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Hierarchically Preconditioned Parallel CG Solvers
with and without Coarse Mesh Solvers inside

FEAP

Mathias Meisel Arnd Meyer
September 30, 1997

Abstract

After some remarks on the parallel implementation of the Finite Element pack-
age FEAP, our realisation of the parallel CG algorithm is sketched. From a
technical point of view, a hierarchical preconditioner with and without addi-
tional global crosspoint preconditioning is presented. The numerical proper-
ties of this preconditioners are discussed and compared to a Schur comple-
ment preconditioning, using a wide range of data from computations on tech-
nical and academic examples from elasticity.
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1 The parallelized FEAP—Version

In the last three years, together with the authors of [5], a lot of work was done
to portage the sequential Finite Element Analysis Package FEAP ([6]) to parallel
computers with message passing architecture. We mainly used the operating system
PARIX, but with small changes in some basic subroutines for communication and
initialisation, the switch to other operating systems (PVM....) is easy to manage.
In the resulting parallel version of FEAP (||-FEAP), consisting of more than 40-000
lines of source code, the utilities for grafical post processing and interactive control
of the computational algorithms are well combined with the distributed execution of
those subtasks, which are especially intensive in computational effort. So, complete
analysing computations to a wide class of linear or nonlinear problems from elasticity
can be performed on parallel computers in a comfortable and efficient manner.

As the principle of parallelisation we used the concept of domain decomposition.
The input data, describing the problem to solve, is formulated in some kind of
meta language, read in from a file by one distinguished processor and distributed
to all others using a tree like topology of the processors. Conversly, the output of
results, including X11 or Postscript based graphics, is completely prepared in parallel
and sequentialised by a ring topology. The mesh generation and the assembly of
the local' stiffnes matrices are performed in parallel without any communication,
because each processor can operate autonomously on his subdomain.

Since large but sparse linear systems are typical for those finite element applications,
we prefer preconditioned iterative solvers. The first solver implemented in ||-FEAP
was a conjugate gradient algorithm combined with an exact solver used to compute
the preconditioned residuals on the inner nodes of the subdomains and a Laplace
like preconditioner for the Schur complement at their boundaries. This solver and
a lot of data on the number of iterations and the computational time necessary to
solve various problems on different meshes and varying numbers of processors as
well as on speed up and efficiency are described in detail in [2].

In each step of the iteration procedure one global assembly of the residual vector
is needed. Therefore, the efficiency of the whole solver especially depends on the
technology of communication and data exchange between the processors. In our
first implementation, the global assembly was based on a hypercube topology of the
involved processors. Developing two different topologies, the efficiency of this task
could be highly improved by explicitly utilizing the geometrical relations between
the subdomains. This is documented in [3].

The aim of this work is to present a new implemented hierarchical preconditioner
based on the ideas of Yserentant [7] and the experiences we made with it. An
additional preconditioning for the crosspoint system will also be described.

Since the method of conjugate gradients to solve a system Kx = b of linear equations
is quite common, the algorithm implemented in ||-FEAP shall only be sketched at
this place.

Twith respect to a single subdomain



2 The parallel conjugate gradients algorithm

Let C be some preconditioner for K, x® an initial guess for the solution x, 7 :=0,
a’:=1, 3%:=0 and u’:=0. Then, our algorithm starts up with

r’ .= Kx"-b
wl = C'r? (%)
h’ = Kw
q = w'
7= (W) (o)
0 = (w" h") (o)
and runs through
1: utt = h’7+5’7u’7
X' = x'4a g STOP if 4 is small enough (2.1)
N B T
witl = it (%)
h'*' = Kwit
S = (Wit i) (o)
s (W77-|-17 h! ) (.)
FiHT = i
gt = wit4pitg
1= 141 GO TO 1

In the nodes on the coupling boundaries and in the crosspoints? of the subdomains

there are two possibilities to distribute values of matrix entries and vektor com-
ponents to the concerned processors. The first is that each processor owning the
regarded node posseses a copy of those values. This is used for the vectors w, q
and x in (2.1). In the second, used for r, u, h and b as well as for the entries of
K, the true value may be obtained by summing up the contributions of all proces-
sors owning the regarded node. The transformation from the second to the first

kind ("global assembly”) requires communication between the processors. In our
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CG procedure, this happens only in the steps marked with a "x The expense
of this communication depends on the used communication technology, cf.[3], and
grows with decreasing mesh size h and with P, the number of processors. To obtain
the global scalar product in the steps marked with a "e”, the local parts must be
collected over all processors with an expense not depending on & and only growing
with P. This operation can be done in one step for both numbers v and 7. In [2] and
summarizing in [3] it is shown, that all other operations of (2.1) can be performed

in parallel without any additional communication requirements.

Zedges common to 2 subdomains and vertices, belonging to at least 2 subdomains

Inumber of communication actions and amount, of exchanged data per iteration step



The main disadvantages of using an exact solver to compute the preconditioned
residuum w at the inner nodes of the subdomains are the large amount of stor-
age needed for the decomposed submatrices of K and the expense of arithmetic to
compute these factorization and the inner residuals.

To overcome this, the hierarchical preconditioner presented in the following section
was implemented.

3 Hierarchical preconditioning

Neither the original version of FEAP nor the recent version of ||-FEAP are designed
to generate hierarchical meshes. Therefore, for meshes that could have been gener-
ated by some hierarchical mesh generator, an algorithm for computing a hierarchical
list to such an existing mesh was implemented.

3.1 The hierarchical list

Suppose, the considered domain € is decomposed into P quadrilateral subdomains
Q, (0 < s < P-—1) and these subdomains are distributed to P processors. As-
sume, each processor P, has generated a quadrilateral mesh on €, consisting of
(QNZ—I—]) X (QN'ZI—I—]) grid points. The totality of all these submeshes defines a FE
grid over £ without "hanging nodes”. Then, |[-FEAP is able to compute the hier-
archical list for each subdomain in parallel and without communication, and their
totality is a hierarchical list of the whole mesh.
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Figure 1: Example of a hierarchicalised mesh in 2 subdomains

In figure 1, the local numbering of the nodes used inside |[F-FEAP (above) and the
membership of the nodes to the hierarchical levels (below) are displayed for the case

of 2 subdomains with Nj=N{=3 and Ny =Ny =2.



The main idea to get the hierarchical lists is the following:

Let the boundary and the vertices of the subdomain (level 0) be fixed. Then,
alternating in horizontal and vertical direction®, new lines are inserted, defining a
new level, and the points of intersection with the just existing lines are added to
the hierarchical list at this new level als "sons” of the two nodes (fathers) in the
neighbourhood on the intersected line.

For each subdomain from figure 1 this leads to the list presented in table 1.

son | father 1 | father2 son | father 1 | father2 son | father 1 | father2
level 1 level 4 5 1 6
8 1 2 22 4 23 19 18 20)
18 3 4 40 20) 33 41 40 42
level 2 42 18 35 34 33 35
23 1 4 44 16 37 27 26 28
35 8 18 14 3 13 7 6 8
13 2 3 24 1 23 17 16 18
level 3 26 6 33 43 42 44
20) 4 18 28 8 35 36 35 37
33 23 35 30 10 37 29 28 30
6 1 8 12 2 13 9 8 10
16 3 18 level 5 15 3 16
37 13 35 21 4 20) 45 14 44
10 2 8 39 22 40 38 13 37
32 23 33 31 12 30
25 24 26 11 2 10

Table 1: Hierarchical list to figure 1

3.2 The hierarchical preconditioner

In elasticity problems, there are typically I > 1 degrees of freedom associated to each
single node in the computational grid. They shall be numbered by ¢ , 1 <2 < [,

7771 T Y
and the total number of unknowns is N:=7- % (QNf“ + ])(QN‘ +1).
5=0

FExcept the four vertices of the subdomain (level 0), each node in the hierarchi-
cal(ized) mesh is the "son” of exactly two "fathers”, cf. table 1, and for a mesh
consisting of (QN?T + 1) x (QN'Z/ + 1) grid points the hierarchical list consists of
M, = (QN%T —I—])(QN'Z/ +1) — 4 lines. Let these lines be numbered, starting from
the lowest level 1 and ending at the highest level N7 + NV, with m , 1 <m < M,.
With thist conventions, the notation S,,, F! and F? for the "son” and the two

"fathers” in the m‘th row of the hierarchical list is used to define the linear operator

. i i 1, 0 i=1(1)T
Q, : vg, '_7’Sm+2 (7)%—%7)%) ) 1 (1) M, (3.1)

4in case of [NT—N¥| > 1in a more flexible way to distribute the directions as evemly as possible



acting on some grid function v, and it’s transposed

T A T W) :
Q, : 7)]%.—7) m—|—2715m, i I : (3.2)

In (3.1), the half of the sum of the values of both "fathers” is added to the value of
the "son”, whereas in (3.2) the half of the value of the “son“ is added to the values
of both "fathers”.

As the collectivity of the local hierarchical lists defines the hierarchical list over the
whole domain, the local matrices Q, and Q! define the two parts Q and Q" of the
hierarchical preconditioner over the whole grid.

Since nodes with essential boundary conditions cannot be removed from the grid
and the preconditioned residual w* has to be zero for all times whenever the initial
solution fulfills this conditions, we need the diagonal matrix ¥ of dimension N

. 0 essential conditions
V= d“]’.q (\Tl”) :_{ 1 all others (33)
to cut off pollutions. The matrix
J:=V diag (k;") (3.4)

of the same dimension and derived from the stiffness matrix K is needed to de-
scribe an additional Jacobi scaling. Finally let > denote the operation of the global
assembly of a vector (cf. section 5).

Then, the hierarchical preconditioner C in (2.1) may be expressed by”

C'=vQxIQ v . (3.5)

FExcept the assembly 3. all operations in (3.5) can be performed in parallel and
without communication.

Applying U or J to a vector is realized with the multiplication in components of two
local vectors nsing standard routines described in [1], and Q as well as Q" contain
only simple operations acting on the same local vector.

4 Coars grid preconditioning

Regarding the loaded beam from figure 3, divided into 128 subdomains and dis-
tributet to 128 processors, we state, that only the subdomains 2, , 96 < s <127,
are subject to the loading and no other than €4 contains essential boundary con-
ditions. Since, in each CG step, exchange of information takes place only across
the coupling boundaries between geometrically neighbouring subdomains, it takes

®The rightmost ¥ can be dropped, if K contains no other than diagonal entries in the rows
associated to essential boundary conditions.



at least 96 steps until processor Py gets some knowledge about the existence of the
loading, and additional 127 steps are necessary to bring the first reaction forces from
Q, to Piar's attention.

This heuristic considerations explain, why computations to the beam problem re-
quire, by the same number of degrees of freedom, essentially more iterations than
the geometrically more compact problem from figure 2, when a large number of
precessors is tsed®.

The main idea of coarse grid preconditioning consists in regarding the domain de-
composition as a computational grid and solving a suitable boundary value problem
(BVP) on this grid to obtain improved residuals in the crosspoints. This BVP can
be the original problem or a substitute with similar properties.

4.1 The coarse grid matrix

In case of quadrilateral subdomains, the most simple but in common use variant of
constricting a coarse grid matrix is to regard the quadrilaterals as unit squares” and
assemble the descrete Laplacian over this uniform grid. The resulting matrix shall
be refered to by Lg. This requires no local computations and only a minimum of
storage and communication, but the more the real geometry of the Q, differs from
squares, the less is the coincidence to the original problem (cf. sections 7.4 and 7.2).
To overcome this, the Matrix f,Q7 arising from the global assembly of the descrete
Laplacian over the real quadrilateral grid, takes presedence. The storage and com-
munication requirements are the same as for f;g and so are the dimension and the
bandwidth of the matrices. Because the geometrical computations must be per-
formed only once bevor the iteration starts, the local computational effort can be
left out of account.

Since the discrete Laplacians Lg or iQ will be used separately for each of the [
degrees of freedom associated to a single node in the grid, the coarse grid matrices
Ls and Lg are defined to be the block diagonal matrices consisting of T ig or
iQ blocks, respectively.

The most expensive variant is to discretize the original problem on the coarse grid.
In case of I > 1 degrees of freedom per single node, the dimenson of the resulting
matrices Eg or Eg is the same as the dimension of Lg, but they are less sparse,
their bandwith is larger and they do not decompose into I submatrices independent
from each other.

Since a direct solver shall be used to solve the crosspoint problem, the matrix Lg
seems to be a good compromise.

In ||-FEAP, iQ is gained by discretising the Laplace operator with bilinear functions
over all £2; and performing a global assembly on each P (cf. section 5). After that,
each processor P, performs a Cholesky decomposition with its own copy of iQ7

With the preconditioner (3.5) inside the algorithm (2.1) on 128 processors, 837 iterations
were needed to solve the beam problem with 143550 degrees of freedom (dof), whereas the
wedge problem with 143088 dof was solved after 136 steps.

“e.g., neglecting the real geometry



implicitly defining a decomposition for Lg:

Lo—LL . Lo=LL" . (4.1)

4.2 The crosspoint solver

With the coarse grid matrix Lg (or Lg) from the previous section, T being the unit
matrix of dimension N — N N¢ beeing the dimension of L,

O R B A B

and using Q, Q", ¥, U and J from (3.1) (3.4), the hierarchical preconditioner with

imbedded crosspoint preconditioning reads®
C'=vQIrGg'i”?qQ v . (4.3)

Asin (3.5), the simple operations denoted by W, Q", 3% and Q work in parallel and
require no communication. Compared to (3.5), some additional communicational
effort araises from the crosspoint solver, but this shall be diskussed in section 5.

The root J'/2 should be precomputed before the iteration cycle starts. So, in com-
parison to (3.5), the additional numerical effort per iteration step caused by the
crosspoint preconditioning is one diagonal scaling (J1/2) and [ times the backward
and the forward substitution associated to (i )71 I That’s the reason why the pre-
conditioning (4.3) actually requires less steps of iteration than (3.5) but sometimes

needs more computational time, when only a few steps are saved.

5 Different technologies for the global assembly

In [3], three different techniques for the assembly of the residuals in each CG step
were discussed in detail.

On the first and simpliest, basing on the routine “cube cat® from [1] and referred to
as “hypercube communication®, each processor collects the data from all coupling
nodes? of all other processors, seeks in the resulting storage vector'® for components
related to nodes owned by himself, too, and ignores the rest. Obviously, especially
when a large number of processors is used, each processor uses only a small part of
the interchanged data for the assembly of his residual values.

To reduce this overhead, the “coupling edges communication® was developed. On
this method, hypercube communication takes place only for the crosspoints, whereas
the data along the interior of each coupling edge is exchanged directly between the
two processors, whose subdomains share this edge. This requires the generation of

8footnote 5 from page 5 also applies to 4.3

Ycrosspoints and nodes at the coupling boundaries

10%hich might be huge in case of a small meshsize and/or a large number of processors



a virtual topology of the processors, reflecting the geometrical interrelationship of
the subdomains.

For domain decompositions consisting of quadrilaterals only, this topology consists
of up to 4 additional virtual links per processor.

If the quadrilateral subdomains define a tensor product mesh, a third technology
named ”"crosspoint communication”, uses no hypercube communication at all. In-
cluding the crosspoint data at the end of the coupling edges into the direct data
exchange between the concerned processors, it remains to establish at each proces-
sor again up to 4 additional virtual links to those processors, whose subdomains
intersect with the regarded subdomain in exactly one crosspoint, to exchange the
crosspoint data with all processors needing them. The larger the number of used
processors, the larger is the gain in time and storage.

If no coarse grid preconditioning is intended (C™' from (3.5)), crosspoint commu-
nication is the most efficient technology, because of the fewest storage requirements
and the least amount of transported data, but if C~' shall be taken from (4.3), at
least one processor must collect all crosspoint data to solve the coarse grid system.
There are two possibilities in common use:

1. Only one processor assembles the coarse grid matrix, collects all coarse grid
residuals, solves the crosspopint system and distributes the solution to all other
processors. This works good with the routines like “tree up“ and “tree down*

from [1].

2. Each processor assembles his own coarse grid matrix, receives all coarse grid
residuals, solves the crosspopint system and uses only those components of
the resulting vector, assigned to the edges of his own patch. In this case,
“cube cat“ should be used for the crosspoint data.

In |[-FEAP, the following is implemented: If the preconditioner (3.5) is used, the
assembly of the residuals is based on “crosspoint communication®, and in case of
(4.3), the “coupling edges communication® is choosen to meet the needs of the
crosspoint solver in variant 2. Note, that an additional crosspoint solver causes
not only additional numerical work per iteration step but also additional effort in
communication.

6 Comparison to the Schur complement CG

The Schur complement CG algorithm (SCCG) is completly documented in [3], page
5, or in [2].

The essential computational expense per iteration consists of four linear combina-
tions of vectors (y+1z), one matrix vector multiplication (Ky), two scalar products
((7,y)) and the work to be done in the preconditioner (w = O 'r).

To compare both algorithms from a local point of view, let N/ and NP denote the
number of degrees of freedom located in the interior and at the boundary of the
subdomain §2,.



In [2] for the SCCG it was shown that, due to the exact solver used as precondi-
tioner in the interior of the subdomains, all the four operations y + ¢z and the two
scalar products can be restricted to the n” components associated to the coupling
boundaries, saving 12N! FLLOP’s in each step of the algorithm. For the same reason,
instead of the whole matrix vector multiplication K w, needed in the hierarchical

"B BT
llff,; k[f, ) must be
‘S ‘S

applied, saving at least additional TON! FLLOP’s. On the other hand, the number
of nonzero entries in the Cholesky factorization of K/ used in the SCCG grows

case, only the submatrices K?, K'P and KP' from K, = (

quadratically with N/, overcompensating the saved 22N! FLOP’s for sufficiently
large problems.

7 Numerical results

To compare the efficiency of the various preconditioners, the following three exam-
ples will be regarded. They are choosen to be at least a little bit realistic and,
coincidental, make visible the expected benefits and disadvantages of the compared
algorithms.

The following abbreviations will be used in this chapter:

o T, and T} are denoting the time needed for the arithmetic operations and the
total time (including the time for communication).

o 7% T" and T" are denoting the time in seconds, needed to solve the prob-
lem with SCCG, with the hierarchical preconditioner (3.5) and with the
hierarchical preconditioner with additional crosspointsolver (4.3).

o #° P and 4 are denoting the corresponding number of performed iterations
to achieve the desired accuracy (v* < 107247 in (2.1)).

o #" indicates, that the coarse grid matrix was based on Ls (see chapter 4.1).

e DIM denotes the total size of the problem, counting unknowns located at
coupling nodes only once and reduced by the number of essential boundary
conditions.

P denotes the number of used processors.

All computations were performed on the "GC PowerPlus” computer under the
PARIX environment.
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7.1 The model problems

Wedge under surface loading
A wedge, fixed on the upper half of both slanting sides, is pressed from above by a
piston (figure 2).

AAAAAAAAALY AAAAAAAAARY
. < |6 - T 12\ 13 14 /15 &
‘ M8 N9 |10 /11 27
4\5 16 /7
oN1[2/3 ANEEWE

Figure 2: Wedge on 8 and on 16 processors

Beam under surface loading
A beam, fixed at one frontage, is loaded at the opposite end (figure 33.
Yty yyvy

0 1 2 3 4 ) 6 7

Y Y Y YV v vy
%0]23456789]0]]]2]3]4]5

Figure 3: Beam on 8 and on 16 processors

Cooks membrane problem
As a classical technical problem we selected tho following (figure 4):

_— 1
2
0

Figure 4: Cooks membrane problem on 4 processors
7.2 Grid geometry and preconditioning

The condition number of FE matrices depends on the ratio v of the smallest to
the largest edge in the computational grid. To eleminate them from the other
investigations, this influences shall be studied first. Since the N7 and NY were
choosen uniform for all s, the subscript s will be suppressed.
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Since the subdomains in the beam problem from figure 3 on 16 processors are
squares, we have the best mesh for N = N¥ and the more N7 differs from N7,
the worse is the mesh. The following results were achieved:

#
1600 #h #h,
NT N7 DIM | # | # | #° | #7
2 8 | 40606 | 1131 | 1557 | 976 | 976
3 7| 36894 | 551 548 | 328 | 328
4 6 | 35230 | 305 | 241 | 152 | 152
00 #'5 5| 34782 224 1 222 | 142 | 142
6 4135326 | 307 | 230 | 148 | 148
7 3137134 | 531 484 | 317 | 317
8 2 141710 | 1045 | 1398 | 912 | 912
0 ——t——+——+—+—+—> N7 NV
-6 0

Figure 5: Beam on 16 processors

Although v varies from 1:1 to 1:64, we have #"° = #£" in all cases. Probably this is
due to the anyhow uniform size and shape of all elements, and an extra benefit of
the better coarse grid matrix will occur for nonuniform meshes or nonrectangular
elements. Fig. 5 shows, that the additional crosspoint preconditioning decreases the
number of iterations in each specified case (#£"°< #") and that the SCCG as well
as (4.3) are more stabel against bad meshes than (3.5).

For the wedge problem we got

#

1600 |
N= NV DIM #s #h, #hc #%ﬂ
2 8 139064 | 412 | 1595 | 1553 | 1553
3 7136120 | 215 | 455 | 428 | 441
4 6| 34840 | 115 | 138 | 132 | 137
g00 1 o 5 5134584 | 80 99 ]8 91
26 4135224 | 91 117 96 99
#° T 3137080 | 160 | 225 | 199 | 205
) 2 141080 | 313 | 724 | 665 | 677

#S
0 ——t——t——+—+—+—>N"— NV

-6 0 6

Figure 6: Wedge on 16 processors
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Only the SCCG proves to be stabel, when the mesh tends to degenerate, whereas
the other three solvers show a similar behaviour among each other. Throughout the
table (figure 6), we have #"° <#" < 4" emphasizing the usefulness of coarse grid
preconditioning and the better features of Ly in comparison to Lg.

Finally the membrane problem:

Astonishing we observe, that, in some cases, #%° < 4 but with only small differ-
ences. The preconditioner (4.3) was always better than (3.5), and again SCCG was
well suited for badly shaped meshes.

#
b
N* NV DIM #s #h, #hc #%ﬂ
2 8 139064 | 1043 | 2646 | 2491 | 2476
3 7136120 | 532 | 801 | 713 | 711
1600 4 6 | 34840 | 271 | 251 | 193 | 199
5 5134584 | 154 | 193 | 157 | 155
6 4135224 | 145 | 169 | 128 | 132
. 7 3137080 | 208 | 198 | 181 | 183
8 2 141080 | 373 | 526 | 486 | 489
800 -
he
s
#hc
i /.
0 —t——t——+—+—+—>N"— NV
-6 0 6
Figure 7: Cook’s membrane on 16 processors
Summary

In all examples of this section, extra coarse grid preconditioning to the hierarchical
preconditioned conjugate gradient method reduces the number of performed itera-
tions, even on geometrical awkward meshes. The difference between the two com-
pared crosspoint matrices is humble, but the real geometry in Lg tends to be better
than Lg. The number of required iterations grows rapidly, when the meshes degen-
erate, espacially when hierarchical methods are used. The reason for that behaviour
might be, that in hierarchical methods not only the ill conditioned FE matrix influ-
ences the solution process but also the preference of one coordinate direction over
the other, especially in such problems, where the unbalance of the mesh doesn’t
coincide with the simulated physical problem and its boundary conditions (see the
unsymetric graphs in figs. 7 and 6).



7.3 Comparison of the preconditioners

After investigating the influence of mesh design, we restrict in the sequal to grids

with Ny = N"4+1 or NY = N7 .

depending on the problem and its size''. All stated times are in seconds. A 7-mark

indicates, that the problem exceeded the available memory.

One single processor

On one single processor no communication occurs and therefore T, =T} holds. The

following results were measured:

So the number of required iterations is primely

Task DIM | #° | #7 ] # T* T" The
40 31 59 56 0.04 0.01 0.01

144 76 270 247 0.16 0.43 0.44

heam H44 | 152 &h7 796 1.59 5.00 4.27
2112 1 193 | 1432 | 1273 | 15.63 29.17 24.54

8320 | 208 | 1610 | 1432 | 132.59 | 125.50 | 113.50

16512 ? 1613 | 1434 ? 252.45 | 224.09

286 19 43 43 0.15 0.11 0.14

1086 22 7 56 1.23 0.66 0.64

wedge 4222 25 70) 71 14.82 3.50 3.50
8318 25 97 98 30.29 9.57 9.46

16638 ? &7 &9 ? 17.76 16.90

40 22 38 40 0.04 0.01 0.01

&0 24 44 45 0.07 0.04 0.04

144 33 79 77 0.25 0.13 0.09

membrane h44 40 115 114 0.56 0.64 0.63
2112 46 142 136 4.50 3.34 3.10

8320 51 156 159 44.89 | 14.77 14.87

16512 ? 162 163 ? 30.33 30.52

From the data in table 2 and its graphical representation in figure 8, the following

Table 2: Results on 1 processor

predicates can be derived:

1. Due to the low storage requirements of both hierarchical preconditioners, this
solvers can handle problems of at least double the size, the SCCG is able to

solve.

2. The extra coarse grid preconditioning gives a little advantage in iterations
and time only in case of the beam problem, whereas for the wedge and the

membrane no signifficant differences could be observed.

""Remember, that the graphs in figs. 5 to 7 are nearly horizontal for |[N” - N¥|<1.
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3. Even though both hierarchical preconditioners, at least for a small number of
processors, require substantial more steps of iteration than the SCCG, the

total time for solving the problem with SCCG grows much faster with the
dimension than the time spend with (3.5) or (4.3). So, for sufficiently large
problems, the hierarchical concept proved to be faster.

The Note the changing scales
in the pictures !

> DIM

0 5000 10000
Figure 8: Beam (ul), wedge (ur) and membrane (d) on 1 processor

Two processors

On two processors, only few communication occurs and therefore T, ~ T} holds. Due
to the similar behaviour of the solvers for the membrane and the wedge problem
(see fig. 8), the results on two processors are presented for the heam and the wedge

problem only.



The data in table 3 and the graphics in figure 9 reverify the observations 1

in case of one processor.

15

3 made

Task | DIM | #° | #7 | #5 T* T" The
90 61 | 141 | 132 0.09 0.11 017
162 86 | 168 | 149 0.22 0.26 0.47
170 98 | 224 | 207 0.21 0.35 0.54
beam 306 | 123 | 422 | 381 0.49 0.85 1.21
1122 | 162 | 713 | 583 2.30 4.33 3.67
4290 | 177 | 804 | 659 15.78 18.93 15.13
16770 | 185 | 848 | 693 | 133.97 | 78.52 68.29
33282 ? 852 | 695 ? 155.27 | 128.93
304 23 43 44 0.08 0.12 0.13
1120 28 57 58 0.47 0.41 0.47
2176 | 31 68 70 0.94 0.92 1.00
wedge 4288 32 70 75 3.87 1.88 2.22
8448 | 36 | 87 93 8.10 4.79 5.05
16786 | 35| 87 94 | 39.38 9.58 10.37
33408 ? 114 | 124 ? 26.09 27.53
Table 3: Results on 2 processors

#S

0 10000 20000

10000

20000

Figure 9: Beam (1) and wedge () on 2 processors

Four processors

On four processors, the communication starts to influence the total time consump-

tion of the solver and therefore T, ~ T} holds no longer. Again we restrict to the

beam and the wedge problem:
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Task | DIM | #° | #" [ #P¢ T? T? Th Th The | The
190 | 101 | 211 | 168 | 0.41 | 0.22| 0.55| 021 0.63] 0.15
630 | 137 | 355 | 256 | 0.85 | 0.50| 1.48 | 0.85| 1.33| 0.56
beam | 2278 | 153 | 407 | 291 3.38 | 2.07| 3.24| 2.61| 2.75| 1.79
8646 | 167 | 429 | 309 | 15.78 | 15.29 | 11.11 | 10.19 | 8.08 | 7.11
33670 | 183 | 456 | 323 | 131.33 | 130.09 | 43.87 | 42.58 | 31.57 | 30.24
66822 | 7 | 458 | 326 ? ? | 86.13 | 83.86 | 60.23 | 58.15
340 | 28| 41| 38| 0.12] 0.06] 0.15] 0.06 | 0.19] 0.08
1188 | 33| 53| 48| 044| 036]| 0.34| 0.24| 0.34| 0.19
wedge | 4420 | 39| 62| 57| 243 | 234| 1.01] 087| 0.96 | 0.80
17028 | 43| 73| 68| 21.78 | 21.65| 4.17| 3.96| 4.00 | 3.81
33540 | 46 | 97 | 91| 47.29 | 46.99 | 11.05 | 10.78 | 10.57 | 10.17
66820 | 7| 83| 78 ? ? 19.16 | 18.84 | 17.90 | 17.62

Table 4: Results on 4 processors

5004 A
150] i

#h,

333] 67|
100 33
o Th,
166 T 33|
50 17 | The

— DIM

0 20000 40000 0 20000 40000
Figure 10: Beam (1) and wedge (r) on 4 processors

Over again, the hierarchical preconditioned solvers can handle problems of double
the maximum size, the SCCG-algorithm is able to solve on the same storage ba-
sis. Since this remains true for all investigated numbers of processors, it wont’t be
mentioned anymore in the sequal.

In both problems, the extra coarse grid preconditioner in (4.3) has saved some
iterations, compared to (3.5), but it takes nearly double the number of iterations
compared to (2.1). Regarding the time, (2.1) ist faster than (3.5) or (4.3) only
for small problems, and the more the dimension grows, the larger are the savings
gained by using one of the hierarchical preconditioners. In difference to one ore two
processors, (4.3) is faster than (3.5) in case of the wedge problem too, provided the
problem is large enough.
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Since #" — 44" is much smaller for the wedge than for the beam, the time savings
THh—T" are wee for the wedge but perceptible for the beam.

The tiny differences T; — T, show, that the losses in time caused by the different
types of global assembly don’t play a significant role on 4 processors.

Note that the leftmost segments of the graph related to the number of iterations
for the wedge problem in figs. 10 and 8 doesn’t indicate a falling tendency. In this
cases, the largest resolvable problem was on a mesh with N7 N¥ and casual this
mesh was anomalous well suited for the solver. The same applies to fig. 12.

Eight processors

Task DIM | #° | #7 | #" T? T? Th Th The | The
390 | 121 | 190 | 135 0.39 029 | 054 0.17 0.90 | 0.28
1278 | 143 | 220 | 152 0.70 0.43 0.90 0.43 1.12 0.37
beam 4590 | 167 | 243 | 166 2.75 2.36 2.16 1.51 1.86 1.00
17358 | 186 | 259 | 180 19.46 | 18.86 | 6.84 | 6.11 5.16 | 4.34
67470 | 206 | 286 | 189 | 148.08 | 146.94 | 28.31 | 27.45 | 18.93 | 17.87
133902 ? 283 | 187 ? ? 52.95 | 51.14 | 36.30 | 34.99
380 | 35| 40 36 0.19 0.05 | 0.18 | 0.02 0.22 | 0.03
1260 | 43 52 47 0.55 0.32 | 0.35 0.17 0.36 0.12
wedge 4556 a1 62 56 1.24 1.05 | 0.74 0.46 0.76 0.46
17292 | 57| 74 67 6.16 5.89 | 253 | 2.13 2.34 | 1.88
67340 | 65| &85 77| 59.26 | H8.73 | 10.35 | 9.89 9.06 | 8.42
133644 ? 102 93 ? ? 23.07 | 21.93 | 20.95 | 19.87
Table 5: Results on 8 processors
# #
T T
. A h A
Mo, 1

200,
100

100,
50

40000

80000
Figure 11: Beam (1) and wedge (r) on 8 processors
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On eight processors, for the first time we observed #" < 4 vet, at first for the
beam problem only. For the wedge problem, #"° — 45 is at least 12.

The difference in time consumption of the hierarchical preconditioned solvers and
the SCCG is growing rapidly with the dimension of the problems. For both tasks
we have 7" < T" <'T'* whenever the dimension is large enough.

16 processors

On 16 processors we also present results for the membrane problem from fig. 4:

Task DIM | #° | #" | #'° T; T T TV Tk | Tk
790 [ 145 [ 156 | 107 | 0.81 | 0.28 | 0.85| 022] 1.16[ 0.33
2574 | 173 | 180 | 120 | 137 | 0.63 | 1.12 | 0.49 | 1.43 | 051
beam | 9214 | 199 | 203 | 132 | 442 | 343 | 239 | 1.32| 2.02| 0.8
34782 | 224 | 222 | 142 | 2354 | 22.76 | 6.41| 519 | 4.79 | 3.53
135070 | 248 | 242 | 155 | 175.47 | 174.24 | 24.65 | 23.34 | 17.06 | 15.55
268062 | 7 | 243 | 149 ? ? | 47.35 | 4457 | 30.13 | 28.23
760 | 49| 67 60| 0.39 | 0.07| 048 | 0.10] 0.67] 0.19
2520 | A9 | 78| 67| 0.63| 024 0.68] 021 077 0.19
wedge | 9112 | 70| 88| 78| 157 | 1.09| 1.30| 0.66| 1.29 | 0.62
34584 | 80| 99| 88| 9.1 | 871 | 3.68| 282| 3.32| 255
134680 | 84 | 108 | 99 | 71.61 | 70.84 | 13.14 | 12.00 | 12.28 | 11.13
267800 | 7 | 101 | 85 ? 7| 2335| 21.77 | 20.21 | 19.07
760 [ 99130 102 0.77 | 027] 0.98| 0.19] 1.06[ 0.30
2520 | 120 | 146 | 126 | 1.38 | 0.55 | 1.29 | 039 | 1.45| 0.35
mem 9112 | 138 | 179 | 138 | 3.10 | 213 | 2.67| 1.33| 2.31| 1.10
brane | 34584 | 154 | 193 | 157 | 16.88 | 15.59 | 7.05 | 5.26 | 6.05 | 4.57
134680 | 172 | 214 | 177 | 127.50 | 125.71 | 26.66 | 24.35 | 22.16 | 19.86
267288 | 7 | 216 | 182 ? 7 [49.94 | 46.70 | 42.81 | 40.39

Table 6: Results on 16 processors

Regarding the beam problem, the lowest number of needed iterations was obtained
with the hierarchical solver and additional coarse grid preconditioning, followed with
a large desistance by the SCCG and the pure hierarchical solver. If the dimension
of the linear system is large enough, yet the pure hierarchical solver needs slightly
few iterations than the SCCG.

For the two other tasks we have #£° < 447 < 40

Viewing at the time, both variants of the hierarchical preconditioners proofed their
supremacy about the SCCG in all situations.
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32 processors
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Task DIM | #° | #7 | #" T? T? Th Th The | The
1590 [ 234 [ 200 [ 103 | 1.49] 037] 1.05| 0.23| 1.47] 0.30

5166 | 273 | 224 | 113 |  3.14 | 2.00 | 1.44 | 048 | 1.82| 0.50

beam | 18462 | 308 | 245 | 122 | 832 | 7.00| 291 | 1.54 | 2.43 | 1.01
69630 | 344 | 264 | 134 | 35.45 | 33.66 | 7.67| 6.49| 5.12 | 3.43

270270 | 377 | 283 | 144 | 259.63 | 253.27 | 29.89 | 27.21 | 16.60 | 13.98

536382 | 7 | 328 | 161 ? ? | 65.01 | 61.72 | 34.42 | 30.25

1560 | 69| 58| 43| 0.75] 0.23] 0.55 | 0.11 | 0.68| 0.14

5112 81| 68| 53| 1.19| 0.59] 0.73 | 0.18 | 0.98| 0.34

wedge | 18360 | 91| 78| 62| 244 | 1.86| 1.39| 0.59 | 1.49| 0.67
69432 | 101 | 90 | 72| 11.81| 10.87| 3.63 | 2.56 | 3.41 | 2.08

269880 | 109 [ 102 | 82| 87.47 | 86.06 | 13.44 | 11.43 | 11.47 | 9.48

536120 | 7 | 127 | 111 ? ? | 31.77 | 29.07 | 28.49 | 25.15
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Task DIM | #° | #7 | #h T? T? T} Th The | Tk
1560 | 118 [ 104 | 66 | 1.15] 025 0.97 | 020] 099 0.12
5112 [ 139 | 121 | 77| 1.94| 089 | 1.32| 0.31| 1.30 | 0.25
mem 18360 | 156 | 140 | 93 | 4.08 | 2.56 | 246 | 1.09| 2.19 | 0.94
brane | 69432 | 173 | 157 | 106 | 18.01 | 16.70 | 6.20 | 4.43 | 4.80 | 3.27
269880 | 188 | 173 | 120 | 143.03 | 138.68 | 21.79 | 19.29 | 15.94 | 13.72
536120 | 7 | 172 | 131 ? ? | 42.55 | 39.08 | 33.41 | 29.85

Table 7: Results on 32 processors

160000 320000
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Figure 13: Beam (ul), wedge (ur) and membrane (d) on 32 processors

On 32 processors we ohserve #£° > #£7 > 47 for all three investigatd model problems.
Therefore T%>T" also holds for all mesh sizes, and except for large mesh sizes and
therefore small numbers of unknowns in the linear systems, 7" >T" holds too.
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on 64 processors

Again we observe #° > #" > #" and T* > T" in all cases, also T" > T" for
sufficiently large problems.

Task DIM | #° | #7 | #0 T? T? T} Th The | The
3190 [ 408 | 371 [ 132 3.6 | 1.7 2.71 ] 047] 3.10] 0.70
10350 | 481 | 398 | 138 | 4.75 | 1.94| 353 | 1.10| 3.33| 0.76
beam | 36958 | 544 | 422 | 143 | 13.41| 10.03| 6.02| 2.82| 3.99 | 1.39
139326 | 598 | 445 | 159 | 59.94 | 56.98 | 13.30 | 10.82 | 7.92| 4.31
274494 | 764 | 570 | 233 | 261.75 | 255.07 | 84.92 | 56.29 | 17.32 | 12.50
540670 | 7 | 646 | 467 ? ? | 442.86 | 438.19 | 51.60 | 47.28
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Task DIM | #° | #7 | #" T? T? Th Th TRl The
3120 94 90 69 1.20] 0.31]1.06| 0.16] 1.97] 043
10224 | 112 [ 110 | 77| 1.86| 0.80 | 1.36 | 0.31 | 2.27| 0.49
36720 | 128 [ 112 ] 86 | 3.45| 1.90| 2.16 | 0.85| 3.00 | 1.04
wedge | 138864 | 142 | 121 | 96 | 16.44 | 14.98 | 5.06 | 3.41 | 541 | 3.06
539760 | 156 | 129 | 105 | 126.06 | 119.12 | 16.98 | 14.82 | 15.52 | 12.19
1071216 | 7 | 141 | 128 ? ? | 34.58 | 30.54 | 33.50 | 28.90
3120 [ 208 [ 191 | 122 ] 269 1.02| 2.24 | 033 ] 3.44] 0.62
10224 | 240 | 218 | 145 | 3.92 | 1.80 | 2.85 | 0.69 | 4.45| 1.04
mem- 36720 | 267 | 238 | 161 732 | 491 | 4.67| 1.82| 550 1.93
brane | 138864 | 291 | 260 | 183 | 32.73 | 29.61 | 10.82 | 7.48 | 10.22 | 5.89
539760 | 312 | 285 | 200 | 231.42 | 219.85 | 37.93 | 32.93 | 29.34 | 22.85

Table 8: Results on 64 processors

Summary

The hierarchical preconditioners are more efficient in space and time than the
SCCG, but require special meshes. The larger the number of processors and the
larger the number of unknowns on each processor, the faster in comparison to the
SCCG is even the poor hierarchical proconditioned CG algorithm and the larger
is the extra gain in time, achieved with the additional coars grid preconditioner.

7.4 Different crosspoint matrices

Some first comparings of the two coarse grid matrices Lg and Lg from section 4.1 on
badly shaped meshes were done in section 7.2. In this section, both versions of coarse
grid preconditioning shall be compared to each other in more typical situations on
16 and on 32 processors:

If the beam problem is simulated on 16 processors, all subdomains are squares and
hence we have Lg =Lg, resulting in an identical behaviour of both versions of the
solver. For the other two problems we got the following:

wedge membrane
DIM #h,c #fér Th,c Tér #h,c #fér Th,c Tér
760 60 64 | 0.67 | 0.64 | 102 | 104 | 1.06 | 1.06
2520 67 710 077 | 0.83 | 126 | 121 1.45 | 1.42
9112 78 81 1.29 | 1.36 || 138 | 140 | 2.31 | 2.32
34584 88 91| 332 3.59 | 157 | 155 | 6.05| 5.38
134680 99 | 100 | 12.28 | 12.61 || 177 | 173 | 22.10 | 21.75

Table 9: Lg and Lg on 16 processors

We ohserve #"° < 4% for the wedge problem and, with one single exception which
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is probably caused by any disturbance of the time measuring routines, therefore also
he he

Tre<Tge.

On 32 processors, the beam promlem’s subdomains are still rectangular but never-

more squares.

H wedge membrane

DIM #hc #fér Th,c Tgr #hc #fér Th,c Tgr
1560 431 46| 0.68 | 0.72 66 | 67| 0.99 | 1.01
5112 53 1 57| 0.98 | 1.06 Tl 79 1.30 ) 1.38
18360 62 65| 1.49 | 1.55 931 93| 2.19| 2.2
69432 72 | 341 335 106 | 106 | 4.80 | 4.81
269880 82 86 | 11.49 | 11.45 || 120 | 119 | 15.94 | 15.98
heam

DIM #hc #}ér Th,c Tgr
1590 || 103 | 131 1.49 | 1.87
5166 || 113 | 147 | 1.82 | 2.35
18462 || 122 | 161 243 | 3.33
69630 || 134 | 172 | 5.12 | 6.55
270270 || 144 | 188 | 16.60 | 21.04

Table 10: Ly and Lg on 32 processors

With one single exception (membrane problem with 269880 degrees of freedom)
Fhe <41 holds, and T" < The is valid in all cases. Especially for the beam problem
we observed the largest differences The—T"e,

Summarizing, the crosspoint matrices Lg basing on the real geometry have prooven
to be the better choice.
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