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Abstract

In the present paper we suggest the norm-preserving explicit operator for
the extension of finite-element functions from boundaries of domains into
the inside. The construction of this operator is based on the multilevel de-
composition of functions on the boundaries and on the equivalent norm for
this decomposition. The cost of the action of this operator is proportional
to the number of nodes.
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Let 2 be a bounded, polygonal domain and I' be its boundary. Let us consider
a coarse grid triangulation of {2

i

My
o =7, diam(r”) = 0(1)
i=1

and we refine Q) several times. This results in a sequence of nested triangulations
Qr Qb QF such that

W
Qk:Ung)a k=01, .,
i=1
where the triangles Ti(kﬂ) are generated by subdividing triangles Ti(k) into four

congruent subtriangles by connecting the midpoints of the edges. Introduce the
spaces W and V. of finite-element functions. The space consists of real-valued
functions which are continuous on € and linear on the triangles in Q7. The space
Vi is the space of traces on I' of functions from Wj:

Vi = {o"|¢" = v, with u" € W}

We consider W;, and Vj, as the subspaces of the Sobolev spaces H(€2) and Hz (I),
respectively, with corresponding norms [2]. The main goal is the construction of
some norm-preserving explicit extension operator ¢ from V; to W;:

tZVJ—>WJ

This construction is based on the idea from [3] but instead of Yserentant’s hierar-
chical decomposition [8,9] of the space V; we use some analogue of the so—called

BPX-decomposition of V; [1]. Denote by 905’“), i=1,2,..., N, the nodal basis
of V. and denote by @gk) the one—-dimensional subspace spanned by this function
gogk). Define

QY 1 Ly(r) — o
(k)

the Lo—orthoprojection from Ly(I") onto @, and denote

Ny
Q=>0Q" k=01,...J-1
=1

For k= J J+1,J+2,... we define @k as the Ly—orthoprojection from Lo(£2)
onto V.



Lemma 1 There exist positive constants ¢y, co, independent of h, such that

J
ey < 1Q0e" [Ty + D 2@k = Que1) ¢ 2
k=1

< o HSDhHZ%(F)-

Proof It is easy to see that @k is the linear projection onto Vj and there exists
a positive constant c3, independent of h, such that

1Qr @llLomy < s ll@lliamy, Vo € La(82).
Since J
1Qo " (17, ry + ]; 2" 1(Qk — Qu—1) ©" 17,0y =

1Qo " (|7, ry + ]; 2 1(Qk — Qi—1) ©" 17,1y

then we get from [7] the equivalence of these two norms. Denote by xz(»k), i=1,2,

..., Ly the nodes of the triangulation Qf (we assume that nodes :L’Ek) are enu-

merated first on I and then inside €2) and define the extension operator ¢ in the
following way. For any " € V; set

(})L = QO Sph7

L (1)
W = (Qr—Qrn) @, k=1,2,...,J.

Then
ot =P+l 4+l

Define the extension uf € W of the function ¥} according to [3]:

Here ) is, for instance, the mean value of the function Yhon I
1
o (0)
=3 i)
NO ; 0 ( )

Define
teh =ulh=wd o (3)



Remark 1 We can use the Ly—orthoprojection from Ls(S2) onto Vi instead of
Qr, k = 0,1,...,J — 1. But in this case the cost of the decomposition (1) is
expensive (especially for three dimensional problems).

Lemma 2 There exists a positive constant cy, independent of h, such that
||UZ||H1(Q) S Cy 2k ||¢Z||L2(F), k’ = 0, 1, ey J

Proof of this lemma is obvious and was done in [3].

By the Friedrichs inequality there exists a positive constant c;, independent of h,
such that

Ity = [lu"llme
< o5 (9" o) + 1Vl 2o(2)-
Then to estimate the norm of the operator ¢ from (3), we need to estimate
J J

i=1 j

(VU?, VU?>L2(Q) .

1

Let us consider the following representation of the function
N
vi=> o, ol eRr (4)
i=1
Then the function u? from (2) has the representation

Ny,
ap =3 aPul k=12
=1

(%)

where u; " is the nodal basis function which corresponds to the node :I:Ek) el

Lemma 3 Let ky > k. Then

(ko) (k1)
0 cif gy & supp(p ),

cg- 20 7R L if ol € supp(p)t).

2

(Vul™ Vul™) o] <

Here cg is independent of h.



Proof This is a trivial consequence of the following obvious estimates:

S Cr - 2k17

Cr - 2k2,

IN

meas ( supp ug”)) < - (27R2)2
where c7 is independent of h.
The following lemma is valid.

Lemma 4 There exists a positive constant cg, independent of h, such that

J N
I DL SNENS 9) SR
f=thasint k=1 i=1
Herea @sfmmM)
Proof We have
J J
SN (Vg Vg ryw| =
k1=1ko=Fk1+1
J J Nkl Nk2
=3 3 (el el |
M=lk=ki+l] 0=l ig=1 2(2)

Using the Lemma 3 and the Cauchy inequality, we have:

Nkz
(kl)v k1) (k2)v (k2)) <
<a11 Uiy ’;@12 Uiy La(Q)|
< ¢ Z gki— k2|a(k1)| ’a(k2)|

(k2)€ Supp (@( 1))

< g | V2I—F2 |04§f1)| Z (a (k2))

( 2)e Supp( ( 1))

<

o [VE TR VIR [ Y (o)

(kz)

N —

€ supp(e{!)



(k2) (1))

Here we use the fact that the number of nodes x(k 2) satisfying ;' € supp(¢p;,

is O(2k27k1). Summing up these estimates, we have

J Niqy
(m) (k2) (m))
o 'V <
Z ( 1221 " "/ La(@)
Ni,y Ny,
< o (VIR S+ VIS el )
i1=1 i9=1
J J Nigy Ny
DI I (LTS WL T M E
L2(Q)
ki=1 ko=k1+1 11=1 i9=1
J J Nkl Nk2
<) 3 (VIR VIR S ) <
k1=1 ko=k1+1 11=1 =1
J N
<o (323 000).
k=1 i=1

Here the constants cg, ¢1o are independent of h.

Theorem 1 There exists a positive constant c11, independent of h, such that
[t 1) < enlle” [ o Vol e V.

Here the operator t is from (3).

Proof of this theorem follows from the Lemma 1, the Lemma 2, and the Lemma 4.

Remark 2 The construction of the extension operator t for three dimensional
problems can be done in the same way. The Theorem 1 is valid too. Indeed, it’s
obvious that the Lemma 1 and the Lemma 2 are valid. Instead of the Lemma 3
we have the following lemma.

Lemma 3’ Let ks >k, . Then

L (k
0 Cif el ¢ supp(pl),
(Vugfl),Vu(-kz))LQ(Q) <

12

cy- 287 if el € supp(pl)).

Here cj is independent of h.



Proof This is a trivial consequence of the following obvious estimates:

‘Vug“) < -2k

‘Vug”) < -2k,

meas( supp u,gj?)) < (27023

where ¢ is independent of h. The Lemma 4 is transformed to the following
lemma:

Lemma 4’ There exists a positive constant ¢, independent of h, such that

J J J Ny
- k
>3 IVul Vel o] < D032 M)
k1=1ka=k1+1 1 i
Here a is from (4).
Proof We have
J J
Z Z |(Vug,, Vg, ) a@)| =
k1=1 ko=k1+1
J J
(k1) 7, (k1) (k2) g7 )
=> (Za vul Za )
k1=1ko=k1+1 ii=1 ia—1 L(Q)

Using the Lemma 3’ and the Cauchy inequality, we have:

(k) (k2) 7, (k2)
( Yia ,Za i )LQ(Q)

i9=1

<d D 22afaf?)

"¢ supp(p")

<S¢ Y @ afhE )

w2 e supp(piit))

1
< cyV2ki—h2 /2R |al(f)|( Z 2k 2« (k2)) )

7/2

(e supp(pi)

dy | V2R (27R (oF1))2) 4 ok S 2R (al)?

2
(kz c supp(<p( 1)



(k2)

Here we use the fact that the number of nodes x;,*" satisfying x( 2) ¢ supp(gps1 1))
is O(22*k2=k1)) " Summing up these estimates, we obtaln
Ni,
(k1) (k1) (k2) (k2)
'Vu a; Vu ) <
2 (o Z | <
21 ig=
N,
o(V2k1—k2 Z 1 kl) )+ V2k1—ke Z < 2 )2> .
i1=1 ig=1

Then, repeating the estimates from the proof of the Lemma 4, we get the state-
ment of the Lemma 4’.

Remark 3 The cost of the action of the extention operator t is proportional to
the number of nodes of the grid domain.

If the original domain is splitted into many subdomains in domain decomposi-
tion methods [5], then the diameters of the subdomains depend on some small
parameter € and we need the extension operator ¢ such that the constant c¢;; from
the Theorem 1 is independent of €. To do this, let us assume that by making the
change of variables

r=c-s5, x€ (5)
the domain € is transformed into the domain 2" with the boundary I and that
the properties of {2 are independent of £. From [5,6] we have the following.

Lemma 5 There exists a positive constant co, independent of h and €, such that

cra|| ") . )< a0

for any function u" € W;, where " € Vj is the trace of u" at the boundary T.
And there exists a positive constant ci3, independent of h and €, such that for
any ©" € V; there exists u € W:

u(z) = ¢"(x), zel,
[t ) < 013||90h||H§(F)-

H@T@ h|12 h12 h
[l HHE%(F) = ell¢" ) + 1w \Hm

Iy = / (¢ (@),

h|2 y))2
p— d d .
I | H(T) // |$ —y|2 S




Lemma 6 There exists a positive constant ¢4, independent of h and €, such that
for any o" € V;

1 |2

H%HQ%(F) Nt 7o) + It < culle"|

H2(T)

[Q)

1 .
HZ(T)
Here

= Qop", ¢} =¢" — ¢
The following lemma is valid.

Lemma 7 There exists a positive constant cy5, independent of h and €, such that

k=1

J
||800||2 (F) <||Q0801||L2(F) +22k“ Qk —Qk 1)801||L2 F)) < 015“‘:0 ||2 a3 )

Here ok, o, are from (6).

Proof Using (5) and the Lemma 1, we have

Lo e hi2
EH%HLQ(F) + ’@1’1{%@)

= ||t “LQ @y T ‘901‘}[7@/)

J
1~ -~
< C—I(HQW’{‘H%Q@» + > 2@ — Q) Ta )
k=1

J
11, ~ ) N
_ gg“'QW}f”%ﬂ” + E 2°1(Qr — Qu—1) 21 7, ry
k=1

Here @2 is the projection which corresponds to @k with the change of variables.

Theorem 2 There exists a positive constant cig, independent of h and €, such
that

te™ | i) < ciell¢” || o Vol e V.

Here the operator t is from (3).



Proof For o}, " from (6) we have
o~ J o~ o~
Qo™ Iy + > 2 (Qk = Que1) " I3,y <
HZ (D) 1
J
< [|Qo" (> P Z 2°(Qr — Qr—1) 21 17,y +
I
J ~ ~
+ Z 2°)1(Qx — Qkfl)gogH%Q(F)

k=1

For the function ¢ let us consider the following decomposition:

908 = 903,0 + 903,17
©oh, = const = _ oh(z) da
0.0 meas(I") 0
r

9031 = 903 - 908,0'
It is easy to see that

(@k—@k—ﬂ%}io :0, k= 1’27... ’J.

Then we can use the evident trick from [4] with the Poincare inequality in Hz (I") :

J J
Z 2k||(Qk - Qk_1)90g||%2(r) = Z 2k||(Qk - Qk—1)¢3,1|’%2(r) =
k=1 k=1

—522’“” Qk Qk 1)9001HL2(F’ H3 () =
k=1

Here cy;7 is from the Poincare inequality. It is easy to see that there exists a
positive constant cig, independent of h and e, such that

oy < exslifl g

where ¢ = o = Que", and ult € Wy is from (2). The rest of the estimates for
the Theorem 2 and the Theorem 1 is the same.
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