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Referat

In dieser Arbeit wird eine Beschreibung von Monte-Carlo-Verfahren zur
Lösung komplexer Optimierungsaufgaben mit Hilfe von Markov-Ketten
durchgeführt. Nach einer kurzen Einführung werden Lösungsmenge sol-
cher Aufgaben und der physikalische Zustandsraum komplexer Systeme
identifiziert.

Zunächst wird die Dynamik von Zufallswanderern im Zustandsraum
mit Hilfe von Master-Gleichungen modelliert. Durch Einführung von Per-
formanzkriterien können verschiedene Optimierungsstrategien quantita-
tiv miteinander verglichen werden. Insbesondere wird das Verfahren Ex-
tremal Optimization vorgestellt, dass ebenfalls als Markov-Prozess ver-
standen werden kann. Es wird bewiesen, dass eine im Sinne der genann-
ten Kriterien beste Implementierung existiert. Da diese von einem soge-
nannten Fitness Schedule abhängt, wird dieser für kleine Beispielsysteme
explizit berechnet.

Daran anschließend wird die Zustandsdichte komplexer Systeme be-
trachtet. Nach einem kurzen Überblick über vorhandene Methoden folgt
eine detaillierte Untersuchung des Verfahrens von Wang und Landau.
Numerische und analytische Hinweise werden gegeben, nach denen dieser
Algorithmus innerhalb seiner Klasse wahrscheinlich der Optimale ist. Ei-
ne neue Methode zur Approximation der Zustandsdichte wird vorgestellt,
die insbesondere für die Untersuchung komplexer Systeme geeignet ist.
Abschließend wird ein Ausblick auf zukünftige Arbeiten gegeben.
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Chapter 1

Introduction

The most important concept in statistical physics is the state space of
a system. It is the set of all possible states the system can be found
in. On the basis of the state space a dynamics can be formulated. In
statistical physics this dynamics introduces a probabilistic view on the
evolution of the system. By describing how the probability to find the
system in a specific state changes in time it provides the opportunity to
calculate physical quantities time-dependently. Most of these quantities
are weighted averages, calculated over the whole state space.

The past decades have seen the successful application of the concepts
of statistical physics to one of the most important research fields: com-
binatorial optimization. Here, the task is to extract those solutions from
a very large set of possible ones which minimize a given energy function.
The possibility to identify the set of possible solutions of such an opti-
mization problem with a corresponding state space opens the door for
the utilization of the rich set of methods of statistical physics to solve
the task.

But not only physically inspired methods have been introduced. Also
biologically, evolutionary and even co-evolutionary inspired ideas and
concepts have been developed. Nowadays, it seems that the borders be-
tween these subjects become more and more fluent, and it is sometimes
very hard to classify optimization algorithms accordingly. For exam-
ple, a genetic algorithm – clearly initiated by biological and evolutionary
principles – is describable easily by the standard mathematical tool of
Markov chains, which is heavily used for modeling in statistical physics.
Hence, one and the same algorithm could be seen as almost “pure bio-
logical with some probability in it”, but also as purely probabilistic with
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2 CHAPTER 1. Introduction

“biological dynamics”. Indeed, it is much easier to classify optimization
algorithms by another scheme: is the algorithm stochastic or not?

This introductory chapter starts with a short description of multi-
objective optimization, and how it can be confined to a single-objective
optimization. Chapter 2 includes the theoretical foundation for the re-
sults gathered in this work. State spaces are introduced, and a short
outline of the most often used non-stochastic algorithms to solve opti-
mization problems is presented. Mathematical tools are introduced to
describe and characterize stochastic procedures. Random walks will be
described in a framework given by the theory of Markov processes. The
master equation will be introduced.

A description of stochastic optimization methods in general, and of
a new method called Extremal Optimization in particular, will be given
in Chapter 3. This optimization algorithm is some kind of mixture of
physically and evolutionary inspired methods. One of the main questions
to be answered here is how this algorithm can be implemented in an
optimal way. Optimal control theory is used to apply the method to
small complex systems.

Chapter 4 shows in which way the density of states of a complex
system can be determined. Besides the most often used argument why
this density is important – it makes the solution of the thermodynamics
of the system possible – another one is given which is connected with
optimization problems.

Conclusions are made in chapter 5, ending with some remarks about
the work which still has to be done. Outlooks are given how research in
this subject could be driven forward.

Most of the results presented here are results of computer simulations,
some are analytical ones. Therefore, this work should be considered as a
contribution to computational physics.

From Multi-objective to Single-Objective Optimiza-
tion – How to Buy a Car the Theorist’s Way

Suppose your family grows, and very soon you feel that a new car would
come in handy. Further suppose that in order to not making a mistake
you collect data on quality, maybe defined by repair costs, and price for
100 different car models available on the market. How to select the best
one?

You know that there are huge differences in quality, but it can be
observed that one and the same level of quality can be achieved by dif-
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ferent prices. Therefore, you plot the data, quality vs. price. You define
that a model a dominates another one b, a � b, if it offers at least the
same quality at a lower price. You can decide whether models dominate
each other for most of the pairs of cars. Obviously, it would be really
a mistake to buy a dominated car, so you safely delete them from the
dataset.

The cars which are left over are a little bit extraordinary. They offer
a higher or lower quality than any other car, but at a higher and lower
price, respectively. Hence a 6� b, but also b 6� a for all remaining cars
a, b. It is one of these so-called “Pareto” optimal cars you have to buy,
but which one is so far simply a matter of taste. It might depend on how
much money you are able or willing to pay, whether you prefer quality
or price, or another objective like design and prestige of the producer of
the models in question.

Since finding an optimal car in the described way depends on multiple
objectives such an optimization task is called a multi-objective optimiza-
tion. Its goal has been achieved if all Pareto optimal solutions are
identified; the following decision which solution is to be chosen in the
end is not computable within this framework. Of course, if there were
only one objective, this decision would be very easy; then the solution
which extremalizes the objective would be the only one of interest. In
that sense a multi-objective optimization can easily be transformed into
one with a single objective: by weighing every objective with a factor
and summing them up we can reduce the task to a simple extremaliza-
tion problem. Of course, dependent on the weighting factors different
optimal solutions will be found.

In fig.1.1 a hypothetical data set for 100 cars is plotted. The Pareto
optimal cars are given, together with a weighting which favors the quality
of the car and a weighting which favors a low price. As can be seen, these
different weightings lead to different optimal solutions. Of course, also
other weightings, maybe nonlinear ones, are possible.

This very small example shows the principle possibility to transform
every multi-objective into a single-objective optimization. As we will see
in the next chapter, even a single-objective optimization is most often a
computationally hard task due to the existence of lots of local extrema.
These two facts can be seen as the reason why the present work is confined
to this case.
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Figure 1.1: Left: The hypothetical data for quality and price for 100
cars. Right: The Pareto optimal cars are connected by the thick line.
The broken lines denote linear functions which weigh quality and price
differently.



Chapter 2

Dynamics in Complex State
Spaces

In this chapter complex systems are discussed, focusing on the description
of their state space and the simulation of dynamics within them. Some
introduction about what makes a system complex in the sense of this
thesis is made, and the search for finding the ground states and other low
lying states is motivated. Some examples for complex systems are given.
After that, the probably most important means for bringing dynamics
into play is introduced: the tracing of random walkers. In the context
of Markov processes and the probabilistic view an analytic description
of the dynamics – the master equation – is outlined. The chapter closes
with some facts about stochastic matrices and limiting distributions in
general.

2.1 State Spaces of Complex Systems

In statistical physics a system is described by its state space Ω. This is
simply the set of all microscopic states s ∈ Ω the system can be in. A
microscopic state can be, e. g., the positions and velocities of the parti-
cles of a piece of matter, maybe further specified by the orientations of
their magnetic moments in an magnetic field. Due to the normally large
number of degrees of freedom a state of the system comprises the state
space is generally of very high dimensionality. A gas of 1023 particles,
e. g., may possess a state space with dimension 2 · 3 · 1023, because the
x, the y and the z component of the position vector as well as those
of the velocity vector of every particle might be changed independently.

5



6 CHAPTER 2. Dynamics in Complex State Spaces

The dimensionality could even raise if other degrees of freedom – like the
mentioned magnetic moment – are taken into account.

Besides the high dimensionality there is another important property
of the state space. The number of states L = |Ω| itself is extremely
large, or even uncountable in the case of continuously varying degrees
of freedom. If it is finite, the state space is said to be discrete. The
particles of the mentioned gas, e. g., shall possess five orientations of a
magnetic moment in an external field. If they are assumed to be fixed
in three-dimensional space then they offer 5(1023) different states. Their
state space would be discrete.

Moreover, a function H = H(s) is defined on the states s. It asso-
ciates an energy with every state. Such an energy function for a state of
the 1023 particles of the gas with magnetic moment µj could read

H(s) =
1023∑
j=1

m

2
v2

j −
1023∑
j=1

µj ·B, (2.1)

if the particles of mass m are assumed to be independent and are moving
in a magnetic field B. With that, macroscopic quantities like inner en-
ergy, entropy or specific heat can be calculated as weighted means over
the state space.

A dynamics can be introduced into such state space by the concept
of random walks. We will have a detailed look on these in the next
section, but to complete the description of the structure of the state
space of complex systems we mention them here. Random walks are
just a number of steps a walker takes in the state space of the system
under consideration. Being in the current state α, a transition or step
to a neighboring state β ∈ N (α) is performed. The predefined so-called
neighborhood relationshipN (α) ⊂ Ω is the set of all states which are just
one step away from α, and are therefore proposable as next step. The
walks are called random because the state to be taken actually as next
step is selected with some probability and therefore unknown a priori.
In that sense the neighborhood relationship is also called “move class”.

A local minimum is simply defined as a state the energy of which
is smaller than that of all neighboring states. Barriers separate minima,
and maxima are defined analogous to minima. A system is called complex
if its state space contains lots of local minima, barriers and maxima. We
speak about the bumpy, hilly or mountainous energy landscape of the
complex system, because a mountain range offers in principle the same
structure.
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Figure 2.1: A typical random walk through the state space of a complex
system. The walker experiences the energy function defined on the un-
derlying state space; the visited states reflect local minima, separated by
barriers, and local maxima. The minima are located at different energies.

A typical random walk through the energy landscape of a complex
system is shown in fig. 2.1. Such a random walker experiences the energy
function defined on the states, hence, the states which are visited during
the walk reflect the complex structure of the underlying state space.

There are many examples for complex systems in physics. One of the
most prominent is a spin glass. Such a system is a collection of atoms
with a magnetic moment, e. g., caused by an unpaired spin. The spins –
maybe those of manganese or nickel atoms – are located randomly in an
non-magnetic matrix like gold or copper. There are many realizations of
spin glasses, e. g., metallic compounds or insulators (see e. g. [1, 2]). The
term spin glass is derived from the fact that in analogy to the unordered
microscopic structure of glass the “magnetic structure” of a spin glass is
unordered: the spins are spread randomly, and are randomly aligned.

This random alignment is caused by an interaction between two spins
which is strongly influenced by the surrounding electrons. Depending on
the distance between two spins this interaction has changing strength and
sign, i. e., it can be ferro- or anti-ferromagnetic. This behavior was stud-
ied by Ruderman and Kittel [3] in the context of nuclear magnetism,
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and further developed by Kasuya [4] and Yosida [5]. Therefore, it is
known as the RKKY interaction.

Due to the random positions of the magnetic impurities this inter-
action can also be considered random in strength and sign. A simple
model covering this feature has been introduced by Edwards and An-
derson [6]. A number of spin vectors si are placed on a regular lattice
with random values Jij for the interaction between them. For a configu-
ration S of such spins the energy is defined as

H(S) = −
∑
〈i,j〉

Jij · si · sj (2.2)

with the summation performed over all pairs of neighboring spins. The
choices for the distribution of the Jij are, e. g., Gaussian, flat between
+I and −I, or ±I, I ∈ R. In the latter case the state space is highly
degenerated.

Even simpler models are the xy-model and the Ising spin model. The
former utilizes only the x- and the y-component of the spin, whereas the
latter only treats the z-component. Here, the z-component only takes
the values +1 and −1. But even this very simple model exhibits all the
features a complex state space offers: lots of local minima, separated by
barriers of different height. Long-range versions with summation over all
spin pairs are called Sherrington-Kirkpatrick models [7].

One of the most important questions regarding the state space of com-
plex systems is: What is the ground state of the system, and what other
low lying states do exist? The so-called ground state is that one which
minimizes the energy function globally. In low-temperature physics it is
of general interest, because this state is the one the system is in with
highest probability at very low temperatures. But other low lying states
are of interest, too. They are those the system should be in at some-
what higher temperatures. This is closely related to questions about the
structure and thermodynamic stability of substances [8, 9, 10]. In other
fields of science the ground states simply realize the optimal solution of
a given problem. Therefore, finding this state is called an optimization.

To underline this we have a glance on the wide class of complex combi-
natorial problems. These can be seen as the mathematical formulation of
questions about the ground state originating from physical, engineering,
economical and information technological investigations, and are describ-
able by means of statistical physics. They form a kind of playground for
the methods and optimization algorithms to be studied, because they
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combine the advantage of being easy to implement with a rich set of ef-
fects observable in complex systems. For example, the state space of the
Ising spin glass of n spins can be seen as the set of all vectors of length
n which are combinations of plus and minus one – there are 2n of them.
Which combination of them is the ground state?

Other important combinatorial problems are:

• The traveling salesman problem (TSP). Given a set of n towns,
located randomly, find the shortest tour which visits every town
exactly once, starting and ending in the same town.

The origins of this task can obviously be found in economics and
engineering. Nowadays every car navigation system has to answer
similar questions.

• The graph partitioning problem. Given is a set of n points, or
vertices, in 2D space, n even. The vertices are randomly connected
by edges. Find the two subsets each containing n/2 vertices such
that the number of edges connecting a vertex of one subset with a
vertex of the other subset is minimal.

This question originates from chip design and layout: transporting
electrons within a semiconductor chip (through the edges connect-
ing vertices of the same subset) is faster and less dissipating com-
pared to transporting electrons through inter-chip connecting wires
(edges between vertices belonging to different subsets). Cluster
computing has equivalent problems: inter-process communication
within a node is much faster compared to inter-node communica-
tion.

• The graph coloring problem. Given a set of vertices, connected by
edges, label each vertex with a color in such a way that no two
connected vertices have the same color. Find the labeling which
needs the minimum number of colors.

A very active application for graph coloring is the allocation of
registers (colors) of CPUs during the execution of a program, (rep-
resented by the graph). Variables (vertices) in registers can be
accessed much quicker than those in RAM, but the number of reg-
isters is limited. In general, there are many more variables than
registers, so multiple variables must be assigned to a register. Con-
flicts occur if one register is used for more than one variable at the
same time (two connected vertices have the same color). These
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have to be solved by assigning the variables that do not conflict in
a way which minimizes RAM usage.

• A Combination. Find the shortest tour of a TSP with a program
using as less RAM as possible, employing a compute cluster with
as less inter-node communication as possible.

All of the mentioned combinatorial problems have complex state space
with a huge number of states. Especially these examples motivate the
search for well understood, efficient optimization algorithms.

2.2 Non-Stochastic Optimization

In order to find the ground states of complex optimization problems a lot
of attempts have been made to introduce proper algorithms. Surely, the
simplest approach – calculate the energy for every state and compare –
is in general not feasible due to the very large number of states. Hence,
other methods have been developed. Three of the most important will
be shortly explained in the following.

Greedy Algorithms

Suppose a state is given. How to reduce the associated energy? One way
would be to calculate the energy of all neighbors of the current state,
and to take a step onto that with the lowest energy. Repeating these two
steps results in finding the next local minimum.

Such an algorithm is called “greedy”; it always chooses the locally
maximum possible gain. Generally, only sub-optimal solutions are lo-
cated, but it can be shown that for some problems a greedy algorithm
always finds the global minimum. There are some similarities to the
“Steepest Descent” method explained below.

The Branch-and-Bound approach

Finding the ground state can also be seen as a moving on a decision
tree described by two basic steps, “branching” and “bounding”. The
tree itself is created by branching the original problem; it is split into
two or more subproblems which are easier to solve. Branching is done
recursively, the created subproblems are again split by a branching step.
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A solution of the original problem can be reconstructed from the
sub-solutions found on the branches of the tree. In order to not having
to look on every branch of the created tree a bounding step has to be
implemented. The so-called “upper bound” is the best energy seen so
far. Furthermore, a “lower bound” can be calculated by estimating how
small the energy of the current state might become. If this lower bound is
greater than the upper bound then the constructable state cannot be the
ground state, and the whole branch can be truncated. This considerably
saves computing time.

Conjugate Gradients

In this thesis, mostly discrete states spaces – i. e., such with a finite
number of states – will be investigated. However, in a later section
a generalization of an optimization method intended for discrete state
spaces to the continuous case will be considered, and an algorithm which
is able to deliver local minima in such state space will be needed. As it is
the most commonly used technique a short description of the conjugate
gradient method [11, 12] is given here.

Finding a (local) minimum of some energy function f defined on a
continuous state space can easily be done by employing the gradient
f ′ := gradf of f . If at some position x in the state space f ′(x) = 0
and x < y for all y in a small neighborhood of x then x must be a local
minimum. Hence, a very simple iterative gradient-based technique can
be developed:

1. Start at some position xi in the state space.

2. Calculate the “direction” −f ′(xi).

3. Perform a line minimization along this direction to get xi+1, the
corresponding minimum.

4. Set xi = xi+1, go to 2 as long a some convergence criterion is not
met.

This method, called Steepest Descend, performs poorly, because succes-
sive gradients will be orthogonal to each other [12]. This leads to a large
number of steps required to find the minimum in narrow “valleys” of the
state space.
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What really is needed are successive directions which are orthogonal
to each other “with some respect to the shape of the energy landscape”.
Near a local minimum this “shape” can be expressed by a quadratic form

f(x) ≈ c + b · x +
1

2

(
xtr ·A · x

)
(2.3)

with some special A and b, and (.)tr denoting the transpose. Two vectors
v1, v2 are said to be A-orthogonal or conjugate if

vtr
1 ·A · v2 = 0. (2.4)

It can be shown that successive line minimizations along “conjugate”
directions converge much faster to the local minimum. Algorithms to
construct such directions are called Conjugate Gradient Methods. These
try to circumvent the problem of the matrix A being unknown by – of
course – calculating gradients of the energy function. A detailed descrip-
tion, together with some “canned algorithms”, can be found in [11].

2.3 Random Walks and Markov Processes

In order to be able to describe stochastic optimization as a Markov
process some basic definitions and facts have to be given. For a discrete
state space the meaning of the move class N (α) ∈ Ω for a state α has
already been defined. The probability to select a state β ∈ N (α) is
denoted with Πβα. Calculating and coding Πβα might not be trivial as
can be seen in the case of fractals [13, 14].

Whether a transition of a random walker from one state α to another
one β ∈ N (α) is performed depends on the so-called acceptance proba-
bility Pβα(t) which might be dependent on the time t. Generally, there
exists no restriction how this probability can be chosen. But in physi-
cal investigations it is mostly somehow connected to the energies of the
states α and β.

Let us restrict ourselves to discrete times tk for the moment. Per-
forming a step in a random walk is a two-step procedure of selecting a
neighbor and accepting or rejecting it. Hence, the total transition prob-
ability Γβα is

Γβα(t) = Πβα · Pβα(t) (2.5)

We see that we have at least two major choices for how we could de-
fine Pβα, hence Γβα(t) : we could make Pβα “history-dependent”, i. e.,
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Pβα(tk) = Pβα({ti}, i = 0, . . . , k), or not “history-dependent”, Pβα =
Pβα(tk). The latter choice, called Markov property, secures that the
next state of the random walk only depends on the current state. Explic-
itly, it does not depend on states already visited. Such a special random
walk produces Markov chains [15]. A Markov chain is the collection
of the state probabilities which evolve due to successive transitions with
Markov property.

The states can be classified according to how they can be populated
by transitions. The most important are [15]

• absorbing states: they can never be left;

• periodic and aperiodic states: a periodic state is visited again
with non-zero probability after a number of steps s, and 1 < s < ∞.
If s = 1 or s = ∞ the state is called aperiodic.

• recurrent and transient states: a recurrent state, once left, is
visited again with certainty; a transient state, once left, is never
again visited with non-zero probability. A positive-recurrent state
has the property that the mean time for the first return to that
state is finite.

Accordingly, the most important types of Markov chains are

• irreducible chains: in such chains every state is reachable from
any other state by a finite number of transitions (such chains cannot
contain absorbing states or sets of states that “absorb”),

• aperiodic chains: an aperiodic chain consists only of aperiodic
states,

• recurrent and transient chains: a recurrent chain consists only
of recurrent states, and a transient one only of transient states.

If Pβα is not a function of t at all, the Markov chain is called homoge-
neous, otherwise inhomogeneous.

In the next chapter we will see how understanding stochastic op-
timization as a Markov process opens the possibility to prove which
type of processes are best suited for optimization in general. To do so,
we need a mathematical tool to describe Markov processes.
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2.4 The Master Equation

We assume an infinite number of random walks with Markov property,
performed in parallel independently of each other. The question how the
states of the system are populated as time progresses can be answered
by setting up the master equation [15, 16] for the system.

2.4.1 Continuous Time

In a discrete state space Ω with |Ω| = N the states can be labeled
1, 2, . . . , N . Due to the infinite number of walkers involved a time depen-
dent probability vector pi(t) can be introduced, giving the probability to
be in state i at time t. This probability can change in time by the in-
flow of probability from other states and out-flow of probability to other
states. If the probability transition rate between two distinct states i and
j is denoted with Γji(t), and Γij(t) ≥ 0, the total change reads

ṗj(t) =
N∑

i=1,i6=j

Γji(t)pi(t)−
N∑

i=1,i6=j

Γijpj(t). (2.6)

This can be written in vector form

d

dt
p(t) = Γ(t) · p(t) (2.7)

with a square matrix

Γ(t) = [Γij(t)] ∈ RN×N (2.8)

the diagonal elements of which are set to Γjj(t) = −
∑N

i=1;i6=j Γij(t).
Therewith,

N∑
j=1

ṗj(t) = 0, (2.9)

i. e., normalization of p(t) is ensured for all times. The vector p(t) is the
probability distribution over the state space at time t.

If Γ is not explicitly dependent on t, then the solution of this system
of linear differential equations is formally given by

p(t) = exp(t · Γ) · p(0). (2.10)
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The vector p(0) is given by initial conditions. The exponential of the ma-
trix t ·Γ can be defined as a Taylor expansion at t = 0 of the exponential
function,

exp(t · Γ) :=
∞∑
i=0

1

i!
[t · Γ]i . (2.11)

This expansion becomes especially simple if Γ can be transformed into
diagonal form, because then the matrix powers can be computed very eas-
ily. For that, we determine the eigenvectors ei, use them as the columns
of a matrix E and perform the similarity transformation

E−1ΓE = diag{e1, e2, . . . , eN} =: D (2.12)

with ei being the eigenvalue to eigenvector ei. Then, due to (2.11)

exp(t ·D) = t · diag{exp(e1), exp(e2), . . . , exp(eN)}, (2.13)

and (2.7) can be written as

E−1

(
d

dt
p(t)

)
=

(
E−1 · d

dt
p(t)

)
(2.14)

=
(
E−1ΓE

) (
E−1 · p(t)

)
(2.15)

= D
(
E−1 · p(t)

)
. (2.16)

Therefore, with p̃(t) = E−1 ·p(t) we have a set of simple differential equa-
tion of first order for every entry of p̃ which can be solved independently
of each other,

p̃i(t) = p̃i(0) · exp(ei · t). (2.17)

This solution can than be re-transformed by left multiplication with E,
yielding the solution p(t). Of course, the integration constants p̃i(0)
have to be chosen such that p(0) has the right value. This reduces to the
solution of a linear system of equations.

But not every matrix can be transformed into such a simple diagonal
form. This may happen if some of the eigenvalues appears multiple times,
i. e., the characteristic polynomial

p(e) = det(Γ− eI) (2.18)

has roots ei which appear multiple times. Then the corresponding matrix
might not be diagonalizable, and in that case the way to solve (2.7) must
be changed slightly.
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It can be shown that every square matrix can be transformed into the
so-called Jordan normal form [17]. This form is probably the one which
can most easily be dealt with if the matrix cannot be diagonalized. As a
detailed description would be beyond the scope of the present work, only
the following short notes are given. A Jordan block Jk(e) to eigenvalue
e is a k-by-k upper triangular matrix of the form

Jk(e) =



e 1 0 0 . . . 0
e 1 0 . . . 0

. . . . . . . . .
...

e 1 0
0 e 1

e


. (2.19)

Such a block has non-zero entries only on the main diagonal and on the
superdiagonal. The 0 represents a 0 for all entries not explicitly given.

The Jordan normal form J of a matrix Γ ∈ RN×N is a direct sum
of Jordan blocks,

J =


Jk1(e1) 0

Jk2(e2)
. . .

0 Jkn(en)

 , k1 + · · ·+ kn = N (2.20)

The ki need not be distinct, and the ei need not be distinct. That means,
one and the same eigenvalue might be represented by multiple Jordan
blocks of different size. But the Jordan form is unique, apart from
permutations of the Jordan blocks along the “Jordan-block diagonal”
of J . A diagonal matrix is simply a special Jordan form.

With the corresponding similarity matrix S and

J = S−1 · Γ · S (2.21)

it is possible to solve the system of linear differential equations (2.7) with
a non-diagonalizable Γ not dependent on t in the following way. We have
again

S−1

(
d

dt
p(t)

)
=

(
S−1 · d

dt
p(t)

)
(2.22)

=
(
S−1ΓS

) (
S−1 · p(t)

)
(2.23)

= J
(
S−1 · p(t)

)
. (2.24)
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With p̃(t) = S−1 · p(t) we can solve the coupled system of linear differ-
ential equations

d

dt
p̃(t) = J · p̃(t) (2.25)

by recursively solving all subsystems corresponding to a Jordan block.
This is possible, as every subsystem is independent from all other sub-
systems. We denote the subset of the p̃i(t) corresponding to the m-th
Jordan block Jki

(ej) with p̃m
1 (t), . . . , p̃m

ki
(t). Then

p̃m
ki

(t) = p̃m
ki

(0) · exp(ej · t) (2.26)

p̃m
ki−1(t) = p̃m

ki−1(0) · exp(ej · t) + t · p̃m
ki

(0) · exp(ej · t) (2.27)

p̃m
ki−2(t) = p̃m

ki−2(0) · exp(ej · t) + t · p̃m
ki−1(0) · exp(ej · t)

+
1

2
t2 · p̃m

ki
(0) · exp(ej · t) (2.28)

...

p̃m
1 (t) =

ki∑
l=1

1

(l − 1)!
· p̃m

l (0) · tl−1 · exp(ej · t). (2.29)

Carrying out this construction for every Jordan block yields the com-
plete solution for the system of coupled differential equations. The N
integration constants pm

i (0) can again be chosen such that the solution
of the original system p(t) = S · p̃(t) obeys the given initial conditions
p(0).

2.4.2 Discrete Time

Very often a description of a random walk is needed which does not show
a continuous change of the state probabilities. For example, a walk which
performs a series of “hops” from one state to another at discrete times
changes the probability of a state abruptly. To describe such a process a
discrete master equation can be used.

A Taylor expansion of p(t + ∆t) for small ∆t to first order yields

p(t + ∆t) ≈ p(t) + ∆t · d

dt
p(t). (2.30)

A combination with (2.7) results in an approximated, discrete-in-time
master equation,

p(t + ∆t) = p(t) + ∆t · Γ(t) · p(t) (2.31)

= [1 + ∆t · Γ(t)] · p(t) (2.32)

= Γd(t) · p(t). (2.33)
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The diagonal elements of the new transition matrix Γd(t) are

Γd
jj(t) = 1−∆t ·

N∑
i=1,i6=j

Γij(t), hence,
N∑

i=1

Γd
ij = 1∀j. (2.34)

Therefore, the sum of the elements of p(t) remains the same after an
application of Γd. In other words, normalization is ensured here, too.

We are free to choose ∆t = 1 to define our time scale, but conse-
quently we are forced to scale the entries of Γd according to (2.34). They
must obey

Γd
ij ≥ 0 and

N∑
i=1

Γd
ij = 1∀j, i. e., Γd

ij ≤ 1. (2.35)

A matrix with such entries is called stochastic. Furthermore, setting
∆t = 1 has the effect that (2.33) is only a good approximation for the
continuous master equation (2.7) if the non-diagonal entries of Γd are
very small, leading to only small changes of the state probabilities per
time step.

Generally, Γd can be used to model any Markov process due to
these processes being inherently discrete in time. Absorbing states are
represented by a corresponding column with all entries equal to zero
except the one on the main diagonal. Transient states are represented
by a corresponding row with all entries equal to zero.

From now on the superscript (.)d will be suppressed, because this
discrete-time description is the one which will be used throughout the
rest of the present work. This is due to the fact that the dynamics which
will be used is merely discrete in time: the transitions from one state to
another are never continuous in problems investigated here, but can be
considered to be jumps at certain points in time. The master equation
then reads

p(t + 1) = Γ(t + 1) · p(t). (2.36)

The labeling of the transition matrices has also been shifted by 1. This
does not affect the time development of the state probabilities, but is the
notation used in the literature. This shift refers to practical implementa-
tions in which at every time step the new transition matrix is calculated
first and then applied to the vector of the state probabilities.

If Γ is not a function of t at all there is again the possibility to solve
(2.36) by employing the eigenvalues ei and corresponding eigenvectors ei
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of Γ. We have

p(t + 1) = Γ · p(t), hence, p(t) = Γt · p(0) (2.37)

and, assuming that Γ is diagonalizable,

D = E−1 · Γ ·E (2.38)

D2 = (E−1 · Γ ·E)(E−1 · Γ ·E) = E−1 · Γ2 ·E (2.39)
... (2.40)

Dt = E−1 · Γt ·E (2.41)

Again, with p̃(0) = E−1 · p(0), we can transform the original system of
equations into

p̃(t) = Dt · p̃(0) = diag(et
1, e

t
2, . . . , e

t
N) · p̃(0), (2.42)

which enables an immediate solution for every time step t. Furthermore,
the p̃i(0) are just the coefficients of a linear combination of the eigenvec-
tors to represent p(0).

If Γ is not diagonalizable there is again the possibility to transform
it into Jordan normal form J . With the appropriate similarity matrix
S we have again

J t = S−1 · Γt · S. (2.43)

The system

p̃(t) = J t · p̃(0) (2.44)

with p̃(0) = S−1p̃(0) can be solved by evaluating the t-th power of J .
This can be carried out by first evaluating the t-th power of the Jordan
blocks, and then forming the direct sum of these powers. For a Jordan
block Jki

(ej) to eigenvalue ej

Jki
(ej) · Jki

(ej) =


ej 1 0

. . . . . .
. . . . . .

. . . 1
0 ej



2

(2.45)

=


e2

j 2ej 1 0
. . . . . . . . .

. . . . . . 1
. . . 2ej

0 e2
j

 (2.46)
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and all higher powers can be computed by a repeated matrix multiplica-
tion. The first row of [Jki

(ej)]
t reads

[J(ej))]
t
1 =

(
et

j tet−1
j

1
2
t(t− 1)et−2

j . . . 1
(ki−1)!

∏ki−2
l=0 (t− l)et−1

j

)
(2.47)

All following rows can be constructed by shifting the first row to the right
and filling the leading entry with 0, i. e.,

[J(ej)]
t
2 = (0 et

j tet−1
j

1
2
t(t− 1)et−2

j . . . )

[J(ej)]
t
3 = (0 0 et

j tet−1
j . . . )

...

(2.48)

This construction, performed for every Jordan block, enables the im-
mediate computation of arbitrary powers J . Hence, with appropriate
p̃(0), the system (2.37) has been solved.

Some remarkable facts about stochastic matrices in general should be
given here. We denote the spectrum of a matrix A with σ(A), and the
spectral radius with ρ(A) = maxi(|ei| : ei ∈ σ(A)). It can be shown
that the spectral radius ρ(B) of a nonnegative matrix B, Bij ≥ 0, is an
eigenvalue of B, and the corresponding eigenvector b can be chosen to
be nonnegative, too, bi ≥ 0 [17]. Hence, in this case the eigenvalue with
the largest absolute value is a nonnegative real number.

Stochastic matrices are, by definition, nonnegative matrices. That
means, for a stochastic matrix C and the eigenvalue/eigenvector pair
ρ(C)/c we have

C · c = ρ(C) · c (2.49)

We scale c in such a way that the sum of its entries equals 1. After an
application of C the sum must be 1 again. As c is an eigenvector, we
can therefore state

C · c !
= 1 · c, (2.50)

hence,

ρ(C) = 1. (2.51)

Therefore, the largest eigenvalue of a stochastic matrix is 1. Due to this
fact there always exist stationary distributions, which are linear combi-
nations of the eigenvectors to eigenvalue 1. If, in addition, the Markov
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chain is irreducible then the eigenvalue 1 is simple. The correspond-
ing unique eigenvector with component sum 1 is also called the Perron
vector p∗ [17]. An initial distribution might develop into a stationary
distribution p∗, but this need not be the case [15].

If the stationary distribution can be guaranteed to be the limit of
(2.36) for t →∞ and an arbitrary initial distribution the Markov chain
produced by the transition probabilities is called ergodic. For example,
irreducible, aperiodic and positive-recurrent Markov chains are ergodic
[15].

In general, whether a system is ergodic or not can be decided by
calculating the n-th power of its transition matrix Γ. If

Γn
ij > 0 for some n ≥ n0 ∈ N for all i, j, (2.52)

i. e, Γn is a positive matrix, then it can be shown that the limit limn→∞ Γn

exists, and

Γ∞ := lim
n→∞

Γn = [p∗|p∗| . . . |p∗] (2.53)

Hence, if Γ∞ij > 0 for all i, j then the system is ergodic.1 To show this we
consider an arbitrary initial distribution i to be a linear combination of
probability vectors v1, v2, . . . ,vN with vi = (δ1i, δ2i . . . , δNi)

tr,

i =
N∑

i=1

ai · vi with ai ≥ 0,
N∑

i=1

ai = 1. (2.54)

Then

Γ∞ · i = Γ∞ ·

(
N∑

i=1

ai · vi

)
=

N∑
i=1

ai · Γ∞ · vi =
N∑

i=1

ai · p∗

= p∗, (2.55)

any initial distribution converges to the limit distribution.
The stationary distribution should not be confused with an equilib-

rium distribution (see also [18, 19, 20]). In equilibrium there is no net
flow of probability between any two microscopic states; the system is said
to obey detailed balance

Γji · p∗i = Γij · p∗j . (2.56)

1Sometimes, this condition is relaxed a little bit: at least in [15] Γ∞ij ≥ 0 is also
allowed. In that case, the stationary solution might also contain entries equal to 0.
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This property need not be fulfilled by a stationary distribution. There-
fore, all equilibrium distributions are stationary distributions, but not
vice versa.

Let us close with four small systems to explain the given definitions.
In fig. 2.2 a system of four states is given. Every state is represented
by a large dot, and the transition probabilities are represented by an
arrow with the corresponding value. The transition probabilities have
been varied from (a) to (d), giving the transition matrices

Γ(a) =

[
0 0 0 0
1 0 0 1
0 1 0 0
0 0 1 0

]
Γ(b) =

[
5/6 0 0 0
1/6 1/3 3/4 3/4
0 1/3 1/4 0
0 1/3 0 1/4

]

Γ(c) =

[
5/6 1/6 0 0
1/6 1/6 1/2 3/4
0 1/3 1/4 0
0 1/3 1/4 1/4

]
Γ(d) =

[
5/6 1/6 0 0
1/6 1/6 3/4 3/4
0 1/3 1/4 0
0 1/3 0 1/4

] . (2.57)

The corresponding matrix powers Γ∞
(·) can be calculated by diagonaliza-

tion,

limn→∞ Γn
(a) does not exist Γ∞

(b) =

[
0 0 0 0

9/17 9/17 9/17 9/17
4/17 4/17 4/17 4/17
4/17 4/17 4/17 4/17

]

Γ∞
(c) =

[
27/82 27/82 27/82 27/82
27/82 27/82 27/82 27/82
6/41 6/41 6/41 6/41
8/41 8/41 8/41 8/41

]
Γ∞

(d) =

[
9/26 9/26 9/26 9/26
9/26 9/26 9/26 9/26
2/13 2/13 2/13 2/13
2/13 2/13 2/13 2/13

] .

(2.58)

As can be seen, system (a) is not ergodic, and only evolves to its
stationary distribution (0, 1/3, 1/3, 1/3)tr if a proper initial condition is
chosen. System (b) always converges to its stationary state, but is not
ergodic, because the probability to be in state #1 tends to 0. System (c)
is ergodic, but does not obey detailed balance; it has a stationary but no
equilibrium distribution. System (d) is ergodic and has detailed balance;
its stationary distribution is also an equilibrium distribution.
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Figure 2.2: Diagrams of a system with four states. The numbering of
the states #1 to #4 is given in (a). The different transition probabilities
are represented by arrows. System (a) is non-ergodic, with no limiting
distribution. System (b) is also non-ergodic, but converges to a limiting
distribution regardless of the initial distribution. System (c) is ergodic,
but its stationary distribution does not obey detailed balance. System
(d) is ergodic, and the stationary distribution obeys detailed balance.
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Chapter 3

Stochastic Optimization as a
Markov Process

In this chapter a special view on stochastic optimization processes is de-
veloped: they can be described as Markov processes. Together with
control theory it is possible to deduce an optimal steering of them. We
start with a description how this can be carried out in the case of Sim-
ulated Annealing and Threshold Accepting. Numerical evidence that
Threshold Accepting outperforms Simulated Annealing leads to an ana-
lytical proof that this is always the case.

Furthermore, this proof is extended to cover even Extremal Opti-
mization. A special implementation – Fitness Threshold Accepting – is
applied to real systems, and the optimal control formalism is able to
deliver optimal fitness threshold schedules.

3.1 Annealing-Like Dynamics

Historically, stochastic optimization had been introduced as a means to
circumvent the enormous effort to enumerate a combinatorial optimiza-
tion problem. Instead of being sure to find an optimal solution it is
hoped for that the probability to find the ground state or other low lying
states can be made very high. Indeed, a very large number of investiga-
tions proved that stochastic optimization delivers very good solutions in
acceptable time.

With the seminal work of Kirkpatrick et al. [21, 22] and Černy
[23] a first physically motivated stochastic optimization scheme – dubbed
Simulated Annealing (SA) – was developed. It is based on the transition

25
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rates given by the Metropolis sampling technique [24]. This sampling
is widely used in the simulation of thermal properties of physical systems,
its acceptance probability is

PMe
βα =

{
1 if H(β)−H(α) ≤ 0,
exp

(
− 1

T
(H(β)−H(α))

)
otherwise,

(3.1)

with a temperature T scaled such that the Boltzmann constant kB

equals one. A random walker explores the state space according to (3.1),
but the temperature is time-dependent and lowered at every step accord-
ing to a prescribed schedule T = T (t). The walker falls down into local
minima, but does not get stuck in these. Instead, he is able to climb
barriers with some probability. The idea is to make the probability to
be in the ground state at the end of the run as high as possible by a
very careful adjusting of T (t). This is analogue to the annealing of a,
say metal melting, which can also be turned into a mono-crystal – the
configuration or state with the lowest energy – by careful lowering the
temperature.

The computation of the exponential function in (3.1) is relatively
costly. To speed up the algorithm, Dueck et al. [25] and Moscato and
Fontanari [26] changed it into the evaluation of a step function,

P TA
βα =

{
1 if ∆E ≤ T,
0 if ∆E > T.

(3.2)

with ∆E = H(β) − H(α). An algorithm with these transition prob-
abilities is called Threshold Accepting (TA). Another technique, called
Tsallis statistics, has also been introduced [27, 28, 29]. Its transition
probabilities depend on another parameter q,

P TS
βα =


1 if ∆E ≤ 0,(
1− 1−q

f(q)
∆E
T

) 1
1−q

if ∆E > 0 and 1−q
f(q)

∆E
T
≤ 1

0 if ∆E > 0 and 1−q
f(q)

∆E
T

> 1.

(3.3)

Originally, f(q) = 1 was chosen. With a slight change given in [30],

f(q) =

{
2− q if q < 2,
1 if q ≥ 2,

(3.4)

this modified Tsallis statistics gives the original Tsallis statistics for
q ≥ 2, the limit q → 1 yields (3.1), and q → −∞ gives (3.2) [31].
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Therefore, (3.3) serves as generalization of all three strategies, which are
selectable by the corresponding value of q.

In this sense stochastic optimization is just a Markov process as de-
scribed the previous chapter. From a current state a neighboring one is
selected with some probability and accepted with some probability. The
most important feature of stochastic optimization is that the Markov
chains produced are inhomogeneous. The transition matrix Γ depends
on the time due to the acceptance probabilities being time-dependent.
This dependence is coded as the prescribed, more or less arbitrary sched-
ule T (t). The outcome of an optimization depends heavily on a good
selection of T (t) [32]. Most often used are linear-in-time falling and ex-
ponential decreasing temperatures. The most important observation is
that with a temperature schedule which cools too fast the system freezes:
the random walkers then tend to get stuck in possibly high lying local
minima, because the probability to escape these becomes too small too
rapidly.

3.2 Stochastic Tunneling

The annealing-like algorithms described above try to circumvent the vul-
nerability of random walkers to get stuck in local minima by a tempera-
ture dependent acceptance probability. Another idea is to transform the
energy landscape in such a way that local minima are flattened out, and
barriers can be overcome easier. A corresponding method is Stochastic
Tunneling (STUN) [33].

Instead of moving random walkers on the original energy landscape
H(s) the landscape is transformed into HSTUN(s) due to

HSTUN(s) = 1− exp(−γ[H(s)−H0]), (3.5)

preserving the locations of the original minima. An adjustable tunneling
parameter γ is introduced. The energy of the lowest minimum found so
far is denoted with H0. Random walkers moving on HSTUN seem to “tun-
nel” barriers of the original landscape. A fixed temperature is employed,
hence, the whole process can be interpreted as an Metropolis proce-
dure on the original landscape with an energy-dependent temperature.
In fig. 3.1 the effect of the non-linear transformation (3.5) is shown for a
one-dimensional toy landscape.

Stochastic Tunneling has been applied with great success to spin
glasses, TSP problems and “low-autocorrelation binary sequences”. Such
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Figure 3.1: Schematic plot of Stochastic Tunneling. The original 1D
energy landscape in (a) is explored by a random walker coming in from
the left. The transformation due to better and better successive minima
is shown in (b) - (d). The location of the minima is preserved; still
unknown minima are enhanced. In (d) the ground state has been found.
Then the entire landscape is mapped onto the interval [0, 1].

sequences are equivalent to a one-dimensional spin-1/2 chain of length
N with energy

E =
1

N

N∑
k=1

[
N−k∑
j=1

sjsj+k

]2

. (3.6)

3.3 Discrete Control Theory and Optimal

Schedules

The question arises which schedule T (t) gives the best optimization re-
sults. Before an argument about that can be done a way of measuring the
performance of an optimization algorithm must be given. Assuming a
total of S optimization steps made we describe the Markov chain of the
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optimization process on the discrete state space with the master equa-
tion (2.36). The state probabilities of the last step are p(S). We define
an objective function which depends linearly on that state probabilities,

o := E · p(S), (3.7)

which is just a scalar, and try to minimize it by selection of the proper
sequence of transition matrices, i. e., the proper temperature schedule.
The numbers in the vector E depend on the type of measure we are
interested in. The most frequently used objectives are the following [31,
34, 35].

(O1) The final mean energy should be as small as possible.

(O2) The final probability of ending up in the ground state should be
as large as possible.

(O3) The expected number of visits to the ground state should be as
large as possible.

(O4) The probability of visiting the ground state during the optimiza-
tion run should be as large as possible.

(O5) The mean final best-so-far (BSF) energy Ebsf [36, 37, 38] should
be as small as possible. The best-so-far energy describes the lowest
energy found during a random walk.

The first two objectives are easy cope with. If the mean energy has
to be minimized, then E contains the state energies H(α); if we want to
maximize the probability to be in the ground states, then all numbers are
zero except the ones corresponding to the ground states, which are −1.
The remaining three objectives require a more cumbersome description
of the random walks to be performed. To describe them we introduce
extended Markov chains.

3.3.1 An Extension of the Markov Chains – Absorb-
ing States

In order to be able to determine objectives (O3) – (O5) we turn all states
at or below an energy E into absorbing states [39]. The transition matrix
is modified to be

Γβα;E(t) =

{
δβα if E ≤ H(α),
Γβα;E(t) if E > H(α).

(3.8)
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Here, δβα denotes Kronecker’s delta. A random walker reaching a
state with or below energy E is trapped at that state. The associated
probability distribution

pβ;E(t) =
∑
β∈Ω

Γβα;E(t) · pα;E(t− 1) (3.9)

denotes the probability of being in state α of the modified chain after t
steps. If H(α) > E it is the same as the probability of being in state
α in the unmodified walk and not having visited any states with energy
less than or equal to E before t. Therefore,

BE(S) =
∑

β:H(β)≤E

pβ;E(S) (3.10)

gives the probability of having visited a state with energy less than or
equal to E up to time S.

Before we express objectives (O3) – (O5) we introduce a compact
matrix notation for the master equation for our modified chains. Due
to the finiteness of the state space under consideration we can sort all
possible energies and label them Er, r = 0, . . . , R. The label r = 0,
which we introduce for convenience only, denotes an arbitrary energy
lower than the ground state energy E1. We denote all probability vectors
with pEr(t) = {pβ;Er(t)}. Their time development is again

pEr(t) = ΓEr(t) · pEr(t− 1). (3.11)

These R + 1 matrix equations can be combined into one, written as

q(t) =


pE0(t)
pE1(t)

...
pER

(t)

 (3.12)

=


ΓE0(t) 0 · · · 0

0 ΓE1(t) · · · 0
...

...
. . .

...
0 0 · · · ΓER

(t)

·


pE0(t− 1)
pE1(t− 1)

...
pER

(t− 1)

 (3.13)

= Γ̂(t) · q(t− 1) (3.14)

As we have L = |Ω| states and R + 1 different energies we have now
a linear system of L(R + 1) equations. The time development of the
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unmodified walk is contained in the first L entries qγ(t), γ = 1, . . . L of
q(t).

Now the distribution of the mean BSF energy 〈Ebsf〉 can be expressed
as follows. We calculate the probabilities

bEr(S) = BEr(S)−BEr−1(S), r = 1, . . . , R (3.15)

within this extended random walk formalism. We have BE0 = 0, since
no walker can reach a state with energy below the ground state energy,
and

〈Ebsf(S)〉 =
R∑

r=1

bEr(S) · Er (3.16)

=
R∑

r=1

Er

[
BEr(S)−BEr−1(S)

]
(3.17)

=
R∑

r=1

Er

 ∑
β:

H(β)≤Er

pβ;Er(S)−
∑

β:

H(β)≤Er−1

pβ;Er−1(S)

 (3.18)

=
R∑

r=1

Er

 ∑
β:

H(β)≤Er

qLr+α(S)−
∑

β:

H(β)≤Er−1

qL(r−1)+α(S)

. (3.19)

We define an extended objective function õ to measure the perfor-
mance of an optimization run which is described by the just introduced
extended Markov chains,

õ =
S∑

t=1

Ẽ(t) · q(t) → min . (3.20)

The scalar õ is a function of all vectors q(t). The sequence of vectors
Ẽ(t), each an L(R + 1)-tuple of numbers, measures the performance of
the chain, and is in general arbitrarily selectable. As the q(t) depend on
the sequence of transition matrices, the minimum of õ has to be taken
over all possible sequences.

Due to the unmodified walk being contained in the extended dynamics
employing absorbing states, objectives (O1) and (O2) are describable
with an appropriate sequence Ẽ(t), too. But now also objectives (O3) –
(O5) are measurable; the corresponding numbers Ẽγ are:
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(O1) (minimizing the mean final energy)

Ẽγ(t) = 0 for t < S, Ẽγ(S) = H(γ) for γ ≤ L, Ẽγ(S) = 0 for γ ≥ L

(O2) (maximizing the final ground state probability)

Ẽγ(t) = 0 unless t = S, γ ≤ L and H(γ) = E1, in which case
Ẽγ(S) = −1

(O3) (maximizing the expected number of visits to the ground state)

Ẽγ(t) = 0 unless γ ≤ L and H(γ) = E1, in which case Ẽγ(t) = −1

(O4) (maximizing the probability of visiting the ground state)

Maximize bE1(S): Ẽγ(t) = 0 unless t = S and L < γ ≤ 2L, in
which case Ẽγ(S) = −1

(O5) (minimizing the mean BSF energy)

Ẽγ(t) = 0 for t < S,

ẼLr+α(S) = 0 for r ∈ {0, . . . , R − 1}, α ∈ {1, . . . , L} and H(α) >
Er,

ẼLr+α(S) = Er − Er+1 for r ∈ {0, . . . , R − 1}, α ∈ {1, . . . , L} and
H(α) ≤ Er,

ẼLR+α(S) = ER for α ∈ {1, . . . , L}

With these definitions statements about how good or bad an algorithm
performs can easily be made. Although these do not form a complete set
of possible measures, they cover the most often used.

The question remains how õ can be minimized technically. It is easy
to see that testing all possible sequences of transition matrices Γ̂, i. e.
enumerating the set of all sequences, is impossible due to the huge number
of sequences. But it has been shown that the development of an iterative
algorithm which successively improves a first “sequence guess” is possible.

3.3.2 Optimal Sequences of Transition Matrices

The task to minimize õ with respect to a measure (O1)-(O5) in the
present context can be understood as a discrete control problem. We
need to choose a control – a schedule T (t) – leading to a minimal õ,
prescribing the optimal sequence of transition matrices for our stochastic
optimization and giving the corresponding sequence q(t).
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We have to minimize õ. In the minimum the first variation has to be
zero. Surely, the first variation of the objective function can only depend
on the entries of q(t) due to the numbers Eγ being fixed,

δõ =
S∑

t=1

L(R+1)∑
γ=1

dõ

dqγ(t)
δqγ(t), (3.21)

Furthermore, the vectors q(t) have to be the solution of the master
equation (3.14), the transition matrices of which are given by the sched-
ule. We introduce Lagrange parameters [31, 40] Λ(t), transforming
the original objective õ into

õ =
S∑

t=1

Ẽ(t) · q(t)

+
S−1∑
t=0

[Λ(t + 1)]tr ·
[
Γ̂(T (t + 1)) · q(t)− q(t + 1)

]
(3.22)

=
S∑

t=1

Ẽ(t) · q(t)

+
S−1∑
t=0

[Λ(t + 1)]tr ·Γ̂(T (t + 1))·q(t)−
S∑

t=1

[Λ(t)]·q(t) (3.23)

=
S∑

t=1

(
Ẽ(t)− [Λ(t)]

)
· q(t)

+
S−1∑
t=0

[Λ(t + 1)]tr · Γ̂(T (t + 1)) · q(t) (3.24)

Our control is the schedule T (t), which is also subject to variation.
Therefore, the first variation of õ reads

δõ =
S∑

t=1

(
Ẽ(t)−Λ(t)

)
· δq(t) (3.25)

+
S−1∑
t=1

[Λ(t + 1)]tr · Γ̂(T (t + 1)) · δq(t) (3.26)

+
S−1∑
t=0

∂
(
[Λ(t + 1)]tr · Γ̂(T (t + 1)) · q(t)

)
∂T (t + 1)

·δT (t + 1) (3.27)
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Note that the starting distribution is fixed, δq(0) = 0. As δõ = 0 must
hold for any arbitrary δq(t) we finally get

Λ(S) = Ẽ(S), Λ(t) = Ẽ(t) +
[
Γ̂(T (t + 1))

]tr
·Λ(t + 1), (3.28)

and [Λ(t + 1)]tr · Γ̂(T (t + 1)) · q(t) must be in a minimum according to
T (t + 1).

An iterative procedure to calculate the optimal schedule T (t) for the
unmodified chain has been developed [40] an shown to be convergent, but
specialized for the case Ẽ(t) = 0 unless t = S. It is easily extendable for
the modified version of the walks. This algorithm starts with an arbitrary
schedule, and goes as follows, with i denoting the iteration step:

1. Compute qi=0(t + 1) = Γ̂(T i=0(t + 1)) · qi=0(t), t = 0, . . . , S − 1.

2. Compute Λi(t − 1) = Ẽ(t − 1) +
[
Γ̂(T i(t)

]tr
· Λi(t), t = S, . . . , 2.

The Lagrange parameters get shifted by the fixed numbers Eγ(t),
compared with the original version of this algorithm.

3. Compute T i+1(t+1) such that [Λi+1(t + 1)]
tr ·Γ̂i+1(T (t+1))·qi+1(t)

has a minimum, determine qi+1(t + 1) = Γ̂(T i+1(t + 1)) · qi+1(t),
t = 0, . . . , S − 1. Compute õi+1 via (3.20).

4. Compare õi+1 with the previous value õi, check whether the differ-
ence is smaller than a chosen accuracy. If not, go back to 2.

We are now able to compute an optimal sequence of transition matrices
depending on a control T (t) for a given performance measure.

3.4 Tree Dynamics

The master equation (3.14) in combination with the algorithm given in
sec. 3.3.2 is a powerful means to describe a stochastic optimization pro-
cedure. But due to the very large cardinality even of small optimization
problems the calculation of the control T (t) is not possible for the original
corresponding state space. Therefore, to make theoretical investigations
possible coarse grained models of state spaces have been developed.

It has been shown that many of the properties of a complex state
space can be modeled by tree-like structures [41]. These consist of a set
of nodes which are connected by edges. The nodes represent the local
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Figure 3.2: A landscape can be modeled by tree-like structures. Nodes
lump microstates together and represent local minima and barriers.
Edges connect nodes, representing possible paths in the original state
space. Such trees can be extracted according to some predefined rules
from the original state space, or set up in an empirical way.

minima as well as barriers between them, whereas the edges represent
possible paths in the state space from one minima to another over the
barriers. Random walkers – i. e., probability – populating a node are
allowed to transit or hop to connected nodes. The transition rate is
adjustable after every time step. In fig. 3.2 a possible tree representing
the landscape of fig. 2.1 is depicted.

Such models mimic the dynamics of the original state space very
well [42], but are numerically much cheaper. It is possible to create
coarse grained, tree-like structure automatically from a given state space
based on a set of rules [42, 43, 44], but here it suffices to employ even
simpler models. We use them to model stochastic optimization processes,
and to calculate optimal controls. Following [31] we employ hierarchical
barrier systems. Such models exhibit an important property of the origi-
nal state space. They offer energy barriers of different height. These can
be considered the obstacles in the way of the random walker searching
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Figure 3.3: The tree-like structures can be further simplified to hierar-
chies, consisting of different barrier heights. The nodes are numbered in
way which simplifies setting up the probabilities to select a neighboring
node Π. This tree has four levels.

for the ground state. In fig. 3.3 such a hierarchy of nodes is shown, to-
gether with a numbering which makes it easy to set up the corresponding
probabilities Πβα.

Each node is situated on a so-called level. The top node on level l = 1
has label 1. The left connected node on the next deeper level has label
2l, the right one 2l + 1. Furthermore, every node α has an energy Eα. It
lumps together many of the states of the original state space, therefore
we define a degeneracy gα for each. For many systems, an exponentially
increasing degeneracy has been found [45], so we choose

gα := 2Eα . (3.29)
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An often used choice for Πβα is

Πβα = c ·
{

0 if β 6∈ N (α),
gβ if β ∈ N (α),

(3.30)

which we will also use here.

With this description we are able to calculate optimal schedules T (t)
for hierarchical binary trees of different node numbers for various values
of the parameter q of the modified Tsallis statistics (3.3). As we will see
later, two values for q are the most interesting: q → 1, as this denotes
the original SA and is therefore of special interest, and q → −∞, as
this denotes TA, which is within the framework developed so far the
best possible strategy. A proof for this statement will be given later.
Therefore, we will only deal with this two “extremes”.

3.5 Optimal Schedules for Simulated An-

nealing and Threshold Accepting

To get a feeling for the shape of optimal schedules we have a look on
some selected examples. For a tree of four levels optimal schedules for
SA as well as TA and varying performance measures have been calculated.
Following [31] the temperature interval T ∈ [0,∞] has been mapped onto
x ∈ [0, 1] by

x := exp(−1/T ) (3.31)

with x → 0 for T → 0 and x → 1 for T → ∞. The possible range for x
has been divided into 1000 parts; the minimization in the third step of
the given algorithm to compute the optimal schedule was done by testing
all 1001 possible values.

In fig. 3.4 the optimal schedule for maximizing the probability to be
in the ground state after of 100000 steps has been calculated. In the case
of TA a “hopping” between different temperatures can be observed. This
is due to the nature of the process of calculating the optimal schedule:
for TA there are many different optimal schedules, the one chosen by the
algorithm simply depends on the initial guess. The optimal SA does not
show this behavior.

For comparison, the same procedure has been performed for 1000000
steps in fig. 3.5. In principle, the schedules look the same, but here it
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Figure 3.4: Optimal temperature schedules for Simulated Annealing and
Threshold Accepting for a tree of four levels, maximizing the final prob-
ability to be in the ground state with 100000 steps. (For clarification
only every 500th step has been plotted.) The hopping between different
temperatures in the framed areas is due to the nature of the algorithm
employed to calculate the optimal schedule. In the case of TA (and for
long run times), there are many optimal algorithms; the algorithm simply
finds one of them.

becomes evident that the optimal schedule for SA is a series of 1/ ln(T )-
like schedules. To see this, an appropriate fit to the SA data for steps
700000 − 900000 has been done. The same – not shown here – can
also be done for steps 100000 − 300000. For infinite run times it can
be shown that with such schedules the ground state can be found with
certainty [46].

In all cases TA outperforms SA, i. e., the measured probabilities to
be in the ground state at the end of the runs were larger in the case of
TA than in the case of SA (see also [31]). The question whether it can be
proved mathematically that TA offers highest performance within this
class of optimization heuristics is answered in [34, 35].
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Figure 3.5: Optimal temperature schedules for Simulated Annealing and
Threshold Accepting for a tree of four levels, maximizing the final prob-
ability to be in the ground state with 1000000 steps. (For clarification
only every 5000th step has been plotted.) The hopping observed in the
previous figure is present here, too, but not noticeable at this scale. The
inset shows a fit of a 1/ ln(T )-like schedule adapted to the SA data for
times 700000− 900000. The same (not shown) can be done for the time
span 100000− 300000; the optimal schedule is a chain of such truncated
schedules (see also [47]).

3.6 Extremal Optimization as a

Markov Process

Annealing-like optimization algorithms are in principle generic methods.
Only two ingredients are needed: a move class and a time-dependent
acceptance probability. These rather mild prerequisites are met in most
of the optimization tasks. But surly, a generic method need not be the
one with highest performance for a special problem. Therefore, many
problem-specific algorithms have been developed, taking into account
special properties of the underlying state space and energy function in
question.
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One of these algorithms is the Extremal Optimization (EO) heuris-
tics of Boettcher and Percus. It is of special interest because it
combines enhanced performance with a still more or less general stochas-
tic approach to explore the state space. Before being concerned with
open questions about the algorithm we will have a look on the general
idea and the class of problems which can be solved with EO.

3.6.1 Basic Idea

In many of the combinatorial optimization problems the states offer an
additional structure. They consist of many small parts which contribute
to the total energy. Some of them contribute large amounts, whereas
others contribute small amounts. For example, a traveling salesman’s
tour is a collection of short and long parts. We would consider the short
parts of the total tour “well adapted” or “fit”, and the long parts “un-
adapted” or “unfit”. Another example is that of the state of a spin glass
model. All spins experience a local field, given by the current orienta-
tions of the neighboring spins and the interaction constants. As all spins
have only two possible orientations some spins will be aligned parallel to
the local field, others anti-parallel. Hence, they will contribute small or
large amounts of energy to the total energy of the state, respectively.

In the context of optimization it is clear that we are interested in
states which consist only of “fit” parts. Those states are the ones with
an all-in-all small, if not the smallest, energy. In order to take advan-
tage of that additional feature Boettcher and Percus developed EO:
changing the current state during an optimization process is done by only
changing an extremal part of the state [48, 49, 50, 51].

Before the algorithm itself is outlined a few words about the definition
of the fitness of a part of the solution must be given. First of all, the
energy of the whole state i has to the sum of the contributions εk of the
individual parts or degrees of freedom (DOF) k, k = 1, . . . , n,

Ei =
n∑

k=1

εk. (3.32)

Each value εk might depend on the current state, i. e., it is related to
the value of the other degrees of freedom (DOF). A DOF k is fit if εk is
small, otherwise it is unfit. Therefore, we define the fitness λk to be

λk := −εk. (3.33)
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For example, in the graph partitioning problem the fitness of a vertex
of a subset could be defined as λk = −bk/2, with bk being the number of
connections to vertices of the other subset. A spin si in the configuration
S of a spin glass has a fitness

λsi
:= Blocal(S) · si, (3.34)

which is the negative of the potential energy of the spin due to the current
local field Blocal(S) the spin experiences.

With this preparation the first version of EO went as follows:

1. Select an initial state.

2. For the current state, calculate the fitnesses λk. Create a ranking
by sorting all DOF by their fitness in ascending order. DOF with
low fitness have a low rank, those with high fitness have a high
rank.

3. Select a new state so that the DOF with lowest rank must change.
Accept this state unconditionally.

4. Measure the best-so-far energy. Iterate by going to step 2 until
some stopping criterion is met.

Originally the idea of simply changing the worst part of the state
was due to the Bak-Sneppen model of evolution [52]. In contrast to
the idea behind evolutionary algorithms, namely “breeding the good”,
the Bak-Sneppen model formulates a co-evolutionary process by “elim-
inating the bad”. Some specialties of the Bak-Sneppen model are also
very attractive for a general purpose optimization algorithm (taken and
adapted from [52, 53]):

• The system evolves into a self-organized critical state. Almost all
species then have a much better than random fitness.

• Most species offer a good fitness even for long times. Unless they
are connected to poorly adapted species, they do not go extinct.

• Perhaps most important is the observation that the system “re-
tains a potential for large, hill-climbing fluctuations at any stage”
and “the model accomplishes these features without any control
parameters.”
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Indeed, the requirement to accept all proposed states uncondition-
ally causes high fluctuations at every time. In contrast, a SA run shows
equivalent fluctuations only at high temperatures. In this sense EO cir-
cumvents the problem of freezing observed in conventional SA. EO, due
to the large fluctuations, easily climbs barriers, and probes many local
minima.

The Markov chains of the original EO method are reducible, as
some states might not be reachable by others due to the given transition
probabilities. Another specialty of EO is that all diagonal elements of
the corresponding transition matrix are zero, because a random walker
is always forced to leave the current state in the next step.

But the procedure, implemented in this way, has a drawback. If, for
some reason, the worst DOF can only be changed into one new value then
the whole EO process might become a deterministic search. An example
is the spin glass model with two possible values for a spin. Changing
the worst spin can only be done in one way, which makes the chain of
subsequent states predictable. This leads to “dead ends” in the sense of
the search for the ground state, as the system might periodically come
back to one and the same state.

3.6.2 Avoiding Dead Ends

In order to avoid the dead end effect, EO has been developed further in
the following way. Instead of always selecting the least rank also higher
ranks are selected to be changed. At each step a probability distribution
over the ranks is employed. Originally, a distribution

dk ∼ k−τ , τ > 0 (3.35)

was used, introducing a single parameter τ . This parameter is unknown
a priori, and has to be fine-tuned. An EO method employing such a
distribution is called τ -EO [54, 55, 56, 57].

The choice of functional shape of this distribution is arbitrary, but
a motivation is given in [54]. Selecting a power-law distribution secures
that every regime of fitness is included in the further evolution, because
dk varies in a gradual scale-free manner over the ranks.

With such a distribution over the ranks the EO heuristics is able to
produce irreducible chains. In this case any state is reachable from any
other state, given an appropriate move class. But τ -EO need not be
ergodic.
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EO and τ -EO have been applied to a large testbed of problems, in-
cluding spin glasses, graph bi-partitioning, traveling salesman problems,
graph coloring and image alignment [58]. Where tested against it, τ -EO
seems to outperform SA, even with fine-tuned schedules. Nevertheless,
the question arises whether there exists an analytical proof that a spe-
cial implementation of EO offering highest performance. Of course, there
must be a parameter τ which does best, but is the power law distribution
itself really a good choice?

3.7 A Provably Optimal Implementation

We have seen that in order to avoid a deterministic search for the ground
state a probability distribution over the ranks has to be employed. Ob-
viously, the performance of the whole EO process must depend on that
distribution. Immediately the question arises whether there is a best
one, and if so, how it looks like. Chances are that the originally chosen
distribution ∼ k−τ might not be the optimal one.

Based on numerical studies similar to the ones performed in sec. 3.5
Franz et al. were able to realize a proof showing that indeed TA is
the best possible algorithm to find ground states within the class of
“annealing-like” methods [34, 35]. This result is especially interesting, as
mathematically proved results are very rare among the publications in
the field. Could this proof be generalized to cover even such a “unusual”
dynamics like the one introduced by EO?

It is indeed possible, as we have shown in [59, 60]. Here, an arbitrary
distribution d(k) over the n ranks k is considered a vector dt of dimension
n. Of course, this vector is dependent on the time t. Each entry dt

i,
representing the probability to select and change the corresponding rank,
can vary between 0 and 1. Furthermore, it seems reasonable to select low
ranks with more probability than high ranks, so

1 ≥ dt
1 ≥ dt

2 ≥ . . . dt
n ≥ 0 ∀t. (3.36)

As all vectors dt represent a probability distribution we also have

1 =
n∑

i=1

dt
i ∀t. (3.37)

Consequently, the set of all admissible vectors I is defined by the linear
inequalities (3.36) and the linear equality (3.37).
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To find the extreme points or vertices V = {v1, . . . ,vn} of I the
inequalities must be set to equalities. They are exactly those vectors with
an initial sequence of i entries equal to 1/i, followed by the remaining
n− i entries equal to zero. Explicitly, the vertices are

v1 = (1, 0, 0, . . . , 0)tr (3.38)

v2 = (1/2, 1/2, 0, 0, . . . , 0)tr (3.39)
...

vi = (1/i, 1/i, . . . , 1/i, 0, 0, ...0)tr (3.40)
...

vn = (1/n, 1/n, ...1/n)tr. (3.41)

These vectors are linearly independent.
The set I is exactly the convex hull C(V ) of V ,

C(V ) =



n∑
i=1

aivi = a1


1
0
...
0

+ a2


1/2
1/2
...
0

+ . . . an


1/n
1/n
...

1/n

 ;

ai ∈ [0, 1];
n∑

i=1

ai = 1


,

(3.42)

which is a simplex. To show this let us consider the lth row of an element
dt of C(V ),

dt
l =

n∑
i=l

ai
1

i
=

n∑
i=l+1

ai
1

i
+ al

1

l
= dt

l+1 + al
1

l
≥ dt

l+1. (3.43)

so (3.36) is fulfilled. Summing up the rows of C(V ) results in

n∑
l=1

dt
l =

n∑
l=1

n∑
i=l

ai
1

i
=

n∑
l=1

lal
1

l
=

n∑
l=1

al = 1, (3.44)

showing that (3.37) is also fulfilled. Thus C(V ) ⊂ I.
Conversely, let us denote an arbitrary point with p ∈ I. Since the

vertices vi are linearly independent, we can use them as a basis and write
p as a linear combination

p =
n∑

i=1

bivi. (3.45)
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For the lth component pl

pl =
n∑

i=l

bi
1

i
= pl+1 + bl

1

l
(3.46)

which implies by (3.36)

pl ≥ pl+1 ⇒ pl − pl+1 = bl
1

l
≥ 0 ⇒ bl ≥ 0. (3.47)

Summing up all pl, then using (3.37) yields

n∑
l=1

pl =
n∑

l=1

lbl
1

l
=

n∑
l=1

bl = 1 ⇒ bl ≤ 1. (3.48)

So we have bl ≥ 0 and bl ≤ 1, therefore p ∈ C(V )∀p ∈ I, hence,
I ⊂ C(V ).

What does this mean for the optimization process given by τ -EO?
Following the approach in [34], let us apply the Bellman principle of
dynamic programming [61]. To find the best possible probability distri-
bution over the ranks we have to work our way backwards, starting with
the last step. The output of the last step q(S) is used to determine the
optimality criterion (3.20).

In the last step S, we have to solve the optimization problem (3.20)
for a given input q(t), 1 ≤ t ≤ S − 1. Using (3.14) we get

õ =
S∑

t=1

Ẽ(t) · Γ̂(S) · q(t) → min . (3.49)

Since the matrix entries of Γ̂(S) depend linearly on the distribution dS we
have to find the minimum of a linear function on a simplex. Its minimum
must be found on one of the vertices of the simplex. Therefore, for best
performance we have to take a distribution which is represented by one
of the elements of V . We denote the corresponding optimal transition
probabilities by Γ̂opt(S).

Now we consider the second to last step S − 1. For any given input
q(t), 1 ≤ t ≤ S − 2 we have to solve an analogue optimization problem
by defining a new objective

Ẽ2(t) := Ẽ(t) · Γ̂opt(S) ∀t. (3.50)
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By the same arguments we find that the optimal probability distribution
over the ranks for the second to last step is found on an element of V .
All remaining time steps can be processed in that manner, resulting in
an optimal distribution

dt !
∈ V ∀t. (3.51)

This proof shows that a uniform distribution over some of the “least
fit” ranks gives the best implementation of EO. The resulting algorithm
is called Fitness Threshold Accepting (FTA) [59], because in analogy to
TA all moves triggered by selecting ranks which lie under some fitness
threshold are selected with equal probability.

So far, the proof is based on the fundamental theorem of linear pro-
gramming: a linear function defined on a simplex assumes its minimum
at a vertex. The proof does not state that all optimal strategies are of
the given form. In particular, other strategies may do equally well, but
certainly not better.

This proof works with all of the measures (O1) – (O5) given above.
Especially the original measure, namely minimizing the best-so-far en-
ergy, is covered. Nevertheless, it is not constructive: neither do we know
how an optimal schedule looks like, nor how we should calculate it a
priori.

3.8 Fitness Threshold Accepting for

1D Ising Spin Systems

To get a feeling what an optimal fitness threshold schedule looks like
the methodology used for calculating the schedules for SA and TA has
been employed. But here, coarse grained models, like the trees described
above, which could be investigated with the EO dynamics are not present
at the moment. But what can be done is to calculate exact EO transition
matrices for small systems, which are still manageable on the computers
we have access to, and use them for extremalizing selected performance
measures.

To do so, one-dimensional Ising spin systems with random couplings
Jij ∈ [−1, 1] have been used. The maximum number of spins used was
16; more spins were not manageable due to memory restrictions. Of
course, sparse matrix techniques have been used throughout. In fig. 3.6
various optimal schedules for the fitness threshold have been calculated.
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The probability to have seen the ground state was to be maximized, and
different numbers of spins as well as total run times were employed.

The most apparent difference to the schedules we are used to in SA
and TA are the jumps between very high and low thresholds from the
very beginning of the optimization even to the very end. We would have
expected some kind of monotonic decreasing schedule, but instead these
very discontinuous ones have to be used. The numerical experiments
performed did not show a systematic dependence of the schedule on the
initial conditions. In this sense, the presented schedules are a “typical”
example of optimal fitness thresholds for the systems which have been
investigated. The FTA methodology with optimal schedules seems to be
a kind of alternating sequence: probability is periodically allowed to flow
into high energy regions of the state space and ‘quenched’ into low lying
regions.

The development of the corresponding probabilities to have seen the
ground state is shown in fig. 3.7. Of course, with growing run times
the probability can be made larger and larger. The most exciting and
interesting fact is that in spite of these unexpected FT schedules we can
fit an exponential to the evolving probability to have seen the ground
state. To see this in fig. 3.7 a function ∼ (1− exp(−λt)) has been fitted
to the data for the 16 spin system. As can be seen this exponential
behavior fits nicely. This is equivalent to the fact that the probability
for having not seen the ground state vanishes exponentially. Therefore,
it seems to be the case that despite the rather unusual dynamics of FTA
the method is indeed a very good optimization algorithm.

This can be further underlined by investigating the mean best-so-
far energy. But here, we are even more restricted in the size of the
calculable system sizes: due to the extended transition matrices which
have to be created the demand on available RAM grows very fast. For
example, an Ising spin glass of 10 spins has originally a transition matrix
Γ10 ∈ R1024×1024. If every entry is represented by a double of 8 bytes
then we need 8MB for this matrix. Within the extended walk formalism
we need to make successively every two states belonging to one and the
same energy absorbing, leading to a total of 513 · 8MB ≈ 4GB RAM
needed to hold the extended matrix. Furthermore, we need 10 of them,
one for each of the ten possible distributions over the ranked spins.
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Of course, these 40GB are reduced dramatically by using sparse ma-
trix techniques, but the largest calculation possible at the moment1 is
exactly these 10 spins paired with 100 steps of optimization. Hence, in
fig. 3.9 best possible fitness schedule for the 8 and the 10 spin system –
minimizing the best-so-far energy – has been calculated only for the small
number of 100 optimization steps. Also shown is the development of the
best-so-far energy. Again it is possible to fit an exponential ∼ exp(−λt)
to the data. In this case only the last 90 steps have been used for fitting,
the first ten can be considered a warm-up phase.

1The Riesen cluster – 24 nodes with Intel Xeon processors, 4GB RAM per node
– was used.
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Figure 3.6: Optimal Fitness Threshold schedules for small 1D Ising spin
glasses. For a system of 8, 10, 12, 14 and 16 spins the optimal schedule
for maximizing the probability to have seen the ground state has been
calculated. For all but the 8 spin system different run times have been
investigated.
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Figure 3.7: The corresponding probabilities to have seen the ground state
of the Ising spin glasses of fig. 3.6. The probability for having not seen
the ground state vanishes exponentially (see next figure).
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Figure 3.8: Fit of exponential functions to the data of the 16 spin system
of fig. 3.7. The probability of not having seen the ground state becomes
exponentially small with growing optimization time.
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Figure 3.9: The optimal schedule for minimizing the mean best-so-far
energy for the 8 and the 10 spin system, together with the development
of this performance measure. Fitting an exponential is again possible,
underlining the very good performance of FTA.
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Towards Non-Ergodic Optimization

A deeper understanding of the superior performance of FTA (as well as
τ -EO) and TA compared with SA might be attained by the following
reasoning. This chain of arguments is mainly inspired by [55].

The SA algorithm, based on the Metropolis acceptance rules, is an
ergodic process for a fixed temperature. Given that temperature the pro-
duced Markov chains always develop towards the limiting Boltzmann
distribution. In particular, even the energetically highest states are pop-
ulated with some probability unless T = 0. Of course, this probability
vanishes exponentially with T → 0, but unless cooling is not done very
carefully the Boltzmann distribution cannot be realized. This is due to
the inherently bumpy energy landscape, which originally was the reason
to introduce stochastic optimization. Hence, even for long simulation
times the ground state is not populated with the highest possible prob-
ability: given a temperature, the actual probability to be in the ground
state will almost always be lower than that given by the Boltzmann
weights.

Moreover, probability already gathered in low lying states might flow
back into higher energy regions. So why should this be allowed? The
answer is well-known, and a has many times been given as a reason for the
success of SA: if such a reflux is explicitly allowed than a corresponding
random walker is able to overcome barriers, and might be able to explore
possibly lower lying minima behind these barriers. But this intuition only
works under the assumption that there are always local minima behind
the next barrier which lie lower indeed. This is simply not true. Instead,
random walkers being currently in a good local minimum might step into
regions of the state space which contain only higher lying minima. As a
result we have to use a temperature schedule [46]

T (t) ≥ c

ln(1 + t)
(3.52)

with some constant c. This schedule cools very slowly; nevertheless, for
t → ∞ it secures [46] that all of the probability flows into the global
minimum. Corresponding random walkers would then be able to escape
every local minimum.

But infinite run times would let stochastic optimization algorithms
appear senseless – why should we introduce such sophisticated methods
when we have enough time to enumerate the state space? Of course,
we cannot optimize infinitely long. But as soon as the time we have at
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our disposal is finite we seem to be forced to use at least non-ergodic
algorithms: TA in the case of annealing-like methodologies, FTA in the
EO framework. Based on this reasoning we should expect such types of
algorithms to be those with highest performance. Hence, in the future
such methodologies should be invented and further investigated.

3.9 Continuous Extremal Optimization

Let us close this chapter with an interesting generalization of the EO
heuristics. Recently, it has been generalized to cover also continuous
state spaces. Zhou et al. studied ground states of Lennard-Jones
clusters with a corresponding adaption dubbed Continuous EO (CEO)
[62].

A Lennard-Jones cluster is simply a number of mass points, inter-
acting via the (parameter free) potential

V (rij) =

(
1

rij

)12

−
(

1

rij

)6

. (3.53)

This empirical potential, dependent only on the distance rij of two mass
points, reflects, e. g., the interaction of atoms of noble gases. The energy
of a cluster of n particles at rest is simply the sum of all pairs of potential
energies,

ELJ =
n−1∑
i=1

n∑
j=i+1

V (rij). (3.54)

A state is an ordered set of all positions of all mass points, and a local
minimum is defined in the known way.

If we have a local minimum of ELJ we can again define a fitness for
each mass point,

λi := −1

2

n∑
j=1,j 6=i

V (rij). (3.55)

We consider mass points with a low interaction energy to be fit, whereas
mass points of high energy are unfit. With this definition jumping from
one local minimum to another one could be performed easily by an EO,
τ -EO or FTA algorithm. But unfortunately, we are not able to define a
corresponding move class! Of course, proposing a new state can simply
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be done by varying the actual position of one or more mass points. But
chances are very small that this new state is indeed a local minimum.

Otherwise, we have to be in a local minimum to succeed with an EO
run based on such a definition of fitness. Simply performing EO with
fitnesses defined by (3.55) without being in a local minimum would lead
to a more or less unbiased random displacement of the most unfit mass
points. It seems reasonable to assume that such an approach would offer
only poor performance. To bypass this difficulty Zhou et al. mix in a
local search algorithm: after the proposal of a new state and its uncon-
ditioned acceptance they employ a limited-memory BFGS method [63].
This forces the system into the next nearby local minimum. Therefore,
a general CEO scheme runs as follows:

1. Create an initial local minimum.

2. Set up fitnesses. Rank the DOF.

3. Based on the ranking do an EO step; i. e., select a DOF, propose
and accept a move.

4. Use a local search algorithm to find the next nearest local minimum.

5. Measure Ebsf.

6. Iterate by going to step 2 as long as desired.

The authors successfully find global minima of clusters of up to 100
mass points. Nevertheless, they do not explain the move class they used.
But this is the crucial point of the algorithm. If we define, e. g., a uniform
random displacement between 0 and a radius r of an unfit mass points
as our move class, we observe the following: Taking to small values of
r results in a local search finding again and again the same local min-
imum, as the proposed random displacement does not push the system
far away from it. Too large values of r push the system far away from
the current local minimum, which leaves a lot of not investigated local
minima. Hence, finding a good move class might not be trivial.

In fig. 3.10 and fig. 3.11 an FTA scheme was used to optimize the
geometry of 10 and 20 mass points, respectively. The schedule was held
fixed at 3 and 6, respectively, and the Conjugate Gradient scheme was
used for the local search. The global minima found at −28.422532 and
−77.177042, respectively, are consistent with [64]. In both cases FTA,
after the first visit, hits the global minimum again and again. The move
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Figure 3.10: Continuous EO for a Lennard-Jones cluster of 10 mass
points. FTA was used, together with Conjugate Gradient and a move
class described in the text. The inset shows the global minimum config-
uration of the cluster in real space.

class used here randomly displaces an unfit mass point, but on a sphere of
radius 1.0 centered at its current position. This choice has two reasons:
it forces the system into a far enough new state with a probably new
nearby local minimum, and for small numbers of mass points this is
roughly the distance in state space to the next local minimum. The two
figures give an impression of how CEO converges to the minimum and
the large fluctuations taking place during the optimization.

The most interesting theoretical point of this method is the fact that
LJ clusters have – up to some energy threshold – a finite number of
local energy minima [65]. If we assume that the local search algorithm
finds the local minimum with certainty2 then the whole dynamics can be
considered to take place in a discrete state space. Therefore, the proof
given in sec. 3.7 might be also applied here, leading to the insight that also
here an FTA approach could be one with highest performance. Moreover,

2The CG method is such an algorithm.
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Figure 3.11: The same FTA scheme for a Lennard-Jones cluster of 20
mass points. The inset again shows the global minimum configuration.

this description might be a promising starting point to generalize the
proof to continuous state spaces.



Chapter 4

Algorithms to Calculate the
Density of States

The calculation of the density of states is an important means to compute
equilibrium thermodynamic quantities. Knowing it implies knowledge
of the partition function and consequently all quantities which can be
written as a functional of it.

But the density of states has also gained general interest in the field
of optimization techniques. It can be used as a measure for the difficulty
of optimization problems. Furthermore, extracting the density of states
at low energies is closely related to finding ground states, i. e., solving
optimization problems.

4.1 Thermodynamics and the Density of

States

The probably most important variable in equilibrium thermodynamics
is the canonical partition function Z = Z(T ). This is due to the fact
that every equilibrium thermodynamic quantity – a macrostate X – can
be written as a functional X = X(Z(T )) [66]. These functionals are
simply weighted means over the states s of the system in question, and
the weights are given by exp(−βH(s)). Here, β = 1/(kBT ), and H(s) is
the Hamiltonian, or energy, of the state s.

The thermodynamics of the system is considered solved if Z(T ) is
known. We have

Z(β) :=
∑
s∈Ω

exp(−βH(s)). (4.1)

57
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Here, Ω denotes all states of the system under consideration. Of course,
the

∑
sign can only hold in discrete state spaces, e. g. the classical com-

binatorial systems we investigate here. Otherwise, we have to integrate
over the state space.

As an example, consider the calculation the specific heat c(T ), defined
as the first derivative of the inner energy U(T ). We have

c(T ) =
d

dT
U(T ) and U(β) = 〈H〉 = − d

dβ
ln Z(β). (4.2)

Therefore, c(T ) reads

c(T ) =
1

kBT 2

d

dβ

(
1

Z(β)

d

dβ
Z(β)

)
(4.3)

=
1

kBT 2

(
− 1

[Z(β)]2

[
d

dβ
Z(β)

]2

+
1

Z(β)

d2

dβ2
Z(β)

)
(4.4)

=
1

kBT 2

(
−〈H〉2 +

〈
H2
〉)

. (4.5)

This short recall outlines how equilibrium thermodynamic quantities are
connected to the partition function by derivations with respect to β.

The question is how to sample the partition function and related
quantities accurately. One of the most commonly used strategies is im-
portance sampling [67]. By performing a Markov chain like random
walk with transition probabilities given by Metropolis et al. [24] it is
possible to extract a representative subset of the set of states the system
is in at a certain temperature. Averages of quantities like the inner en-
ergy can than be calculated as averages over the chain. They tend to the
equilibrium value with a growing number of steps.

But this strategy has some well known drawbacks. Firstly, in order
to study equilibrium thermodynamics only “equilibrated” subsets of the
original state space must be used. But due to the typical rough energy
landscape of the systems in question very long run times are needed to
realize such a subset; random walks tend to get stuck in local minima
and cannot explore the whole state space easily. Secondly, especially
at temperatures near to or at those where the system undergoes phase
transitions the Metropolis sampling needs an overwhelming number
of steps to give an “equilibrated” value of the quantity in question. This
so called critical slowing down [68] might make this approach even un-
usable at all1. Thirdly, studying temperature dependencies, of course,

1A nice web page offering a JAVA applet dedicated to this effect for 2D Ising
models can be found at [69].
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requires the sampling of the partition function to be done at a multitude
of different temperatures.

There are many more or less system specific solutions, e. g., for the
case of Ising ferro-magnets the cluster flip algorithm [68]. But there is
another very general approach for circumventing this problem. We can
rewrite (4.1) in the following way. Firstly, we classify every microstate
s by its energy E = H(s). Secondly, for every energy the system can
have we count all states with that energy to give a number g = g(E).
This function g(E) is called the density of states (DOS), or degeneracy
in quantum mechanics: it gives information about how dense in energy
the microstates are situated.

The summation over the states s can then be transformed into a
summation over the energies,

Z(T ) =
∑
s∈Ω

exp(−βH(s)) =

EAG∑
EG

g(E) · exp(−βE). (4.6)

The smallest E, represented by the ground states, is denoted with EG;
the largest, realized by the anti ground states, with EAG. These values
are always finite in discrete and finite state spaces.

It is clear that if the DOS would be known, the partition function
would be computable at every temperature – leading to particular low
numerical load at critical temperatures. This is one of the reasons we
are interested in g(E). But there is another one. The DOS can be seen
as measure of “how difficult” an optimization problem is [70]. If g(E) is
large even at EG – i. e. the system has a lot of ground states compared to
the number of non-ground states – we expect few difficulties to find one of
them. But if g(E) is small at EG we expect a lot of computational effort:
we will have to make our way through a lot of non-ground states until
we find a ground state. In this sense g(E) might even allow a decision
about which type of optimization algorithm we should use: the former
case would suggest a quench or gradient based scheme, the latter a more
sophisticated technique like SA or EO. But how to get g(E)?

There have been, of course, efforts to calculate the density of states
exactly, but the majority of these methods is bound to specific mod-
els. For instance, the method of Beale [71] is only applicable to n × n
Ising models with ferro-magnetic interactions; the method applied in
[72] and [73] is only suitable for two-dimensional n × n ±J spin glasses
with periodic boundary conditions. As there is still a “general purpose”,
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“polynomial-in-time” algorithm missing, Monte Carlo methods are still
widely used and systematically studied.

In the following we will see how the development of histogram based,
efficient algorithms to calculate g(E) evolved. Besides a short descrip-
tion of some of methods developed and used up to now we will have
a detailed look on the Wang-Landau sampling scheme. This scheme
serves as some kind of “industry standard” nowadays. Matrix based
methods follow; they can be seen as an enhanced version of histogram
methods.

4.2 Reweighting and Histogram Methods

As complications with the traditional methods especially arise in studies
of phase transitions, the ideas to overcome them have been developed in
exactly this context. But in spite of the density of states being such a
powerful means to “solve” thermodynamic models, an estimation of this
quantity has not been the main goal of Monte Carlo simulations for a
long time. Instead, there have been efforts to improve the information
which could be gained by traditional methods. Some selected examples
are outlined in the following.

Histogram Reweighting

One of these methods is the histogram reweighting algorithm, introduced
by Ferrenberg and Swendsen [74, 75]. It aims to achieve fewer com-
putational effort for scanning a temperature region near a phase transi-
tion, compared with a multiple partition function sampling.

For a quantity X = X(s) we have

〈X(β)〉 =
1

Z(β)

∑
s∈Ω

X(s) · exp(−βH(s)). (4.7)

If we sample a subset of configurations {m} = M ⊂ Ω with probability
pm = exp(−βH(m)), then

〈X(β)〉 ≈ 1

|M |
∑
m∈M

X(m). (4.8)

Information for a nearby temperature β′ can be obtained by resampling
the already sampled configurations M according to

〈X(β′)〉 ≈
∑

m∈M X(m) exp(−β′H(m))/ exp(−βH(m))∑
m∈M exp(−β′H(m))/ exp(−βH(m))

(4.9)
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According to [74, 76] a histogram H(E) can be stored which counts the
number of occurrences of energy E = H(m) during the simulation time.
Another histogram holds the averages 〈X(E)〉,

〈X(E)〉 =
1

H(E)

∑
m:H(m)=E

X(m). (4.10)

With these histograms, the value 〈X(β′)〉 can be calculated as a sum
over the energies,

〈X(β′)〉 =

∑
E H(E) 〈X(E)〉 exp(−(β′ − β)E)∑

E H(E) exp(−(β′ − β)E)
(4.11)

Hence, as long as β′ is close to β we can obtain information at β′ from
a run at temperature β by simply reweighting the simulation data. The
method has been shown to work well for the second order phase transition
of the two-dimensional Ising ferro-magnet, using a β near the critical
temperature.

If β′ is not close to β then the errors introduced by the reweight-
ing become large. To broaden the accessible temperature region a little
improvement can be made by using simulation data from different tem-
peratures. An appropriate choice of the temperatures allows to create
histograms which provide data useful for an overlapping of neighboring
temperature regions.

Simulated and Parallel Tempering

In order to destroy the effect of random walks getting stuck in local
minima, Marinari and Parisi and Geyer and Thompson proposed
a technique dubbed simulated tempering (ST) [77, 78]. To simulate
at temperature β a family of probability distributions π = {πi(s) ∼
exp(−βiH(s)), i = 0, . . . , n} is constructed first, with β0 = β and βi >
βi+1. Instead of simulating only at β0, which corresponds to a unmod-
ified random walk with Metropolis acceptance rates, the system is
also allowed to transit to temperatures βi±1 from the actual tempera-
ture βi at each step. This is formalized by introducing an extended
distribution πst ∼ ci exp(−βiH(s)), defined on the augmented space
Ω × I, I = {0, . . . , n}. The ci are tunable parameters which are sub-
ject to some pilot studies.

Of course, only the fraction of moves at β0 is of interest for calculat-
ing averages subsequently, but the frequent visits of the system to the
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lower βi help to escape from local minima. The probability to change the
temperature is only non-negligible if the difference between two tempera-
tures is not too large. Otherwise, temperatures which differ only slightly
will not be very helpful in crossing barriers.

A kind of twist of ST is the parallel tempering method (PT), proposed
by Geyer [79] and later reinvented by Hukushima and Nemoto [80].
Instead of augmenting Ω to Ω × I, this method deals with the product
space Ω1 × · · · ×Ωn of n identical copies of Ω. With the vector of states
s = {s1, . . . , sn} a joint probability distribution πpt can be defined on the
product space, πpt(s) ∼

∏n
i=1 πi(s).

Chains of states are created in parallel in every copy of the original
state space, but additional “index swaps” are possible. That means, with
some probability the entries si and si+1 of s are swapped at simulation
step. Hence, states sampled at higher temperatures are able to become
part of the chains sampled at lower temperatures, again helping to cross
barriers.

Multicanonical and 1/k sampling

So far, the canonical weighting factor exp(−βH(s)) for a microstate s has
been used extensively in simulating a complex system. This factor can
be derived for canonical ensembles.2 But what about different weight-
ing functions? Might changing the weights solve some of the described
problems?

From a physical point of view such a change implies changing or
generalizing the ensemble conditions. So it might be hoped that an in-
vestigation of a “proper generalized” ensemble can be performed easier,
compared with the original one. For example, a probability distribu-
tion over the microstates which produces a uniform distribution of the
sampled energies E = H(s) or entropies S(E) = ln g(E) could be used.

In the canonical ensemble the probability to be in an arbitrary state
of energy E in equilibrium is

π(E, β) =
1

Z(β)
g(E) exp(−βE). (4.12)

In order to flatten this distribution the multicanonical ensemble method
was developed by Berg and Neuhaus [81, 82]. They employ a modified

2This refers to sets of systems with a constant number of particles, volume and
temperature.
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distribution

πmu(s) ∼ exp(−S(H(s)) with S(H(s)) = ln g(H(s)). (4.13)

for sampling the microstates, using the microcanonical entropy S(H(s)).
Now, in the ensemble with these weighting factors the probability to be
in a state of energy E is simply

π′mu(E) ∼ c for all E. (4.14)

with some constant c. Central to the method is the attempt to obtain
an accurate estimate of the density of states. This is again realized by
the use of energy histograms; moves are performed due to the Metropolis
acceptance rates. Details can be found, e. g., in [83]. In addition, a
method dubbed entropic sampling has been proposed independently [84].
The method has also been applied to Lennard-Jones glasses [85]

In the 1/k ensemble method of Hesselbo and Stinchcombe [86]
a distribution is produced so that the entropy is uniform. Then, the
probability to be in a state of energy E is

π′1/k(E) ∼ d ln g(E)

dE
. (4.15)

The Wang-Landau sampling scheme

The Wang-Landau sampling scheme (WL) [87, 88] exploits the idea
of creating a flat histogram to a very high degree. Setting up a random
walk in energy space can be identified with the movement on an energy
histogram, see fig. 4.1. Each time the random walker hits an energy level
the entry of the corresponding histogram is increased by one. Denoting
the probability to be in an arbitrary state of energy E with π(E),

π(E) =
∑

α:H(α)=E

pα = g(E) ·
∑

α:H(α)=E

pα/g(E) (4.16)

holds. Hence, sampling a state with probability pα ∼ 1/g(H(α)) for all
possible energies would result in a constant π(E) for each energy E,

π(E) = g(E) ·
∑

α:H(α)=E

pα/g(E) ∼ g(E) · g(E)

[g(E)]2
= c for all E. (4.17)

The random walk would produce a “flat” histogram. As Rathore and
de Pablo point out [89], WL has some similarities to the multicanonical
method (see also [90]).
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Figure 4.1: A random walk in the state space of a system hits different
energies from move to move. Hence, it can be identified with a walk in
a corresponding energy histogram. Each time an energy i is visited the
histogram entry h(i) is increased by one.

To sample the states in such a way we would like to have some rule
how to make moves from a microstate β to another α: we need transition
rates Γji that secure the correct 1/g sampling of the microstates. Let us
assume that detailed balance is valid,

Γβα · pα = Γαβ · pβ (4.18)

Then we have

Γαβ

Γβα

=
Παβ · Pαβ

Πβα · Pβα

=
pα

pβ

=
1/g(H(α))

1/g(H(β))
. (4.19)

The neighborhood relationship Πβα is fixed. In the following we assume
Πβα = Παβ.

As this equation only determines the ratio of the acceptance prob-
abilities between microstates there is – in principle – a wide variety to
choose from. For instance, the rates

Pβα = 1/g(H(β)) (4.20)
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or the rates

Pβα =
g(H(α))

N
(4.21)

could be selected. But due to g(H(α))/N � 1 for most of the microstates
a trial move would very often be rejected, leading to a random walk
sticking to one and the same energy level for large numbers of trials.
This is extremely undesirable in a walk intended to hit a large number
of different energies with relatively few steps. Hence, a slightly better
choice would be to use the maximum density of states

gmax = max
E

[g(E)] (4.22)

instead of the factor N .
Wang and Landau suggested transition rates [87, 88] of the form

PWL
βα = min

[
g(H(α))

g(H(β))
, 1

]
(4.23)

which also have the property (4.19), if Πβα = Παβ,

ΓWL
αβ

ΓWL
βα

=
min

[
g(H(β))
g(H(α))

, 1
]

min
[

g(H(α))
g(H(β))

, 1
] =

g(H(β))

g(H(α))
. (4.24)

But here, substantially more trials are accepted compared to the pre-
vious transitions rates: we have an overall higher acceptance probability
as in the case g(H(β)) > g(H(α))

g(H(α))

g(H(β))
≥ g(H(α))

gmax

>
g(H(α))

N
and

g(H(α))

g(H(β))
≥ 1

g(H(β))
(4.25)

is valid, and a large fraction of proposed moves is accepted with certainty.
As an illustration we will have a look on a simple test system. The

model consists of n = 10 spins si, hence N = 210 states α, with a long-
range interaction

H(α) =
1

n

n−1∑
i=1

n∑
j=i+1

sisj. (4.26)

Due to this special interaction, we can calculate the density of states by
successively choosing 0, 1, 2, . . . , 10 spins pointing up, the rest down. As
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Figure 4.2: States per energy for the long-range Ising model.

as state with i spins pointing up has an energy equal to a state with 10−i
spins down, we get the densities given in fig. 4.2. With these values the
transition matrices for the WL rates and the three non-WL rates can be
calculated.

For fig. 4.3 the four different transition matrices have been calculated
for this system. As the performance measure the standard deviation
of the energy histograms produced has been chosen. Due to the initial
distribution evolving towards the limiting one, which produces a perfect
flat histogram, the standard deviation must approach zero.

The plot shows the superior performance of the WL acceptance rule
for our simple test system. All standard deviations vanish exponentially,
but quickest with the WL rates. Immediately the question arises if these
rules are the best possible ones generally. It turns out that this ques-
tion cannot be fully answered yet, but some ideas to start with can be
developed.

Let us assume that the stationary distribution p∗ corresponding to a
perfect flat histogram is known. We want to approximate p∗ by vectors
p(t) which are constructed by iteratively applying a constant transition
matrix Γ to an initial vector p(0). Hence, as we have an ergodic random
walk due to detailed balance we also have a rate of convergence for p(t) →
p∗ [91]. This rate should be as large as possible, which is equivalent to
the demand that the value of the second largest eigenvalue e2 of Γ should
be as small as possible.

Assuming Πβα = Παβ we have due to (4.19)

Pβα =
g(H(α))

g(H(β))
· Pαβ. (4.27)



4.2. Reweighting and Histogram Methods 67

0 200 400 600 800 1000
time step

10-5

10-4

10-3

10-2

10-1

st
an

da
rd

 d
ev

ia
tio

n

WL transition rates
non-WL transition rates

Figure 4.3: Performance of the given transition rates for the long-range
Ising model. Shown is the standard deviation of the energy histogram
for every time step. The histograms become flatter with growing time,
leading to a monotonic falling standard deviation. The WL transition
rates outperform the three other suggested rates (4.20), (4.21) and (4.22)
(broken lines, from top).

As Pβα and Pαβ are acceptance probabilities,

0 ≤ Pβα ≤ 1 as well as 0 ≤ Pαβ ≤ 1 (4.28)

must be valid, yielding an allowed range of

Pαβ ∈
{

[0, 1] if g(H(α)) ≤ g(H(β))
[0, g(H(β))/g(H(α))] if g(H(α)) > g(H(β))

}
(4.29)

to choose acceptance rates from. This is equal to

Pαβ ∈
[
0, min

[
g(H(β))

g(H(α))
, 1

]]
. (4.30)

Hence, (4.30) establishes an one-dimensional range for each of the tran-
sition rates Γαβ, the maximum of which is given by the WL transition
rates.
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If we could perform an calculation of the value of e2 as a function of
the transition rates for every pair Γαβ/Γβα then we could easily determine
the transition rates with highest performance. But this seems to be
nearly impossible to do in general, i. e., for arbitrary complex systems.
What can be done is the following.

We know that the largest eigenvalue of the stochastic matrix describ-
ing the WL process must be equal to one. Furthermore, we can get a
feeling for the allowed region the remaining eigenvalues are located in
by calculating Geršgorin disks [17]. From every column a disk can be
derived. Each disk is situated in the complex plane (x, iy), and centered
around the diagonal element of the corresponding column. The radius
of each disk is the sum of the absolute values of the non-diagonal ele-
ments. Therefore, the line x = 1 in the complex plane is tangent to every
Geršgorin disk.

For stochastic matrices and ergodic systems we have, besides e1 = 1,
e1 > e2 ≥ e3. The second largest eigenvalue can therefore only be as
small as possible if the allowed region for all remaining eigenvalues is as
large as possible, hence, if each disk has the largest possible radius. This
is indeed given in the case of the WL transition rates, as these represent
the largest possible off-diagonal elements. But this is not a sufficient
condition.

Whether e2 is indeed as small as possible cannot be derived analyt-
ically from that reasoning. But we can still give a physically motivated
plausible argument: if the process of converging to the limit distribution
should be as fast as possible then low acceptance probabilities are coun-
terproductive. The random walkers must not stick to one and the same
energy level for long times; rather they have to jump between the levels
quickly in order to allow for a large convergence rate. In this sense the
WL transition rates might indeed be an optimal choice. —

But so far, we have put the cart before the horse: the density of states
needs to be known to set up transitions according to eq. (4.23) and to
produce flat histograms. To circumvent this, in the Wang-Landau
sampling scheme the following procedure has been developed. Although
tailored to Ising and Potts models first, it is also suitable for other
systems [76, 92].

1. Create a histogram h covering the energy region of interest. Its
bins h(i) are initially set to 0. Create an array gappr(i) of the same
size, holding the so far unknown density of states. Initially, set
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gappr(i) = 1∀i. Hold a factor f > 1, initially set to f ≈ 2.7 in the
original work.

2. Perform a random walk using the transition rates given by (4.23),
employ the values gappr(i): each time a trial move is made and an
energy level is proposed to be hit accept or reject it, but update
the corresponding h(i) and gappr(i) in any case. Rejecting means
“updating the old level”. Add 1 to the histogram bin h(i), and
perform g(i) → f · g(i).

3. Check whether the histogram is flat. Originally, flatness meant
that every bin of the histogram is not less then 80% of the average
histogram. If the histogram is flat, reset every bin to 0, and modify
the factor f →

√
f .

4. If f falls below a prescribed value > 1, such as exp(10−8), the
simulation finished, gappr holds approximate relative values for g(E)
of the system. If not, go to step 2.

5. To get absolute values, rescale gappr by using the total number of
states, or the (known) value for a bin.

This scheme has been proved to be suitable for a large number of
models offering discrete [87, 88] state spaces. It has also been extended
to cover continuous state spaces [93, 94] like those of Lennard-Jones
fluids. Moreover, in a certain sense it might be the optimal choice of
transition rates within local-update flat-histogram methods [95]. Mea-
suring the tunneling time of random walkers, i. e., the time to pass from
a ground state to an anti-ground state, shows that WL might approach
a lower bound of these times. The lower bound has been calculated by a
perfect flat histogram method, which employs known densities of states
for small systems.

4.3 Matrix Based Methods and ParQ

As a further development matrix based methods for calculating the den-
sity of states have been developed. The main advantage compared with
histogram based methods is that not only visits to energy levels are
recorded, but proposed transitions between energy levels. It is hoped for
that this approach delivers better statistics, e. g., better accuracy with
the same number of Monte Carlo Sweeps (MCS) performed. All of the
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methods rely on the fact that approximating the infinite temperature
transition matrix between energy levels of the system under considera-
tion is quite easy.

4.3.1 The Wang-Landau Transition Matrix Method

The idea of recording proposed transitions between energy levels to ap-
proximate the density of states is quite old [96, 97, 98, 99, 100]. Basically,
it is very simple: every time a transition is proposed an one is added to
the corresponding entry of a prepared matrix. At the end of the sim-
ulation these entries are post-processed to extract, e. g., the density of
states. The methods described in the literature differ in how to get
the entries, and how to post-process them. As a detailed description of
all of the methods is out of the present scope only one of the latest and
most performant methods is introduced here. This methodology, dubbed
Wang-Landau Transition Matrix Method (WL-TM) [101], combines
the idea of using transition matrices with the sampling of the state space
proposed by the WL method.

In WL-TM random walkers are employed which propose moves ac-
cording to the WL scheme described above. Every time a move from
one energy level to a new, not necessarily different energy level is pro-
posed the corresponding entry of a prepared matrix is increased by one.
This matrix, zeroed in the beginning, holds the numbers of all proposed
transitions in the end of the simulation. Broad phase space sampling is
secured by the WL sampling scheme, hence, most if not all of the energy
levels have been visited. Of course, the ratios of the visits are determined
by the WL scheme.

Post-processing of these data begins by making the filled matrix
stochastic. Thereto every entry is divided by the sum of all entries of the
corresponding column. After that the density of states can be approxi-
mated by minimizing a variance, given in [101].

The method is applicable to lattice and continuous systems. It seems
to offer good convergence properties, and is one of the most performant
methods to date. A generalization to grand-canonical simulations is also
possible [102, 103].

4.3.2 The Q Method and ParQ

Another matrix based method which has been developed here is parQ
[104]. Its fundamentals – the Q method – have already been shown some
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years ago [96] in the context of lumped or coarse grained models. But
implementations and applications to real systems did not exist up to now.

The Q method is again a random walk based algorithm. But in spite
of focussing on microstate transitions, transitions from one to another
energy level of the system under consideration are described by a master
equation. The probability of a random walker to be in a state of energy
j = EG, . . . , EAG can be written as

pj(t + 1) =

EAG∑
i=EG

Γ̂ji(β) · pi(t) with
∑

k

Γ̂ki(β) = 1∀i. (4.31)

Here, Γ̂ji(β) denotes transitions between energy levels. This transition
matrix is a function of the inverse temperature β. The stationary solution
p∗j of (4.31) is the right eigenvector to the largest eigenvalue 1. If we
assume a Boltzmann distribution, then

p∗j =
1

Z(β)
g(j)e−βj, (4.32)

and for t →∞ we get

g(j)e−βj =

EAG∑
i=EG

Γ̂ji(β)g(i)e−βi. (4.33)

Taking the limit β → 0 results in an eigenvector equation for the DOS,

1 · g(j) =

EAG∑
i=EG

Qjig(i), (4.34)

with Qji denoting the stochastic infinite-temperature transition matrix
between the energy levels of the system. Rescaling can easily be done
if g(E) is known at some E, or

∑
E g(E) is known. To outline in detail

how this method can be applied to real systems we have a look on three
rather simple, but analytically solvable examples.

At first we analyze the binary tree of three levels given if fig. 4.4.
The degeneracy of the nodes is again chosen to be 2Eα , resulting in a
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Figure 4.4: A binary tree of three levels. Given are the energy levels
which the nodes are situated in and determine their degeneracy, as well
as the density of states.

neighborhood relationship

Π = c ·



0 64 64 0 0 0 0
4 0 0 4 4 0 0

16 0 0 0 0 16 16
0 1 0 0 0 0 0
0 2 0 0 0 0 0
0 0 4 0 0 0 0
0 0 8 0 0 0 0


(4.35)

due to the energy levels given in 4.4. At infinite temperature, every
move is accepted, regardless of which energy change it involves. Hence,
the Metropolis rules are

PMe
βα = 1, (4.36)
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yielding a transition matrix

Γ =



1− 20c 64c 64c 0 0 0 0
4c 1− 67c 0 4c 4c 0 0

16c 0 1− 76c 0 0 16c 16c
0 1c 0 1− 4c 0 0 0
0 2c 0 0 1− 4c 0 0
0 0 4c 0 0 1− 16c 0
0 0 8c 0 0 0 1− 16c


.

(4.37)

We can use the transfer ratios calculated so far to construct the matrix
Q for this tree. Every edge of the tree corresponds to a transfer from
one node to another, and possibly from one energy level to another.3

The edge connecting node 1 with 2, e. g., corresponds to transfers from
energy 6 to 2 and vice versa. As we have 6 different energies we can
choose Q ∈ R6×6. Creating first a matrix Q̃ by summing up all transfers
from an energy level to another gives

Q̃ =



energy 0 1 2 3 4 6

0 1− 4c 0 c 0 0 0
1 0 1− 4c 2c 0 0 0
2 4c 4c 2− 83c 0 4c 4c
3 0 0 0 1− 16c 8c 0
4 0 0 16c 16c 1− 76c 16c
6 0 0 64c 0 64c 1− 20c


.

(4.38)

These transfers are the ones triggering a change of the node number –
represented by the edges – and the ones which do not correspond to a
change of the node number, i. e. which correspond to staying on a node.
In our tree, e. g. Q̃2,2, which holds the sum of all transfers from energy
2 to 2, is Q̃2,2 = Γ2,2 + Γ6,6.

To get the right ratios between transfers from an energy level to an-
other we divide every entry by the sum of all entries of the corresponding

3This need not be the case; trees with “horizontal” edges offer transfers which only
change the node number.
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column, getting the stochastic infinite temperature matrix

Q =


1− 4c 0 1

2
c 0 0 0

0 1− 4c c 0 0 0
4c 4c 1

2
(2− 83c) 0 4c 4c

0 0 0 1− 16c 8c 0
0 0 8c 16c 1− 76c 16c
0 0 32c 0 64c 1− 20c

 .

(4.39)

The eigenvector to eigenvalue 1 with column sum 1 is

ê1 = [1/99, 2/99, 8/99, 8/99, 16/99, 64/99] , (4.40)

which can be rescaled to give the density of states

gE = 99 · ê1 = [1, 2, 8, 8, 16, 64] . (4.41)

Indeed, this result coincides with the values depicted in fig. 4.4. This
small example points out that the Q method is in principle able to cope
with systems consisting of different energy barriers and arbitrary neigh-
borhood relations.

The 3 × 3 ferro-magnet (Jij = 1∀i, j) with periodic boundary con-
ditions offers only 6 different energies, E/J = {−18,−10,−6,−2, 2, 6}.
Therefore, we can create a matrix Q̃ ∈ R6×6. Its entries are again the
number of possible transfers from one energy level to another,

Q̃ =



E/J −18 −10 −6 −2 2 6

−18 0 18 0 0 0 0
−10 18 0 72 72 0 0
−6 0 72 72 216 72 0
−2 0 72 216 864 504 126

2 0 0 72 504 360 360
6 0 0 0 126 360 432


,
∑
i,j

Q̃ij = 4608.

(4.42)

The entries have been collected by a computer program: we get these by
classifying all transfers from all microstates si to their neighbors N(si),
defined by a single spin flip, by the proposed energy change. For example,
going from the two ground states at E = −18 to a state with E = −10
is possible in 18 different ways, i. e. Q̃−10,−18 = 18. Note that the sum
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of all possible transfers is 29 · 9 = 4608, as every microstate has nine
neighbors.

Hence, the transition ratios Q for moving from one energy level to
another at infinite temperature must be

Q =


0 1/9 0 0 0 0
1 0 1/6 4/99 0 0
0 4/9 1/6 4/33 1/18 0
0 4/9 1/2 16/33 7/18 7/51
0 0 1/6 28/99 5/18 20/51
0 0 0 7/99 5/18 8/17

 . (4.43)

The eigenvector of Q to eigenvalue 1 with column sum 1 is

ê1 = [1/256, 9/256, 3/32, 99/256, 9/32, 51/256]tr . (4.44)

We know that this sample has a total of 29 = 512 microstates, therefore
the DOS of that system can be calculated to give

gE = 512 · ê1 = [2, 18, 48, 198, 144, 102]tr (4.45)

with the subscript E traversing E = −18,−10,−6,−2, 2, 6. Enumeration
of the state space yields the same result.

A more sophisticated example is that of the symmetric 10 town travel-
ling salesman problem. We assume that all tours are starting and ending
in the same town. Then this problem has (10 − 1)!/2 = 181440 mi-
crostates. Furthermore, our move class shall be to “swap two towns” of
the current tour, i. e., every state has

(
9
2

)
= 36 neighbors. The distribu-

tion of the towns of our example is sketched in fig. 4.5.

To calculate the infinite temperature transition matrix Q̃tsp ∈ Rn×n

we create n “energy bins” of equal width: a state belongs to a bin if
its energy lies within the bounds of that bin. Therefore, we can identify
transitions from one state to another with a corresponding transition
between bins. For our example ground and anti-ground state energy are
about 3.38 and 8.02, respectively. If we choose n = 8 then the first bin
covers the energy region 3.38 . . . 3.96.
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Figure 4.5: A traveling sales-
man problem: 10 towns, ran-
domly distributed in the unity
square. Shown are the ground
state (shortest tour) and one of
its neighbors. Here, the neigh-
bors are those tours with two
towns having been swapped.

For that value of n we collect the entries Q̃tsp
ij with some small com-

puter programs. We get

Q̃tsp =



bin no. 1 2 3 4 5 6 7 8

1 498 1521 1322 717 467 11 0 0
2 1521 19244 32163 20133 12594 2282 11 0
3 1322 32163 239688 229112 125084 35820 4035 0
4 717 20133 229112 783704 524604 163226 25834 2
5 467 12594 125084 524604 1180958 442820 70782 7
6 11 2282 35820 163226 442820 594828 110031 10
7 0 11 4035 25834 70782 110031 107710 17
8 0 0 0 2 7 10 17 0

 .

(4.46)

The sum of the entries is
∑

i,j Q̃tsp
i,j = 6531840 = 36 · 181440.

The eigenvector of the corresponding stochastic transition matrix
Qtsp

ij = Q̃tsp
ij /

∑n
k=1 Q̃tsp

kj to eigenvalue 1 with column sum 1 is

êtsp
1 =

[
1

1440
,

349

25920
,

3089

30240
,

5393

20160
,
21827

60480
,
12491

60480
,

1769

36288
,

1

181440

]tr

,

(4.47)

yielding a DOS of

gE = 181440 · êtsp
1 = [126, 2443, 18534, 48537, 65481, 37473, 8845, 1] .

(4.48)

This is again consistent with an enumeration of the state space of our
example. Of course, a larger number of bins gives the DOS at higher
resolution in energy, as can be seen in fig. 4.6, but the calculation of
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Figure 4.6: (Left) The density of states calculated for the TSP example.
Growing numbers of bins (5, . . . , 5000) deliver a g(E) of much better
resolution, but calculating it as part of an diagonalization of Q becomes
numerically very intensive. (Right) The specific heat c(T ) for the TSP
example calculated with the g(E) A higher bin number yields a better
approximation of c(T ). The curves for a bin number of 1000 and 5000
coincide at this scale.

the eigenvector becomes numerically more intensive. Otherwise, a better
resolved DOS yields better approximations of the thermodynamic quan-
tities of interest. For example, the specific heat c(T ) of the TSP problem
– calculated with (4.3) – is shown in fig. 4.6. A growing number of bins
improves the approximation of c(T ). At the scale used in this figure
about 1000 bins are necessary until no further improvement of c(T ) can
be seen.

In general, the state space even of systems which are considered
“small” cannot be enumerated, so Q must be approximated. The ques-
tion has to be raised how this approximation can be carried out accurately
and efficiently. A method to achieve this is parQ [104]. This parallelized
algorithm to approximate Q has two essential elements:

1. It employs random walkers to collect entries Qji. These are steered
energetically broadly through the state space, using e. g. Metro-
polis sampling with changing temperature. The proposed moves
from energy level or bin no. i to j contribute to Qji as these would
be the moves taken in a Metropolis run at β = 0.
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The eigenvector calculation is carried out as a simple iterated ma-
trix/vector multiplication in the current implementation. This ap-
proach is very fast.

2. It is inherently parallelized. The walkers move independently from
each other and are therefore easily distributable over the processors
of a parallel computer or compute cluster. A very low communica-
tion time compared to the whole run time is needed, so parQ offers
a superb speedup. Moreover, due to the number of MC steps being
selectable its run time in terms of MCS is known.

Technically, parQ is a three-step procedure:

1. Collect entries for a non-stochastic matrix Q̃ ∈ Rn×n by steering
the random walkers through the state space. Sample energetically
broadly; employ, e. g., Metropolis rules in combination with an
exponential or linear schedule. Keep book of proposed moves from
an energy level to another level.

2. Make Q̃ stochastic by dividing each entry by the corresponding
column sum, Q̃ becomes Qappr. Columns with no entries do not
contribute to the eigenvector, they can safely be ignored.

3. Perform the iterated matrix/vector multiplication: multiply a vec-
tor gE with column sum 1 onto Qappr. Multiply the result onto
Qappr. Iterate until some convergence criterion is met. Rescale the
resulting g(E).

The accuracy of parQ has been shown considering ferro-magnets and spin
glasses with random couplings [104]. Furthermore, highly frustrated ±J
models have been investigated [105].

For the latter Lukic et al. [73] provided exact densities for five 50×50
±J spin glass samples. This opened the possibility to test the method
with the largest systems which are exactly calculable to date. In fig. 4.7
parQ has been employed to approximate the given exact densities. For
every sample 108 MCS have been performed, using a linear temperature
schedule. Although parQ – implemented in this special way – delivers
asymmetric walks in energy only the energy region [−4000, 0] is shown
for clarity4. For every sample the approximated and exact density of
states coincides, so the relative error for the logarithm of the density of
states is also shown.

4High energy regions can be sampled with inverse Metropolis moves.
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Figure 4.7: (Left column) Each row shows the exact (–) and approxi-
mated (×) density of states g(E) for one of five different ±J Ising spin
glasses of size 50×50. For clarity, only every 50th approximated value is
shown. (Right column) As both curves coincide at this scale the corre-
sponding relative errors | ln gtrue − ln gapprox|/ ln gtrue are given. For each
sample 108 MCS have been performed.
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The method is very precise over a wide energy region. Only the
density of states at low energies offers high relative errors. Of course,
this is due to the low lying states of the samples being not easy to find,
resulting in matrix entries of the corresponding Q near or equal to zero
and – consequently – to a very bad approximated density of states in
that energy region.

This is not a disadvantage of this particular method, but a general
difficulty. Anyway, the parQ methodology seems to outperform other
state-of-the-art methods easily. As its “workhorse” is SA, i. e., an op-
timization algorithm, finding ground states can be done quicker than
within WL and consequently the WL-TM scheme. This advantage leads
to better sampled densities of states at low energies with the same number
of MCS. Furthermore, energy regions of interest can easily be investigated
by a simple tuning of the temperature schedule without introducing any
numerical artefacts or difficulties. In contrast, WL walkers would have
to be confined within an energy band, leading to systematic errors [106].

For fig. 4.8 the density of states for the five samples has again been ap-
proximated with parQ, and this time also with the original WL scheme.
Two different run times in terms of MCS have been used. Shown are
the best-so-far energies found by WL and parQ for 104 and 106 MCS.
The parQ method always finds lower energies, and consequently approx-
imates the corresponding density of states better than WL. In this sense
it outperforms WL-TM too. Of course, it has to be said that the ran-
dom walkers in WL have to explore the whole energy region, whereas the
walkers in parQ are systematically led to the low energies. But this is
only an issue if high-temperature behavior is to be examined.

Another advantage of parQ is that the evaluation of the density of
states from the matrix entries is ‘extremely’ easy, compared to the ex-
traction within the WL-TM scheme. Additionally, the method is very
precise, even in the present first version.

Furthermore, a parallelization is straightforward. This has been done
using MPI [107] and the CLiC [108] and Riesen clusters. The fig. 4.9
shows an example of the speedup behavior of the algorithm. Speedups
have been calculated by fitting expected execution times of the form

t(n) = ts +
tp
n

+ (n− 1) · tc (4.49)

with a serial, fractions of a basic parallel and multiples of a basic com-
munication time ts, tp and tc, respectively. The number of used nodes is
denoted with n. This fit only works for the first 150 data points. So a
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Ebsf for 104 MCS

sample no. 1 2 3 4 5
parQ -3442 -3430 -3426 -3422 -3514
WL -3334 -3332 -3316 -3336 -3356

Ebsf for 106 MCS

sample no. 1 2 3 4 5
parQ -3498 -3478 -3470 -3478 -3514
WL -3494 -3468 -3456 -3472 -3504

Figure 4.8: Best-so-far energies for WL and parQ for two different num-
bers of MCS performed with the five 50 × 50 ± J samples. The parQ
method always finds lower energy levels, hence, approximates g(E) better
at low energies.

modified fit function of the form

t(n) = ts +
tp
n

+ (n− 1)γ · tc (4.50)

was fitted to all data points. The plateau effect observable on the left
side can then be taken into account. This effect is mainly due to the MPI
implementation used.

The parQ method scales well as long as the number of random walkers
is significantly larger than the number of nodes used: the number of
walkers should be ten times the number processors in use. Furthermore,
in some cases super-linear speedups have been observed [104] which are
due to cache effects of the processors.

4.3.3 Systematic improvements

Although calculating the density accurately in its present form, parQ still
offers some possibilities for systematic improvements. For example, the
schedule is – analog to Simulated Annealing – subject to optimization.
There must be, of course, at least one schedule which minimizes the
MC steps needed to sample g(E) with a prescribed accuracy. Connected
with this issue is the observation that the approximation of the entries
of Q is not perfect yet. A schedule which performs relatively many
steps at low temperature compared to high temperature approximates
the entries with small indices better than those with large indices. A
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Figure 4.9: Execution time (left) and fitted speedups (right) for parQ,
employing 1000 random walkers on up to 400 nodes. The fits correspond
to two different expected execution times (see text).

good schedule should deliver equally well approximated entries Qij at
every temperature. Furthermore, it is not clear how the calculation of the
eigenvector is affected by this mixture of differently well approximated
entries.



Chapter 5

Conclusions

The state space of complex systems is one of the most important means
to describe ideas, methods and algorithms for finding ground states, or
optimal solutions, of hard combinatorial problems. Based on a short
description how this space is structured a methodology to model the
dynamics in such a space has been recalled in Chapter 2. The movements
of random walkers can be described by a master equation which is discrete
in time.

With the help of this dynamics it was possible to characterize stochas-
tic optimization algorithms in Chapter 3 as Markov processes. Further-
more, it enabled us to decide whether an optimization algorithm offers
higher performance than another one by calculating optimal sequences
of transition matrices.

The Extremal Optimization heuristics was introduced and explained
in detail. This methodology could also be characterized as a Markov
process. Moreover, a proof was given that the original implementation
τ -Extremal Optimization cannot be optimal in general. Instead, a tech-
nique termed Fitness Threshold Accepting was developed and shown to
be the best possible implementation. For this algorithm the optimal
fitness threshold as a function of time has been calculated for small sys-
tems. Surprisingly these schedules do not show a monotonic decrease of
the fitness threshold.

The Continuous Extremal Optimization algorithm outlined a recipe
how the method could be applied to continuous state spaces. Besides
that, it showed a possible starting point for a generalization of the given
proof for continuous state spaces. A promising way might be the intro-
duction of some “hybrid” dynamics into the continuous state space by
mixing a local search algorithm with stochastic updates.
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Connected with the search for ground states is the characterization
of the state space as a whole by the density of states. Besides its cen-
tral role in equilibrium thermodynamics it also serves as a means to
describe the difficulty of an optimization problem. In Chapter 4 the
Wang-Landau algorithm to approximate the density of states has been
investigated in detail. Based on mild assumptions it could be charac-
terized as the flat-histogram method with the highest probability flows
between microstates. Analytical and numerical evidence was given which
indicates that this method is indeed the fastest converging one in the
class of histogram-based methods. Nevertheless, Wang-Landau sam-
pling might fail to calculate the density of states of complex systems
with a lot of local minima. Furthermore, parallelization is not straight-
forward.

Two matrix-based methods have been described. The first employed
Wang-Landau like updates, and consequently suffers from the same
disadvantages. As an alternative we developed a general-purpose algo-
rithm, the parQ method. This matrix-based algorithm circumvents the
difficulties observed in the Wang-Landau sampling as it uses Simulated
Annealing steps to explore the energetically low lying part of the state
space. Moreover, it is inherently parallel, as non-interacting random
walkers are employed. This gave rise to very efficient implementations
even on compute clusters with a slow communication network.

Finally a summary of still open questions is given. They can be seen
as a starting point for further investigations.

1. The structure of the given proof is very general. It should be possi-
ble to apply the given ideas to other classes of stochastic optimiza-
tion strategies like Genetic Algorithms. As this strategy is also
entirely Markovian it should be no surprise that some Θ-function-
like distributions for the crossover, mutation or selection probability
might do best.

2. In Continuous Extremal Optimization also a Fitness Threshold Ac-
cepting strategy might do best. To prove this a generalization
should be possible by introducing a local non-stochastic search al-
gorithm, reducing the dynamics from continuous to discrete state
spaces.

3. An analytical proof of the optimality, or non-optimality, of Wang-
Landau sampling in its self-consistent implementation is still un-
known. To obtain it, maybe transition matrices with randomly dis-
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tributed entries might be introduced. The allowed range to choose
transition rates from has been given, but it is unclear whether
choosing the highest rate for every entry is optimal within the pro-
posed scheme of repeatedly updating a histogram.

4. The current implementation of parQ can be improved systemati-
cally. The approximated entries should, of course, reflect the den-
sity of states well, resulting in equally small relative errors in the
whole energy region. Also the second largest eigenvector of the
transition matrix should be small, as this defines the rate of con-
vergence of the proposed matrix/vector multiplication. Both re-
quirements might be met by a self-adapting temperature schedule.
This schedule could steer some random walkers into energy regions
which have to be explored in order to improve the approximation
of the corresponding matrix entries. The question is how this self-
adaption could look like.

5. The density of states can serve as a measure for the difficulty of
optimization problems. Therefore, it should be possible to intro-
duce a new type of optimization methods which are not based on
local information about the state space, but global information: it
might be promising to propose steps in the random walk to find
the ground state due to transition rates based on the density of
states. In order to do so methodologies to extract more detailed
information like the density of local minima and barriers must be
introduced.

6. The Extremal Optimization methodology finds energetically low ly-
ing states with respect to one objective function very quickly. In the
process of finding Pareto optimal solutions of a multi-objective
optimization task such a search has to be performed with respect
to each of the objectives. In this sense an application of Extremal
Optimization to multi-objective optimization seems promising.
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Appendix A

Implementation

The analytical and numerical results of this thesis have been produced
by a combination of different methods. Analytical results were mostly
verified with Mathematica. To produce and evaluate numerical data
different computer languages have been used, e. g.,

• Java for computing the transition matrices of FTA,

• Mathematica for calculating optimal temperature schedules on the
trees and optimal FTA,

• C/C++ for implementing CEO combined with CG for Lennard-
Jones clusters, the Wang-Landau method on spin glasses and
estimating the infinite temperature transition matrix,

• AWK for post-processing data.

Parallelization of parQ was done using the object-oriented framework
of MPI. The Gnu MP library has been used for arbitrary large floating
point numbers.

All of these programs are an integral part of this thesis. They are
available upon request.
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[23] V. Černy. Thermodynamical Approach to the Travelling Salesman
Problem: An Efficient Simulation Algorithm.
J. Optim. Theory Appl., 45:41–51, 1985.

[24] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller. Equations of state calculations by fast computing
machines.
J. Chem. Phys., 21:1087–1091, 1953.

[25] G. Dueck and T. Scheuer. Threshold Accepting: A General Purpose
Optimization Algorithm Appearing Superior to Simulated Anneal-
ing.
J. Comput. Phys., 90:161–175, 1990.

[26] P. Moscato and J.F. Fontanari. Stochastic versus Deterministic
Update in Simulated Annealing.
Phys. Lett. A, 146(4):204–208, 1990.

[27] C. Tsallis. Possible Generalization of Boltzmann-Gibbs Statistics.
J. Stat. Phys., 52(1/2):479–487, 1988.

[28] C. Tsallis and D. A. Stariolo. Generalized Simulated Annealing.
Physica A, 233(1-2):395–406, 1996.

[29] T. J. P. Penna. Traveling salesman problem with Tsallis statistics.
Phys. Rev. E, 51(1):R1–R3, 1995.

[30] A. Franz and K. H. Hoffmann. Threshold accepting as limit case
for a modified Tsallis statistics.
Appl. Math. Lett., 16(1):27–31, 2003.

[31] A. Franz and K. H. Hoffmann. Optimal Annealing Schedules for
a Modified Tsallis Statistics.
J. Comput. Phys., 176(1):196–204, 2002.



92 Bibliography

[32] P. Salamon, P. Sibani, and R. Frost. Facts, Conjectures, and Im-
provements for Simulated Annealing, volume 7 of Monographs on
Mathematical Modeling and Computation.
SIAM, Philadelphia, USA, 1st edition, 2002.

[33] W. Wenzel and K. Hamacher. Stochastic Tunneling Approach for
Global Minimization of Complex Potential Energy Landscapes.
Phys. Rev. Lett., 82(15):3003–3007, 1999.

[34] A. Franz, K. H. Hoffmann, and P. Salamon. Best Possible Strategy
for Finding Ground States.
Phys. Rev. Lett., 86(23):5219–5222, 2001.

[35] K. H. Hoffmann, A. Franz, and P. Salamon. Structure of best pos-
sible strategies for finding ground states.
Phys. Rev. E, 66(4):046706/1–046706/7, 2002.

[36] M. O. Jakobsen, K. Mosegaard, and J. M. Pedersen. Model Opti-
mization in Exploration Geophysics II, edited by A. Vogel.
Friedr. Vieweg & Son, Braunschweig, 1988.

[37] K. H. Hoffmann, P. Sibani, J.M. Pedersen, and P. Salamon. Opti-
mal Ensemble Size for Parallel Implementations of Simulated An-
nealing.
Appl. Math. Lett., 3(3):53–56, 1990.

[38] Y. Nourani and B. Andresen. A comparison of simulated annealing
cooling strategies.
J. Phys. A: Math. Gen., 31(41):8373–8385, 1998.

[39] J. G. Kemeny and J. L. Snell. Finite Markov Chains.
Van Nostrand, Princeton, 1960.

[40] K. Ergenzinger. Optimale Kontrolltheorie für Simulated-Annealing-
Schedules auf selbstähnlichen Strukturen.
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pandit, and S. N. Coppersmith. Performance Limitations of Flat-
Histogram Methods.
Phys. Rev. Lett., 92(9):097201, 2004.

[96] B. Andresen, K.H. Hoffmann, K. Mosegaard, J. Nulton, J.M. Ped-
ersen, and P. Salamon. On lumped models for thermodynamic prop-
erties of simulated annealing problems.
J. Phys. France, 49:1485–1492, 1988.

[97] J.-S. Wang, Tien Kiat Tay, and R. H. Swendsen. Transition Matrix
Monte Carlo Reweighting and Dynamics.
Phys. Rev. Lett., 82:476–479, 1999.

[98] J.-S. Wang. Transition Matrix Monte Carlo Method.
Comp. Phys. Comm., 121-122:22–25, 1999.

[99] J.-S. Wang and L. W. Lee. Monte Carlo algorithms based on the
number of potential moves.
Comp. Phys. Comm., 127:131–136, 2000.

[100] J.-S. Wang and R. H. Swendsen. Transition Matrix Monte Carlo
Method.
J. Stat. Phys., 106:245–285, 2002.

[101] M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulo. An
improved Monte Carlo method for direct calculation of the density
of states.
J. Chem. Phys., 119(18):9406–9411, 2003.

[102] J. R. Errington. Evaluating surface tension using grand-canonical
transition-matrix Monte Carlo simulation and finite-size scaling.
Phys. Rev. E, 67(1):012102, 2003.

[103] J. R. Errington. Direct calculation of liquid–vapor phase equilibria
from transition matrix Monte Carlo simulation.
J. Chem. Phys., 118(22):9915–9925, 2003.

[104] F. Heilmann and K. H. Hoffmann. ParQ – high-precision calcula-
tion of the density of states.
Europhys. Lett., 70(2):155–161, 2005.

[105] F. Heilmann and K. H. Hoffmann. ParQ for ±J Ising spin glasses.
(unpublished).



99

[106] B. J. Schulz, K. Binder, M. Müller, and D. P. Landau. Avoiding
boundary effects in Wang-Landau sampling.
Phys. Rev. E, 67(6):067102, 2003.

[107] The MPI Forum. MPI-2: Extensions to the Message-Passing In-
terface.
homepage: http://www.mpi-forum.org,
September 2001.

[108] Technische Universität Chemnitz.
homepage: http://www.tu-chemnitz.de/urz/clic/,
September 2003.



100

Zusammenfassung

Die Lösung kombinatorischer Optimierungsprobleme kann mit dem Auf-
finden des Grundzustandes komplexer physikalischer Systeme gleichge-
setzt werden. Hierzu existiert eine Vielzahl von stochastischen Verfahren
wie Simulated Annealing, Threshold Accepting und Extremal Optimiza-
tion. Bei diesen Methoden werden Zufallswanderer im Zustandsraum zum
Grundzustand hin gesteuert. Dies erlaubt die Beschreibung der Verfah-
ren mit Hilfe von Markov-Ketten sowie die Aufstellung von Master-
Gleichungen, welche die Dynamik der Wanderer modellieren.

Auf Basis dieser Beschreibung wurde ein analytischer Beweis durch-
geführt, der innerhalb der Klasse der durch Extremal Optimization gege-
benen Optimierungsverfahren eine bestmögliche Implementation charak-
terisiert. Dazu wurden Performanzkriterien eingeführt, die quantitative
Vergleiche verschiedener Verfahren zulassen.

Die resultierende Methode Fitness Threshold Accepting hängt von ei-
nem Fitness Schedule ab. Der Verlauf dieses Schedules kann aus dem
Beweis nicht abgeleitet werden; vielmehr muss dieser an das zu untersu-
chende komplexe System angepasst werden. Hierzu wurde eine auf dis-
kreter optimaler Kontrolltheorie basierende Methode vorgestellt, und auf
kleine Ising-Spinsysteme angewandt. Es wurden optimale Fitness Sche-
dules berechnet, welche die Wahrscheinlichkeit, den Grundzustand des
Systems im Verlauf der Optimierung erreicht zu haben, maximieren, so-
wie die mittlere best-so-far -Energie minimieren. Die Schedules zeigten
sehr ungewöhnliche Abhängigkeiten von den Zeitschritten. Jedoch fällt
die Wahrscheinlichkeit, den Grundzustand nicht zu erreichen, sowie die
mittlere best-so-far -Energie exponenziell ab. Dies bedeutet insbesonde-
re, dass es sich bei der vorgeschlagenen Methode tatsächlich um einen
hochperformanten Optimierungsalgorithmus handelt.

Die Charakterisierung einer Optimierungsaufgabe kann durch die Ap-
proximation der Lösungs- bzw. Zustandsdichte erfolgen. Insbesondere
kann diese Abschätzungen erlauben, wie schwierig es sein wird, die opti-
male Lösung bzw. den Grundzustand zu finden. Darüber hinaus erlaubt
die Kenntnis der Zustandsdichte eines komplexen Systems sofort Aussa-
gen zur Temperaturabhängigkeit von gleichgewichtsthermodynamischen
Messgrößen. Nach einem Überblick über vorhandene Methoden wurde
das Verfahren von Wang und Landau detailliert untersucht. Bei die-
ser Methode wird ein flaches Histogramm über die möglichen Energien
des zu untersuchenden Systems erzeugt, mithin eine uneingeschränkte
Zufallswanderung über diese Energien realisiert. Es zeigte sich, dass die
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Herangehensweise von Wang und Landau die größtmöglichen Wahr-
scheinlichkeitsflüsse zwischen Mikrozuständen realisiert. Es scheint des-
halb das beste Verfahren innerhalb der Flache-Histogramm-Methoden im
Hinblick auf eine schnellstmögliche Konvergenz zu sein. Hierzu wurden
numerische Indizien sowie Ansätze für einen entsprechenden analytischen
Beweis gegeben.

Jedoch ist dieser Algorithmus auf komplexe Systeme mit vielen loka-
len Minima nur bedingt anwendbar, da entsprechende Zufallswanderer
lange in solchen Minima verweilen. Eine Approximation der Zustands-
dichte bei kleinen Energien, die einer Suche nach Grundzuständen ent-
spricht, wird somit numerisch aufwendig. Bei der vorgeschlagenen matrix-
basierten Alternative parQ wird versucht, diesen Nachteil zu umgehen.
Hier wird das Optimierungsverfahren Simulated Annealing benutzt, um
zunächst mit Hilfe von Zufallswanderern Übergänge zwischen Energieni-
veaus vorzuschlagen, die dann durch eine Eigenvektorberechung ausge-
wertet werden. Diese Methode wurde an einigen der größten komplexen
Ising-Spinsysteme getestet, für die zurzeit exakte Zustandsdichten be-
kannt sind. Eine sehr hohe Genauigkeit des Verfahrens konnte nachge-
wiesen werden.

Weiterhin zeigte sich ein Vorteil des Verfahrens bei der Umsetzung
auf Parallelrechner. Die Methode parQ lässt sich aufgrund der voneinan-
der unabhängigen Zufallswanderer äußerst leicht und effizient auf Cluster
von Computern bzw. Rechenknoten verteilen. Dies wurde durch Speed-
up-Messungen an entsprechenden Prozessen belegt, bei denen mehrere
hundert Rechenknoten benutzt wurden. Einige Messungen zeigten su-
perlinearen Speedup, der durch Cache-Effekte auf den Prozessoren erklärt
werden kann.
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”
sehr gut“ (1,4)

Studium und wissenschaftlicher Werdegang

1997 – 2002 Studium der Physik an der Technischen Univer-
sität Chemnitz, ab Hauptstudium gefördert durch
die Studienstiftung des deutschen Volkes
Abschluss: Diplom in Physik mit Prädikat
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