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Abstract 

Recently developed mathematical tools for the modelling of contact problems on thin film 

structures are adapted to allow the investigation of arbitrarily mixed purely isotropic and 

transversally isotropic laminate structures. The new tool is applied to model a variety of load 

problems resulting in the failure of windsurfing boards consisting of a relatively thin laminate 

shell and a soft polymer foam core. It is shown that local impact and distributed bending loads 

due to “bad landing” after high jumps or contact with parts of the sailing gear (the so called 

rig) especially the front part of the boom are leading to the most critical stress distributions 

resulting in failure. So most of the investigated boards were damaged because the rider 

(windsurfer) landed flat and thus produced a sudden impact force under his feet (impact 

defect). Other overloading occurred due to overturning of so called loop movements or the 

landing of the board exactly on respectively between two waves and this way producing high 

bending moments. Some of those typical loads are analysed in detail and the stresses 

occurring in the complex structure of the windsurfing boards are evaluated. 

Keywords: Fibres, Foams, Layered Structures, Anisotropy, Fracture, Mechanical Properties, 

Analytical Modelling 

Introduction 

Laminate structures are playing an important role everywhere it comes to combine lightness 

and flexibility with high stability and reliability. So numerous publications are available 

treating laminate composites with respect to the latter quality characteristics. Especially of 

interest has been the effect of impact and bending loads. So we find a lot of recently published 

papers treating the problem of contact and impact loading experimentally [1 - 6].   

 1

mailto:n.schwarzer@physik.tu�chemnitz.de
mailto:p.heuer@esae.de


Especially interesting concerning the topic of this paper however is the work of Miyano et al 

[7] where laminate structures have been tested explicitly for the purpose of marine use. A 

crucial point is the determination of the mechanical properties of laminate structures. Here, 

indentation experiments have been proven of being of great use (see e.g. [8, 9]). 

The determination of the mechanical properties by computational methods has been treated 

for example in [10 - 15]. While the latter papers have at least additionally applied analytical 

methods, there are many publication using only FE-Modelling in order to extract mechanical 

properties of laminate structures (e.g. [16 - 18]). The practically important problem of 

optimising laminate structures has been performed using failure signatures and safety criteria 

by Harik [19] and applying a so called Tabu search in [20]. 

In order to optimise windsurfing board laminate structures against impact and bending loads 

sufficiently fast evaluating approaches are required allowing to model contact problems on 

multi-layer structures for staked orthotropic, isotropic and transverse isotropic layers with a 

high number of relatively thin layers. Here, as we wanted to do “practical field studies directly 

on the spot” of application of laminated windsurfing boards, we needed a very fast evaluating 

relatively easy to use model. So, despite the fact that there are completely analytical models 

for the correct three dimensional description of mechanical contact problems on layered 

orthotropic materials available [21, 22], we needed to down scale these approaches in order to 

make them applicable for this project. Neglecting most of the unisotropic properties of the 

windsurfing board laminate structures we found, that in fact we obtained sufficiently good 

agreement with the observed failure mechanism by using a transversely isotropic approach 

(see part “Theory II” of this paper). The evaluation time was at least 100times faster than that 

of the approach presented in [21, 22]. The additional demand to make the model also usable 

and understandable for mathematically less trained team members (professional windsurfers 

for example) required a properly programmed surface [23]. 

 

A short survey especially considering the accuracy and the calculation time shall present the 

development of the approach used here. Applying the model of the layered half space and 

using the method of image loads or image contacts, Schwarzer has been able to model up to 4 

layers including the substrate [24]. The approach brought very good agreement with 

experimental results in the case of single layer and bi-layer structures, but unfortunately it is 

not applicable on real multilayers with more than 5 layers. The main reason for this is due to 

the high calculation time increasing exponentially with the number of layers. The same holds 

for some other methods like the perturbation [25] or the boundary and the finite element 
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method [26]. There is a variety of publications about multilayered and graded coatings 

available [27 - 30], but non of them provides a sufficiently convenient and fast method 

allowing to treat contact problems on mixed pure and transversely isotropic or orthotropic 

laminate structures under contact loading as we want to consider here. It has been shown by 

Stone [31] (see also [32] and [33]), that in the case of a layered half space a sufficiently high 

number of layers can be modelled due to the method of integral transformation. He even 

modelled mixed pure and transversely isotropic layer structures under normal stress 

distribution. However in those cases, where the laminate structure is thin or in about the same 

scale as the area of the load applied on the laminated body in question, this method is not 

applicable due to numerical instabilities. So, if one for example wants to model impact and 

bending loads on hulls of boats, fuselages or other rather thin walled constructions the so 

called “model of the thick plate” is required. Thus, based on the approach of Lurie [34] 

Schwarzer [35] has developed a model allowing the investigation of thick layered plates under 

any arbitrary contact or bending load. The model has been included into a computer program 

evaluating mixed pure isotropic and transversely isotropic laminate structures with up to 100 

different layers on an ordinary personal computer in an acceptable calculation time. 

Theory I. – layered half space 

Apart from finite element or boundary element methods the integral transform method seems 

to be the only one allowing real multilayer modelling with more than 10 layers. As we are 

here only interested in contact areas of symmetry of revolution, we seek for a solution of the 

Navier equation for equilibrium in linear elasticity (see e.g. [31]) containing Bessel functions. 

Thus, the method is based upon the following approach for circular contact areas where, in the 

case of pure isotropy, the displacements within the i-th layer are given by: 
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∫  (1) 

Jn(z) denotes the Bessel function of the first kind of order n,  x, y, z are  the Cartesian co-

ordinates with z being the axis of indentation and r2=x2+y2. The function f(u) needs to be 

determined in accordance with the normal load distribution applied. So would for example a 

constant pressure distribution within a contact circle of radius a lead to (see e.g. [36]): 
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The constant c must satisfy the condition, that the acting overall force F on the surface is 

opposite equal to the integral over the normal stress ( , , )zz r zσ ϕ  at this position (we set it 

z=0). Thus we have: 
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For transverse isotropic layers the approach must read: 
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The γk (k=1, 2) have to be obtained from  γk
2=nk, whereas nk denote the two (real or conjugate 

complex) roots of the equation 
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Rearranging all terms of (4) containing γ1 and denoting the resulting function F1 and doing the 

same with all term containing γ2 obtaining a function F2 the elastic field can be evaluated due 

to: 
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(γ3
2=A44/A66). To simplify the stress field the following combinations were used (Fabrikant [37]) 

 σ1=σxx+σyy=σrr+σϕϕ, σ2=σxx-σyy+2iτxy=e2iϕ (σrr-σϕϕ+2iτrϕ), τz=τxz+iτyz=eiϕ (τrz +iτϕz) . 

 

The yet unknown constants A,B, D and F have to be determined for each layer due to the 

boundary conditions at the interfaces of the multilayer structure. From equations (1) and (4) 

the complete elastic field at any point within the loaded laminate structure can be evaluated 

applying the formulae (8) to (11). For more information the reader is referred to the original 

works of Schwarzer [35], Fabrikant [37] and Stone [31]. A special software package has been 

developed in order to automate the calculations becoming immensely complex and 

cumbersome in the case of high numbers of layers [23, 38]. 

 

Theory II. – layered thick plate 

In order to obtain numerically stable approaches in the case of laminate structures being thin 

compared to the size of the contact zone (or in about the same scale), the integral 

transformation method must be substituted by a suitable series procedure. For our purpose 

here the following approaches will suffice: 

Isotropic case i-th layer: 
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transverse isotropic case i-th layer: 
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The parameter u must now be set 
0

n

r
u λ
= , with λn denoting the n-th root of the equation 

J0(r)=0. The parameter r0 must be chosen such, that it is big compared to the lateral 

dimensions of the investigated laminate part and sufficiently small in order to reduce the 

number of terms of the series approach necessary to generate a proper surface load 

distribution. In the calculations presented here, up to 1000 terms were used. 

 

Application to a variety of board failure problems in windsurfing 

Windsurfing – some basics and the equipment 

First sailing attempts with a prototype of a sailboard dates back to the late 1950's, when the 

founding father of windsurfing, Newman Darby, wanted to combine sailing and wave surfing. 

The first windsurf board was about 3.5m long and weighted 27kg and Darby was considered 

rather a weirdo than the man with a great vision he obviously was. Since then, many things 

have changed: as the material and shapes of the equipment developed constantly, heavy and 

unwieldy polyethylene boards were substituted by laminated board structures, the jumps and 

moves become more and more radical and windsurfing is nowadays one of the most popular 

water sports all over the world. 

Windsurf equipment consists of two major parts: the complete rig with a mast making the rig 

stand upright, a sail to catch the wind, turn it into sail force and drive the craft, and a boom 

which spreads the sail and on which the windsurfer holds on, gives direction and controls the 

wind pressure and thus the speed.  

The second part of the vehicle is the board (figures 1 and 2). The bow is very often called the 

board's nose and is bent slightly upwards. On the stern, also called tail, are three foot straps 

located, two front, and one hind strap (on some board, usually those for race or speed 

performances there could be also more straps), in which the rider (windsurfer) finds a 

foothold when sailing fast over rough (choppy) water and jumping. A certain area under those 
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foot straps is covered with rubber foot pads, making it more comfortable for the surfer, 

preventing him from slipping and finally protecting both rider and board against hard impact. 

A tail fin, or skag, is the main lateral pressure centre under water (lateral plane) when the 

board is planning (see below) and thus, sets up resistance against drifting off course.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Main parts of a windsurfing board 

 

 

Depending on the purpose and shape, a modern typical wave board weights about 8 kg and 

has a length of 2.5m to 2.8m. 

 

 

 

 

 

 

 
Fig. 2 Co-ordinate system and measures of a typical wave board 

 

Both parts, rig and board, are connected by a flexible mast joint that allows the rig to be tilted 

in any direction. By tilting the rig and with that, changing the incidence angle toward the 
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wind, the sail force is moved whereas the lateral pressure centre (skag and all parts under 

water) stays the same and thus the board can be steered easily and without a rudder. 

With a harness, which connects the rider's waist to the sail, the advanced windsurfer can 

transfer the power from the wind pressure caught in his sail to his body and with that, the 

required muscle power in hands and arms reduce to a bearable minimum so that even light  

and delicately built female windsurfers, even if very rare, could in principle practice this 

interesting sport without the need of special muscle training. 

When the windsurfer gets faster, he is able to climb his own bow wave produced by his board 

when moving and thus, edging out water, and he will ride down this bow wave and becomes 

even faster. This state is called "planning" and now the rider can crawl into the foot straps and 

perform a great variety of so called speed moves and jumps (figures 3 and 4).  

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Number one reason for board failure: jumps 
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Fig. 4 "Willy Skipper": impact load on the nose part 
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Some of the most popular and spectacular movements are so called loop jumps. Therefore, the 

rider jumps high into the air and turns his rig, his board and himself either forward or 

backward so that he lands -if all goes well- after one or even two full rotation in riding 

direction. But those moves together with almost all other forms of jumps are not only 

spectacular and create a stir, they are also dangerous for both: the windsurfer and the 

equipment. 

Board failure problems 

A thorough analysis of the failure problems observable on windsurfing boards shows that 

there are two major mechanisms leading to damage. First, there are impact loads. They are 

mainly induced due to so called flat landing after high jumps (the rider lands his board flat on 

the water surface and thus produces a momentarily high impulse under his feet and the board's 

mast joint). In other cases we have catapult like plunges due to strong gusts pulling the rig and 

sometimes also the rider, who is fixed to the rig with the harness, forward onto the nose part 

of the board. This can lead to hits with the front of the boom or body parts of the rider into the 

surface of the nose part of the board. There are also some spectacular moves (e.g. the so 

called “Willy Skipper”) requiring that the rider lands feet first on the nose this way producing 

relatively high impact forces. The second class of main failure mechanism are bending loads 

coming from overturning of so called loop jumps, landing between waves or so called nose or 

tail dives after high jumps. 

Within those two classes of failure mechanisms we here concentrate on the following critical 

situations: 

1. impact load on the board’s nose surface due to hard contact with either body parts of 

the rider or the rig (see fig. 4) 

2. impact load in the foot pad area (under the foot straps) due to flat landing 

3. bending load due to landing on or between two waves, where nose and tail are 

supported by the peaks of the waves while the rest of the board hangs unsupported 

over the trough 

4. bending load caused by hard tail first landing 

5. skag hits reef 

6. bending load caused by hard nose dive landing or due to over rotation after loop jumps 
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During our investigation we had to realise that in almost all cases of board destruction it was 

rather impossible to reconstruct the force and momentum situation in the moment of failure in 

detail. This was mainly due to the fact that the riders could only give vague information about 



their speed, height of the jump (fig. 3), buffer effect of the sail during lading, momentum of 

rotation etc. or in some cases even their own weight. Further, the investigated boards, though 

in principle of similar shape and structure, differed widely in details concerning the number of 

used laminate reinforcements, thicknesses of distinct parts of the boards, used materials 

within the layered structure and their order (glass fibre, carbon fibre, honeycomb 

reinforcements…) etc.. Under these circumstances it doesn’t seem reasonable to assume 

concrete load conditions and board constructions. One rather should apply typical load 

distributions simulating the critical situations and see whether or not the resulting stress 

distributions coincide with the observed board failure. Thus, we have constructed a relatively 

simple “model windsurfing board” out of either a layered half space or a layered thick plate 

model in accordance with the load problem in question. In order to describe board 

reinforcements in lateral direction, a stability weight function has been introduced in some 

cases. This weight function is directly related to the lateral change of thickness of the laminate 

structure. 

The first two problems 1 and 2 can be tackled by applying the half space model. We use the 

material parameters given in table 1 and 2. The water was assumed as to act as some kind of 

substrate supporting the board structure during the impact such that it could be modelled as 

being elastic. Here it was of absolutely no importance which concrete elastic parameters for 

the “substrate” were chosen. As a series of trial evaluations showed the “water-parameters” 

could be anywhere between rigid and extremely soft without significantly changing the stress 

distribution within the surface part of the board we are interested in here. Further, as 

explained above we are just interested in the resulting stress distribution and not any absolute 

values. Thus, the coefficients of the Young’s modulus tensor are given as a function of a 

parameter E, where a concrete number can be assigned to as soon as concrete board structures 

are chosen and absolute forces are known. For the resulting qualitative stress distribution 

however, only the geometrical conditions and the relative material properties of the layers are 

of importance. Because we are using the half space and the thick plate model we have to treat 

the results in the vicinity of the boards edges with great caution. But it had been shown 

experimentally and theoretically [39] that even in the case of a sharp rectangular edge (quarter 

space) the elastic field near the contact does not differ more than about 15 % from the half 

space model as long as the distance from the edge does not fall below one contact radius. But 

as we here only have blunt “edges” and all contacts and failures considered are placed 

respectively found close to the board’s middle, the maximum error might be about 10%, 

which will suffice for our qualitative failure discussion. 
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At first we investigate the effect of the impact load on the foam core of the board (fig. 5):  
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Fig. 5 Impact on the nose (only foam core) 
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As we know from investigating damaged boards, the foam is compressed under the contact 

zone. It often delaminates from the laminate surface shell (monochrome drawn layer in fig. 5) 

thus, building a vacancy and leaving the laminate shell unsupported. The figure shows the 

hydrostatic stress having a strong compressive maximum directly under the indenter (e.g. heel 

of the rider or front part of the boom…) leading to the material compression. In figure 6 the 

radial stress within the laminate shell is presented.  

 

 
tensile 

heel
 

1st layer
 

compressive  
2nd layer

 

 3rd layer
 
Fig. 6 Impact on the nose (only laminate shell) 



It shows a pronounced tensile stress maximum at the contact rim which might lead to mode I 

fracture (Hertzian cone crack). And in fact this type of failure could be observed rather often 

on the front surface part of windsurfing boards (figure 7: due to its anisotropy the Hertzian 

here runs along main fibre direction of the laminate tissue structure).  

 

 

 

 

 

 

 

 

 

 
Fig. 7 Surface fracture damage due to impact load 

 

Under extreme conditions (Fig. 8: Damaged nose part of a windsurfing board after huge 

impact: the rider (about 75kg) fell foot first from a height of about 3 meters directly onto the 

nose of his board) the impact might be even so strong that the board breaks through 

completely.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Complete nose damage due to impact load 
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The picture changes completely when the impact load is applied onto the foot pad area 

(problem 2). Here elongated or star like cracks coming from the contact centre are observed 

rather than circular cracks (see small photograph in figure 10). This becomes clear when we 

investigate the radial stresses within the laminate under the rider’s heel (fig. 9):  

 

 

 

tensile 

compressive 

laminate shell 

rubber foot pad 

heel 

 

 

 

 

 

 

 

 
Fig. 9 Impact on the front foot pad (only laminate shell) 

 

While, due to the buffer effect of the rubber food pad, there are rather no tensile stresses at the 

surface of the laminate layer we see, that this time the tensile stress maximum is to be found 

at the contact centre on the bottom of the laminate shell. But as already seen in problem 1 for 

the nose part of the board, the foam core is also compressed under the foot pad area due to a 

maximum of compressive hydrostatic stresses (fig. 10). This effect is widely known by 

windsurfers, so that second hand boards are always tested here by simply pressing the thumb 

hard on the area where usually the heel would be in order to see whether impact damage had 

already occurred. 
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Fig. 10 Impact on the front foot pad (only foam core) 

 

 

The third problem is demonstrated in figure 11 (lower picture):  
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Fig. 11 (Bad) landing on two ill adjusted waves 

 

 

The material parameters used for the evaluation are given in table 3. Analysing the typical 

load distribution between front and hind leg by using ten different professional windsurfers 
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put on a so called windsurf simulator equipped with three scales (one for each foot and an 

additional one for the mast) we obtained a sufficiently consistent load picture. Applying the 

“model of the thick layered plate” we evaluated the normal stress distribution shown in figure 

11 (upper picture). Taking into account that the laminate thickness is not homogenous over 

the whole surface by introducing a simple “stability function” a refined stress distribution can 

be obtained (fig. 11, lower picture). Here the stresses shown in figure 11 (upper picture) 

where simply multiplied with the inverse of the laminate shell thickness. The result, namely a 

maximum of compressive stresses between mast and front foot pads, is in good agreement 

with the observed failure (fig. 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

compressive 

Fig. 12 Damage due to landing on two ill adjusted waves 

 

In the case of a hard tail landing (problem 4, demonstrated in the figures 13 and 14) the 

damage (fracture between the front and hind foot straps as shown in the small photograph of 

figure 14) is caused by high tensile stresses within the board’s surface (see arrow and red area 

in fig. 14).  
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Fig. 13 Tail landing 
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Fig. 14 Stresses and damage due to hard tail landing 

 

Similar damage can be observed in the case 5, where the rider hits an under water obstacle 

(e.g. protruding parts of the reef) with the skag of his windsurfing board. Depending on the 

speed of the windsurfer, the impact momentum can be big enough to produce huge tensile 

stresses in the surface laminate (figure 15) right in front of the hind foot strap immediately 

leading to rapture between the two foot pads (small photograph in figure 15):  
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Fig. 15 Skag hits reef damage 

 

As one can see the result of this type of impact loading can be quite disastrous. However in 

the special case of the photograph in figure 15 the “skag hits reef”-impact only initialised the 

fracture. The rest was done when the rider tried to come back to the shore, planning over a 

fairly choppy (which means rough) surfing spot, thereby successively bending the board’s tail 

up and down and so gradually opening the crack more and more until it got almost severed 

from the rest of the board. 

Finally we consider the nose dive landing after an ordinary jump or an overturned front or 

back loop (problem 6, see figure 16).  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16 Example for loop jump 
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It can result in high compressive stresses on the surface (figure 17) and tensile stresses on the 

board’s bottom (figure 18) around the mast joint. Here fracture before or behind the mast can 

occur (figure 19: Here, too, the rider – one of the authors, this time – lost parts of the bottom 

laminate on the way back to the beach through a very rough shore break zone with relatively 

high waves.). 

 

compressive 

 

 

 

 

 

 

 

 

 
Fig. 17 Stresses due to hard nose dive (surface) 

 

 

tensile 

 

 

 

 

 
Fig. 18 Stresses due to hard nose dive (bottom) 
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Fig. 19 Complete bottom fracture due to hard nose dive 

 

Conclusions 

It had been shown, that the typical damage of quite a variety of failure mechanisms occurring 

on the laminate structures of windsurfing boards can qualitatively described using the layered 

half space and the layered thick plate model. Laminate thickness variations and 

reinforcements had been included via a so called stability function. Very good agreement 

between the observed failures and the location and type of the stress maxima evaluated from 

the theoretical model was obtained for all considered damages. It was found, that apart from 

accidents like hitting the reef with the skag or falling on the board's nose, mainly jumps are 

responsible for most of the observed board failures. Thus, the model might be used as a tool to 

find out weak spots within the structure of a windsurfing board during shape design and 

development. The method could also be applied to other laminate structures such as those 

used in the boat and aircraft or even car industry in order to support the design and 

construction of impact resistant structures. 
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Tables 

 

Table 1: Material Parameters for the board’s nose part 

Layer A11 A12 A13 A33 A44 Thickness 

Transversaly 

isotropic 

75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

Isotropic 1.2*E2 0.4*E2 0.4*E2 1.2*E2 0.4*E2 2mm 

Transversaly 

isotropic 

75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

Foam core 

Isotropic 

1.2*E3 0.4*E3 0.4*E3 1.2*E3 0.4*E3 82mm 

Transversaly 

isotropic 

75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

Isotropic 1.2*E2 0.4*E2 0.4*E2 1.2*E2 0.4*E2 4mm 

Transversaly 

isotropic 

75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

E2=6 E1=100 E3=E 

 

Table 2: Material Parameters for the board’s foot pad area 

Layer A11 A12 A13 A33 A44 Thickness 

Rubber pad 

Isotropic 

1.2*E0 0.4*E0 0.4*E0 1.2*E0 0.4*E0 6mm 

Transversaly 

isotropic 

75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

Isotropic 1.2*E2 0.4*E2 0.4*E2 1.2*E2 0.4*E2 3mm 

Transversaly 

isotropic 

75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

Transversaly 

isotropic 

75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

Isotropic 1.2*E2 0.4*E2 0.4*E2 1.2*E2 0.4*E2 4mm 

Transversaly 75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

 22



isotropic 

Foam core 

Isotropic 

1.2*E3 0.4*E3 0.4*E3 1.2*E3 0.4*E3 70mm 

Transversaly 

isotropic 

75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

Isotropic 1.2*E2 0.4*E2 0.4*E2 1.2*E2 0.4*E2 4mm 

Transversaly 

isotropic 

75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

E2=10 E0=6 E1=100 E3=E 

Table 3: Material Parameters used for the bending load calculations 

Layer A11 A12 A13 A33 A44 Thickness 

Transversaly 

isotropic 

75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

Isotropic 1.2*E2 0.4*E2 0.4*E2 1.2*E2 0.4*E2 4mm 

Transversaly 

isotropic 

75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

Foam core 

Isotropic 

1.2*E3 0.4*E3 0.4*E3 1.2*E3 0.4*E3 80mm 

Transversaly 

isotropic 

75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

Isotropic 1.2*E2 0.4*E2 0.4*E2 1.2*E2 0.4*E2 4mm 

Transversaly 

isotropic 

75*E1 15*E1 1.2*E1 1.8*E1 1.6*E1 0.5mm 

E2=6 E1=100 E3=E 
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