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Abstract

In the present paper we suggest the norm-preserving explicit operator for
the extension of finite-element functions from boundaries of domains into
the inside. The construction of this operator is based on the multilevel de-
composition of functions on the boundaries and on the equivalent norm for
this decomposition. The cost of the action of this operator is proportional
to the number of nodes.
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Let Ω be a bounded, polygonal domain and Γ be its boundary. Let us consider
a coarse grid triangulation of Ω

Ωh
0 =

M0⋃
i=1

τ
(0)
i , diam(τ

(0)
i ) = O(1)

and we refine Ωh
0 several times. This results in a sequence of nested triangulations

Ωh
0 , Ωh

1 , . . . , Ωh
J such that

Ω
h

k =

Mk⋃
i=1

τ
(k)
i , k = 0, 1, . . . , J,

where the triangles τ
(k+1)
i are generated by subdividing triangles τ

(k)
i into four

congruent subtriangles by connecting the midpoints of the edges. Introduce the
spaces Wk and Vk of finite–element functions. The space consists of real-valued
functions which are continuous on Ω and linear on the triangles in Ωh

k. The space
Vk is the space of traces on Γ of functions from Wk:

Vk = {ϕh|ϕh = uh|Γ, with uh ∈ Wk}

We consider Wk and Vk as the subspaces of the Sobolev spaces H1(Ω) and H
1
2 (Γ),

respectively, with corresponding norms [2]. The main goal is the construction of
some norm–preserving explicit extension operator t from VJ to WJ :

t : VJ → WJ

This construction is based on the idea from [3] but instead of Yserentant’s hierar-
chical decomposition [8,9] of the space VJ we use some analogue of the so–called

BPX–decomposition of VJ [1]. Denote by ϕ
(k)
i , i = 1, 2, . . . , Nk, the nodal basis

of Vk and denote by Φ
(k)
i the one–dimensional subspace spanned by this function

ϕ
(k)
i . Define

Q
(k)
i : L2(Γ) → Φ

(k)
i

the L2–orthoprojection from L2(Γ) onto Φ
(k)
i and denote

Q̃k =

Nk∑
i=1

Q
(k)
i , k = 0, 1, . . . , J − 1.

For k = J, J + 1, J + 2, . . . we define Q̃k as the L2–orthoprojection from L2(Ω)
onto Vk.
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Lemma 1 There exist positive constants c1, c2, independent of h, such that

c1 ‖ϕh‖2

H
1
2 (Γ)

≤ ‖Q̃0 ϕ
h‖2

L2(Γ) +
J∑

k=1

2k‖(Q̃k − Q̃(k−1))ϕ
h‖2

L2(Γ)

≤ c2 ‖ϕh‖2

H
1
2 (Γ)

.

Proof It is easy to see that Q̃k is the linear projection onto Vk and there exists
a positive constant c3, independent of h, such that

‖Q̃k ϕ‖L2(Γ) ≤ c3 ‖ϕ‖L2(Γ), ∀ ϕ ∈ L2(Ω).

Since

‖Q̃0 ϕ
h‖2

L2(Γ) +
J∑

k=1

2k ‖(Q̃k − Q̃k−1)ϕ
h‖2

L2(Γ) =

‖Q̃0 ϕ
h‖2

L2(Γ) +
∞∑

k=1

2k ‖(Q̃k − Q̃k−1)ϕ
h‖2

L2(Γ),

then we get from [7] the equivalence of these two norms. Denote by x
(k)
i , i=1,2,

. . . , Lk the nodes of the triangulation Ωh
k (we assume that nodes x

(k)
i are enu-

merated first on Γ and then inside Ω) and define the extension operator t in the
following way. For any ϕh ∈ VJ set

ψh
0 = Q̃0 ϕ

h,

ψh
k = (Q̃k − Q̃k−1)ϕ

h, k = 1, 2, . . . , J.
(1)

Then
ϕh = ψh

1 + ψh
2 + . . .+ ψh

J

Define the extension uh
k ∈ Wk of the function ψh

k according to [3]:

uh
0(x

(0)
i ) =

{
ψh

0 (x
(0)
i ) , x

(0)
i ∈ Γ,

ψ , x
(0)
i 6∈ Γ,

uh
k(x

(k)
i ) =

{
ψh

k (x
(0)
i ) , x

(k)
i ∈ Γ,

0 , x
(k)
i 6∈ Γ,

(2)

Here ψ is, for instance, the mean value of the function ψh
0 on Γ:

ψ =
1

N0

N0∑
i=1

ψh
0 (x

(0)
i ).

Define
t ϕh = uh ≡ uh

0 + uh
1 + . . .+ uh

J (3)
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Remark 1 We can use the L2–orthoprojection from L2(Ω) onto Vk instead of

Q̃k, k = 0, 1, . . . , J − 1. But in this case the cost of the decomposition (1) is
expensive (especially for three dimensional problems).

Lemma 2 There exists a positive constant c4, independent of h, such that

‖uh
k‖H1(Ω) ≤ c4 2k ‖ψh

k‖L2(Γ), k = 0, 1, . . . , J.

Proof of this lemma is obvious and was done in [3].

By the Friedrichs inequality there exists a positive constant c5, independent of h,
such that

‖t ϕh‖H1(Ω) ≡ ‖uh‖H1(Ω)

≤ c5 (‖ϕh‖L2(Γ) + ‖∇uh‖L2(Ω)).

Then to estimate the norm of the operator t from (3), we need to estimate

J∑
i=1

J∑
j=1

(∇uh
i , ∇uh

j )L2(Ω).

Let us consider the following representation of the function ψh
k :

ψh
k =

Nk∑
i=1

α
(k)
i ϕ

(k)
i , α

(k)
i ∈ R (4)

Then the function uh
k from (2) has the representation

uh
k =

Nk∑
i=1

α
(k)
i u

(k)
i , k = 1, 2, · · · , J,

where u
(k)
i is the nodal basis function which corresponds to the node x

(k)
i ∈ Γ.

Lemma 3 Let k2 > k1. Then

∣∣∣(∇u(k1)
i1

,∇u(k2)
i2

)L2(Ω)

∣∣∣ ≤
 0 , if x

(k2)
i2

6∈ supp(ϕ
(k1)
i1

),

c6 · 2k1−k2 , if x
(k2)
i2

∈ supp(ϕ
(k1)
i1

).

Here c6 is independent of h.

4



Proof This is a trivial consequence of the following obvious estimates:∣∣∣∇u(k1)
i1

∣∣∣ ≤ c7 · 2k1 ,∣∣∣∇u(k2)
i2

∣∣∣ ≤ c7 · 2k2 ,

meas ( supp u
(k2)
i2

) ≤ c7 · (2−k2)2

where c7 is independent of h.

The following lemma is valid.

Lemma 4 There exists a positive constant c8, independent of h, such that

J∑
k1=1

J∑
k2=k1+1

∣∣(∇uh
k1
,∇uh

k2
)L2(Ω)

∣∣ ≤ c8

J∑
k=1

Nk∑
i=1

(α
(k)
i )2.

Here α
(k)
i is from (4).

Proof We have

J∑
k1=1

J∑
k2=k1+1

∣∣(∇uh
k1
,∇uh

k2
)L2(Ω)

∣∣ =

=
J∑

k1=1

J∑
k2=k1+1

∣∣∣∣∣∣
( Nk1∑

i1=1

α
(k1)
i1

∇u(k1)
i1

,

Nk2∑
i2=1

α
(k2)
i2

∇u(k2)
i2

)
L2(Ω)

∣∣∣∣∣∣.
Using the Lemma 3 and the Cauchy inequality, we have:∣∣∣∣∣∣

(
α

(k1)
i1

∇uk1)
i1
,

Nk2∑
i2=1

α
(k2)
i2

∇u(k2)
i2

)
L2(Ω)

∣∣∣∣∣∣ ≤
≤ c6

∑
x
(k2)
i2

∈ supp (ϕ
(k1)
i1

)

2k1−k2|α(k1)
i1

| |α(k2)
i2

|

≤ c9

√2k1−k2 |α(k1)
i1

|

√√√√√√
 ∑

x
(k2)
i2

∈ supp(ϕ
(k1)
i1

)

(α
(k2)
i2

)2




≤ 1

2
c9

√2k1−k2(α
(k1)
i1

)2 +
√

2k1−k2

 ∑
x
(k2)
i2

∈ supp(ϕ
(k1)
i1

)

(α
(k2)
i2

)2


.
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Here we use the fact that the number of nodes x
(k2)
i2

satisfying x
(k2)
i2

∈ supp(ϕ
(k1)
i1

)
is O(2k2−k1). Summing up these estimates, we have

J∑
i1=1

∣∣∣∣∣∣
(
α

(k1)
i1

∇u(k1)
i1

,

Nk2∑
i2=1

α
(k2)
i2

∇u(k2)
i2

)
L2(Ω)

∣∣∣∣∣∣ ≤
≤ c10

√2k1−k2

Nk1∑
i1=1

(α
(k1)
i1

)2 +
√

2k1−k2

Nk2∑
i2=1

(α
(k2)
i2

)2

,
J∑

k1=1

J∑
k2=k1+1

Nk1∑
i1=1

∣∣∣∣∣∣
(
α

(k1)
i1

∇u(k1)
i1

,

Nk2∑
i2=1

α
(k2)
i2

∇u(k2)
i2

)
L2(Ω)

∣∣∣∣∣∣ ≤
≤ c10

J∑
k1=1

J∑
k2=k1+1

√2k1−k2

Nk1∑
i1=1

(α
(k1)
i1

)2 +
√

2k1−k2

Nk2∑
i2=1

(α
(k2)
i2

)2

 ≤

≤ c8

(
J∑

k=1

Nk∑
i=1

(α
(k)
i )2

)
.

Here the constants c9, c10 are independent of h.

Theorem 1 There exists a positive constant c11, independent of h, such that

‖tϕh‖H1(Ω) ≤ c11‖ϕh‖
H

1
2 (Γ)

∀ϕh ∈ VJ .

Here the operator t is from (3).

Proof of this theorem follows from the Lemma 1, the Lemma 2, and the Lemma 4.

Remark 2 The construction of the extension operator t for three dimensional
problems can be done in the same way. The Theorem 1 is valid too. Indeed, it’s
obvious that the Lemma 1 and the Lemma 2 are valid. Instead of the Lemma 3
we have the following lemma.

Lemma 3 ′ Let k2 > k1 . Then

∣∣∣(∇u(k1)
i1

,∇u(k2)
i2

)L2(Ω)

∣∣∣ ≤


0 , if x
(k2)
i2

/∈ supp(ϕ
(k1)
i1

),

c′6 · 2k1−2k2 , if x
(k2)
i2

∈ supp(ϕ
(k1)
i1

).

Here c′6 is independent of h.
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Proof This is a trivial consequence of the following obvious estimates:∣∣∣∇u(k1)
i1

∣∣∣ ≤ c′7 · 2k1 ,∣∣∣∇u(k2)
i2

∣∣∣ ≤ c′7 · 2k2 ,

meas( supp u
(k2)
i2

) ≤ c′7 · (2−k2)3.

where c′7 is independent of h. The Lemma 4 is transformed to the following
lemma:

Lemma 4 ′ There exists a positive constant c′8, independent of h, such that

J∑
k1=1

J∑
k2=k1+1

∣∣(∇uh
k1
,∇uh

k2
)L2(Ω)

∣∣ ≤ c′8

J∑
k=1

Nk∑
i=1

2−k(α
(k)
i )2.

Here α
(k)
i is from (4).

Proof We have
J∑

k1=1

J∑
k2=k1+1

∣∣(∇uh
k1
,∇uh

k2
)L2(Ω)

∣∣ =

=
J∑

k1=1

J∑
k2=k1+1

∣∣∣∣∣∣
( Nk1∑

i1=1

α
(k1)
i1

∇u(k1)
i1

,

Nk2∑
i2=1

α
(k2)
i2

∇u(k2)
i2

)
L2(Ω)

∣∣∣∣∣∣ .
Using the Lemma 3’ and the Cauchy inequality, we have:∣∣∣∣∣∣

(
α

(k1)
i1

∇uk1)
i1
,

Nk2∑
i2=1

α
(k2)
i2

∇u(k2)
i2

)
L2(Ω)

∣∣∣∣∣∣
≤ c′6

∑
x
(k2)
i2

∈ supp(ϕ
(k1)
i1

)

2k1−2k2|α(k1)
i1

| |α(k2)
i2

|

≤ c′6
∑

x
(k2)
i2

∈ supp(ϕ
(k1)
i1

)

(2k1− 3
2
k2|α(k1)

i1
|)(2−

1
2
k2|α(k2)

i2
|)

≤ c′9
√

2k1−k2

√
2−k1 |α(k)

i1
|
( ∑

x
(k2)
i2

∈ supp(ϕ
(k1)
i1

)

2−k2(α
(k2)
i2

)2
) 1

2

≤ 1

2
c′9

√2k1−k2(2−k1(α
(k1)
i1

)2) +
√

2k1−k2

 ∑
x
(k2)
i2

∈ supp(ϕ
(k1)
i1

2−k2(α
(k2)
i2

)2


 .
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Here we use the fact that the number of nodes x
(k2)
i2

satisfying x
(k2)
i2

∈ supp(ϕ
(k1)
i1

)

is O(22(k2−k1)). Summing up these estimates, we obtain

Nk1∑
i1=1

∣∣∣∣∣∣
(
α

(k1)
i1

∇u(k1)
i1

,

Nk2∑
i2=1

α
(k2)
i2

∇u(k2)
i2

)
L2(Ω)

∣∣∣∣∣∣ ≤
≤ c′10(

√
2k1−k2

Nk1∑
i1=1

(2−k1(α
(k1)
i1

)2) +
√

2k1−k2

Nk2∑
i2=1

(
2−k2(α

(k2)
i2

)2
)
.

Then, repeating the estimates from the proof of the Lemma 4, we get the state-
ment of the Lemma 4’.

Remark 3 The cost of the action of the extention operator t is proportional to
the number of nodes of the grid domain.

If the original domain is splitted into many subdomains in domain decomposi-
tion methods [5], then the diameters of the subdomains depend on some small
parameter ε and we need the extension operator t such that the constant c11 from
the Theorem 1 is independent of ε. To do this, let us assume that by making the
change of variables

x = ε · s, x ∈ Ω (5)

the domain Ω is transformed into the domain Ω′ with the boundary Γ′ and that
the properties of Ω′ are independent of ε. From [5,6] we have the following.

Lemma 5 There exists a positive constant c12, independent of h and ε, such that

c12‖ϕh‖
H

1
2
ε (Γ)

≤ ‖uh‖H1(Ω)

for any function uh ∈ WJ , where ϕh ∈ VJ is the trace of uh at the boundary Γ.
And there exists a positive constant c13, independent of h and ε, such that for
any ϕh ∈ VJ there exists uh ∈ WJ :

uh(x) = ϕh(x), x ∈ Γ,

‖uh‖H1(Ω) ≤ c13‖ϕh‖
H

1
2
ε (Γ)

.

Here
‖ϕh‖2

H
1
2
ε (Γ)

= ε‖ϕh‖2
L2(Γ) + |ϕh|2

H
1
2 (Γ)

,

‖ϕh‖2
L2(Γ) =

∫
Γ

(ϕh(x))2dx,

|ϕh|2
H

1
2 (Γ)

=

∫
Γ

∫
Γ

(ϕh(x)− ϕh)y))2

|x− y|2
dx dy.
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Lemma 6 There exists a positive constant c14, independent of h and ε, such that
for any ϕh ∈ VJ

‖ϕh
0‖2

H
1
2
ε (Γ)

+
1

ε
‖ϕh

1‖2
L2(Γ) + |ϕh

1 |2H 1
2 (Γ)

≤ c14‖ϕh‖2

H
1
2
ε (Γ)

.

Here

ϕh
0 = Q̃0ϕ

h, ϕh
1 = ϕh − ϕh

0 .

The following lemma is valid.

Lemma 7 There exists a positive constant c15, independent of h and ε, such that

‖ϕh
0‖2

H
1
2
ε (Γ)

+
1

ε

(
‖Q̃0ϕ

h
1‖2

L2(Γ) +
J∑

k=1

2k‖(Q̃k − Q̃k−1)ϕ
h
1‖2

L2(Γ)

)
≤ c15‖ϕh‖2

H
1
2
ε (Γ)

Here ϕh
0 , ϕ

h
1 , are from (6).

Proof Using (5) and the Lemma 1, we have

1

ε
‖ϕh

1‖2
L2(Γ) + |ϕh

1 |2H 1
2 (Γ)

= ‖ϕh
1‖2

L2(Γ′) + |ϕh
1 |2H 1

2 (Γ′)

≤ 1

c1
(‖Q̃′

0ϕ
h
1‖2

L2(Γ′) +
J∑

k=1

2k‖(Q̃′
k − Q̃′

k−1)ϕ
h
1‖2

L2(Γ′))

=
1

ε

1

c1
(‖Q̃0ϕ

h
1‖2

L2(Γ) +
J∑

k=1

2k‖(Q̃k − Q̃k−1)ϕ
h
1‖2

L2(Γ).

Here Q̃′
k is the projection which corresponds to Q̃k with the change of variables.

Theorem 2 There exists a positive constant c16, independent of h and ε, such
that

‖tϕh‖H1(Ω) ≤ c16‖ϕh‖
H

1
2
ε (Γ)

∀ϕh ∈ VJ .

Here the operator t is from (3).
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Proof For ϕh
0 , ϕ

h
1 from (6) we have

‖Q̃0ϕ
h‖2

H
1
2
ε (Γ)

+
J∑

k=1

2k‖(Q̃k − Q̃k−1)ϕ
h‖2

L2(Γ) ≤

≤ ‖Q̃0ϕ
h‖2

H
1
2
ε (Γ)

+
J∑

k=1

2k‖(Q̃k − Q̃k−1)ϕ
h
1‖2

L2(Γ)+

+
J∑

k=1

2k‖(Q̃k − Q̃k−1)ϕ
h
0‖2

L2(Γ).

For the function ϕh
0 let us consider the following decomposition:

ϕh
0 = ϕh

0,0 + ϕh
0,1,

ϕh
0,0 = const =

1

meas(Γ)

∫
Γ

ϕh
0(x) dx

ϕh
0,1 = ϕh

0 − ϕh
0,0.

It is easy to see that

(Q̃k − Q̃k−1)ϕ
h
0,0 = 0, k = 1, 2, · · · , J.

Then we can use the evident trick from [4] with the Poincare inequality inH
1
2 (Γ′) :

J∑
k=1

2k‖(Q̃k − Q̃k−1)ϕ
h
0‖2

L2(Γ) =
J∑

k=1

2k‖(Q̃k − Q̃k−1)ϕ
h
0,1‖2

L2(Γ) =

= ε
J∑

k=1

2k‖(Q̃′
k − Q̃′

k−1)ϕ
h
0,1‖2

L2(Γ′) ≤ c2ε‖ϕh
0,1‖2

H
1
2 (Γ′)

≤

≤ c17 ε|ϕh
0,1|2H 1

2 (Γ1)
= c17 ε|ϕh

0,1|2H 1
2 (Γ)

= c17 ε|ϕh
0 |2H 1

2 (Γ)
.

Here c17 is from the Poincare inequality. It is easy to see that there exists a
positive constant c18, independent of h and ε, such that

‖uh
0‖H1(Ω) ≤ c18‖ψh

0‖
H

1
2
ε (Γ)

,

where ψh
0 = ϕh

0 = Q̃0ϕ
h, and uh

0 ∈ W0 is from (2). The rest of the estimates for
the Theorem 2 and the Theorem 1 is the same.
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