchel’s duality theorem (cf. [72]),

v(P ) = inf
x∈X

[
f(x) + q∗

T
g(x)

]
= max

p∗∈Rn

{
− f∗(p∗) − (q∗

T
g)∗X(−p∗)

}
,

the latter being attained at some p∗ ∈ Rn. This means exactly that (p∗, q∗) is an
optimal solution to (DFL). �

Now let us deliver necessary and sufficient optimality conditions regarding the
convex optimization problems (P ) and (DFL).

Theorem 2.3 (optimality conditions)
(a) If the constraint qualification (CQ) is fulfilled and the primal problem (P ) has
an optimal solution x̄, then the dual problem has an optimal solution (p∗, q∗) and
the following optimality conditions are satisfied

(i) f∗(p∗) + f(x̄) = p∗
T
x̄,

(ii) (q∗
T
g)∗X(−p∗) + q∗

T
g(x̄) = −p∗

T
x̄,

(iii) q∗
T
g(x̄) = 0.

(b) If x̄ is a feasible point to the primal problem (P ) and (p∗, q∗) is feasible to
the dual problem (DFL) fulfilling the optimality conditions (i) − (iii), then there is
strong duality between (P ) and (DFL) and the mentioned feasible points turn out
to be optimal solutions to the corresponding problems.

Proof. (a) Theorem 2.2 guarantees strong duality between (P ) and (DFL), so the
dual problem has an optimal solution, say (p∗, q∗). The equality of the optimal
objective values of (P ) and (DFL) implies

f(x̄) + f∗(p∗) + (q∗
T
g)∗(−p∗) = 0. (2. 2)

The Fenchel - Young inequality states

f∗(p∗) + f(x̄) ≥ p∗
T
x̄

and

(
q∗

T
g
)∗
X

(−p∗) + q∗
T
g(x̄) ≥ −p∗

T
x̄.

Summing these two relations one gets, taking also into account (2. 2),

0 ≥ q∗
T
g(x̄) = f∗(p∗) + f(x̄) + (q∗

T
g)∗X(−p∗) + q∗

T
g(x̄) ≥ 0,

where the first inequality is valid because x̄ is feasible to (P ) and q∗ ∈ C∗. It is
clear that all the inequalities above must be fulfilled as equalities and this delivers
immediately the optimality conditions (i) − (iii).
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(b) All the calculations presented above can be carried out in reverse order, so
the assertion holds. �

Remark 2.2 (cf. [9,15]) We want to mention that (b) applies without any convexity
assumption as well as constraint qualification. So the sufficiency of the optimality
conditions (i) − (iii) is true in the most general case.

We give now a concrete problem that shows that a relaxation of (CQ) by con-
sidering in its formulation the whole set X instead of its relative interior does not
guarantee strong duality.

Example 2.1 Let f : R2 → R be defined by f(x1, x2) = x2 and g : X → R,
g(x1, x2) = x1, where

X =

{
x = (x1, x2) ∈ R2 : 0 ≤ x1 ≤ 2,

3 ≤ x2 ≤ 4, if x1 = 0,
1 < x2 ≤ 4, if x1 > 0

}
.

It is obvious that f is a convex function and g is convex on X. Formulate the
optimization problem

(Pe) inf
x∈X,

g(x)=0

f(x).

This problem fits into our scheme for C = {0}. The constraint qualification
(CQ) becomes in this case

∃x′ ∈ ri(X) such that g(x′) ∈ −C,

which means, by Lemma 2.1, 0 ∈ ri(g(X) + C), i.e. 0 ∈ ri([0, 2] + 0) = (0, 2), that
is false. One may notice that also (CQR) fails in this case, as it coincides here with
(CQ). On the other hand the condition 0 ∈ g(X) + ri(C) is fulfilled, being in this
case 0 ∈ [0, 2], that is true.

As in [32], where this example has been borrowed from, the optimal objective
value of (Pe) turns out to be v(Pe) = 3, while the one of its Lagrange dual problem is
1. Because of the convexity of the functions and sets involved the optimal objective
value of the Lagrange dual coincides in this case (see the proof of Theorem 2.2) to
the one of the Fenchel - Lagrange dual to (Pe).

Therefore we see that a relaxation of (CQ) by considering x′ ∈ X instead of
x′ ∈ ri(X) does not guarantee strong duality.

We would also like to mention that Frenk and Kassay have shown in [36] that
if there is an y0 ∈ aff(g(X)) such that g(X) ⊆ y0 + aff(C) then 0 ∈ g(X) + ri(C)
becomes equivalent to 0 ∈ ri(g(X) + C).

2.2.3 The ordinary convex programs as special case

The ordinary convex programs (cf. [72]) are among the problems to which the du-
ality assertions formulated earlier are applicable. Consider such an ordinary convex
program

(Po) inf
x∈X,

gi(x)≤0,i=1,...,r,
gj(x)=0,j=r+1,...,m

f(x),.

where X ⊆ Rn is a non - empty convex set, f : Rn → R is a convex function with
dom(f) = X, gi : X → R, i = 1, . . . , r, are functions convex on X and gj : X → R,
j = r + 1, . . . ,m, are the restrictions to X of some affine functions on Rn. Denote
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g = (g1, . . . , gm)T . This problem is a special case of (P ) when we consider the cone
C = Rr

+ × {0}m−r. The Fenchel - Lagrange dual problem to (Po) is

(DFL
o ) sup

q∈R
r
+×R

m−r,

p∈R
n

{
− f∗(p) −

(
qT g

)∗
X

(−p)
}

.

The constraint qualification that assures strong duality is in this case

(CQo) 0 ∈ ri
(
g(X) + Rr

+ × {0}m−r
)
,

equivalent to 0 ∈ g(ri(X)) + ri(Rr
+ × {0}m−r), i.e.

(CQo) ∃x′ ∈ ri(X) :

{
gi(x

′) < 0, if i = 1, . . . , r,
gj(x

′) = 0, if j = r + 1, . . . ,m,

which is exactly the sufficient condition given in [72] to state strong duality between
(Po) and its Lagrange dual problem

(DL
o ) sup

q∈R
r
+×Rm−r

inf
x∈X

[
f(x) + qT g(x)

]
.

As ri(dom(f)) = ri(X) 6= ∅, we have that the value of the inner infimum in (DL
o ),

as a convex optimization problem, is equal to the optimal value of its Fenchel dual,
which leads us to the objective function in (DFL

o ). The strong duality statement
concerning the problems (Po) and (DFL

o ) follows.

Theorem 2.4 (strong duality) Consider the constraint qualification (CQo) fulfilled.
Then there is strong duality between the problem (Po) and its dual (DFL

o ) and the
latter has an optimal solution if v(Po) > −∞.

Remark 2.3 Some authors take as ordinary convex program the following prob-
lem, where f , g and X are defined as before,

(P ′
o) inf

x∈X,
g(x)50

f(x).

For this problem the strong duality is attained provided the fulfillment of the
constraint qualification (cf. [9, 32])

(CQ′
o) ∃x′ ∈ ri(X) :

{
gi(x

′) < 0, if i = 1, . . . , r,
gj(x

′) ≤ 0, if j = r + 1, . . . ,m.

A first look would make someone think that (P ′
o) is a special case of (P ) by

taking C = Rm
+ and (CQ) requires in this case the existence of an x′ ∈ ri(X) such

that g(x′) ∈ − ri
(
Rm

+

)
, i.e. for all i = 1, . . . ,m, gi(x

′) < 0, condition that is more
restrictive than (CQ′

o). Let us prove that there is another possible choice of the
cone C such that (CQ′

o) implies the fulfilment of (CQ), namely 0 ∈ g(ri(X))+ri(C)
for the primal problem rewritten as

(P ′
o) inf

x∈X,
g(x)∈−C

f(x).

Consider (CQ′
o) fulfilled and take the set

I =
{
i ∈ {r + 1, . . . ,m} : x ∈ X such that g(x) 5 0 ⇒ gi(x) = 0

}
.

When I = ∅ then for each i ∈ {r + 1, . . . ,m} there is an xi ∈ X feasible to (P ′
o)
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such that gi(x
i) < 0. Take the cone C = Rm

+ . Introducing

x0 =

m∑

i=r+1

1

m − r + 1
xi +

1

m − r + 1
x′,

we show that it belongs to ri(X). First,

m∑

i=r+1

1

m − r + 1
xi =

m − r

m − r + 1

m∑

i=r+1

1

m − r
xi

and
∑m

i=r+1

(
1/(m − r)

)
xi ∈ X. Applying Theorem 6.1 in [72] it follows that

x0 ∈ ri(X). For any j ∈ {1, . . . ,m} we have

gj(x
0) ≤

m∑

i=r+1

1

m − r + 1
gj(x

i) +
1

m − r + 1
gj(x

′) < 0.

Therefore there exists x0 ∈ ri(X) such that 0 ∈ g(x0) + ri(C), which is the desired
result.

When I 6= ∅, without loss of generality as we perform at most a reindexing of
the functions gj , r + 1 ≤ j ≤ m, let I = {r + l, . . . ,m}, where l is a positive integer
smaller than m−r. This means that for j ∈ {r+l, . . . ,m} follows gj(x) = 0 if x ∈ X
and g(x) 5 0. Then (P ′

0) is a special case of (P ) for C = Rr+l−1
+ ×{0}m−r−l+1. For

each j ∈ {r + 1, . . . , r + l − 1} there is an xj feasible to (P ′
o) such that gj(x

j) < 0.
Taking

x0 =
r+l−1∑

i=r+1

1

l
xi +

1

l
x′,

we have as above that x0 ∈ ri(X) and gj(x
0) < 0 for any j ∈ {1, . . . , r + l − 1} and

gj(x
0) = 0 for j ∈ I (because of the affinity of the functions gj , r + 1 ≤ j ≤ m),

which is exactly what (CQ) asserts.

Therefore there is always a choice of the cone C which guarantees that for the
reformulated problem (CQ) stands.

2.3 Fenchel duality under weaker requirements

As we have seen, in order to prove strong duality for the Fenchel - Lagrange dual
problem under more general conditions than known so far we have weakened the
constraint qualification. Our research included also the classical Fenchel duality
and we show in the following that it holds under more general conditions than
given in the literature known to us. Unlike the previous section, here we do not
weaken the constraint qualification but the convexity assumptions imposed on the
functions involved. Thus we give some new results involving almost convex and
nearly convex functions. They culminate with proving that the classical Fenchel
duality theorem is valid when the functions involved are almost convex or nearly
convex, too. Known being the applications of Fenchel duality in game theory (see,
for instance, [7]) and the connections between this area and Lagrange duality given
also for generalized convex functions (cf. [68, 69]), we give an application of our
results in the latter field. By this we are trying to open the gate into the direction
of Fenchel duality for games which can be written by using optimization problems
involving generalized convex functions.
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2.3.1 Motivation

Since Rockafellar’s book [72], convex analysis started to spread into various di-
rections, and Fenchel’s duality theorem has been called in various contexts. Given
initially for convex functions, it has been extended to some other classes of prob-
lems involving different types of functions as the need for such statements arose
from both theoretical and practical needs. We mention here Kanniappan who has
given in [55] a Fenchel type duality theorem for non - convex and non - differentiable
maximization problems, Beoni who extended Fenchel’s statement to fractional pro-
gramming in [5] and Penot and Volle who considered it for quasiconvex problems
in [70].

As suggested by the latter paper, a direction to generalize the duality statements
is to consider various generalizations of the convexity instead of convexity for the
functions and sets involved. For instance Frenk and Kassay (cf. [36]) extended
Lagrange duality for nearly convex functions and Boţ, Kassay and Wanka gave
strong duality for a primal optimization problem and its Fenchel - Lagrange dual
when the functions involved were nearly convex in [17].

In the following we prove that some properties of the conjugate functions can
be given also for almost convex and nearly convex functions. Since there are several
notions of almost convexity in the literature, let us mention that we consider the one
introduced by Frenk and Kassay in [36], while for nearly convex functions we use
the definition usually encountered in the literature due to Aleman (cf. [1]). Our
results regarding the conjugates of nearly convex and, respectively, almost convex
functions bring towards the end of the chapter the proofs that the Fenchel duality
theorem is valid when the functions involved are almost convex or nearly convex,
too. Therefore we generalize this classical result in duality in a new direction.

2.3.2 Preliminaries on nearly and almost convex functions

We begin with some definitions and some useful results.

Definition 2.2 A set X ⊆ Rn is called nearly convex if there is a constant α ∈
(0, 1) such that for any x and y belonging to X one has αx + (1 − α)y ∈ X.

An example of a nearly convex set which is not convex is Q. Important properties
of the nearly convex sets follow.

Lemma 2.2 (cf. [1]) For every nearly convex set X ⊆ Rn the following properties
are valid

(i) ri(X) is convex (may be empty),

(ii) cl(X) is convex,

(iii) for every x ∈ cl(X) and y ∈ ri(X) we have tx + (1 − t)y ∈ ri(X) for each
0 ≤ t < 1.

Definition 2.3 (cf. [23,36]) A function f : Rn → R is called

(i) almost convex if f̄ is convex and ri(epi(f̄)) ⊆ epi(f),

(ii) nearly convex if epi(f) is nearly convex,

(iii) closely convex if epi(f̄) is convex (i.e. f̄ is convex).
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Connections between these kinds of functions arise from the following remarks,
while to show that there are differences between them we give later an example.

Remark 2.4 Any almost convex function is also closely convex.

Remark 2.5 Any nearly convex function has a nearly convex effective domain.
Moreover, as its epigraph is nearly convex, the function is also closely convex, ac-
cording to Lemma 2.2(ii).

Although cited from the literature, the following auxiliary results are not so
widely known, thus we have included them here.

Remark 2.6 Given any function f : Rn → R we have dom(f) ⊆ dom(f̄) ⊆
cl(dom(f)), which implies cl(dom(f)) = cl(dom(f̄)).

Lemma 2.3 (cf. [17, 36]) For a convex set C ⊆ Rn and any non - empty set X ⊆
Rn satisfying X ⊆ C we have ri(C) ⊆ X if and only if ri(C) = ri(X).

Lemma 2.4 (cf. [17]) Let X ⊆ Rn be a nearly convex set. Then ri(X) 6= ∅ if and
only if ri(cl(X)) ⊆ X.

Lemma 2.5 (cf. [17]) For a non - empty nearly convex set X ⊆ Rn, ri(X) 6= ∅ if
and only if ri(X) = ri(cl(X)).

Using Remark 2.5 and Lemma 2.4 we deduce the following statement.

Proposition 2.1 If f : Rn → R is a nearly convex function satisfying ri(epi(f)) 6=
∅, then it is almost convex.

Remark 2.7 Each convex function is nearly convex and almost convex.

The first observation is obvious, while the second can be easily proven. Let
f : Rn → R be a convex function. If f(x) = +∞ everywhere then epi(f) = ∅, which
is closed, so f̄ = f and it follows f almost convex. Otherwise, epi(f) is non - empty
and, being convex because of f ’s convexity, it has a non - empty relative interior
(cf. Theorem 6.2 in [72]) so, by Proposition 2.1, it is almost convex.

2.3.3 Properties of the almost convex functions

Next we present some properties of the almost convex functions and some examples
that underline the differences between this class of functions and the nearly convex
functions.

Theorem 2.5 (cf. [36]) Let f : Rn → R having non - empty domain. The function
f is almost convex if and only if f̄ is convex and f̄(x) = f(x) ∀x ∈ ri(dom(f̄)).

Proof. “⇒” When f is almost convex, f̄ is convex. As dom(f) 6= ∅, we have
dom(f̄) 6= ∅. It is known (cf. [72]) that

ri(epi(f̄)) =
{

(x, r) : f̄(x) < r, x ∈ ri
(
dom

(
f̄
))}

(2. 3)

so, as the definition of the almost convexity includes ri
(
epi
(
f̄
))

⊆ epi(f), it follows

that for any x ∈ ri
(
dom

(
f̄
))

and ε > 0 one has
(
x, f̄(x) + ε

)
∈ epi(f). Thus

f̄(x) ≥ f(x) ∀x ∈ ri(dom(f̄)) and the definition of f̄ yields the coincidence of f and
f̄ over ri

(
dom

(
f̄
))

.
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“⇐” We have f̄ convex and f̄(x) = f(x) ∀x ∈ ri
(
dom

(
f̄
))

. Thus ri
(
dom

(
f̄
))

⊆ dom(f). By Lemma 2.3 and Remark 2.5 one gets ri
(
dom

(
f̄
))

⊆ dom(f) if

and only if ri
(
dom

(
f̄
))

= ri(dom(f)), therefore this last equality holds. Using

this and (2. 3) it follows ri
(
epi
(
f̄
))

=
{
(x, r) : f(x) < r, x ∈ ri(dom(f))

}
, so

ri
(
epi
(
f̄
))

⊆ epi(f). This and the hypothesis f̄ convex yield that f is almost con-
vex. �

Remark 2.8 From the previous proof we obtain also that if f is almost convex
and has a non - empty domain then ri(dom(f)) = ri(dom(f̄)) 6= ∅. We have also
ri(epi(f̄)) ⊆ epi(f), from which, by the definition of f̄ , follows

ri(cl(epi(f))) ⊆ epi(f) ⊆ cl(epi(f)).

Applying Lemma 2.3 we get ri(epi(f)) = ri(cl(epi(f))) = ri(epi(f̄)).

In order to avoid confusions between the nearly convex functions and the almost
convex functions we give below some examples that show that there is no inclusion
between these two classes of functions. Their intersection is not empty, though, as
Remark 2.7 states that the convex functions are concomitantly almost convex and
nearly convex.

Example 2.2 (i) Let f : R → R be any discontinuous solution of Cauchy’s
functional equation f(x + y) = f(x) + f(y) ∀x, y ∈ R. For each of these functions,
whose existence is guaranteed in [42], one has

f
(x + y

2

)
=

f(x) + f(y)

2
∀x, y ∈ R,

i.e. these functions are nearly convex. None of these functions is convex because
of the absence of continuity. We have that dom(f) = R = ri(dom(f)). Suppose f
almost convex. Then Theorem 2.5 yields f̄ convex and f(x) = f̄(x) ∀x ∈ R. Thus
f is convex, but this is false. Therefore f is nearly convex, but not almost convex.

(ii) Consider the set X =
(
[0, 2] × [0, 2]

)
\
(
{0} × (0, 1)

)
and let g : R2 → R, g =

δX . We have epi(g) = X × [0,+∞), so epi(ḡ) = cl(epi(g)) = [0, 2]× [0, 2]× [0,+∞).
As this is a convex set, ḡ is a convex function. We also have ri(epi(ḡ)) = (0, 2) ×
(0, 2) × (0,+∞), which is clearly contained inside epi(g). Thus g is almost convex.
On the other hand, dom(g) = X and X is not a nearly convex set, because for any
α ∈ (0, 1) we have α(0, 1) + (1 − α)(0, 0) = (0, α) /∈ X. By Remark 2.5 it follows
that the almost convex function g is not nearly convex.

Using Remark 2.7 and the facts above we see that there are almost convex and
nearly functions which are not convex, i.e. both these classes are larger than the
one of convex functions.

The following assertion states an interesting and important property of the al-
most convex functions that is not applicable in general for nearly convex functions.

Theorem 2.6 Let f : Rn → R and g : Rm → R be proper almost convex functions.
Then the function F : Rn × Rm → R defined by F (x, y) = f(x) + g(y) is almost
convex, too.

Proof. Consider the linear operator L : (Rn×R)×(Rm×R) → Rn×Rm×R defined
as L(x, r, y, s) = (x, y, r + s). Let us show first that L(epi(f) × epi(g)) = epi(F ).

Taking the pairs (x, r) ∈ epi(f) and (y, s) ∈ epi(g) we have f(x) ≤ r and
g(y) ≤ s, so F (x, y) = f(x) + g(y) ≤ r + s, i.e. (x, y, r + s) ∈ epi(F ). Thus
L(epi(f) × epi(g)) ⊆ epi(F ).
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On the other hand, for (x, y, t) ∈ epi(F ) one has F (x, y) = f(x) + g(y) ≤ t, so
f(x) and g(y) are real numbers. It follows (x, f(x), y, t − f(x)) ∈ epi(f) × epi(g),
i.e. (x, y, t) ∈ L(epi(f) × epi(g)) meaning epi(F ) ⊆ L(epi(f) × epi(g)).

Therefore L(epi(f) × epi(g)) = epi(F ). We prove that cl(epi(F )) is convex,
which means F̄ convex.

Let (x, y, r) and (u, v, s) in cl(epi(F )). There are two sequences, (xk, yk, rk)k≥1

and (uk, vk, sk)k≥1 in epi(F ), the first converging towards (x, y, r) and the second
to (u, v, s). Then we have also the sequences of reals (r1

k)k≥1, (r2
k)k≥1, (s1

k)k≥1

and (s2
k)k≥1 fulfilling for each k ≥ 1 the following r1

k + r2
k = rk, s1

k + s2
k = sk,

(xk, r1
k) ∈ epi(f), (yk, r2

k) ∈ epi(g), (uk, s1
k) ∈ epi(f) and (vk, s2

k) ∈ epi(g). Let
λ ∈ [0, 1]. We have, due to the convexity of the lower-semicontinuous hulls of f and
g, (λxk +(1−λ)uk, λr1

k +(1−λ)s1
k) ∈ cl(epi(f)) = epi(f̄) and (λyk +(1−λ)vk, λr2

k +
(1−λ)s2

k) ∈ cl(epi(g)) = epi(ḡ). Further, (λxk +(1−λ)uk, λyk +(1−λ)vk, λrk +(1−
λ)sk) ∈ L(cl(epi(f)) × cl(epi(g))) = L(cl(epi(f) × epi(g))) ⊆ cl(L(epi(f) × epi(g)))
for all k ≥ 1. Letting k converge towards +∞ we get (λx+(1−λ)u, λy+(1−λ)v, λr+
(1 − λ)s) ∈ cl(L(epi(f) × epi(g))) = cl(epi(F )). As this happens for any λ ∈ [0, 1]
it follows cl(epi(F )) convex, so epi(F̄ ) is convex, i.e. F̄ is a convex function.

Therefore, in order to obtain that F is almost convex we have to prove only that
ri(cl(epi(F ))) ⊆ epi(F ). Using some basic properties of the closures and relative
interiors and also that f and g are almost convex we have ri(cl(epi(f) × epi(g))) =
ri(cl(epi(f))×cl(epi(g))) = ri(cl(epi(f)))×ri(cl(epi(g))) ⊆ epi(f)×epi(g). Applying
the linear operator L to both sides we get L(ri(cl(epi(f) × epi(g)))) ⊆ L(epi(f) ×
epi(g)) = epi(F ). One has cl(epi(f) × epi(g)) = cl(epi(f)) × cl(epi(g)) = epi(f̄) ×
epi(ḡ), which is a convex set, so also L(cl(epi(f)×epi(g))) is convex. As for any linear
operator A : Rn → Rm and any convex set X ⊆ Rn one has A(ri(X)) = ri(A(X))
(see for instance Theorem 6.6 in [72]), it follows

ri(L(cl(epi(f) × epi(g)))) = L(ri(cl(epi(f) × epi(g)))) ⊆ epi(F ). (2. 4)

On the other hand,

epi(F ) = L(epi(f) × epi(g)) ⊆ L(cl(epi(f) × epi(g))) ⊆ cl(L(epi(f) × epi(g))),

so cl(L(epi(f) × epi(g))) = cl(L(cl(epi(f) × epi(g)))) and further

ri(cl(L(epi(f) × epi(g)))) = ri(cl(L(cl(epi(f) × epi(g))))).

As for any convex set X ⊆ Rn ri(cl(X)) = ri(X) (see Theorem 6.3 in [72]),
we have ri(cl(L(cl(epi(f) × epi(g))))) = ri(L(cl(epi (f) × epi(g)))), which implies
ri(cl(L(epi(f)×epi(g)))) = ri(L(cl(epi(f)×epi(g)))). Using (2. 4) follows ri(epi(F̄ ))
= ri(cl(epi(F ))) = ri(L(cl(epi(f) × epi(g)))) ⊆ epi(F ). Because F̄ is a convex func-
tion it follows by definition that F is almost convex. �

Corollary 2.1 Using the previous statement it can be shown that if fi : Rni → R,
i = 1, . . . , k, are proper almost convex functions, then F : Rn1 × . . . × Rnk → R,
F (x1, . . . , xk) =

∑k
i=1 fi(x

i) is almost convex, too.

Next we give an example that shows that the property just proven to hold for
almost convex functions does not apply for nearly convex functions.

Example 2.3 Consider the sets

X1 = ∪
n≥1

{
k
2n : 0 ≤ k ≤ 2n

}
and X2 = ∪

n≥1

{
k
3n : 0 ≤ k ≤ 3n

}
.

They are both nearly convex, X1 for α = 1/2 and X2 for α = 1/3, for instance. It
is easy to notice that δX1

and δX2
are nearly convex functions. Taking F : R2 → R,
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F (x1, x2) = δX1
(x1) + δX2

(x2), we have dom(F ) = X1 × X2, which is not nearly
convex, thus F is not a nearly convex function. We have (0, 0) ∈ dom(F ) and
assuming dom(F ) nearly convex with the constant ᾱ ∈ (0, 1), for all n ∈ N and all k
satisfying 0 ≤ k ≤ 2n one gets (ᾱk/2n, ᾱk/3n) ∈ dom(F ). This yields ᾱ ∈ Q∩(0, 1),
so let ᾱ = u/v, with u < v and u, v ∈ N having no common divisors. Because
(u/v)(k/2n) ∈ X1 ∀n ∈ N and ∀k such that 0 ≤ k ≤ 2n, it follows that there is
some m ∈ N such that m ≥ 1 and v = 2m. Take k = 1 and n = 1. We also have
(u/2m)(1/3) ∈ X2, i.e. u/(3 · 2m) ∈ X2, which is false. Therefore F is not nearly
convex.

2.3.4 Conjugacy and Fenchel duality for almost convex func-
tions

Now we generalize some well - known results concerning the conjugates of convex
functions. We prove that they keep their validity when the functions involved are
taken almost convex, too. Moreover, these results are proven to stand also when the
functions are nearly convex and their epigraphs have non - empty relative interiors.

First we deal with the conjugate of the precomposition with a linear operator
(see, for instance, Theorem 16.3 in [72]).

Theorem 2.7 Let f : Rm → R be an almost convex function and A : Rn → Rm a
linear operator such that there is some x′ ∈ Rn satisfying Ax′ ∈ ri(dom(f)). Then
for any p ∈ Rm one has

(f ◦ A)∗(p) = min
{
f∗(q) : A∗q = p

}
.

Proof. We prove first that (f ◦ A)∗(p) = (f̄ ◦ A)∗(p) ∀p ∈ Rn. By Remark 2.8 we
get Ax′ ∈ ri(dom(f̄)). Assume first that f̄ is not proper. Corollary 7.2.1 in [72]
yields f̄(y) = −∞ ∀y ∈ dom(f̄). As ri(dom(f̄)) = ri(dom(f)) and f̄(y) = f(y)
∀y ∈ ri(dom(f̄)), one has f̄(Ax′) = f(Ax′) = −∞. It follows easily (f̄ ◦ A)∗(p) =
(f ◦ A)∗(p) = +∞.

Now take f̄ proper. By the way it is defined one has (f̄ ◦ A)(x) ≤ (f ◦ A)(x)
∀x ∈ Rn and, by simple calculations, one gets (f̄ ◦ A)∗(p) ≥ (f ◦ A)∗(p) for any
p ∈ Rn. Take some p ∈ Rn and denote β = (f̄ ◦ A)∗(p) ∈ (−∞,+∞]. Assume
β ∈ R. We have β = supx∈Rn

{
pT x− f̄ ◦A(x)

}
. Let ε > 0. Then there is an x̄ ∈ Rn

such that pT x̄ − f̄ ◦ A(x̄) ≥ β − ε, so Ax̄ ∈ dom(f̄). As Ax′ ∈ ri(dom(f̄)), we get,
because of the linearity of A and of the convexity of dom(f̄), by Theorem 6.1 in [72]
that for any λ ∈ (0, 1] it holds A((1− λ)x̄ + λx′) = (1− λ)Ax̄ + λAx′ ∈ ri(dom(f̄)).
Applying Theorem 2.5 and using the convexity of f̄ we have

pT ((1 − λ)x̄ + λx′) − f(A((1 − λ)x̄ + λx′)) = pT ((1 − λ)x̄ + λx′)

−f̄(A((1 − λ)x̄ + λx′)) ≥ pT ((1 − λ)x̄ + λx′) − (1 − λ)f̄ ◦ A(x̄)

−λf̄ ◦ A(x′) = pT x̄ − f̄ ◦ A(x̄) + λ
[
pT (x′ − x̄) − (f̄ ◦ A(x′) − f̄ ◦ A(x̄))

]
.

As Ax′ and Ax̄ belong to the domain of the proper function f̄ , there is a λ̄ ∈ (0, 1]
such that λ̄

[
pT (x′ − x̄) − (f̄ ◦ A(x′) − f̄ ◦ A(x̄))

]
> −ε.

The calculations above lead to

(f ◦ A)∗(p) ≥ pT ((1 − λ̄)x̄ + λ̄x′) − (f̄ ◦ A)((1 − λ̄)x̄ + λ̄x′) ≥ β − 2ε.

As ε is an arbitrarily chosen positive number, let it converge towards 0. We get
(f ◦ A)∗(p) ≥ β = (f̄ ◦ A)∗(p). Because the opposite inequality is always true, we
get (f ◦ A)∗(p) = (f̄ ◦ A)∗(p).
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Consider now the last possible situation, β = +∞. Then for any k ≥ 1 there is
an xk ∈ Rn such that pT xk− f̄(Axk) ≥ k+1. Thus Axk ∈ dom(f̄) and by Theorem
6.1 in [72] we have, for any λ ∈ (0, 1],

pT ((1 − λ)xk + λx′) − f ◦ A((1 − λ)xk + λx′) = pT ((1 − λ)xk + λx′)

−f̄ ◦ A((1 − λ)xk + λx′) ≥ pT ((1 − λ)xk + λx′) − (1 − λ)f̄ ◦ A(xk)

−λf̄ ◦ A(x′) ≥ pT xk − f̄ ◦ A(xk) + λ
[
pT (x′ − xk) − (f̄ ◦ A(x′) − f̄ ◦ A(xk))

]
.

Like before, there is some λ̄ ∈ (0, 1) such that

λ̄
[
pT (x′ − xk) − (f̄ ◦ A(x′) − f̄ ◦ A(xk))

]
≥ −1.

Denoting zk = (1− λ̄)xk + λ̄x′ we have zk ∈ Rn and pT zk−f ◦A(zk) ≥ k+1−1 = k.
As k ≥ 1 is arbitrarily chosen, one gets

(f ◦ A)∗(p) = sup
x∈Rn

{
pT x − f ◦ A(x)

}
= +∞,

so (f ◦A)∗(p) = +∞ = (f̄ ◦A)∗(p). Therefore, as p ∈ Rn has been arbitrary chosen,
we get

(f ◦ A)∗(p) = (f̄ ◦ A)∗(p) ∀p ∈ Rn. (2. 5)

By Theorem 16.3 in [72] we have, as f̄ is convex and Ax′ ∈ ri(dom(f̄)) = ri(dom(f)),

(f̄ ◦ A)∗(p) = min
{
(f̄)∗(q) : A∗q = p

}
,

with the minimum attained at some q̄. But f ∗ = (f̄)∗ (cf. [72]), so the relation
above gives

(f̄ ◦ A)∗(p) = min
{
f∗(q) : A∗q = p

}
.

Finally, by (2. 5), this turns into

(f ◦ A)∗(p) = min
{
f∗(q) : A∗q = p

}
,

and the minimum is attained at q̄. �

The following statement follows from Theorem 2.7 immediately by Proposition
2.1.

Corollary 2.2 If f : Rm → R is a nearly convex function satisfying ri(epi(f)) 6= ∅
and A : Rn → Rm is a linear operator such that there is some x′ ∈ Rn fulfilling
Ax′ ∈ ri(dom(f)), then for any p ∈ Rm one has

(f ◦ A)∗(p) = min
{
f∗(q) : A∗q = p

}
.

Now comes a statement concerning the conjugate of the sum of finitely many
proper functions, which is actually the infimal convolution of their conjugates also
when the functions are almost convex functions, provided that the relative interiors
of their domains have a point in common.

Theorem 2.8 (infimal convolution) Let fi : Rn → R, i = 1, . . . , k, be proper and
almost convex functions whose domains satisfy ∩k

i=1 ri(dom(fi)) 6= ∅. Then for any
p ∈ Rn we have

(f1 + . . . + fk)∗(p) = min

{
k∑

i=1

f∗
i (pi) :

k∑

i=1

pi = p

}
. (2. 6)
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Proof. Let F : Rn × . . .× Rn → R, F (x1, . . . , xk) =
∑k

i=1 fi(x
i). By Corollary 2.1

we know that F is almost convex. We have dom(F ) = dom(f1) × . . . × dom(fk),
so ri(dom(F )) = ri(dom(f1)) × . . . × ri(dom(fk)). Consider also the linear oper-
ator A : Rn → Rn × . . . × Rn

︸ ︷︷ ︸
k

, Ax = (x, . . . , x︸ ︷︷ ︸
k

). The existence of the element

x′ ∈ ∩k
i=1 ri(dom(fi)) gives (x′, . . . , x′)T ∈ ri(dom(F )), so Ax′ ∈ ri(dom(F )). By

Theorem 2.7 we have for any p ∈ Rn

(F ◦ A)∗(p) = min{F ∗(q) : A∗q = p}, (2. 7)

with the minimum attained at some q̄ ∈ Rn × . . . Rn. For the conjugates above we
have for any p ∈ Rn

(F ◦ A)∗(p) = sup
x∈Rn

{
pT x −

k∑

i=1

fi(x)

}
=

(
k∑

i=1

fi

)∗

(p)

and for every q = (p1, . . . , pk) ∈ Rn × . . . × Rn,

F ∗(q) = sup
xi∈R

n,
i=1,...,k

{
k∑

i=1

(pi)T xi −
k∑

i=1

fi(x
i)

}
=

k∑

i=1

f∗
i (pi),

so, as A∗q =
∑k

i=1 pi, (2. 7) delivers (2. 6). �

In [72] the formula (2. 6) is given assuming the functions fi, i = 1, . . . , k, proper
and convex and the intersection of the relative interiors of their domains non - empty.
We have proven above that it holds even under the much weaker than convexity
assumption of almost convexity imposed on these functions, when the other two
conditions, i.e. their properness and the non - emptiness of the intersection of
the relative interiors of their domains, stand. As the following assertion states,
the formula is valid under the assumption regarding the domains also when the
functions are proper and nearly convex, provided that the relative interiors of their
epigraphs are non - empty.

Corollary 2.3 If fi : Rn → R, i = 1, . . . , k, are proper nearly convex functions
whose epigraphs have non - empty relative interiors and with their domains satis-
fying ∩k

i=1 ri(dom(fi)) 6= ∅, then for any p ∈ Rn one has

(f1 + . . . + fk)∗(p) = min

{
k∑

i=1

f∗
i (pi) :

k∑

i=1

pi = p

}
.

Next we show that another important conjugacy formula remains true when
imposing almost convexity (or near convexity) instead of convexity for the functions
in discussion.

Theorem 2.9 Given two proper almost convex functions f : Rn → R and g : Rm →
R and the linear operator A : Rn → Rm for which is guaranteed the existence of
some x′ ∈ dom(f) satisfying Ax′ ∈ ri(dom(g)), one has for all p ∈ Rn

(f + g ◦ A)∗(p) = min
{
f∗(p − A∗q) + g∗(q) : q ∈ Rm

}
. (2. 8)

Proof. Consider the linear operator B : Rn → Rn × Rm defined by Bz = (z,Az)
and the function F : Rn × Rm → R, F (x, y) = f(x) + g(y). By Theorem 2.7 F
is an almost convex function and we have dom(F ) = dom(f) × dom(g). From the
hypothesis one gets

Bx′ = (x′, Ax′) ∈ ri(dom(f)) × ri(dom(g)) = ri(dom(f) × dom(g)) = ri(dom(F )),
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thus Bx′ ∈ ri(dom(F )). Theorem 2.7 is applicable, leading to

(F ◦ B)∗(p) = min
{
F ∗(q1, q2) : B∗(q1, q2) = p, (q1, q2) ∈ Rn × Rm

}

where the minimum is attained for any p ∈ Rn. Because

(F ◦ B)∗(p) = sup
x∈Rn

{
pT x − F (B(x))

}
= sup

x∈Rn

{
pT x − F (x,Ax)

}

= sup
x∈Rn

{
pT x − f(x) − g(Ax)

}
= (f + g ◦ A)∗(p) ∀p ∈ Rn,

F ∗(q1, q2) = f∗(q1) + g∗(q2) ∀(q1, q2) ∈ Rn × Rm

and
B∗(q1, q2) = q1 + A∗q2 ∀(q1, q2) ∈ Rn × Rm,

the relation above becomes

(f + g ◦ A)∗(p) = inf
{
f∗(q1) + g∗(q2) : q1 + A∗q2 = p

}

= min
{
f∗(p − A∗q2) + g∗(q2) : q2 ∈ Rm

}
,

where the minimum is attained for any p ∈ Rn, i.e. (2. 8) stands. �

Corollary 2.4 Let the proper nearly convex functions f : Rn → R and g : Rm → R
satisfying ri(epi(f)) 6= ∅ and ri(epi(g)) 6= ∅ and the linear operator A : Rn → Rm

such that there is some x′ ∈ dom(f) fulfilling Ax′ ∈ ri(dom(g)). Then (2. 8) holds
for any p ∈ Rn and the minimum is always attained.

After weakening the conditions under which some widely - used formulae con-
cerning the conjugation of functions take place, we switch to duality where we
found important results which hold even when replacing the convexity with almost
convexity or near convexity.

The following duality theorem is an immediate consequence of Theorem 2.9 for
p = 0 in formula (2. 8).

Theorem 2.10 Given two proper almost convex functions f : Rn → R and g :
Rm → R and the linear operator A : Rn → Rm for which is guaranteed the existence
of some x′ ∈ dom(f) satisfying Ax′ ∈ ri(dom(g)), one has

inf
x∈Rn

[
f(x) + g(Ax)

]
= −(f + g ◦ A)∗(0) = max

q∈Rm

{
− f∗(A∗q) − g∗(−q)

}
. (2. 9)

Remark 2.9 This statement generalizes Corollary 31.2.1 in [72] as we take the
functions f and g almost convex instead of convex and, moreover, we remove the
lower semicontinuity assumption required for them in the mentioned book. It is
easy to notice that when f and g are convex there is no need to consider them
moreover lower semicontinuous in order to obtain the formula (2. 9). Let us remind
that a proper convex lower semicontinuous function is called in [72] closed.

Remark 2.10 Theorem 2.10 states actually the strong duality between the primal
problem

(PA) inf
x∈Rn

[
f(x) + g(Ax)

]

and its Fenchel dual

(DA) sup
q∈Rm

{
− f∗(A∗q) − g∗(−q)

}
.

Using Proposition 2.1 and Theorem 2.10 we rediscover the assertion in Theorem
4.1 in [14], which follows.
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Corollary 2.5 Let f : Rn → R and g : Rm → R two proper nearly convex functions
whose epigraphs have non - empty relative interiors and consider the linear operator
A : Rn → Rm. If there is an x′ ∈ dom(f) such that Ax′ ∈ ri(dom(g)), then (2. 9)
holds, i.e. v(PA) = v(DA), and the dual problem (DA) has a solution.

In the end we give a generalization of the well - known Fenchel’s duality theorem
(Theorem 31.1 in [72]). It follows immediately from Theorem 2.10, when A is the
identity mapping.

Theorem 2.11 Let f and g be proper almost convex functions on Rn with values
in R. If ri(dom(f)) ∩ ri(dom(g)) 6= ∅, one has

inf
x∈Rn

[
f(x) + g(x)

]
= max

q∈Rn

{
− f∗(q) − g∗(−q)

}
.

When f and g are nearly convex functions we have, as in Theorem 3.1 in [14],
the following statement.

Corollary 2.6 Let f and g be proper nearly convex functions on Rn with values in
R. If ri(epi(f)) 6= ∅, ri(epi(g)) 6= ∅ and ri(dom(f)) ∩ ri(dom(g)) 6= ∅, one has

inf
x∈Rn

[
f(x) + g(x)

]
= max

q∈Rn

{
− f∗(q) − g∗(−q)

}

Remark 2.11 The last two assertions give actually the strong duality between the
primal problem

(PF ) inf
x∈Rn

[
f(x) + g(x)

]
,

and its Fenchel dual

(DF ) sup
q∈Rm

{
− f∗(q) − g∗(−q)

}
.

In both cases we have weakened the initial assumptions required in [72] to guar-
antee strong duality between (PF ) and (DF ) by asking the functions f and g to be
almost convex, respectively nearly convex, instead of convex.

Remark 2.12 Let us notice that the relative interior of the epigraph of a proper
nearly convex function f with ri(dom(f)) 6= ∅ may be empty. Take for instance
the nearly convex function f in Example 2.2(i) whose effective domain is R. If the
relative interior of the epigraph were non - empty, by Proposition 2.1 would follow
that f is almost convex, but this does not happen.

Remark 2.13 One may notice that the assumption of near convexity applied to
f and g simultaneously does not require the same near convexity constant to be
attached to both of these functions.

The following example contains a situation where the classical duality theorem
due to Fenchel is not applicable, unlike one of our extensions to it.

Example 2.4 (cf. [14]) Consider the sets

F =
{
(x1, x2) ∈ R2 : x1 > 0, x2 > 0

}
∪
{
(x1, 0) ∈ R2 : x1 ∈ Q, x1 ≥ 0

}

∪
{
(0, x2) ∈ R2 : x2 ∈ Q, x2 ≥ 0

}

and

G =
{
(x1, x2) ∈ R2 : x1 + x2 < 3

}
∪ {(x1, x2) ∈ R2 : x1, x2 ∈ Q, x1 + x2 = 3

}
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and some real - valued convex functions defined on R2, f and g. Both F and G are
nearly convex sets with α = 1/2 playing the role of the constant required in the defi-
nition, but not convex. We are interested in treating by Fenchel duality the problem

(Pq) inf
x=(x1,x2)∈F∩G

[
f(x) + g(x)

]
,

i.e. we would like to obtain the infimal objective value of (Pq) by using the conjugate
functions of f and g. A Fenchel type dual problem may be attached to this problem,
but the conditions under which the primal and the dual have equal optimal objective
values are not known to us as we cannot apply Fenchel’s duality theorem because
F ∩ G is not convex. Let us define now the functions

f̃ : R2 → R, f̃(x) =

{
f(x), if x ∈ F ,
+∞, otherwise,

and

g̃ : R2 → R, g̃(x) =

{
g(x), if x ∈ G,
+∞, otherwise.

The function f̃ and g̃ are clearly nearly convex (with the constant 1/2), but not
convex since dom(f̃) = F is not convex. Therefore we are not yet in the situation
to apply Fenchel’s duality theorem for the problem

(P ′
q) inf

x=(x1,x2)∈F∩G

[
f̃(x) + g̃(x)

]
,

which is actually equivalent to (Pq), but let us check whether the extension we have
given in Corollary 2.6 is applicable. The condition concerning the non - emptiness
of the intersection of the relative interiors of the domains of the functions involved
is satisfied in this case since

ri(dom(f̃)) ∩ ri(dom(g̃)) = ri(F) ∩ ri(G)

= (0,+∞) × (0,+∞) ∩
{
(x, y) ∈ R2 : x + y < 3

}
,

which is non - empty since the element (1, 1), for instance, is contained in both sets.
Regarding the relative interiors of the epigraphs of f̃ and g̃, it is not difficult to

check that
(
(1, 1), f(1, 1) + 1

)
∈ int(epi(f̃)) = ri(epi(f̃)) and

(
(1, 1), g(1, 1) + 1

)
∈

int(epi(g̃)) = ri(epi(g̃)).
Therefore the conditions in the hypothesis of Corollary 2.6 are fulfilled for f̃ and

g̃, respectively. So we can apply the statement and we get that

v(Pq) = inf
x∈F∩G

[
f(x) + g(x)

]
= inf

x∈R2

[
f̃(x) + g̃(x)

]

= max
u∗∈R2

{
− f̃∗(u∗) − g̃∗(−u∗)

}
= max

u∗∈Rn

{
− f∗

F (u∗) − g∗G(−u∗)
}
.

As proven in Example 2.2 there are almost convex functions which are not
convex, so our Theorems 2.7 - 2.11 really extend some results in [72]. An example
given in [14] and cited above shows that also the Corollaries 2.2 - 2.6 generalize
indeed the corresponding results from Rockafellar’s book [72], as a nearly convex
function whose epigraph has non - empty interior is not necessarily convex.

We finish this chapter with an example in game theory, where we found a small
application of one of our results. Applications of Fenchel’s duality theorem in game
theory were already found, see for instance [7]. Knowing also the connections be-
tween Lagrange duality involving generalized convex functions and game theory
(see, for instance, [68] or [69]), we give an application of Corollary 2.6 in this field
opening the gate into the direction of Fenchel duality.
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Example 2.5 (cf. [11]) Consider a two-person zero-sum game, where D and C
are the sets of strategies for the players I and II, respectively, and L : C × D → R
is the so - called payoff - function. By βL = supd∈D infc∈C L(c, d) and αL =
infc∈C supd∈D L(c, d) we denote the lower, respectively the upper values of the game
(C,D,L). As the minmax inequality

βL = sup
d∈D

inf
c∈C

L(c, d) ≤ inf
c∈C

sup
d∈D

L(c, d) = αL, (2. 10)

is always fulfilled, the challenge is to find weak conditions which guarantee equality
in the relation above. Near convexity and its generalizations played an important
role in it, as Paeck’s paper [68] or his book [69] show. Having an optimization
problem with geometrical and inequality constraints,

(Pb) inf
x∈X,

w(x)50

v(x),

where X ⊆ Rn, w : Rn → Rk, v : Rn → R, the Lagrangian attached to it, considered
as a pay - off function of some two - person zero - sum game, is L : X × Rk

+ → R,
L(x, λ) = v(x) + λT w(x). In the works cited above there are some results where
sufficient conditions under which the strong duality occurs between (Pb) and its
Lagrange dual

(Db) sup
λ=0

inf
x∈X

L(x, λ) = sup
λ=0

inf
x∈X

[v(x) + λT w(x)],

which is nothing else than the equality in (2. 10). Let us mention that within these
statements the usual convexity assumptions are replaced by near convexity.

Coming to the problem treated in Corollary 2.6, for f and g proper nearly con-
vex functions,

(PF ) inf
x∈Rn

[
f(x) + g(x)

]
,

one can define the Lagrangian attached to it by (cf. [31])

L : Rn × Rn → R, L(x, u) = uT x + g(x) − f∗(u).

As
sup

u∈Rn

inf
x∈Rn

L(x, u) = sup
u∈Rn

{
− g∗(−u) − f∗(u)

}

and
inf

x∈Rn
sup

u∈Rn

L(x, u) = inf
x∈Rn

[
g(x) + f∗∗(x)

]
≤ inf

x∈Rn
[f(x) + g(x)],

and since under the hypotheses of Corollary 2.6 one has

max
u∈Rn

{
− g∗(−u) − f∗(u)

}
= inf

x∈Rn
[f(x) + g(x)],

we get, taking also into consideration (2. 10),

max
u∈Rn

inf
x∈Rn

L(x, u) = inf
x∈Rn

sup
u∈Rn

L(x, u).

The solution to the dual problem can be seen as an optimal strategy for the game
having this Lagrangian as payoff - function.
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Chapter 3

Fenchel - Lagrange duality
versus geometric duality

Geometric programming, established during the late 1960’s due to Peterson to-
gether with Duffin and Zener has enjoyed an increasing popularity and usage
that continues up to today, as papers based on it still get published (see, for in-
stance, [79]). The most important works in geometric programming are the original
book of Duffin, Peterson and Zener [30] which deals with the so - called
posynomial geometric programming and Peterson’s seminal article [71] on gener-
alized geometric programming. Because the posynomial geometric programming is
a special case of the latter and it can be applied only to some very special classes
of problems and the objective function of the generalized geometric primal prob-
lem is very complicated, Jefferson and Scott considered in [48] a simplified
version of the generalized geometric programming. Then they and some other au-
thors treated by means of geometric programming various optimization problems,
see [48–52,75–82]. An extension of the posynomial geometric programming is the so
- called signomial programming, which is a special case of the generalized geometric
programming, too, thus not so relevant from the theoretical point of view, but still
used in various applications. Applications of geometric programming can be found
in various fields, from the theoretical problems treated by Jefferson and Scott

in [48–52,75–82] to the practical applications mentioned, for instance, in [30] or [34].

About Fenchel - Lagrange duality one could read for the first time in Wanka

and Boţ’s article [92], then its applications in multiobjective optimization were
investigated by the same authors in works like [8, 18, 19, 89, 91, 93]. Despite being
recently introduced, the areas of applicability of the Fenchel - Lagrange duality
cover alongside the multiobjective optimization also Farkas type results, theorems
of the alternative, set containment (cf. [22]), DC programming (cf. [21]), semidef-
inite programming (cf. [93]), convex composite programming (cf. [9]) or fractional
programming (cf. [12, 91]). One of the most interesting features of the Fenchel -
Lagrange duality is that it contains as a special case the classical geometric duality,
improving its results. Thus all the problems treated by geometric programming
can be dealt with via Fenchel - Lagrange duality, easier and with better results.
Moreover when the generalized geometric programming problem is treated via per-
turbations, one obtains the dual problem easier and strong duality under more
general conditions.

35
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3.1 The geometric dual problem obtained via per-
turbations

Peterson’s classical work [71] presents a complete duality treatment for geometric
programs. These are convex optimization problems whose objective and constraint
functions have some special forms. We show further that the duals he introduced
there by using the geometric Lagrangian and geometric inequalities can be obtained
also by using the perturbation approach already mentioned in the previous chap-
ter. Moreover, the assertions concerning strong duality and optimality conditions
are given here under weaker conditions than in the papers dealing with geometric
duality.

3.1.1 Motivation

The generalized geometric programming due to Peterson deals with primal op-
timization problems having very complicated objective functions. Moreover, the
functions and sets involved are asked to be convex and lower semicontinuous, re-
spectively convex and closed. On the other hand the perturbation theory already
presented on short in the previous chapter guarantees a dual problem and strong
duality under some constraint qualification also when the functions and sets in-
volved are only convex, not also lower semicontinuous, respectively closed. This
brought the idea of trying to determine a dual problem to the initial geometric pri-
mal problem via perturbations (see [13]). As this dual turned out to be exactly the
geometric dual introduced in [71] by some geometric inequalities and using the ge-
ometric Lagrangian, the next step was to compare the conditions that bring strong
duality. Not surprisingly, the constraint qualification we obtained turned out to be
slightly weaker than the one in [71]. Therefore we have proven that when treated
via perturbations instead of using geometric inequalities, the primal geometric prob-
lem gets the same dual problem, subject to simpler calculations and, moreover, the
strong duality arises under more general conditions.

3.1.2 The unconstrained case

First we treat the general unconstrained geometric programming problem. Let the
proper function f : Rn → R, with dom(f) = X ⊆ Rn. There is given also a closed
cone N ⊆ Rn. The unconstrained geometric programming problem (here called
primal problem) is

(Agu) inf
x∈X∩N

f(x).

Peterson attached in [71] the following dual to the problem (Agu),

(Bgu) inf
y∈D∩N∗

f∗(y),

where D = dom(f∗). Let us consider the perturbation function

Φ : Rn × Rn → R, Φ(x, p) =

{
f(x + p), if x ∈ N,x + p ∈ X, p ∈ Rn,
+∞, otherwise.

As the perturbation function Φ fulfills (2. 1), according to the theory sketched in
the previous section, the dual problem to (Agu) is

(Dgu) sup
p∗∈Rn

{−Φ∗(0, p∗)}.
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The conjugate function of the perturbation function is, at some (x∗, p∗) ∈ Rn ×Rn,

Φ∗(x∗, p∗) = sup
x∈R

n,
p∈R

n

{
x∗T x + p∗T p − Φ(x, p)

}
,

= sup
x∈N,
p∈R

n,
x+p∈X

{
x∗T x + p∗T p − f(x + p)

}
,

= sup
x∈N,
t∈X

{
x∗T x + p∗T (t − x) − f(t)

}
.

As we have to take x∗ = 0 in order to calculate the dual problem, it follows, for
p∗ ∈ Rn,

Φ∗(0, p∗) = sup
x∈N,
t∈X

{
p∗T t − p∗T x − f(t)

}
= sup

x∈N
−p∗T x + sup

t∈X

{
p∗T t − f(t)

}
,

whence, as dom(f) = X,

Φ∗(0, p∗) = f∗(p∗) +

{
0, if p∗ ∈ N∗,
+∞, otherwise.

Therefore the dual problem we obtain is

(Dgu) sup
p∗∈N∗∩D

{−f∗(p∗)}.

which, transformed into a minimization problem turns out to be, when removing
the leading minus, exactly Peterson’s dual (Bgu) (see [71]). As mentioned before,
the weak duality regarding the problems (Agu) and (Dgu) always holds, while for
the strong duality we have the following statement (see also Theorem 2.11).

Theorem 3.1 (strong duality) If X is a convex set, f a function convex on X, N
a closed convex cone and the condition ri(N)∩ ri(X) 6= ∅ is fulfilled, then the strong
duality between (Agu) and (Dgu) holds, i.e. (Dgu) has an optimal solution and the
optimal objective values of the primal and dual problem coincide.

Remark 3.1 In [71] the conditions regarding the strong duality are posed on the
dual problem, in which case f has to be, moreover, lower semicontinuous and the
dual problem’s infimum must be finite.

Let us also present necessary and sufficient optimality conditions regarding the
unconstrained geometric program.

Theorem 3.2 (optimality conditions)
(a) Assume the hypotheses of Theorem 3.1 fulfilled and let x̄ be an optimal solution
to (Agu). Then the strong duality between the primal problem and its dual holds
and there exists an optimal solution p∗ to (Dgu) satisfying the following optimality
conditions

(i) f(x̄) + f∗(p∗) = p∗
T
x̄,

(ii) p∗
T
x̄ = 0.

(b) Let x̄ be a feasible solution to (Agu) and p∗ one to (Dgu) satisfying the
optimality conditions (i) and (ii). Then x̄ turns out to be an optimal solution to the
primal problem, p∗ one to the dual and the strong duality between the two problems
holds.
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Proof. (a) From Theorem 3.1 we know that the strong duality holds and the dual
problem has an optimal solution Let it be p∗ ∈ N∗ ∩ D. Therefore, it holds

f(x̄) + f∗(p∗) = 0.

From the Fenchel - Young inequality it is known that

f(x̄) + f∗(p∗) ≥ p∗
T
x̄,

while
p∗

T
x̄ ≥ 0

since p∗ ∈ N∗ and x̄ ∈ N . Hence it holds

f(x̄) + f∗(p∗) ≥ p∗
T
x̄ ≥ 0,

but, since we have equality between the first and the last member of the expression
above, both these inequalities must be fulfilled as equalities. So the equality must
hold in the previous two expressions, i.e. the optimality conditions are true.

(b) The optimality conditions imply

f(x̄) + f∗(p∗) = p∗
T
x̄ = 0.

So the assertion holds. �

3.1.3 The constrained case

Further the primal problem becomes more complicated, as some constraints appear
and also the objective function is not so simple anymore. The following preliminaries
are required.

Let there be the finite index sets I and J . For t ∈ {0} ∪ I ∪ J , the following
functions are considered

gt : Xt → R,

with ∅ 6= Xt ⊆ Rnt , as well as the independent vector variables xt ∈ Rnt . There
are also the sets

Dt =
{

yt ∈ Rnt : sup
xt∈Xt

{
ytT

xt − gt(x
t)
}

< +∞
}
,

which are the domains of the conjugates regarding the sets they are defined on,
namely Xt, of the functions gt, t ∈ {0} ∪ I ∪ J , respectively, and an independent
vector variable k = (k1, . . . , k|J|)

T . With xI one denotes the Cartesian product of
the vector variables xi, i ∈ I, while xJ denotes the same thing for xj , j ∈ J . Hence,
x = (x0, xI , xJ ) is an independent vector variable in Rn, where n = n0 +

∑
i∈I ni +∑

j∈J nj . Finally, let there be a non - empty closed cone N ⊆ Rn, the sets

X+
j =

{
(xj , kj) : either kj = 0 and sup

dj∈Dj

djT
xj < ∞

or kj > 0 and xj ∈ kjXj

}
, j ∈ J,

and
X =

{
(x, k) : xt ∈ Xt, t ∈ {0} ∪ I, (xj , kj) ∈ X+

j , j ∈ J
}
,

and, for j ∈ J , the functions gj : X+
j → R,

g+
j (xj , kj) =





sup
dj∈Dj

djT
xj , if kj = 0 and sup

dj∈Dj

djT
xj < ∞,

kjgj

(
1
kj

xj
)
, if kj > 0 and xj ∈ kjXj ,
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which are the so - called homogenous extensions of the functions gj , j ∈ J .
Peterson (cf. [71]) studied the minimization of the following objective function

f : X → R, f(x, k) = g0(x
0) +

∑

j∈J

g+
j (xj , kj)

with the variables lying in the feasible set

S = {(x, k) ∈ X : x ∈ N, gi(x
i) ≤ 0 ∀i ∈ I}.

Thus, the problem he studied is

(Agc) inf
(x,k)∈S

f(x, k),

further referred to as the primal generalized geometric programming problem.
To introduce a dual problem to it, one has to introduce the sets

D =
{
(y0, yI , yJ , λ) : yt ∈ Dt, t ∈ {0} ∪ J, (yi, λi) ∈ D+

i , i ∈ I
}
,

and

D+
i =

{
(yi, λi) : either λi = 0 and sup

ci∈Xi

yiT ci < ∞,

or λi > 0 and yi ∈ λiDi

}
, i ∈ I,

and the family of functions
{
ht : Dt → R : t ∈ {0} ∪ I ∪ J

}
, each of its members

being the restriction to the domain of the conjugate regarding the set Xt of the
function gt, i.e. ht(y

t) = g∗Xt
(yt) for all yt ∈ Dt, t ∈ {0} ∪ I ∪ J , and for i ∈ I we

consider also the functions h+
i : D+

i → R,

h+
i (yi, λi) =





sup
ci∈Xi

yiT ci, if λi = 0 and sup
ci∈Xi

yiT ci < ∞,

λihi

(
1
λi

yi
)
, if λi > 0 and yi ∈ λiDi.

In [71] there is introduced the following dual problem to (Agc),

(Bgc) inf
(y,λ)∈T

h(y, λ),

with the feasible set

T = {(y, λ) ∈ D : y ∈ N∗, hj(y
j) ≤ 0, j ∈ J},

where the objective function is

h : D → R, h(y, λ) = h0(y
0) +

∑

i∈I

h+
i (yi, λi).

In the following part we demonstrate that this dual problem can be developed also
by using the method based on perturbations already presented within this thesis.
Like before, we introduce the following extension of the objective function

F : Rn × R|J| → R,

F (x, k) =

{
f(x, k), if (x, k) ∈ X,x ∈ N, gi(x

i) ≤ 0, i ∈ I,
+∞, otherwise.
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Thus we can write the problem (Agc) equivalently as

(A′
gc) inf

(x,k)∈Rn×R|J|
F (x, k).

Let us introduce now the perturbation function associated to our problem,

Φ : Rn × R|J| × Rn × R|I| → R,

Φ(x, k, p, v) =





f(x + p, k), if x ∈ N, (x + p, k) ∈ X, and
gi(x

i + pi) ≤ vi, i ∈ I,
+∞, otherwise.

It is obvious that Φ(x, k, 0, 0) = F (x, k) ∀(x, k) ∈ Rn ×R|J|, thus the dual problem
to (A′

gc), so also to (Agc), is

(Dgc) sup
p∗∈R

n,

v∗∈R
|I|

{
− Φ∗(0, 0, p∗, v∗)

}
,

where

Φ∗(x∗, k∗, p∗, v∗) = sup
x,p∈R

n,

k∈R
|J|,

v∈R
|I|

{
x∗T x + k∗T k + p∗T p + v∗T v − Φ(x, k, p, v)

}

= sup
x∈N,k∈R

|J|
+ ,

p∈R
n,v∈R

|I|,
gi(x

i+pi)≤vi,i∈I,
(x+p,k)∈X

{
x∗T x+k∗T k +p∗T p+v∗T v−g0(x

0 +p0)−
∑

j∈J

g+
j (xj +pj , kj)

}
,

with the dual variables x∗ = (x∗0, x∗I , x∗J ) and p∗ = (p∗0, p∗I , p∗J ). Introducing
the new variables z = x + p and y = v − gI(z

I), with gI(z
I) = (gi(z

i))T
i∈I , there

follows

Φ∗(x∗, k∗, p∗, v∗) = sup
x∈N,k∈R

|J|
+ ,

(z,k)∈X,y∈R
|I|,

yi≥0,i∈I

{
x∗T x + k∗T k + p∗T (z − x)

+ v∗T (y + gI

(
zI
))

− g0(x
0) −

∑

j∈J

g+
j (zj , kj)

}

=
∑

i∈I

sup
yi≥0

v∗iT yi + sup
z0∈X0

{
p∗0

T
z0 − g0(z

0)
}

+
∑

i∈I

sup
zi∈Xi

{
p∗iT zi + v∗igi(z

i)
}

+ sup
x∈N

(x∗ − p∗)T x

+
∑

j∈J

sup
(zj ,kj)∈X+

j

{
p∗jT

zj + k∗
j

T kj − g+
j (zj , kj)

}
.

In order to determine the dual problem (Dgc) according to the general theory
we must take further x∗ = 0 and k∗ = 0. Also, we use the following results that
arise from definitions or simple calculations. We have

sup
zi∈Xi

{
p∗iT zi + v∗igi(z

i)
}

=





sup
zi∈Xi

p∗iT zi, if v∗i = 0, p∗iT zi < ∞,

−v∗ihi

(
1

−v∗i p
∗i
)
, if v∗i 6= 0, p∗i ∈ −v∗iDi,

= h+
i (p∗i,−v∗i), i ∈ I,
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and
sup

z0∈X0

{
p∗0

T
z0 − g0(z

0)
}

= h0(p
∗0).

It is also clear that it holds

sup
yi≥0

v∗iT yi =

{
0, if v∗i ≤ 0,
+∞, otherwise,

, i ∈ I,

while from the definition of the dual cone we have

sup
x∈N

−p∗T x =

{
0, if p∗ ∈ N∗,
+∞, otherwise.

Further we calculate the values of the terms summed after j ∈ J in the last stage of
the formula of Φ∗(0, 0, p∗, v∗), splitting the calculations into two branches. When
kj > 0 we have

sup
(zj ,kj)∈X+

j

{
p∗jT

zj − g+
j (zj , kj)

}
= sup

(zj ,kj)∈X+
j

{
p∗jT

zj − kjgj

(
1

kj
zj

)}
,

= sup
kj>0

kjhj(p
∗j)

=

{
0, if hj(p

∗j) ≤ 0, p∗j ∈ Dj ,
+∞, otherwise.

When hj(p
∗j) ≤ 0 and p∗j ∈ Dj , the case kj = 0 leads to

sup
(zj ,kj)∈X+

j

{
p∗jT

zj − g+
j (zj , kj)

}
= sup

(zj ,0)∈X+
j

{
p∗jT

zj − sup
dj∈Dj

djT
zj
}

= 0,

so we can conclude that for every j ∈ J it holds

sup
(zj ,kj)∈X+

j

{
p∗T z − g+

j (zj , kj)
}

=

{
0, if hj(p

∗j) ≤ 0 and p∗j ∈ Dj ,
+∞, otherwise.

The dual problem can be simplified, denoting λ = −v∗, to

(Dgc) sup
pt∗∈Dt,t∈{0}∪J,

(p∗i,λi)∈D+
i ,i∈I,

hj(p
∗j)≤0,j∈J,
p∗∈N∗

{
− h0(p

∗0) −∑
i∈I

h+
i (p∗i , λi)

}
,

which, transformed into a minimization problem turns, after removing the leading
minus, into (using the notations in [71]),

(D′
gc) inf

(p∗,λ)∈T

{
h0(p

∗0) +
∑
i∈I

h+
i (p∗i, λi)

}
,

i.e. exactly the dual introduced by Peterson, (Bgc).
Weak duality regarding the problems (Agc) and (Dgc) always holds, while for

strong duality we need to introduce some supplementary conditions.
First, let us consider that the sets Xt, t ∈ {0}∪ I ∪J are convex. Each function

gt is taken convex on Xt, t ∈ {0} ∪ I ∪ J . The cone N needs to be closed and
convex, too. We have to consider also that the sets Xj are closed and the functions
gj , j ∈ J , are lower semicontinuous. This last property, alongside the convexity,
assures (cf. [72]) that, for each j ∈ J , the functions gj and hj are a pair of conjugate
functions, each regarding the other’s definition domain, convex on the sets they are
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defined on and lower semicontinuous. This fact allows us to characterize the sets
Xj in the following way

Xj =

{
xj ∈ Rnj : sup

dj∈Dj

{
djT

xj − hj(d
j)
}

< +∞
}

, j ∈ J.

Using this characterization, it follows that the set X+
j is convex and the function

g+
j is convex on X+

t , for all j ∈ J .
The constraint qualification we use in order to achieve strong duality for the

mentioned pair of dual problems is

(CQgc) ∃(x′, k′) ∈ ri(N) × int(R
|J|
+ ) :





x′0 ∈ ri(X0),
x′i ∈ ri(Xi),
gi(x

′i) ≤ 0, i ∈ Lgc,
gi(x

′i) < 0, i ∈ I\Lgc,
x′j ∈ k′

j ri(Xj), j ∈ J,

where i ∈ Lgc if i ∈ I and gi is the restriction to Xi of an affine function. We are
now ready to formulate the strong duality theorem, whose proof is similar to the
one of Theorem 2.2.

Theorem 3.3 (strong duality) If the conditions introduced above concerning the
sets Xt, t ∈ {0} ∪ I ∪ J , the functions gt, t ∈ {0} ∪ I ∪ J , and the cone N are
fulfilled and the constraint qualification (CQgc) holds, then we have strong duality
between (Agc) and (Dgc).

Remark 3.2 In [71] the constraint qualification regarding the strong duality is
posed on the dual problem, while we choose to consider it on the primal prob-
lem. An advantage brought by our approach is that the sets Xt and the functions
gt, t ∈ {0}∪I, do not have to be assumed moreover lower semicontinuous like in [71].

Remark 3.3 The closeness property of gj and Xj , j ∈ J , is necessary in order
to prove that g+

j and X+
j are convex, ∀j ∈ J , as Theorem 31.1 in [72] requires the

existence of convexity for all the functions and sets involved in the primal problem.

From this strong duality statement we can conclude necessary and sufficient
optimality conditions for the generalized geometric programming problem (Agc).

Theorem 3.4 (optimality conditions)
(a) Assume the hypotheses of Theorem 3.3 fulfilled and let (x̄, k̄) be an optimal
solution to (Agc), where x̄ =

(
x̄0, x̄I , x̄J

)
. Then the strong duality between the

primal problem and its dual holds and there exists an optimal solution
(
p∗, λ̄

)
to

(Dgc), with p∗ =
(
p∗

0
, p∗

I
, p∗

J)
, satisfying the following optimality conditions

(i) g0(x̄
0) + h0(p∗

0
) = p∗

0T
x̄0,

(ii)





gj

(
1
k̄j

x̄j
)

+ hj(p∗
j
) =

(
p∗

j)T ( 1
k̄j

x̄j
)

and hj(p∗
j
) = 0, if k̄j 6= 0,

sup
dj∈Dj

djT
x̄j = p∗

jT
x̄j , if k̄j = 0,

j ∈ J ,

(iii)





g(x̄i) + hi

(
1
λ̄i

p∗
i)

=
(

1
λ̄i

p∗
i)T

x̄i and gi(x̄
i) = 0, if λ̄i 6= 0,

sup
ci∈Xi

p∗
iT

ci = p∗
iT

x̄i, if λ̄i = 0,
i ∈ I,

(iv) p∗
T
x̄ = 0.
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(b) Let (x̄, k̄) be a feasible solution to (Agc), with x̄ =
(
x̄0, x̄I , x̄J

)
and

(
p∗, λ̄

)
one

to (Dgc), with p∗ =
(
p∗

0
, p∗

I
, p∗

J)
, satisfying the optimality conditions (i) − (iv).

Then (x̄, k̄) turns out to be an optimal solution to the primal problem,
(
p∗, λ̄

)
one

to the dual and the strong duality between the two problems holds.

Proof. (a) From Theorem 3.3 we know that the strong duality holds and the

dual problem has an optimal solution. Let it be (p∗0
, p∗

I
, p∗

J
, λ̄) and we denote

p∗ =
(
p∗

0
, p∗

I
, p∗

J)
.

Therefore, it holds

g0(x̄
0) +

∑

j∈J

g+
j (x̄j , k̄j) + h0(p∗

0
) +

∑

i∈I

h+
i (p∗

i
, λ̄i) = 0,

rewritable as

g0(x̄
0) + h0(p∗

0
) +

∑

i∈I,
λ̄i 6=0

λ̄ihi

(
1

λ̄i
p∗

i
)

+
∑

i∈I,
λ̄i=0

sup
ci∈Xi

p∗
iT

ci

+
∑

j∈J,
k̄j 6=0

k̄jgj

(
1

k̄j
x̄j

)
+
∑

j∈J,
k̄j=0

sup
dj∈Dj

djT
x̄j = 0.

Adding and subtracting some terms in the left - hand side and inverting the members
of the equality, we obtain

0 = [g0(x̄
0) + h0(p∗

0
) − p∗

0T
x̄0] +

∑

i∈I,
λ̄i 6=0

[
λ̄ihi

(
1

λ̄i
p∗

i
)

+ λ̄igi(x̄
i) − p∗

iT
x̄i

]

+
∑

i∈I,
λ̄i=0

[
sup

ci∈Xi

p∗
iT

ci − p∗
iT

x̄i

]
+
∑

j∈J,
k̄j 6=0

[
k̄jgj

(
1

k̄j
x̄j

)
+ k̄jhj(p∗

j
) − p∗

jT
x̄j

]

+
∑

j∈J,
k̄j=0

[
sup

dj∈Dj

djT
x̄j − p∗

jT
x̄j

]

+ (p∗
0
, p∗

I
, p∗

J
)T (x̄0, x̄I , x̄J ) −

∑

i∈I,
λ̄i 6=0

λ̄igi(x̄
i) −

∑

j∈J,
k̄j 6=0

k̄jhj(p∗
j
). (3. 1)

Let us prove now that all the terms summed in the right - hand side of (3. 1) are
non - negative.

Applying the Fenchel - Young inequality, we get

g0(x̄
0) + h0(p∗

0
) ≥ p∗

0T
x̄0,

k̄jgj

(
1

k̄j
x̄j

)
+ k̄jhj(p∗

j
) ≥ p∗

jT
(

k̄j
1

k̄j
x̄j

)
= p∗

jT
x̄j , j ∈ J : k̄j 6= 0,

and

λ̄igi(x̄
i) + λ̄ihi

(
1

λ̄i
p∗

i
)

≥ λ̄i
1

λ̄i
p∗

iT
x̄i = p∗

iT
x̄i, i ∈ I : λ̄i 6= 0.

On the other hand, it is obvious that

sup
dj∈Dj

djT
x̄j ≥ p∗

jT
x̄j , j ∈ J : k̄j = 0,
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and

sup
ci∈Xi

p∗
iT

ci ≥ p∗
iT

x̄i, i ∈ I : λ̄i = 0.

Since p∗ ∈ N∗, it follows also that p∗
T
x̄ ≥ 0. Moreover, from the feasibility con-

ditions it follows that gi(x̄
i) ≤ 0, λ̄i ≥ 0, i ∈ I, so −∑ i∈I,

λ̄i 6=0

λ̄igi(x̄
i) ≥ 0. Also,

hj(p∗
j
) ≤ 0, k̄j 6= 0, j ∈ J , implies −∑ j∈J,

k̄j 6=0

k̄jhj(p∗
j
) ≥ 0. Therefore it follows that

in (3. 1) all the terms are greater than or equal to zero, while their sum is zero, so
all of them must be equal to zero, i.e. the inequalities obtained above are fulfilled
as equalities. So, (iv) is true and the other optimality conditions, (i) − (iii), hold,
too.

(b) The calculations above can be carried out in reverse order and the assertion
arises easily. �

Remark 3.4 We mention that (b) applies without any convexity assumption as
well as constraint qualification. So, the sufficiency of the optimality conditions
(i) − (iv) is true in the most general case.

3.2 Geometric programming duality as a special
case of Fenchel - Lagrange duality

In the previous section we dealt with the generalized geometric duality. Because
of its very intricate formulation of the objective function it has been and is still
used in practice in a simpler form, namely by taking the index set J empty. This
simplified geometric duality has been used by many authors to treat various convex
optimization problems. Among the authors who dealt extensively in their works
with this type of duality we mention Scott and Jefferson who co - wrote more
than twenty papers where geometric duality is employed in different purposes. We
cite here some of them, namely [48–52,75–82] and in the next section we show how
these problems can be easier treated via Fenchel - Lagrange duality.

3.2.1 Motivation

The problems treated via geometric programming in the literature are not always
suitable for this. See for instance the papers we have already mentioned, [48–52,75–
82], where various optimization problems are trapped into the format of the primal
geometric problem by very artificial reformulations. These reformulations bring
additional variables to the primal problem and all the variables of the reformulated
problem have to take values also inside some complicated cones, that need to be
constructed, too. We prove that the geometric duality is a special case of the Fenchel
- Lagrange duality, i.e. the geometric dual problem is the Fenchel - Lagrange dual
of the geometric primal, obtained easier. Moreover, in the mentioned papers the
functions involved are taken convex and lower semicontinuous, while the sets dealt
with in the problems are considered non - empty, closed and convex for optimality
purposes, and we show that strong duality and necessary and sufficient optimality
conditions may be obtained under weaker assumptions, i.e. when the sets are taken
only non - empty convex and the functions convex on the sets where they are defined
on.

We took seven problems treated by Scott and Jefferson via geometric pro-
gramming duality and we dealt with them via Fenchel - Lagrange duality. One may
notice in each case that our results are obtained in a simpler manner than in the
original papers, being moreover more general and complete than the ones due to the
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mentioned authors. Therefore it is not improper to claim that all the applications
of geometric programming duality can be considered also as ones of the Fenchel -
Lagrange duality, considerably enlarging its areas of applicability.

3.2.2 Fenchel - Lagrange duality for the geometric program

The primal geometric optimization problem is

(Pg) inf
x=(x0,x1,...,xk)∈X0×X1×...×Xk,

gi(xi)≤0,i=1,...,k,
x∈N

g0(x0),

where Xi ⊆ Rli , i = 0, . . . , k,
∑k

i=0 li = n, are convex sets, gi : Xi → R, i = 0, . . . , k,
are functions convex on the sets they are defined on and N ⊆ Rn is a non - empty
closed convex cone.

We consider first a special case of the primal problem (P ) which is still more
general than the geometric primal problem (Pg)

(PN ) inf
x∈X,

g(x)50,
x∈N

f(x),

where N is a non - empty closed convex cone in Rn, X a non - empty convex subset
of Rn, f : Rn → R is convex and g : X → Rk with g = (g1, . . . , gk)T and each gj is
convex on X, j = 1, . . . , k. Its Fenchel - Lagrange dual problem is

(DN ) sup
p∈R

n,

q∈R
k
+

{
− f∗(p) − (qT g)∗X∩N (−p)

}
.

The constraint qualification that is sufficient for the existence of strong duality
in this case is (cf. (CQ′

o)), with the notations introduced before,

(CQN ) ∃x′ ∈ ri(X ∩ N) ∩ ri(dom(f)) :

{
gi(x

′) ≤ 0, if i ∈ LN ,
gi(x

′) < 0, if i ∈ {1, . . . , k}\LN ,

where LN is defined analogously to Lgc, but for the problem in discussion here,
(PN ). Because the presence of the cone N in the formula of the dual is not so
desired, we need to find an alternative formulation for this dual problem, given in
the following strong duality statement. In order to do this we also use a stronger
constraint qualification, namely

(CQ′
N ) ∃x′ ∈ ri(X) ∩ ri(N) ∩ ri(dom(f)) :

{
gi(x

′) ≤ 0, if i ∈ LN ,
gi(x

′) < 0, if i ∈ {1, . . . , k}\LN ,

whose fulfillment guarantees the satisfaction of (CQN ), too.

Theorem 3.5 (strong duality) When the constraint qualification (CQ′
N ) is satis-

fied and v(PN ) ∈ R, there is strong duality between the primal problem (PN ) and
the equivalent formulation of its dual

(D′
N ) sup

p∈R
n,q∈R

k
+,

t∈N∗

{
− f∗(p) + inf

x∈X

[
(p − t)T x + qT g(x)

]}
.

Proof. (PN ) being a special case of the problem (P ), like (DN ) of its dual (D) and
because under (CQ′

N ) one has ri(X)∩ ri(N) = ri(X ∩N), strong duality is valid for
(PN ) and (DN ). Thus the problem (DN ) has the optimal solution (p̄, q̄).
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Let us rewrite the term containing N in the formulation of the dual in the
following way

(q̄T g)∗X∩N (−p̄) = − inf
x∈X∩N

[
p̄T x + q̄T g(x)

]
= − inf

x∈Rn

[
p̄T x + ˜̄qT g(x) + δN (x)

]
,

where the function ˜̄qT g is defined like in the proof of Theorem 2.2.
By the definition of the conjugate function, the right - hand side of the relation

above is equal to
((

p̄T ·
)

+ ˜̄qT g + δN

)∗
(0), which, applying Theorem 20.1 in [72],

can be written as

((
p̄T ·

)
+ ˜̄qT g + δN

)∗

(0) = min
t∈Rn

[((
p̄T ·

)
+ ˜̄qT g

)∗
(t) + δ∗N (−t)

]
.

Since δ∗N (−t) = 0 if t ∈ N∗ and δ∗N (−t) = +∞ otherwise, it follows, using
moreover the definition of the conjugate function and taking into consideration the

way the function ˜̄qT g was given and that v(PN ) = v(DN ) ∈ R,

min
t∈Rn

[((
p̄T ·

)
+ ˜̄qT g

)∗
(t) + δ∗N (−t)

]
= min

t∈N∗
sup
x∈X

{
tT x − p̄T x − q̄T g(x)

}
.

The expression in the right - hand side can be rewritten as −maxt∈N∗ infx∈X

[
(p̄−

t)T x + q̄T g(x)
]

and the calculations above lead to

(q̄T g)∗X∩N (−p̄) = − max
t∈N∗

inf
x∈X

[
(p̄ − t)T x + q̄T g(x)

]
= − inf

x∈X

[
(p̄ − t̄)T x + q̄T g(x)

]
,

where the maximum in the expression above is attained at t̄ ∈ N∗. It is clear that
the dual problem (DN ) becomes (D′

N ) and strong duality between (PN ) and (D′
N )

is certain, i.e. v(PN ) = v(D′
N ) and (D′

N ) has an optimal solution (p̄, q̄, t̄). Let us
mention that when (CQ′

N ) fails it is possible to appear a gap between the optimal
objective values of the problems (DN ) and (D′

N ). �

Remark 3.5 One can obtain the dual problem (D′
N ) also by perturbations, in

a similar way we obtained (D) in the previous chapter by including the cone con-
straint in the constraint function (cf. [17, 89, 90]). We refer further to (D′

N ) as the
dual problem of (PN ). Moreover, it can be equivalently written as

(D′′
N ) sup

p∈R
n,q∈R

k
+,

t∈N∗

{
− f∗(p) − (qT g)∗X(t − p)

}
,

but because of what will follow we prefer to have it formulated as in Theorem 3.5.
The necessary and sufficient optimality conditions are derived from the ones

obtained in the general case, thus we skip the proof of the following statement.

Theorem 3.6 (optimality conditions)
(a) If the constraint qualification (CQ′

N ) is fulfilled and the primal problem (PN )
has an optimal solution x̄, then the dual problem (D′

N ) has an optimal solution
(p̄, q̄, t̄) and the following optimality conditions are fulfilled

(i) f(x̄) + f∗(p̄) = p̄T x̄,

(ii) inf
x∈X

[
(p̄ − t̄)T x + q̄T g(x)

]
= p̄T x̄,

(iii) q̄T g(x̄) = 0,
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(iv) t̄T x̄ = 0.

(b) If x̄ is a feasible point to the primal problem (PN ) and (p̄, q̄, t̄) is feasible to
the dual problem (D′

N ) fulfilling the optimality conditions (i) − (iv), then there is
strong duality between (PN ) and (D′

N ) and the mentioned feasible points turn out
to be optimal solutions.

Now we show how these results can be applied in geometric programming. With
a suitable choice of the functions and the sets involved in the problem (PN ) it
becomes (Pg). The proper selection of the mentioned elements follows





X = Rl0 × X1 × . . . × Xk,
f : Rn → R, gi : X → R, i = 1, . . . , k,

f(x) =

{
g0(x0), if x ∈ X0 × Rn−l0 ,
+∞, otherwise,

gi(x) = gi(xi), i = 1, . . . , k, x = (x0, x1, . . . , xk) ∈ X.

Now we can write the Fenchel - Lagrange dual problem to (Pg) (cf. (D′
N ))

(Dg) sup
p∈R

n,q∈R
k
+,

t∈N∗

{
− f∗(p) + inf

x∈Rl0×X1×...×Xk

[
(p − t)T x +

k∑
i=1

qig
i(xi)

]}
.

The conjugate of f is

f∗(p) = sup
x∈Rn

{
pT x − f(x)

}

= sup
x=(x0,x1,...,xk)∈X0×Rl1×...×R

lk

{
k∑

i=0

piT xi − g0(x0)

}

=

{
g0∗

X0
(p0), if pi = 0, i = 1, . . . , k,

+∞, otherwise,

if we consider p = (p0, p1, . . . , pk) ∈ Rl0 × Rl1 × . . . × Rlk . As the infimum that
appears is separable into a sum of infima, the dual becomes

(Dg) sup
p0∈R

l0 ,

q∈R
k
+,

t∈N∗

{
− g0∗

X0
(p0) + inf

x0∈Rl0

(p0 − t0)T x0 +
k∑

i=1

inf
xi∈Xi

[
− ti

T
xi + qig

i(xi)
]}

,

if we consider t = (t0, t1, . . . , tk)T ∈ Rl0 × Rl1 × . . . × Rlk . As

inf
x0∈Rl0

(p0 − t0)T x0 =

{
0, if p0 = t0,
−∞, otherwise,

the dual problem to (Pg) turns into

(Dg) sup
q∈R

k
+,

t∈N∗

{
− g0∗

X0
(t0) −

k∑
i=1

sup
xi∈Xi

[
ti

T
xi − qig

i(xi)
]}

.

This is exactly the geometric dual problem encountered in all the cited papers
due to Scott and Jefferson, written without resorting to the homogenous ex-
tension of the conjugate functions that can replace the suprema in (Dg).

The constraint qualification sufficient to guarantee the validity of strong duality
for this pair of problems, derived from (CQ′

N ), is



48 CHAPTER 3. FENCHEL - LAGRANGE VERSUS GEOMETRIC DUALITY

(CQg) ∃x′ =
(
x′0, x′1, . . . , x′k

)
∈ ri(N) :





gi(x′i) ≤ 0, if i ∈ Lg,
gi(x′i) < 0, if i ∈ {1, . . . , k}\Lg,
x′i ∈ ri(Xi), for i = 0, . . . , k,

where Lg is defined analogously to Lgc. The strong duality statement concerning
the primal geometric programming problem and its dual follows.

Theorem 3.7 (strong duality) The validity of the constraint qualification (CQg) is
sufficient to guarantee strong duality regarding (Pg) and (Dg) when v(Pg) is finite.

Remark 3.6 The cited papers of the mentioned authors do not assert trenchantly
any strong duality statement, containing just the optimality conditions, while for
the background of their achievement the reader is referred to [71]. There all the
functions are taken moreover lower semicontinuous and the sets involved are pos-
tulated as being closed, alongside their convexity assumptions that proved to be
sufficient in our proofs when the constraint qualification is fulfilled. Moreover, the
possibility to impose a milder constraint qualification regarding the affine functions
whose restrictions to the considered set are among the constraint functions is not
taken into consideration at all.

The necessary and sufficient optimality conditions concerning (Pg) and (Dg)
spring directly from the previous statement.

Theorem 3.8 (optimality conditions)
(a) If the constraint qualification (CQg) is fulfilled and the primal problem (Pg)
has an optimal solution x̄ =

(
x̄0, x̄1, . . . , x̄k

)
, then the dual problem (Dg) has an

optimal solution (q̄, t̄), with q̄ =
(
q̄1, . . . , q̄k

)T
and t̄ =

(
t̄0, . . . , t̄k

)T
and the following

optimality conditions are fulfilled

(i) g0(x̄0) + g0∗
X0

(t̄0) = t̄0T x̄0,

(ii)
(
q̄igi

)∗
Xi

(t̄i) = t̄iT x̄i, i = 1, . . . , k,

(iii) q̄ig
i(x̄i) = 0, i = 0, . . . , k,

(iv) t̄T x̄ = 0.

(b) If x̄ is a feasible point to the primal problem (Pg) and (q̄, t̄) is feasible to
the dual problem (Dg) fulfilling the optimality conditions (i) − (iv), then there is
strong duality between (Pg) and (Dg) and the mentioned feasible points turn out to
be optimal solutions.

Remark 3.7 The optimality conditions we derived are equivalent to the ones dis-
played by Scott and Jefferson in the cited papers.

Before going further, let us sum up the statements regarding (Pg). It is the pri-
mal geometric problem used by Scott and Jefferson in their cited papers and,
more, it is a particular case of a special case of the initial primal problem (P ) we con-
sidered. In all the invoked papers the mentioned authors present the geometric dual
problem to the primal and give the necessary and sufficient optimality conditions
that are true under assumptions of convexity and lower semicontinuity regarding
the functions, respectively of non - emptiness, convexity and closedness concerning
the sets involved there, together with a constraint qualification. We established
the same dual problem to the primal exploiting the Fenchel - Lagrange duality we
presented earlier. Strong duality and optimality conditions are revealed to stand
in much weaker circumstances, i. e. the lower semicontinuity can be removed from
the initial assumptions concerning the functions involved and sets they are defined
on do not have to be taken closed. Moreover, the constraint qualifications can be
generalized and weakened, respectively.
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3.3 Comparisons on various applications given in
the literature

Now let us review some of the problems treated during the last quarter of century
by Scott and Jefferson, sometimes together with Jorjani or Wang, by means
of geometric programming. All these problems were artificially trapped into the
framework required by geometric programming by introducing new variables in
order to separate implicit and explicit constraints and building some cone where
the new vector-variable is forced to lie. Then their dual problems arose from the
general theory developed by Peterson (see [71]) and the optimality conditions
came out from the same place. We determine the Fenchel - Lagrange dual problem
for each problem, then we specialize the adequate constraint qualification and state
the strong duality assertion followed by the optimality conditions all without proofs
as they are direct consequences of Theorems 3.7 and 3.8. One may notice that even
if the functions are taken lower semicontinuous and the sets are considered closed in
the original papers we removed these redundant properties, as we have proven that
strong duality and optimality conditions stand even without their presence when
the corresponding convexity assumptions are made and the sufficient constraint
qualification is valid. We have chosen six problems that we have considered more
interesting, but also the problems in [49–52, 75, 81] may benefit from the same
treatment. We mention moreover that the last subsection is dedicated to the well
- known posynomial geometric programming which is undertaken into our duality
theory, too. Other papers of Scott and Jefferson treat some problems by
means of posynomial geometric programming, so we might have included some of
these problems here, too.

3.3.1 Minmax programs (cf. [78])

The first problem we deal with is the minmax program

(P1) inf
x∈X,
b5Ax,

g(x)50

max
i=1,...,I

fi(x),

with the convex functions fi : Rn → R, dom(fi) = X, i = 1, . . . , I, the non -
empty convex set X ⊆ Rn, the vector function g = (g1, . . . , gJ )T : X → RJ where
gj : X → R is convex on X for any j ∈ {1, . . . , J}, the matrix A ∈ Rm×n and the
vector b ∈ Rm. In the original paper the functions fi, i = 1, . . . , I, and g are taken
also lower semicontinuous and the set X is required to be moreover closed, but
strong duality is valid in more general circumstances, i.e. without these assump-
tions. To treat the problem (P1) with the method presented in the second section,
it is rewritten as

(P1) inf
x∈X,s∈R,

b−Ax50,g(x)50,
fi(x)−s≤0,i=1,...,I

s.

The Fenchel - Lagrange dual problem to (P1) is, considering the objective func-

tion u : Rn × R → R, u(x, s) = s and qf = (qf
1 , . . . , qf

I )T

(D1) sup
px∈R

n,ps∈R,

ql∈R
m
+ ,qf∈R

I
+,qg∈R

J
+

{
− u∗(px, ps) + inf

x∈X,
s∈R

[
pxT x + psT s
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+
∑

i∈I

qf
i (fi(x) − s) + qgT g(x) + qlT (b − Ax)

]}
.

Computing the conjugate of the objective function we get

u∗(px, ps) = sup
x∈R

n,
s∈R

{
(px, ps)T (x, s) − s

}
=

{
0, if ps = 1, px = 0,
+∞, otherwise.

Noticing that the infimum in (D1) is separable into a sum of two infima, one con-
cerning s ∈ R, the other x ∈ X, the dual problem turns into

(D1) sup
ql∈R

m
+ ,qf∈R

I
+,

qg∈R
J
+

{
inf

x∈X

[ ∑
i∈I

qf
i fi(x)+qgT g(x)−qlT Ax

]
+ inf

s∈R

[
s−s

∑
i∈I

qf
i

]
+qlT b

}
.

The second infimum is equal to 0 when
∑

i∈I qf
i = 1, otherwise having the

value −∞, while the first, transformed into a supremum, can be viewed as a conju-
gate function regarding to the set X. Applying Theorem 20.1 in [72] and denoting
qg = (qg

1 , . . . , qg
J )T , the dual problem becomes

(D1) sup
ql∈R

m
+ ,qg∈R

J
+,

qf∈R
I
+,

IP
i=1

qf
i =1,

IP
i=1

ui+
JP

j=1

vj=AT ql

{
qlT b −

I∑
i=1

(qf
i fi)

∗(ui) −
J∑

j=1

(qg
j gj)

∗
X(vj)

}
.

identical to the dual problem found in [78]. A sufficient circumstance to be able
to formulate the strong duality assertion is the following constraint qualification,
where the set L1 is considered analogously to Lgc before,

(CQ1) ∃x′ ∈ ri(X) :





b 5 Ax′,
gj(x

′) ≤ 0, if j ∈ L1,
gj(x

′) < 0, if j ∈ {1, . . . , J}\L1.

Theorem 3.9 (strong duality) If the constraint qualification (CQ1) is satisfied,
then the strong duality between (P1) and (D1) is assured.

Since the optimality conditions are not delivered in [78], here they are, deter-
mined via our method.

Theorem 3.10 (optimality conditions)
(a) If the constraint qualification (CQ1) is fulfilled and x̄ is an optimal solution to
(P1), then strong duality between the problems (P1) and (D1) is attained and the
dual problem has an optimal solution (q̄l, q̄f , q̄g, ū, v̄), where ū = (ū1, . . . , ūI)

T and
v̄ = (v̄1, . . . , v̄J )T , satisfying the following optimality conditions

(i) fi(x̄) − max
i=1,...,I

fi(x̄) = 0 if q̄f
i > 0, i = 1, . . . , I,

(ii) q̄lT (b − Ax̄) = 0,

(iii) q̄gT g(x̄) = 0,

(iv)
(
q̄f
i fi

)∗
(ūi) + q̄f

i fi(x̄) = ūT
i x̄, i = 1, . . . , I,

(v)
(
q̄g
j gj

)∗
X

(v̄j) + q̄g
j gj(x̄) = v̄T

j x̄, j = 1, . . . , J .
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(b) Having a feasible solution x̄ to the primal problem and one (q̄l, q̄f , q̄g, ū, v̄)
to the dual satisfying the optimality conditions (i)− (v), then the mentioned feasible
solutions turn out to be optimal solutions to the corresponding problems and strong
duality stands.

3.3.2 Entropy constrained linear programs (cf. [82])

A minute exposition of the way how the Fenchel - Lagrange duality is applicable
to the problem treated in [82] is available in [13]. In the following we present the
most important facts concerning this matter. The entropy inequality constrained
optimization problem

(P2) inf
b5Ax,

−
nP

i=1

xi ln xi≥H,

nP
i=1

xi=1,x=0

cT x,

where x = (x1, . . . , xn)T ∈ Rn, c = (c1, . . . , cn)T ∈ Rn, A ∈ Rm×n, b ∈ Rm, prompts
the following Fenchel - Lagrange dual problem

(D2) sup
p∈R

n,qx∈R,

ql∈R
m
+ ,qH∈R+

{
− (cT ·)∗(p) + inf

x=0

[
pT x + qlT (b − Ax)

+qH

(
H +

n∑

i=1

xi ln xi

)
+ qx

(
n∑

i=1

xi − 1

)]}
.

It is known that (cT ·)∗(p) = 0 if p = c, otherwise being equal to +∞. In [13] we
prove that in the constraints of the problem (D2) one can consider qH > 0 instead of
qH ∈ R+. Also, the infimum over x = 0 is separable into a sum of infima concerning
xi ≥ 0, i = 1, . . . , n. Denoting also by aji, j = 1, . . . ,m, i = 1, . . . , n, the entries of
the matrix A and ql = (ql

1, . . . , q
l
m)T , the dual problem turns into

(D2) sup
qx∈R,ql∈R

m
+ ,

qH>0

{
qHH+qlT b−qx+

n∑
i=1

inf
xi≥0

[
cixi+qHxi ln xi+

(
qx−

m∑
j=1

ql
jaji

)
xi

]}
.

These infima can be easily computed (cf. [13]) and the dual becomes

(D2) sup
qx∈R,ql∈R

m
+ ,

qH>0





qHH + qlT b − qx − qH
n∑

i=1

e

(
mP

j=1

ql
jaji−ci+qx−qH

)
/qH





.

The supremum over qx ∈ R is also computable using elementary knowledge re-
garding the extreme points of functions, so the dual problem turns into its final
version

(D2) sup
ql∈R

m
+ ,

qH>0

{
bT ql − qH ln

(
n∑

i=1

e

(
(AT ql−c)i/qH

)
+qHH

)}
,

almost identical to the dual problem found in [82]. The difference consists in that
the interval variable qH lies in is R+\{0} instead of R+. By Lemma 2.2 in [13] we
know that this does not affect the optimal objective value of the dual problem. We
have denoted the i-th entry of the vector AT ql − c by (AT ql − c)i. With the help of
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the constraint qualification

(CQ2) ∃x′ ∈ int(Rn
+) :





H +
n∑

i=1

x′
i ln x′

i < 0,

b − Ax′ 5 0,
n∑

i=1

x′
i = 1,

the strong duality affirmation is ready to be formulated, followed by the optimality
conditions, equivalent to the ones in the original paper.

Theorem 3.11 (strong duality) If the constraint qualification (CQ2) is satisfied,
then the strong duality between (P2) and (D2) is assured.

Theorem 3.12 (optimality conditions)
(a) If the constraint qualification (CQ2) is fulfilled and x̄ is an optimal solution
to (P2), then strong duality between the problems (P2) and (D2) is attained and
the dual problem has an optimal solution (q̄l, q̄H) satisfying the following optimality
conditions

(i) q̄lT (Ax̄ − b) = 0,

(ii) q̄H

(
H +

n∑
i=1

x̄i ln x̄i

)
= 0,

(iii) q̄H

(
n∑

i=1

x̄i ln x̄i + ln

(
n∑

i=1

e(AT q̄l−c)i/q̄H

))
= x̄T (AT q̄l − c).

(b) Having a feasible solution x̄ to the primal problem and one to the dual (q̄l, q̄H)
satisfying the optimality conditions (i)− (iii), then the mentioned feasible solutions
turn out to be optimal solutions to the corresponding problems and strong duality
stands.

3.3.3 Facility location problem (cf. [80])

In [80] the authors calculate the geometric duals for some problems involving norms.
We have chosen one of them to be presented here, namely

(P3) inf
‖x−aj‖≤dj ,

j=1,...,m

{
m∑

j=1

wj‖x − aj‖
}

,

where aj ∈ Rn, wj > 0, dj > 0, for j = 1, . . . ,m. The raw version of its Fenchel -
Lagrange dual problem is

(D3) sup
p∈R

n,
q∈R

m
+

{
−
(

m∑
j=1

wj‖ · −aj‖
)∗

(p) + inf
x∈Rn

[
pT x +

m∑
j=1

qj

(
‖x − aj‖ − dj

)
]}

.

By Theorem 20.1 in [72] it turns into

(D3) sup
pj∈R

n,
mP

j=1

pj=p,

q∈R
m
+

{
−

m∑
j=1

(
wj‖ · −aj‖

)∗
(pj) + inf

x∈Rn

[
pT x +

m∑
j=1

qj

(
‖x − aj‖ − dj

)
]}

.

Knowing that

(
wj‖ · −aj‖

)∗
(pj) =

{
aT

j pj , if ‖pj‖ ≤ wj ,
+∞, otherwise,

j = 1, . . . ,m,
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and turning the infimum into supremum, we get, applying again Theorem 20.1
in [72], the following equivalent formulation of the dual problem, given also in [80],

(D3) sup
pj∈R

n,rj∈R
n,

‖pj‖≤wj ,‖rj‖≤qj ,
j=1,...,m,

mP
j=1

(
pj+rj

)
=0,q∈R

m
+

{
− qT d −

m∑
j=1

aT
j pj −

m∑
j=1

aT
j rj

}
,

rewritable as

(D3) sup
pj∈R

n,rj∈R
n,

‖pj‖≤wj ,‖rj‖≤qj ,
j=1,...,m,

mP
j=1

(
pj+rj

)
=0,q∈R

m
+

{
− qT d −

m∑
j=1

aT
j (pj + rj)

}
.

Of course, we have set here d = (d1, . . . , dm)T ∈ Rm and q = (q1, . . . , qm)T ∈ Rm.
A sufficient background for the existence of strong duality is in this case

(CQ3) ∃x′ ∈ Rn : ‖x′ − aj‖ < dj , j = 1, . . . ,m.

Theorem 3.13 (strong duality) If the constraint qualification (CQ3) is satisfied,
then the strong duality between (P3) and (D3) is assured.

Although there is no mention of the optimality conditions in [80] for this pair of
dual problems we have derived the following result.

Theorem 3.14 (optimality conditions)
(a) If the constraint qualification (CQ3) is fulfilled and x̄ is an optimal solution to
(P3), then strong duality between the problems (P3) and (D3) is achieved and the
dual problem has an optimal solution (p̄1, . . . , p̄m, r̄1, . . . , r̄m, q̄1, . . . , q̄m) satisfying
the following optimality conditions

(i) wj‖x̄ − aj‖ = p̄jT (x̄ − aj) and ‖p̄j‖ = wj when x̄ 6= aj, j = 1, . . . ,m,

(ii) q̄j‖x̄− aj‖ = r̄jT (x̄− aj), q̄j ≥ 0, j = 1, . . . ,m, and if q̄j > 0 so is ‖r̄j‖ = q̄j.
For q̄j = 0 there is also r̄j = 0. If in particular x̄ = aj for any j ∈ {1, . . . ,m},
then q̄j = 0 and r̄j = 0,

(iii) ‖x̄ − aj‖ = dj, for j ∈ {1, . . . ,m} such that q̄j > 0,

(iv)
m∑

j=1

(
p̄j + r̄j

)
= 0.

(b) Given x̄ a feasible solution to (P3) and (p̄1, . . . , p̄m, r̄1, . . . , r̄m, q̄1, . . . , q̄m)
feasible to (D3) which satisfy the optimality conditions (i)−(iv), then the mentioned
feasible solutions turn out to be optimal solutions to the corresponding problems and
strong duality holds.

3.3.4 Quadratic concave fractional programs (cf. [76])

Another problem artificially pressed into the selective framework of geometric pro-
gramming by the mentioned authors is
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(P4) inf
Cx5b

Q(x)
f(x) ,

where Q(x) = (1/2)xT Ax, x ∈ Rn, A ∈ Rn×n is a symmetric positive definite ma-
trix, C ∈ Rm×n, b ∈ Rm and f : Rn → R a concave function having strictly positive
values over the feasible set of the problem. Because no analytic representation of
the conjugate of the objective function is available, the problem is rewritten as

(P4) inf
sQ
(

1
s
x
)
−f(x)≤0,

Cx5b,s∈R+\{0}

s.

To compute the Fenchel - Lagrange dual problem to (P4), we need first the
conjugate of the objective function u : Rn × R → R, u(x, s) = s. Using the results
presented before for the same objective function, the dual problem becomes

(D4) sup
qx∈R

m
+ ,

qs∈R+

{
inf

x∈R
n,

s>0

[
s + qs

(
sQ
(

1
sx
)
− f(x)

)
+ qxT (Cx − b)

]}
.

The infimum over (x, s), transformed into a supremum, can be viewed as a con-
jugate function that is determined after some standard calculations. The formula
that results for the dual problem is identical to the geometric dual obtained by the
cited authors,

(D4) sup
qx∈R

m
+ ,qs∈R+,

1
2 uT A−1u≤qs,

u+v=−CT qx

{
− bT qx − (−qsf)∗(v)

}
,

moreover simplifiable even to

(D4) sup
qx∈R

m
+ ,qs∈R+,

1
2 (−v−CT qx)T A−1(−v−CT qx)≤qs

{
− bT qx − (−qsf)∗(v)

}
.

Of course we have removed the assumption of lower semicontinuity that has
been imposed on the function −f before. The constraint qualification required in
this case would be

(CQ4) ∃(x′, s′) ∈ Rn × (0,+∞) :

{
s′Q
(

1
s′ x

′
)
− f(x′) < 0,

Cx′ 5 b.

It is not difficult to notice that if (P4) has a feasible point x′ then f(x′) > 0.
Taking any s′ > Q(x′)/f(x′), the pair (x′, s′) satisfies (CQ4).

Theorem 3.15 (strong duality) Provided that the primal problem has at least a
feasible point, strong duality between problems (P4) and (D4) is assured.

The optimality conditions, equivalent to the ones given in [76], are presented in
the following statement.

Theorem 3.16 (optimality conditions)
(a) If the problem (P4) has an optimal solution x̄ then strong duality between the
problems (P4) and (D4) is attained and the dual problem has an optimal solution
(v̄, q̄x, q̄s) satisfying the following optimality conditions

(i) (−q̄sf)∗(v̄) − q̄sf(x̄) = v̄T x̄,

(ii) 1
2 (−v̄ − C̄T qx)T A−1(−v̄ − C̄T qx) + 1

2 x̄T Ax̄ = (−v̄ − C̄T qx)T x̄,
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(iii) q̄xT (b − Cx̄) = 0,

(iv) 1
2

(
− v̄ − C̄T qx

)T
A−1

(
− v̄ − C̄T qx

)
= q̄s.

(b) Having a feasible solution x̄ to the primal problem and one to the dual
(v̄, q̄x, q̄s) satisfying the optimality conditions (i) − (iv) the mentioned feasible so-
lutions turn out to be optimal solutions to the corresponding problems and strong
duality stands.

3.3.5 Sum of convex ratios (cf. [77])

An extension to vector optimization of the problem treated here can be found in [91].
Here we consider as primal problem

(P5) inf
Cx5b

[
h(x) +

J∑
i=1

f2
i (x)

gi(x)

]
.

where fi, h : Rn → R are proper convex functions, gi : Rn → R concave, fi(x) ≥ 0,
gi(x) > 0, i = 1, . . . , J , for all x feasible to (P5), b ∈ Rm, C ∈ Rm×n, that is
equivalent to

(P5) inf
fi(x)≤si,si∈R+,

gi(x)≥ti,ti∈R+\{0},
i=1,...,J,Cx5b

[
h(x) +

J∑
i=1

s2
i

ti

]
.

The Fenchel - Lagrange dual problem arises naturally from its basic formula,
where we denote the objective function by u(x, s, t), with the variables x, s =
(s1, . . . , sJ )T , t = (t1, . . . , tJ)T and also the functions f = (f1, . . . , fJ )T and g =
(g1, . . . , gJ )T ,

(D5) sup
px∈R

n,ps,pt∈R
J ,

qx∈R
m
+ ,qs,qt∈R

J
+

{
− u∗(px, ps, pt) + inf

x∈R
n,s∈R

J
+,

t∈int(RJ
+)

[
pxT x + psT s + ptT

t

+qsT (f(x) − s) + qtT
(t − g(x)) + qxT (Cx − b)

]}
.

For the conjugate function one has (consult [91] for computational details), de-
noting ps = (ps

1, . . . , p
s
J )T and pt = (pt

1, . . . , p
t
J )T ,

u∗(px, ps, pt) =

{
h∗(px), if (ps

i )
2 + 4pt

i ≤ 0, i = 1, . . . , J,
+∞, otherwise,

while the infimum over (x, s, t) is separable into a sum of three infima each of them
concerning a variable. The dual problem becomes

(D5) sup
px∈R

n,ps,pt∈R
J ,

(ps
i )2+4pt

i≤0,i=1,...,J,

qx∈R
m
+ ,qs,qt∈R

J
+

{
− h∗(px) + inf

s∈R
J
+

[
psT s − qsT s

]
− qxT b

+ inf
x∈Rn

[
(px + CT qx)T x + qsT f(x) − qtT

g(x)
]

+ inf
t∈R

J
+\{0}

[
ptT

t + qtT
t
]}

.

The infimum regarding s ∈ RJ
+ has a negative infinite value unless ps − qs = 0,

when it nullifies itself, while the one regarding t ∈ RJ
+\{0} is zero when pt + qt = 0,

otherwise being equal to −∞. The infimum regarding x ∈ Rn can be turned into
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a supremum and computed as a conjugate of a sum of functions at −(px + CT qx).
Applying Theorem 20.1 in [72] to this conjugate, the dual develops denoting qs =
(qs

1, . . . , q
s
J )T and qt = (qt

1, . . . , q
t
J )T into

(D5) sup
qx∈R

m
+ ,qs,qt∈R

J
+,

ps,pt∈R
J ,qs5ps,−qt5pt,

pt
i≤−
(

ps
i
2

)2
,i=1,...,J,

ai,di,p
x∈R

n,i=1,...,J,
JP

i=1

(ai+di)=−px−CT qx

{
− h∗(px) −

J∑
i=1

(qs
i fi)

∗(ai) −
J∑

i=1

(−qt
igi)

∗(di) − qxT b

}
,

that can be simplified, renouncing the variables ps and pt, to

(D5) sup
qx∈R

m
+ ,qs,qt∈R

J
+,

qt
i≥
(

qs
i
2

)2
,i=1,...,J,

ai,di,p
x∈R

n,i=1,...,J,
JP

i=1
(ai+di)=−px−CT qx

{
− h∗(px) −

J∑
i=1

(qs
i fi)

∗(ai) −
J∑

i=1

(−qt
igi)

∗(di) − qxT b

}
.

Writing the homogenous extensions of the conjugate functions one gets the dual
problem obtained in the original paper. Let us stress that we have ignored the
hypotheses of lower semicontinuity associated to the functions fi, −gi, i = 1, . . . , J ,
and h in [77], as strong duality can be proven as valid even in their absence.

Theorem 3.17 (strong duality) Provided that the primal problem (P5) has a finite
optimal objective value, strong duality between problems (P5) and (D5) is assured.

The optimality conditions we determined in this case are richer than the ones
presented in [77].

Theorem 3.18 (optimality conditions)
(a) If the problem (P5) has an optimal solution x̄ where its objective function is
finite, then strong duality between the problems (P5) and (D5) is attained and the
dual problem has an optimal solution (p̄x, q̄x, q̄s, q̄t, ā, d̄) with ā = (ā1, . . . , āJ ) and
d̄ = (d̄1, . . . , d̄J ) satisfying the following optimality conditions

(i)
(
q̄s
i fi

)∗
(āi) + q̄s

i fi(x̄) = āT
i x̄, i = 1, . . . , J ,

(ii)
(
− q̄t

igi

)∗
(d̄i) − q̄t

igi(x̄) = d̄T
i x̄, i = 1, . . . , J ,

(iii) h∗(p̄x) + h(x̄) = p̄xT x̄,

(iv) q̄s
i = 2 fi(x̄)

gi(x̄) , i = 1, . . . , J ,

(v) q̄t
i =

f2
i (x̄)

g2
i (x̄)

, i = 1, . . . , J ,

(vi) q̄xT (b − CT x̄) = 0.

(b) Having a feasible solution x̄ to the primal problem and one to the dual
(p̄x, q̄x, q̄s, q̄t, ā, d̄) satisfying the optimality conditions (i) − (vi), the mentioned
feasible solutions turn out to be optimal solutions to the corresponding problems and
strong duality holds.
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3.3.6 Quasiconcave multiplicative programs (cf. [79])

Despite its intricateness and limits, geometric programming duality seems to be yet
very popular, as its direct applications still get published. One of the newest we
found is on a class of quasiconcave multiplicative programs that originally look like

(P6) sup
Ax5b

{
k∏

i=1

[fi(x)]ai

}
,

with fi : Rn → R concave functions, positive over the feasible set of the problem,
ai > 0, i = 1, . . . , k, A ∈ Rm×n, b ∈ Rm. Denote moreover f = (f1, . . . , fk)T . The
problem is brought into another layout in order to be properly treated,

(P̃6) inf
fi(x)≥si,i=1,...,k,

Ax5b,s∈int(Rk
+)

{
−

k∑
i=1

ai ln si

}
.

Proposition 3.1 We have ln(v(P6)) = −v(P̃6). Moreover, x̄ is an optimal solution

to (P6) if and only if (x̄, f(x̄)) is an optimal solution to (P̃6).

Denoting s = (s1, . . . , s
k)T and u : Rn × Rk → R,

u(x, s) =





−
k∑

i=1

ai ln si, if (x, s) ∈ Rn × int(Rk
+),

+∞, otherwise,

the raw formula of the Fenchel - Lagrange dual to (P̃6) is

(D̃6) sup
px∈R

n,ps∈R
k,

ql∈R
m
+ ,qf∈R

k
+

{
inf

x∈R
n,

s∈int(Rk
+)

[
pxT x+psT s+qlT (Ax−b)+qf T

(s−f(x))
]
−u∗(px, ps)

}
.

Regarding the conjugate of the objective function the following result is available
for ps = (ps

1, . . . , p
s
k)T

u∗(px, ps) =





−
k∑

i=1

ai

(
1 − ln

(
ai

−ps
i

))
, if px = 0, ps < 0,

+∞, otherwise.

The infimum in the dual problem can also be separated into a sum of two infima,
one concerning s ∈ int(Rk

+), the other x ∈ Rn. Let us write again the dual using
the last observations and denoting −ps

i by ps
i , i = 1, . . . , k,

(D̃6) sup
ps∈int(Rk

+),

ql∈R
m
+ ,qf∈R

k
+

{
k∑

i=1

ai

(
1 − ln

(
ai

ps
i

))
+ inf

s∈int(Rk
+)

(qf − ps)T s

+ inf
x∈Rn

[
qlT (Ax) − qf T

f(x)
]
− qlT b

}
.

The infimum regarding s is equal to 0 when qf − ps = 0, otherwise being −∞,
while the one over x ∈ Rn can be rewritten as a supremum and viewed as a conju-
gate of a sum of functions. The dual problem becomes
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(D̃6) sup
ps∈int(Rk

+),ps5qf ,

ql∈R
m
+ ,

kP
i=1

vi=−AT ql

{
k∑

i=1

(
ai − ai ln

(
ai

ps
i

))
−

k∑
i=1

qf
i (−fi)

∗
(

1

qf
i

vi

)
− bT ql

}
,

where qf =
(
qf
1 , . . . , qf

k

)T
, and as the supremum regarding the variable ps can be

easily computed, being attained for ps = −qf , we get the following final version of
the dual, equivalent to the one found in [79],

(D̃6) sup
ql∈R

m
+ ,qf∈int(Rk

+),
kP

i=1

vi=−AT ql

{
k∑

i=1

(
ai − ai ln

(
ai

qf
i

))
−

k∑
i=1

qf
i (−fi)

∗
(

1

qf
i

vi

)
− bT ql

}
.

For strong duality a constraint qualification would normally be required because
within the constraints of (P̃6) there are affine as well as non - affine functions. But
when the feasible set of the problem (P6) is non - empty there is some x′ ∈ Rn such
that Ax′ 5 b and fi(x

′) > 0, i = 1, . . . , k. Consequently there is also an s′ > 0 such
that fi(x

′) > s′ > 0, i = 1, . . . , k, too. So the constraint qualification that comes

from the general case for (P̃6) is automatically fulfilled provided that the feasible
set of (P6) is not empty. Without any additional assumption one may formulate
the strong duality statement.

Theorem 3.19 (strong duality) Provided that the primal problem (P6) has a fea-

sible point, there is strong duality between the problems (P̃6) and (D̃6).

Corollary 3.1 Provided that the primal problem (P6) has a feasible point, the dual

problem (D̃6) has an optimal solution and one has v(P6) = e−v( eD6).

No surprises appear when we derive the optimality conditions concerning the pair
of dual problems in discussion. The proof takes also into consideration Proposition
3.1.

Theorem 3.20 (optimality conditions)
(a) If the problem (P6) has an optimal solution x̄, then strong duality between the

problems (P̃6) and (D̃6) is attained and the dual problem has an optimal solution
(v̄1, . . . , v̄k, q̄l, q̄f ) satisfying the following optimality conditions

(i) (−fi)
∗
(

1

q̄f
i

v̄i

)
− fi(x̄) = 1

q̄f
i

v̄T
i x̄, i = 1, . . . , k,

(ii) (AT x̄ − b)T q̄l = 0,

(iii)
k∑

i=1

v̄i = −ĀT ql,

(iv) ln(fi(x̄)) +
q̄f

i

ai
fi(x̄) = ln

(
ai

q̄f
i

)
− 1, i = 1, . . . , k.

(b) Having a feasible solution x̄ to the problem (P6) and one to the problem

(D̃6) (v̄1, . . . , v̄k, q̄l, q̄f ) satisfying the optimality conditions (i)−(iv), the mentioned
feasible solutions turn out to be optimal solutions to the corresponding problems and
strong duality holds between the problems (P̃6) and (D̃6).
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3.3.7 Posynomial geometric programming (cf. [30])

We are going to prove now that also the posynomial geometric programming du-
ality can be viewed as a special case of the Fenchel - Lagrange duality. As it has
been already proven (cf. [48]) that the generalized geometric programming includes
the posynomial instance as a special case, our result is not so surprising within the
framework of this thesis. The primal-dual pair of posynomial geometric problems
is composed by

(P7) inf
t=(t1,...,tm)T ∈int(Rm

+ ),

gj(t)≤1,j=1,...,s

g0(t),

where gk(t) =
∑

i∈J[k]

ci

m∏
j=1

(tj)
aij , k = 0, . . . , s,

aij ∈ R, j = 1, . . . ,m, ci > 0, i = 1, . . . , n,

J [k] = {mk,mk + 1, . . . , nk}, k = 0, . . . , s,

m0 = 1,m1 = n0 + 1, . . . ,mk = nk−1 + 1, . . . , ns = n,

and

(D7) sup
δ=(δ1,...,δn)T ∈R

n
+,P

i∈J[0]

δi=1,

nP
i=1

δiaij=0,

j=1,...,m

[
n∏

i=1

ci

δi

δi

]
s∏

k=1

λk(δ)λk(δ),

with λk(δ) =
∑

i∈J[k]

δi, k = 1, . . . , s.

To the primal posynomial problem we attach the following problem (cf. [30,48])

(P̃7) inf

ln

(
P

i∈J[k]

cie
xi

)
≤0,

k=1,...,s,x∈U

{
ln

(
∑

i∈J[0]

cie
xi

)}
,

where U denotes the linear subspace generated by the columns of the exponent
matrix (aij)i=1,...,n,

j=1,...,m
. Let us name also u(x) the primal objective function of the

problem (P̃7). These two problems are connected (cf. [48]) through the following
result.

Proposition 3.2 One has v(P̃7) = ln(v(P7)). Moreover, t̄ is an optimal solution

to (P7) if and only if x̄ is an optimal solution to (P̃7), where x̄ = (x̄1, . . . , x̄n)T and
x̄i =

∑m
j=1 aij ln(t̄j) ∀i = 1, . . . , n.

We determine the Fenchel - Lagrange dual problem to (P̃7) from the formula of
(D′

N ), with U⊥ indicating the orthogonal subspace of U , for q = (q1, . . . , qs)
T and

t = (t1, . . . , tn)T

(P̃7) sup
p∈R

n,t∈U⊥,
q∈R

s
+

{
− u∗(p) + inf

x∈U

[
(p − t)T x +

s∑
k=1

qk ln

( ∑
i∈J[k]

cie
xi

)]}
.
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For the conjugate of the objective function we have

u∗(p) =





∑
i∈J[0]

pi ln
(

pi

ci

)
, if pj = 0, j ∈ J [k], k = 1, . . . , s,

∑
i∈J[0]

pi = 1, p = (p1, . . . , pn)T ∈ Rn
+,

+∞, otherwise,

and similar results can be derived if we write the infimum within the dual as a
sum of suprema over (xi)i∈J[k], k = 1, . . . , s, just with the changed constraints∑

i∈J[k] ti = qk. Also there follows pi = ti, i ∈ J [0]. As usual in entropy optimiza-

tion we consider 0 ln(0/ci) = 0, ci > 0, i = 1, . . . , n. After these, the dual problem
becomes

(D̃7) sup
t∈U⊥,q∈R

s
+,

t=0,
P

i∈J[0]

ti=1,

P
i∈J[k]

ti=qk,k=1,...,s

{
n∑

i=1

ti ln
(

ci

ti

)
+

s∑
k=1

qk ln qk

}
.

Finally, the condition that guarantees strong duality, derived from the constraint
qualification (CQ), is actually the so - called superconsistency introduced in [30], i.e.

(CQ7) ∃t′ > 0 : gk(t′) < 1, k = 1, . . . , s.

Theorem 3.21 (strong duality) If the constraint qualification (CQ7) is satisfied,
then the strong duality between (P7) and (D7) is assured.

Consequently we present also the optimality conditions concerning the pair of
problems (P̃7) and (D̃7). The ones concerning the problems (P7) and (D7) can be
derived from these and are available in the literature (see for instance [48]).

Theorem 3.22 (optimality conditions)
(a) If the constraint qualification (CQ7) is fulfilled and x̄ is an optimal solution

to (P̃7), then v(P̃7) = v(D̃7) and (D̃7) has an optimal solution (t̄, q̄) satisfying the
following optimality conditions

(i) ln

( ∑
i∈J[0]

cie
x̄i

)
+
∑

i∈J[0]

t̄i ln
(

t̄i

ci

)
=
(
t̄J[0]

)T
x̄J[0],

(ii) q̄k ln

( ∑
i∈J[k]

cie
x̄i

)
+

∑
i∈J[k]

t̄i ln
(

t̄i

ci

)
− q̄k ln q̄k =

(
t̄J[k]

)T
x̄J[k], k = 1, . . . , s,

(iii) x̄T t̄ = 0,

(iv)
∑

i∈J[k]

cie
x̄i = 1 when q̄k > 0, k = 1, . . . , s,

where xJ[k] = (xmk
, . . . , xnk

) and tJ[k] = (tmk
, . . . , tnk

), k = 0, . . . , s.

(b) Having a feasible solution x̄ to the primal problem and one to the dual (t̄, q̄)
satisfying the optimality conditions (i)− (iv), the mentioned feasible solutions turn
out to be optimal solutions to the corresponding problems and strong duality holds.

Remark 3.8 This shows that the rich literature on posynomial programming can
be easier treated from the point of view of the Fenchel - Lagrange duality, especially
when the problems studied there are forced to agree with the strict framework of
the posynomial programming.



Chapter 4

Extensions to different
classes of optimization
problems

Within the fourth chapter of this thesis we have included several interesting exten-
sions and applications of the duality results presented earlier.

A first class where we apply the results given in the previous chapters consists of
the so - called composed convex optimization problems. Their study is important
for its theoretical aspect, but also for its practical applications. Let us mention
only some papers dealing with optimization problems involving composed functions,
namely [20, 27, 61, 62, 88]. Closely related to such optimization problems is the
calculation of the conjugate of the composition of two functions. Papers like [27,
45, 60] and the famous books [44] are usually cited when this comes in discussion.
As an application of the duality statements we provide for a composed convex
optimization problem and its Fenchel - Lagrange dual we present a general duality
framework for dealing with convex multiobjective programming problems. This
uses the scalarization of the primal vector minimization problem with a strongly
increasing function and we show that some other scalarization methods widely -
used in the literature (cf. [8,18,19,35,43,47,54,58,63,65,73,74,84–87,89–91,93–95],
among others) arise as special cases. The scalarization we present has already
been used in the literature by Göpfert and Gerth (cf. [40]), Gerstewitz and

Iwanow (cf. [38]), Jahn (cf. [46,47]) and Miglierina and Molho (cf. [64]), but
even when a dual has been assigned to the initial vector problem, the approach
came from Lagrange duality.

Entropy optimization is another field with many various applications in prac-
tice, from transportation and location problems to image reconstruction and speech
recognition. We refer to the books [34] and [57] for overviews on entropy optimiza-
tion and its applications in various fields.

We have considered a convex optimization problem having as objective function
an entropy - like sum of functions. After constructing a dual to this problem,
giving the strong duality and necessary and sufficient optimality conditions, we
show that the most important and used three entropy measures, namely those due
to Shannon, Kullback and Leibler and, respectively, Burg, are particular
instances of our entropy - like objective function, for some careful choices of the
functions involved. Therefore the problems usually treated in the literature via
geometric programming (see [33, 34]) can be easier dealt with when considered as
special cases of the optimization problem with entropy - like objective function.

61
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4.1 Composed convex optimization problems

The objective functions of the optimization problems may have different formu-
lations. Many convex optimization problems arising from various directions may
be formulated as minimizations of some compositions of functions subject to some
constraints. We cite here [20, 27, 61, 62, 88] as articles dealing with composed con-
vex optimization problems. Duality assertions for this kind of problems may be
delivered in different ways, one of the most common consisting in considering an
equivalent problem to the primal one, whose dual is easier determinable. If the de-
sired duality results are based on conjugate functions, sometimes even a more direct
way is available by obtaining a dual problem based on the conjugate function of the
composed objective function of the primal, which is writable, in some situations,
by using only the conjugates of the functions involved and the dual variables. De-
pending on the framework, the formula of the conjugate of the composed functions
is taken mainly from [27,44,45,60].

Here we bring weaker conditions under which the known formula of the conjugate
of a composed function holds when one works in Rn. No lower semicontinuity or
continuity concerning the functions to be composed is necessary, while the regularity
condition saying that the image set of the postcomposed function should contain
an interior point of the domain of the other function is weakened to a relation
involving relative interiors which is actually implied by the first one. This important
result is presented as an application of the strong duality for the unconstrained
composed convex optimization problem, followed by the concrete case of calculating
the conjugate of 1/F , when F is a concave strictly positive function defined over
the set of strictly positive reals.

4.1.1 Strong duality for the composed convex optimization
problem

Let K and C be non - empty closed convex cones in Rk and Rm, respectively, and
X a non - empty convex subset of Rn. On Rk and Rm we consider the partial
orderings induced by the cones K and C, respectively. Take f : Rk → R to be a
proper K - increasing convex function, F : X → Rk a function K - convex on X
and g : X → Rm a function C - convex on X. Moreover, we impose the feasibility
condition A ∩ F−1(dom(f)) 6= ∅, where A = {x ∈ X : g(x) ∈ −C} and for any set
U ⊆ Rk, F−1(U) = {x ∈ X : F (x) ∈ U}. The problem we consider within this
section is

(Pc) inf
x∈X,

g(x)∈−C

f(F (x)).

We could formulate its dual as a special case of (P ) since f ◦F , completed with
plus infinite values outside X is a convex function, but the existing formulae which
allow to separate the conjugate of f ◦ F into a combination of the conjugates of
f and F ask the functions to be moreover lower semicontinuous even in some par-
ticular cases (cf. [44, 45]). To avoid this too strong requirement we formulate the
following problem equivalent to (Pc) in the sense that their optimal objective values
coincide,

(P ′
c) inf

x∈X,y∈R
k,

g(x)∈−C,
F (x)−y∈−K

f(y).

Proposition 4.1 v(Pc) = v(P ′
c).
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Proof. Let x be feasible to (Pc). Take y = F (x). Then F (x) − y = 0 ∈ −K
(remember that the convex cone K is non - empty and closed). Thus (x, y) is
feasible to (P ′

c) and f(F (x)) = f(y) ≥ v(P ′
c). Since this is valid for any x feasible

to (Pc) it is straightforward that v(Pc) ≥ v(P ′
c).

On the other hand, for (x, y) feasible to (P ′
c) we have x ∈ X and g(x) ∈ −C,

so x is feasible to (Pc). Since f is K - increasing we get v(Pc) ≤ f(F (x)) ≤ f(y).
Taking the infimum on the right - hand side after (x, y) feasible to (P ′

c) we get
v(Pc) ≤ v(P ′

c). Therefore v(Pc) = v(P ′
c). �

The problem (P ′
c) is a special case of the initial primal optimization problem

(P ) inf
x∈X,

g(x)∈−C

f(x),

with the variable (x, y) ∈ X × Rk, the objective function A : Rn × Rk → R defined
by A(x, y) = f(y), the constraint function B : X × Rk → Rm × Rk defined by
B(x, y) = (g(x), F (x) − y) and the cone C × K, which is a non - empty closed
convex cone in Rm × Rk. We also use that (C × K)∗ = C∗ × K∗. The Fenchel -
Lagrange dual problem to (P ′

c) is

(D′
c) sup

α∈C∗,β∈K∗,

(p,s)∈R
n×R

k

{
− A∗(p, s) −

(
(α, β)T B

)∗
X×Rk(−p,−s)

}
.

Let us determine the values of these conjugates. We have

A∗(p, s) = sup
x∈R

n,

y∈R
k

{
pT x + sT y − f(y)

}
= f∗(s) +

{
0, if p = 0,
+∞, otherwise,

and
(
(α, β)T B

)∗
X×Rk(−p,−s) = sup

x∈X,

y∈R
k

{
− pT x − sT y − αT g(x) − βT (F (x) − y)

}

=
(
αT g + βT F

)∗
X

(−p) +

{
0, if s = β,
+∞, otherwise.

Pasting these formulae into the objective function of the dual problem we get

−A∗(p, s) −
(
(α, β)T B

)∗
X×Rk(−p,−s) = −f∗(β) −

(
αT g + βF

)∗
X

(0),

if p = 0 and s = β, while otherwise −A∗(p, s) −
(
(α, β)T B

)∗
X×Rk(−p,−s) = +∞.

This makes the dual problem turn into

(D′
c) sup

α∈C∗,
β∈K∗

{
− f∗(β) −

(
αT g + βT F

)∗
X

(0)
}

.

When α ∈ C∗ and β ∈ K∗, applying Theorem 16.4 in [72] we get

(
αT g + βT F

)∗
X

(0) = inf
u∈Rn

{(
βT F

)∗
X

(u) +
(
αT g

)∗
X

(−u)
}

and this leads to the following formulation of the dual problem

(Dc) sup
α∈C∗,β∈K∗,

u∈R
n

{
− f∗(β) −

(
βT F

)∗
X

(u) −
(
αT g

)∗
X

(−u)
}

.

Thanks to Proposition 4.1 we may call (Dc) a dual problem to (Pc), too.
The weak duality statement follows directly from the one given earlier in the

general case.
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Theorem 4.1 v(Dc) ≤ v(Pc).

Now let us write what becomes the constraint qualification (CQ) in this case.
We have

(CQc) ∃(x′, y′) ∈ ri(dom(A)) ∩ ri(X × Rk) : B(x′, y′) ∈ ri(C × K),

equivalent to

(CQc) ∃x′ ∈ ri(X) :

{
g(x′) ∈ − ri(C),
F (x′) ∈ ri(dom(f)) − ri(K).

The strong duality statement follows accompanied by the necessary and sufficient
optimality conditions.

Theorem 4.2 (strong duality) Consider the constraint qualification (CQc) fulfilled.
Then there is strong duality between the problem (Pc) and its dual (Dc), i.e. v(Pc) =
v(Dc) and the latter has an optimal solution if v(Pc) > −∞.

Proof. According to Theorem 2.2, the fulfilment of (CQc) is sufficient to guarantee
that v(P ′

c) = v(Dc) and, if v(P ′
c) > −∞, the existence of an optimal solution to

the dual problem. Applying now Proposition 4.1 it follows v(Pc) = v(Dc) and (Dc)
must have an optimal solution if v(Pc) > −∞. �

Theorem 4.3 (optimality conditions)
(a) If the constraint qualification (CQc) is fulfilled and the primal problem (Pc) has
an optimal solution x̄, then the dual problem has an optimal solution (ū, ᾱ, β̄) and
the following optimality conditions are satisfied

(i) f∗(β̄) + f(F (x̄)) = β̄T F (x̄),

(ii)
(
β̄T F

)∗
X

(ū) + β̄T F (x̄) = ūT x̄,

(iii)
(
ᾱT g

)∗
X

(−ū) + ᾱT g(x̄) = −ūT x̄,

(iv) ᾱT g(x̄) = 0.

(b) If x̄ is a feasible point to the primal problem (Pc) and (ū, ᾱ, β̄) is feasible
to the dual problem (Dc) fulfilling the optimality conditions (i)− (iv), then there is
strong duality between (Pc) and (Dc) and the mentioned feasible points turn out to
be optimal solutions of the corresponding problems.

Proof. The previous theorem yields the existence of an optimal solution (ū, ᾱ, β̄)
to the dual problem. Strong duality is also attained, i.e.

f(F (x̄)) = −f∗(β̄) −
(
β̄T F

)∗
X

(ū) −
(
ᾱT g

)∗
X

(−ū),

which is equivalent to

f(F (x̄)) + f∗(β̄) +
(
β̄T F

)∗
X

(ū) +
(
ᾱT g

)∗
X

(−ū) = 0.

The Fenchel - Young inequality asserts for the functions involved in the latter equal-
ity

f(F (x̄)) + f∗(β̄) ≥ β̄T F (x̄), (4. 1)

β̄T F (x̄) +
(
β̄T F

)∗
X

(ū) ≥ ūT x̄ (4. 2)

and
ᾱT g(x̄) +

(
ᾱT g

)∗
X

(−ū) ≥ −ūT x̄. (4. 3)
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The last four relations lead to

0 ≥ β̄T F (x̄) + ūT x̄ − β̄T F (x̄) − ūT x̄ − ᾱT g(x̄) = −ᾱT g(x̄) ≥ 0,

as ᾱ ∈ C∗ and g(x̄) ∈ −C. Therefore the inequalities above must be fulfilled as
equalities. The last one implies the optimality condition (iv), while (i) arises from
(4. 1), (ii) from (4. 2) and (iii) from (4. 3).

The reverse assertion follows immediately, even without the fulfilment of (CQc)
and of any convexity assumption we made concerning the involved functions and
sets. �

Remark 4.1 One can notice that the results in this section remain valid if the
initial assumption on K to be a non - empty convex closed cone is relaxed by taking
it only a convex cone in Rk that contains 0Rk .

4.1.2 Conjugate of the precomposition with a K - increasing
convex function

This subsection is dedicated to an interesting and important application of the
duality assertions presented in the previous one. We calculate the conjugate function
of a postcomposition of a function that is K - convex on X with a K - increasing
convex function, for K a non - empty closed convex cone, and we obtain the same
formula as in some other works dealing with the same subject, [27, 44, 45, 60]. But
let us mention that we obtain this formula under weaker conditions than known
so far or deducible from the ones given in more general contexts (for instance in
the books [44], where the authors also work in finite-dimensional spaces, the two
functions are required to be moreover lower semicontinuous).

We find it useful to give here first the duality assertions regarding the uncon-
strained problem having as objective function the postcomposition of a K - increas-
ing convex function to a function which is K - convex on X, where K is a non -
empty closed convex cone and X a non - empty convex subset of Rn, problem treated
within different conditions in [20]. We maintain the notations from the preceding
subsection and the initial feasibility assumption becomes F (X)∩ dom(f) 6= ∅. The
primal unconstrained optimization problem is

(Pu) inf
x∈X

f(F (x)).

It may be obtained from (Pc) by taking g the zero function and C = {0}m. So
its Fenchel - Lagrange dual problem becomes

(Du) sup
α∈C∗,β∈K∗,

u∈R
n

{
− f∗(β) −

(
βT F

)∗
X

(u) −
(
αT 0

)∗
X

(−u)
}

,

equivalent, as α ∈ C∗ is no longer necessary, to

(Du) sup
β∈K∗,
u∈R

n

{
− f∗(β) −

(
βT F

)∗
X

(u) − sup
x∈X

−uT x

}
.

It is easy to see that (the supremum is attained for u = 0)

sup
u∈Rn

{
−
(
βT F

)∗
X

(u) − sup
x∈X

−uT x

}
= −

(
βT F

)∗
X

(0).

Thus the dual problem becomes
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(Du) sup
β∈K∗

{
− f∗(β) −

(
βT F

)∗
X

(0)
}

,

while the constraint qualification that is sufficient to guarantee strong duality be-
tween this dual and the primal problem (Pu) is

(CQu) ∃x′ ∈ ri(X) : F (x′) ∈ ri(dom(f)) − ri(K).

The weak and strong duality statement follow, directly from the general case.

Theorem 4.4 v(Du) ≤ v(Pu).

Theorem 4.5 (strong duality) Consider the constraint qualification (CQu) ful-
filled. Then there is strong duality between the problem (Pu) and its dual (Du)
and the latter has an optimal solution if v(Pu) > −∞.

We actually want to determine the formula of the conjugate function (f ◦ F )∗X
as a function of f∗ and F ∗

X . We have for some p ∈ Rn

(f ◦ F )∗X(p) = sup
x∈X

{
pT x − f(F (x))

}
= − inf

x∈X

{
f(F (x)) − pT x

}
.

We are interested in writing the minimization problem above in the form of
(Pu). Consider the functions

A : Rk × Rn → R, A(y, z) = f(y) − pT z

and
B : X → Rk × Rn, B(x) = (F (x), x).

After a standard verification A turns out to be convex and (K×{0}n) - increas-
ing, while B is (K × {0}n) - convex on X. It is not difficult to notice that

inf
x∈X

{
f(F (x)) − pT x

}
= inf

x∈X
A(B(x)).

According to Theorem 4.5, the values of these infima coincide with the optimal
value of the Fenchel - Lagrange dual problem to the minimization problem in the
right - hand side,

(Pa) inf
x∈X

A(B(x)),

when the constraint qualification (CQu) is fulfilled for B and the corresponding sets.
Let us formulate its dual problem and the constraint qualification needed here. The
first one arises from (Du), being

(Da) sup
β∈K∗,
γ∈R

n

{
− A∗(β, γ) −

(
(β, γ)T B

)∗
X

(0)
}

,

while the constraint qualification is

(CQa) ∃x′ ∈ ri(X) : B(x′) ∈ ri(dom(f) × Rn) − ri(K × {0}n),

simplifiable to

(CQa) ∃x′ ∈ ri(X) : F (x′) ∈ ri(dom(f)) − ri(K),

or equivalently,
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(CQa) 0 ∈ F (ri(X)) − ri(dom(f)) + ri(K).

By Lemma 2.1, (CQa) is actually

(CQa) ri(F (X) + K) ∩ ri(dom(f)) 6= ∅.

To determine a formulation of the dual problem that contains only the conjugates
of f and F regarding X, we have to determine the following conjugate functions

A∗(β, γ) = sup
y∈R

k,
z∈R

n

{
βT y + γT z − A(y, z)

}

= sup
y∈R

k,
z∈R

n

{
βT y + γT z − f(y) + pT z

}

= sup
y∈Rk

{
βT y − f(y)

}
+ sup

z∈Rn

{
γT z + pT z

}

= f∗(β) +

{
0, if γ = −p,
+∞, otherwise,

and (
(β, γ)T B

)∗
X

(0) = sup
x∈X

{
0 − βT F (x) − γT x

}
=
(
βT F

)∗
X

(−γ).

As the plus infinite value is not relevant for A∗ in (Da) which is a maximization
problem where this function appears with a leading minus in front of, we take fur-
ther γ = −p and the dual problem becomes

(Da) sup
β∈K∗

{
− f∗(β) −

(
βT F

)∗
X

(p)
}

.

When the constraint qualification is satisfied, i.e. ri(F (X)+K)∩ri(dom(f)) 6= ∅,
there is strong duality between (Pa) and (Da), so we have

(f ◦ F )∗X(p) = − inf
x∈X

[
f(F (x)) − pT x

]
= − sup

β∈K∗

{
− f∗(β) −

(
βT F

)∗
X

(p)
}

= inf
β∈K∗

[
f∗(β) +

(
βT F

)∗
X

(p)
]

= min
β∈K∗

[
f∗(β) +

(
βT F

)∗
X

(p)
]
.

Hence we have proven the following statement.

Theorem 4.6 (the conjugate of the composition) Let K be a non - empty closed
convex cone in Rk and X a non - empty convex subset of Rn. Take f : Rk → R to
be a proper K - increasing convex function and F : X → Rk a function K - convex
on X such that F (X) ∩ dom(f) 6= ∅. Then the fulfillment of (CQa) yields

(f ◦ F )∗X(p) = min
β∈K∗

[
f∗(β) +

(
βT F

)∗
X

(p)
]
∀p ∈ Rn. (4. 4)

Unlike [44] no lower semicontinuity assumption regarding f or F is necessary for
the validity of formula (4. 4). Let us prove now that the condition (CQa) is weaker
than the one required in the work cited above, which is in our case

F (X) ∩ int(dom(f)) 6= ∅. (4. 5)

Assuming (4. 5) true let z′ belong to the both sets involved there. It follows that
z′ ∈ F (X)+K and int(dom(f)) 6= ∅, so ri(dom(f)) = int(dom(f)) which is an open
set. On the other hand F (X) + K is a convex set, so it has a non - empty relative
interior. Take z′′ ∈ ri(F (X) + K).
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According to Theorem 6.1 in [72], for any λ ∈ (0, 1] one has (1 − λ)z ′ + λz′′ ∈
ri
(
F (X) + K

)
. As z′ ∈ int(dom(f)) which is an open set, there is a λ̄ ∈ (0, 1] such

that z̄ = (1 − λ̄)z′ + λ̄z′′ ∈ int(dom(f)) = ri(dom(f)). Therefore

z̄ ∈ ri
(
F (X) + K

)
∩ ri(dom(f)),

i.e. (CQa) is fulfilled.
An example where our condition (CQa) is applicable, while (4. 5) fails follows.

Example 4.1 Take k = 2, X = R, K = {0} × R+, F : R → R2, defined by
F (x) = (0, x) ∀x ∈ R and f : R2 → R, given for any pair (x, y) ∈ R2 by

f(x, y) =

{
y, if x = 0,
+∞, otherwise.

It is easy to verify that F is K - convex, f is proper convex and K - increasing and
K∗ = R×R+. We also have F (X) = {0} ×R, dom(f) = {0} ×R, int(dom(f)) = ∅
and ri(dom(f)) = {0}×R. The feasibility condition F (X)∩dom(f) 6= ∅ is satisfied,
being in this case {0} × R 6= ∅. Let us notice also that since X = R the conjugates
regarding X are actually the usual conjugate functions.

As (f ◦ F )(x) = f(0, x) = x ∀x ∈ R, it follows

(f ◦ F )∗(p) =

{
0, if p = 1,
+∞, otherwise.

We also have, for all (a, b) ∈ R × R+ and all p ∈ R,

f∗(a, b) =

{
0, if b = 1,
+∞, otherwise,

and
(
(a, b)F

)∗
(p) =

{
0, if b = p,
+∞, otherwise,

which yields

min
(a,b)∈R×R+

[
f∗(a, b) +

(
(a, b)F

)∗
(p)
]

=

{
0, if p = 1,
+∞, otherwise.

Therefore the formula (4. 4) is valid. Let us see what happens to (CQa) and (4. 5).
Taking into consideration the things above, (CQa) means {0}×R 6= ∅, while (4. 5)
is {0} × R ∩ ∅ 6= ∅. It is clear that the latter is false, while our new condition is
satisfied. Therefore (CQa) is indeed weaker than (4. 5).

The formula of the conjugate of the postcomposition with an increasing convex
function becomes for an appropriate choice of the functions and for K = [0,+∞)
similar to the result given by Hiriart - Urruty and Lemaréchal in Theorem
X.2.5.1 in [44]. As shown above, there is no need to impose lower semicontinuity
on the functions involved and a so strong constraint qualification as there.

We conclude this section with a concrete problem where the results given in this
section find a good application.

Example 4.2 (see also [45]) Let F : X → R be a function concave on X with
strictly positive values, where X is a non - empty convex subset of Rn. We want to
determine the value of the conjugate function of 1/F at some p ∈ Rn. According
to the preceding results, we write

(
1/F

)∗
X

(p) as an unconstrained composed convex
problem by taking K = (−∞, 0], which is a non - empty closed convex cone and
f : R → R with f(y) = 1/y for y ∈ (0,+∞) and +∞ otherwise. It is interesting to
notice that the concave on X function F is actually K - convex on X for this K
while f is K - increasing. Now let us see when the constrained qualification (CQa)
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specialized for this problem is valid. It is in this case

(CQe) ri
(
F (X) + (−∞, 0]

)
∩ (0,+∞) 6= ∅,

which is nothing but

(CQe)
(
F (ri(X)) + (−∞, 0)

)
∩ (0,+∞) 6= ∅,

which is always fulfilled since F has only strictly positive values.
So the formula (4. 4) obtained before can be applied without any additional

assumption. We have

(
1

F

)∗

X

(p) = inf
β≤0

[
f∗(β) + (βF )∗X(p)

]
.

As f is known, we can calculate its conjugate function at some β ≤ 0, which is
actually

f∗(β) = sup
y>0

{
βy − 1

y

}
=

{
−2

√−β, if β < 0,
0, if β = 0.

Meanwhile, for (βF )∗X we have

(βF )∗X(p) =

{
−β(−F )∗X

(
1

−β p
)
, if β < 0,

δ∗X(p), if β = 0,

We conclude after changing the sign of β that the formula of the conjugate of 1/F
is (

1

F

)∗

X

(p) = min

{
inf
β>0

[
β(−F )∗X

(
1

β
p

)
− 2
√

β

]
, σX(p)

}
.

When the value of the conjugate is finite either it is equal to σX(p) or there is a
β̄ > 0 for which the infimum in the right - hand side is attained. The value of the
infimum gives in this latter case actually the formula of the conjugate.

4.1.3 Duality via a more general scalarization in multiobjec-
tive optimization

Multiobjective optimization is a modern and fruitful research field with many prac-
tical applications, concerning especially economy but also various algorithms, loca-
tion and transports, even medicine. One of the methods one can use to deal with
a vector - minimization problem is via duality, and this is realized mostly by at-
taching a scalarized problem to the initial one. Using the scalarized problem and
its dual a multiobjective dual problem to the primal vector problem is constructed
and the duality assertions follow. Different scalarization methods were proposed in
the literature, using linear functions, norms or various other constructions. In the
following we introduce a Fenchel - Lagrange duality for multiobjective programming
problems in a more general framework, using the scalarization with a strongly K
- increasing function. This type of scalarization has already been used in the lit-
erature by Gerstewitz and Iwanow (cf. [38]), Göpfert and Gerth (cf. [40]),
Jahn (cf. [46,47]) and Miglierina and Molho (cf. [64]), among others, but with-
out connecting it to conjugate duality. As many of the other scalarizations used
in the literature use strongly increasing functions, too, they can be rediscovered
as special cases in the framework we describe here. This happens for the linear
scalarization, maximum scalarization, norm scalarization and other scalarizations
involving special strongly K - increasing functions.
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4.1.3.1 Duality for the multiobjective problem

Let the convex multiobjective optimization problem

(Pv) v-min
x∈X,

g(x)∈−C

F (x),

where F = (F1, . . . , Fk)T , g, X, K and C are considered like in the beginning of
the subsection. Like before, A denotes the feasible set of the problem (Pv). By a
solution to (Pv) one can understand different notions, we rely in this part of the
present thesis to the following ones.

Definition 4.1 (cf. [38]) An element x̄ ∈ A is called efficient with respect to (Pv)
if from F (x) − F (x̄) ∈ −K for x ∈ A follows F (x) = F (x̄).

Let us denote by S an arbitrary set of K - strongly increasing convex functions
s : Rk → R.

Definition 4.2 (see also [38]) An element x̄ ∈ A is called properly efficient with
respect to (Pv) when there is some s ∈ S fulfilling s(F (x̄)) ≤ s(F (x)) ∀x ∈ A.

In order to deal with (Pv) via duality we introduce the following family of scalar-
ized problems

(Ps) inf
x∈A

s(F (x)),

where s ∈ S. For any s ∈ S, from the previous sections (see (Dc)) we know that
the Fenchel-Lagrange dual problem to (Ps) is

(Ds) sup
α∈C∗,β∈K∗,

u∈R
n

{
− s∗(β) − (βT F )∗X(u) − (αT g)∗X(−u)

}
.

Using this, we introduce the following multiobjective dual problem to (Pv)

(Dv) v-max
(z,s,α,β,u)∈B

z,

where

B =
{

(z, s, α, β, u) ∈ Rk × S × C∗ × K∗ × Rn :

s(z) ≤ −s∗(β) −
(
βT F

)∗
X

(u) −
(
αT g

)∗
X

(−u)
}

.

Theorem 4.7 (weak duality) There is no x ∈ A and no (z, s, α, β, u) ∈ B such that
F (x) − z ∈ −K and F (x) 6= z.

Proof. Assume that there are some x ∈ A and (z, s, α, β, u) ∈ B contradicting the
assumption. As s is K - strongly increasing it follows

s(F (x)) < s(z).

On the other hand,

s(z) ≤ −s∗(β) − (βT F )∗X(u) − (αT g)∗X(−u),

so we get
s(F (x)) < −s∗(β) − (βT F )∗X(u) − (αT g)∗X(−u).

This last relation contradicts the weak duality theorem for (Ps) and (Ds), therefore
the supposition we made is false and weak duality holds. �
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Definition 4.3 An element (z̄, s̄, ᾱ, β̄, ū) ∈ B is called efficient with respect to (Dv)
if from z̄ − z ∈ −K for (z, s, α, β, u) ∈ B follows z = z̄.

The constraint qualification that guarantees strong duality between (Pv) and its
dual (Dv) comes immediately from (CQc), being

(CQv) ∃x′ ∈ ri(X) : g(x′) ∈ − ri(C).

Theorem 4.8 (strong duality) Assume (CQv) fulfilled and let x̄ ∈ A be a properly
efficient solution to (Pv). Then the dual problem (Dv) has an efficient solution
(z̄, s̄, ᾱ, β̄, ū) such that F (x̄) = z̄.

Proof. According to Definition 4.2 there is an s̄ ∈ S such that s̄(F (x̄)) ≤ s̄(F (x))
∀x ∈ A. It is obvious that x̄ is also an optimal solution to the scalarized problem
(Ps̄), therefore v(Ps̄) > −∞. As (CQv) is assumed valid there is strong duality
between (Ps̄) and (Ds̄) because of Theorem 4.2 (notice that as s̄ has only finite
values (CQc) reduces to (CQv)). Therefore (Ds̄) has an optimal solution, say
(ᾱ, β̄, ū) ∈ C∗ × K∗ × Rn. We have

s̄(F (x̄)) = −s̄∗(β̄) − (β̄T F )∗X(ū) −
(
ᾱT g

)∗
X

(−ū).

Let also z̄ = F (x̄) ∈ Rk. It is obvious that (z̄, s̄, ᾱ, β̄, ū) ∈ B and so we have found a
feasible point to the dual problem. It remains to prove that (z̄, s̄, ᾱ, β̄, ū) is efficient
with respect to (Dv). Supposing that there is some (z′, s′, α′, β′, u′) ∈ B such that
z̄ − z′ ∈ −K and z̄ 6= z′, it follows that F (x̄) − z′ ∈ −K and F (x̄) 6= z′, which
contradicts Theorem 4.7. �

Theorem 4.9 (optimality conditions)
(a) If the constraint qualification (CQv) is fulfilled and the primal problem (Pv) has
a properly efficient solution x̄, then the dual problem (Dv) has an efficient solution
(z̄, s̄, ᾱ, β̄, ū) and the following optimality conditions are satisfied

(i) F (x̄) = z̄,

(ii) s∗(β̄) + s(F (x̄)) = β̄T F (x̄),

(iii)
(
β̄T F

)∗
X

(ū) + β̄T F (x̄) = ūT x̄,

(iv)
(
ᾱT g

)∗
X

(−ū) + ᾱT g(x̄) = −ūT x̄,

(v) ᾱT g(x̄) = 0.

(b) If x̄ is a feasible point to the primal problem (Pv) and (z̄, s̄, ᾱ, β̄, ū) is feasible
to the dual problem (Dv) fulfilling the optimality conditions (i) − (v), then x̄ is a
properly efficient solution to (Pv) and (z̄, s̄, ᾱ, β̄, ū) is efficient to the dual problem
(Dv).

Remark 4.2 The optimality conditions regarding (Pv) and (Dv) follow immedi-
ately from the ones concerning the problems (Ps) and (Ds) and Theorem 4.8. The
result in Theorem 4.9(b) is valid even without assuming (CQv) fulfilled.

Next we show how the duality statements given above can be applied for other
scalarizations in the literature. We have chosen three of them to be included here,
namely the linear scalarization, the maximum scalarization and the norm scalariza-
tion.
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4.1.3.2 Special case 1: linear scalarization

The most usual scalarization in vector optimization is the one with strongly increas-
ing linear functionals, called linear scalarization or weighted scalarization. From the
large amount of papers dealing with this kind of scalarization we mention here the
works of Boţ and Wanka [18, 19, 89–91, 93], as they worked with Fenchel - La-
grange duality, too.

Take K = Rk
+. For some fixed λ = (λ1, . . . , λK)T ∈ int(Rk

+), the scalarized
primal problem is

(Pλ) inf
x∈A

[
k∑

j=1

λjFj(x)

]
.

The linear scalarization is a special case of the general framework we presented
as the objective function in (Pλ) can be written as sλ(F (x)), for sλ(y) = λT y and
it is clear that sλ is Rk

+ - strongly increasing and convex for any λ ∈ int(Rk
+). In

this case let S = Sl, the latter being defined as follows

Sl =
{

sλ : Rk → R : sλ(y) = λT y, λ ∈ int(Rk
+)
}

.

The following definition of the proper efficient elements to (Pv) is available in
this case (cf. [18, 19,89–91,93], among others).

Definition 4.4 An element x̄ ∈ A is called (l) properly efficient with respect to

(Pv) when there is λ ∈ int(Rk
+) fulfilling

∑k
j=1 λjFj(x̄) ≤∑k

j=1 λjF (x) ∀x ∈ A.

Let us write now the dual problem to (Pv) that arises by using the scalariza-
tion function s ∈ Sl. One can easily notice that the dual variable sλ ∈ Sl that
fulfills sλ(y) = λT y ∀y ∈ Rk, where λ ∈ int(Rk

+), can be replaced by the variable
λ ∈ int(Rk

+). Moreover, as s∗λ(u∗) = 0 if u∗ = λ and s∗λ(u∗) = +∞ otherwise, the
variable β ∈ K∗ from (Dv) is no longer necessary since the inequality in the feasible
set of the dual problem is not fulfilled unless β = λ. Therefore the dual problem
obtained in this case to (Pv) is

(Dl) v-max
(z,λ,α,u)∈Bl

z,

where

Bl =

{
(z, λ, α, u) ∈ Rk × int(Rk

+) × C∗ × Rn : z = (z1, . . . , zk)T ,

λ = (λ1, . . . , λk)T ,

k∑

j=1

λjzj ≤ −
k∑

j=1

(λT F )∗X(u) − (αT g)∗X(−u)

}
.

By Theorem 16.4 in [72] we have for λ and u taken like in Bl

(λT F )∗X(u) = min

{
(λjFj)

∗
X(pj) :

k∑

j=1

pj = u

}

and, as λj > 0, j = 1, . . . , k, this becomes

(λT F )∗X(u) = min

{
λjFj

∗
X

( 1

λj
pj

)
:

k∑

j=1

pj = u

}
.
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Denoting yj = (1/λj)pj for j = 1, . . . , k, and y = (y1, . . . , yk), the latter dual prob-
lem turns into

(D′
l) v-max

(z,λ,α,y)∈B′
l

z,

with

B′
l =

{
(z, λ, α, y) ∈ Rk × int(Rk

+) × C∗ × (Rn × . . . Rn) : y = (y1, . . . , yk), z =

(z1, . . . , zk)T ,

k∑

j=1

λjzj ≤ −
k∑

j=1

λj(Fj)
∗
X(yj) − (αT g)∗X

(
−

k∑

j=1

λjyj

)}
,

which is exactly the dual problem obtained by Boţ and Wanka in [18] and [19].

Theorem 4.10 (weak duality) There is no x ∈ A and no (z, λ, α, y) ∈ B′
l such that

F (x) 5 z and F (x) 6= z.

Theorem 4.11 (strong duality) Assume (CQv) fulfilled and let x̄ ∈ A be an (l)
properly efficient solution to (Pv). Then the dual problem (D′

l) has an efficient
solution (z̄, λ̄, ᾱ, ȳ) such that F (x̄) = z̄.

4.1.3.3 Special case 2: maximum scalarization

Another scalarization met especially in the applications of vector optimization is the
so - called Tchebyshev scalarization or maximum scalarization, where the scalarized
problem’s objective function consists in the maximal entry of the vector - function
at each point. Among the papers dealing with this kind of scalarization we cite
here Mbunga’s [63], mentioning also [35]. The weighted Tchebyshev scalarization
in [47, 65, 87] is closely related to the scalarization we treat here, but as the cal-
culations work like in the case we treat we present the simpler situation. Take
K = int(Rk

+) ∪ {0}. In this case the scalarized primal problem is

(Pmax) inf
x∈A

max
j=1,...,k

Fj(x).

The maximum scalarization is a special case of the general framework we pre-
sented as the objective function in (Pmax) is K - strongly increasing and convex
(see also Remark 4.1). The set S is in this case

Sm =
{

s : Rk → R, s(x) =
k

max
j=1

xj , x = (x1, . . . , xk)T ∈ Rk
}

.

The following definition of the proper efficient elements to (Pv) is available in
this case.

Definition 4.5 An element x̄ ∈ A is called (m) properly efficient with respect to
(Pv) when maxk

j=1 Fj(x̄) ≤ maxk
j=1 Fj(x) ∀x ∈ A.

Let us write now the dual problem to (Pv) when the scalarization function
s ∈ Sm. First, the variable s ∈ Sm disappears, as s = maxk

j=1. We also have

K∗ = Rk
+ and s∗(y∗) = 0 if y∗ = (y∗

1 , . . . , y∗
k)T ∈ Rk

+ and
∑k

j=1 y∗
j = 1 and

s∗(y∗) = +∞ otherwise. Therefore the dual problem obtained in this case to (Pv)
is

(Dm) v-max
(z,α,β,u)∈Bm

z,



74 CHAPTER 4. EXTENSIONS TO OTHER CLASSES OF PROBLEMS

where

Bm =

{
(z, α, β, u) ∈ Rk × C∗ × Rk

+ × Rn : z = (z1, . . . , zk)T , β = (β1, . . . , βk)T

k∑

j=1

βj = 1,
k

max
j=1

{zj} ≤ −(βT F )∗X(u) − (αT g)∗X(−u)

}
.

Theorem 4.12 (weak duality) There is no x ∈ A and no (z, α, β, u) ∈ Bm such
that z − F (x) ∈ int(Rk

+).

Theorem 4.13 (strong duality) Assume (CQv) fulfilled and let x̄ ∈ A be an (m)
properly efficient solution to (Pv). Then the dual problem (Dm) has an efficient
solution (z̄, ᾱ, β̄, ū) such that F (x̄) = z̄.

4.1.3.4 Special case 3: norm scalarization

Other scalarizations used in the literature deal with monotonically increasing norms
and scalarization functions generated by norms. Works due to Kaliszewski (cf.
[54]), Khánh (cf. [58]), Rubinov and Gasimov (cf. [73]), Schandl, Klamroth

and Wiecek (cf. [74]), Tammer (cf. [84]), Tammer and Göpfert (cf. [85]) and
others contain multiobjective optimization problems scalarized by techniques in-
volving norms. The scalarization functions in these papers are strongly increasing
on different cones and one can apply the results we gave for the general scalar-
ized problem (Ps) in a similar way to the scalarized problem we treat here. In the
following we attach to (Pv) a scalarized problem obtained with the scalarization
function used by Tammer and Winkler in [86] and by Winkler in [96] (see also
Weidner’s papers [94,95]). In order to proceed we need to introduce some special
classes of norms, about which more is available in [74] and some references therein.
Take the cone K such that K = int(K) ∪ {0}.

Definition 4.6 A subset A ⊆ Rk is called polyhedral if it can be expressed as the
intersection of a finite collection of closed half-spaces.

Definition 4.7 A norm γ : Rk → R is called block norm if its unit ball Bγ is
polyhedral.

Definition 4.8 A norm γ : Rk → R is called absolute if for any ȳ ∈ Rk one has
γ(y) = γ(ȳ) for all y ∈

{
z = (z1, . . . , zk)T ∈ Rk : |zj | = |ȳj | ∀j = 1, . . . , k

}
.

Definition 4.9 A block norm γ : Rk → R is called oblique if it is absolute and
satisfies, for all y ∈ Rk

+ ∩ bd(Bγ),

(
y − Rk

+

)
∩ Rk

+ ∩ bd(Bγ) = {y}.

According to [74] and [86] (see Definition 4.7), for an absolute norm γ on Rk

there are some w ∈ N, ai ∈ Rk and ηi ∈ R, i = 1, . . . , w, such that the unit ball
generated by γ is

Bγ =
{

y ∈ Rk : aT
i y ≤ ηi, i = 1, . . . , w

}
.

We need also the following sets

Iγ =
{

i ∈ {1, . . . , w} :
{

y ∈ Rk : aT
i y = ηi

}
∩ Bγ ∩ int(Rk

+) 6= ∅
}

and
Eγ =

{
y ∈ Rk : aT

i y ≤ ηi ∀i ∈ Iγ

}
.
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Theorem 4.14 (cf. [86]) The function ζγ,l,v : Rk → R, defined by

ζγ,l,v(y) = inf
{
τ ∈ R : y ∈ τ l + Eγ + v

}
,

where γ is an absolute norm on Rk, l ∈ int(Rk
+) and v ∈ Rk, is convex and K -

strongly increasing when bd(Eγ) − (K\{0}) ∈ int(Eγ).

Corollary 4.1 (cf. [86]) When γ is an absolute block norm and K = int(Rk
+)∪{0}

then ζγ,l,v is K - strongly increasing for any l ∈ int(Rk
+) and v ∈ Rk.

Corollary 4.2 (cf. [86]) When γ is an oblique norm and K = Rk
+ then ζγ,l,v is K

- strongly increasing for any l ∈ int(Rk
+) and v ∈ Rk.

Denote by O the set of the absolute norms γ : Rk → R and consider the following
set

Sn =
{

γ ∈ O : bd(Eγ) − int(K) ∈ int(Eγ)
}
× int(Rk

+) × Rk.

The family of scalarized problems attached to (Pv) in this case is

(Pγ,l,v) inf
x∈A

ζγ,l,v(F (x)),

where (γ, l, v) ∈ Sn. According to the definitions above and Theorem 4.14 this fits
into our framework, too, by taking S = Sn. The definition of the proper efficient
elements comes as follows.

Definition 4.10 An element x̄ ∈ A is called (n) properly efficient with respect to
(Pv) when there is an absolute norm γ, some l ∈ int(Rk

+) and v ∈ Rk such that
ζγ,l,v(F (x̄)) ≤ ζγ,l,v(F (x)) ∀x ∈ A.

To obtain the dual problem to (Pv) that arises by using the scalarization just
presented, let us calculate the conjugate of the scalarization functions ζγ,l,v, for
some fixed (γ, l, v) ∈ Sn. We have

ζ∗γ,l,v(y∗) = sup
y∈Rk

{
y∗T y − inf

[
τ ∈ R : y ∈ τ l + Eγ + v

]}

= sup
y∈Rk

{
y∗T y + sup

{
− τ ∈ R : y ∈ τ l + Eγ + v

}}
.

Denoting w = y − τ l − v, one gets

ζ∗γ,l,v(y∗) = sup
τ∈R

{
− τ + sup

w∈Eγ

{
y∗T (w + τ l + v)

}}

= sup
τ∈R

{
− τ + τy∗T l + sup

w∈Eγ

y∗T w

}
+ y∗T v

= sup
τ∈R

{
τ
(
y∗T l − 1

)}
+ σEγ

(y∗) + y∗T v

=

{
σEγ

(y∗) + y∗T v, if y∗T l = 1,
+∞, otherwise.

The dual problem to (Pv) obtained in this case is

(Dn) v-max
(z,γ,l,v,α,β,u)∈Bn

z,

where

Bn =
{

(z, γ, l, v, α, β, u) ∈ Rk × Sn × C∗ × K∗ × Rn : βT l = 1,

ζγ,l,v(z) ≤ −σEγ
(β) + βT v − (βT F )∗X(u) − (αT g)∗X(−u)

}
.
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Theorem 4.15 (weak duality) There is no x ∈ A and no (z, γ, l, v, α, β, u) ∈ Bn

such that z − F (x) ∈ int(K).

Theorem 4.16 (strong duality) Assume (CQv) fulfilled and let x̄ ∈ A be an (n)
properly efficient solution to (Pv). Then the dual problem (Dn) has an efficient
solution (z̄, γ, l̄, v̄, ᾱ, β̄, ū) such that F (x̄) = z̄.

4.2 Problems with convex entropy - like objective
functions

Entropy optimization is a modern and fruitful research area for scientists having var-
ious backgrounds: mathematicians, physicists, engineers, even chemists or linguists.
For comprehensive studies on its history and applications the reader is referred to
the quite recent books [34, 57]. We mention just that the most important entropy
measures are due to Shannon (cf. [83]), Kullback and Leibler (cf. [59]) and,
respectively, Burg (cf. [24]).

Many papers, including two co - written by the author of the present thesis
together with Boţ and Wanka (see [13, 16]), and books among which we have
just mentioned two (see [34,57]) deal with entropy optimization, especially with its
multitude of applications in various fields such as transport and location problems,
pattern and image recognition, text classification, image reconstruction, etc.

The problem we consider here cannot be classified as a pure entropy optimization
problem. It is actually a generalization of the usual entropy optimization problems
and we argue this statement by the special cases we will present in Subsection 4.2.2.
These special cases cover a multitude of problems in entropy optimization, thus our
results provide a good framework to deal with many entropy optimization problems.
To remain connected to the previous results in this thesis let us mention that many
entropy optimization problems were treated so far via posynomial geometric pro-
gramming, as the objective function of the logarithmed dual problem in posynomial
programming (D̃7) is actually an entropy type function. We treat these problems
via conjugate duality, as they occur as special cases of the general entropy - like
problem we deal with.

4.2.1 Duality for problems with entropy - like objective func-
tions

Consider the non - empty convex set X ⊆ Rn, the affine functions fi : Rn → R,
i = 1, . . . , k, the concave functions gi : Rn → R, i = 1, . . . , k, and the functions
hj : X → R, j = 1, . . . ,m, which are convex on X. Assume that for i = 1, . . . , k,
fi(x) ≥ 0 and 0 < gi(x) 6= +∞ when x ∈ X such that h(x) 5 0, where h =
(h1, . . . , hm)T . Denote further f = (f1, . . . , fk)T and g = (g1, . . . , gk)T .

The convex optimization problem we consider throughout this section is

(Pf ) inf
x∈X,

h(x)50

[
k∑

i=1

fi(x) ln

(
fi(x)
gi(x)

)]
.

As usual in entropy optimization we use further the convention 0 ln 0 = 0.
The objective function of problem (Pf ) is a Kullback - Leibler type sum, but

instead of probabilities we have as terms functions. To the best of our knowledge
this kind of objective function has not been considered yet in the literature. There
are some papers dealing with problems having as objective function expressions like∫

f(t) ln(f(t)/g(t))dt, such as [4], but the results described there do not interfere
with ours. Of course the functions involved in the objective function of the problem
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(Pf ) may take some particular shapes and (Pf ) turns into an entropy optimization
problem.

Using a special construction, similar to the one used by Wanka and Boţ in [91],
we obtain another problem that is equivalent to (Pf ), whose dual problem (Df ) is
easier to determine. Let us introduce, for i = 1, . . . , k, the functions Φi : R2 → R,

Φi(si, ti) =

{
si ln

(
si

ti

)
, if si ≥ 0 and ti > 0,

+∞, otherwise,

where s = (s1, . . . , sk)T , t = (t1, . . . , tk)T and the set

E =
{

(x, s, t) ∈ X × Rk
+ × int(Rk

+) : h(x) 5 0, f(x) = s, t 5 g(x)
}

.

Now we consider a new optimization problem

(PΦ) inf
(x,s,t)∈E

[
k∑

i=1

Φi(si, ti)

]
.

For each i = 1, . . . , k, the function Φi is convex, being the extension with posi-
tive infinite values to the whole space of a convex function (see [57]). The convexity
of the set E follows from its definition.

Remark 4.3 The observations above assure the convexity of the problem (PΦ).

Even if the problems (Pf ) and (PΦ) seem related, an accurate connection be-
tween their optimal objective values is required. The following assertion states it.

Proposition 4.2 The problems (Pf ) and (PΦ) are equivalent in the sense that
v(Pf ) = v(PΦ).

Proof. Let us take first an element x ∈ X such that h(x) 5 0. It is obvious that
(x, f(x), g(x)) ∈ E . Further,

k∑

i=1

fi(x) ln

(
fi(x)

gi(x)

)
=

k∑

i=1

Φi(fi(x), gi(x)) ≥ v(PΦ).

As x is chosen arbitrarily in order to fulfill the constraints of the problem (Pf ) we
can conclude for the moment that v(Pf ) ≥ v(PΦ).

Conversely, take a triplet (x, s, t) ∈ E . This means that we have for each
i = 1, . . . , k, fi(x) = si and gi(x) ≥ ti. Further we have for all i = 1, . . . , k,
1/(gi(x)) ≤ 1/ti, followed by (fi(x))/(gi(x)) ≤ si/ti. Consequently, because ln
is a monotonically increasing function, it holds ln((fi(x))/(gi(x))) ≤ ln(si/ti),
i = 1, . . . , k. Multiplying the terms in both sides by the corresponding fi(x) = si,
i = 1, . . . , k, and assembling the resulting relations it follows

k∑

i=1

Φi(si, ti) ≥
k∑

i=1

fi(x) ln

(
fi(x)

gi(x)

)
≥ v(Pf ).

As the element (x, s, t) has been taken arbitrarily in E , it yields v(PΦ) ≥ v(Pf ).
Therefore, v(Pf ) = v(PΦ). �

Further we determine the Lagrange dual problem to (PΦ), that is also a dual to
the problem (Pf ). It has the following raw formulation, where qf , qg and qh are
the Lagrange multipliers,
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(DΦ) sup
qf∈R

k,

qg∈R
k
+,

qh∈R
m
+

inf
x∈X,

s∈R
k
+,

t∈int(Rk
+)

[
k∑

i=1

si ln
(

si

ti

)
+(qh)T h(x)+(qf )T (f(x)−s)+(qg)T (t−g(x))

]
.

Taking a closer look to the infimum that appears above one may notice that it
is separable into a sum of infima in the following way

inf
x∈X,

s∈R
k
+,

t∈int(Rk
+)

[
k∑

i=1

si ln
(si

ti

)
+ (qh)T h(x) + (qf )T (f(x) − s) + (qg)T (t − g(x))

]

= inf
x∈X

[
(qh)T h(x) + (qf )T f(x) − (qg)T g(x)

]

+

k∑

i=1

inf
si≥0,
ti>0

[
si ln

(si

ti

)
− qf

i si + qg
i ti

]
,

where qg =
(
qg
1 , . . . , qg

k

)T
and qf =

(
qf
1 , . . . , qf

k

)T
. We can calculate the infima

regarding si ≥ 0 and ti > 0 for all i = 1, . . . , k,

inf
si≥0,
ti>0

[
si ln

(si

ti

)
− qf

i si + qg
i ti

]
= inf

si≥0

[
si ln si − qf

i si + inf
ti>0

[
qg
i ti − si ln ti

]]
.

In order to resolve the inner infimum, consider the function ϕ : (0,+∞) → R,
ϕ(t) = αt−β ln t, where α > 0 and β ≥ 0. Its minimum is attained at t = β/α > 0,
being ϕ(β/α) = β − β ln β + β ln α. Applying this result to the infima concerning
ti in the expressions above for i = 1, . . . , k, there follows

inf
ti>0

[
qg
i ti − si ln ti

]
=





si − si ln si + si ln qg
i , if qg

i > 0,
0, if qg

i = 0 and si = 0,
−∞, if qg

i = 0 and si > 0.

Further we have to calculate for each i = 1, . . . , k the infimum above with respect
to si ≥ 0 after replacing the infimum concerning ti with its value. In case qg

i > 0
we have

inf
si≥0

[
si ln si − qf

i si + si − si ln si + si ln qg
i

]
= inf

si≥0

[
si(1 − qf

i + ln qg
i )
]

=

{
0, if 1 − qf

i + ln qg
i ≥ 0,

−∞, otherwise.

When qg
i = 0 the infimum concerning si is equal to −∞.

One may conclude for each i = 1, . . . , k, the following

inf
si≥0,
ti>0

[
si ln

(si

ti

)
−qf

i si+qg
i ti

]
=

{
0, if 1 − qf

i + ln qg
i ≥ 0 and qg

i > 0,
−∞, otherwise.

(4. 6)

The negative infinite values are not relevant to the dual problem we work on since
after determining the inner infima one has to calculate the supremum of the ob-
tained values, so we must consider further the cases where the infima with respect
to si ≥ 0 and ti > 0 are 0, i.e. the following constraints have to be fulfilled
1 − qf

i + ln qg
i ≥ 0 and qg

i > 0, i = 1, . . . , k. The former additional constraints

are equivalent to qg
i ≥ eqf

i −1 ∀i = 1, . . . , k. Let us write now the final form of the

dual problem to (PΦ), after noticing that as eqf
i −1 > 0 the constraints qg ∈ Rk

+ and
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qg
i > 0, i = 1, . . . , k, become redundant and may be ignored,

(Df ) sup
qf∈R

k,qh∈R
m
+ ,

qg
i ≥eq

f
i
−1,i=1,...,k

inf
x∈X

[
(qh)T h(x) + (qf )T f(x) − (qg)T g(x)

]
.

Although (Df ) has been obtained via Lagrange duality from (PΦ) we refer to it
further as the dual problem to (Pf ) since (Pf ) and (PΦ) are equivalent. We could go
even further, to the Fenchel - Lagrange dual problem to (Pf ), but, as the Lagrange
dual is suitable for our purposes we will use it for the moment. Then, in the special
cases, the conjugates of the functions involved will appear.

Next we present the duality assertions regarding (Pf ) and (Df ). Weak duality
always holds, but we cannot say the same about strong duality. Alongside the initial
convexity assumptions for X and hi, i = 1, . . . ,m, the concavity of gi, i = 1, . . . , k,
and the affinity of the functions fi, i = 1, . . . , k, an additional constraint qualifica-
tion is sufficient in order to achieve strong duality. The one we use here comes from
(CQo), being

(CQf ) ∃x′ ∈ ri(X) :





f(x′) > 0,
hj(x

′) ≤ 0, if j ∈ Lf ,
hj(x

′) < 0, if j ∈ {1, . . . ,m}\Lf ,

where we have divided the set {1, . . . ,m} into two disjunctive sets as before, Lf con-
taining the indices of the functions hj that are restrictions to X of affine functions,
j ∈ {1, . . . ,m}.

The strong duality statement arises naturally.

Theorem 4.17 (strong duality) If the constraint qualification (CQf ) is fulfilled
then there is strong duality between problems (Pf ) and (Df ), i.e. (Df ) has an
optimal solution and v(Pf ) = v(PΦ) = v(Df ).

Proof. Since Φi(si, ti) ≥ 0 ∀(x, s, t) ∈ E ∀i ∈ {1, . . . , k} (the most important
properties of the Kullback - Leibler entropy measure are presented and proved
in [57]) it follows

v(PΦ) ≥ 0.

The constraint qualification (CQf ) being fulfilled, there is a triplet (x′, s′, t′) ∈
ri(X) × int(Rk

+) × int(Rk
+) such that





hj(x
′) ≤ 0, if j ∈ Lf ,

hj(x
′) < 0, if j ∈ {1, . . . ,m}\Lf ,

f(x′) = s′,
t′i < gi(x

′), for i = 1, . . . , k.

For instance take s′ = f(x′) and t′ = (1/2)g(x′).
The results above allow us to apply Theorem 5.7 in [32], so strong duality be-

tween (PΦ) and (Df ) is certain, i.e. (Df ) has an optimal solution and v(PΦ) =
v(Df ). Proposition 4.2 yields v(Pf ) = v(Df ). �

Another step forward is to present some necessary and sufficient optimality
conditions regarding the pair of dual problems we treat.

Theorem 4.18 (optimality conditions)
(a) Let the constraint qualification (CQf ) be fulfilled and assume that the primal
problem (Pf ) has an optimal solution x̄. Then the dual problem (Df ) has an optimal
solution, too, let it be (q̄f , q̄g, q̄h), and the following optimality conditions are true,
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(i) fi(x̄) ln
(

fi(x̄)
gi(x̄)

)
= q̄f

i fi(x̄) − q̄g
i gi(x̄), i = 1, . . . , k,

(ii) inf
x∈X

[
(q̄h)T h(x) + (q̄f )T f(x) − (q̄g)T g(x)

]
= (q̄f )T f(x̄) − (q̄g)T g(x̄),

(iii) q̄h
j hj(x̄) = 0, j = 1, . . . ,m.

(b) If x̄ is a feasible point to (Pf ) and (q̄f , q̄g, q̄h) is feasible to (Df ) fulfilling
the optimality conditions (i) − (iii), then there is strong duality between (Pf ) and
(Df ). Moreover, x̄ is an optimal solution to the primal problem and (q̄f , q̄g, q̄h) an
optimal solution to the dual.

Proof. (a) Under weaker assumptions than here Theorem 4.17 yields strong duality
between (Pf ) and (Df ). Therefore the existence of an optimal solution (q̄f , q̄g, q̄h)
to the dual problem is guaranteed. Moreover, v(Pf ) = v(Df ) and because (Pf ) has
an optimal solution its optimal objective value is attained at x̄ and we have

k∑

i=1

fi(x̄) ln

(
fi(x̄)

gi(x̄)

)
= inf

x∈X

[
(q̄h)T h(x) + (q̄f )T f(x) − (q̄g)T g(x)

]
. (4. 7)

Earlier we have proven the validity of (4. 6). Using it we can determine the conju-

gate function of Φi, i = 1, . . . , k, at
(
q̄f
i ,−q̄g

i

)
as follows

Φ∗
i (q̄

f
i ,−q̄g

i ) = sup
(si,ti)∈R2

{
(q̄f

i ,−q̄g
i )T (si, ti) − Φi(si, ti)

}

=

k∑

i=1

sup
si≥0,
ti>0

{
q̄f
i si − q̄g

i ti − si ln
(si

ti

)}

= −
k∑

i=1

inf
si≥0,
ti>0

[
si ln

(si

ti

)
− q̄f

i si + q̄g
i ti

]

=

{
0, if 1 − q̄f

i + ln q̄g
i ≥ 0 and q̄g

i > 0,
+∞, otherwise.

As q̄f and q̄g are feasible to (DF ) we have Φ∗
i

(
q̄f
i ,−q̄g

i

)
= 0 ∀i = 1, . . . , k. Let

us apply the Fenchel - Young inequality for Φi(fi(x̄), gi(x̄)) and Φ∗
i

(
q̄f
i ,−q̄g

i

)
, when

i = 1, . . . , k. We have

Φi(fi(x̄), gi(x̄)) + Φ∗
i

(
q̄f
i ,−q̄g

i

)
≥ q̄f

i fi(x̄) − q̄g
i gi(x̄), i = 1, . . . , k.

Summing these relations up one gets

k∑

i=1

fi(x̄) ln

(
fi(x̄)

gi(x̄)

)
≥ (q̄f )T f(x̄) − (q̄g)T g(x̄). (4. 8)

On the other hand it is obvious that

inf
x∈X

[
(q̄h)T h(x) + (q̄f )T f(x) − (q̄g)T g(x)

]
≤ (q̄h)T h(x̄) + (q̄f )T f(x̄) − (q̄g)T g(x̄).

(4. 9)
Relations (4. 7) - (4. 9) yield

0 =

k∑

i=1

fi(x̄) ln

(
fi(x̄)

gi(x̄)

)
− inf

x∈X

[
(q̄h)T h(x) + (q̄f )T f(x) − (q̄g)T g(x)

]

≥ (q̄f )T f(x̄) − (q̄g)T g(x̄) −
[
(q̄h)T h(x̄) + (q̄f )T f(x̄) − (q̄g)T g(x̄)

]

= −(q̄h)T h(x̄) ≥ 0.
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The last inequality holds due to the fact that x̄ is feasible to (Pf ) and q̄h to (Df ).
Thus, of course all of these inequalities must be fulfilled as equalities. Therefore we
immediately have (iii) and

k∑
i=1

[
fi(x̄) ln

(
fi(x̄)

gi(x̄)

)
−
(
(q̄f

i )T fi(x̄) − (q̄g
i )T gi(x̄)

)]
+
[
(q̄h)T h(x̄) + (q̄f )T f(x̄)

−(q̄g)T g(x̄)
]
− inf

x∈X

[
(q̄h)T h(x) + (q̄f )T f(x) − (q̄g)T g(x)

]
= 0.

This yields the fulfillment of the above Fenchel - Young inequality for Φi and
Φ∗

i as equality when i = 1, . . . , k, that is nothing but (i). With (iii) then also (ii)
is clear.

(b) The conclusion arises obviously following the proof above backwards. �

Remark 4.4 It is a natural question wonder what happens when the functions fi,
i = 1, . . . , k, are taken not affine, but convex? In this situation the method we used
to derive a dual problem to (Pf ) would have been utilizable only if the additional
constraints fi(x) ≥ gi(x) ∀x ∈ X such that h(x) = 0, i = 1, . . . , k, were posed. We
considered also treating the so - modified problem, but applications to it appear
too seldom. For instance the three special cases we treated could not be trapped
into such a form without particularizing them more.

4.2.2 Classical entropy optimization problems as particular
cases

This subsection is dedicated to some interesting special cases of the problem (Pf ).
The first of them is the convex - constrained minimum cross - entropy problem, then
follows a norm - constrained maximum entropy problem and as a third special case
we present a so - called linearly constrained Burg entropy optimization problem.

For a definite choice of the functions f , g and h and taking X = Rn
+ we obtain

the entropy optimization problem with a Kullback - Leibler measure (cf. [59]) as
objective function and convex constraint functions treated in [34]. From (Df ) we
derive a dual problem to this particular one that turns out to be exactly the dual
problem obtained via geometric programming in the original paper. When the
convex constraint functions hj , j = 1, . . . ,m, have some more particular properties,
i.e. they are linear or quadratic, the dual problems turn into some more specific
formulae. As a second special case we took a problem treated by Noll in [67]. After
a suitable choice of particular formulae for f , g, h and X we obtain the maximum
entropy optimization problem the author used in the applications described in [67],
whose objective function is the Shannon entropy (cf. [83]) of a probability - like
vector. The dual problem obtained using Lagrange duality there arises also when
we derive a dual to this problem using (Df ). A third special case considered here is
when the mentioned functions are chosen such that the objective function becomes
the so - called Burg entropy (cf. [24]) minimization problem with linear constraints
in [26]. The fact that the dual problems we obtain in the first two special cases
are actually the ones determined in the original papers shows that the problem we
treated is a generalization of the classical entropy optimization problems. For all
the special cases we present the strong duality assertion and necessary and sufficient
optimality conditions, derived from the general case.

4.2.2.1 The Kullback-Leibler entropy as objective function

The book [34] is a must for anyone interested in entropy optimization. Among
many other interesting statements and applications, the authors consider the cross
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- entropy minimization problem with convex constraint functions

(PKL) inf
x∈R

n
+,

nP
i=1

xi=1,

lj(Ajx)+bT
j x+cj≤0,

j=1,...,r

[
n∑

i=1

xi ln
(

xi

qi

)]
,

where Aj are kj × n matrices with full row-rank, bj ∈ Rn, j = 1, . . . , r, c =
(c1, . . . , cr)

T ∈ Rr, lj : Rkj → R, j = 1, . . . , r, are convex functions and there is
also the probability distribution q = (q1, . . . , qn)T ∈ int(Rn

+), with
∑n

i=1 qi = 1.
We omit the additional assumptions of differentiability and co - finiteness for the
functions lj , j = 1, . . . , r, from the mentioned paper.

After dealing with the problem (PKL) we particularize its constraints like in [34],
first to become linear, then to obtain a quadratically - constrained cross - entropy
optimization problem.

The problem (PKL) is a special case of our problem (Pf ) when the elements
involved are taken as follows





X = Rn
+, k = n,m = r + 2,

fi(x) = xi ∀x = (x1, . . . , xn)T ∈ Rn, i = 1, . . . , n,
gi(x) = qi ∀x = (x1, . . . , xn)T ∈ Rn, i = 1, . . . , n,
hj(x) = lj(Ajx) + bT

j x + cj ∀x ∈ Rn
+, j = 1, . . . ,m − 2,

hm−1(x) =
n∑

i=1

xi − 1 ∀x = (x1, . . . , xn)T ∈ Rn
+,

hm(x) = 1 −
n∑

i=1

xi ∀x = (x1, . . . , xn)T ∈ Rn
+.

We want to determine the dual problem to (PKL) which is to be obtained from
(Df ) by replacing the terms involved with the above-mentioned expressions. For
x ∈ Rn, respectively x = (x1, . . . , xn)T ∈ Rn

+ for h, one has

(qf )T f(x) = (qf )T x, (qg)T g(x) = (qg)T q,

(q̃h)T h(x) =
r∑

j=1

qh
j

(
lj(Ajx) + bT

j x + cj

)
+ qh

m−1

(
n∑

i=1

xi − 1

)
+ qh

m

(
1 −

n∑
i=1

xi

)
,

where q̃h =
(
qh
1 , . . . , qh

r , qh
m−1, q

h
m

)T
. Denoting w = qh

m−1 − qh
m and qh =

(
qh
1 , . . .,

qh
k

)
, the dual problem to (PKL) is

(DKL) sup
qh

j ≥0,j=1,...,r,

w∈R,qf
i ∈R,

qg
i ≥eq

f
i
−1,i=1,...,n

inf
x∈R

n
+

[
(qf )T x − (qg)T q +

r∑
j=1

qh
j lj(Ajx)

+

(
r∑

j=1

qh
j bj

)T

x + (qh)T c + w

(
n∑

i=1

xi − 1

)]
.

We can rearrange the terms and the dual problem becomes

(DKL) sup
qh

j ≥0,j=1,...,r,

w∈R,qf
i ∈R,

qg
i ≥eq

f
i
−1,i=1,...,n

{
inf

x∈R
n
+

[
n∑

i=1

xi

(
qf
i +

(
r∑

j=1

qh
j bj

)

i

+ w

)
+

r∑
j=1

qh
j lj(Ajx)

]

+(qh)T c − w − (qg)T q

}
,
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where
(∑r

j=1 qh
j bj

)
i
, i = 1, . . . , n, is the i-th entry of the vector

∑r
j=1 qh

j bj .

For qf ∈ Rn, qh ∈ Rr
+ and w ∈ R fixed, let us calculate the infimum over x ∈ Rn

+

in the dual problem above. In order to do this we introduce the linear operators
Ãj : Rn → Rkj defined by Ãj(x) = Ajx, j = 1, . . . ,m. These infima become

inf
x∈R

n
+

[
n∑

i=1

xi

(
qf
i +

(
r∑

j=1

qh
j bj

)

i

+ w

)
+

r∑

j=1

((
qh
j lj
)
◦ Ãj

)
(x)

]
. (4. 10)

By Proposition 5.7 in [32] the expression in (4. 10) is equal to

sup
γ∈R

n
+

{
inf

x∈Rn

[
n∑

i=1

xi

(
qf
i +

(
r∑

j=1

qh
j bj

)

i

+w−γi

)
+

r∑

j=1

((
qh
j lj
)
◦Ãj

)
(x)

]}
, (4. 11)

further equivalent to

sup
γ∈R

n
+

{
− sup

x∈Rn

{
n∑

i=1

xi

(
γi − qf

i −
(

r∑

j=1

qh
j bj

)

i

− w

)
−

r∑

j=1

((
qh
j lj
)
◦ Ãj

)
(x)

}}
.

The inner supremum may be written as a conjugate function, so the term above
becomes

sup
γ∈R

n
+

{
−
(

r∑

j=1

((
qh
j lj
)
◦ Ãj

))∗

(γ − u)

}
,

where we have denoted by u = (u1, . . . , un)T the vector with the entries ui =

qf
i +

(∑r
j=1 qh

j bj

)
i
+ w, i = 1, . . . , n. Theorem 16.4 in [72] yields

(
r∑

j=1

((
qh
j lj
)
◦ Ãj

))∗

(γ − u) = inf
aj∈R

n,j=1,...,r,
rP

j=1

aj=γ−u

[
r∑

j=1

((
qh
j lj
)
◦ Ãj

)∗
(aj)

]
. (4. 12)

The relation (4. 10) is now equivalent to

sup
γ∈R

n
+




− inf

aj∈R
n,j=1,...,r,

rP
j=1

aj=γ−u




r∑

j=1

((
qh
j lj
)
◦ Ãj

)∗
(aj)








and furthermore to

sup
aj∈R

n,j=1,...,r,

γ∈R
n
+,

rP
j=1

aj=γ−u

{
−

r∑

j=1

((
qh
j lj
)
◦ Ãj

)∗
(aj)

}
.

As for any j = 1, . . . , r, the image set of the operator Ãj is included into Rkj that
is the domain of the function qh

j lj defined by
(
qh
j lj
)
(x) = qh

j lj(x), we may apply
Theorem 16.3 in [72] and the last expression becomes equivalent to

sup
aj∈R

n,j=1,...,r,

γ∈R
n
+,

rP
j=1

aj=γ−u




−

r∑

j=1

inf
λj∈R

kj ,

Ã∗
j λj=aj

[(
qh
j lj
)∗

(λj)
]




. (4. 13)
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Turning the inner infima into suprema and drawing all the variables under the
leading supremum (4. 13) is equivalent, after applying the definition of the adjoint
of a linear operator, to

sup
γ∈R

n
+,aj∈R

n,λj∈R
kj ,j=1,...,r,

rP
j=1

aj=γ−u,AT
j λj=aj

{
−

r∑

j=1

(
qh
j lj
)∗

(λj)

}
.

One may remark that the variables γ and aj , j = 1, . . . , r, are no longer necessary,
so the expression is further simplifiable to

sup
λj∈R

kj ,j=1,...,r,
rP

j=1
AT

j λj+u∈R
n
+

{
−

r∑

j=1

(
qh
j lj
)∗

(λj)

}
.

Let us resume the calculations concerning the dual problem using the partial results
obtained above. The dual problem to (PKL) becomes

(DKL) sup

qf
i ∈R,qg

i ≥eq
f
i
−1,i=1,...,n,

w∈R,qh
j ≥0,λj∈R

kj ,j=1,...,r,

qf
i +

(
rP

j=1

qh
j bj

)
i

+w+

(
rP

j=1

AT
j λj

)
i

≥0,

i=1,...,n

{
(qh)T c − w − (qg)T q −

r∑
j=1

(
qh
j lj
)∗

(λj)

}
,

rewritable as

(DKL) sup
qf∈R

n,w∈R,qh∈R
r
+,λj∈R

kj ,j=1,...,r,

qf
i +

(
rP

j=1

qh
j bj

)
i

+w+

(
rP

j=1

AT
j λj

)
i

≥0,

i=1,...,n

{
(qh)T c − w −

r∑
j=1

(
qh
j lj
)∗

(λj)

+

n∑

i=1

sup

qg
i ≥eq

f
i
−1

−qg
i qi

}
.

It is obvious that sup
{
− qg

i qi : qg
i ≥ eqf

i −1
}

= −qie
qf

i −1, i = 1, . . . , n, so the

dual problem turns into

(DKL) sup
w∈R,qh

j ≥0,λj∈R
kj ,j=1,...,r,qf

i ∈R,

qf
i +

(
rP

j=1

qh
j bj

)
i

+w+

(
rP

j=1

AT
j λj

)
i

≥0,

i=1,...,n

{
(qh)T c−w−

r∑
j=1

(
qh
j lj
)∗

(λj)−
n∑

i=1

qie
qf

i −1

}

The suprema after qf
i , i = 1, . . . , n, are easily computable since the constraints

are linear inequalities and the objective functions are monotonically decreasing, i.e.

sup

{
−eqf

i −1 : qf
i +

(
r∑

j=1

(
qh
j bj+AT

j λj

)
)

i

+w ≥ 0

}
= −e

−w−

(
rP

j=1

(
qh

j bj+AT
j λj

))
i

−1

.

Back to the dual problem, it becomes
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(DKL) sup
w∈R,qh

j ≥0,

λj∈R
kj ,

j=1,...,r

{
(qh)T c−

r∑
j=1

(
qh
j lj
)∗

(λj)−w−
n∑

i=1

qie
−w−

(
rP

j=1

(
qh

j bj+AT
j λj

))
i

−1
}

,

which is already a Fenchel - Lagrange type dual problem.
The next variable we want to renounce is w. In order to do this let us con-

sider the function η : R → R, η(w) = −w − Be−w−1, B > 0. Its derivative is
η′(w) = Be−w−1 − 1, w ∈ R, a monotonically decreasing function that takes the
value zero at w = ln B − 1. So η attains its maximal value at w = ln B − 1, that
is η(ln B − 1) = − ln B. Applying these considerations to our dual problem for

B =
∑n

i=1 qie
−

(
Pr

j=1

(
qh

j bj+AT
j λj

))
i we get rid of the variable w ∈ R and the sim-

plified version of the dual problem is

(DKL) sup
qh

j ≥0,λj∈R
kj ,

j=1,...,r

{
(qh)T c−

r∑
j=1

(
qh
j lj
)∗

(λj)− ln

(
n∑

i=1

qie
−

(
rP

j=1

(
qh

j bj+AT
j λj

))
i

)}
,

that turns out, after redenoting the variables, to be the dual problem obtained
in [34] via geometric duality. This is not surprising taking into consideration the
results given in the previous chapter.

As weak duality between (PKL) and (DKL) is certain, we focus on the strong
duality. In order to achieve it we particularize the constraint qualification (CQf )
as follows

(CQKL) ∃x′ ∈ Rn
+ :





x′ = (x′
1, . . . , x

′
n),

n∑
i=1

x′
i = 1,

x′
i > 0, i = 1, . . . , n,

lj(Ajx
′) + bT

j x′ + cj ≤ 0, if j ∈ LKL,
lj(Ajx

′) + bT
j x′ + cj < 0, if j ∈ {1, . . . , r}\LKL,

where the set LKL is defined analogously to Lgc, i.e.

LKL =
{
j ∈ {1, . . . , r} : lj is an affine function

}
.

We are ready now to enunciate the strong duality assertion.

Theorem 4.19 (strong duality) If the constraint qualification (CQKL) is fulfilled,
then there is strong duality between problems (PKL) and (DKL), i.e. (DKL) has an
optimal solution and v(PKL) = v(DKL).

Proof. It is known (see [34]) that the objective function of (PKL) takes only non -
negative values, thus v(PKL) is finite. From the general case we have strong duality
between (PKL) and the first formulation of the dual problem in this section. The
equality v(PKL) = v(DKL) has been preserved after all the steps we performed in
order to simplify the formulation of the dual, but there could be a problem regarding
the existence of the solution to the dual problem. Fortunately, the results applied
to obtain (4. 11) - (4. 13) mention also the existence of a solution to the resulting
problems, respectively, so this property is preserved up to the final formulation of
the dual problem. �

Furthermore we give also some necessary and sufficient optimality conditions in the
following statement. They were obtained in the same way as in Theorem 4.18, so
we have decided to omit the proof.



86 CHAPTER 4. EXTENSIONS TO OTHER CLASSES OF PROBLEMS

Theorem 4.20 (optimality conditions)
(a) Let the constraint qualification (CQKL) be fulfilled and assume that the primal
problem (PKL) has an optimal solution x̄. Then the dual problem (DKL) has an
optimal solution

(
q̄h, λ̄1, . . . , λ̄r

)
and the following optimality conditions hold

(i)
n∑

i=1

x̄i ln
(

x̄i

qi

)
+ ln

(
n∑

i=1

qie
−
( rP

j=1

(
q̄h

j bj+AT
j λ̄j

))
i

)
= −

( r∑
j=1

(
q̄h
j bj + AT

j λ̄j

))T

x̄,

(ii)
(
q̄h
j lj
)∗

(λ̄j) +
(
q̄h
j lj
)(

Aj x̄
)

= λ̄T
j Aj x̄, j = 1, . . . , r,

(iii) q̄h
j

(
lj(Aj x̄

)
+ bT

j x̄ + cj

)
= 0, j = 1, . . . , r.

(b) If x̄ is a feasible point to (PKL) and
(
q̄h, λ̄1, . . . , λ̄r

)
is feasible to (DKL)

fulfilling the optimality conditions (i) − (iii), then there is strong duality between
(PKL) and (DKL). Moreover, x̄ is an optimal solution to the primal problem and(
q̄h, λ̄1, . . . , λ̄r

)
an optimal solution to the dual.

The problem (PKL) may be particularized even more, in order to fit a wide
range of applications. We present further two special cases obtained from (PKL) by
assigning some particular values to the constraint functions, as indicated also in [34].

Special case 1: Kullback-Leibler entropy objective function and linear
constraints

Taking lj(yj) = 0, yj ∈ Rkj , j = 1, . . . , r, we have for the conjugates involved in
the dual problem

(
qh
j lj
)∗

(λj) = sup
yj∈R

kj

{
λT

j yj − 0
}

=

{
0, if λj = 0,
+∞, otherwise,

j = 1, . . . , r.

Performing the necessary substitutions, we get the following pair of dual problems

(PL) inf
x∈R

n
+,

nP
i=1

xi=1,

bT
j x+cj≤0,j=1,...,r

[
n∑

i=1

xi ln
(

xi

qi

)]
,

and

(DL) sup
qh

j ≥0,
j=1,...,r



(qh)T c − ln


 n∑

i=1

qie
−

(
rP

j=1

qh
j bj

)
i





.

In [34] there is treated a similar problem to (PL), but instead of inequality con-
straints Fang, Rajasekera and Tsao use equality constraints. The dual problem
they obtain is also similar to (DL), the only difference consisting of the feasible set,
Rr

+ to (DL), respectively Rr in [34]. Let us mention further that an interesting
application of the optimization problem with Kullback - Leibler entropy objective
function and linear constraints can be found in [39]. In order to achieve strong
duality the sufficient constraint qualification is

(CQL) ∃x′ = (x′
1, . . . , x

′
n) ∈ Rn

+ :





n∑
i=1

x′
i = 1,

x′
i > 0, i = 1, . . . , n,

bT
j x′ + cj ≤ 0, for j = 1, . . . , r.
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Theorem 4.21 (strong duality) If the constraint qualification (CQL) is valid, then
there is strong duality between problems (PL) and (DL), i.e. (DL) has an optimal
solution and v(PL) = v(DL).

As this assertion is a special case of Theorem 4.19 we omit its proof. The
optimality conditions arise also easily from Theorem 4.20.

Theorem 4.22 (optimality conditions)
(a) Assume that the primal problem (PL) has an optimal solution x̄ and that the
constraint qualification (CQL) is fulfilled. Then the dual problem (DL) has an

optimal solution q̄h =
(
qh
1 , . . . , qh

r

)T
and the following optimality conditions hold

(i)
n∑

i=1

x̄i ln
(

x̄i

qi

)
+ ln


 n∑

i=1

qie
−

(
rP

j=1

(
q̄h

j bj

))
i


 = −

(
r∑

j=1

q̄h
j bj

)T

x̄,

(ii) q̄h
j

(
bT
j x̄ + cj

)
= 0, j = 1, . . . , r.

(b) If x̄ is a feasible point to (PL) and q̄h a feasible point to (DL) fulfilling the
optimality conditions (i) and (ii), then there is strong duality between (PL) and
(DL). Moreover, x̄ is an optimal solution to the primal problem and q̄h one to the
dual.

Special case 2: Kullback - Leibler entropy objective function and
quadratic constraints

Take now lj(yj) = 1
2yT

j yj , yj ∈ Rkj , j = 1, . . . , r. We have (cf. [72])

(
qh
j lj
)∗

(λj) =

{
‖λj‖

2

2qh
j

, if qh
j 6= 0,

0, otherwise.

The pair of dual problems is in this case consists of (cf. [12])

(PQ) inf
x∈R

n
+,

nP
i=1

xi=1,

1
2 xT AT

j Ajx+bT
j x+cj≤0,

j=1,...,r

[
n∑

i=1

xi ln
(

xi

qi

)]

and

(DQ) sup
qh

j >0,λj∈R
kj ,

j=1,...,r



(qh)T c − ln

(
n∑

i=1

qie
−

(
rP

j=1

(
qh

j bj+AT
j λj

))
i

)
− 1

2

r∑
j=1

‖λj‖
2

qh
j



,

like in [34]. The following constraint qualification is sufficient in order to assure
strong duality

(CQQ) ∃x′ ∈ Rn
+ :





x′ = (x′
1, . . . , x

′
n),

n∑
i=1

x′
i = 1,

x′
i > 0, i = 1, . . . , n,

1
2x′T AT

j Ajx
′ + bT

j x′ + cj < 0, for j = 1, . . . , r.

Theorem 4.23 (strong duality) If the constraint qualification (CQQ) is fulfilled,
then there is strong duality between problems (PQ) and (DQ), i.e. (DQ) has an
optimal solution and v(PQ) = v(DQ).
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Furthermore, we give without proof also some necessary and sufficient optimality
conditions in the following statement.

Theorem 4.24 (optimality conditions)
(a) Let the constraint qualification (CQQ) be fulfilled and assume that the primal
problem (PQ) has an optimal solution x̄. Then the dual problem (DQ) has an optimal
solution

(
q̄h, λ̄1, . . . , λ̄r

)
and the following optimality conditions hold

(i)
n∑

i=1

x̄i ln
(

x̄i

qi

)
+ln

(
n∑

i=1

qie
−

(
rP

j=1

(
q̄h

j bj+AT
j λ̄j

))
i

)
= −

(
r∑

j=1

(
q̄h
j bj +AT

j λ̄j

))T

x̄,

(ii) 1
2 q̄h

j x̄T AT
j Aj x̄ +

‖λ̄j‖
2

2q̄h
j

= λ̄T
j Aj x̄, j = 1, . . . , r,

(iii) q̄h
j

(
x̄T AT

j Aj x̄ + bT
j x̄ + cj

)
= 0, j = 1, . . . , r.

(b) If x̄ is a feasible point to (PQ) and
(
q̄h, λ̄1, . . . , λ̄r

)
is feasible to (DQ) ful-

filling the optimality conditions (i) − (iii), then there is strong duality between
(PQ) and (DQ). Moreover, x̄ is an optimal solution to the primal problem, while(
q̄h, λ̄1, . . . , λ̄r

)
turns out to be an optimal solution to the dual.

4.2.2.2 The Shannon entropy as objective function

Noll presents in [67] an interesting application of the maximum entropy optimiza-
tion in image reconstruction considering the following problem

(PS) inf
xij≥0,i=1,...,n,j=1,...,m,
nP

i=1

mP
j=1

xij=T, ‖Ax−y‖≤ε

[
n∑

i=1

m∑
j=1

xij ln xij

]
,

where x ∈ Rn×m with the entries xij , i = 1, . . . , n, j = 1, . . . ,m, A ∈ Rn×n,
y ∈ Rn×m, with the entries yij , i = 1, . . . , n, j = 1, . . . ,m, ε > 0 and T =∑n

i=1

∑m
j=1 yij > 0. The norm is the Euclidean one. It is easy to notice that

the objective function in this problem is the well - known Shannon entropy measure
with variables xij , i = 1, . . . , n, j = 1, . . . ,m, so (PS) is actually equivalent to the
following maximum entropy optimization problem

(P ′
S) − sup

nP
i=1

mP
j=1

xij=T, ‖Ax−y‖≤ε,

xij≥0,i=1,...,n,j=1,...,m

{
−

n∑
i=1

m∑
j=1

xij ln xij

}
.

However, (PS) is viewable as a special case of problem (Pf ) by assigning to the
sets and functions involved there the following values





X = Rn×m
+ , x = (xij)i=1,...,n,

j=1,...,m
∈ Rn×m

+ ,

fij(x) = xij ∀x ∈ Rn×m, i = 1, . . . , n, j = 1, . . . ,m,
gij(x) = 1 ∀x ∈ Rn×m, i = 1, . . . , n, j = 1, . . . ,m,

h1(x) =
n∑

i=1

m∑
j=1

xij − T ∀x ∈ Rn×m
+ ,

h2(x) = T −
n∑

i=1

m∑
j=1

xij ∀x ∈ Rn×m
+ ,

h3(x) = ‖Ax − y‖ − ε ∀x ∈ Rn×m
+ .

Remark 4.5 Some may object that (PS) is not a pure special case of (Pf ) because
the variable x is not an n - dimensional vector as in (Pf ), but a n × m matrix. As
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matrices can be viewed also as vectors, in this case the variable becomes an n × m
- dimensional vector, so we may apply the results obtained for (Pf ) also to (PS).

To obtain the dual problem to (PS) from (Df ) we calculate the following ex-

pressions, where the Lagrange multipliers are now qf = (qf
ij)i=1,...,n,

j=1,...,m
∈ Rn×m,

qg = (qg
ij)i=1,...,n,

j=1,...,m
∈ Rn×m

+ and qh =
(
qh
1 , qh

2 , qh
3

)
∈ R3

+,

n∑
i=1

m∑
j=1

qf
ijfij(x) =

n∑
i=1

m∑
j=1

qf
ijxij ,

n∑
i=1

m∑
j=1

qg
ijgij(x) =

n∑
i=1

m∑
j=1

qg
ij ,

3∑
j=1

qh
j hj(x) =

(
qh
1 − qh

2

)( n∑
i=1

m∑
j=1

xij − T

)
+ qh

3

(
‖Ax − y‖ − ε

)
.

The multipliers qh
1 and qh

2 appear only together, so we may replace both of them,
i.e. their difference, with a new variable w = qh

1 − qh
2 ∈ R. The dual problem to

(PS) becomes

(DS) sup
qf∈R

n×m,

qh
3 ≥0,w∈R,

qg
ij≥e

q
f
ij

−1
,

i=1,...,n,j=1,...,m

inf
x=(xij)ij∈R

n×m
+

[
n∑

i=1

m∑
j=1

qf
ijxij −

n∑
i=1

m∑
j=1

qg
ij

+w

(
n∑

i=1

m∑

j=1

xij − T

)
+ qh

3

(
‖Ax − y‖ − ε

)
]
,

rewritable as

(DS) sup
qf∈R

n×m,qh
3 ≥0,

w∈R,qg
ij≥e

q
f
ij

−1
,

i=1,...,n,j=1,...,m

{
− wT −

n∑
i=1

m∑
j=1

qg
ij − qh

3 ε

+ inf
x∈R

n×m
+

[
n∑

i=1

m∑

j=1

xij

(
qf
ij + w

)
+ qh

3 ‖Ax − y‖
]}

.

We transform now the infimum concerning x ∈ Rn×m
+ as in the previous special

case into a conjugate function, turning the dual into a Fenchel - Lagrange dual
problem. By Theorem 16.3 in [72] it turns out to be equal to

− sup
qf

ij+w+
(
AT B

)
ij
≥0,

i=1,...,n,j=1,...,m,B∈R
n×m

{(
qh
3 ‖ · −y‖

)∗
(B)

}
.

For the conjugate of the norm function we have (cf. [80])

(
qh
3 ‖ · −y‖

)∗
(B) =

{
−yT B, if ‖B‖ ≤ qh

3 ,
−∞, otherwise.

As negative infinite values are not relevant to our problem since there is a leading
supremum to be determined, the dual problem becomes

(DS) sup
qf∈R

n×m,qh
3 ≥0,w∈R,B∈R

n×m,

‖B‖≤qh
3 ,qf

ij+w+
(
AT B

)
ij
≥0,

qg
ij≥e

q
f
ij

−1
,i=1,...,n,j=1,...,m

{
− wT −

n∑
i=1

m∑
j=1

qg
ij − qh

3 ε − yT B

}
,
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equivalent to

(DS) sup
qf∈R

n×m,
w∈R,B∈R

n×m,

qf
ij+w+

(
AT B

)
ij
≥0,

i=1,...,n,j=1,...,m

{
− wT − yT B +

n∑
i=1

m∑
j=1

sup

qg
ij≥e

q
f
ij

−1

−qg
ij + ε sup

qh
3 ≥‖B‖

−qh
3

}
.

The suprema from inside are trivially determinable, so we obtain for the dual
problem the following expression

(DS) sup
qf∈R

n×m,w∈R,B∈R
n×m,

qf
ij+w+

(
AT B

)
ij
≥0,i=1,...,n,j=1,...,m

{
− wT − yT B −

n∑
i=1

m∑
j=1

eqf
ij−1 − ε‖B‖

}
,

further equivalent to

(DS) sup
w∈R,

B∈R
n×m

{
− wT − yT B − ε‖B‖ +

n∑
i=1

m∑
j=1

sup
qf

ij+w+
(
AT B

)
ij
≥0

−eqf
ij−1

}
.

Regarding the inner suprema we have for all i = 1, . . . , n, and j = 1, . . . ,m,

sup
{
− eqf

ij−1 : qf
ij + w +

(
AT B

)
ij
≥ 0
}

= −e−w−(AT B)ij−1,

so the dual problem is simplifiable even to

(DS) sup
w∈R,

B∈R
n×m

{
− wT − yT B − ε‖B‖ − e−w−1

n∑
i=1

m∑
j=1

e−(AT B)ij

}
,

that is exactly the dual problem obtained via Lagrange duality in [67].
Moreover, one may notice that also the variable w ∈ R could be eradicated.

Using the results regarding the maximal value of the function η introduced before,
we have

sup
w∈R

{
− wT − e−w−1

n∑

i=1

m∑

j=1

e−(AT B)ij

}
= T

(
ln T − ln

(
n∑

i=1

m∑

j=1

e−(AT B)ij

))
.

The last version of the dual problem we reach is

(DS) sup
B∈Rn×m

{
T

(
ln T − ln

(
n∑

i=1

m∑
j=1

e−(AT B)ij

))
− yT B − ε‖B‖

}
.

As weak duality is certain, we skip stating it explicitly and focus on the strong
duality. In order to achieve it the following constraint qualification is sufficient

(CQS) ∃x′ = (x′
ij)i=1,...,n,

j=1,...,m
∈ Rn×m :





x′
ij > 0 ∀i = 1, . . . , n ∀j = 1, . . . ,m,
n∑

i=1

m∑
j=1

x′
ij = T,

‖Ax′ − y‖ < ε.

The strong duality assertion comes immediately and the necessary and sufficient
optimality conditions follow thereafter. Even if the original paper does not contain
such statements, we omit the both proofs because they arise simply from the former
proofs in the present thesis.

Theorem 4.25 (strong duality) Assume the constraint qualification (CQS) ful-
filled. Then strong duality between (PS) and (DS) is valid, i.e. (DS) has an optimal
solution and v(PS) = v(DS).
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Theorem 4.26 (optimality conditions)
(a) Assume the constraint qualification (CQS) fulfilled and let x̄ be an optimal
solution to (PS). Then the dual problem (DS) has an optimal solution B̄ and the
following optimality conditions hold

(i)
n∑

i=1

m∑
j=1

x̄ij ln x̄ij + T

(
ln

(
n∑

i=1

m∑
j=1

e−(AT B̄)ij

)
− ln T

)
= (AT B̄)T x̄,

(ii) ‖Ax̄ − y‖ = ε,

(iii) B̄T (Ax̄ − y) = ‖B̄‖‖Ax̄ − y‖.

(b) If x̄ is a feasible point to (PS) and B̄ one to (DS) satisfying the optimality
conditions (i) − (iii), then they are actually optimal solutions to the corresponding
problems that enjoy moreover strong duality.

4.2.2.3 The Burg entropy as objective function

A third widely - used entropy measure is the one introduced by Burg in [24]. Al-
though there are some others in the literature, we confine ourselves to the most
used three, as they have proven to be the most important from the viewpoint of
applications. The Burg entropy problem we have chosen as the third application
comes from Censor and Lent’s paper [26] having Burg entropy as objective func-
tion and linear equality constraints,

(PB) sup
x=(x1,...,xn)T ,
xi>0,i=1,...,n,

Ax=b

{
n∑

i=1

ln xi

}
,

where A ∈ Rm×n and b ∈ Rm.
Some other problems with Burg entropy objective function and linear constraints

that slightly differ from the one we treat are available, for example, in [25] and [56].
None of these papers contain explicitly a dual to the Burg entropy problem they
consider.

The problem (PB) may be equivalently rewritten as a minimization problem as
follows

(P ′
B) − inf

x=(x1,...,xn)T ,
xi>0,i=1,...,n,

Ax=b

[
−

n∑
i=1

ln xi

]
.

Denoting (P ′′
B) the problem (P ′

B) after eluding the leading minus, it may be
trapped as a special case of (Pf ) by taking





X = int(Rn
+), k = n,

fi(x) = 1 ∀x ∈ Rn, i = 1, . . . , n,
gi(x) = xi ∀x ∈ Rn, i = 1, . . . , n,
h1(x) = Ax − b ∀x ∈ int(Rn

+),
h2(x) = b − Ax ∀x ∈ int(Rn

+).

To calculate the dual problem to (P ′′
B) let us replace the values above in (Df ). We

get

(DB) sup
qh
1 ,qh

2 ∈R
m
+ ,qf

i ∈R,

qg
i ≥eq

f
i
−1,i=1,...,n

inf
x>0

[(
qh
1 − qh

2

)T (
Ax − b

)
+

n∑
i=1

(
qf
i − qg

i xi

)]
.



92 CHAPTER 4. EXTENSIONS TO OTHER CLASSES OF PROBLEMS

Again, we introduce a new variable w = qh
1 − qh

2 ∈ Rm to replace the difference
of the two non - negative ones that appear only together. After rearranging the
terms the dual becomes

(DB) sup
w∈R

m,qf
i ∈R,

qg
i ≥eq

f
i
−1,i=1,...,n

{
n∑

i=1

qf
i − wT b +

n∑
i=1

inf
xi>0

[((
wT A

)
i
− qg

i

)
xi

]}
.

For the infima inside we have for i = 1, . . . , n,

inf
xi>0

[((
wT A

)
i
− qg

i

)
xi

]
=

{
0, if

(
wT A

)
i
− qg

i ≥ 0,
−∞, otherwise.

Let us drag these results along the dual problem, that is now

(DB) sup

w∈R
m,qf

i ∈R,qg
i ≥eq

f
i
−1,(

wT A
)

i
−qg

i ≥0,i=1,...,n

{
n∑

i=1

qf
i − wT b

}
,

rewritable as

(DB) sup
w∈R

m,qg
i >0,(

wT A
)

i
−qg

i ≥0,i=1,...,n

{
− wT b +

n∑
i=1

sup
qf

i ≤1+ln qg
i

qf
i

}
.

As the suprema after qf
i , i = 1, . . . , n, are trivially computable we get for the

dual problem the following continuation

(DB) sup
w∈R

m,qg
i >0,(

wT A
)

i
−qg

i ≥0,i=1,...,n

{
− wT b +

n∑
i=1

(
1 + ln qg

i

)
}

.

The variable qg may also be retired, but in this case another constraint appears,
namely wT A > 0. For the sake of simplicity let us perform this step, too. The
following problem is the ultimate dual problem to (P ′′

B)

(DB) sup
w∈R

m,

wT A>0

{
n − wT b +

n∑
i=1

ln
(
wT A

)
i

}
.

Since the constraints of the primal problem (PB) are linear and all the feasible
points x are in int(Rn

+) = ri(Rn
+), no constraint qualification is required in this

case. We can formulate the strong duality and optimality conditions statements
right away. These assertions do not appear in the cited article, but we give them
without proofs since these are similar to the ones already presented in the paper.
There is a difference between the strong duality notion used here and the previous
ones because normally we would present strong duality between (P ′′

B) and (DB).
But since the starting problem is (PB) we modify a bit the statements using the
obvious result v(PB) = −v(P ′′

B).

Theorem 4.27 (strong duality) Provided that the primal problem (PB) has a feasi-
ble point, the dual problem (DB) has an optimal solution where it attains its maximal
value and the sum of the optimal objective values of the two problems is zero, i.e.
v(PB) + v(DB) = 0.
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Theorem 4.28 (optimality conditions)
(a) If the primal problem (PB) has an optimal solution x̄, then the dual problem
(DB) has also an optimal solution w̄ and the following optimality conditions hold

(i) ln x̄i + ln
(
w̄T A

)
i
+ n = w̄T Ax̄,

(ii) w̄T (Ax̄ − b) = 0.

(b) If x̄ is a feasible point to (PB) and w̄ is feasible to (DB) such that the
optimality conditions (i) and (ii) are true, then v(PB)+v(DB) = 0, x̄ is an optimal
solution to (PB) and w̄ an optimal solution to (DB).

4.2.3 An application in text classification

After presenting all these theoretical results, let us give a concrete application of
the entropy optimization in text classification.

Here we rigorously apply the maximum entropy optimization to a text classifi-
cation problem, correcting the errors encountered in some other papers regarding
the subject, whose authors make some compromises in order to obtain some “good-
looking” results (see [6, 66]). We have a set of documents which must be classified
into some given classes. A small amount of them have been a priori labelled by
an expert and we have also some real-valued functions linking all the documents
and the classes, called features functions. Our goal is to obtain a distribution of
probabilities assigning to each document the chances to belong to the given classes.

Therefore, we impose the condition that the expected value of each features
function over the whole set of documents shall be equal to its expected value over
the training sample. Using this information as constraints, we formulate the so -
called maximum entropy optimization problem. Its solutions are consistent with all
the constraints, but otherwise are as uniform as possible (cf. [34, 41,57]).

To our maximum entropy optimization problem we attach the Lagrange dual.
As a consequence of the optimality conditions, we write the solutions of the primal
problem as functions having as variables the solutions of the dual problem. The
last ones are determined using the so - called iterative scaling algorithm developed
from the one introduced by Darroch and Ratcliff (cf. [28, 66]).

Finally, by the use of the solutions of the dual, we find the desired distribution
of probabilities.

4.2.3.1 The formulation of the problem

Let us consider a set of documents D and the set of classes C where they must
be classified into. There is also a given subset of D, denoted D′, whose elements
have been labelled by an expert as to belong to a certain class from C. To have
information about all the classes, we need to consider that each class contains at
least an element from D′. One may notice that between the sets C and D′, it must
hold |C| ≤ |D′|, where |C| is the cardinality of the set C and |D′| is the cardinality
of the set D′. The set of pairs

{
(d′, c(d′)), d′ ∈ D′

}
, obtained above, is called the

training data and c(d′) ∈ C denotes the class which is assigned to d′ by the expert.

The labelled training data set is used to derive a set of constraints for the model
that characterize the class-specific expectations for the distribution. The constraints
are represented as expected values of so - called features functions, which may be
any positive real-valued functions defined over D × C. Let us denote by fi, i ∈ I,
the features functions for the problem of text classification treated here.

As an example, we will present the set of features functions considered in [66]
for the same problem of text classification. Denoting by W the set of the words
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which appear in the whole family of documents D, the set I is defined by

I = W × C.

For each word - class combination (w, c′) ∈ W×C, one can consider the features
function fw,c′ : W × C → R,

fw,c′(d, c) =

{
0, if c 6= c′,
N(d,w)
N(d) , otherwise,

where N(d,w) is the number of times word w occurs in the document d, N(d) is
the number of words in d, and c, c′ are classes in C.

Other ways to consider features functions can be found for instance in [2] and
[53].

In order to build a mathematical model of the problem we need the expected
values of the features functions. For i ∈ I, the expected value of the features function
fi regarding the whole set D × C is

E(fi) =
∑

d∈D

∑

c∈C

p(d, c)fi(d, c),

where p(d, c) denotes the joint probability of c and d, c ∈ C, d ∈ D, while its expected
value regarding the training sample comes from the following formula

Ẽ(fi) =
∑

d′∈D′

∑

c∈C

p(d′, c)fi(d
′, c). (4. 14)

The joint probability can be decomposed as

p(d, c) = p(d)p(c|d),

with p(d) being the probability of the document d to be chosen from the set D and
p(c|d) the conditional probability of the class c ∈ C with respect to the document
d ∈ D. In (4. 14) instead of D we work with the training sample D′.

Using the information given by this training data and the features functions,
we want to obtain the distribution of probabilities of each document d ∈ D among
the given classes. The way we do this is quite heuristical (cf. [2, 53]), consisting
in generalizing some facts that hold for the training sample to the whole set of
documents. The expected value of each features function over all the documents
and classes will be forced to coincide to its expected value over the training sample

Ẽ(fi) = E(fi) ∀i ∈ I. (4. 15)

The probability of the document d′ to be chosen from the training data is

p(d′) =
1

|D′| , for d′ ∈ D′.

On the other hand, as we know that each document from the training data has
been a priori labelled, it is clear that

p(c|d′) =

{
1, if c = c(d′),
0, if c 6= c(d′),

for every c ∈ C and d′ ∈ D′.
By (4. 14), we have then

Ẽ(fi) =
1

|D′|
∑

d′∈D′

fi(d
′, c(d′)), i ∈ I. (4. 16)
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It is clear that the probability to choose the document d from D is p(d) = 1
|D| .

Then one has

E(fi) =
1

|D|
∑

d∈D

∑

c∈C

p(c|d)fi(d, c), i ∈ I. (4. 17)

For each features function fi, i ∈ I, we will constrain now the model to have
the same expected value for it over the whole set of documents as the one obtained
from the training set. From (4. 15), (4. 16) and (4. 17), we obtain

1

|D′|
∑

d′∈D′

fi(d
′, c(d′)) =

1

|D|
∑

d∈D

∑

c∈C

p(c|d)fi(d, c), i ∈ I. (4. 18)

Moreover, from the basic properties of the probability distributions, it holds

p(c|d) ≥ 0 ∀c ∈ C ∀d ∈ D, (4. 19)

and ∑

c∈C

p(c|d) = 1 ∀d ∈ D. (4. 20)

The problem that we have to solve now is to find a probability distribution
which fulfills the constraints (4. 18), (4. 19) and (4. 20). Therefore, we will use
a technique which is based on theory of maximum entropy (cf. [34, 41, 57]). The
over - riding principle in maximum entropy is that when nothing else is known, the
distribution of probabilities should be as uniform as possible.

This is exactly what results by solving the following so - called maximum en-
tropy optimization problem

(Pt) supH(p),

subject to
|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′)) =

∑

d∈D

∑

c∈C

p(c|d)fi(d, c) ∀i ∈ I,

∑

c∈C

p(c|d) = 1 ∀d ∈ D,

and

p(c|d) ≥ 0,∀c ∈ C ∀d ∈ D.

Here, H : R|C|·|D| → R is the entropy function and it is defined, for p =
(p(c|d))c∈C,d∈D, by

H(p) =

{ − ∑
d∈D

∑
c∈C

p(c|d) ln p(c|d), if p(c|d) ≥ 0 ∀c ∈ C ∀d ∈ D,

−∞, otherwise.

It is obvious that H is a concave function.

4.2.3.2 Duality for the maximum entropy optimization problem

The goal of this chapter is to formulate a dual problem to the maximum entropy
optimization problem

(Pt) sup

{
− ∑

d∈D

∑
c∈C

p(c|d) ln p(c|d)

}
,
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subject to

|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′)) =

∑

d∈D

∑

c∈C

p(c|d)fi(d, c) ∀i ∈ I,

∑

c∈C

p(c|d) = 1 ∀d ∈ D,

p(c|d) ≥ 0 ∀c ∈ C ∀d ∈ D,

and to derive, by means of strong duality, the optimality conditions for (Pt) and its
dual. As this is a maximization problem and our approach works for minimization
problems, we need to consider another optimization problem

(P ′
t ) inf

∑
d∈D

∑
c∈C

p(c|d) ln p(c|d),

subject to
|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′)) =

∑

d∈D

∑

c∈C

p(c|d)fi(d, c) ∀i ∈ I,

∑

c∈C

p(c|d) = 1 ∀d ∈ D,

p ∈ X,

with X = {p = (p(c|d))c∈C,
d∈D

: p(c|d) ≥ 0 ∀c ∈ C ∀d ∈ D}. The problem (P ′
t ) fits in

the scheme already presented and has the same optimal solutions as (Pt) so that
it holds v(Pt) = −v(P ′

t ). According to the general case, its Lagrange dual problem is

(D′
t) sup

λi∈R,i∈I,
λd∈R,d∈D

inf
p(c|d)≥0,

(d,c)∈D×C

[
∑

d∈D

∑
c∈C

p(c|d) ln p(c|d) +
∑

d∈D

λd

(∑
c∈C

p(c|d) − 1

)

+
∑

i∈I

λi

(
|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′)) −

∑

d∈D

∑

c∈C

p(c|d)fi(d, c)

)]
.

Like above, we can find another problem, (D′′
t ), which has the same solutions

as (D′
t) so that v(D′

t) = −v(D′′
t ),

(D′′
t ) inf

λi∈R,i∈I,
λd∈R,d∈D

sup
p(c|d)≥0,

(d,c)∈D×C

{
− ∑

d∈D

∑
c∈C

p(c|d) ln p(c|d) − ∑
d∈D

λd

(∑
c∈C

p(c|d) − 1

)

−
∑

i∈I

λi

(
|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′)) −

∑

d∈D

∑

c∈C

p(c|d)fi(d, c)

)}
.

The latter can be rewritten as

(D′′
t ) inf

λi∈R,i∈I,
λd∈R,d∈D

[
∑

d∈D

λd − |D|
|D′|

∑
i∈I

λi

∑
d′∈D′

fi(d
′, c(d′))+

∑

d∈D

∑

c∈C

sup
p(c|d)≥0

{
− p(c|d) ln p(c|d) − λdp(c|d) +

∑

i∈I

λip(c|d)fi(d, c)

}]
.

To calculate the suprema which appear in the above formula, we consider the
function

u : R+ → R, u(x) = −x ln x − λdx + x
∑

i∈I

λifi(d, c), x ∈ R+,
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for some fixed (d, c) ∈ D × C.

Its derivative is

u′(x) = − ln x − 1 − λd +
∑

i∈I

λifi(d, c),

and it holds

u′(x) = 0 ⇔ ln x = −λd − 1 +
∑

i∈I

λifi(d, c) ⇔ x = e
−λd−1+

P
i∈I

λifi(d,c)

> 0.

The function u being concave, it follows that at x = e
−λd−1+

P
i∈I

λifi(d,c)

it attains
its maximal value. So

max
x≥0

u(x) = u

(
e
−λd−1+

P
i∈I

λifi(d,c)
)

= −e
−λd−1+

P
i∈I

λifi(d,c)
(

ln e
−λd−1+

P
i∈I

λifi(d,c)

+ λd −
∑

i∈I

λifi(d, c)

)

= −e
−λd−1+

P
i∈I

λifi(d,c)
(
∑

i∈I

λifi(d, c) − λd − 1 + λd −
∑

i∈I

λifi(d, c)

)

= e
−λd−1+

P
i∈I

λifi(d,c)

.

The dual problem becomes then

(D′′
t ) inf

λi∈R,i∈I,
λd∈R,d∈D

[
∑

d∈D

λd − |D|
|D′|

∑
i∈I

λi

∑
d′∈D′

fi(d
′, c(d′)) +

∑
d∈D

∑
c∈C

e

P
i∈I

λifi(d,c)−λd−1
]
.

In the next part of the section we will make some assertions concerning the du-
ality between (Pt) and (D′′

t ). For this, we will apply the results formulated in the
general case. We need to introduce a constraint qualification

(CQt)∃p′ = (p′(c|d))c∈C,
d∈D

:





p′(c|d) > 0 ∀c ∈ C ∀d ∈ D,
|D|
|D′|

∑
d′∈D′

fi(d
′, c(d′)) =

∑
d∈D

∑
c∈C

p′(c|d)fi(d, c) ∀i ∈ I,
∑
c∈C

p′(c|d) = 1 ∀d ∈ D.

By this, we can state now the desired strong duality theorem and the optimality
conditions for (Pt) and (D′′

t ).

Theorem 4.29 (strong duality) Let (CQt) be fulfilled. Then there is strong duality
between (Pt) and (D′′

t ), i.e. v(Pt) = v(D′′
t ) and (D′′

t ) has an optimal solution.

Theorem 4.30 (optimality conditions) Let us assume that the constraint qualifi-
cation (CQt) is fulfilled. Then p̄ = ((p̄(c|d))c∈C,

d∈D
is a solution to (Pt) if and only if

p̄ is feasible to (Pt) and there exist λ̄i ∈ R, i ∈ I, and λ̄d ∈ R, d ∈ D, such that the
following optimality conditions are satisfied
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(i) inf
p(c|d)≥0,
d∈D,c∈C

[ ∑
d∈D

∑
c∈C

p(c|d) ln p(c|d) +
∑

d∈D

λ̄d

(∑
c∈C

p(c|d) − 1

)

+
∑
i∈I

λ̄i

(
|D|
|D′|

∑
d′∈D′

fi(d
′, c(d′)) − ∑

d∈D

∑
c∈C

p(c|d)fi(d, c)

)]

=
∑

d∈D

∑
c∈C

p̄(c|d) ln p̄(c|d),

(ii) 0 =
∑
i∈I

λ̄i

(
|D|
|D′|

∑
d′∈D′

fi(d
′, c(d′)) − ∑

d∈D

∑
c∈C

p̄(c|d)fi(d, c)

)

+
∑

d∈D

λ̄d

(∑
c∈C

p̄(c|d) − 1

)
.

Remark 4.6 Let us point out that all the functions involved in the formulation of
the primal problem are differentiable. This implies that the equality (i) in Theorem
4.30 can be, equivalently, written as

ln p(c|d) + 1 + λ̄d −
∑

i∈I

λ̄ifi(d, c) = 0 ∀d ∈ D ∀c ∈ C,

or

p(c|d) =
e

P
i∈I

λ̄ifi(d,c)

eλ̄d+1
∀d ∈ D ∀c ∈ C. (4. 21)

Getting now back to the problem (D′′
t ), one may observe that it can be decom-

posed into

(D′′
t ) inf

λi∈R,
i∈I

[
∑

d∈D

inf
λd∈R

[∑
c∈C

e

P
i∈I

λifi(d,c)−λd−1

+ λd

]
− |D|

|D′|

∑
i∈I

λi

∑
d′∈D′

fi(d
′, c(d′))

]
.

We can calculate the infima inside the parentheses, using another auxiliary func-
tion, namely

v : R → R, v(x) = e−x−1a + x, x ∈ R, a > 0.

It is convex and derivable, its derivative

v′(x) = 1 − ae−x−1

fulfilling

v′(x) = 0 ⇔ e−x−1 =
1

a
⇔ x = ln a − 1.

So, v’s minimum is attained at ln a − 1, being

v(ln a − 1) = ln a.

Taking a =
∑

c∈C e
P

i∈I λifi(d,c) > 0, the dual problem turns into

(Dt) inf
λi∈R,
i∈I

[
∑

d∈D

ln
∑
c∈C

e

P
i∈I

λifi(d,c)

− |D|
|D′|

∑
i∈I

λi

∑
d′∈D′

fi(d
′, c(d′))

]
,

and, obviously, we have
v(D′′

t ) = v(Dt).

In fact, we have proven the following assertion concerning the solutions of the
problems (Dt) and (D′′

t ).
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Theorem 4.31 The following equivalence holds

((λ̄d)d∈D, (λ̄i)i∈I) is a solution to (D′′
t ) ⇔





λ̄d = ln
∑
c∈C

e

P
i∈I

λ̄ifi(d,c)

− 1∀d ∈ D
and ((λ̄i)i∈I) is a solution to (Dt).

Remark 4.7 By Remark 4.6 and Theorem 4.31 it follows that, in order to find a
solution of the problem (Pt), it is enough to solve the dual problem (Dt). Getting
(λ̄i)i∈I , solution to (Dt), we obtain, for each d ∈ D,

λ̄d = ln
∑

c∈C

e

P
i∈I

λ̄ifi(d,c)

− 1 (4. 22)

and, by (4. 21),

p(c|d) =
e

P
i∈I

λ̄ifi(d,c)

eλ̄d+1
=

e

P
i∈I

λ̄ifi(d,c)

∑
c∈C

e

P
i∈I

λ̄ifi(d,c)
∀(d, c) ∈ D × C. (4. 23)

4.2.3.3 Solving the dual problem

In the following we outline the derivation of an algorithm for finding a solution of
the dual problem (Dt). The algorithm is called improved iterative scaling and some
other versions of it have been described by different authors in connection with
maximum entropy optimization problems (cf. [6] and [66]).

First, let us introduce the function l : R|I| → R, defined by

l(λ) =
∑

i∈I

λi

(
|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′))

)
−
∑

d∈D

ln
∑

c∈C

e

P
i∈I

λifi(d,c)

,

for λ = (λi)i∈I .
Considering the optimization problem

(Pi) max
λ∈R|I|

l(λ),

it is obvious that v(Dt) = −v(Pi) and the sets of the solutions of the two problems
are nonempty and coincide. So, in order to obtain the desired results, it is enough
to solve (Pi).

Let us calculate now, for λ = (λi)i∈I , δ = (δi)i∈I ∈ R|I|, the expression ∆l =
l(λ + δ) − l(λ). It holds

∆l =
|D|
|D′|

∑

i∈I

∑

d′∈D′

(λi + δi)fi(d
′, c(d′)) −

∑

d∈D

ln
∑

c∈C

e

P
i∈I

(λi+δi)fi(d,c)

− |D|
|D′|

∑

i∈I

∑

d′∈D′

λifi(d
′, c(d′)) +

∑

d∈D

ln
∑

c∈C

e

P
i∈I

λifi(d,c)

=
|D|
|D′|

∑

i∈I

∑

d′∈D′

δifi(d
′, c(d′)) −

∑

d∈D

ln

∑
c∈C

e

P
i∈I

(λi+δi)fi(d,c)

∑
c∈C

e

P
i∈I

λifi(d,c)
.

As it is known that
− ln (x) ≥ 1 − x ∀x ∈ R+,
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we have

∆l ≥ |D|
|D′|

∑

i∈I

∑

d′∈D′

δifi(d
′, c(d′)) +

∑

d∈D


1 −

∑
c∈C

e

P
i∈I

(λi+δi)fi(d,c)

∑
c∈C

e

P
i∈I

λifi(d,c)




=
|D|
|D′|

∑

i∈I

∑

d′∈D′

δifi(d
′, c(d′)) +

∑

d∈D

(
1 −

∑

c∈C

p(c|d)e

P
i∈I

δifi(d,c)
)

.

Denoting

f#(d, c) =
∑

i∈I

fi(d, c),

we get

∆l ≥ |D|
|D′|

∑

i∈I

∑

d′∈D′

δifi(d
′, c(d′)) +

∑

d∈D

(
1 −

∑

c∈C

p(c|d)e
f#(d,c)

P
i∈I

δi
fi(d,c)

f#(d,c)

)
.

As the exponential function is convex, applying Jensen’s inequality

e
f#(d,c)

P
i∈I

δi
fi(d,c)

f#(d,c) ≤
∑

i∈I

fi(d, c)

f#(d, c)
ef#(d,c)δi ,

there follows

∆l ≥ |D|
|D′|

∑

i∈I

∑

d′∈D′

δifi(d
′, c(d′)) −

∑

d∈D

∑

c∈C

p(c|d)
∑

i∈I

fi(d, c)

f#(d, c)
ef#(d,c)δi + |D|.

Let W : R|I| → R, be the following function

W(δ) =
|D|
|D′|

∑

i∈I

∑

d′∈D′

δifi(d
′, c(d′)) −

∑

d∈D

∑

c∈C

p(c|d)
∑

i∈I

fi(d, c)

f#(d, c)
ef#(d,c)δi + |D|,

for δ = (δi)i∈I .
We can guarantee an increase of the value of the function l if we can find a

δ such that W(δ) is positive. W is a concave function since its first term is a
linear function, the second contains a sum of concave functions and the third is a
constant. Moreover, W is a differentiable function. So, to find the best δ, we need
to differentiate W(δ) with respect to the change in each parameter δi, i ∈ I, and to
set

∂W
∂δi

= 0 ∀i ∈ I.

We get

|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′)) =

∑

c∈C

∑

d∈D

p(c|d)fi(d, c)ef#(d,c)δi ∀i ∈ I.

Solving these equations we obtain the values of δi, i ∈ I. In the next section we
present an algorithm which helps to determine the maximum of the function l.

Remark 4.8 We have to mention here that in [6] and [66] the function l has
been identified with the so - called maximum likelihood function, whose formula is
considered

L(λ) = ln
∏

d′∈D′

p(c(d′)|d′).
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This is possible only if one considers the sets D and D′ identical. In this case,
we have

l(λ) =
∑

i∈I

λi

(
|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′))

)
−
∑

d∈D

ln
∑

c∈C

e

P
i∈I

λifi(d,c)

=
∑

d′∈D′

[
∑

i∈I

λifi(d
′, c(d′)) − ln

∑

c∈C

e

P
i∈I

λifi(d
′,c(d′))

]

=
∑

d′∈D′

[
ln e

P
i∈I

λifi(d
′,c(d′))

− ln
∑

c∈C

e

P
i∈I

λifi(d
′,c(d′))

]

=
∑

d′∈D′


ln

e

P
i∈I

λifi(d
′,c(d′))

∑
c∈C

e

P
i∈I

λifi(d′,c(d′))


 .

Finally, using the relations given in (4. 23), the function l turns out to be in
this case identical to the maximum likelihood function

l(λ) =
∑

d′∈D′


ln

e

P
i∈I

λifi(d
′,c(d′))

∑
c∈C

e

P
i∈I

λifi(d′,c(d′))


 =

∑

d′∈D′

ln p(c(d′)|d′) = ln
∏

d′∈D′

p(c(d′)|d′).

We can conclude that the results obtained in [6] and [66] do not refer to the
unclassified documents using the information given by that expert regarding the
training sample, being just distributions of the same a priori labelled documents
among all the classes. We consider that this compromise is not useful in our problem,
as we have proven before that the algorithm works also without it.

4.2.3.4 An algorithm for solving the maximum entropy optimization
problem

Making use of the results obtained in the previous sections we present now an algo-
rithm for solving the dual of the maximum entropy optimization problem. Assuming
that the constraint qualification (CQt) is fulfilled the solutions of the primal prob-
lem arise by calling (4. 23). This is a generalization of the algorithm introduced by
Darroch and Ratcliff in [28].

Inputs: A collection D of documents, a subset of it D′ of labelled documents,
a set of classes C and a set of features functions fi, i ∈ I, connecting the documents
and the classes. Let ε > 0 be the admitted error of the iterative process.

Step 1: Set the constraints. For every features function fi, i ∈ I, estimate its
expected value over the set of the documents and the set of classes.

Step 2: Set the initial values λi = 0, i ∈ I.
Step 3:

• Using the equalities in (4. 23), calculate with the current parameters (λi)i∈I

the values for p(c|d), (d, c) ∈ D × C.

• For each i ∈ I:

· find δi, a solution of the equation

|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′)) =

∑

c∈C

∑

d∈D

p(c|d)fi(d, c)ef#(d,c)δi ,
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· set λi = λi + δi.

Step 4: If there exists an i ∈ I, such that |δi| > ε, then go to Step 3.

Outputs: The approximate solutions to the dual problem λi, i ∈ I.

Remark 4.9

(a) By setting λi = 0 ∀i ∈ I, the initial values for the probability distributions
are

p(c|d) =
1

|C| , c ∈ C, d ∈ D.

(b) In the original algorithm Darroch and Ratcliff assumed in [28] that
f#(d, c) is constant. Denoting its value by M , one gets then

δi =
1

M
ln


 |D|
|D′|

∑
d′∈D′

fi(d
′, c(d′))

∑
c∈C

∑
d∈D

p(c|d)fi(d, c)


 ∀i ∈ I.

(c) A more detailed discussion regarding the iterative scaling algorithm, including
a proof of its convergence, can be found in [3, 28,29,66].

Having obtained λi, i ∈ I, returned by the algorithm, we can determine by
(4. 22) and (4. 23) the solutions of the primal problem, i.e. the probability distri-
butions of each document among the given classes.

To assign each document with a certain class, one can consider more criteria,
such as to choose the class whose probability is the highest, or to establish a minimal
value of probability and to label the documents as belonging to all the classes that
fit, and if neither does, to create an additional class for this document.



Theses

1. The general optimization problem

(P ) inf
x∈X,

g(x)∈−C

f(x),

is considered, where X is a non - empty convex subset of Rn, C is a non -
empty closed convex cone in Rm, f : Rn → R is a proper convex function
and g : X → Rm is a C - convex function on X. The Lagrange, Fenchel and
Fenchel - Lagrange dual problems are attached to (P ) via perturbations. The
latter, extensively used later within this work, is

(DFL) sup
p∗∈R

n,
q∗∈C∗

{
− f∗(p∗) − (q∗T g)∗X(−p∗)

}
,

where q∗T g : X → R is defined as q∗T g(x) =
∑m

j=1 q∗j gj(x), with q∗ =(
q∗1 , . . . , q∗m

)
∈ C∗. Weak and strong duality and necessary and sufficient

optimality conditions are formulated for the pair of problems (P ) − (DFL).
These results naturally generalize the ones known so far for the case C = Rm

+

(see also [9]).

2. Consider the primal optimization problem

(PF ) inf
x∈Rn

[
f(x) + g(x)

]
,

where f, g : Rn → R and its Fenchel dual

(DF ) sup
q∗∈Rm

{
− f∗(q∗) − g∗(−q∗)

}
.

It is proven that strong duality between these problems occurs, provided that
ri(dom(f)) ∩ ri(dom(g)) 6= ∅, also when f and g are almost convex functions,
respectively they are nearly convex functions with the relative interiors of
the epigraphs non - empty. These statements generalize the classical Fenchel
duality theorem (see also [11] and [14]). Other results concerning conjugacy
for almost convex and nearly convex functions are delivered, as well as an
application in game theory.

3. The dual to the generalized primal geometric programming problem is proven
to be obtainable also via perturbations. This approach provides the strong
duality for this pair of problems under more general conditions than consid-
ered so far in the literature. When to the primal geometric programming
problem

103



104 THESES

(Pg) inf
x=(x0,x1,...,xk)∈X0×X1×...×Xk,

gi(xi)≤0,i=1,...,k, x∈N

g0(x0),

where Xi ⊆ Rli , i = 0, . . . , k,
∑k

i=0 li = n, are convex sets, gi : Xi → R,
i = 0, . . . , k, are functions convex on the sets they are defined on and N ⊆ Rn

is a non - empty closed convex cone, one calculates the Fenchel - Lagrange
dual problem, it turns out to coincide with the geometric dual problem

(Dg) sup
q∗

i ≥0,i=1,...,k,

t=(t0,...,tk)∈N∗

{
− g0∗

X0
(t0) −

k∑
i=1

sup
xi∈Xi

[
ti

T
xi − q∗i gi(xi)

]}
.

The strong duality statement offered by the Fenchel - Lagrange duality is more
general than the one stated in geometric programming duality, as the func-
tions and sets involved are not required to be moreover lower semicontinuous,
respectively closed, alongside the convexity assumptions imposed on them,
and the constraint qualification treats more flexible the constraint functions
that are restrictions to some sets of affine functions.

For seven problems treated in the literature via geometric programming du-
ality, including the posynomial geometric problem - the starting point of ge-
ometric programming, the Fenchel - Lagrange dual problems are determined
and strong duality and optimality conditions are delivered, underlining the
advantages of this approach (see also [15]).

4. Consider the primal composite programming problem

(Pc) inf
x∈X,

g(x)∈−C

f(F (x)),

where K and C are non - empty closed convex cones in Rk and Rm, respec-
tively, X is a non - empty convex subset of Rn, f : Rk → R is a K - increasing
convex function, F : X → Rk a function K - convex on X and g : X → Rm

a function C - convex on X. Moreover, it is imposed the feasibility condition
A ∩ F−1(dom(f)) 6= ∅, where A = {x ∈ X : g(x) ∈ −C} is the feasible set of
(Pc) (and also of (P )) and for any set U ⊆ Rk, F−1(U) = {x ∈ X : F (x) ∈ U}.
The Fenchel - Lagrange dual problem to (Pc) is

(Dc) sup
α∈C∗,β∈K∗,

u∈R
n

{
− f∗(β) −

(
βT F

)∗
X

(u) −
(
αT g

)∗
X

(−u)
}

.

Weak and strong duality and optimality conditions are delivered here, too.
Using the unconstrained version of (Pc) the formula of the conjugate of f ◦F
regarding the set X is proven. The constraint qualification is proven to be
weaker than what has been considered so far in the literature and the functions
do not need to be taken moreover lower semicontinuous like there. As a special
case the conjugate of 1/F regarding X is calculated, when F : X → R is a
strictly positive concave function on X, where X is a non - empty convex
subset of Rn (see also [9]).

5. Let the convex multiobjective optimization problem

(Pv) v-min
x∈X,

g(x)∈−C

F (x),
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where F = (F1, . . . , Fk)T , g, X, K and C are considered like above. Denoting
by S some set containing K - strongly increasing convex functions s : Rk → R,
the following family of scalarized problems

(Ps) inf
x∈X,

g(x)∈−C

s(F (x)),

where s ∈ S, is attached to (Pv). Using the duality statements for (Ps), i.e.
for (Pc), respectively, the following multiobjective dual problem is assigned to
(Pv)

(Dv) v-max
(z,s,α,β,u)∈B

z,

where

B =
{

(z, s, α, β, u) ∈ Rk × S × C∗ × K∗ × Rn :

s(z) ≤ −s∗(β) −
(
βT F

)∗
X

(u) −
(
αT g

)∗
X

(−u)
}

.

Weak and strong duality are delivered for the pair of multiobjective dual prob-
lems. When the scalarization function s ∈ S is required to fulfill additional
conditions other scalarizations widely - used in the literature occur as special
cases. Here there are considered linear scalarization, maximum scalarization
and norm scalarization (see also [10]).

6. Consider the non - empty convex set X ⊆ Rn, the affine functions fi : Rn → R,
i = 1, . . . , k, the concave functions gi : Rn → R, i = 1, . . . , k, and the func-
tions hj : X → R, j = 1, . . . ,m, convex on X. Assume that for i = 1, . . . , k,
fi(x) ≥ 0 and 0 < gi(x) 6= +∞ when x ∈ X such that h(x) 5 0, where
h = (h1, . . . , hm)T . Denote further f = (f1, . . . , fk)T and g = (g1, . . . , gk)T .
As usual in entropy optimization the convention 0 ln 0 = 0 is used. Consider
the convex optimization problem

(Pf ) inf
x∈X,

h(x)50

[
k∑

i=1

fi(x) ln

(
fi(x)
gi(x)

)]
.

This problem has as objective function an entropy - like sum of functions.
The following dual problem is obtained for it

(Df ) sup
qf∈R

k,qh∈R
m
+ ,

qg
i ≥eq

f
i
−1,i=1,...,k

inf
x∈X

[(
qh
)T

h(x) +
(
qf
)T

f(x) −
(
qg
)T

g(x)
]
.

Weak and strong duality and optimality conditions are delivered here, too.
When the objective function is specialized in order to become one of the most
used entropy measures, namely the ones due to Shannon, Kullback and

Leibler and, respectively, Burg, different results in entropy optimization
are rediscovered as particular cases (see also [12]).

7. An application of maximum entropy optimization in text classification is pre-
sented, too, accompanied by an algorithm (see also [16]).
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Index of notation

N the set of natural numbers

Q the set of rational numbers

R the set of real numbers

R the extended set of real numbers

Rm×n the set of m × n matrices with real entries

Rm
+ the non - negative orthant of Rm

5 the partial ordering introduced on Rm by Rm
+

K∗ the dual cone of the cone K

int(X) the interior of the set X

ri(X) the relative interior of the set X

cl(X) the closure of the set X

bd(X) the border of the set X

aff(X) the affine hull of the set X

|X| is the cardinality of the set X

xT y the inner product of the vectors x and y

dom(f) the domain of the function f

epi(f) the epigraph of the function f

f̄ the lower semicontinuous envelope of the function f

f∗ the conjugate of the function f

f∗
X the conjugate of the function f regarding the set X

∂f the subdifferential of the function f

A∗ the adjoint of the linear transformation A

δX the indicator function of the set X

σX the support function of the set X

v(P ) the optimal objective value of the optimization
problem (P )

v − min the notation for a multiobjective optimization
problem in the sense of minimum

v − max the notation for a multiobjective optimization
problem in the sense of maximum
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S some set of K - strongly increasing convex functions s : Rk → R

O the set of the absolute norms γ : Rk → R

Bγ the unit ball corresponding to the norm γ

U⊥ the orthogonal subspace to the linear subspace U

E(f) the expected value of the features function f

p(d) the probability of the document d to be chosen from the set D
p(c|d) the conditional probability of the class c with respect

to the document d

p(d, c) the joint probability of the document d and of the class c
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[12] R. I. Boţ, S.-M. Grad, G. Wanka, Duality for optimization problems with
entropy - like objective functions, Journal of Information & Optimization Sci-
ences 26 (2), 415–441, 2005.
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[22] R. I. Boţ, G. Wanka, Farkas - type results with conjugate functions, SIAM
Journal on Optimization 15 (2), 540–554, 2005.

[23] W. W. Breckner, G. Kassay, A systematization of convexity concepts for sets
and functions, Journal of Convex Analysis 4 (1), 109–127, 1997.

[24] J. P. Burg, Maximum entropy spectral analysis, Proceedings of the 37-th An-
nual Meeting of the Society of Exploration Geophysicists, Oklahoma City,
1967.

[25] Y. Censor, A. R. De Pierro, A. N. Iusem, Optimization of Burg’s entropy over
linear constraints, Applied Numerical Mathematics 7 (2), 151–165, 1991.

[26] Y. Censor, A. Lent, Optimization of “log x” entropy over linear equality con-
straints, SIAM Journal on Control and Optimization 25 (4), 921–933, 1987.

[27] C. Combari, M. Laghdir, L. Thibault, Sous-différentiels de fonctions convexes
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[93] G. Wanka, R. I. Boţ, S.-M. Grad, Multiobjective duality for convex semidef-
inite programming problems, Zeitschrift für Analysis und ihre Anwendungen
(Journal for Analysis and its Applications) 22 (3), 711–728, 2003.

[94] P. Weidner, An approach to different scalarizations in vector optimization,
Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau 36 (3),
103–110, 1990.

[95] P. Weidner, The influence of proper efficiency on optimal solutions of scalar-
izing problems in multicriteria optimization, OR Spektrum 16 (4), 255–260,
1994.

[96] K. Winkler, Skalarisierung mehrkriterieller Optimierungsprobleme mittels
schiefer Normen, in: W. Habenicht, B. Scheubrein and R. Scheubein (eds.),
“Multi-Criteria- und Fuzzy-Systeme in Theorie und Praxis”, Deutscher Uni-
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