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Structure of the work

This work has two parts. The second part consists of the following original
manuscripts:

[Le3] D. Lenz, Uniform ergodic theorems on subshifts over a finite alphabet,
Ergodic Theory & Dynamical Systems 22 (2002), 245-255.

[Led] D. Lenz, Singular spectrum of Lebesgue measure zero for one-dimensional
quasicrystals, Communications in Mathematical Physics 227 (2002), 129
130.

[Le5] D. Lenz, Ezistence of non-uniform cocycles on uniquely ergodic systems,
Ann. Inst. Henri Poincaré: Prob. & Stat. 40 (2004), 197-206.

IDL8] D. Damanik, D. Lenz, A condition of Boshernitzan and uniform conver-
gence in the multiplicative ergodic theorem, preprint 2004.

ILS3] D. Lenz, P. Stollmann, Algebras of random operators associated to De-
lone dynamical systems, Mathematical Physics, Analysis and Geometry 6
(2003), 269-290.

ILS4] D. Lenz, P. Stollmann, An ergodic theorem for Delone dynamical systems
and ezistence of the integrated density of states, to appear in: Journal d’
Analyse Mathématique.

[BL1] M. Baake, D. Lenz, Dynamical systems on translation bounded measures
and pure point diffraction, Ergodic Theory & Dynamical Systems 24
(2004), 1867-1893.

[BL2| M. Baake, D. Lenz, Deformation of Delone dynamical systems and topo-
logical conjugacy, Journal of Fourier Analysis and Applications 11 (2005),
125-150.

All these manuscripts are concerned with spectral consequences of aperiodic
order. They can be divided in three groups:

e [Le3, Le4, Leb, IDLS8| : dealing with one-dimensional systems and oper-
ators.

e [LS3|,[LS4] : dealing with higher dimensional systems and operators.

e [BL1, BL2] : dealing with diffraction.

A common feature in the treatment of the three topics lies in the method: The
approach is based on a study of the associated dynamical systems.

The first part of this work gives an introduction into aperiodic order in general
and the lines of research pursued. More precisely, a brief outline and a summary can
be found in Chapter [I] The three lines of research are then discussed in Chapter
Chapter [3]and Chapter ] respectively. These chapters do not contain proofs. Apart
from this they are completely self contained. They provide background, necessary
definitions and precise statements of the results.






Part 1

Introduction






CHAPTER 1

Aperiodic order: Some introductory remarks

Long range aperiodic order or aperiodic order for short is a specific form of weak
disorder. It may be considered to mark a borderline between order and disorder.
This intermediate position in the regime of (dis)ordered systems is its distinctive
feature. It is responsible for its properties. So far, no precise definition of aperiodic
order is known. Instead various classes of examples have been considered. For
further background and recent surveys we refer the reader to [BM1), [Ja, [Mo1), [Se].

In order to be more concrete and to set a perspective let us illustrate this by
considering the simplest one-dimensional examples in the range of functions from
the integers Z to {0,1}. Here, a completely ordered situation corresponds to a
periodic function. A highly disordered situation is given by a typical realization of
a fair coin tossing experiment. In between, there are functions such as

(1) Vig:Z—{0,1}, Vig(n):=xr(nd mod 1),

where x is the characteristic function of an nonempty subinterval I = [a,b) of [0, 1]
and ¢ is an irrational number in (0,1). Such a function, known as a circle map, is
not periodic, as 1 is irrational. However, it has many regularity features. It gives
an example of aperiodic order.

The most prominent example of aperiodic order in one-dimension belongs to
this class. It is the so called Fibonacci model. In this case ¥ = Jgm and I = [1 —
Vgm, 1] with Jgm := golden mean. This example can be seen as a one-dimensional
analogue of the well-known Penrose tiling. Note that in this case the parameter
Ygm appears twice, viz as rotation and an interval length. This can of course be
generalized to other values of ). The corresponding functions Vy g with I = [1—9,1)
are known as Sturmian. They have been intensely studied (see Chapter [2] for
references).

The recent interest in aperiodic order draws from mathematical and physical
sources. There, of course, interesting features of special models play a key role.
Still, two general aspects may be singled out as well. These are:

e The actual discovery of physical substances exhibiting aperiodic order.
e The conceptual interest in aperiodic order as an intermediate stage of
disorder.

Let us discuss these points in more detail.

In 1984, Shechtman/Blech/Gratias/Cahn [SBGC]| and independently one year
later, Ishimasa/Nissen/Fukano [INF] reported the discovery of solids which showed
pure point diffraction with 5-fold symmetry. This discovery set a new paradigm in
crystallography for the following reason:

The diffraction pattern comes from interference of the various scattered parts
of an incoming beam. Thus, pure point diffraction can only occur if “a lot” of

5



6 1. APERIODIC ORDER: SOME INTRODUCTORY REMARKS

interference takes place. This means that the positions of the scatterers are highly
correlated. Put differently: These solid exhibit long range order.

Of course, there are well known solids with long range order, viz crystals. In
their case the atoms form a lattice structure. However, basic discrete geometry
shows that 5-fold symmetry is incompatible with a lattice structure: a solid with a
5-fold symmetry is aperiodic. Thus, the outcome of the diffraction experiment can
be summarized as follows:

pure point diffraction =~ long range order,

5-fold symmetry ~ aperiodicity.

The solids discovered exhibit long range aperiodic order. They were soon called
quasicrystals and mathematicians and physicists alike started their investigation.
On the theoretical side, three aspects of aperiodic order received particular atten-
tion, viz modeling and complexity, diffraction properties, and electronic properties.

Modeling and diffraction have already been mentioned. Let us now turn to
electronic properties of aperiodic order next.

Indeed, one starting point of the conceptional study of aperiodic order and its
consequences is marked by the investigations of Kohmoto/Kadanoff/ Tang [KKT]
and Ostlund/Pandit/Rand/Schellnhuber/Siggia [OPRSS]. These groups study
electronic properties. More precisely, they consider the operators of the form

(2) Hy : 2(Z) — (*(Z), (Hyu)(n)=u(n+1)+u(n— 1)+ V(n)u(n),

where V' : Z — {0,1} is the Fibonacci potential considered above, viz V(n) =
X(1=9 g ,1] (n@gm mod 1) with Ygm = golden mean. Such operators can serve as
quantum mechanical models for solids with intermediate disorder. The effects of
this intermediate disorder are the prime motivation for [KKT), [OPRSS].

Let us be more precise by discussing the properties of Hy depending on the
degree of disorder and randomness captured by V. Of course, this topic (and
corresponding higher dimensional and continuous models) have attracted immense
attention over the last decades. We refer the reader to the books [CL, [CFKS|,
PF, [St] for further discussion and references.

For periodic V' the spectrum of Hy is known to consist of bands with purely ab-
solutely continuous spectrum. On the other extreme, in the high random case pure
point spectrum is known to occur. This applies in particular to typical Bernoulli-
type potentials, i.e. for V' modeling the outcome of the coin tossing experiment
discussed above [CKM].

In between these extreme cases one finds almost-periodic V', -the most promi-
nent example being the almost-Mathieu-operator with V(n) = Acos(9n + ) with
A #£0and 8 € (0,27),- and V associated to aperiodic order. In these cases other
interesting phenomena occur, which were earlier unexpected. This includes Cantor
spectrum and purely singular continuous spectrum, i.e. absence of both point spec-
trum and absolutely continuous spectrum. As for the almost-Mathieu-operator we
refer the reader to the surveys [Jill, [Lal and to [AJ], [AK] [Ji2, [Pu| for some recent
developments.

Here we will now restrict attention to the case of aperiodic order. In this case,
V only takes finitely many values and the combinatorial structure of finite pieces
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of V is the crucial ingredient. This combinatorial structure is independent of the
actual values taken by V', as replacement of V' by AV with A\ # 0 does not change
the combinatorics and leaves many spectral features unchanged. This is a key
difference (and in some sense simplification) compared to the almost periodic case.

Now, as discussed in [KKT] and [OPRSS]| the spectrum in the aperiodically
ordered case seems to be a Cantor set of Lebesgue measure zero and the spectral
type seems to be neither absolutely continuous nor pure point but rather purely
singular continuous Both [KKT| and [OPRSS| are non-rigorous. It has been a
particular focus of research to make the corresponding statements rigorous. By now
this has been achieved for many examples (see Chapter for details and references).

Of course, operators in higher dimensions have also attracted attention. Here
the situation in the aperiodically ordered case is much less satisfactory as far as
spectral theory goes. Precise information on spectral type and the spectrum as
a set is essentially completely missing. Instead research has been focused on the
so called integrated density of states see ([BHZ, Be2, [Holl, [Ho3, Ke, [KP] and
references therein). The integrated density of states is the distribution function of
a measure on the real line. It is an averaged quantity giving the mean number of
electron states per unit volume. In particular, the spectrum can be shown to be
the set of its points of non-constancy. Conversely, gaps of the spectrum correspond
to intervals of constancy of the integrated density of states.

Here, the first task has been to establish existence of the corresponding average.
More detailed investigations then show that it is related to a trace on a certain
C*-algebra. This is known as Shubin-Pastur trace formula. This C*-algebraic
approach allows one to determine the set of possible gaps in the spectrum via
K-theory. For quasicrystals, these topics have been investigated starting with the
work of Kellendonk [Ke|, which in turn is strongly stimulated by the corresponding
program due to Bellissard and his co-workers (see e.g. [Bell, [Be3|).

To summarize, aperiodic order gives rise to various new and previously unex-
pected phenomena. Three of these phenomena are investigated in the present work.
These are:

e Cantor spectrum of Lebesgue measure zero,
e uniform existence of certain averages,
e pure point diffraction.

Below, these topics and their respective context will be discussed separately
and in more detail. Here, we continue our general discussion.

It is a crucial feature of disorder that various manifestations of a fixed kind of
disorder exist. In the non-periodic examples discussed above they are given by all
(typical) examples of a coin tossing experiment and by the functions Vﬁ o with

Vlﬁ’ﬁ(n) =xr(nd+ 5 mod1)

for 5 € [0,1). These manifestations can be gathered to form a set {2 with certain
regularity features. For example, (2 is invariant under translations

T:02— 02

and therefore gives rise to a dynamical system ({2,7). The quantities of interest
are then suitable functions on {2.



8 1. APERIODIC ORDER: SOME INTRODUCTORY REMARKS

The key point is that properties of ({2, T) reflect properties of the single w € 2
and vice versa. In particular, rather intricate properties of single w € {2 may lead
to simple and easily accessible features of (£2, 7).

This is particularly interesting in the regime of aperiodic order. Namely, one
may try to formulate the so far not completely understood order requirements for
the w’s in terms of properties of 2.

More generally, the use of (£2,T) gives a tool to investigate properties of its
elements.

The link between dynamical systems and the properties of its points is a key
element in our considerations. Indeed, somewhat loosely our main results may be
phrased as follows:

Result 1. [Le3, [Led, [Leb, [DL8| A strong version of unique ergodicity implies
Cantor spectrum of Lebesgue measure zero for one-dimensional quasicrystals. This
strong version of unique ergodicity holds for many models.

Result 2. [LS3|, [LS4] The averages of almost additive Banach space valued
functions exist in arbitrary dimension whenever the dynamical system is uniquely
ergodic and of low complexity. This implies, in particular, strongly uniform exis-
tence of the integrated density of states.

Result 3. [BL1, BL2] Pure point diffraction is equivalent to pure point
dynamical spectrum for rather general measure dynamical systems. In this context,
pure point diffraction is stable under equivariant perturbations.

Precise versions of these results and further details are discussed in the next
chapters. Each of these chapters starts with a general introduction into its particu-
lar topic. In these introductions, we also discuss the particular contribution of the
author, whenever the results are obtained in joint work.



CHAPTER 2

Uniform ergodic theorems and spectral theory of
one-dimensional discrete Schrodinger operators

In this chapter we give an overview on the authors works [Le3l, [Led, Le5|
and the authors joint work with David Damanik [DL8|. The presentation is not
uninfluenced by the authors survey type article [Le6)].

The chapter is concerned with certain discrete random Schrédinger operators
associated to compact topological dynamical systems. This means we are given a
dynamical system (£2,T') consisting of a compact space {2 and a homeomorphism T'
as well as a continuous function f : {2 — R. The associated selfadjoint operators
(H,,)weq are acting on ¢2(Z) by

(3) (Hou)(n) = u(n+1) +u(n — 1) + f(T"w)u(n),

This type of operator arises in the quantum mechanical treatment of disordered
solids. The underlying discretization is known as tight binding approximation (see
e.g. [BHZ] for further study of this approximation in the context of aperiodic
order). The operator describe the behavior of a single electron which does not
interact with other electrons. This is known as one particle approximation. The
influence of the solid i.e. of its disorder, is completely absorbed into the choice of
the effective potential n — f(T™w). The influence of disorder is therefore intimately
related to features of the dynamical system (§2, 7).

We will assume that (§2,T) is strictly ergodic, i.e.
(SE) (£2,T) is minimal and uniquely ergodic.
As usual, the dynamical system (£2,T') is called minimal if every orbit is dense and

it is called uniquely ergodic if there exists only one T-invariant probability measure
on {2. For minimal (£2,T), there exists a set ¥ C R s.t.

Y =0(H,) forall we,

where we denote the spectrum of the operator H by o(H) (see for example [BIST),
Lel]). We will furthermore assume that (£2,7') is aperiodic, i.e. satisfies

(AP) T"w # w for all w € 2 and all n # 0.

The main focus of the chapter will be the case that (2,7 is a subshift over a
finite set S C R. Recall that (£2,T) is called a subshift over S if {2 is a closed subset
of SZ, invariant under the shift operator T : S% — SZ given by (T'a)(n) = a(n+1).
The function f is then given by f: 2 — S C R, f(w) = w(0). Here, S carries the
discrete topology and SZ is given the product topology.

Subshifts satisfying (SE) and (AP) have attracted particular attention in recent
years, as they can serve as simple models for quasicrystals: They are close to
periodic structures by (SE) and not periodic by (AP). They exhibit special features

9
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and have been subject to intensive research since then (see Chapter [1f). From the
mathematical point of view, the associated operators have a tendency to have rather
interesting properties such as:

(Z) Cantor spectrum of Lebesgue measure zero (i.e. ¥ is a Cantor set of
Lebesgue measure zero);
(SC) Purely singular continuous spectrum;
(AT) Anomalous transport.

These properties should be consequences of the underlying disorder which is
random by (AP) but still in some sense close to the periodic case by (SE). Absence
of point spectrum should then hold as it holds in the periodic case. Absence of
absolutely continuous spectrum is expected due to the randomness. Finally, Cantor
spectrum (i.e. occurrence of “many” gaps) can be understood by regarding (£2,7T)
as periodic with period infinity.

While these considerations are rather convincing on the heuristic level, so far
only absence of absolutely continuous spectrum has been established in the general
case due to recent results of Last/Simon [LS] in combination with earlier results of
Kotani [Ko|. More precisely, [Ko] gives almost sure absence of absolutely continu-
ous spectrum for aperiodic systems and |[LS|] shows that the absolutely continuous
spectrum is constant in the minimal case. The other points have rather been proven
for large classes of examples. The main examples can be divided in two classes.
These classes are given by

e primitive substitution operators as studied e.g. in [Be2, BBG, BG,
Dall, [Sull, [Su2] and

e Sturmian operators respectively more generally circle map operators in-
vestigated e.g. in [BIST, [Da2, DKL, [DL1, DP, HKS, JL1, Kal (see
[Da4] for a recent survey).

The most prominent example is the Fibonacci model (golden mean). This model
actually belongs to both classes.

The aim here is to discuss a method to investigate (£) which was developed by
the author in [Led]. It shows that (Z) holds whenever a suitable uniform ergodic
type theorem is valid. A quite strong version of such a theorem has been shown
to hold for large classes of examples by the author in [Le3|. In fact, [Le3| even
characterizes the subshifts allowing for this strong version theorem. Recently, a
slightly weaker ergodic type theorem could be established in joint work with David
Damanik [DL8|]. This weak form is still sufficient to conclude (Z). The results of
[Led] rely on work of Furman [Fu]. Alternative proofs and partial strengthening
of this work are given by the author in [Le5|. For discussion of (SC), (A7) and
further details we refer the reader to the cited literature.

The property (Z) has been investigated for various models: The starting point
are the non-rigorous works Kohmoto/Kadanoff/Tang [KKT] and Ostlund/Pandit/
Rand/Schellnhuber/Siggia, [OPRSS]| already discussed in the first chapter. First
rigorous results were then obtained by Casdagli [Cal]. They show that a certain set
called the pseudo-spectrum is a Cantor set of measure zero. While this is rigorously
proven, the relation between pseudo-spectrum and spectrum remained open. These
works concern the Fibonacci model.

Subsequently rigorous results on (£) for both Sturmian operators and primitive
substitutions were obtained:
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For Sturmian operators, (£) was first shown in the golden mean case by Siit8
[Sull, [Su2]. The general case was then treated by Bellissard/Tochum/Scoppola
/ Testard [BIST]. This has been extended to Quasi-Sturmian models by David
Damanik and the author [DL6]. A different approach, which recovers some of these
results, is given in [Dadl, DL7]. Most of the cited works tackle not only (Z) but
also (SC).

As for primitive substitutions, following work by Bellissard /Bovier/ Ghez [BBG]
on the period doubling substitution, it was shown for several primitive substitutions
by Bovier/Ghez [BG]. These works apply to a large class of substitutions given
by an algorithmically accessible condition. The Rudin-Shapiro substitution does
not belong to this class. In [Led], the author then established (Z) for all primitive
substitutions (and in fact a larger class of subshifts). Independently, a proof of (Z)
for primitive substitutions was given by Liu/Tan/Wen/Wu in [LTWW].

The method presented in [Le4] has subsequently been used by other authors as
well: It has been applied to show (Z) for certain circle maps by Adamczewski/Damanik
[AD]. Moreover, Lima/ de Oliveira used it in [dOL] to show (Z) for certain non-
primitive substitutions. In fact, it can be applied to a large class of non-primitive
substitutions as discussed in [DLT].

As mentioned already, the range of [Le4| was extended in joint work with David
Damanik. This extension reproduces all earlier results of this type. Moreover, it
allows one to show (Z) for almost all circle maps (i.e. potentials of the form (I])).
Earlier results could only treat a set of circle maps of zero measure.

Let us point out that the method given below does not rely on a renormalization
scheme, so-called trace maps, as do all other results cited above. Trace maps provide
a very powerful tool in the study of random operators. In particular, they allow
one to not only study (Z) but also absence of eigenvalues. However, not all systems
allow for trace maps and even if there are trace maps they may be hard to analyze.
Thus, a main advantage of the approach below is its independence of trace maps.

The method is rather based on relating ergodic features of (£2,7) to spectral
features of the associated operators. The abstract cornerstone is Theorem
below. It is actually valid for arbitrary dynamical systems satisfying (SE). It gives
a characterization of ¥ in terms of uniform existence of the Lyapunov exponent
v (precise definition given below). As a consequence, we obtain a necessary and
sufficient condition for validity of the equation

(4) Y={FeR:y(F)=0}

in Theorem in terms of uniform existence of the Lyapunov exponent. Now,
trying to establish is a canonical strategy in the proofs of (£), as by fundamental
results of Kotani [Ko], the set {E € R : v(E) = 0} has Lebesgue measure zero if
(£2,T) is an aperiodic subshift.

Thus, Theorem|L.5|reduces the study of (Z) to establishing validity of a uniform
ergodic theorem for certain matrix valued functions over (£2,7T). This effectively,
transforms the spectral theoretic problem into an ergodic problem.

This ergodic problem can be solved for a large class of examples including all
primitive substitutions by the main result of [Le3]. More precisely, [Le3] charac-
terizes the class of subshifts for which the averages for every subadditive function
on the associated set of words exist by a combinatorial condition (PW). This class
contains all primitive substitutions.



12 2. ERGODIC THEOREMS AND DISCRETE SCHRODINGER OPERATORS

In order to apply [Led] to establish (£) one does not need the full strength
of [Led| dealing with arbitrary subadditive functions. It suffices to know existence
of averages for all subadditive functions coming from matrices. This idea is the
starting point for the authors joint work with David Damanik in [DLS].

There existence of averages for certain matrix valued functions is shown to hold
for all subshifts satisfying a condition (B). This condition is due to Boshernitzan
in his study of unique ergodicity. One may think of (B) as saying that (PW) holds
“on many scales”. Accordingly, validity of the ergodic theorem is established in
[DL8] in two steps:

In the first step, it is shown that (B) implies existence of averages along many
scales. Then, in the next step one shows that existence of the averages along many
scales implies existence of the averages. This step requires an “extrapolation”
of scales. This is provided by the so called avalanche principle. The avalanche
principle was introduced by Goldstein/Schlag in [GS]. We use it in the form given
by Bourgain/Jitomirskaya in [BJ].

This part of the considerations of [DL8] is essentially due to the author.

In the second part of [DLS], validity of (B) is proven for large classes of exam-
ples. In particular, in joint work with David Damanik, it is shown to hold for in a
suitable sense almost all circle maps potentials defined above in .

1. Uniformity of cocycles and Cantor spectrum of Lebesgue measure
zero

In this section we introduce the necessary notation and give precise versions of
our results.

For a continuous function A : 2 — GL(2,R), w € {2, and n € Z, the cocycle
A(w,n) is defined by

AT 1) Aw) @ n>0
Aw,n) = Id : n=0
AN Tw) - A YT lw) @ n<0

By Kingmans subadditive ergodic theorem, there exists A(A) € R with
1
A) = Jim L 1og 4. m)|

for p almost every w € 2 if (£2,T) is uniquely ergodic with invariant probability
measure . Following Furman [Ful, we introduce the following definition.

DEFINITION 1.1. Let (£2,T) be strictly ergodic. The continuous function A :
(2,T) — GL(2,R) is called uniform if the limit A(A4) = lim,_ o 2 log ||A(w,n)||
exists for all w € 2 and the convergence is uniform on (2.

REMARK 1.2. As shown by Furstenberg and Weiss [FW], uniform existence of
the limit in the definition already implies uniform convergence. In fact, this is even
true for a continuous subadditive cocycle (f,,)nen on a minimal (£2,7) (i.e. f, are
continuous real-valued functions on {2 with f,1m(w) < fo(w) + fi(T"w) for all
n,m € N and w € 02).
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For spectral theoretic investigations a special type of SL(2,R)-valued function
is relevant. Namely, for E € R, let the continuous function M¥ : 2 — SL(2,R)

be given by
E-fTw) -1
E =
M~ (w) = ( 1 0 .
Straightforward calculations show that a sequence w is a solution of the difference
equation

(5) w(n +1) + uln — 1)+ (F(T") — E)u(n) = 0
if and only if

(6) ( “(Z(;:)l) ) — ME(w,n) ( Z%g ) forall neZ.

By the above considerations, M gives rise to the average v(E) = A(MF). This
average is called the Lyapunov exponent for the energy E. It measures the rate of
exponential growth of solutions of . Our abstract result now reads as follows.

THEOREM 1.3. [Led] Let (£2,T) be strictly ergodic. Then,
LY={EeR:vy(E)=0}U{E eR: M¥ is not uniform},
where the union is disjoint.

REMARK 1.4. This theorem is related to results of Johnson on so called expo-
nential dichotomy [Jo]. More precisely, Johnson shows that the resolvent is exactly
the set of energies with exponential dichotomy, i.e. strong exponential behaviour
of the solutions. Now, the results of Furman [Fu] can be understood as saying that
exponential dichotomy is equivalent to uniformity of M¥ with A(MF) > 0. This
line of thought can probably be used to provide a proof for Theorem When
[Led] was written the author was not aware of Johnson’s results. Therefore, [Le4]
contains a different proof of the theorem.

The theorem has two consequences. The first says that uniform positivity of
the Lyapunov exponent is equivalent to M being non-uniform for all E € 3. This
is interesting when one tries to construct examples of non-uniform cocycles. This
is further discussed below.

The other consequence is the following theorem of [Le4], which is crucial to
our method of proving (Z2).

THEOREM 1.5. |[Led] Let (£2,T) be strictly ergodic. Then the following are
equivalent:
(i) The function M¥ is uniform for every E € R.
(i) ={EF e R:y(F) =0}.
In this case the Lyapunov exponent v : R — [0, 00) is continuous.

The theorem relates the validity of to ergodic features of the underlying
subshift. It turns out that uniformity of the transfer matrices and more generally
of locally constant matrices can be shown for large classes of subshifts. Here, a
function A : 2 — SL(2,R), where (£2,T) is a subshift over S, is called locally
constant if there exists an N € N with A(w) = A(p) whenever w(—N)...w(N) =
p(—=N)... p(N).

To introduce these classes we need some more notation. We consider sequences
over S as words and use standard concepts from the theory of words ([Lo]). In
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particular, Sub(w) denotes the set of subwords of w, the number of occurrences of
v in w is denoted by #,(w) and the length |w| of the word w = w(1)...w(n) is
given by n. To {2 we associate the set W = W({2) of finite words associated to {2
given by W = U,enSub(w). For a finite set M, we define M to be the number of
elements in M.

We can now present the two classes of subshifts we will be dealing with. The
first class consists of those satisfying the condition (PW) of uniform positive weights:

DEFINITION 1.6. The subshift (2, T) satisfies (PW) if there exists a C > 0
with liminf |, by (2) |[v| > C for every v € W.

El

As discussed in [Led), [Le3|, this class contains all primitive substitution sub-
shifts. It allows for a rather strong ergodic type theorem [Le3), [Le5]. In fact, it
can be characterized by validity of such a theorem. This is the content of the next
result.

Before we state the result, let us recall that F': W — R is called subadditive
if F(zy) < F(z) + F(y) whenever xy € W.

THEOREM 1.7. [Le3|, [Le5| Let (2, T) be minimal. Then the following asser-
tions are equivalent:
(i) (2,T) satisfies (PW).
(ii) The limit lim|)_ o0 % exists for every subadditive F : W — R.
In this case, every locally constant A : 2 — SL(2,R) is uniform.

REMARK 1.8. (a) This theorem underlines the importance of condition (PW).
A further discussion of this condition and its relation to other conditions can be
found in the next section.
(b) The theorem generalizes the corresponding results of [DL5, [Le2]. In [Le2], the
equivalence is shown to hold for special subshifts, viz Sturmian dynamical systems.
Moreover, a variant of (PW) is shown to be necessary for (ii).

The previous ergodic theorem together with Theorem implies Cantor spec-
trum of Lebesgue measure zero for the corresponding systems by the results of
Kotani [Ko] discussed at the beginning of the chapter.

THEOREM 1.9. [Led] Let (£2,T) be an aperiodic subshift. If (£2,T) satisfies
(PW), then ¥ is a Cantor set of Lebesque measure zero.

As discussed above, this result applies to a wide range of examples. These in-
clude all primitive substitutions |[Le4] as well as certain circle maps [AD] and cer-
tain non-primitive substitutions [dOL]. As primitive substitutions have attracted
a lot of attention, we explicitely state the following corollary.

CoOROLLARY 1.10. [Led| Let (£2,T) be an aperiodic subshift associated to a
primitive substitution, then X is a Cantor set of Lebesgue measure zero.

While condition (PW) holds for many examples, it is not necessary for ¥ being
a Cantor set of measure zero, as can be seen by considering suitable Sturmian
potentials [Le6]. This rises the question for generalizations of (PW). In this context
the following condition is of interest.

DEFINITION 1.11. Let (§2,T) be a subshift over a finite alphabet. For w € W
define Vi, :={w e 2:w=w(l)...w(w|)}. Then, (£2,T) is said to satisfy condition
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(B) if there exists an ergodic probability measure v on {2, a sequence (I,,) in N with
l, — 00, n — o0, and C > 0 such that |w|v(V,,) > C, whenever w € W satisfies
|w| = I, for some n € N.

This condition was introduced by Boshernitzan in his study of unique ergodicity
in [Bol]]. It may be considered as giving validity of (PW) on certain scales. Namely,
as shown by Boshernitzan in [Bo2|, this condition implies unique ergodicity. It is
therefore [Bo2l, IDL8] equivalent with the requirement that there exists a C' > 0
and a sequence (l,,) in N with [,, — 0o, n — oo, with

(B) i fnf ()

v = C,

whenever |v| = [,, for some n € N.

The intuition that (B) means validity of (PW) on certain scales is supported
by the following extension of Theorem

In order to state this extension, we need one more piece of notation. Let
(£2,T) be a uniquely ergodic subshift. Every subadditive F' : YW — R induces a
subadditive cocycle (f,) on {2 defined by f, : 2 — R, f,(w) := F(w(1)...w(n)).
In particular, by Kingmans subadditive ergodic theorem, we can associate to every
subadditive F' a number A(F) with A(F) = lim,_,oc 1/nf,(w) for almost every
w € 2.

THEOREM 1.12. [DLS8| Let (£2,T) be a minimal subshift over a finite alphabet.
Then the following conditions are equivalent:
(i) (£2,T) satisfies (B).
(i) (£2,T) is uniquely ergodic and there exists a sequence (II,) in N with
Il — 0o for n — oo such that lim,, .. |w,| ' F(w,) = A(F) for every
subadditive F' and every sequence (wy,) in W(§2) with |w,| =1, for every
n € N.

This result gives the existence of averages on many length scales. To obtain
existence of averages on all lengths scales, one needs an “extrapolation procedure”.
Such a procedure is provided by the avalanche principle introduced in [GS] and
later varied in [BJ]. Combined with the avalanche principle of [BJ], the previous
theorem can be used to give the following theorem, which is the main abstract result
of [DLS]|. As discussed there, this result covers all earlier results of this form.

THEOREM 1.13. [DLS8| Let (2,T) be a minimal subshift which satisfies (B).
Let A: 2 — SL(2,R) be locally constant. Then, A is uniform.

The previous theorem and our general method immediately give the following
result.

THEOREM 1.14. [DLS8| Let (£2,T) be an aperiodic subshift. If (2,T) satisfies
(B), then ¥ is a Cantor set of measure zero.

As an application we obtain the following result, where for b,6, 3 € (0,1) arbi-
trary, the function V[f 1,9 is defined as in Chapter [1| by

V[g)l)ﬂ9 :Z —{0,1}, by n— x p1)(nd+ £ mod 1).
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THEOREM 1.15. [DL8] Let ¥ € (0,1) be irrational.
(a) For almost every b € (0,1), the spectrum o(H,,s ) is a Cantor set of Lebesgue

[b,1),9
measure zero for every 3 € (0,1).

(b) If ¥ has bounded continued fraction expansion, then o(H,s ) is a Cantor
[b,1),9

set of Lebesgue measure zero for every 8 € (0,1) and every b € (0,1).

REMARK 1.16. (a) The proof relies on Diophantine approximation.

(b) As discussed in [DL8], this result is particularly relevant as all earlier results
on Cantor spectrum for circle maps [AD), [BIST), [DL6, [Sull, [Su2| only cover a
set of parameters (¢, b) of Lebesgue measure zero in (0,1) x (0,1).

(¢) Condition (B) does not hold for all circle maps. Thus, the method developed
above can not be used to infer Cantor spectrum for all irrational circle maps. Still,
Cantor spectrum may be true for all irrational circle maps (cf. discussion in Section

).
2. The conditions (PW) and (B)

In this section, we would like to shortly discuss conditions (PW) and (B). We
will use condition (B’) introduced on the previous page instead of (B). As discussed
there, it is equivalent to (B).

We start by giving a geometric interpretation for terms of the form

Bl
x|
for words v and z. If the copies of v in x are disjoint, then f£,(z) - |v| is just the
amount of “space” in x covered by v. The term %M gives then the fraction of z
covered by v. Thus, conditions like (PW) and (B’) mean that in an averaged sense
all words cover a certain minimal amount of space.

Let us now discuss the relation between the various conditions mentioned. Con-

dition (B’) implies that
lim sup ()

>0

for every v € W. By [Qu], (B’) then implies minimality. Moreover, as shown
by Boshernitzan [Bo2] (see [DL8| as well), (B’) implies unique ergodicity. Now,
obviously (B’) is weaker than (PW). Condition (PW) was introduced by the author
in [Le3|. It is related to linear repetitivity as studied by Durand in [Du2] for
subshifts (see [DHS] as well) and, independently, by Lagarias/Pleasants for Delone
sets in [LP]. Here, a subshift is called linearly repetitive if there exists a constant
C > 0, with #,(x) > 1 whenever z,v € W satisfy |z| > C|v|. Thus, (PW) can be
considered to be an averaged version of (LR).

These considerations provide the following chain of implications:

(LR) = (PW) = (B') = (SE).
It is then natural to ask for the reverse implications: As discussed in [DLS],
there exist circle map subshifts which do not satisfy (B’). As all circle maps are
strictly ergodic, the rightmost arrow can not be reversed. Similarly, the middle

implication can not be reversed as all Sturmian models satisfy (B’) by [DL8] but
not all of them satisty (PW) [Le2, [Le6].
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The precise relation between (PW) and (LR) is still unclear. It is shown by
Monteil that (LR) is equivalent to (PW) combined with a bound on the highest
occurring power in W [Mon]. It is not known whether this bound is forced by (PW)
already. Also, as shown by the author in [Le3|, (LR) is equivalent to uniform
validity of (PW) on all systems derived from the original ones by return words.
Here, again, it is not known whether this really is an additional requirement.

3. Uniformity of certain cocycles: Ergodic theoretic background

This section gives a short study of ergodic theoretic background to the proof
of Theorem and a discussion of non-uniformity of certain cocycles. This partly
summarizes the results of [Le5|.

We start with our characterization of uniformity. To state it we need some
further notation. The projective space over R? consisting of all one-dimensional
subspaces of R? is denoted by P. To X € R?\ {0}, we associate the element
[X]={AX : A €R} of P.

We have the following theorem.

THEOREM 3.1. Let (£2,T) be uniquely ergodic and A : 2 — SL(2,R) be
continuous. Then the following are equivalent:

(i) A is uniform with A(A) > 0.

(i) There exist constants k,C > 0 and continuous functions u,v : 2 — P
with

(M) NAw,n)U[ < Cexp(=rn)|[U]| and [|[A(=n,w)V| < Cexp(=rn)|V].
for arbitrary w € 2, n € N, U € u(w) and V € v(w).

(iti) There exists § >0 and m € N with 0 < § < L In||A(w,n)|| < 28 for every
we N andn>m.

In this case, u(w) # v(w), [A(w,n)U] = uw(T"w) and [A(w,n)V] = v(T"w) for
arbitrary w € 2, n € Z, U € u(w) and V € v(w) with U,V # 0.

REMARK 3.2. (a) The equivalence of (i) and (ii) essentially generalizes the
corresponding results of Furman for strictly ergodic systems [Fu]. A connection
between (i) and (ii) in certain examples had already been established by Herman
in [Hel].

(b) Condition (ii) is essentially the condition known as exponential dichotomy in
[Jo].
(¢) Our proof is based on results of Ruelle [Rul as given by Last/Simon in [LS].

The proof of the theorem gives the following corollary [Le5].

COROLLARY 3.3. Let (£2,T) be strictly ergodic. Then, the continuous A : 2 —
SL(2,R) is uniform with A(A) > 0 if and only if there exists m € N and 6 > 0 such
that § < L1In||A(w,n)|| for every w € 2 and n > m.

REMARK 3.4. The corollary deals with uniform lower bounds on  In || A(w, n)||.
Let us point out that for arbitrary continuous (not necessarily uniform) A : 2 —
SL(2,R) a uniform upper bound holds whenever (£2,T) is strictly ergodic. This is
shown by Furman in Corollary 2 of [Ful.
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We finish this section with a discussion of existence of non-uniform cocycles.
The question of existence of non-uniform SL(2,R)-valued-cocycles has attracted
attention in recent years [Wall, [Hell, [Fu]. In fact, in 1984 Walters asked the
following question [Wall:

(Q) Does every uniquely ergodic dynamical system with non-atomic measure
1 admit a non-uniform cocycle?

Using results of Veech [Ve|, Walters presents one class of examples admitting
non-uniform cocycles.

As shown by Herman [Hell, further classes are given by suitable irrational
rotations.

In this context, the result of the previous section, give examples of subshifts on
which locally constant cocycles can not be non-uniform.

On the other hand, Theorem has the following immediate consequence.

THEOREM 3.5. Let (£2,T) be strictly ergodic and (H,,) the associated operators.
Then the following are equivalent:
(i) v(E) > 0 for every E € R.
(i) X ={F € R: M¥ is non-uniform}.

The theorem shows that examples of operators with uniform positive Lyapunov
exponent give rise to non-uniform cocycles. There is a well-known class of random
operators with uniform positive cocycles, viz the almost-Mathieu-operators already
shortly discussed at the beginning of the first chapter. Let us be more precise:

Choose an irrational a € (0,1) and an arbitrary A > 0. Denote the irrational
rotation by « on the unit circle, S, by R, (i.e. Rnz = exp(ia)z, where i is the
square root of —1). Define f* : S — R by f*(2) = Mz +2z71) (i.e. fA(exp(if)) =
2\ cos(6)). Denote the associated operators by (H2) and their spectrum by X (\).
The operators (H2) are called almost-Mathieu-operators. They have attracted
much attention (see discussion above for further references). Now, by [AAL [AS]
(see [He2] for an alternative proof as well), we have

v(E) > 0 for all E € R whenever A > 1.

Combining this result with the previous theorem, we infer the following theo-
rem.

THEOREM 3.6. For arbitrary irrational o € (0,1) and X > 1, the function M¥
is non-uniform if and only if E belongs to Z(\).

By this result every irrational rotation allows for a non-uniform matrix. This
generalizes the results of Herman [Hel] mentioned above. Let us emphasize, how-
ever, that the results of Herman in [He2] combined with Theorem 4 of [Fu] (or
Theorem above) also give existence of non-uniform cocycles for every irrational
rotation. Still, the above result is more explicit as the set of energies with non-
uniform transfer matrices is identified as X(\).

4. Further remarks

The preceeding considerations establish a link between uniform existence of the
Lyapunov exponent and its vanishing on the spectrum. This can be combined with
results of Kotani to conclude Cantor spectrum of measure zero for many examples.

Two questions present themselves in this context:
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Question: Can one establish (£) for further classes of subshifts? More gener-
ally: Is (Z) valid for every strictly ergodic subshift?

Question: Can one use these considerations to exclude eigenvalues? In partic-
ular, is Cantor spectrum of measure zero sufficient for absence of eigenvalues?

While these are certainly interesting question, they might be out of reach of
current research.

On a more concrete level, one may try to extend the results of the previous
sections to continuum models and to models on strips. In fact, models on strips
are currently being considered in joint work with David Damanik.

In this task, the ergodic theory considerations for functions with values in
SL(2,R) have to be be extended to functions with values in SL(2n,R). Here, the
strategy is to follow [Le3l, [Le5|] in adopting the relevant results from Ruelle’s work
[Ru]. On the operator theoretic level, one needs a suitable version of Kotani’s
theory for a strip. One version of this theory is given by Kotani/Simon in [KS].
The problem when dealing with these results is that some Lyapunov exponents may
vanish while others do not.

It should also be noted that the preceeding results give a new perspective on
Walter’s question on existence of non-uniform cocycles:

Namely, let (£2,T) be a dynamical system on which every cocycle is uniform.
Then, by Theorem the spectrum of any Schrédinger operator associated to
it according to agrees with the set of zeros of the corresponding Lyapunov
exponents. This, of course, is a rather strong restriction for (£2,7) and one may
try to show that this actually implies periodicity. This may be seen as an analogue
to Kotani’s results on deterministic potentials.

Alternatively, by Theorem to answer Walters question affirmatively, it
suffices to find a Schrédinger operator whose Lyapunov exponent has a point of
discontinuity.






CHAPTER 3

Operators of finite range: Uniform existence of
the integrated density of states

In this chapter, we provide a discussion of the authors joint work with Peter
Stollmann [LS3), [LS4].

The chapter is concerned with aperiodic order in arbitrary dimensions. Thus,
we consider the higher dimensional analogues to the sequences and subshifts over
a finite alphabet, which were discussed in Chapter These analogues are given
by Delone sets (with suitable regularity features) and the corresponding Delone
dynamical systems (2, 7). The associated Hamiltonians H,, act on £?(w), w € §2.
Thus, both the operators and the underlying Hilbert space depends on w € 2. The
overall goal is to study the order features of (2,7, the spectral theory of (H,)wen
and the interplay between these two. More specifically, our aims are

e to carry over basic theory of random operators to our setting,
e to show that aperiodic order gives a very uniform existence result for the
so called integrated density of states.

Here, the second point is actually a special case of a more general result:

e aperiodic order gives a very strong type of ergodic theorem for arbitrary
Banach space valued functions.

Let us discuss this in more detail.

We use basic results from Connes’ non-commutative integration theory to con-
struct a von Neuman algebra N (§2,m). This von Neumann algebra contains the
Hamiltonians and their spectral projections. It provides a natural setting to state
and prove those features of the Hamiltonians which are “usual” for random opera-
tors. This includes almost sure constancy of the spectral properties of H,,, w € 2,
and absence of discrete spectrum. Here, ergodicity is the essential assumption.
Moreover, there is a canonical trace on the von Neumann algebra. This trace
allows one to abstractly define the integrated density of states.

By its very nature aperiodic order is a topological concept rather than a mea-
sure theoretical one. Thus, we restrict attention to a suitable sub C*-algebra A({2)
for our further considerations. This algebras comes from the operators which are
“local” in a suitable sense and therefore rather directly reflect the underlying dis-
order. For these operators we can show that the integrated density defined above
can be calculated via an averaging procedure. This is our version of the so called
Pastur-Shubin trace formula. It generalizes in some sense the corresponding results
of [Ke, Holl, Ho3J.

The results mentioned so far are all contained in [LS3]. They are not specific
for the underlying form of disorder. They are in fact well known and standard
for random operators and almost random operators [KM] (see e.g. [CL, [PF| and

21
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references therein). In our context, the proofs require some additional care is as the
Hilbert space depends on the randomness as well. Still the proofs are essentially
straightforward variants of the “usual” ones.

We now come to a specific feature of the underlying disorder, which is discussed
in [LS4]. Namely, assuming unique ergodicity and a suitable finite complexity
condition, we can actually show that the convergence of the approximants to the
integrated density of states takes place in a very uniform way. More precisely, the
distribution functions of the converging measures converge uniformly. This seems
to be the first result of its kind for random operators.

As mentioned already, our proof relies on a strong ergodic type theorem for
almost additive Banach space valued functions, which may be of independent in-
terest.

Such a result was first proven for systems associated to substitutions by Geerse
/ Hof in [GH]|. Their proof uses two ingredients: unique ergodicity i.e. uniform
existence of the frequencies and certain decompositions of large clusters into smaller
ones. These decompositions are naturally present in their framework of substitution
systems. In general, one has to work to produce them and that is a key issue in
our study. We use partitions according to return words as introduced by Durand
[Dul] in the case of subshifts and later studied by Priebe for tilings [Pr].

A one-dimensional variant of this ergodic theorem and the proof outlined above
has been studied by the author in [Le2|, [Le3|. Accordingly, the basic line of argu-
ment of [LS4] as well as essential parts of its actual proofs are due to the author.

Most of the content of [LS3] is in one way or other suggested by Peter Stoll-
mann. Still many of the actual details are supplied by the author. In this context,
we would also like to mention the authors work with Norbert Peyerimhof and Ivan
Veseli¢ [LPV], which works out a very general setup for the treatment of random
operators based on Connes non-commutative integration theory.

1. Uniform existence of averages on Delone dynamical systems

In arbitrary dimensions, long range order is usually modeled by tilings or,
equivalently, Delone sets. Here, we will be concerned with Delone set (see |[LP]
Sol1] for further discussion). In order to be more precise, let d € N be fixed and
denote by Bgs(p) the closed ball centered at p € R? with radius S > 0.

DEFINITION 1.1. A subset w C R? is called a Delone set if there exist 0 < r < R
such that for any p € R? the ball B,(p) contains at most one and Bgr(p) contains
at least one element of w.

The points of a Delone set w are thought to model the positions of the atoms
of a quasicrystal. Apparently, every Delone set is closed.

The Hausdorff metric on the set of compact subsets of R? induces the so called
natural topology [LP] on the set of closed subsets of RZ. This topology was intro-
duced in [LP] and is studied in detail in [LS2].

We will not define this topology here (see [LS2] ). We will rather note two of
its crucial properties: Firstly, the set of all closed subsets of R? is compact in the
natural topology. Secondly, the natural action T of R? on the closed sets given by
T;C = C + t is continuous.

Having introduced a topology and an action of R?, we can now define the
dynamical systems of interest: ((2,T) is called a Delone dynamical system and
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abbreviated as DDS if (2 is a set of Delone sets that is invariant under the shift T
and closed under the natural topology.
These can be considered as analogues to subshifts. However, it should be noted
that we do not have build in an analogue to the finiteness of the alphabet so far.
To do so and for our further investigations we will have to deal with finite parts
of Delone sets. This topic will be considered next. The appropriate definition in
our context is the following:

DEFINITION 1.2. (a) A pair (A, Q) consisting of a bounded subset Q of R? and
A C (@ finite is called pattern. The set @ is called the support of the pattern.
(b) A pattern (A, Q) is called ball pattern if Q = By(x) with z € A for suitable
z € R% and s > 0.

We will identify patterns which are equal up to translation. More precisely, on
the set of patterns we introduce an equivalence relation via (A1, Q1) ~ (A2, Q2) if
and only if there exists a t € R? with Ay = Ay 4+t and Q; = Q2 +t. The class of a
pattern (A, @) is denoted by [(A, Q)].

Two sets of pattern classes are naturally associated to a Delone set w. These
are the set P(w) of all pattern classes occurring in w

P(w) = {[Q Aw] : Q € R? bounded and measurable},
and the and set Pp(w)) of ball pattern classes occurring in w
Pr(w)) ={[B(p,s) ANw] : p € w,s € R}.
Here, we define

(8) QAw=(wNQ,Q).

For s € (0,00), we denote by Pg(w) the set of ball patterns with radius s. A
Delone set is said to be of finite local complexity if the set P%(w) is finite for every
s > 0. This type of finiteness is a strong assumption. It can be considered to be the
analogue of the finiteness of the alphabet in the case of one-dimensional subshifts.

DEFINITION 1.3. (£2,T) is called a Delone dynamical system of finite local com-
plexity (DDSF) if £2 is a closed T-invariant set of Delone sets such that U, o Pg(w)
is finite for every s > 0.

We will show that suitable ergodic averages exist on (DDSF). Thus, we will
have to take means of suitable functions along suitable sequences of patterns and
pattern classes. These functions and sequences will be introduced next.

Here and in the sequel we will use the following notation: For Q C R? and
h > 0 we define

Qn = {z € Q : dist(z,0Q) > h}, Q" = {z € R? : dist(z, Q) < h},

where, of course, dist denotes the usual distance and 0Q is the boundary of Q.
Moreover, we denote the Lebesgue measure of a measurable subset @ C R by |Q].
Then, a sequence (Q,,) of subsets in R? is called a van Hove sequence if the sequence
(|Qn| Q" \ Qpn.1|) tends to zero for every h € (0,00). Similarly, a sequence (P,)
of pattern classes, (i.e. P, = [(An, @n)] with suitable @, A,) is called a van Hove
sequence if @, is a van Hove sequence. Obviously, this is well defined.

Moreover, for pattern classes P;, i = 1,...,k and P, we write

P=af P
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if there exist X; = (A, Q4), i = 1,...,k, and X = (A,Q), such that [X;] = P;,
i=1,...,k [X] = P, A = UA;, @ = UQ; and the @; are disjoint up to their
boundaries.

We can now introduce the class of functions we want to average.

DEFINITION 1.4. Let {2 be a DDS and B be a vector space with seminorm
II-1]. A function F': P(£2) :— B is called almost additive (with respect to | - ||) if
there exists a function b : P(£2) — [0, 00) (called associated error function) and a
constant D > 0 such that

(A1) IF(®E1P) = 330y FIR)I < Xy b(P),

(A2) |[E(P)]| <D|P|+b( )-

(A3) b(P1) < b(P)+ b(P) whenever P = P; @ P,

(A4) lim,, .o |Pn|~1b(P,) = 0 for every van Hove sequence (P,).

Apparently, condition (A4) says that b is a boundary or surface type term.
Then, (Al) means that F' is additive up to a boundary term. Condition (A2) gives
an apriori bound. Condition (A3) may look surprising at first sight. However, it
reflects exactly the behaviour of surfaces under taking disjoint unions: If C' = AUB
with subsets A, B of R? which are disjoint up to their boundary, then the boundary
of A is contained in the union of the boundaries of C' and B.

Now, our ergodic theorem reads as follows.

THEOREM 1.5. For a minimal, aperiodic DDSF (£2,T) the following are equiv-
alent:
(i) (£2,T) is uniquely ergodic.
(ii) The limit limy_.oo|Pr| " F(Py) exists for every van Hove sequence (Pj)
and every almost additive F on (£2,T) with values in a Banach space.

REMARK 1.6. (a) The proof uses methods of Geerse/Hof [GH] and ideas from
Durand [Dull, Du2] and Priebe [Pr]. In fact, Geerse/Hof established a similar
result for a tiling associated to a primitive substitution.

(b) In the one-dimensional case related results have been shown by the author in
[Le2, Le3].

(c) Existence of averages for real-valued functions on linearly repetitive Delone
dynamical systems have been established by Lagarias/Pleasansts [LP].

2. The integrated density of states

In this section we present an operator algebraic approach to operators asso-
ciated with quasicrystals. This allows one to establish basic properties of these
operators. Moreover, it can be combined with the results of the previous section to
prove existence of the integrated density of states in a very uniform sense. Related
material can be found in [Ke, [ KPl, BHZ].

We shall use Delone dynamical systems as parameter spaces for operators asso-
ciated with quasicrystals. As discussed in Chapter |1} (2 is then viewed as standing
for a fixed type of aperiodic order and the elements w € {2 are considered as specific
realizations of this type of (dis)order.

This is very similar to the random models [CL, [PF, [St] and the almost random
framework introduced in [Bell, Be3|]. However, there is one important difference:
in the situation at hand the Hamiltonian H,, is naturally defined on ¢?(w) and the
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latter space varies with w € 2. The family (H,),ecq of random operators should
satisfy the covariance condition

Hw+t = UtHwU;,
where Uy : 2(w) — £%(w +t) is the unitary operator induced by translation.
Let a DDSF (£2,T) be given and consider the bundle
Ei={(w,z)|lwe 2,z cw} C N xR,

that carries a natural measurable structure induced by C(£2) ® C.(R9). Since §2
is compact, there exist T—invariant measures on (2. Let p be such an invariant
measure. Then, p induces an measure m on = according to

m= /Q (Z 595) dp(w),

rEw

where J, denotes the unit mass at z. This yields a direct integral decomposition

(&)
L2, m) = /Q 2(w)dp(w).

For a measurable, essentially bounded H = (H,,),cp let

@
(H) = /Q Hodp(w) € B(L2(E, m)).

Using Connes’ non-commutative integration theory, one can easily see that

N2, 1) :={A = (A,)wen|A covariant, measurable and essentially bounded}/ ~

is a von Neumann algebra. Here, ~ is the equivalence relation which identifies
random operators which agree up to a set of measure zero. This von Neumann
algebra carries a canonical trace, viz

T(H) = /!2 tr(Hy, My)dp(w).

Here, f € C.(RY) is arbitrary with f > 0 and [ f(z)dz = 1, My acts on £*(w) by
(Msh)(z) = f(x)h(x), and 7 does not depend on the particular choice of f € C.(R?)
satisfying these requirements. Note that the operator H, My has finite rank, since
only finitely many points of w lie in the support of f by the Delone property.

This trace allows one to associated a canonical measure py to every selfadjoint
H e N(£2,m) by

(pr, @) :=7(p(H)) for o € Cy(R),
The following holds.

THEOREM 2.1. [LS3| Let (£2,T) be an DDS, p an invariant measure and H €
N (02, 1) selfadjoint.

(a) pr is a spectral measure of H and w(H).

(b) Let furthermore p be ergodic. Then for u—a.e. w € (2 the spectral properties
of H, do not depend on w € 2. In particular, we have supppy = o(H,) for
palmost-every w € 2 in this case. Moreover, the discrete spectrum of H,, is void.
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This result gives the already mentioned analog to the basic results for random
operators, [CL, [PF) [St]. In different context it can be found in [Le2), [LPV].

As mentioned already, aperiodic order is a topological topic and we therefore
have to single out a C*-subalgebra of random operators. This will be done next.

DEFINITION 2.2. Let £2 be a DDSF. A family A = (4,,), A, € B(£?(w)) is said
to be an operator (family) of finite range if there exists R > 0 such that
o (A,0;]0y) =0ifz,y €w and |z —y| > R.
o (Aubuitl0yse) = (Az62[0y) if w N (Br(z+t) UBR(y +1)) = 0N (Br(z) U
Br(y))+t and z,y € @.

This definition means that the matrix elements A, (z,y) = (A, 02|0y) of A, only
depend on a sufficiently large patch around = and y and vanish if the distance be-
tween x and vy is too large. Since there are only finitely many nonequivalent patches,
an operator of finite range is bounded in the sense that || A|| = sup,cq, [|Aw| < cc.
The completion of the space of all finite range operators with respect to this norm
is a C*—algebra. We denote it by A((2). By definition of the norm, the representa-
tions 7, : A — A, can be uniquely extended to representations of A({2) which are
again denoted by m, : A(2) — B((?(w)).

THEOREM 2.3. [LS3] The following conditions on 2 are equivalent:
(i) (£2,T) is minimal.
(ii) For any selfadjoint A € A(£2) the spectrum o(A,) is independent of w €
0.
(iii) m, is faithful for every w € £2.

Next we relate the “abstract integrated density of states” py to the integrated
density of states as considered in random or almost random models and defined by
a volume limit over finite parts of the operator.

To do so note, that A(£2) C N (£2, u) for every invariant measure .

Now, for a selfadjoint A € A(£2) and bounded @ C R? the restriction A,|g of
A, on /2(Q Nw) has finite rank. Thus, the spectral counting function

n(Ay, Q)(E) := #{ eigenvalues of A, |qg below E}

is finite. Then, ﬁn(Aw, Q) is the distribution function of the measure p(A,, Q),
defined by

(A0 Q) 0) = ﬁatrwmwm)) for ¢ € Cy(R).

One of the fundamentals of random operator theory is the existence of the infinite

volume limit
1
N(E)= lim —n(A,,Q)(FE
(B)= Jim, orn(As, Q)(E)
independently of w a.s. This amounts to the convergence in distribution of the

measures p(A,, Q) just defined. As a first result on weak convergence we get:

THEOREM 2.4. Let (2,T) be a uniquely ergodic DDSF and A € A(£2) selfad-
joint. Then, for any van Hove sequence @,

P(Au, Qn) — pa weakly as n — oc,

where p is the unique ergodic probability measure.
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This result can be regarded as abstract versions of the celebrated Shubin’s trace
formula [Sh]. See also the discussion [AS) [CL, [PF, Bell, Be3| for the almost
periodic, random and almost random case. In some sense, it falls well within the
standard theory. Following the strategy of [Be3l, [Ke] the proof proceeds in two
steps. In the first step we show existence of the limit

lim

1
——tr(p(A .
o0 |Qn|t (SD( W)‘Qn)

This uses the usual ergodic theorem. In the second step, we show that the difference

|$n|tr<so(Aw>|Qn — p(Aula,)

becomes small for large n. For the special case of primitive substitutions this
is contained in [Ke]. For this case, a different proof of existence of the limit is
contained in [Hol]. A general treatment of the first step can also be infered from
[Ho2].

Now, using Theorem discussed in the previous section, we can actually
do better than vague convergence. More precisely, we can show that the actual
distribution functions (E — p(A, Qn)((—o0, E]) converge uniformly:

THEOREM 2.5. [LS4] Let (2,T) be a minimal, uniquely ergodic, aperiodic
DDSF and (Ay,) an selfadjoint operator of finite range. Then, for any van Hove
sequence Qy,, and any w € {2

(B = p(Aw, @n) (=00, E])) = (E — pa((—o0, E]))
uniformly for n — oco.

To infer this theorem from Theorem we have to first provide a Banach
space containing the functions F — p(A,, Qy)((—o0, E]) and E — pa((—oo, E])
and then prove suitable almost additivity properties. Details are given in [LS4].
Here, we would like to shortly discuss the relevance of this uniform convergence
statement.

If the limiting distribution is continuous, uniform convergence follows from weak
convergence by abstract measure theory. In our cases the limiting distribution E +—
pa((—o00, E]) may have points of discontinuity (see e.g. [KLS|). Thus, uniformity
is a remarkable feature. It is very much in line with the overall intuition that
aperiodic order is close to a periodic structure.

3. Further remarks

The results presented above serve two purposes. They show that the order is
reflected in very strong averaging properties of the underlying dynamical system and
they provide a first modest step towards spectral theory of quasicrystal operators
in higher dimensions.

Concerning this latter point the situation is much less than satisfactory. A
key deficiency in the higher dimensional case (compared to the one-dimensional
situation) is the missing of the transfer matrix formalism.

In one dimension the transfer matrix formalism allows one to rather directly
“translate” combinatorial properties of the underlying system into properties of
solutions of the corresponding eigenvalue equations. Properties of the solutions are
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then related to spectral theory. This strategy is particularly powerful as combi-
natorial properties are in some sense simple due to the very meaning of aperiodic
order.

There is no equivalent to this strategy in the higher dimensional case. In this
respect the higher dimensional case for aperiodic order is worse than the case of
high disorder for the following reason: Due to the strong order in the models there
are not enough parameters to wiggle. This leaves much space for new ideas ....

Let us mention that the results of this chapter and in particular the result on
uniform convergence of the integrated density of states can be used to tackle a
specific feature of aperiodic order, viz the occurrence of locally supported eigen-
functions. This has been investigated in joint work with Steffen Klassert and Peter
Stollmann [KLS]. There, it is shown that points of discontinuity of the integrated
density of states occur exactly at those energies for which compactly supported
eigenfunctions exist.

Also, we would like to mention that statements on generic operators associated
to Delone sets in the continuum are also available: Generically such an operator
has purely singularly continuous spectrum in certain intervals. This has recently
been proven in joint work with Peter Stollmann [LS5]. The proof relies on (a slight
extension of) Simon’s Wonderland theorem [Si].



CHAPTER 4

Pure point diffraction and measure dynamical
systems

In this chapter we present and discuss the results of [BL1), BL2]. These results
are obtained by the author in joint work with Michael Baake.

Since the discovery of quasicrystals twenty years ago [SBGC| the phenomenon
of pure point diffraction has attracted a lot of attention. Next, we discuss a basic
set up for diffraction and give a brief outline of our corresponding results. A precise
version of these results is then given in the next section.

In a simplified manner diffraction can be modeled as follows [Ca]: The positions
of the atoms of a solid are described by a set A € R%. To A C R? one associates

the Dirac comb:
5= 0,
zeA

where 6, denotes the unit point measure at z € RZ. If A is finite, one can take the
Fourier transform of the Dirac comb and obtains F(d4)(q) := >, 4 exp(izq). The
intensity I4 of the diffraction is then given by

I4(q) = |F(04)(q))* = F (64 6a)(@) = Y exp(i(z — y)q).

z,yeA

It is this quantity that describes the outcome of a diffraction experiment.

In order to avoid the complicated surface effects, we assume that the solid take
the whole space. This is an idealization. Thus, we consider A which fills the space
in not too irregular a manner. Again, there is a Dirac comb: 04 := }7 0.
However, in this case the formal Fourier transform F(d4)(q) = >, 4 exp(izq) does
not make sense. In fact, F(d4) is, in general, not even a measure.

This problem can be solved by averaging. Thus, one calculates the intensity
per unit volume:

] 1
Ta= i g, fans.
1
= lim —— F(dans, *danB, )

29
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with the autocorrelation measure

Y= lim L(SAOB"’ * (SAan.
Here, the limits are taken in the vague topology and assumed to exist. By its very
definition v is an averaged quantity. It deals with differences of positions in the
solid and describes their mean number of occurrences.

The Fourier transform F(vy) = 7 of the autocorrelation measure is called the
diffraction measure. It describes the intensity of a scattered beam. If 5 is a pure
point measure, we speak about pure point diffraction. Note that this is only possible
if “a lot” of interference occurs. This means the positions of A are correlated on
long range. Therefore, as already discussed in Chapter [I| pure point diffraction
means a high degree of order in the solid.

A special case of this situation is, of course, given by a periodic A. There, it
is a direct consequence of the Poisson summation formula, that 7 is a pure point
measure.

There are two questions we want to tackle. They are the following:
Question 1: How can one characterize pure point diffraction?
Question 2: How stable is pure point diffraction?

Let us start by discussing Question 1: There are three characterization of pure
point diffraction. These are the characterizations by:

e Pure point spectrum of the associated dynamical system (see [BL1, [Dwo),
vEM, [Gou2), LMS|, [Schl, [Qu]).

e Almost periodicity of the autocorrelation measure 7 (see [BM2]).

e Almost periodicity of the underlying set A (see [Gou2l, IMS|, [Qu]).

Here, we will be concerned with the first characterization.

In this case, one does not only consider a single A but rather the set {2 of
all subsets of R? with the same kind of (dis)order as A (see discussion in Chapter
1). This set is invariant under the translations «y, t € RY. Thus, (£2,a) is a
topological dynamical system. Now, assume that (£2,«) is equipped with an a-
invariant probability measure m. Then, there is a unitary representation

T : RY — Unitary operators on L>(£2,m), (T'f)(w) = f(a_,w).

If L2(£2,m) possess an orthonormal basis of eigenfunctions (i.e. functions f # 0
with Tt f = exp(iyt) f for all t € RY), then T is said to have pure point dynamical
spectrum.

Concerning the notation, a word of warning may be in order. The pieces of
notation just discussed are chosen to fit with the notation of [BL1l [BL2]. Thus,
T does not denote the action of R? on {2 as in the previous chapters, but rather
denotes the unitary representation. The action of R? is denoted by «a.

The relation between pure point dynamical spectrum and pure point diffraction
has been investigated by various people: Starting with the work of Dworkin [Dwol,
it has been shown in increasing levels of generality that pure point dynamical spec-
trum implies pure point diffraction [Ho2), [Schl] (see [vEM] as well).

These results have played a prominent role in establishing pure point diffraction
for examples [Ho2, [Schl, [Sol2, [Rob].
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In a special one-dimensional situation (and a somewhat different context) equiv-
alence of the two notions was shown by Queffélec [Qu]. Lee/Moody/Solomyak could
then show equivalence in arbitrary dimensions provided the elements of {2 satisfied
some regularity assumptions [LMS]. For quite general point sets, equivalence has
been shown recently by Gouéré [Gou2|. He also provides a closed formula for v in
terms of the underlying dynamical system [Goul|. His work relies on a connection
to stochastic processes and Palm measures.

Now, both from the physical and from the mathematical point of view, the
restriction to point sets (i.e. measures of the form 04 = ) ., ), is rather re-
strictive and somewhat arbitrary. In fact, weighted Dirac combs ), a,d, with
suitable a, € C, v € A, or density distributions of the form »__ _, p(- — x) with a
p € C.(R%), have also been considered in the past [BM2, BD}, [LMS, Rid]|.

This suggests to work with measures instead of point sets. In fact, these situa-
tions can be unified and extended by considering translation bounded measures
instead of d4.

It turns out that characterization of pure point diffraction by pure point dy-
namical spectrum can be proven in the context of such measures. Moreover, one can
give a closed formula for the autocorrelation measure in this context as well. This
is the content of of the authors work with Michael Baake in [BL1]. It generalizes
the corresponding results of [Dwol, Ho2|, [Gou2l, LMS].

This generalization from point sets to measures requires some care as essentially
all information of geometric type is lost. Roughly speaking, geometric considera-
tions have to be replaced by functional analytic ones.

We will illustrate this by discussing the three key steps behind our proof of the
equivalence of pure point dynamical and pure point diffraction spectrum:

The first step is to prove that « is actually a spectral measure for a sub-
representation Ty of T. This shows that pure point diffraction is equivalent to
pure point spectrum of this sub-representation (see below).

The next step is to realize that this sub-representation is “large” in a suitable
sense.

The third step then is to show that pure point spectrum of “large” sub-
representations forces pure point spectrum of the whole representation. This is
actually true in quite general a situation and it is not only the pure pointed-
ness of the spectrum but various other properties that are determined by the sub-
representation.

A word on the meaning of “large” in the context of sub-representations may
be in order. In our context “large” is given in terms of some algebra of contin-
uous functions separating points. This allows one to apply the Stone/Weierstrafl
Theorem at an appropriate point.

Both this strategy to prove the equivalence and the proofs of the mentioned
key results are essentially due to the author.

Let us now discuss the question of stability of pure point diffraction. There,
one starts with one set A with pure point diffraction and asks whether a suitable
deformed set A’ has pure point diffraction as well.

Stability of pure point diffraction under suitable deformation of the underlying
set has been studied in [BD, BSW]|, [Ho4]| (see [CS1], [CS2] for related results on
deformations as well).
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It turns out that the dynamical systems approach gives a very direct way
to study it. This is carried out in [BL2] in joint work with Michael Baake. It
generalizes the corresponding results of [BD| [Ho4]. Here, the main idea is to
proceed in the following three steps.

In the first step, one considers the associated dynamical systems (£2(A), @) and
(2(A), ) and shows that (2(A'), @) is a factor of (2(A), «).

Now, in the second step, one shows that a factor actually inherits certain spec-
tral properties.

In the third step stability of pure point diffraction can then be established
by appealing to equivalence of pure point diffraction and pure point dynamical
spectrum twice: As A has pure point diffraction, the dynamical system (£2(A), @)
has pure point spectrum. This is inherited by (£2(A’), @) and we infer pure point
diffraction of A’.

This strategy has been suggested by Michael Baake in the context of point
dynamical systems. It has then been worked out for measure dynamical systems
by the author in joint work with Michael Baake. Substantial parts of the actual
arguments were supplied by the author.

To summarize, the aims of our work as studied in [BL1), BL2] are as follows:

e Set up a framework involving measures instead of point sets.

e Provide a closed formula for the autocorrelation measure in this context.

e Study relations between dynamical spectrum and diffraction spectrum in
this setup.

e Study stability of pure point diffraction in this context.

It should be mentioned that [BLI), BL2] are not restricted to R? but rather
deal with arbitrary locally compact, o-compact Abelian groups. However, the main
physical motivation is clearly the case of R%. Thus, we restrict our attention to this
case in this chapter.

1. Spectral properties forced by sub representations

The aim of this section is to present the abstract dynamical system part of
the results of [BL1]. These results will show that a “lot of pure point spectrum”
actually forces pure point spectrum.

Let 2 be a compact Hausdorff space and
(9) a:RIx Q2 — 02

be a continuous action of R? on {2, where, of course, R? x {2 carries the product
topology Then, (£2, «) is called a topological dynamical system. The set of continu-
ous functions on {2 will be denoted by C(£2).

Let m be a G-invariant probability measure on §2 and denote by L?(§2,m) the
corresponding space of square integrable functions on §2. As discussed above, the
action o induces a unitary representation 7' = T}, of R% on L?(f2,m) in the obvious
way, by

T : R — Unitary operators on L2(2,m), (T f)(w) = f(a_w).

A non-zero f € L?(£2,m) is called an eigenvector (or eigenfunction) of T if there
exists an y € R? with T*h = exp(ity)h for every t € G. The closure (in L?(£2,m))
of the linear span of all eigenfunctions of T' will be denoted by H,,(T').
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A crucial ingredient in our considerations is the following variant (and exten-
sion) of a result from [LMS].

LEMMA 1.1. Let (£2,a) be a topological dynamical system with an invariant
measure m. Then, H,,(T) N C(82) is a sub-algebra of C(2) which is closed un-
der complex conjugation and contains all constant functions. Similarly, Hpy,(T) N
L>(02,m) is a sub-algebra of L*°(£2,m) that is closed under complexr conjugation
and contains all constant functions.

When combined with the theorem of Stone/Weierstra$, this lemma allows one
to rather directly prove the following theorem.

THEOREM 1.2. Let (£2,a) be a topological dynamical system with invariant
probability measure m. Then, the following assertions are equivalent.
(a) T has pure point spectrum, i.e., Hp,(T) = L*(£2,m).
(b) There exists a subspace V C Hyp(T) N C(§2) which separates points.

This result is one of the two abstract cornerstones of our characterization of
pure point diffraction by pure point dynamical spectrum. The other cornerstone is
the result that diffraction measure is a spectral measure for a sub-representation
(see below).

The previous result can be generalized and extended. To do so, we need a
special concept of “density of a subspace with respect to multiplication”. This is
defined next.

DEFINITION 1.3. A subspace V of L?(£2,m) is said to satisfy condition MD if
the set of products fy-...- f, withn € N, f; € VNL>®(£2,m) or f; € VNL>®(£2,m),
1 <i < n, is total in L2(£2,m).

Now, our result on spectral properties forced by sub-representations reads as
follows.

THEOREM 1.4. Let (£2,a) be a topological dynamical system over G with «-
invariant measure m. Let V be a closed T-invariant subspace of L*(£2,m) satisfy-
ing MD. If T|y has pure point spectrum, then the following assertions hold:

(a) T has pure point spectrum.

(b) The group of eigenvalues of T is generated by the set of eigenvalues of
Tly.

(¢) If V has a basis consisting of continuous eigenfunctions of T|y, then
L?(£2,m) has a basis consisting of continuous eigenfunctions of T, pro-
vided the multiplicity of each eigenvalue of T is at most countably infinite.

2. Characterization of pure point spectrum

In this section, we discuss those results of [BL1] which refer to measure dy-
namical systems.

Uniformly discrete sets will be replaced by translation bounded measures.
These are defined as follows.

DEFINITION 2.1. For C > 0 and V C R? open and relatively compact, we
define
Mey = {p measure : |u|(x + V) < C for all x € R},

The elements of M,y are called (C, V)-translation bounded measures.
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Note: A uniformly discrete point sets A in R? can be identified with a trans-

lation bounded measure via 64 := erA Og.

As usual the convolution p * v of two finite measures p and v on R? is defined
by

prvte)i= [ [ elat paut@in)

for ¢ € C.(R?). For an arbitrary measure p on R%, we define ji by

fite) = [ FCadno)

We are now heading towards introducing dynamical systems based on transla-
tion bounded measures. To do so, we need a topology and an action. This will be
discussed next.

The space M¢ v of (C,V)-translation bounded measures on R? is equipped
with the vague topology i.e. the weakest topology which makes all functionals of
the form

My — C, p— ple),
with ¢ € C.(R?) continuous. Equipped with this topology Mc v is a very nice
space. More precisely, the following holds.

THEOREM 2.2. Let C > 0 and a relatively compact open set V in R? be given.
Then, Mc,y is a compact metrizable space.

REMARK 2.3. When restricted to uniformly discrete point sets, this topology
agrees with the topologies introduced in [BHZ] and [LS1] and we recover their
compactness results.

We discuss the action next. There is a canonical continuous action « of R% on
Mc7vl
a: R? x Moy — Moy, a(p) =0 *p.
Now, we can finally define the objects of interest.

DEFINITION 2.4. ({2, «) is called a dynamical system on the translation bounded
measures on R? (TMDS) if there exist C' > 0 and V' C R? open, relatively compact,
such that {2 is a closed, a-invariant subset of M¢ v,

Having introduced measure dynamical systems, we can now discuss the au-
tocorrelation measure. In the introduction to this chapter this measure has been
defined by an averaging procedure on R%. To make this averaging procedure work
one needs an ergodicity assumption. It turns out that a different type of averaging,
viz an averaging over {2, can be applied without an ergodicity assumption. This
gives a closed formula for the autocorrelation measure. In the ergodic case, both
ways to define this measure agree by an ergodic theorem. Details are discussed
next.

We start with the averaging over the space (2.

LEMMA 2.5. Let (£2,«) be a measure dynamical system with a-invariant prob-
ability measure m on it. Let o € C.(RY) with [p,o(t)dt = 1 be given. For
¢ € Co(RY) define

Yomle) = [ [ [ (e 900 05(s) dut)ame),
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Then, ¥y, 18 a positive definite measure on R¢ and does not depend on o.
The lemma suggests the following definition.

DEFINITION 2.6. The measure v,, := 7, ,, is called the autocorrelation mea-
sure. Its Fourier transform 7,, is called the diffraction measure.

It remains to show that the autocorrelation just defined agrees with the one
obtained by a limiting procedure. This is the content of the next theorem.

THEOREM 2.7. Let (By,) be a van Hove sequence. If (£2,a) is a (TMDS) with
a unique a-invariant ergodic probability measure m, then
—— wp *Wg, n 00,
|Bn| B, B, 7 Tm; I
in the vague topology for every w € (2. Here, wp, denotes the restriction of w to

B,.

REMARK 2.8. (a) In the ergodic case ergodic case a similar result is true with
convergence holding for almost every w € 2 [BL1].

(b) The proof of convergence is similar to the corresponding arguments of [Dwo),
Ho4, [Schl]. These works deal with special point sets. Thus, the above result
generalizes them.

(c) Related results have been obtained by Gouéré [Goull, [Gou2] for special
dynamical systems coming from point sets. In fact, these papers provide the first
proof of a closed formula for the autocorrelation measure. He uses point processes
and Palm measures. While the closed formula above is inspired by his work, our
approach is different and in some sense more general as we deal with measures
instead of point sets. Let us mention, however, that he proves an analogue of
Theorem without an ergodicity assumption.

Our next goal is to discuss the role of the diffraction measure as a spectral
measure of a certain sub-representation. To do so, we need some further notation.

As discussed already, when equipped with an invariant probability measure m,
the (TMDS) (£2, «) gives rise to a unitary representation 7' of R? with (T f)(w) :=
fla—iw).

By definition, {2 is a subset of the dual of C.(R?). Thus, we can embed C,(R?)
into C({2) in the canonical way via

fiCe(RY) — C(2) by fo(w) = w(yp).

LEMMA 2.9. The set of functions Uy := {f, : p € Co.(RY)} is a T-invariant
subspace of L*(£2,m), and so is its closure U.

REMARK 2.10. The definition of f given here differs from the one in [BL1] by
a sign. This does not matter as only the space U is relevant. However, this space
is not changed.

The lemma has the following important consequence: In the context of TMDS,
the canonical representation 7" of R? on L?(§2,m) has a canonical sub-representation,
namely, the restriction T'|;; of T to U. Thus, in this context we have two natural
representations of R?. It turns out that the sub representation 7'|;; completely
determines the pure point spectrum in the sense discussed in the previous section.
This is discussed next.
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By Stone’s Theorem, every unitary representation S of R? on L?(f2,m) pos-
sesses a projection valued measure

Es: Borel sets on R — Projections on L?(£2,m)
with
(F.50f) = [ explios) dLf. Bs()1).
In this sense S is the (inverse) Fourier transform of Es.

DEFINITION 2.11. A measure p on R? is is called a spectral measure for the
unitary representation S if Eg(B) = 0 if and only if p(B) = 0.

After these preparations, we can state our result on the role of the diffraction
measure.

THEOREM 2.12. Let (£2,a,m) be a TMDS and U as above. Then, the measure
Ym 18 a spectral measure for the restriction Ty of T to U.

REMARK 2.13. This type of result is implicit in [Dwol, WEM) [Ho4, [Schl,
LMS].

The previous theorem can be combined with the results of Section [l to give:

THEOREM 2.14. (£2,«) TMDS with invariant probability measure m, U as
above. If 7, is a pure point measure, the following assertions hold:
(a) T has pure point spectrum.
(b) The group of eigenvalues of T is generated by the set of points in G with
non-vanishing 4, measure.

(¢) If U has a basis consisting of continuous eigenfunctions of T, then so has
L2(2,m).

As a corollary of the preceeding theorem, we obtain the following result.

COROLLARY 2.15. (£2,«) TMDS with invariant probability measure m, U as
above. Then, 7, is a pure point measure if and only if T has pure point spectrum.

REMARK 2.16. This result generalizes the corresponding results of [Dwol, [Gou2),
LMS].

3. Stability of pure point diffraction

This section is devoted to a discussion of results from [BL2]. This work deals
with stability of pure point diffraction under suitable deformations. By the results
of the previous section (see [LMS] as well), stability of pure point diffraction is
equivalent to stability of pure point dynamical spectrum. This in turn can be
investigated by means of factors.

The main application of this setup is a perturbation result for deformed model
sets on R?. This generalizes the corresponding results of [BD}, [Ho4| (see [BSW],
CS1), [CS2], [Gou2, [Ho2] for results on deformed Delone sets as well).

Let us also mention that the results of [BL2] are more general than discussed
below in two ways: They are not only valid on R? but also on arbitrary locally
compact, o-compact Abelian groups. Moreover, they apply to measure dynamical
systems and not only to point sets. However, as our main application concerns
point sets on R, we restrict our attention to this case in the sequel.
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Our approach is based on studying factors of dynamical systems. A factor is
defined as follows:

), with factor map &, if @:

DEFINITION 3.1. (6, 0) is called a factor of (£2,«
= [,(P(w)) for all w € 2 and

2 — O is continuous and onto with &(«,(w))
r € RL

The key point is that a factor inherits many properties of the underlying dy-
namical system.

PROPOSITION 3.2. Let (O, ) be a factor of (§2,«). Then the following holds:

(a) If (£2,0a) is uniquely ergodic, minimal or strictly ergodic, the analogous
property holds for (O©,3) as well.

(b) If (2,a) is uniquely ergodic with pure point dynamical spectrum, the same
holds for (©,3).

(c) If (2, ) is uniquely ergodic and all of its eigenfunctions are continuous,
the same holds for (O, )

We can now present a first abstract perturbation result.

As usual, the dynamical system generated by a uniformly discrete set I' C R?
is denoted by (£2(I), @), i.e.

T = {o(I) - L€ GY.

Let A be an r-discrete point set in R? (i.e. |z — y| > r whenever z,y € A with
x # y) and let

q:E(2(A) ={I'eNN):0€I'} — B:
be continuous. For I' € 2(A) define
Iy:={z+q(—x+1I):xel}

THEOREM 3.3. Assume the setting above. Then, the following assertions hold:

(a) If (2(A), ) is uniquely ergodic or minimal, so is (2(Ay), @).

(b) If (£2(A), o) is uniquely ergodic with pure point spectrum, so is (£2(Ay), c).

(c) If (2(A), a) is uniquely ergodic and all of its eigenfunctions are continu-
ous, the same holds for (2(A,), ).

This theorem follows from Proposition [3.2] once we show that the dynamical
system (£2(A,), @) is a factor of (£2(A), ) via I — Iy. This, however, is a rather
direct computation.

We will apply our result to so called model sets. These sets play a most promi-
nent role in the study of aperiodic order. For example, both circle maps considered
in Chapter [1] and Penrose tilings can be considered to be examples of model sets.
In various ways model sets can be considered to be the simplest non-periodic sets
(see [Mo2] for detailed discussion of model sets). This becomes already clear from
their definition. Namely, loosely speaking they are “shadows” of periodic structures
as they arise as a projection to R? of a periodic structure in a higher dimensional
space. Here are the details:
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A cut and project scheme is given by

RS 7 Rixpg T, g

U U U dense
A I SR A

I I

L x L*

where

e H is a locally compact, o-compact group, called the internal space,
e L is a lattice in R x H, 3
e 7 and Tt are the canonical projections and 7 restricted to L is injective

and the image Wint(i) is dense in H.

In this case x : L — L*, © — mju (7~ (2)) is well defined. A model set is any
translate of a set of the form

AW) :={zeL:z*eW},

where the window W is a relatively compact subset of H with nonempty interior.
A model set is called regular if OW has Haar measure 0 in H,

By their very definition, regular model sets are closely related to periodic struc-
tures. Periodic structures have pure point diffraction. A fundamental result states
that this holds for model sets as well.

THEOREM 3.4. [Ho2, [Schl] Regular model sets are pure point diffractive. In
fact, (£2(A), @) is uniquely ergodic with pure point dynamical spectrum and contin-
uous eigenfunctions.

We can now study deformed model sets. Thus, let A := A(WW) be a regular
r-discrete model set. Let

19:H—>B%

be a continuous function with compact support. Then, we define the deformed
model set

Ay = {x+ (") x € A}
Our main result on deformed model sets now reads as follows.

THEOREM 3.5. Assume the setting above. Then, Ay is pure point diffractive. In
fact, the dynamical system (2(Ay), ) is uniquely ergodic with pure point dynamical
spectrum and continuous eigenfunctions.

A proof of this result can be outlined as follows: By the previous theorem, we
know already that (£2(A), ) has pure point spectrum. By Theorem it suffices
to show that

go* : =(£2(A)) — B:
is continuous. This requires some care, as * is not really defined on Z(£2(A)). So,

we first have to extend *. This can be done by appealing to results of Schlottmann
[Schl].
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4. Further remarks

The results of the previous sections underline the relevance of (measure) dynam-
ical systems in the study of aperiodic order. It is shown that pure point diffraction
and its stability can be understood in terms of suitable dynamical systems.

This point of view of dynamical systems has actually been of use for further
lines of research.

One such line is the study of model sets. As mentioned already, these form
a most prominent class of aperiodically ordered sets. In this case, the associated
dynamical systems is not only strictly ergodic with pure point dynamical spectrum,
but has further regularity features: The eigenfunctions are continuous and separate
almost all points. It turns out that this actually characterizes regular model sets
(among so called Meyer sets). This is shown in joint work with Michael Baake
and Robert V. Moody [BLM]. In this case, it is even possible to mark the border
between periodicity and aperiodicity: The dynamical system is periodic if and only
if the eigenfunctions separate all points [BLM].

Another line of research concerns dense Dirac combs. There one considers
measures of the form

Z g0y,

zeA

where A is a dense subset of R? and the coefficients a,, = € A, are suitably decaying.
These models can be seen as suitable approximations to disordered systems. As
such they have been studied by Christoph Richard in [Ric]. There, it is shown
that they are pure point diffractive under suitable assumptions on the coefficients.
It turns out that a rather direct dynamical systems approach to his results exists.
Via this approach Richard’s original results can be extended in various directions.
This is currently being worked out by the author in joint work with Michael Baake
and Christoph Richard [BLR].
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ABSTRACT. We investigate uniform ergodic type theorems for almost addi-
tive and subadditive functions on a subshift over a finite alphabet. We show
that every uniquely ergodic subshift admits a uniform ergodic theorem for
Banach-space-valued almost additive functions. We then give a necessary and
sufficient condition on a minimal subshift to allow for a uniform subadditive
ergodic theorem. This provides in particular a sufficient condition for unique
ergodicity.

1. INTRODUCTION

Ergodic theorems for almost additive and subadditive functions play a role in
several branches of mathematics and physics. In particular, they are an important
tool in statistical mechanics as well as in the theory of random operators (cf. [1, 9,
18, 19] and references therein).

During recent years lattice gas models and random operators on aperiodic tilings
have received a lot of interest both in one dimension and in higher dimensions (cf.
[2, 9, 10, 11, 12] and references therein). In these cases one rather expects uniform
ergodic theorems to hold.

The aim of this paper is to provide a thorough study of the validity of such
theorems in the one-dimensional case.

In particular, we show that every uniquely ergodic subshift over a finite alphabet
admits a uniform additive ergodic theorem. Moreover, we give a necessary and
sufficient condition for a minimal subshift to allow for a subadditive theorem. This
gives in particular a sufficient condition for unique ergodicity.

The proofs are quite elementary and conceptual. Thus, it is to be expected
that a considerable part of the material presented here, can be extended to higher
dimensional tiling dynamical systems.

More precisely, we consider the following situation:
Let A be a finite set called the alphabet and equipped with the discrete topology.
Let Q be a subshift over A. This means that € is a closed subset of A%, where A? is
given the product topology and € is invariant under the shift operator T : A —
AZ Ta(n) = a(n +1).
51
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We consider sequences over A as words and use standard concepts from the
theory of words ([6, 16]). In particular, Sub(w) denotes the set of subwords of w, the
empty word is denoted by ¢, the number of occurrences of v in w is denoted by f, (w)
and the length |w| of the word w = w(1)...w(n) is given by n. To Q we associate
the set W = W(Q) of finite words associated to Q given by W = U,cqSub(w).
Similarly, we define W,, = {w € W : |w| =n} for n € N. A word w € W is called
primitive if v can not be written as v = w', with w € W and [ > 2. For a finite set
M, we define M to be the number of elements in M.

To phrase our additive ergodic theorem, we need the following definition.

Definition 1.1. Let (B,| - ||) be a Banach space. A function F : W — B is
called almost additive if there exists a constant D > 0 and a nonincreasing function
¢ :[0,00) — [0,00) with lim,_, ¢(r) =0 s.t. the following holds

(A1) |F() =325 Foj)ll < 325, ellv;D)lvs] for v =w1...0n € W.

(A2) ||F(v)|| < DJv| for every v € W.

Then the additive theorem can be stated as follows.

Theorem 1. Let (Q,T) be a subshift over the finite alphabet A with associated set
of words W. Then the following are equivalent:

i) (Q,T) is uniquely ergodic, i.e. lim|,_ (W) orists for allv € W.
y erg w]

[w]
(i) The limit im0 F|(TH\J) exists for every Banach-space-valued almost addi-
tive function F on W.
(iii) The limit limy, oo £ Z;.Lzl f(TIw) exists uniformly in w € Q for every con-
tinuous Banach-space-valued function f on ).

Remark 1. (a) The equivalence of (iii) and (i) and the implication (ii) = (i) are
standard. Thus, the main content of the theorem is the implication (i) = (ii).
(b) The proof of the theorem is the same for numerical functions as for Banach-
space-valued functions. However, in applications (e.g. to random operators) one
considers measure valued functions. For this reason we have stated it in the Banach
space version.

To introduce the second result of this paper, recall that a function F': W — R is
called subadditive if it satisfies F'(ab) < F'(a)+ F(b). The dynamical system (€2, T")
is said to satisfy (SET), i.e. to admit a uniform subadditive ergodic theorem, if,
Fl,(:)‘") exists. As shown below
Fv) .

[of -

for every subadditive function F', the limit lim,|— oo
(cf. Section 3), the limit is then given by inf,cn F™), where F(™) = max{
vEW,}

Define the functions I, : W — R, for v € W, and v : W — R by

l,(w) = (Maximal number of disjoint copies of v in w) - |v|

and

Ly
v(v) = lim inf (w)
Jw|—o00 |w|

Then a subshift (2,7") over A is said to satisfy uniform positivity of quasiweights
(PQ) if the following condition holds:

(PQ) There exists a constant C' > 0 with v(v) > C for all v € W.
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Our result on subadditive ergodic theorems then reads as follows:

Theorem 2. Let (2, T) be a minimal subshift. Then the following are equivalent:
(i) The subshift (Q,T) satisfies (SET).
(ii) The subshift (2, T) satisfies (PQ).

Remark 2. (a) As the validity of a subadditive ergodic theorem immediately im-
plies that the underlying subshift is uniquely ergodic, we see that (PQ) is a sufficient
condition for unique ergodicity.
(b) Condition (PQ) might be set in prospective by comparing it with uniform pos-
itivity of weights (PW) as well as with a highest power condition (HP) given as
follows:

(PW) There exists E > 0 with lim inf|,,| jj1|(T“")|v| > E for all v € W.

(HP) There exists an N > 0 s.t. v® € W implies k < N (or equivalently: there

exists a k > 0 s.t. v prefix of uv with w not empty implies |u| > % ).

It is not hard to show, that (PW) together with (HP) implies (PQ). In fact, as
pointed out to the author by the referee (PW) alone implies (PQ). A proof is given
in Proposition 4.2.
(c) A particular important class of systems satisfying (PW) (or (PQ) ) are those
satisfying condition (LR) given as follows:

(LR) There exists a D > 0 s.t. every v € W is a factor of every w € W with

|w| > Dlv|.

These systems were introduced by Durand and called linearly recurrent [7, 8]. A
detailed study including a constructive characterization can be found in [7]. In
the context of quasicrystals (i.e. arbitrary dimensional tilings) these systems were
recently discussed under the name of linearly repetitive Delone sets in [13].
(d) It is not hard to see that (PQ) (or (PW)) implies in particular the minimality
of the subshift (Q,7). In fact, minimality of (Q,T") is equivalent to v(v) > 0 for
every v € W. From this point of view (PQ) (or (PW)) can be seen as strong type
of minimality condition.

The organisation of the paper is as follows. The additive ergodic theorem is
contained in Section 2. The subadditive ergodic theorem is contained in Section 3.
Finally, in Section 4 we provide examples of subshifts satisfying (PQ), thereby giving
a precise form to Remark 2 (b) and (c). A further discussion of the relationship
between (LR) and (PW) is then contained in Section 5.

2. UNIFORM ADDITIVE ERGODIC THEOREMS

This section is devoted to a proof of theorem 1. The following lemma is the key
to its proof. The proof given below has been suggested by the referee. It simplifies
and extends (by not using a minimality condition) the proof given by the author.

Lemma 2.1. Let (Q2,T) be a uniquely ergodic subshift over A and let B be a Banach

space. Let F': W — B be almost additive. Then the limit lim|,)|_ o % exists.

fuw
[w]

Proof. By unique ergodicity, there exists, for u € W, the limit lim,|—oc
Call it p(u). Moreover, for n € N and € > 0, there exists L = L(n,e) with

= = w(u)
uEWn,

<é€
|w]
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for every w € W, with |w| > L(n,e). Now, choose n € N arbitrary and w € W
with |w| > 2n. For j =0,1,...,n — 1 we can cut w in words of length n starting
at position j. This means that we can write

w = a(j)ugj) .. .ul(g})b(j)

(4)

)= .. = lwi(jyl = n, [6U)] < n. Almost additivity of F' implies

with |a)| = j, |uy

1(4)
(2) |F (w ZF NI < 20(D + ¢(0)) + w]e(n).

Moreover, we have

n—11(3)

3) DD W) = 3 tulw

=0 k=1 uEW,,

as both sides of the equation contain the same terms. Using (2) and (3), we can
calculate

fu
\w\ Z le Iu\

1 X )
ol " ZZ J
1(7)

_ i = ZF (J)
lw|n ||4
7=0
< 2n(D + ¢(0)) +e(n)
|wl
Combining this with (1) we arrive at
—_— - w(u) < —(D +¢(0)) + ¢(n) + De
Wl 2 MO Sy

for w with |w| > L(n,e) which yields

F F
lim sup Flw) _ Z () (u) < ¢(n).
Jw|— o0 |w‘ wew,, n
This shows that Flguu") is a Cauchy sequence and the proof is finished. O

Proof of Theorem 1. The equivalence (i)<=> (iii) is standard. We include a proof
for completeness.
(i)= (ili). This is clear if f is locally constant, i.e. if there exists a k¥ > 0 and
g : Wagy1 — B with f(w) = g(w(—k)...g(0)...g(k)) for w € Q. For arbitrary f
the statement then follows by density arguments.
(iil)==(i). Define for v € W the cylinder function x, on Q by x,(w) = 1 if
w(0)...w(lv| = 1) = v and x,(w) = 0 otherwise. Applying (iii) to x, gives the
ex1stence of the frequency of v. As v € W was arbitrary, statement (i) follows.
(ii) = (i). This is clear, as the function w — f,(w) is almost additive for every
veW.
(i)= (ii). This is just the previous lemma. O
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3. UNIFORM SUBADDITIVE ERGODIC THEOREMS

Here, we consider subadditive functions on W. The key results are the following
two lemmas. Their proofs use and considerably extend ideas from [14, 15]. We
first introduce some notation and review some basic facts concerning subadditive
functions. For a subadditive function ' : W — R and n € N we set F =
inf, ey F(™, where F(™) = max{ FO) .y e Wi, } as well as ¢(n) = max{F(v) :

[v]
v € W,} = nF™. Subadditivity of F yields ¢(n +m) < ¢(n) + ¢(m) ie. ¢ is
subadditive in the classical sense. This implies in particular

(4) lim PO = tim 20 e 2 _

n—oo n—oo N neN n

Lemma 3.1. Let (Q,T) be a minimal subshift over A satisfying (PQ). Then, the
subshift (,T) satisfies (SET) as well.

Proof. 1t is clearly enough to show:
F
(A) limsup (w)
jwl—oo  [W]

Ad (A): This follows immediately from (4).

Ad (B): Assume the contrary. This implies, in particular, F' > —oo and that there
exists a sequence (v,) in W as well as a § > 0 with |v,| tending to co for n — oo
and

(5)

for every n € N. Moreover, by (A), there exists an Ly € R with
Flw) —= C§

6 —~ < F+—

© ol =778

for all w € W, |w| > Ly, where C' is the constant from (PQ).

< F and (B) liminf ——=

Fix m € N with |v,,| > Lo. Using (PQ), we can now find an L; € R s.t. every
w € W with |w| > Ly can be written as w = x10,, TV, - . . LU, T+ With
l-2_C
(7) f=2, 0l
2 4 |V
Now, considering only every other copy of v, in w, we can write w as w =
Y19mY2 - - - YrVmYr41, with ‘yj| > |vm‘ > Lo, .7 =1,...,r+1, and by (7)
L1222 C el
T2 T 4 vy

Using (5), (6) and this estimate, we can now calculate

r+1 ) ) r+1 . ) o
F(w) < Z F(yj) lyjl | F(vm) r|vm| < Z(FJr %‘”M + (F—d)r‘vm|

|wl =yl Tl o]l T |w] |w]
- C C — C
e e Cs Clullualy 5 €,
8 4 o] w| 8
As this holds for arbitrary w € W with |w| = L, we arrive at the obvious

contradiction F(U1) < F — %5 < inf,en F() This finishes the proof. O
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Lemma 3.2. Let (Q,T) be a minimal subshift over A satisfying (SET). Then, the
subshift (2, T) satisfies (PQ) as well.

Proof. Note that, for v € W, the function (—I,) is subadditive. Thus, the
equation
(8) v(v) = lim inf o (w) = lim bo(w)

holds by (SET). The proof will now be given by contraposition. So, let us assume
that the values v(v), v € W, are not bounded away from zero. As the system is
minimal, we have v(w) > 0 for every w € W. Thus, there exists a sequence (v,,) in
W with

(9) v(v,) >0, and v(v,) — 0, n — oc.

As the alphabet A is finite, there are only finitely many words of a prescribed
length. Thus, (9) implies

(10) [vn| — 00, N — oo.

Replacing (v,,) by a suitable subsequence, we can assume by (9) that the equation
[e o]
1
11 n —
(1) 3 vl < 5
holds. Set I, = I,y for n € N. By (8), (10) and (11), we can choose inductively
for each k € N a number n(k), with

(12) i by (W)

1
|w] 2

=1

for every w € W with |w| > w Note that (12) implies

[Un (k1)
(13) [ony| < =G0
as W = 1. Define the function [ : W — R by

l(w) = Zln(j)(w).

Note that the sum is actually finite for each w € W. Obviously, (—!) is subadditive.
Thus, by assumption, the limit im0 % exists. On the other hand, we clearly
have
o) < lng) (Wne)
TS I G051
as well as by the induction construction (12), (13)

>1

for w € W with W < |w| < |vp(r41)|- This gives a contradiction proving the
lemma. O
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Proof of Theorem 2. This theorem follows immediately from the foregoing two
lemmas. O

4. EXAMPLES

In this section we discuss certain classes of examples satisfying condition (PQ).
We will need the following lemma.

Lemma 4.1. Let (Q,T) be a subshift over A with associated set of words W. Let
a €W be primitive with 2 <n = max{k € N : a¥ € W} < 0co. Set b=a". Then
for every prefix v of b with |v| > |a| the inequality

1
1) > ()
holds for every w € W.

Proof. We start with the following claim.

Claim. The distance between two distinct copies of b = a™ in a word w € W is
larger than (n — 1)]al.

Proof of claim. Let d be the distance between two copies of a™ in w and assume
d < (n—1)|al]. We write d = m|a| + j with 0 < j < |a|. Thus, a is a factor of aa
starting at position j. By primitivity of a the word aa contains exactly two copies
of a i.e. j =0. This gives d = mla| with 0 < m < n — 1. Thus a™a™ = a™* " is a
factor of w yielding a contradiction to the maximality of n. The proof of the claim
is finished.

Take only every other copy of b in w. By the claim, the distance between their
starting points is larger than 2(n — 1)]a| > |b| and they are therefore disjoint. This
implies

(14) b(w) > i)l

for every w € W. Moreover, if |v] is a prefix of b with |v| > |a|, then each copy of b
[b]

contains at least Pl disjoint copies of v. This implies
Ip(w) |b] 1 1
l?) > T =1 > = b 5
(w) > 0] 4|U|M 1 l(w) = Sy (w)[b]
where we used (14) in the last inequality. The desired result follows. a

From this lemma, we can derive a sufficient (and necessary) condition for (PQ).
Recall that a minimal subshift is called periodic if there exists an n # 0 with
T'w = w for every w € Q. A minimal subshift is called aperiodic if it is not
periodic.

Proposition 4.2. If (2, T) satisfies (PW), then it satisfies (PQ) as well and (SET)
holds.

Proof. By (PW) the subshift is minimal. If it is periodic, the statement is
immediate. So, assume that (,T) is aperiodic and satisfies (PW) with constant
C. We will show that it satisfies (PQ) with constant <. Let v € W be given. There
are two cases.

Case 1. The distance between two copies of v is always at least %|v|: In this case,
we have I,(w) > £l (w)[v].
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Case 2. There exist two copies of v in some w € W with distance smaller than
%M: Then, v = 2™y with m > 8 a prefix y of z, and 2™+ € W. The word z
can be written as z = a* for some primitive word @ and k& > 1. By minimality
and aperiodicity, we have n = max{k € N : a* € W} < oco. By construction, the
inequality n > k(m + 1) > 2 holds and v is prefix of b = @™ with |v| > |a|. Thus,
we can apply the previous lemma and infer [,(w) > 1, (w)|b).

Thus, by (PW) with constant C' we have lim inf |, o l"lfﬁ’) > % in both cases and

(PQ) follows. As (PQ) implies minimality, (SET) is an immediate consequence of
Theorem 2 m|

We also have the following sufficient condition for (PQ).

Proposition 4.3. If (Q,T) satisfies (LR), then it satisfies (PQ) as well and a
subadditive ergodic theorem holds.

Proof. Straightforward arguments show that (LR) implies (PQ). Now, (SET)
follows from Theorem 2. O

Remark 3. (a) In [7], it is shown that systems satisfying (LR) are uniquely ergodic.
Proposition 4.3 shows that in fact a stronger statement holds viz these systems allow
for a subadditive ergodic theorem.

(b) The validity of (LR) is known for primitive substitutions and for Sturmian
systems whose rotation number has bounded continued fraction expansion [6, 7].
Thus, Proposition 4.3 applies in particular to these systems.

(c) As shown in [15], (LR) implies a subadditive ergodic theorem in tiling dynamical
systems of arbitrary dimension (cf. [5] as well).

5. DYNAMICAL SYSTEMS SATISFYING (LR)

In this section we further investigate the relationship between (LR) and (PW). Of
course, (LR) is a “local” positivity condition whereas (PW) is a positivity condition
on averages. Thus, (LR) is a much stronger condition. However, as shown below,
(LR) is in fact equivalent to uniform validity of (PW) on all induced systems (s.
below). For a detailed study of (LR) and a characterization in terms of primitive
S-adic systems we refer the reader to recent work of Durand [7].

The notion of return word used in the sequel was introduced in [6]. The notion of
derived sequence and induced system used below are (up to slight reformulation)
taken from [8].

Let © be a subshift over the finite alphabet A with associated set W of finite

words. A return word of u € W is a word = € W s.t.

zu €W, t.(zu) =2, wuis prefix of zu.

The set of return words of u € W will be denoted by R(u) = R(u, W). Recall that
(©,7T) is minimal if and only if for every w € W there exists an R(w) > 0 s.t. w
is a factor of every v € W with |v| > R(w) [17]. Thus, if (2,T) is minimal, the
length of a return word of uw € W is bounded by R(u) and the set R(u) is finite
for every u € W. Let (Q,T) be minimal and an arbitrary u € W be given. Then,
every w € Q can uniquely be writen as w = ... z_sx_1T9T122... With z; € R(u),
jEZ,s.t.
(*) w(0) belongs to g,
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(%) every occurrence of u in w begins begins at the position of one of the x;,
=

To w € Q, we can thus associate the derived sequence & € R(u)? given by &(n) =
T,. It is not hard to show that the induced system Q(u) = {@ : w € Q} C R(u)?
is closed and invariant i.e. an subshift over the alphabet R(u). We set W(u) =
W(Q(u)). If uis the empty word e we set Q(e) = Q and & = w. The elements
of R(u) can be considered as letters of the alphabet R(u) or as words over the
alphabet A. To avoid confusion we therefore write w = Z7...Z, for w € R(u)"
with w(j) = #; € R(u). Note that w = Zy...Z, belongs to W(u) if and only if
x1...2,u belongs to W. Let x1,...,2, € R(u) be arbitrary with x; ...x,u € W.
If (Q,T) is uniquely ergodic, we have by construction of Q(u) the equality

1m =
|w]—o0,wew nu(w) |w]— oo, weW (u) \w\

(15)

Thus, unique ergodicity of (Q,7T) implies unique ergodicity of (Q(u),T’) for every
u € W. Similarly, validity of (PW) for (Q2,T) implies validity of (PW) for (Q(u),T)
for u € W. However, the constant Cq in (PW) for (2,7 and the constant Cqyy,)
in (PW) for (Q(u),T) might be different. This suggests the following definition of
uniform positivity of weights

(UP) The system (2,7T) is said to satisfy (UP) if there exists a constant C' > 0
s.t. (Qu),T) satisfies (PW) with this C for every u € W.
Note that (UP) implies (PW) on (Q,7') (for u = €), which in turn implies unique
ergodicity and (by Remark 2 (d)) minimality of (2, T).
We have the following result.

Theorem 3. For a subshift (Q,T) over A the following are equivalent:
(i) (,T) satisfies (LR).
(ii) (,T) satisfies (UP).

To prove (i1) = (i) we need some preparation. We start with a lemma whose
proof is similar to the proof of Lemma 4.1.

Lemma 5.1. Let (2,T) be minimal and aperiodic. Let a € W be primitive and
n =max{k € N : a* € W}. Then, there exists an x € R(a) and v € R(wa) s.t.
xa™ ! is a prefiz of v and xa® is a prefiz of vra.

Proof. Let an arbitrary w € ) be given and consider an occurrence of a” in
w. Inspecting the occurrences of a to the left of a™, we see that there exists an
x € R(a) with za™ € W. Assume w.l.o.g. za” = w(1)...w(|za™|). Define j > 1 to
be the smallest number in N with w(j)...w(j + |za| — 1) = zaie. w(l)...w(j—1)
is a return word to xza. There are three cases:

Case 1. 1 < j < |z|: As a is a prefix of xa and z is a return word of a, this case
cannot occur.

Case 2. |z| < j < |va™Y|: As a is a prefix of za and as a is primitive, we infer
that j must be of the form j = |z| + k|a| + 1 with 0 < |k| < n —2. Thus, za and aa
have a common prefix of length min{|zal, |aa|}. By primitivity of a and x € R(a),
we see £ = a. But this implies a”*t! = za™ € W yielding a contradiction to the
maximality of n. Thus, this case cannot occur either.

Case 3. |za™ 1| < j: In this case the statement of the lemma follows easily. a
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Proposition 5.2. Let (Q,T) be minimal and aperiodic. If (Q,T) satisfies (UP),
it satisfies (HP) as well i.e. there exists an N € N s.t. a™ € W implies n < N.

Proof. Let a be primitive and n € N be maximal with a™ € W. Let x and v be
given by the previous lemma. By (UP) and (15), we have lim|,|—oc ﬁ&’;”((,;”)) > C as

1 ﬁvma(w) ua"(w) 1
o Moreover, we clearly have ) < ) <

foa(w) 1

0 Hyza(w) — = n—1°
Here, we used in the last inequality that two copies of a™ must be disjoint up to one
copy of a (cf. proof of Lemma 4.1). Combining these inequalities with the identity

fra(w) _ Hea(w) fowa(w)
o (w) foza(w) fa(w)

(valid vor |w| large enough), we arrive at n — 1 < #5. This proves the proposition.
O

well as lim),

Proof of Theorem 3. We can assume that (2, T) is strictly ergodic, as this is implied
by both (LR) and (UP). If (©2,T') is periodic, it satisfies both (LR) and (UP). Thus,
it is enough to consider aperiodic strictly ergodic (2, T).

(i)=> (ii). By (LR) there exist constants c1, co with ¢;|u] < |z| < ea]u| for every
u € W and every x € R(u). Here, the second inequality is immediate from the
definition of (LR). The first inequality is just (HP) which is valid for aperiodic
systems satisfying (LR) (cf. [7]). Applying these inequalities to (15) gives

|Jw|n
im 7115‘15;(10)” > liminf 2ol > a njul > 0—12
|w]— oo, weW (u) ‘U}‘ |w|—o0,weW L‘;r’l‘ 2co |{E1 v a:nu| 462

This shows (ii).
(ii) = (i). Let u € W be given. Let x € R(u) be arbitrary. Apparently, for |w|
large enough, the following equation holds

ﬁxu(w) _ ﬁmu(w) 2
(16) b(w) — Jw] ™

Next, we estimate the various factors appearing in this equation. By (UP) and
(15) we have C' < lim|y|—o0 ﬂ;:((ww)). As (UP) implies (PW) (with the same C) we
have furthermore limj,|— oo % < &. As (UP) implies (HP) by the previous
proposition, we see that two distinct copies of zu in w must have distance at least
+|zu|. This can easily be seen to imply %\xm < N + 1. We emphasize that
the constants C' and N appearing in these inequalities do not depend on x or wu.
Taking limits in (16) and using the above inequalities we arrive at

w] _ Ju|

Julfo (w) [zul”

1 Jul
C<(N+1)=—.
=(V+ )C’ |zul
But, this yields immediately |z| < (N + 1)Zz|ul. As v in W and & € R(u) were
arbitrary, this shows (LR) with constant (N + 1) gz + 1. O
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ABSTRACT. The spectrum of one-dimensional discrete Schrodinger operators
associated to strictly ergodic dynamical systems is shown to coincide with the
set of zeros of the Lyapunov exponent if and only if the Lyapunov exponent
exists uniformly. This is used to obtain Cantor spectrum of zero Lebesgue
measure for all aperiodic subshifts with uniform positive weights. This cov-
ers, in particular, all aperiodic subshifts arising from primitive substitutions
including new examples as e.g. the Rudin-Shapiro substitution.

Our investigation is not based on trace maps. Instead it relies on an Os-
eledec type theorem due to A. Furman and a uniform ergodic theorem due to
the author.

1. INTRODUCTION

This article is concerned with discrete random Schrodinger operators associ-
ated to minimal topological dynamical systems. This means we consider a family
(H,)weq of operators acting on ¢2(Z) by

(1) (Hou)(n) = u(n+1) +u(n — 1) + f(T"w)u(n),

where () is a compact metric space, T :  — Q) is a homeomorphism and f : Q@ —
R is continuous. The dynamical system (€,7T) is called minimal if every orbit is
dense. For minimal (£2,T), there exists a set ¥ C R s.t.

(2) o(H,)=1%, forall weqQ,
where we denote the spectrum of the operator H by o(H) (cf. [6, 36]).
We will be particularly interested in the case that (Q,T) is a subshift over a

finite alphabet A C R. In this case Q is a closed subset of A%, invariant under
the shift operator T : AZ — AZ given by (Ta)(n) = a(n + 1) and f is given by

* This research was supported in part by THE ISRAEL SCIENCE FOUNDATION (grant no.
447/99) and by the Edmund Landau Center for Research in Mathematical Analysis and Related
Areas, sponsored by the Minerva Foundation (Germany).
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66 D. LENZ

f:Q — ACR, f(w) = w(0). Here, A carries the discrete topology and AZ is
given the product topology.

Operators associated to subshifts arise in the quantum mechanical treatment of
quasicrystals (cf. [3, 40] for background on quasicrystals). Various examples of such
operators have been studied in recent years. The main examples can be divided
in two classes. These classes are given by primitive substitution operators (cf. e.g.
[4, 5,7, 11, 41, 42]) and Sturmian operators respectively more generally circle map
operators (cf. e.g. [6, 12, 15, 16, 26, 27, 30]). A recent survey can be found in [14].

For these classes and in fact for arbitrary operators associated to subshifts sat-
isfying suitable ergodicity and aperiodicity conditions, one expects the following
features:

(8) Purely singular spectrum; (A) absence of eigenvalues; (£) Cantor spectrum of
Lebesgue measure zero.

Note that (S) combined with (A) implies purely singular continuous spectrum
and note also that (S) is a consequence of (Z). Let us mention that (S) is by now
completely established for all relevant subshifts due do recent results of Last/Simon
[34] in combination with earlier results of Kotani [32]. For discussion of (A) and
further details we refer the reader to the cited literature.

The aim of this article is to investigate (Z) and to relate it to ergodic properties
of the underlying subshifts.

The property (£) has been investigated for several models by a number of au-
thors: Following work by Bellissard/Bovier/Ghez [5], the most general result for
primitive substitutions so far has been obtained by Bovier/Ghez [7]. They can
treat a large class of substitutions which is given by an algorithmically accessible
condition. The Rudin-Shapiro substition does not belong to this class. For ar-
bitrary Sturmian operators, Bellissard/Iochum/Scoppola/Testard established (Z)
[6], thereby extending the work of Siité in the golden mean case [41, 42]. A different
approach, which recovers some of these results, is given in [13, 19].

A canonical starting point in the investigation of (Z) for subshifts is the funda-
mental result of Kotani [32] that the set {E € R: y(F) = 0} has Lebesgue measure
zero if (Q,T) is an aperiodic subshift. Here, v denotes the Lyapunov exponent
(precise definition given below). This reduces the problem (Z) to establishing the
equality

(3) S ={EecR:~(E) =0}

As do all other investigations of (Z) so far, our approach starts from (3). Unlike
the earlier treatments mentioned above our approach does not rely on the so called
trace maps. Instead, we present a new method, the cornerstones of which are the
following: (1) A strong type of Oseledec theorem by A. Furman [21]. (2) A uniform
ergodic theorem for a large class of subshifts by the author [37]. This new setting
allows us

() to characterize validity of (3) for arbitrary strictly ergodic dynamical sys-
tems by an essentially ergodic property viz by uniform existence of the
Lyapunov exponent (Theorem 1),

(**) to present a large class of subshifts satisfying this property (Theorem 2).

Here, () gives the new conceptual point of view of our treatment and (xx) gives
a large class of examples. Put together (x) and (xx) provide a soft argument for (Z)
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for a large class of examples which contains, among other examples, all primitive
substitutions.

The paper is organized as follows. In Section 2 we present the subshifts we will
be interested in, introduce some notation and state our results. In Section 3, we
recall results of Furman [21] and of the author [37] and adopt them to our setting.
Section 4 is devoted to a proof of our results. Finally, in Section 5 we provide some
further comments and discuss a variant of our main result.

Note added. After this work was completed, we learned about the very re-
cent preprint “Measure Zero Spectrum of a Class of Schrodinger Operators” by
Liu/Tan/Wen/Wu (mp-arc 01-189). They present a detailed and thorough analy-
sis of trace maps for primitive substitutions. Based on this analysis, they establish
(Z) for all primitive substitutions thereby extending the approach developed in
[5, 7, 9, 41].

2. NOTATION AND RESULTS

In this section we discuss basic material concerning topological dynamical sys-
tems and the associated operators and state our results.

As usual a dynamical system is said to be strictly ergodic if it is uniquely ergodic
(i.e. there exists only one invariant probability measure) and minimal. A minimal
dynamical system is called aperiodic if there does not exist an n € Z, n # 0, and
w € Q with T"w = w.

As mentioned already, our main focus will be the case that (2,7 is a subshift
over the finite alphabet A C R . We will then consider the elements of (2,7") as
double sided infinite words and use notation and concepts from the theory of words.
In particular, we then associate to §2 the set W of words associated to €2 consisting
of all finite subwords of elements of Q. The length |z| of a word « = z7 ...z, with
z; € A, j=1,...,n,is defined by |z| = n. The number of occurences of v € W in
x € W is denoted by #,(z).

We can now introduce the class of subshifts we will be dealing with. They are
those satisfying uniform positivity of weights (PW) given as follows:

(PW) There exists a C' > 0 with liminf},_ %M > C for every v € W.

One might think of (PW) as a strong type of minimality condition. Indeed, min-
imality can easily be seen to be equivalent to liminf|, . |2| ™, (x)v| > 0 for
every v € W [39]. The condition (PW) implies strict ergodicity [37]. The class of
subshifts satisfying (PW) is rather large. By [37], it contains all linearly repeti-
tive subshifts (see [20, 33] for definition and thorough study of linerarly repetitive
systems). Thus, it contains, in particular, all subshifts arising from primitive sub-
stitutions as well as all those Sturmian dynamical systems whose rotation number
has bounded continued fraction expansion [20, 33, 38].

In our setting the class of subshifts satisfying (PW) appears naturally as it is
exactly the class of subshifts admitting a strong form of uniform ergodic theorem
[37]. Such a theorem in turn is needed to apply Furmans results (s. below for
details).

After this discussion of background from dynamical systems we are now head-
ing towards introducing key tools in spectral theoretic considerations viz transfer
matrices and Lyapunov exponents.
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The operator norm || - || on the set of 2 x 2-matrices induces a topology on
GL(2,R) and SL(2,R). For a continuous function A: Q — GL(2,R), w € Q, and
n € Z, we define the cocycle A(n,w) by

AT 'w)- - Aw) @ n>0
A(n,w) = Id : n=0
A YT w) - A7H (T w) © n<0
By Kingmans subadditive ergodic theorem (cf. e.g. [31]), there exists A(4) € R
with )
A(A) = lim —log | A(n,w)]|
n—oo N

for p a. e. we Qif (2,7) is uniquely ergodic with invariant probability measure
u. Following [21], we introduce the following definition.

Definition 1. Let (,T) be strictly ergodic. ~The continuous function A
(Q,T) — GL(2,R) is called uniform if the limit A(A) = lim, . L log || A(n,w)|
exists for all w € Q and the convergence is uniform on ).

Remark 1. It is possible to show that uniform existence of the limit in the defini-
tion already implies uniform convergence. The author learned this from Furstenberg
and Weiss [22]. They actually have a more general result. Namely, they consider a
continuous subadditive cocycle (f,,)nen on a minimal (2,7 (i.e. f, are continuous
real-valued functions on  with fr1m(w) < fr(w) + fi (T"w) for all n,m € N and
w € Q). Their result then gives that existence of ¢(w) = lim, o n~! f,(w) for all
w € Q implies constancy of ¢ as well as uniform convergence.

For spectral theoretic investigations a special type of SL(2,R)-valued function
is relevant. Namely, for E € R, we define the continuous function M¥? : Q —
SL(2,R) by

(4) MP(w) = ( B~ f(Tw) -1 )

1 0
It is easy to see that a sequence u is a solution of the difference equation
(5) u(n+1) +u(n—1) + (f(T"w) = E)u(n) =0

if and only if

©) (u(n-i—l) >:ME(n7w)<ZE(1)§ ),nez.

u(n)

By the above considerations, MZ gives rise to the average v(E) = A(MF). This
average is called the Lyapunov exponent for the energy E. It measures the rate of
exponential growth of solutions of (5). Our main result now reads as follows.

Theorem 1. Let (2, T) be strictly ergodic. Then the following are equivalent:
(i) The function MF is uniform for every E € R.

(i1) X ={E € R:~v(F) =0}.

In this case the Lyapunov exponent v : R — [0, 00) is continuous.

Remark 2. (a) As will be seen later on, M P is always uniform for E with y(E) = 0
and for E € R\ . From this point of view, the theorem essentially states that M
can not be uniform for F € ¥ with y(£) > 0.

(b) Continuity of the Lyapunov exponent can easily be infered from (ii) (though



SINGULAR SPECTRUM OF LEBESGUE MEASURE ZERO 69

this does not seem to be in the literature). More precisely, continuity of v on
{E € R:~v(F) =0} is a consequence of subharmonicity. Continuity of v on R\ X
follows from the Thouless formula (see e. g. [10] for discussion of subharmonicity
and the Thouless formula). Below, we will show that continuity of 7 follows from
(1) and this will be crucial in our proof of (i) = (ii).

Having studied (x) of the introduction in the above theorem, we will now state
our result on ().

Theorem 2. If (Q,T) is a subshift satisfying (PW), then the function MF is
uniform for each E € R.

Remark 3. (a) Uniformity of M¥ is rather unusual. This is, of course, clear from
Theorem 1. Alternatively, it is not hard to see directly that it already fails for
discrete almost periodic operators. More precisely, the Almost-Mathieu-Operator
with coupling bigger than 2 has uniform positive Lyapunov exponent [24]. By
a deterministic version of the theorem of Oseledec (cf. Theorem 8.1 of [34] for
example), this would force pure point spectrum for all these operators, if M were
uniform on the spectrum. However, there are examples of such Almost-Mathieu
Operators without point spectrum [2, 29)].

(b) The above theorem generalizes [18, 35], which in turn unified the work of Hof [25]
on primitive substitutions and of Damanik and the author [17] on certain Sturmian
subshifts.

(c) The theorem is a rather direct consequence of the subadditive theorem of [37].

The two theorems yield some interesting conclusions. We start with the following
consequence of Theorem 1 concerning (Z). A proof is given in Section 4.

Corollary 2.1. Let (2, T) be an aperiodic strictly ergodic subshift. If M is uni-
form for every E € R, then the spectrum X is a Cantor set of Lebesgue measure
zero.

As ¥ ={FE : v(E) = 0} holds for arbitrary Sturmian dynamical subshifts [6, 41]
(cf. [19] as well), Theorem 1 immediately implies the following corollary.

Corollary 2.2. Let (Q(a),T) be a Sturmian dynamical system with rotation num-
ber a. Then MP is uniform for every E € R.

Remark 4. So far uniformity of MP for Sturmian systems could only be es-
tablished for rotation numbers with bounded continued fraction expansion [17].
Moreover, the corollary is remarkable as a general type of uniform ergodic theorem
actually fails as soon as the continued fraction expansion of « is unbounded [37, 38].

Theorem 1, Theorem 2 and Corollary 2.1 directly yield the following corollary.

Corollary 2.3. Let (0, T) be a subshift sastisfying (PW). Then ¥ = {E € R :
~v(E) =0}. If (2,T) is furthermore aperiodic, then ¥ is a Cantor set of Lebesgue
measure zero.

Remark 5. For aperiodic (Q,T) satisfying (PW), this gives an alternative proof
of (S).

As discussed above primitive substitutions satisfy (PW). As validity of (Z) for
primitive substitutions has been a special focus of earlier investigations (cf. discus-
sion in Section 1 and Section 5), we explicitely state the following consequence of
the foregoing corollary.
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Corollary 2.4. Let (Q,T) be aperiodic and associated to a primitive substitution,
then X is a Cantor set of Lebesgue measure zero.

3. KEY RESULTS

In this section, we present (consequences of) results of Furman [21] and of the
author [37].

We start with some simple facts concerning uniquely ergodic systems. Define for
a continuous b : Q@ — R and n € Z the averaged function A, (b) : @ — R by
n YN b(TRe) 2 n>0
(7) A, (b)(w) = 0 : n=0
In| L BT Fw) : n <0
Moreover, for a continuous b as above and a finite measure p on Q we set u(b) =
Jo b(w) dpu(w). The following proposition is well known see e.g. [43].

Proposition 3.1. Let (2,T) be uniquely ergodic with invariant probability measure
w. Let b be a continuous function on Q. Then the averaged functions A, (b) converge
uniformly towards the constant function with value p(b) for |n| tending to infinity.

The following consequence of a result by A. Furman is crucial to our approach.

Lemma 3.2. Let (2, T) be strictly ergodic with invariant probability measure u. Let
B :Q — SL(2,R) be uniform with A(B) > 0. Then, for arbitrary U € C%\ {0}
and w € Q, there exist constants D,k > 0 such that | B(n,w)U|| > D exp(x|n|)
holds for alln > 0 or for alln < 0. Here, | - | denotes the standard norm on C2.

Proof. Theorem 4 of [21] states that uniformity of B implies that (in the notation
of [21]) either A(B) = 0 or B is continuously diagonalizable. As we have A(B) >
0, we infer that B is continuously diagonalizable. This means that there exist
continuous functions C' : Q@ — GL(2,R) and a,d : Q@ — R with

0 exp(d
By multiplication and inversion, this immediately gives

_ —1( exp(a(w)) 0
B(l,w) = C(Tw) < ) ) C(w).

_ g -1 exp(ndy(a)(w)) 0
(8) B(n,w)=C(T"w) < 0 exp(ndn(d)(w)) C(w), ne€Z.
As C : Q@ — GL(2,R) is continuous on the compact space {2, there exists a
constant p > 0 with

1
(9) 0< p < [|CW)|,|det C(w)],|C~ (w)|],|det C~ (w)] < ’ < oo, for all w € Q.

In view of (8) and (9), exponential growth of terms as ||B(n,w)U|| will follow from
suitable upper and lower bounds on A, (a)(w) and A, (d)(w) for large |n|. To obtain
these bounds we proceed as follows.

Assume without loss of generality p(a) > u(d). By (9), (8) and Proposition 3.1,
we then have

1) o<am) =) s —a O 0 ) )
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Moreover, det B(w) = 1 implies det B(n,w) = 1 for all n € Z. Thus, taking
determinants, logarithms and averaging with % in (8), we infer

0=A,(a)(w) + Ap(d)(w) + %log | det(C(T"w) ' C(w))].

Taking the limit n — oo in this equation and invoking (9) as well as Proposition
3.1, we obtain p(a) = —u(d). As u(a) > 0 by (10), Proposition 3.1 then shows that
there exists k > 0, e.g. k= Jpu(a), s.t. for large |n|, we have

Ap(a)(w) >k, and A,(d)(w) < —k for all w € Q.

Now, the statement of the lemma is a direct consequence of (8) and (9). O

Lemma 3.3. Let (Q,T) be strictly ergodic. Let A : Q@ — SL(2,R) be uniform.
Let (Ay,) be a sequence of continuous SL(2,R)-valued functions converging to A
in the sense that d(A,, A) = sup,cq{l|An(w) — A(w)||} — 0, n — oo. Then,
A(Ay) — A(A), n — 0.

Proof. This is essentially a result of [21]. More precisely, Theorem 5 of
[21] shows that A(A,) converges to A(A) whenever the following holds: A is a
uniform GL(2,R)-valued function and d(A,, A) — 0 and d(A4;!,A7!) — 0,
n — oo. Now, for functions A,,, A with values in SL(2,R), it is easy to see that
d(A;L, AN — 0, n — oo if d(A4,, A) — 0,n — co. The proof of the lemma
is finished. m]

Lemma 3.4. Let (Q,T) be uniquely ergodic. Let A: Q — GL(2,R) be continuous.
Then, the inequality limsup,,_, ., n~'log ||A(n,w)| < A(A) holds uniformly on .

Proof. This follows from Corollary 2 of [21] (cf. Theorem 1 of [21] as well). O
Finally, we need the following lemma providing a large supply of uniform func-
tions if (£2,T) is a subshift satisfying (PW).
Lemma 3.5. Let (2,T) be a subshift satisfying (PW). Let F : W — R satisfy
F(xy) < F(x)+ F(y) (i.e. F is subadditive). Then, the limit lim)|_ o % exists.

Proof. This is just one half of Theorem 2 of [37]. a

4. PROOFS OF THE MAIN RESULTS

In this section, we use the results of the foregoing section to prove the theorems
stated in Section 2.

We start with some lemmas needed for the proof of Theorem 1.

Lemma 4.1. Let (,T) be strictly ergodic. If MT is uniform for every E € R
then ¥ = {E € R : v(F) = 0} and the Lyapunov exponent v : R — [0,00) is
continuous.

Proof. We start by showing continuity of the Lyapunov exponent. Consider
a sequence (F,) in R converging to £ € R. As the function M¥ is uniform by
assumption, by Lemma 3.3, it suffices to show that d(M®» M¥) — 0,n — oo.
This is clear from the definition of M* in (4).

Now, set I' = {E € R: v(F) = 0}. The inclusion I' C ¥ follows from general
principles (cf. e.g. [10]). Thus, it suffices to show the opposite inclusion ¥ C T.
By (2), it suffices to show ¢(H,,) C T for a fixed w € .
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Assume the contrary. Then there exists spectrum of H, in the complement
I'“ =R\T of I"in R. As + is continuous, the set I'“ is open. Thus, spectrum
of H, can only exist in I'°, if spectral measures of H, give actually weight to I'°.
By standard results on generalized eigenfunction expansion [8], there exists then
an F € I'° admitting a polynomially bounded solution u # 0 of (5). By (6), this
solution satisfies (u(n-+1),u(n))! = M (n,w)(u(1),u(0))*, n € Z, where v* denotes
the transpose of v. By E € I'¢, we have A(M¥) = v(F) > 0. As M¥ is uniform by
assumption, we can thus apply Lemma 3.2 to M ¥ to obtain that ||(u(n+1),u(n))!||
is, at least, exponentially growing for large values of n or large values of —n. This
contradicts the fact that u is polynomially bounded and the proof is finished. O

Lemma 4.2. If (Q,7T) is uniquely ergodic, M¥ is uniform for each E € R with
Y(E) =0.

Proof. By det MF(w) = 1, we have 1 < |[MP(n,w)| and therefore 0 <
liminf, .o n tlog|MP(n,w)|| < limsup, . n 'log|MP(n,w)|. Now, the
statement follows from Lemma 3.4. O

The following lemma is probably well known. However, as we could not find it
in the literature, we include a proof.

Lemma 4.3. If (Q,T) is strictly ergodic, M is uniform with v(E) > 0 for each
EeR\X.

Proof. Let E € R\ ¥ be given. The proof will be split in four steps. Recall that
3 is the spectrum of H, for every w € Q by (2) and thus F belongs to the resolvent
of H,, for all w € Q.

Step 1. For every w € €, there exist unique (up to a sign) normalized
U(w), V(w) € R? such that |[MF(n,w)U(w)|| is exponentially decaying for n — oo
and |MZ(n,w)V(w)| is exponentially decaying for n — —oo. The vectors
U(w),V(w) are linearly independent. For fixed w € € they can be choosen to
be continuous in a neighborhood of w.

Step 2. Define the matrix C(w) by C'(w) = (U(w), V(w)). Then C(w) is invertible
and there exist functions a,b: @ — R\ {0} such that

(11) C(Tw)  MP (w)C(w) = (“(5”) b(?u) ) .

Step 8. The functions |al, |b], |C]], |C~*|| : 2 — R are continuous.
Step 4. MF is uniform with v(FE) > 0.

Ad Step 1. This can be seen by standard arguments. Here is a sketch of the
construction. Fix w € © and set ug(n) = (H, — E)"10y(n) and u_1(n) = (H, —
E)~16_1(n), where & ,k € Z, is given by 6,(k) = 1 and §x(n) = 0, k # n. By
Combes/Thomas arguments, see e.g. [10], the initial conditions (uo(0),uo(1)) and
(u—1(0),u—1(1)) give rise to solutions of (5) which decay exponentially for n — oo.
It is easy to see that not both of these solutions can vanish identically. Thus, after
normalizing, we find a vector U(w) with the desired properties. The continuity
statement follows easily from continuity of w +— (H,, — E)~ 'z, for € £2(Z). The
construction for V(w) is similar. Uniqueness follows by standard arguments from
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constancy of the Wronskian. Linear independence is clear as F is not an eigenvalue
of H,.

Ad Step 2. The matrix C' is invertible by linear independence of U and V. The
uniqueness statements of Step 1, show that there exist functions a,b : @ — R with
MP(w)U(w) = a(w)U(Tw) and MF(w)V (w) = b(w)V (Tw). This easily yields (11).
As the left hand side of this equation is invertible, the right hand side is invertible
as well. This shows that a and b do not vanish anywhere.

Ad Step 3. Direct calculations show that the functions in question do not change
if U(w) or V(w) or both are replaced by —U(w) resp. —V(w). By Step 1, such a
replacement can be used to provide a version of V and U continuous arround an
arbitrary w € Q. This gives the desired continuity.

Ad Step 4. As ||C|| and ||C~!|| are continuous by Step 3 and € is compact, there
exists a constant £ > 0 with £ < ||C(w)]], [|C~H(Tw)| < k7! for every w € Q. Thus,
uniformity of MF will follow from uniformity of w — C~Y(Tw)MF (w)C(w), which
in turn will follow by Step 2 from uniformity of

or 2= (7 i) )

As |a| and |b] are continuous by Step 3 and do not vanish by Step 2, the functions
In |al,In|b] : @ — R are continuous. The desired uniformity of D follows now by
Proposition 3.1 (see proof of Lemma 3.2 for a similar reasoning). Positivity of v(E)
is immediate from Step 1. a

A simple but crucial step in the proof of Theorem 2 is to relate the transfer
matrices to subadditive functions. This will allow us to use Lemma 3.5 to show
that the uniformity assumption of Lemma 3.2 and Lemma 3.3 holds for subshifts
satisfying (PW). We proceed as follows. Let (Q,T) be a strictly ergodic subshift
and let £ € R be given. To the matrix valued function M¥ we associate the
function F¥ : W — R by setting

FE(z) = log | M®(|z,w)ll,
where w € Q is arbitrary with w(1)...w(Jz|) = 2. It is not hard to see that this is

well defined. Moreover, by submultiplicativity of the norm || - ||, we infer that F¥
satisfies F'F(zy) < FP(x) + FE(y).

Proposition 4.4. MF is uniform if and only if the limit lim ;oo % exists.
Proof. This is straightforward. O

Now, we can prove the results stated in Section 2.

Proof of Theorem 1. The implication (i)==(ii) is an immediate consequence of
Lemma 4.1. This lemma also shows continuity of the Lyapunov exponent. The
implication (ii)==(i) follows from Lemma 4.2 and Lemma 4.3. O

Proof of Corollary 2.1 As ¥ is closed and has no discrete points by general prin-
ciples on random operators, the Cantor property will follow if ¥ has measure zero.
But this follows from the assumption and Theorem 1, as the set {E € R : v(E) = 0}
has measure zero by the results of Kotani theory discussed in the introduction. O

Proof of Theorem 2. This is immediate from Lemma 3.5 and Proposition 4.4. O
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5. FURTHER DISCUSSION

In this section we will present some comments on the results proven in the
previous sections.

As shown in the introduction and the proof of Theorem 1, the problem (Z)
for subshifts can essentially be reduced to establishing the inclusion ¥ C {F €
R : v(E) = 0}. This has been investigated for various models by various authors
[5, 6, 7, 13, 19, 42]. All these proofs rely on the same tool viz trace maps (see [1, 9]
for study of trace maps as well). Trace maps are very powerful as they capture the
underlying hierarchical structures. Besides beeing applicable in the investigation of
(Z), trace maps are extremely useful because

e trace map bounds are an important tool to prove absence of eigenvalues.

Actually, most of the cited literature studies both (A) and (Z). In fact, (£) can

even be shown to follow from a strong version of (A) [19] (cf. [13] as well). While

this makes the trace map approach to (£) very attractive, it has two drawbacks:
e The analysis of the actual trace maps may be quite hard or even impossible.
e The trace map formalism only applies to substitution-like subshifts.

Thus, trace map methods can not be expected to establish zero-measure spec-
trum in a generality comparable to the validity of the underlying Kotani result.

Let us now compare this with the method presented above. Essentially, our
method has a complementary profile: It does not seem to give information concern-
ing absence of eigenvalues. But on the other hand it only requires a weak ergodic
type condition. This condition is met by subshifts satisfying (PW) and this class
of subshifts contains all primitive substitutions. In particular, it gives information
on the Rudin-Shapiro substitution which so far had been unattainable. Moreover,
quite likely, the condition (PW) will be satisfied for certain circle maps, where (Z)
could not be proven by other means.

All the same, it seems worthwhile pointing out that (PW) does not contain
the class of Sturmian systems whose rotation number has unbounded continued
fraction expansion. This is in fact the only class known to satisfy (£) (and much
more [6, 12, 15, 16, 17, 27, 28, 41]) not covered by (PW). For this class, one can
use the implication (ii) = (i) of Theorem 1, to conclude uniform existence of the
Lyapunov exponent as done in Corollary 2.2. Still it seems desirable to give a direct
proof of uniform existence of the Lyapunov exponent for these systems.

Finally, let us give the following strengthening of (the proof of) Theorem 1. It
may be of interest whenever the strictly ergodic system is not a subshift.

Theorem 3. Let (2, T) be strictly ergodic. Then,
Y={EeR:y(E)=0}U{E cR: MF is not uniform},
where the union is disjoint.

Proof. The union is disjoint by Lemma 4.2. The inclusion “D” follows from
Lemma 4.3.

To prove the inclusion “C”, let E € R with MZ uniform and v(E) > 0 be given.
By Lemma 3.3, we infer positivity of the Lyapunov exponent for all F' € R close
to E. Moreover, by Theorem 4 of [21], for F € R with v(F) > 0, uniformity of
MF is equivalent to existence of an n € N and a continuous C : @ — GL(2,R)
such that all entries of C(T"w) " *M¥ (n,w)C(w) are positive for all w € Q. By
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uniformity of MP this latter condition holds for M¥. By continuity of (F,w)
C(T"w) 'MF (n,w)C(w) and compactness of Q, it must then hold for M¥ as well
whenever F is sufficiently close to E.

These considerations prove existence of an open interval I C R containing E on
which uniformity of the transfer matrices and positivity of the Lyapunov exponent
hold (cf. top of page 811 of [21] for related arguments). Now, replacing I'® with 1,
one can easily adopt the proof of Lemma 4.1 to obtain the desired inclusion. O
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ABSTRACT. We study existence of non-uniform continuous SL(2, R)-valued co-
cycles over uniquely ergodic dynamical systems. We present a class of subshifts
over finite alphabets on which every locally constant cocycle is uniform. On
the other hand, we also show that every irrational rotation admits non-uniform
cocycles. Finally, we discuss characterizations of uniformity.

1. INTRODUCTION

This paper is concerned with SL(2,R)-valued cocycles over dynamical systems.
Throughout, (2, T") will be a uniquely ergodic dynamical system (i.e. £ is a compact
metric space, T :  — € is a homeomorphism and there is only one T-invariant
probability measure on €2). The unique T-invariant probability measure on Q will
be denoted by p. Let SL(2,R) denote the group of real-valued 2 x 2-matrices
with determinant equal to one. This is a topological group whose topology is
induced by the standard metric on the 2 x 2-matrices. To a continuous function
A:Q — SL(2,R) we associate the cocycle

A(,) : Z x Q — SL(2,R)
defined by

AT w) - Aw) @ n>0
A(n,w) = Id : n=0
A YT w) - AN (T w) : n<O.

By the multiplicative ergodic theorem, there exists a A(A) € R with

A(A) = lim llog [A(n,w)|l

n—oo n

for p-almost every w € 2. Following [6] (cf. [21] as well), we introduce the following
definition.

* This research was supported in part by THE ISRAEL SCIENCE FOUNDATION (grant no.
447/99) and by the Edmund Landau Center for Research in Mathematical Analysis and Related
Areas, sponsored by the Minerva Foundation (Germany).
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Definition 1. Let (Q,T) be uniquely ergodic. The continuous function A :  —
SL(2,R) is called uniform if the limit A(A) = lim,,_, oo % log ||A(n,w)|| exists for all
w € Q and the convergence is uniform on Q.

Remark 1. For minimal (not necessarily uniquely ergodic) systems, uniform exis-
tence of the limit in the definition already implies uniform convergence, as proven
by Furstenberg and Weiss [7]. Their result is actually even more general and applies
to arbitrary real valued continuous cocycles.

Existence or non-existence of uniform SL(2, R)-valued functions has been studied
by various people, e.g. in [21, 8, 6, 15]. In fact, Walters asked the following question
[21]:

(Q) Does every uniquely ergodic dynamical system with non-atomic measure p
admit a non-uniform cocycle?

Using results of Veech [20], Walters presents a class of examples admitting non-
uniform cocycles. He also discusses a further class of examples, namely suitable
irrational rotations, for which non-uniformity was shown by Herman [8]. Recently,
Furman carried out a careful study of uniformity of cocycles [6]. For strictly ergodic
dynamical systems, he characterizes uniform cocycles with positive A(A) in terms
of uniform diagonalizability. Related results on positivity of cocycles can also be
found in [12].

The aim of this article is to adress (Q) for certain examples and to study con-
ditions for uniformity of cocycles. In order to be more precise recall that (Q,T) is
called a subshift over the compact S, if 2 is a closed subset of S% (with product
topology) invariant under the shift 7 : S — S% (Ts)(n) = s(n +1). If S is
finite, it is called the alphabet. A function f on a subshift over S is called locally
constant if there exists an N € N such that

(1) @)= F(p), whenever (w(=N),...,w(N)) = (p(~N)...,p(N)).
Our results will show the following:

e There exist subshifts over finite alphabets which do not admit locally con-
stant non-uniform cocycles (Theorem 1).
e Every irrational rotation admits a non-uniform cocycle (Theorem 2).
e For strictly ergodic dynamical systems, uniformity of A with A(4) > 0
follows already from suitable lower bounds on n~!In ||A(n,w)|| (Theorem
3).
e For uniquely ergodic dynamical system, uniformity of A with A(4) > 0 can
be characterized by a certain uniform hyperbolicity condition (Theorem 4).
As mentioned already, these results are closely related to results of Furman
[6] and Herman [8, 9] respectively. This will be discussed in more detail at the
corresponding places.

This paper is organised as follows. In Section 2, we prove Theorem 1. Section
3 is devoted to a proof of Theorem 2 and discussion of its background. Finally, we
discuss Theorem 3 and Theorem 4 in Section 4.

2. SUBSHIFTS WITH ONLY UNIFORM LOCALLY CONSTANT FUNCTIONS

In this section we present a class of subshifts over finite alphabets on which every
locally constant cocycle is uniform.
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For a subshift (£2,7T") over the finite set S, let W be the associated set of finite
words i.e.
W={wn) whn+k):we,neZkecNy}
We will use standard concepts from combinatorics on words. In particular, we define
the length |w| of a word w = w(1)...w(n) to be n and we denote the number of
copies of v in w by #,(w) for arbitrary v,w € W. The class of subshifts we are
particularly interested in is presented in the next definition.

Definition 2. A subshift (2, T) over the finite set S is said to satisfy uniform posi-
tivity of weights, (PW), if there exists a constant C > 0 with lim inf),| oo ﬁ’iﬁ) |v| >
C for allveW.

Remark 2. (a) Condition (PW) says roughly that the amount of “space” covered
by a word v € W in a long word w € W is bounded below uniformly in v € W. In
particular, (PW) implies minimality.

(b) The condition (PW) is in particular satisfied for subshifts associated to primitive
substitutions and more generally for linearly recurrent subshifts [5, 16].

(c) It is not hard to see that (PW) implies that the subshift has linear complexity.
More precisely, the number of different words in W of length n is bounded by C~'n
(see e.g. [17]).

Theorem 1. Let (Q,T) be a subshift over the finite set S. If (Q,T) satisfies (PW),
then every locally constant function G : Q@ — SL(2,R) is uniform.

The theorem is a rather direct consequence of the following lemma. The lemma
relates (PW) to existence of averages for subadditive functions on W. Recall that
F : W — R is called subadditive if F(zy) < F(x) 4+ F(y) for arbitrary x,y € W
with zy € W.

Lemma 2.1. Let (Q,T) be a minimal subshift over the finite S. Then, the limit
limy| oo || TP F () ezists for every subadditive F : W — R if and only if (Q,T)
satisfies (PW).

Proof. One implication follows from Theorem 2 of [16] and the other by Propo-
sition 4.2. of [16]. O
Proof of Theorem 1. Define F¢: W — R by
F¢(z) = sup{log |G (|z[,w)|| : w(1) ... w(|z]) = z}.

Apparently, F¢ is subadditive. ~Thus, by the preceeding lemma, the limit
lim ;| oo 2| P FY(z) exists. Therefore, it remains to show that

1 1
(2) A(n,0,p) = | log[|G(n, 0)|| = ~log [G(n, )]

is arbitrarily small for all o, p € Q with

(3) o(l)...o(n)=p(1)...p(n)
whenever n € N is large enough. Let N € N be the constant of (1) for the locally
constant G. Consider an arbitrary n € N with n > 2N.

From G(n,w) = G(N,T" " Yw)G(n — 2N, TVw)G(N,w) for arbitrary n > 2N,
we infer

log [G(n,w)|| <log||G(n — 2N, Tw)|| +log |G(N, T"~Nw)|| + log | G(N,w)]|
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as well as G(n — 2N, TNw) = G(N, T" Nw)~1G(n,w)G(N,w) ! for arbitrary w €
Q. Combining this latter equality with the fact that | M|| = |M~1|| for all M €
SL(2,R), we infer

log [|G(n — 2N, TN w)|| — log || G(N, T" N w)|| — log | G(N, w)|| < log |G(n, w)]|

for all w € Q. By local constancy, we have G(n — 2N, TN¢g) = G(n — 2N, TV p)
whenever o and p satisfy (3) with n > 2. Thus, for such o, p the above inequalities
yield

log |G (n, 0)[| = log |G (n, p)ll| < 4sup{|log [G(N,w)]|| : w € Q}.

As the right hand side is independent of n, this easily gives the desired smallness
of the A(n,o,p) in (2) for large n. O

3. NON-UNIFORM FUNCTIONS

In this section we will discuss certain examples of non-uniform cocycles. These
examples will be based on recent results of the author [15] on spectral theory of cer-
tain Schrodinger operators and known results on positivity of Lyapunov exponents
1,29

Let (Q,T) be as above and let f : @ — R be a continuous function. To these
data we can associate a family (H,,),ecq of operators H, : (?(Z) — (*(Z), w € Q,
given by

(4) (Hou)(n) = uln+ 1)+ u(n — 1) + F(T"'w)u(n).

Such families of operators arise in the study of disordered media. Depending on
the underlying dynamical systems, they provide examples for a variety of interesting
spectral features such as dense pure point spectrum, purely singularly continuous
spectrum and Cantor spectrum of measure zero (see [3, 4] for details and further
references. )

An important tool in the investigation of their spectral theory is the study of
solutions u of the associated eigenvalue equation

(5) un+1)+un—1)+ (wn) — E)u(n) =0

for E' € R. It is not hard to see that w is a solution of this equation if and only if
u(n+1) \ _ /£ u(1)

(6) < u(n) > =M (n,w)( w(0) ) n €7z,

where the continuous function M¥ : Q — SL(2,R) is defined by

(7) ME(w) = ( Eflf(w) *01 )

As discussed in the introduction M gives rise to the average v(E) = A(MF).
This average is called the Lyapunov exponent for the energy F. It measures the
rate of exponential growth of solutions of (5).

As is well known (see e.g. Proposition 1.2.2 in [18]), for minimal (Q,7T) the
spectrum ¥ = o(H,,) of the self-adjoint operator H, does not depend on the point
w € . Moreover, for strictly ergodic systems, it was shown by the author in
Theorem 3 of [15] that

(8) Y ={F:~(E)=0}U{E: M¥ is not uniform },



EXISTENCE OF NON-UNIFORM COCYCLES 83

where the union is disjoint. This implies immediately the following result.

Lemma 3.1. Let (Q,7T) be strictly ergodic and (H,) as above. Then ¥ = {E :
MPF s not uniform} if and only if y(E) > 0 for every E € R.

Thus, examples of operators of the form (H,) with positive Lyapunov exponent
give rise to non-uniform matrices. Indeed, there are well known examples of oper-
ators with uniformly positive Lyapunov exponent and we will discuss one of them
next.

Fix a € (0,1) irrational and A > 0. Denote the irrational rotation by « on the
unit circle, S, by R, (i.e. Roz = exp(2mia)z, where i is the square root of —1).
Define f» : S — R by f*(2) = Mz + 27 1) (i.e. f(exp(if)) = 2\ cos(0)). Denote
the associated operators by (H?2) and their spectrum by ©()\). The operators (H2)
are called almost-Mathieu operators. They have attracted much attention (see e.g.
[10, 11, 13] for further discussion and references). We have the following theorem.

Theorem 2. For arbitrary irrational o € (0,1) and A > 1, the function M is
non-uniform if and only if E belongs to L(A).

Proof. By the foregoing lemma, it suffices to show positivity of v(E) for every
E € R. This is well known [1, 2] (see [9] for an alternative proof as well). O

Remark 3. The result shows that every irrational rotation allows for a non-uniform
matrix. This generalizes results of Herman [8], where this was only shown for certain
rotation numbers. Note, however, that the results of [9] combined with Theorem 4
of [6] (or Theorem 4 below) also show existence of non-uniform cocycles for every
irrational rotation. Still, the above result is more explicit in that the set of energies
with non-uniform matrices is identified as X ().

4. CHARACTERIZATIONS OF UNIFORMITY

In this section we study uniformity of cocycles for uniquely ergodic and strictly
ergodic systems.

Let P = PR? be the projective space over R2. Thus, P is the space of all
one-dimensional subspaces of R2. To X € R2?\ {0}, we associate the element
[X] = {AX : A € R} € P. Obviously, every element in P can be written as
[(cos(8),sin(#))] with a suitable § € [0, 7]. The space P is a complete metric space,
when equipped with the metric

d([(cos(0), sin(0))], [(cos(n),sin(n))]) = min{[6 — x|, |0 —n — =, |6 —n+ x|}

We start with a characterization of uniformity of cocycles for strictly ergodic
systems.

Theorem 3. Let (Q,T) be strictly ergodic. Then, a continuous A : Q@ — SL(2,R)
is uniform with A(A) > 0 if and only if there exist m € N and 6 > 0 such that
6§ < Ln[|A(n,w)|| for allw € Q and n > m.

Remark 4. The theorem deals with a uniform lower bound on 1 In||A(n,w)]|.
As for an upper bound, we mention Corollary 2 of [6] which shows
limsup,,_, .. n~ ' In ||A(n,w)|| < A(A) uniformly in w € Q for arbitrary (not nec-
essarily uniform) continuous A4 : Q@ — SL(2,R).
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The proof of this theorem and of further results will be based on some auxiliary
propositions.

Proposition 4.1. Let (A,) be a sequence in SL(2,R). Then, there exists at most
one v € P with |4, V] — 0, n — oo, for every V € v.

Proof. Assume the contrary. Then, there exist linearly independent vectors V;
and V5 in R? with |4, V;|| — 0, n — oo, i = 1,2. Thus, ||A|| — 0, n — 0 and
this contradicts ||A,|| > 1 (which is a direct consequence of det 4,, = 1). O

Part (a) of the following proposition contains the key to our considerations, viz
the estimate (10) below. We take it from recent work of Last/Simon in [14] which
in turn essentially abstracts a result of Ruelle [19]. As pointed out to the author
by the referee it can also be understood as a consequence of the classical geometric
Morse-Lemma by viewing SL(2,R) as the group of isometries of the hyperbolic
plane and then using that the orbit in question V,, = A1V} is quasi-geodesic (due
to the assumptions).

While (a) of the proposition is clearly the main new input in our argument, we
will mostly use the the variant of (a) given in part (b) of the proposition.

Proposition 4.2. Let (A,) be a sequence of matrices in SL(2,R) with D
sup,en [|[Ant14, || < oo. Define the selfadjoint operator |A,| by |An| = (A} A,)

1
2

and let u,, be the eigenspace of |A,| associated to the eigenvalue a,, = |||A,|]|7! =

[ An]

(a) If there exist § > 0 and m € N with § < n~'In||A,| for n > m then

Uy 18 one-dimensional for n > m i.e. u, € P, and there exists v € P with
1

d(un,u) < Cexp(—26n) for every n > m, where C = 2rD?(1 — exp(—24))~
(b) If there exist § > 0 and m € N with § < n~'In||A,|| < 36 for n > m, then
|AU|| < (2C + 1) exp(—2716n)||U|| for arbitrary n > m and U € u.

Proof. (a) As |A,| is selfadjoint, a,;! = |||A4,]|| is an eigenvalue of |A,|. Thus, by
1 = det A,, = det |Ay]|, the selfadjoint |A,| has the eigenvalues a;;! and a,. As by
assumption

(9) 1 < exp(6n) < ||An| = a, ' for all n > m.

the eigenspace u,, is then one-dimensional. By (8.5) of [14] (see [19] as well), the
u,, converge to an element u € P and

T o0
10 una o
1o <L
Combining (9) and (10), we infer
(11) d(un,u) < Cexp(—20n)

with C as above.

(b) Let U € w with ||U|| = 1 and n > m be given. By (11), we can find
U, € uy, with ||U,| =1 and

(12) |U = U,|| < V2d([U], [U,]) < CV2exp(—26n).
By (9) we have
(13) [AnUnll = [[An|Unll = llanUn|| < exp(—dn).
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As, by assumption, In ||A,| < %671, we obtain
1
14RU N < [ An(U = Un)[| + [|4nUn |l < (2C + 1) exp(—5dn).
This implies (b) O

We also have the following “uniform version” of the foregoing Proposition.

Proposition 4.3. Let A : Q@ — SL(2,R) be continuous. For n € Z and
w € O, define the selfadjoint nonnegative operator |A(n,w)| by |A(n,w)| =
(A(n,w)*A(n,w))z and let u(n,w) be the eigenspace of |A(n,w)| associated to the
eigenvalue a(n,w) = ||[A(n,w)||~t = |||A(n,w)]|| L.

(a) If there exist § > 0 and m € N with § < n~LIn||A(n,w)|| for every n > m and
every w € Q, then u(n,w) is one-dimensional, i.e. u(n,w) belongs to P, forn >m
and the functions u(n,-) converge uniformly to a continuous function u : Q@ — P.
(b) If there exist 6 > 0 and m € N with § < n~'In||A(n,w)|| < 36, for all w € Q
and n > m, then there exists k > 0 and C > 0 with ||A(n,w)U|| < Cexp(—&n)||U||
for everyn € N, w € Q and U € u(w).

Proof. To prove (a) and (b), we apply parts (a) and (b) respectively of the foregoing
proposition simultanuously for all w € €. Note that all estimates in the foregoing
proposition are rather explicit and are governed by constants not depending on
w € Q. In particular, the functions u(n, -) converge uniformly. As they are obviously
continuous, their limit is also continuous. m]

Proof of Theorem 3. The “only if” statement is clear. To show the other direction,
we proceed as follows:
By assumption we can apply Proposition 4.3 (a) and obtain a continuous function
u : © — P (which is the limit of the function u(n, -)). By the multiplicative ergodic
theorem, there exists a T-invariant set ' C Q of full measure with

1 1
0 < <A(A) =liminf Tl In||A(n,w)|| = limsup — In || A(n,w)||
oo I n

for every w € . This, of course, implies

0 < A(A) <limsup 1 In ||A(n,w)|| < éliminfl In ||A(n,w)]||
n—oo N 3 n—ooo n
for every w € . By (b) of Proposition 4.2, we then infer exponential decay
of ||[A(n,w)U|| for n — oo for arbitrary but fixed w € Q' and U € u(w). As
Y is invariant and the subspace of R? with such exponential decay is unique by
Proposition 4.1, we conclude, for w € €,

(14) [A(n,w)U] = u(T"w)

for n € Z and U € u(w) \ {0}. Now, by continuity of w + u(w) and minimality of
(Q,T), we infer validity of (14) for every w € Q and n € Z. Similarly, considering
n — —oo, we infer existence of a continuous v :  — P, w — v(w), such that
|A(n,w)V]| is exponentially decaying for n — —oo for every w € Q' and V € v(w)
and

(15) [A(n,w)V] =v(T"w)
for arbitrary w € Q, n € Z and V € v(w) \ {0}.
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Now, choose, for each w € Q, vectors U(w) € u(w) and V(w) € v(w) with
|Uw)|| = |[V(w)|]| = 1. By (14) and (15), there exist a,d : @ — R\ {0}, with
A(w)U(w) = a(w)U(Tw) and A(w)V(w) = d(w)V(Tw). Define the matrix C(w)
by C(w) = (U(w),V(w)). By [U()| = [V(w)[l =1, U(w) and V(w) are unique
up to a multiplication by —1. Moreover, for fixed wg € 2, we can always find a
neighbourhood of wg on which U and V' can be chosen continuously (as v and v are
continuous). Therefore, the functions

w = [CW)], w = a(w)], w ldw)]

are continuous (as they are invariant under the replacement of U(w) by —U(w) or
V(w) by =V (w).) A short calculation then gives

iolnla(T*w)] : n>0
In||A(n,w)U(Ww)| = 0 : n=0
— 2 nja(TRw)| : n<o.
Thus, the uniform ergodic theorem for continuous functions on uniquely ergodic
systems, yields

AU @) — [ o) dute), o — o,

uniformly in w € Q. As ||A(n,w)U(w)| is exponentially decaying for n — oo
and w € ', we see [,Inla(w)|du(w) < 0. Putting this together, we infer that
|A(n,w)U(w)|| is exponentially decaying for n — oo and exponentially increasing
for n — —oo for every w € Q. Similarly, ||A(n,w)V(w)|| can be seen to be expo-
nentially decaying for n — —oco and exponentially increasing for n — oo for every
w € Q. In particular, we have u(w) # v(w) for every w € Q. Thus, the matrix C(w)
is invertible and, by construction, we have
1 _faw) O
(16) C(Tw) " Alw)C(w) = ( 0 dw) ) .
Now, uniformity of A follows easily from continuity of |a| and |b|, as the continuous

functions w +— ||C'(w)| and w +— ||C~(w)|| are uniformly bounded on the compact
Q. O

Corollary 4.4. Let (,T) be strictly ergodic and (H,)wecq as in Section 3. For
E € R, define Ymin(E) by Yimin(E) = liminf, e min{1 In |[MZ(n,w)|| : w € Q}.
Then, ¥ = {E € R: ypin(E) = 0}.

Proof. By Theorem 3, we have Y, (E) > 0 if and only if M is uniform with
~v(E) > 0. But this is equivalent to E ¢ ¥ by (8). O

Remark 5. For the almost-Mathieu operators discussed in Section 3, it is possible
to establish pure point spectrum (provided «a, A are suitable) (see references in Sec-
tion 3). An important issue in the corresponding proofs is to obtain exponentially
growing lower bounds on the modulus of the matrix elements of M (n,w) for large
n € N (and suitable w € Q and E € R). The corollary shows that these bounds
can not hold uniformly. This contrasts with the validity of uniform upper bounds
discussed in Remark 4.

The methods developed above to treat strictly ergodic systems can be modified
to characterize uniformity of cocylces for uniquely ergodic systems. This is the
content of the next theorem.
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Theorem 4. Let (2, T) be uniquely ergodic and A : @ — SL(2,R) be continuous.
Then the following are equivalent:

(i) A is uniform with A(A) > 0.

(#i) There exist constants k,C > 0 and continuous functions u,v : & — P with
(17) A, w)U|| < Cexp(=rn)||U]| and [|A(=n,w)V|| < Cexp(—xn)|[V].

for arbitrary w € Q, n € N, U € u(w) and V € v(w).

(iii) There exists § > 0 and m € N with 0 < § < 2 In||A(n,w)|| < 26 for every
weandn>m.

In this case, u(w) # v(w), [A(n,w)U] = uw(T"w) and [A(n,w)V] = v(T"w) for
arbitrary w € Q, n € Z, U € u(w) and V € v(w) with U,V # 0.

Remark 6. The equivalence of (i) and (ii) in some sense extends the corresponding
result of Furman for strictly ergodic systems [6]. Namely, Theorem 4 of [6] shows
that uniformity of A combined with A(A) > 0 holds if and only if A is continuously
cohomologous to a diagonal matrix. Our extension to uniquely ergodic systems
is made possible through the use of Proposition 4.2 (see discussion before this
proposition). Let us also mention that the concept of hyperbolic structure studied
in [9] essentially amounts to (ii) in our context (see [8] for connection to uniformity
as well). Part (iii) of Theorem 4 is new. It is inspired by arguments in [14]. Tt
provides an analogue of Theorem 3 for uniquely ergodic systems.

Proof of Theorem 4. (1) = (iii): This is clear.

(iii) = (ii): The construction of w is immediate from Proposition 4.3. The
construction of v is similar by applying Proposition 4.3 to the function A:Q—
SL(2,R), where Q = Q, A(w) = A(T 'w)™! and the action on Q is given by
T=7T"

(ii) = (i): Proposition 4.1 and assumption (ii) imply

(18) [A(n,w)U] = u(T"w) and [A(n,w)V] =v(T"w)

for arbitrary w € Q, n € Z, U € wu(w) and V € v(w) with U,V # 0.
Let arbitrary U € wu(w) and n € N be given. By (18) and (ii), we then
have |U|| = ||[A(n, T7"w)A(—n,w)U|| < Cexp(—£n)||A(—n,w)U|| which implies
|A(=n,w)U]|| > C~Yexp(kn)||U]|. As this holds for all n € N, we infer u(w) # v(w)
from (ii). Now, (i) follows by mimicking the last part of the proof of Theorem 3.

Note that the last statement of the theorem has been shown in (ii)==-(i). O

To formulate our last result, we recall that the set C'(£2, SL(2,R)) of continuous
functions A : @ — SL(2,R) is a complete metric space when equiped with the
metric

d(A1, Az) = sup A1 (w) — A2 ().
we

Let U(€2) be the set of uniform A € C(, SL(2,R)) and U(Q), be the set of those
A € U(Q) with A(A) > 0. Then the following holds (see Theorem 5 of [6] as well).

Theorem 5. Let (Q,T) be uniquely ergodic. — Then, U()y is open in
C(Q,SL(2,R)) and A : U(2) — R is continuous.
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This is essentially contained in Theorem 5 of [6] and its proof. Note, however,
that there is a slight gap in the proof of that theorem in [6]: Its statement refers
to arbitrary uniquely ergodic systems. But its proof makes crucial use of Theorem
4 of [6], which assumes not only unique ergodicity but also minimality. As far as
the continuity statement goes, this gap can be bridged by restricting attention to
a T-minimal subset 2y of ). However, it does not seem to be clear that this yields
the openess statement as well. Therefore, we conclude this section by noting that,
given the methods provided in [6], one can base a Proof of Theorem 5 on Theorem
4 above, similarly as the proof of Theorem 5 in [6] is based on Theorem 4 of [6].
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ABSTRACT. This paper is concerned with uniform convergence in the multi-
plicative ergodic theorem on aperiodic subshifts. If such a subshift satisfies
a certain condition, originally introduced by Boshernitzan, every locally con-
stant SL(2,R)-valued cocycle is uniform. As a consequence, the corresponding
Schrédinger operators exhibit Cantor spectrum of Lebesgue measure zero.

An investigation of Boshernitzan’s condition then shows that these results
cover all earlier results of this type and, moreover, provide various new ones.
In particular, Boshernitzan’s condition is shown to hold for almost all circle
maps and almost all Arnoux-Rauzy subshifts.

1. INTRODUCTION

This paper is concerned with uniform convergence in the multiplicative ergodic
theorem.

More precisely, let (2, T) be a topological dynamical system Thus, €2 is a compact
metric space and T : Q@ —  is a homeomorphism. Assume furthermore that
(Q,T) is uniquely ergodic, that is, there exists a unique T-invariant probability
measure p on ).

As usual the dynamical system (Q,T) is called minimal if every orbit {T"w : n €
Z} is dense in Q. It is called aperiodic if T"w # w for all w € Q and n # 0.

Let SL(2,R) be the group of real valued 2 x 2-matrices with determinant equal to
one equipped with the topology induced by the standard metric on 2 x 2 matrices.

To a continuous function A :  — SL(2,R) we associate the cocycle

A(+,7) 1 Z x Q — SL(2,R)
defined by
AT w)- - Aw) + n>0
Aln,w) = Id : n=0
A YT w)--- AN (T w) : n<O.

D. D. was supported in part by NSF grant DMS-0227289.
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By the multiplicative ergodic theorem, there exists a A(A) € R with
1
M) A(4) = lim *log | A(n, )]
n—oo N

for p-almost every w € Q. Now, it is well known that unique ergodicity of (2,7 is
equivalent to uniform convergence in the Birkhoff additive ergodic theorem when
applied to continuous functions. Therefore, it is natural to investigate uniform
convergence in (1). This motivates the following definition.

Definition 1.1. [39, 90]. Let (2,T) be uniquely ergodic. The continuous function
A Q — SL(2,R) is called uniform if the limit A(A) = lim, . = log||A(n,w)||
exists for all w € Q and the convergence is uniform on €.

Remark 1. For minimal topological dynamical systems, uniform existence of the
limit in the definition implies uniform convergence. This was proven by Furstenberg
and Weiss [40]. In fact, their result is even more general and applies to arbitrary
real-valued continuous cocycles.

Various aspects of uniformity of cocycles have been considered in the past:

A first topic has been to provide examples of non-uniform cocycles. In fact, in
[90] Walters asks the question whether every uniquely ergodic dynamical system
with non-atomic measure p admits a non-uniform cocycle. He presents a class of
examples admitting non-uniform cocycles based on results of Veech [86]. He also
gives another class of examples, namely suitable irrational rotations, for which non-
uniformity was shown by Herman [45]. In general, however, Walters’ question is
still open.

A different line of study has been pursued by Furman in [39]. He characterizes
uniformity of A on a given uniquely ergodic minimal (©2,7") by a suitable hyper-
bolicity condition. The results of Furman can essentially be extended to uniquely
ergodic systems (and, in fact, a strengthening of some sort can be obtained for min-
imal uniquely ergodic systems), as shown by Lenz in [65]. They also give that the
corresponding results of [46] provide examples of non-uniform cocycles as discussed
in [65].

Finally, somewhat complementary to Walters’ original question, it is possible
to study conditions on subshifts over finite alphabets which imply uniformity of
locally constant cocycles. This topic and variants of it have been discussed at
various places [23, 47, 62, 63, 64, 65]. It is the main focus of the present article.
It is not only of intrinsic interest but also relevant in the study of spectral theory
of certain Schrédinger operators, as recently shown by Lenz [63] (see below for
details).

To elaborate on this and state our main results, we recall some further notions.

(Q,7T) is called a subshift over A if A is finite with discrete topology and Q
is a closed T-invariant subset of A%, where A? carries the product topology and
T : A? — A” is given by (T's)(n) := s(n+1). A function F on Q is called locally
constant if there exists an N € N with

(2) F(w) = F(p) whenever (w(—N),...,w(N)) = (p(=N),...,p(N)).

We will freely use notions from combinatorics on words (see, e.g., [67, 68]). In
particular, the elements of A are called letters and the elements of the free monoid
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A* over A are called words. The length |w| of a word w is the number of its letters.
The number of occurrences of a word w in a word z is denoted by #,(z).
Each subshift (£2,T) over A gives rise to the associated set of words

(3) W(Q) ={w(k) --wk+n-1):ke€ZneNweQ}

For w € W, we define

Vi ={weQ:w(l) - w]w|) =w}.

Finally, if v is a T-invariant probability measure on (Q,T) and n € N, we set
(4) Ny(n) == min{r(V,) : w € W, |w| = n}.
If (Q,T) is uniquely ergodic with invariant probability measure p , we set n(n) :=
um (n).
Definition 1.2. Let (Q,T) be a subshift over A. Then, (Q,T) is said to satisfy
condition (B) if there exists an ergodic probability measure v on € with

limsupnn,(n) > 0.

Thus, (2,T) satisfies (B) if and only if there exists an ergodic probability measure

v oon Q, a constant C > 0 and a sequence (1,,) in N with l,, — oo for n — oo such
that |w|v(Vy,) > C whenever w € W(Q) with |w| = l,, for some n € N.

This condition was introduced by Boshernitzan in [11] (also see [12] for related
material). For minimal interval exchange transformations, it was shown to imply
unique ergodicity by Veech in [89]. Finally, in [14], Boshernitzan showed that it
implies unique ergodicity for arbitrary minimal subshifts.

Our main result is:

Theorem 1. Let (Q,T) be a minimal subshift which satisfies (B). Let A : Q@ —
SL(2,R) be locally constant. Then, A is uniform.

As discussed below, this result covers all earlier results of this form as given in
[23, 47, 64, 65]. Moreover, as we will show below, it also applies to various new
examples, including many circle maps and Arnoux-Rauzy subshifts. This point is
worth emphasizing, as most circle maps and Arnoux-Rauzy subshifts seem to have
been rather out of reach of earlier methods.

The proof of the main result is based on two steps. In the first step, we give
various equivalent characterizations of condition (B). This is made precise in The-
orem 5. This result may be of independent interest. In our context it shows that
(B) implies uniform convergence on “many scales.” In the second step, we use the
so-called Avalanche Principle introduced by Goldstein and Schlag in [41] and ex-
tended by Bourgain and Jitomirskaya in [15] to conclude uniform convergence from
uniform convergence on “many scales.”

As a by-product of our proof, we obtain a simple combinatorial argument for
unique ergodicity for subshifts satisfying (B). Unlike the proof given in [14], we do
not need any apriori estimates on the number of invariant measures.

As mentioned already, our results are particularly relevant in the study of certain
Schrodinger operators. This is discussed next:

To each bounded V : Z — R, we can associate the Schrodinger operator Hy :
02(Z) — £2(Z) acting by

(Hyu)(n) =u(n+1) +u(n — 1) + V(n)u(n).
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The spectrum of Hy is denoted by o(Hy ).

Now, let (©2,7) be a subshift over A and assume without loss of generality
that A C R. Then, (2,T) gives rise to the family (H,),eq of selfadjoint opera-
tors. These operators arise in the study of aperiodically ordered solids, so-called
quasicrystals. They exhibit interesting spectral features such as Cantor spectrum
of Lebesgue measure zero, purely singularly continuous spectrum and anomalous
transport. They have attracted a lot of attention in recent years (see, e.g., the
surveys [21, 85] and discussion below for details). Recently, Lenz has shown that
uniformity of certain locally constant cocycles is intimately related to Cantor spec-
trum of Lebesgue measure zero for these operators [63]. This can be combined with
our main result to give the following theorem (see below for details).

Theorem 2. Let (2,T) be a minimal subshift which satisfies (B). If (Q,T) is
aperiodic, then there exists a Cantor set ¥ C R of Lebesgue measure zero with
o(H,) =X for every w € Q.

This result covers all earlier results on Cantor spectrum of measure zero [1, 7,
8, 16, 24, 25, 63, 66, 73, 83, 84] as discussed below. More importantly, it gives
various new ones. In particular, it covers almost all circle maps and Arnoux-Rauzy
subshifts.

To give a flavor of these new examples, we mention the following theorem. Define
for o, 0, 8 € (0,1) arbitrary, the function

Vo860 1 Z — {0,1}, by Vye(n) = X[1—ﬁ,1)(n0¢ +6 mod 1),

where x)s denotes the characteristic function of the set M. These functions are
called circle maps.

Theorem 3. Let o € (0,1) be irrational. Then, we have the following:

(a) For almost every 3 € (0,1), the spectrum o(Hy, ,,) is a Cantor set of Lebesgue
measure zero for every 6 € (0,1).

(b) If o has bounded continued fraction expansion, then o(Hvy, ,,) is a Cantor set
of Lebesque measure zero for every B € (0,1) and every 6 € (0,1).

Remark 2. This result is particularly relevant as all earlier results on Cantor
spectrum for circle maps [1, 8, 24, 83, 84] only cover a set of parameters («, 3) of
Lebesgue measure zero in (0,1) x (0,1) (cf. Appendix A).

Finally, we mention the following by-product of our investigation. Details (and
precise definitions) will be discussed in Section 8.

Theorem 4. Let (0, T) be a minimal subshift which satisfies (B) and (H,),cq the
associated family of operators. Then the Lyapunov exponent v : R — [0, 00) is
continuous.

The paper is organized as follows: In Section 2 we study condition (B) and show
its equivalence to various other conditions. As a by-product this shows unique
ergodicity of subshifts satisfying (B). Moreover, it is used in Section 3 to give a
proof of our main result. Stability of the results under certain operations on the
subshift is discussed in Section 4. In Section 5 we discuss examples for which (B) is
known to hold. New examples, viz certain circle maps and Arnoux-Rauzy subshifts,
are given in Sections 6 and 7. Finally, the application to Schrédinger operators is
discussed in Section 8.
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2. BOSHERNITZAN’S CONDITION (B)

In this section, we give various equivalent characterizations of (B). This is made
precise in Theorem 5. Then, we provide a new proof of unique ergodicity for systems
satisfying (B) in Theorem 6. Theorem 5 in some sense generalizes the main results
of [62] and its proof heavily uses and extends ideas from there.

To state our result, we need some preparation. We start by introducing a variant
of Boshernitzan’s condition (B). Namely, if (2,7 is a subshift, we define for w €
W(Q) the set U, by

Uy ={we:Ine{0,1,...,|w| — 1} such that w(-n+1)...w(—n+ |w|) = w}.
If w belongs to U,,, we say that w occurs in w around one.

Definition 2.1. Let (Q,T) be a subshift over A. Then, (,T) is said to satisfy
condition (B’) if there exists an ergodic probability measure v on Q, a constant
C’ > 0, and a sequence (1)) in N with I/, — oo for n — oo such that v(U,) > C’
whenever w € W(Q) with |w| =1, for some n € N.

Next, we discuss a consequence of Kingman’s ergodic theorem. Recall that
F:W(Q2) — R is called subadditive if it satisfies F(xy) < F(z) + F(y) whenever
x,y,xy € W(Q), where (Q2,T) is an arbitrary subshift.

Proposition 2.2. Let (,T) be a uniquely ergodic subshift with invariant proba-
bility measure p. Let F' : W(2) — R be subadditive, then there exists a number
A(F) e RU{—oo} with

A(F) = lim n 'F(w(1)---w(n))

n—oo

for p-almost every w in Q.
Proof. For n € N, we define the continuous function f, : @ — R, by
folw) = F(w(l)...w(n)).

As F is subadditive, (f,) is a subadditive cocycle. Thus Kingman’s subadditive
theorem applies. This proves the statement. 0

Theorem 5. Let (2,T) be a minimal subshift over A. Then the following condi-
tions are equivalent:
(i) (,T) satisfies (B).
(il) (Q,T) satisfies (B’).
(iii) (Q,T) is uniquely ergodic and there exists a sequence (I),) in N with l!, — oo
for n — oo such that lim,_, |w,| " F(w,) = A(F) for every subadditive
F and every sequence (wy,) in W(Q) with |w,| =1, for every n € N.

The remainder of this section is devoted to a proof of this theorem. The proof
will be split into several parts.

Lemma 2.3. Let (Q,T) be a minimal subshift. Then, (Q,T) satisfies (B) if and
only if it satisfies (B’).
Proof. If (2, T) is periodic, validity of (B) and (B’) is immediate. Thus, we can
restrict our attention to aperiodic (€, 7).

Apparently, v(U,) < |wlv(V,y) for all w € W(QQ) and all ergodic probability
measures v on ). Thus, (B’) implies (B) (with the same v, I,,, and C).
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Conversely, assume that (£2,T") satisfies (B). We will show that it satisfies (B’)
with I/, = [21,/3] + 1, n € N, and ¢’ = C/9. Here, for arbitrary a € R, we set
[a] :=sup{n € Z :n <a}.

Consider v € W(Q) with |v| = I/, for some n € N. Choose w € W(Q2) with
|w] = 1,, such that v is a prefix of w. There are two cases:

Case 1. There exists a primitive z € W(Q) and a prefix ¥ of = such that w = z
for some k > 6.

kz

As (2,T) is minimal and aperiodic, the word = does not occur with arbitrarily
high powers. Thus, we can find y € W(Q2) such that
W= z" "y e W(Q)

satisfies || = [,, but z* is not a prefix of w. Now, as z is primitive, it does not
appear non-trivially in #*~!. Therefore, different copies of @ have distance at least
(k — 2)|z|. This gives

(k —2)[=] - 1
Ug) > (k—2 Vi) > — Vz) > =C.
W(Us) 2 (k= 2)lalv(Va) = (ol (Vi) = 5
Moreover, by construction, v is a subword of w (and even of x*~1) with
] (1
— = .
lw| ~ 2
Putting these estimates together, we infer
) > gy > Lo C
v(Uy) > -vUz)>=-=-C=—.
2 T2 2 4

Case 2. There does not exist a primitive z in W and a prefix 7 of z with w = 2%
for some k£ > 6.

In this case, different copies of w have distance at least %\w\ Therefore, we have

1
V(Uw) Z 6|w|y(‘/w)

and this gives

2 2 1 1
> = >Z.2. > —C.
v(Uy,) > 3V(Uw) 235 |lwlv(Vy) > 90
In both cases the desired estimates hold and the proof of the lemma is finished.

O

We next give our proof of unique ergodicity for systems satisfying (B’). The
proof proceeds in two steps. In the first step, we use (B’) to show existence of
the frequencies along certain sequences. In the second step, we show existence of
the frequencies along all sequences. Let us emphasize that it is exactly this two-
step procedure which is underlying the proof of our main result on locally constant
matrices. However, in that case the details are more involved.

We need the following proposition.

Proposition 2.4. Let (Q,T) be a subshift with ergodic probability measure v. Let
f:Q — R be a bounded measurable function. Then,

LS prte) = ()

im
n,m>0,n+m—oo N + M L

for v-almost every w € Q.
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Proof. By Birkhoft’s ergodic theorem, we have both
lim E "il f(T*w) = v(f) and lim 1 i f(T*w) = v(f)
n—oo N pr m—oo M, be—m

for v-almost every w € Q. Now, for every sequence (ay)kez with

n 0
.1 . 1
lim — g ap = lim — g ar = a,
n—oo N, m—o0 M,
k=0 k=—m

one easily infers

n
. 1
lim E ar = a.
n,m>0,n+m—oo N + M A
=—m

The statement follows immediately. 0
Theorem 6. If the subshift (2, T) satisfies (B’), it is uniquely ergodic and minimal.
Proof. It suffices to show that the frequencies lim ;oo #T“x(‘z) exist for every w € W.
Then, the system is uniquely ergodic by standard reasoning. Moreover, in this case,
the system is minimal as well as all frequencies are positive by (B’).

Thus, let an arbitrary w € W(Q) be given. We proceed in two steps.
Step 1. For all € > 0, there exists an ng = ng(e) with ‘#TT(IZ) — V(Vw)’ <e
whenever |z| =1/, with n > ng.

Step 2. For € > 0, there exists an Ny = Ny(e) with ’#Q\UT(\T) — V(Vw)‘ < e
whenever |z| > Np.

Here, Step 2 follows easily from Step 1 by partitioning long words x into pieces
of length I/, with sufficiently large n € N.

Thus, we are left with the task of proving Step 1. To do so, assume the contrary.
Then, there exist § > 0, (x,,) in W and (Z;C(n)) in N with |x,| = l;c(n)7 k(n) — oo
and

()

for every n € N. Consider

E:= ) U U

n=1k=n
By (B’), we have
v(E) = lim v(UL,Us,) > C" > 0.
n—oo

Thus, by Proposition 2.4, we can find an w in E with
(6) iy Fellm)wlm) _ g

n,m>0,n+m—oo n+m

As w belongs to E, there are infinitely many z,, occurring around one in w. Now,
if we calculate the occurrences of w along this sequence of z,,, we stay away from
v(Vy,) by at least § according to (5). On the other hand, by (6), we come arbitrarily
close to v(V,,) when calculating the frequency of w along any sequence of words
occurring in w around one. This contradiction proves Step 1 and therefore finishes
the proof of the theorem by the discussion above. O
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Our next task is to relate (B’) and convergence in subadditive ergodic theorems.
We need two auxiliary results.

Proposition 2.5. Let (Q,T) be a uniquely ergodic subshift and F : W(2) — R
be subadditive. Then, limsup,, ., [z|7"F(z) < A(F).

Proof. Define f,, as in the proof of Proposition 2.2. Then, the statement is a direct
consequence of Corollary 2 in [39]. O

Proposition 2.6. Let (2, T) be a uniquely ergodic subshift with invariant proba-
bility measure p. Let w € W(Q) be arbitrary and denote by xu, the characteristic
function of U,,. Then,

n—1

1
li - Tk = Uy
Jim — ];)mw( w) = u(Uu)

uniformly in w € €.

Proof. As U, is both closed and open, the characteristic function xy,, is continuous.
Thus, the statement follows from unique ergodicity. O

Now, our result on subadditive ergodic theorems and (B’) reads as follows.

Lemma 2.7. Let (2,T) be a uniquely ergodic and minimal subshift. Let (w,) be
a sequence in W(Q) with |w,| — o0, n — oo. Then, the following assertions are
equivalent:

(i) limp—oo |wn| 7 F(wy) = A(F) for every subadditive F : W(Q) — R.

(ii) There exists a C' > 0 with u(Uy,,) > C’ for every n € N.

Proof. The proof can be thought of as an adaptation and extension of the proofs
of Lemma 3.1 and Lemma 3.2 in [62] to our setting.

(i) = (ii). Assume the contrary. Then, the sequence (p(Uy,)) is not bounded
away from zero. By passing to a subsequence, we may then assume without loss of
generality that

(7 > u(l,) < 5

As (2,T) is minimal, we have p(U,, ) > 0 for every n € N. Moreover, by assump-
tion, we have

(8) |wy| — 00,n — o0.

For w,z € W(Q), we say that w occurs in « around j € {1,...,|x|} if there exists
leNwithli<j<l+4|w—1and z()...z(l+ |w| —1) =w.
Now, define for n € N, the function F,, : W(2) — R by

Fo(x):=#{j €{1,...,|z|} : w, occurs in = around j}.

Here, #M denotes the cardinality of M. Thus F,(z) measures the amount of
“space” covered in x by copies of w,. Obviously, —F,, is subadditive for every
n € N.
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The definition of F,, shows
m—|wy,|—1

Folw(l)...w(m)) = > xo,, (T"w)

for arbitrary w € Q and m € N. Thus, by Proposition 2.6, we have

| llim 2|7 Fa(2) = p(Uw,)

for arbitrary but fixed n € N.
Invoking this equality and (7) and (8), we can choose inductively for every k € N
a number n(k) € N with

|wn(k+1)|
2

k
Z Fn(j)(SC) 1
_ < 77
; || 2
j=1
whenever |z| > |wy,41)|. It is not hard to see that

o0
=D Fupp (@)
j=1

is finite for every z € W(Q2) and —F : W(Q2) — R, z — —F(z), is subadditive.
Therefore, by our assumption (i) the limit

and

—A(—F) = lim Flwn)

n—oo |'u)n|

exists. On the other hand, for every k € N, we have
F(wpar)) S Fo2r) (Wr2k))

> =1
W (21| [ W (21
as well as
F(wn(2k+1)) 1 1
F, , < =
‘wn(2k+1)‘ |wn(2k+1)| Z n(2j) wn(2k+l)) |w (2k+1)| Z n(j) wn(2k+1)) 2

This is a contradiction and the proof of this part of the lemma is finished.
(ii) = (i). Let F : W(2) — R be subadditive. By Proposition 2.5, we have

(9) lim sup Flx) < A(F).

Thus, it remains to show

A(F) < lim inf 2(%n)

Assume the contrary. Then, A(F) > —oco and there exists a subsequence (wy)) of
(wy,) and 6 > 0 with

[Wn k) |
for every k € N. For w,z € W(Q2), we define #: (z) to be the maximal number of
disjoint copies of w in x.

(10) <A(F) -5



102 D. DAMANIK, D. LENZ

It is not hard to see that
m—|w|—1

ol #o(w()wm) 2 5 Y (Th)

k=0

for all w € 2 and m € N. By Proposition 2.6, this implies

- () 1
liminf —2|w| > =u(Uy,).
iminf = lw] 2 5 p(U)

Combining this with our assumption (ii), we infer

oy (T) c’
(11) lim inf —* |wn(k)|2?

for every k € N. By (9), we can choose Lg such that

!
@) Ay + %5,

(12) 2]

whenever |z| > Lo. Fix k € N with |w, )| > Lo. Using (11), we can now find

an L; € R such that every z € W(Q) with |z| > L; can be written as x =

T1Wn (k) T2Wn(k) - - - TIWn (k) T1+1 with

-2 _C" a2
8

(13) >

Now, considering only every other copy of wy,s) in z, we can write x as z =
YIWn(k)Y2 - - - YrWn (k) Yr41, With [y;] > Jwpgy| > Lo, j = 1,...,7+ 1, and by (13)
-2 N oz

r> — .
- 2 7 8 |wn(k)|

Using (12), (10) and this estimate, we can now calculate

1
Flz) _ i F(y)) lyil | Fwngw)) rlwn|
|| =l 2l el 2]
r+1
c’ ‘y| rlwn(k)‘
< A(F) + =)L + (A(F) -6
< 3000 + Fgo i+ () -9
C'e O o] [wnw
< AWF)+ =0 —- —
U G A
!
< A(F) - 26.
16
As this holds for arbitrary « € W(Q) with |z| > Ly, we arrive at the obvious
contradiction A(F) < A(F) — %5. This finishes the proof. O

Proof of Theorem 5. Given the previous results, the proof is simple: The equiva-
lence of (i) and (ii) is shown in Lemma 2.3. The implication (ii) = (iii) follows from
Theorem 6 combined with Lemma 2.7. The implication (iii) = (ii) is immediate
from Lemma 2.7. This finishes the proof of Theorem 5. 0
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3. UNIFORMITY OF LOCALLY CONSTANT COCYCLES

In this section we provide a proof of our main result, Theorem 1. As mentioned
already, the cornerstones of the proof are Theorem 5 and the so-called Avalanche
Principle, introduced in [41] and later extended in [15].

We use the Avalanche Principle in the following form given in Lemma 5 of [15].

Lemma 3.1. There exist constants A\g > 0 and k > 0 such that

N-1 N—-1

log || An .. Arl + D log | A;]| = > log [ A1 44ll| <
Jj=2 Jj=1
whenever N = 3F with P € N and Ay, ..., Ay are elements of SL(2,R) such that
o log||A;|| > A > Ao for every j=1,...,N;
o [1og || 4,1l + log [ A7s1]l — 1og [ A; Aysalll < 3 for every j = 1,..., N.

k- N
exp(A)’

Remark 3. Actually, Lemma 5 in [15] is more general in that more general N are
allowed.

Before we can give the proof of Theorem 1, we need one more auxiliary result.

Proposition 3.2. Let (2,T) be an arbitrary subshift and A : O — SL(2,R) a
locally constant function. Then,

. 1
0= Jim sup { & og 400 = 08 [4(m. )| (1) .- o() = (1) .. ()}
Proof. As A is locally constant, there exists an N € N such that A(w) = A(p),
whenever w(—N)...w(N) =p(=N)... p(N). Thus,
A(n — 2N, TNw) = A(n — 2N, T p),
whenever n > 2N and w(1)...w(n) = p(1)...p(n). Moreover, for arbitrary matri-
ces X,Y,Z in SL(2,R), we have
log [ Y]] - log [| X|[ - log || Z]| <log || XY Z|| <log | X|| + log [Y']| +log || Z],
where we used the triangle inequality as well as |[M|| = ||[M~}|| for M € SL(2,R).
Finally, we have
A(n,0) = AN, T" " Nag)A(n — 2N, TV o) A(N, o).
Putting these three equations together, we arrive at the desired conclusion. O
Remark 4. Let us point out that the previous proposition is the only point in our

considerations where local constancy of A enters. In particular, our main result
holds for all A for which the conclusion of the proposition holds.

Proof of Theorem 1. Let (2,T) be a subshift satisfying (B) and let A : Q@ —
SL(2,R) be locally constant. We have to show that A is uniform.

Case 1. A(A) = 0: As A takes values in SL(2,R), we have ||A(n,w)| > 1 and
the estimate

1
0 < liminf — log || A(n,w)||
n—oo N
holds uniformly in w € Q. On the other hand, by Corollary 2 of [39], we have

lim sup = log [| A(n, )| < A(A)
n

n—oo
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uniformly in w € Q. This shows the desired uniformity in this case.

Case 2. A(A) > 0: Define F : W(Q2) — R by

F(z) :=sup{log || A(n,w)|| : w(1)...w(n) = x}.
Apparently, F is subadditive. As discussed above, there exists then A(F) with
F(w(1)...
AE) — i P 0()
n—oo n

for u-almost every w € Q. On the other hand, by the multiplicative ergodic theorem,
there also exists A(A) with

M) — tim 1B ]AG2)]

n—oo n

for p-almost every w € . By Proposition 3.2, we infer that A(A) = A(F). Sum-
marizing, we have

(14) A(A) = A(F) > 0.
Combining this equation with Theorem 5, we infer
i F00n) _ A(A),

whenever (wy,) is a sequence with |w,,| = I/,. Also, combining (14) with Proposition
2.5, we infer

1 F
lim sup — log || A(n,w)|| < limsup (z) < A(A)
n

uniformly in w € Q. It remains to show
1
A(A) < liminf —log||A(n,w)||
n—oo N,

uniformly in w € Q. To do so, let € > 0 with ¢ < 1/12 be given.
The preceding considerations and Proposition 3.2 give existence of ng € N such
that with

the following holds:
(D) log[[A(n,w)|| < A(A)(1 4+ &)n for all w € Q whenever n > I.

(IT) log [|A(2l,w)[| > A(A)(1 — )2l for all w € €.

(III) A(A)(1—3e)l > Xo.

(IV) lex]i% < eA(A).
Here, \p and & are the constants from Lemma 3.1. Using (II), subadditivity and
(I), we can calculate

A1 -2 < Tog|ACLW)|

log [|A(L,w) || +log || A, T'w)]|
log [|A(l,w)|| + A(A)(1 4 )l
This implies A(A)(1 — 3e)l < log ||A(l,w)| and therefore by (III),

(15) Ao < A(A)(1—3e)l <log|lA(l,w)]]

VANVARNVAN
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for every w € Q. Moreover, by subadditivity, (I) and (II), we have
[log || A(1,w)| + log [| AL, T'w)|| — log || A(2L, w)ll|
log [|A(,w)]| +log || A(l, T'w)[| - log [ A(2],w)]
A(A)20(1 +¢€) —log || A2, w)]]

A(A)20(1+¢e) — A(A)2l(1 —¢)

A(A)dle

[VANIVAN

for arbitrary w € Q. Using the assumption ¢ < 1/12, we infer
1
(16)  [log|lA(L,w)|l +log | A(L, T'w)|| —log || A(L,w)|l| < SAA)(1 = 3e)l.
Equations (15) and (16) and (III) show that the Avalanche Principle, Lemma 3.1,
with
A=A(A)(1 - 3¢e)l

can be applied to the matrices Aj,..., Ay, where N = 3" with P € N arbitrary
and

Aj= A1, TV D), j=1,...,N
with w € Q arbitrary. This gives

N-1 N-1 N
log [[An ... Aa| + ; log | 4] — ; log || 41145 < ppyE

This yields

log |An ... A1l > Z log [[A4;4+14;] — Z log || 4| — ;TN/\)
> (N—=1AMA)(1—e)2l— (N -2)A(A)(1+¢e)l — e/:{p(]lf)
k- N
= A(A)NI(1 —3¢) + A(A)del — =5
kN
> AANIL-39) - S

Here, we used (I) and (II) in the second step and positivity of A(A)4el in the last
step. Dividing by by n := NI, and invoking (IV), we obtain

a7) A(A)(1 — ) < Llog | A(n, )|

for all w € Q and all n = 3° . [ with P € N.
We finish the proof by showing that

(18) A(A)(1 ~ 442) < log | A(n, )|

for all n > [ and all w € Q. As ¢ was arbitrary, this gives the desired statement.
To show (18), choose w € Q and and n > I. Let P € NU {0} be such that

3Pl <n<3ft.g
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Then, by (17) and subadditivity we have

AA)(1-4e) < 3P+2l log || A(3F21,w)|
1 1 ;
< 3P+2l log ||A(n, )| + =5 373 log |A(3F 21 — n, T"w)||
n

where we could use (I) in the last estimate as, by assumption on n, 37+2] —n >
374121 > [. Now, a direct calculation gives

P+2l 1
) < - log || A(n,w)]|.

As 3P+2]/n < 9 by the very choice of P, the desired equation (18) follows easily.
This finishes the proof of our main theorem. O

A(A) (1 +e— 553

4. STABILITY OF UNIFORM CONVERGENCE UNDER SUBSTITUTIONS

In the last section, we studied sufficient conditions on (£2,7") to ensure property
(P) : Every locally constant A :  — SL(2,R) is uniform.

In this section, we consider “perturbations” (£2(S),T) of (©,T) by substitutions S
and study how validity of (P) for (2,T) is related to validity of (P) for (£2(S),T).

We start with the necessary notation. Let A and B be finite sets. A map
S : A — B* is called a substitution. Obviously, S can be extended to A* in the
obvious way. Moreover, for a two-sided infinite word (w(n)),ez over A, we can
define S(w) by

S(w) i= -+ S(w(=2))S(w(=1))|9(w(0))S(w(1))S(w(2)) -+,
where | denotes the position of zero. If (2,7 is a subshift over A and S : A — B*
is a substitution, we define (S) by

QS) :={T"S(w) :w e k€ Z}.

Then, (©2(S),T) is a subshift over B. It is not hard to see that (©(S),T") is minimal
(uniquely ergodic) if € is minimal (uniquely ergodic).

Theorem 7. Let (2,T) be a minimal uniquely ergodic subshift over A that satisfies
(P). Let S be a substitution over A. Then, ((S),T) satisfies (P) as well.

Proof. Let B: Q(S) — SL(2,R) be locally constant. Define
A:Q— SL(2,R) by A(w) := B(|S(w(0))], S(w))-
Then, A is locally constant as well and
A(n,w) = B(|S(w(0)...w(n —1))],S(w)).

In particular, we have

(19) log | B(|S(w(0) . ..w(n))[, S@)Il _ n+1 log [[A(n, w)||
[S(w(0)...w(n))| |S(w(0)...w(n))| n+1 '
By
1S (w(0) n) = 15(a)#a(w(0)...w(n)

acA
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and unique ergodicity of (2,7), the quotients
n+1
[S(w(0)...w(n))]
converge uniformly in w € € towards a number p. From (19) and validity of (P)
for (2, T) we infer that

log [ B(|S(w(0) . .. w(n))[, S(w))]|

lim =p-A(4)

n—oo |S(w(0)...w(n))|
uniformly on Q. As every ¢ € Q(S) has the form ¢ = T*S(w) with |k| <
max{|S(a)| : a € A}, uniform convergence of X log||B(n,o)|| follows. O

In certain cases, a converse of this theorem holds. To be more precise, let (2,7")
be a subshift over A and S a substitution on A. Then, S is called recognizable
(with respect to (Q2,T)) if there exists a locally constant map

S:Q(S) — QU xZ

with S(T*S(w)) = (w, k), whenever 0 < k < |S(w(0))|. Recognizability is known
for various classes of substitutions that generate aperiodic subshifts, including all
primitive substitutions [72] and all substitutions of constant length that are one-
to-one [3] (cf. the discussion in [38]).

Theorem 8. Let (2,T) be a uniquely ergodic minimal subshift over A. Let S be
a recognizable substitution over A. If (Q(S),T) satisfies (P), then (2, T) satisfies
(P) as well.

Proof. Let B : Q — SL(2,R) be locally constant. For o € Q(S) define
A(o) = { Bw) : o=5w)

id : otherwise.

Note that o = S(w) if and only if the second component of S(o) is 0. As S is locally
constant, this shows that A is locally constant as well.
Moreover, by definition of A and recognizability of S, we have

A(|S(w(0)...w(n —1))],S(w)) = B(n,w).
Now, the proof can be finished similarly to the proof of the previous theorem. [J

There is an instance of the previous theorem that deserves special attention, viz
subshifts derived by return words. Return words and the derived subshifts have
been discussed by various authors since they were first introduced by Durand in
[32]. We recall the necessary details next.

Let (Q,7T) be a minimal subshift and w € W(Q) arbitrary. Then, z € W(Q) is
called a return word of w if xw satisfies the following three properties: it belongs to
W(), it starts with w and it contains exactly two copies of w. We then introduce a
new alphabet A,, consisting of the return words of w. Obviously, there is a natural
map

Sw: Ay — A*
which maps the return word x of w (which is a letter of A,,) to the word z over A.
Partitioning every word w € Q according to occurrences of w, we obtain a unique
two-sided infinite word w,, over A,, with

T7FSy(wy) =w
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for k£ < 0 maximal with w(k)...w(k+ |w| — 1) = w. We define
Q= {wy 1w e Q}.

Then, (2, T) is a subshift, called the subshift derived from (2, T) with respect to
w. It is not hard to see that (£2,,7) is minimal. Moreover, (Q,,,T) is uniquely
ergodic if (2,7 is uniquely ergodic. Clearly, S, is recognizable and (2,7) =
(Q4(Sw),T) since the whole construction only depends on the (local) information
of occurrences of w. Thus, we obtain the following corollary from the previous
theorem.

Corollary 1. Let (Q,T) be a minimal uniquely ergodic subshift that satisfies (P).
Let w € W(Q) be arbitrary. Then, (., T) satisfies (P) as well.

The aim of this paper is to study (P). Given that (B) is a sufficient condition
for (P), it is then natural to ask for stability properties of (B) as well. It turns out
that (B) shares the stability features of (P).

Theorem 9. Let (Q,T) be a minimal uniquely ergodic subshift over A. Let S be a

substitution on A and (U(S),T) the corresponding subshift.

(a) If (Q,T) satisfies (B), so does (2(S),T).

(b) If (2(S),T) satisfies (B) and S is recognizable, then (2, T) satisfies (B) as well.
Before we can give a proof, we note the following simple observation.

Proposition 4.1. Let (Q,T) be a minimal uniquely ergodic subshift satisfying (B)

with length scales (1,) and constant C' > 0. Then,

¢

N’

whenever w € W(Q) satisfies I, /N < |w| <1, for somen €N and N € N.

Proof. Every w € W(Q) with [,, /N < |w| <, is a prefix of a v € W with |v| = [,,.

Then, V,, C V,, holds and (B) implies

[wlp(Vw) =

v v C
wln(Ve) = uw) = W » £
This finishes the proof of the proposition. O

Proof of Theorem 9. Define M := {|S(a)| : a € A} and denote the unique T-
invariant probability measure on 2 (resp., 2(S)) by p (resp., ps).

(a) We assume that (Q,T") satisfies (B) with length scales (l,,) and constant C' > 0.
Let w € W(Q(S)) with |w| = [, for some n € N be given. Then, there exists a
word v € W(2) such that w is a subword of S(v) and satisfies the estimate

(20) L o) < .

Choose w € ) arbitrary. Obviously,

#Huw(S(w(l)...w(k))) > #u(w@)...w(k)).
Thus, counting occurrences of w € S(w) and occurrences of v in w, we obtain by
unique ergodicity

#Hu(SW)(1) ... Sw)(n)) #Ho(w@). .. w(k))

_ . - .
(wlps (Vi) |w] lim_ o > |w] lim i
|w] 1 1
= MH(VU) > M|U|M(Vv) > WC,
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where we used (20) in the second-to-last step and Proposition 4.1 combined with
(20) in the last step. This shows (B) for (£2(.S),T) along the same length scales (I,,)
with new constant C/M?2.

(b) We assume that (2(5),T) satisfies (B) with constant C' > 0 and length scales
(I). By recognizability, there exists a map S : QS) — QxZ and an N € N
with S(T*S(w)) = (w, k), whenever 0 < k < |S(w(0))], and S(w) = S(p), whenever
w(=N)...w(N)=p(=N)...p(N). Let ng be chosen such that

In

I >N

[3M} -
for all n > nyg.

Choose an arbitrary v € W(Q) with |v| = [;—XJ] for some n > ny.
Let z,y € W(Q2) be given with |z| = |y| = |[v| and zvy € W(Q). By recogniz-
ability and our choice of the lengths of z,y and v, occurrences of S(zvy) in S(w)

correspond to occurrences of v in w for any w € 2. Thus, we obtain

#Ho(w(1) ... w(n) = #s(y) (SW(1)...w(n)))
for every n € N and w € . Therefore, a short calculation invoking unique ergod-
icity gives

(V) = \vl,}grgo#”(w(l)ﬁ"w(n))2Ivl,}Lﬂgo#S(my)(s(wél)mw(n)))
ol 1S@@ - w@)] #5(zvy) (S(W(1) - w(n)))
Blavy)] o o P  mam)

1
> 37M\S($Uy)|MS(VS(my)),

where we used the trivial bound |S(z)|/|z| > 1 in the second-to-last step. By
construction, we have

o < oyl < [S(zoy)] < .

Thus, we can apply Proposition 4.1, and the assumption (B) on Q(S), to our
estimate on |v[u(V,) to obtain |v[u(V,) > 5. As v € W with |v] = U}(A was
arbitrary, we infer (B) with the new length scales [1,,/3] for n > ng and new constant
C/(6M?). O

5. ExAMPLES KNOWN TO SATISFY (B)

In this section we discuss the classes of subshifts for which the Boshernitzan con-
dition is either known or a simple consequence of known results. In our discussion
of the occurrence of zero-measure Cantor spectrum for Schrodinger operators in
Section 8, this will be relevant since all the models for which this spectral prop-
erty was previously known will be shown to satisfy (B). Hence we present a unified
approach to all these results.

5.1. Examples Satisfying (PW): Linearly Recurrent Subshifts and Sub-
shifts Generated by Primitive Substitutions. A subshift (Q2,7") over 4 satis-
fies the condition (PW) (for positive weights) if there exists a constant C' > 0 such

that
lim inf #o(7)

|v| > C for every v € W(Q).
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This condition was introduced by Lenz in [62]. There, it was shown that the class
of subshifts satisfying (PW) is exactly the class of subshifts for which a uniform
subadditive ergodic theorem holds. Moreover, (PW) implies minimality and unique
ergodicity.

The following is obvious:

Proposition 5.1. If the subshift (Q,T) satisfies (PW), then it satisfies (B).

The condition (PW) holds in many cases of interest. For example, it is easily
seen to be satisfied for all linearly recurrent subshifts. Here, a subshift (£2,7") is
called linearly recurrent (or linearly repetitive) if there exists a constant K such
that if v, w € W(Q) with |w| > K|v|, then v is a subword of w.

We note:

Proposition 5.2. If the subshift (Q,T) is linearly recurrent, then it satisfies (PW).

The class of linearly recurrent subshifts was studied, for example, in [33, 34].

A popular way to generate linearly recurrent subshifts is via primitive substitu-
tions. A substitution S : A — A* is called primitive if there exists k € N such
that for every a,b € A, S*(a) contains b. Such a substitution generates a subshift
(Q,T) as follows. It is easy to see that there are m € N and a € A such that S™(a)
begins with a. If we iterate S™ on the symbol a, we obtain a one-sided infinite
limit, u, called a substitution sequence. ) then consists of all two-sided sequences
for which all subwords are also subwords of u. One can verify that this construction
is in fact independent of the choice of u, and hence €2 is uniquely determined by S.
Prominent examples are given by

avrab, b—a Fibonacci

a v+ ab, b— ba Thue-Morse

a v ab, b— aa Period Doubling
a v ab, b— ac, c— db, d— dc | Rudin-Shapiro

The following was shown in [34]:

Proposition 5.3. If the subshift (0, T) is generated by a primitive substitution,
then it is linearly recurrent.

It may happen that a non-primitive substitution generates a linearly recurrent
subshift. An example is given by a — aaba, b — b. In fact, the class of linearly
recurrent subshifts generated by substitutions was characterized in [25]. In partic-
ular, it turns out that a subshift generated by a substitution is linearly recurrent if
and only if it is minimal.

5.2. Sturmian and Quasi-Sturmian Subshifts. Consider a minimal subshift
(Q,T) over A. Recall that the associated set of words is given by
W(Q) ={wk) - wk+n-1):ke€ZneNweQ}
The (factor) complexity function p : N — N is then defined by
(21) p(n) = W (9),

where W, () = W(Q) N A" and # denotes cardinality.
It is a fundamental result of Hedlund and Morse that periodicity can be charac-
terized in terms of the complexity function [44]:
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Theorem 10 (Hedlund-Morse). (Q,T) is aperiodic if and only if p(n) > n+1 for
every n € N.

Aperiodic subshifts of minimal complexity, p(n) = n + 1 for every n € N, exist
and they are called Sturmian. If the complexity function satisfies p(n) = n + k
for n > ng, k,ng € N, the subshift is called quasi-Sturmian. It is known that
quasi-Sturmian subshifts are exactly those subshifts that are a morphic image of a
Sturmian subshift; compare [18, 19, 74].

There are a large number of equivalent characterizations of Sturmian subshifts;
compare [9]. We are mainly interested in their geometric description in terms of an
irrational rotation. Let o € (0,1) be irrational and consider the rotation by « on
the circle,

R, :[0,1) = [0,1), R.0= {0+ a},

where {z} denotes the fractional part of z, {x} =  mod 1. The coding of the
rotation R, according to a partition of the circle into two half-open intervals of
length a and 1 — «, respectively, is given by the sequences

Un(ev, 0) = X0,a) (100).
We obtain a subshift
Qo ={v(e,0): 60 €[0,1)}
={v(a,0):0€[0,1)}U{sP(a): k ez} c {01}~

which can be shown to be Sturmian. Here, ﬁ,(lm(a) = X(0,0] (R2T*0). Conversely,
every Sturmian subshift is essentially of this form, that is, if Q is minimal and has
complexity function p(n) = n + 1, then up to a one-to-one morphism, 2 = Q, for
some irrational « € (0, 1).

By uniform distribution, the frequencies of factors of {2 are given by the Lebesgue
measure of certain subsets of the torus. Explicitly, if we write Iy = [0,«) and
I = [a, 1), then the word w = wy ... w, € {0,1}" occurs in v(«, ) at site k + 1 if
and only if

{ka+ 0} € I(wy,...,w,) =[] Ry’ (Lu,)-
j=1

This shows that the frequency of w is #-independent and equal to the Lebesgue
measure of I(wy,...,wy,). It is not hard to see that I(ws,...,w,) is an interval
whose boundary points are elements of the set

P, (a) :={{—ja}:0<j<n}

The n+ 1 points of P, («) partition the torus into n+ 1 subintervals and hence the
length A, (a) of the smallest of these intervals bounds the frequency of a factor of
length n from below. It is therefore of interest to study lim sup nh,(a).

To this end we recall the notion of a continued fraction expansion; compare
[56, 79]. For every irrational « € (0, 1), there are uniquely determined aj, € N such
that

(22) a = la1,az,as,...] =
a +

as+ ——
2 a3+...
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The associated rational approximants fl’—l’: are defined by
po=0, pr=1, pr=arpe—1+Dpr-2,
=1 ¢ =a, q&=adk-1~+ -2

These rational numbers are best approximants to « in the following sense,

(23) min |ga — p| = |gra — pi|,
p,gEN
0<g<qpy41

and the quality of the approximation can be estimated according to
1 1
24 — < | —pi| < —.
(24) ar + qr+1 | | Qk+1
By definition, we have

hp(a) = Ogﬂlllrén{qa}.

Notice that for 0 < ¢ < n, we have min{{ga}, {—qa}} = |lqc||, where we denote
]| = minpez |z - p|.
In particular,

2 hn(a) = mi .
(2) (@) = min [igal

As noted by Hartman [43], this shows that h,(«) can be expressed in terms of the
continued fraction approximants. Indeed, if we combine (23) and (25), we obtain:

Lemma 5.4 (Hartman). If g < n < qxy1, then
hn(a) = |qee — pil-
This allows us to show the following:
Theorem 11. Every Sturmian subshift obeys the Boshernitzan condition (B).
Proof. We only need to show that

(26) lim sup nh,(a) > C > 0.

n—oo
We shall verify this on the subsequence njy = qx4+1 — 1. Hartman’s lemma together
with (24) shows that

-1
Q1 —1 1—gq, 4
Qk T qr+1 1+ qqujl

nhn, (@) = (qe+1 — 1)|gra — pi| =
Thus (26) holds (with C' = 1/3, say). O

Corollary 2. Every quasi-Sturmian subshift obeys (B).

Proof. This follows from Theorem 11 along with the stability result, Theorem 9. O
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5.3. Interval Exchange Transformations. Subshifts generated by interval ex-
change transformations (IET’s) are natural generalizations of Sturmian subshifts.
They were studied, for example, in [13, 35, 36, 37, 53, 54, 55, 69, 77, 87, 88, 89].

IET’s are defined as follows. Given a probability vector A = (A1,...,A,,) with
AN >0 for 1 <i< m, we let Mo = 0, Wi = Z;’:l )‘jv and I;, = [ll'i—lvlfﬂi)' Let
T be a permutation of A, = {1,...,m}, that is, 7 € S,,, the symmetric group.
Then A7 = (A-1(1),- -+, Ar=1(mm)) is also a probability vector and we can form the
corresponding p] and I7. Denote the unit interval [0,1) by I. The (A, 7) interval
exchange transformation is then defined by

T:1—1, T(x):x—,ui_l—i—/,L:(i)fl forzel;, 1<i<m.

It exchanges the intervals I; according to the permutation 7.

The transformation T is invertible and its inverse is given by the (A™,77!) in-
terval exchange transformation.

The symbolic coding of x € I is wy,(x) = if T"(x) € I;. This induces a subshift
over the alphabet A,,,: Qy, = {w(z): x € I}.

Sturmian subshifts correspond to the case of two intervals as a first return map
construction shows.

Keane [53] proved that if the orbits of the discontinuities p; of T' are all infinite
and pairwise distinct, then 7" is minimal. In this case, the coding is one-to-one and
the subshift is minimal and aperiodic. This holds in particular if 7 is irreducible
and A is irrational. Here, 7 is called irreducible if 7({1,...,k}) # ({1,...,k}) for
every k < m and A is called irrational if the A; are rationally independent.

Regarding property (B), Boshernitzan has proved two results. First, in [12] the
following is shown:

Theorem 12 (Boshernitzan). For every irreducible T € Sy, and for Lebesgue al-
most every A, the subshift Qx , satisfies (B).

In fact, Boshernitzan shows that for every irreducible 7 € S,, and for Lebesgue
almost every A, the subshift Q, ; satisfies a stronger condition where the sequence
of n’s for which n(n) is large cannot be too sparse. This condition is easily seen to
imply (B), and hence the theorem above.

Note that when combined with Keane’s minimality result, Theorem 12 implies
that almost every subshift arising from an interval exchange transformation is
uniquely ergodic. The latter statement confirms a conjecture of Keane [53] and
had earlier been proven by different methods by Masur [69] and Veech [88]. Keane
had in fact conjectured that all minimal interval exchange transformations would
give rise to a uniquely ergodic system. This was disproved by Keynes and Newton
[55] using five intervals, and then by Keane [54] using four intervals (the smallest
possible number). The conjecture was therefore modified in [54] and then ultimately
proven by Masur and Veech.

In a different paper, [13], Boshernitzan singles out an explicit class of subshifts
arising from interval exchange transformations that satisfy (B). The transformation
T is said to be of (rational) rank k if the u; span a k-dimensional space over Q (the
field of rational numbers).

Theorem 13 (Boshernitzan). If T has rank 2, the subshift Qy ; satisfies (B).
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6. CIRCLE MAPS

Let o € (0,1) be irrational and 3 € (0, 1) arbitrary. The coding of the rotation
R, according to a partition into two half-open intervals of length 5 and 1 — (3,
respectively, is given by the sequences

’Un(CM, /87 9) = X[O,ﬁ) (RZG)
‘We obtain a subshift
(27) Qup={v(a,3,0):0€0,1)} c{0,1}2

Subshifts generated this way are usually called circle map subshifts or subshifts
generated by the coding of a rotation. These natural generalizations of Sturmian
subshifts were studied, for example, in [1, 2, 10, 28, 29, 30, 48, 52, 80].

To the best of our knowledge, the Boshernitzan condition for this class of sub-
shifts has not been studied explicitly. It is, however, intimately related to classical
results on inhomogeneous diophantine approximation problems. In this section we
make this connection explicit and study the condition (B) for circle map subshifts.

To describe the relation of frequencies of finite words occurring in a subshift to
the length of intervals on the circle, let us write, in analogy to the Sturmian case,
Iy =10,8) and I, = [3,1). The word w = wy ... w, € {0,1}" occurs in v(a, 3,6)
at site k + 1 if and only if

RE(0) € I(wy, ..., wy) = [ | Ry (L,).
j=1

Thus the frequency of w is f-independent and equal to the Lebesgue measure of
I(ws,...,wy,). Moreover, I(ws,...,wy,) is an interval whose boundary points are
elements of the set

Pu(er,B) = {{~ja+kB}: 1< j<n 0<k<1).

This shows in particular that Q, g is quasi-Sturmian when $ € Z + oZ as in this
case P, (a, ) splits the unit interval into n + k subintervals for large n. On the
other hand, when 8 € Z + oZ, P, (a, ) contains 2n elements and the complexity
of Q4 is p(n) = 2n for n large enough.

Again, the points of P, («, §) partition the torus into 2n (resp., n+k) subintervals
and hence the length h, («, ) of the smallest of these intervals bounds the frequency
of a factor of length n from below. Explicitly, we have

hn(a, B) = min {[lga + 7] : 0 < [g| <n, 0 <7 <1, (q,7) # (0,0)} .
Let us also define
(v, ) = min {[|gar + B + 0 < |g| < n}.
Then h,(«, 3) < En(oz,ﬁ) and therefore
(28) lim sup nhy, (a, 3) = 0 = limsup nh,, (a, B) = 0.

n—oo n—oo
Since we saw in Theorem 11 above that the points of P, («) are nicely spaced for
many values of n, the Boshernitzan condition can only fail for a circle map subshift
Q4. if the orbit of the a-rotation comes too close to 3. In other words, to prove
such a negative result for a circle map subshift, it should be sufficient to study
(e, ), followed by an application of (28).
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Motivated by Hardy and Littlewood [42], Morimoto [70, 71] carried out an in-
depth analysis of the asymptotic behavior of the numbers h,(a,3). Morimoto’s
results and related ones were summarized in [57]. While it is possible to deduce
consequences regarding the Boshernitzan condition from these papers, we choose to
give direct and elementary proofs of our positive results below and make reference
to a specific theorem of Morimoto only for a complementary negative result.

Our first result shows that the Boshernitzan condition holds in almost all cases.

Theorem 14. Let o € (0,1) be irrational. Then the subshift Qq, g satisfies (B) for
Lebesgue almost every 3 € (0,1).

Proof. Denote the set of 3’s for which the Boshernitzan condition fails by N(«),
N(a) ={B € (0,1) : Q4 p does not satisfy (B)}.
By (26) and Theorem 11, there exists a sequence ny — oo such that

liminf nghy,, (o) = C > 0.
k— o0

Let € > 0 with € < C be given and denote the 5--neighborhood of the set {{qa} :

0 < |g| <n} by U(e,n). Clearly, every 8 € N(«) belongs to U(e, ny) for k > ko(3).
Therefore,

(29) N(a) C thI_l}gf Ule,ng) = U ﬂ U(e,ng).
m=1k>m

The sets

Sm = ﬂ U(Eank)

k>m

obey Sy, € Spt1 and |Sy,| < € for every m; | -| denoting Lebesgue measure. Hence,

liminf U(e, ng)| < e.

k—o0
It follows that N(«) has zero Lebesgue measure. O

The next result concerns a subclass of a’s for which the Boshernitzan condition
holds for all 3’s.

Theorem 15. Let a € (0,1) be irrational with bounded continued fraction coeffi-
cients, that is, a, < C. Then, Qq g satisfies (B) for every 8 € (0,1).

Proof. By Lemma 5.4 and (24), we have
1

hn(a) > ——,
Qk + Qr+1
where k is chosen such that ¢ < n < ggy1. Thus, for every n, we have
ns L > L
@+ qer1 — (agg1 +2)gr — C+2
Now assume there exists 5 € (0,1) such that Q, 3 does not satisfy (B). Let
e = (7C+14)71. Aslimsup,,_, ., ne(n) = 0, we have ne(n) < ¢ for every sufficiently
large n. Thus, for each such n we can find a word of length n with frequency less
than e/n. Now, each such word corresponds to an interval with length less than
e/n with boundary points in P,(«,3). Moreover, invoking (30) and the fact that
e < 1/(C +2), we infer that the length of the interval has the form |m,a — 8 — k|

(30) nhy(a) >
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with |my| < n. To summarize, we see that for every n large enough there exist
ky, my with |m,| < n such that

‘mnafﬁfkjn| S

S|o

Clearly, the mapping n — m,, can take on each value only finitely many times.
Therefore, there exists a sequence n; — oo such that m,; # mp;+1. This implies

’(m"j+1 - m”j) o= (knﬂrl - km)’ < |mnj+1a -6- k"j+1| + ’mnjoz - B k”a‘|

3 9
<

n; + 1 E
2e
<=,
5
Since 0 < |mnj+1 —mnj| < 2(nj; + 1) < 3n; =: fj, we obtain Njha, () < 6e <
(C 4 2)~1, which contradicts (30). O

This raises the question whether Q, g satisfies (B) for every 3 also in the case
where o has unbounded coefficients a,,. It is a consequence of a result of Morimoto
[71] that this is not the case.

Theorem 16 (Morimoto). Let o € (0,1) be irrational with unbounded continued
fraction coefficients. Then, there exists 8 € (0,1) such that

lim sup nh, (a, 3) = 0.

n—oo

Corollary 3. Let a € (0,1) be irrational with unbounded continued fraction coef-
ficients. Then, there exists § € (0,1) such that Qq, does not satisfy (B).

Proof. This is an immediate consequence of Theorem 16 and (28). |

We close this section with a brief discussion of the case where the circle
is partitioned into a finite number of half-open intervals. To be specific, let
0 < p1 < -+ < Bp—1 < 1 and associate the intervals of the induced partition
with p symbols: Let 8, = By = 0 and

Un(e) =k& RZ(‘Q) € [6k7/3k+1)’
We obtain a subshift over the alphabet {0,1,...,p — 1},
Qs ={v():0€0,1)}.
Again, the word w = w ... wy, € {0,1}" occurs in v(f) at site k& + 1 if and only if

REO € I(wy, ..., wy) = [ Ry (L)
Jj=1

and the connected components of the sets I(ws,...,w,) are bounded by the points
(31) {—ja+pr:1<j<n0<k<p-—1}

Recall that limsup,, .. nhy(a, ) is an important quantity in the case of a par-
tition of the circle into two intervals. In fact, we showed that this quantity being
positive is a necessary condition for (B) to hold. When there are three or more in-
tervals, however, we will need to require a much stronger condition as the (;’s may
now “take turns” in being well approximated by the a-orbit. Indeed, we shall now
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be interested in studying lim inf,,_ .o nhy, (a, ) (for certain values of ~, associated
with the (;’s). More precisely, define the following quantity:

M(a, ) = liminf |n| - [[na — 7]

In|—o0
Let
P(a) ={v: M(a,7) > 0}.
Then, we have the following result:

Theorem 17. Let o € (0,1) be irrational. Suppose that 0 = By < f1 < -+ <
Bp—1 < Bp =1 are such that

O — 0B € Pla) for0<k#1<p-1.
Then the subshift (g, T) satisfies the Boshernitzan condition (B).

Remarks. 1. This gives a finite number of conditions whose combination is a
sufficient condition for (B) to hold.

2. The set P(«) is non-empty for every irrational «. In fact, for every irrational «
there exists a suitable v such that M («,~) > 1/32; compare [79, Theorem IV.9.3].

3. We discuss in Appendix B how M(«,~) can be computed with the help of the
so-called negative continued fraction expansion of a and the a-expansion of ~.

Proof. By (31), all frequencies of words of length n are bounded from below by
hn(a, 3) = min{|lga+ Br — Gl : 0 < |g| <n, 0 <k, 1 <p—1, (g k—1) # (0,0)}.
As in our considerations above, we choose a sequence ny — oo such that
hkn_l,ior.}fnkh”k () =C >0.
By assumption, we have
D =min{M(a,fr — 1) : 0<k#1<p-—1} >0.

Notice that with these choices of C' and D, frequencies of words of length nj are
bounded from below by

. C—-o(l) D—o(1
(.9 min { €20, D0
N Nk
Putting everything together, we obtain
limsupn - n(n) > likminf ng - n(ng) > min{C, D} > 0,
— 00

n—oo

and hence (B) is satisfied. O

7. ARNOUX-RAUZY SUBSHIFTS AND EPISTURMIAN SUBSHIFTS

In this section we consider another natural generalization of Sturmian subshifts,
namely, Arnoux-Rauzy subshifts and, more generally, episturmian subshifts. These
subshifts were studied, for example, in [4, 27, 31, 50, 51, 78, 91]. They share with
Sturmian subshifts the fact that, for each n, there is a unique subword of length n
that has multiple extensions to the right. Our main results will show that, similarly
to the circle map case, the Boshernitzan condition is almost always satisfied, but
not always.

Let us consider a minimal subshift (2, T) over the alphabet A,, = {1,2,...,m},
where m > 2. Recall that the set of subwords of length n occurring in elements
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of Q is denoted by W, (€2) (cf. (3)) and that the complexity function p is defined
by p(n) = tW,(Q) (cf. (21)). A word w € W(RQ) is called right-special (resp.,
left-special) if there are distinct symbols a,b € A, such that wa,wb € W(Q)
(resp., aw,bw € W(Q)). A word that is both right-special and left-special is called
bispecial.

For later use, let us recall the Rauzy graphs that are associated with W(Q2). For
each n, we consider the directed graph R,, = (V;,, A,,), where the vertex set is given
by Vi, = Wh(Q), and A,, contains the arc from aw to wb, a,b € A, |w| =n—1,if
and only if awb € W,,41(Q). That is, |V, | = p(n) and |A,| = p(n + 1). Moreover,
a word is right-special (resp., left-special) if and only if its out-degree (resp., in-
degree) is > 2.

Note that the complexity function of a Sturmian subshift obeys p(n+1)—p(n) =1
for every n and hence for every length, there is a unique right-special factor and
a unique left-special factor, each having exactly two extensions. This property is
clearly characteristic for a Sturmian subshift.

Arnoux-Rauzy subshifts and episturmian subshifts relax this restriction on the
possible extensions somewhat, and they are defined as follows: 2 is called an
Arnouz-Rauzy subshift if for every n, there is a unique right-special word r,, € W(Q)
and a unique left-special word I, € W(), both having exactly m extensions. This
implies in particular that p(1) = m and hence

p(n)=(m—-1)n+1.

Arnoux-Rauzy subshifts over Ay are exactly the Sturmian subshifts.

On the other hand, € is called episturmian if W(Q) is closed under reversal (i.e.,
for every w = w;y ... w, € W(Q), we have wf = w, ...w; € W(Q)) and for every
n, there is exactly one right-special word 7, € W().

Tt is easy to see that every Arnoux-Rauzy subshift is episturmian. On the other
hand, every episturmian subshift turns out to be a morphic image of some Arnoux-
Rauzy subshift. We shall explain this connection below. Since we are interested in
studying the Boshernitzan condition, this fact is important and allows us to limit
our attention to the Arnoux-Rauzy case.

Risley and Zamboni [78] found two useful descriptions of a given Arnoux-Rauzy
subshift, namely, in terms of the recursive structure of the bispecial words and in
terms of an S-adic system.

Let € be the empty word and let {e = w1, ws, ...} be the set of all bispecial words
in W(Q), ordered so that 0 = |w;| < |ws| < ---. Let I = {i,} be the sequence of
elements i,, of A,, so that w,i, is left-special. The sequence I is called the index
sequence associated with 2. Risley and Zamboni prove that, for every n, wy,41 is
the palindromic closure (wyin)™ of wyiy, that is, the shortest palindrome that has
wpiy, as a prefix. Conversely, given any sequence I, one can associate a subshift
Q as follows: Start with w; = € and define w,, inductively by w, 11 = (wpin)™
The sequence of words {w, } has a unique one-sided infinite limit w., € AY,, called
the characteristic sequence, which then gives rise to the subshift (Q(1),T) in the
standard way; Q(I) consists of all two-sided infinite sequences whose subwords occur
in w. Risley and Zamboni prove the following characterization.

Proposition 7.1 (Risley-Zamboni). For every Arnouz-Rauzy subshift (2, T) over
A, every a € A, occurs in the index sequence {i,} infinitely many times and
Q = Q). Conversely, for every sequence {in} € AN such that every a € Ay,
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occurs in {i,} infinitely many times, (Q(I),T) is an Arnouz-Rauzy subshift and
{in} is its index sequence.

The S-adic description of an Arnoux-Rauzy subshift, that is, involving iterated
morphisms chosen from a finite set, found in [78] reads as follows.

Proposition 7.2 (Risley-Zamboni). Let (Q,T) be an Arnouz-Rauzy subshift over
A and {i,} the associated index sequence. For each a € A,,, define the morphism
Ta by

To(a) = a and 74(b) = ab for b € A, \ {a}.

Then for every a € A,,, the characteristic sequence is given by

lim 7, 0---01, (a).
m—0oQ

We can now state our positive result regarding the Boshernitzan condition for
Arnoux-Rauzy subshifts.

Theorem 18. Let (Q,T) be an Arnouz-Rauzy subshift over A, and {i,} the as-
sociated index sequence. Suppose there is N € N such that for a sequence k; — oo,
each of the words iy, ... ik, yN—1 contains all symbols from A,. Then the Bosher-
nitzan condition (B) holds.

This result is similar to Theorem 14 in the sense that if we put any probability
measure v on A, assigning positive weight to each symbol, then almost all se-
quences {i,} with respect to the product measure N correspond to Arnoux-Rauzy
subshifts that satisfy the assumption of Theorem 18.

Before proving this theorem, we state our negative result, which is an analog of
Corollary 3.

Theorem 19. For every m > 3, there exists an Arnouz-Rauzy subshift over A,
that does not satisfy the Boshernitzan condition (B).

Remark 5. The assumption m > 3 is of course necessary since the case m =1 is
trivial and the case m = 2 corresponds to the Sturmian case, where the Bosher-
nitzan condition always holds; compare Theorem 11.

The Arnoux-Rauzy subshifts are uniquely ergodic and we set
d(w) = p(Vi), w € W(Q),

where, as usual, the unique invariant probability measure is denoted by p.
Proof of Theorem 18. This proof employs the description of the subshift in terms
of the bispecial words; compare Proposition 7.1.

Observe that there is some kg such that |wy| < 2|wy_1| for every k > ko. Essen-
tially, we need that ij,...,4,,—1 contains all symbols from A,,.

Now consider a value of k > k¢ such that i ..., ny—1 contains all symbols from
A.n. We claim that
(32) il - nfwl) = 27V,
By the assumption, this implies

limsupn -n(n) > 27V

n—oo

and hence the Boshernitzan condition (B).
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The Rauzy graph Rj,,| has one vertex (namely, wy) with in-degree and out-
degree m, while all other vertices have in-degree and out-degree 1. Thus, the graph
splits up into m loops that all contain wy and are pairwise disjoint otherwise. These
loops can be indexed in an obvious way by the elements of the alphabet A,,.

Since wgt+1 = (wpik)™, wrr1 begins and ends with wy and, moreover, w41
contains all words that correspond to the loop in R, | indexed by ix. Iterating
this argument, we see that wy4n contains the words from all loops and hence all
words from W, |(€2). This implies

1 1

d(w) > d(w >
( )7 ( k+N)7 ‘wk+N| 72N‘wk|

min
WEW| 4, | (©2)
and hence (32), finishing the proof. O

Proof of Theorem 19. This proof employs the description of the subshift in terms
of an S-adic structure; compare Proposition 7.2.

We shall construct an index sequence {i,} over three symbols (i.e., over the
alphabet A43) such that the corresponding Arnoux-Rauzy subshift does not satisfy
the Boshernitzan condition (B). It is easy to verify that the same idea can be used
to construct such a subshift over A,, for any m > 3.

The index sequence will have the form

(33) i1i9lz ... = 191202393]94205396 197

with a rapidly increasing sequence of integers, {ay}.

By the special form of the Rauzy graph, the words wya label all the frequencies
of words in Wy, |+1(Q) since words corresponding to arcs on a given loop in Ry,
must have the same frequency. Put differently,

(34) n(lwg| + 1) = min dy, (wia).
a€As3

Here, we make the dependence of the frequency on w., explicit.

Moreover, it is sufficient to control n(n) for these special values of n since every
subword u that is not bispecial has a unique extension to either the left or the right,
and this extension must have the same frequency. This shows

(35) n(Jwg| + 1) > n(n) for Jwk| +1 < n < |wgr1].

Now write pig m = T4, 0+ 0 Tj,,, .- Proposition 7.2 says that the characteristic
sequence is given by the limit

w= lm 4 ,(a) for every a € As.
m—00

We also define

w® = lim LEm(a) = (m,k_1)_1(w)-
m—0o0

By [50], w®) is the derived sequence labeling the return words of wy, in we.. In
particular, w® labels the occurrences of wya, @ € As, in w. Moreover,

dy (@) dy (@)
36 Ay, (wra) = < — .
(36) (wia) > bes Duwm (0)[p1,k—1(b)| — minpe a4 |p1,5-1(0)]

Combining (34) and (36), we obtain

w| +1 .
[k - min d,,m (a).

37 wi| + 1) - n(jwg| +1) < —
BTl 1) o] +1) € e min
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Notice that (Jwg| 4+ 1)(minpea, [p1,6-1(b)])"! only depends on iy,...,i,—1 and
minge 4, dyyx (@) only depends on ik, ikt1,.... Thus, if we choose a rapidly in-
creasing sequence {a,} in (33), we can arrange for

(38) Tim (g + 1) -] + 1) = 0.

This together with (35) implies
lim n-n(n) =0,

n—oo

proving the theorem.

Let us briefly comment on (38). Choose a monotonically decreasing sequence
er — 0. Assign any value > 1 to a;. Then, a2 should be chosen large enough so
that for 1 <k < aq, (37) yields

(39) (lwel +1) - n(lwe] +1) < ex.

Here we use that between consecutive 3’s in w®), there must be at least ay 2’s.
Next, we choose ag so large that (39) holds for a; + 1 < k < ay. Here we use that
between consecutive 1’s in w(¥), there must be at least as 3’s. We can continue in
this fashion, thereby generating a sequence {a,, } such that (39) holds for all k. This
shows in particular that (|wg|+ 1) - n(jwk| + 1) can go to zero arbitrarily fast. O

One may wonder what sequences are generated by the procedures described be-
fore Propositions 7.1 and 7.2 if one starts with an index sequence that does not
necessarily satisfy the assumption above, namely, that all symbols occur infinitely
often. It was shown by Droubay, Justin and Pirillo [31, 50] that one obtains epis-
turmian subshifts and, conversely, every episturmian subshift can be generated in
this way.

Proposition 7.3 (Droubay, Justin, Pirillo). For every episturmian subshift (Q,T)
over A, there exists an index sequence {i,} such that Q = Q(I). Conversely,
for every sequence {i,} € AN, (QI),T) is an episturmian subshift and {i,} is its
index sequence. For every a € A,,, the characteristic sequence is given by

lim 7, 0- 01, (a).
m—0o0

We can now quickly deduce results concerning (B) (and hence (P)) for epistur-
mian subshifts. If (Q,T) is an episturmian subshift over A,,, denote by A C A,, the
set of all symbols that occur in its index sequence infinitely many times. Fix & such
that i, ig41, .. . only contains symbols from .A. Thus this tail sequence corresponds
to an Arnoux-Rauzy subshift over |.4] symbols and the given episturmian subshift
is a morphic image (under pq,,—1) of it. (Note that |.A| > 2 since (2,T) is aperi-
odic.) If the associated Arnoux-Rauzy subshift satisfies (B) (if, e.g., Theorem 18
applies), then (92,7 satisfies (B) by Theorem 9. On the other hand, since every
Arnoux-Rauzy subshift is episturmian, Theorem 19 shows that not all episturmian
subshifts satisfy (B). In this context, it is interesting to note that Justin and Pirillo
showed that all episturmian subshifts are uniquely ergodic [50].

8. APPLICATION TO SCHRODINGER OPERATORS

In this section we discuss applications of our previous study to spectral theory
of Schrodinger operators. This is based on methods introduced in [63] by Lenz.
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Let (2,7) be a minimal uniquely ergodic subshift over the finite set A4 and
assume A C R. As discussed in the introduction, (€2,7T) gives rise to the family
(H,)weq of selfadjoint operators H,, : ¢2(Z) — {?(Z) acting by

(Hyu)(n) =u(n+1) +u(n — 1) + w(n)u(n).
As (,T) is minimal, there exists a set 3 = X((Q,7)) C R with
o(H,) =% forallw e Q

(see, e.g., [8]). We will assume furthermore that (2, 7T) is aperiodic. Such subshifts
have attracted a lot of attention in recent years for both physical and mathematical
reasons:

These subshifts can serve as models for a special class of solids discovered in
1984 by Shechtman et al. [81]. These solids, later called quasicrystals, have very
special mechanical, electrical, and diffraction properties [49, 82]. In the quantum
mechanical description of electrical (i.e., conductance) properties of these solids,
one is led to the operators (H,) above. These operators in turn have a tendency
to display intriguing mathematical features. These features include:

(Z) Cantor spectrum of Lebesgue measure zero, that is, ¥ is a Cantor set of
Lebesgue measure zero.
(8C) Purely singular continuous spectrum, that is, absence of both point spec-
trum and absolutely continuous spectrum.
(AT) Anomalous transport.

By now, absence of absolutely continuous spectrum is completely established for
all relevant subshifts due to results of Last and Simon [61] in combination with
earlier results of Kotani [59]. The other spectral features have been investigated for
large, but special, classes of examples. Here, our focus is on (Z). As for the other
properties, we refer the reader to the survey articles [21, 83].

The property (Z) has been investigated for several models: For the period-
doubling substitution and the Thue-Morse substitution, it was shown to hold by
Bellissard et al. in [7] (cf. earlier work of Bellissard [6] as well). A more general
result for primitive substitutions has then been obtained by Bovier and Ghez [16].
Recently, proofs of (Z) for all primitive substitutions were obtained by Liu et
al. [66] and, independently, by Lenz [63]. For special examples of on-primitive
substitutions, (Z) has recently been investigated by de Oliveira and Lima [73].
Their results were extended by Damanik and Lenz [25].

For Sturmian operators, (£) has been proven by Siit6 in the golden mean case
(= Fibonacci substitution) [83, 84]. The general case was then treated by Bellissard
et al. [8]. A different approach to (Z) in the Sturmian case has been developed in
[26] by Damanik and Lenz. A suitably modified version of this approach can also
be used to study (Z) for a certain class of substitutions as shown by Damanik [22].

For quasi-Sturmian operators, (£) was shown in [24]. Later a different proof was
given in [64].

All approaches to (Z) are based on a fundamental result of Kotani [59]. To
discuss this result, we need some preparation.

Spectral properties of the operators (H,) are intimately linked to behavior of
solutions of the difference equation

(40) un+1)+un—1)+ (wn) — E)u(n) =0
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for E € R. To study this behavior, we define, for £ € R, the locally constant
function MF : Q — SL(2,R) by
(41) ME@) = ( E-e® —1)

1 0
Then, it is easy to see that a sequence u is a solution of the difference equation (40)
if and only if

(42) ( u(n +1) > - ME(n,w)< Z%; ) nez.

The rate of exponential growth of solutions of (40) is then measured by the so-called
Lyapunov exponent y(E) = A(MF). The fundamental result of Kotani, mentioned
above, says that (due to aperiodicity)

(43) {E e R:~(E) =0} =0,

where | - | denotes Lebesgue measure on R. By general principles, it is clear that
{E €eR:~v(FE)=0} C X [17]. The overall strategy to prove (Z) is then to show
(44) Y={FeR:vy(E) =0}

Given (44), ¥ can not contain an interval by (43). Moreover, ¥ is a closed set, as
the spectrum of an operator always is. Finally, 3 does not contain isolated points,
again by general principles on random operators [17]. Hence, ¥ is a Cantor set of
measure zero if (44) holds.

The standard approach to (44) used to rely on trace maps. Trace maps are a
powerful tool in the study of spectral properties. In particular, they can be used
not only to study (Z), but also to investigate (SC) and (A7). However, trace
maps do not seem to be available as soon as the dynamical systems get more
complicated. This difficulty is avoided in a new approach to (Z) introduced in [63].
There, validity of (44) is related to certain ergodic properties of the underlying
dynamical system. More precisely, the abstract cornerstone of this new approach
is the following result.

Theorem 20. [63] Let (2,T) be a minimal uniquely ergodic subshift over A C R.
Then, ¥ = {E € R: y(E) = 0} if and only if M is uniform for every E € R. In
this case, the map v : R — [0, 00) is continuous.

Given this theorem, it becomes possible to show (44) by studying uniformity of
the functions M. In fact, as shown in [63], uniformity of M¥ holds for all systems
satisfying (PW) and, in particular, for all linearly repetitive systems (see [62] as
well). In [63], this was used to prove (Z) for all primitive substitutions. Later
(Z) has been established for various further systems by showing linear repetitivity
[1, 25, 73].

Proof of Theorem 2. Given Theorem 20 and Kotanis result (43), the assertion fol-
lows easily from our main result: By (B) and Theorem 1, the function M¥ is
uniform for every E € R. By Theorem 20, this implies ¥ = {E : v(E) = 0}.
By (43), this gives that ¥ is a Cantor set of Lebesgue measure zero, as discussed
above. 0

Proof of Theorem 3. The result follows from Theorem 2 and the results regarding
the validity of (B) for circle map subshifts of Section 6. O
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Proof of Theorem 4. The assertion is immediate from Theorem 20 and our main
result, Theorem 1. O

As becomes clear from the discussion in Section 5, Theorem 2 generalizes all
earlier results on (Z). Moreover, it gives various new ones. One of these new
results on (Z) is Theorem 3. Similarly, combining Theorem 2 and the results of
Subsection 5.3, we obtain another new result on (Z) for subshifts associated with
interval exchange transformations. To the best of our knowledge this is the first
result on (Z) for operators associated to interval exchange transformations (not
counting those which are Sturmian or linearly repetitive).

Theorem 21. Let 7 € S, be irreducible. Then, for Lebesgue almost every A,
Y =X(2,7) is a Cantor set of Lebesgue measure zero.

Proof. As discussed in Subsection 5.3, if 7 € S, is irreducible, Q, ; is minimal,
aperiodic, and satisfies (B) for almost every A. This, combined with Theorem 2,
yields the assertion. 0

Finally, we also mention the following result for Arnoux-Rauzy subshifts, which
follows from Theorem 2 and the discussion in Section 7

Theorem 22. Let (2,T) be an aperiodic Arnouz-Rauzy subshift over A, and {iy}
the associated index sequence. Suppose there is N € N such that for a sequence
kj — 0o, each of the words iy, ... i,y N—1 contains all symbols from A,,. Then, ¥
is a Cantor set of measure zero.
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APPENDIX A. ALMOST EVERY CIRCLE MAP SUBSHIFT HAS INFINITE INDEX

In this section, we show that the previous results on zero-measure Cantor spec-
trum for Schrodinger operators associated with circle map subshifts only cover a
zero-measure set in parameter space. This should be seen in connection with The-
orem 3, where this spectral result is established for almost all parameter values.

Recall that for every (a, 8) € (0,1) x (0,1), we may define a subshift 2, g as in
(27).

Proofs of zero-measure spectrum for the associated operators based on trace map
dynamics were given in [8, 24, 83, 84]. They cover the case of arbitrary irrational
a € (0,1) and B’s in (0,1) of the form § = ma + n. This is clearly a zero-measure
set in (0,1) x (0,1).

The paper [1] applies the results of [63] and shows zero-measure spectrum for
a class of circle map subshifts that is characterized by means of a generalized
continued fraction algorithm. Essentially, [1] characterizes the pairs (a, ) for which
the associated subshifts are linearly recurrent. We want to show that these, too,
form a set of measure zero.

To this end, we note that every aperiodic linearly recurrent subshift €2 has finite
index in the sense that there is N < oo such that its set of finite subwords, W(€Q),
contains no word of the form w?. (This is immediate from the definition.)
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We say that a subshift €2 has infinite index if for every n > 1, there is a word w
such that w™ € W(2) and prove the following:

Proposition A.1. For almost every (o, 8) € (0,1) x (0,1), the subshift Q. 5 has
infinite index.

Remarks. (a) This implies that for almost every (a, 3) € (0,1) x (0,1), 4,3 is not
linearly recurrent.

(b) Our proof is an extension of arguments from [28, 52].

Proof. It suffices to show that for each fixed 8 € (0, 1), Q4,3 has infinite index for

almost every a € (0, 1).
For a sequence [, — oo with

(45) d =0
k=1

(e.g., lp = k), we define the sets G, g(k) C [0,1) by
Gap(k) = {0 € [0,1) : Vo(mar +7) = Vo(j), =20 + 1 <m <2l = 1,1 < j < ai},
where

Vo(n) = X(0,5)(R00).

It is clearly sufficient to show that for each 5 € (0,1) fixed (and | - | denoting
Lebesgue measure),

lim sup Gaﬁ(k)‘ > 0 for almost every a.

k—oo

Since |limsup G4 g(k)| > limsup |Gq,g(k)|, this will follow from
(46) limsup |Gq (k)| > 0 for almost every a.
k—o0

G (k) = {9
G (k) = {9

It follows from (23) that

: min |lma + 6] > \qka—pk|},
(=20 +2)qe+1<m< (2l —1) gk

: min [ma 46 — 3| > \qka—pk|}.
(—2lk+2)qr+1<m< (21, —1)gx

1((m £ gr)a +0) — (ma +0)|| = |grer — pl.

This in turn implies

(47) Ga (k) C G (k) NG (k)
On the other hand, we have
(2l —1)qk
G = 1 {0 Ima+ 0] < lma—pil),
m=(—2l,+2)qr+1
(2l —1)qsk
G = | {0 lma+6- 5] <lga—pil)

m=(—21k+2)qk+1
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which, by (24), gives for i = 1,2,

i l
(18) G, (k)7] < 2k (4l — 3)|gre — pu] < (8l — 6)—L < Sk
’ qk+1 Q41

Combining (47) and (48), we get

161
limsup |Ga,5(k)| > 1 — lim inf O
k—oo k—oo Gk41
By our assumption (45), we have that liminfj_ ;E”; is less than 1/2, say,
for almost every a [56, Theorem 30]. This shows (46) and hence concludes the

proof. 0

APPENDIX B. SOME REMARKS ON INHOMOGENEOUS DIOPHANTINE
APPROXIMATION

Let @ € (0,1) be irrational and let v € [0,1). The two-sided inhomogeneous
approzimation constant M (a, ) is given by

M(a,v) = liminf |n] - [ne: — ],
|n|—o0

where || - || denotes the distance from the closest integer. The number M (a,~)
turned out to be important in our study of the Boshernitzan condition for circle map
subshifts corresponding to partitions of the unit circle into at least three intervals;
compare Section 6. In this appendix we sketch a way to compute M («,~) which
was proposed by Pinner. For background information, we refer the reader to the
excellent texts by Khinchin [56] and Rockett and Szilisz [79]. We shall present
results from [75]. Related work can be found in Cusick et al. [20] and Komatsu
[58].
The negative continued fraction expansion of « is given by

1
a= =:[0; a1, az2,as,...]”,

a; — 1
ag — ————
ag_...

where the integers a; > 2 are generated as follows:

0o = {a}, aniy = LH ey = [iw _ L

The corresponding convergents p,/q, = [0;a1,az,...,a,]” are given by

pP—1= _]-7 Po = 07 Pn+1 = An+41Pn — Pn—1,
¢-1=0, =1, ¢nt1 =ant+19n — ¢n-1-

There is a simple way to switch back and forth between regular and negative con-
tinued fraction expansion; see [75].
Write

a; = [0;a;,ai—1,...,01] ", o :=[0;a541,i42,...]"
Then

Di=qa—pi=ay o ¢= @ @) "
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The a-expansion of v is now obtained as follows: Let

Tn Tn
Y0 :=A{7}, bny1 = L*J Vgl = {*}7
o o

)= Z b;D;_1.

that

=1
Finally, with t; := 2by — ar + 2, let
k o)
_ tjqj—1 t; D1
d- =S G g 4Pt
D D N D D

j=1 j=k+1

and

si(k) = 11—k +d;)(1 — o + df )qp Di—1,
a(k) = (1 + @, +d)) (1 + ap + dff )qr Dy 1,
s3(k) = %\1 —o —dy | |1 — oy — dk+|quk_1,
sa(k) == (1 +ak — d;))(1 + ay + d )arDy—1.

We have the following result [75]:

0

Theorem 23 (Pinner). Suppose that v € Zoa + 7 and that its a-expansion has
b; = a; — 1 at most finitely many times. Then

M(aa ’Y) = 11]€I2£f min{sl(k)a SQ(k): 53(k)a 54(k)}
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ABSTRACT. We carry out a careful study of operator algebras associated with
Delone dynamical systems. A von Neumann algebra is defined using noncom-
mutative integration theory. Features of these algebras and the operators they
contain are discussed. We restrict our attention to a certain C*-subalgebra to
discuss a Shubin trace formula.
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INTRODUCTION

The present paper is part of a study of Hamiltonians for aperiodic solids. Among
them, special emphasis is laid on models for quasicrystals. To describe aperiodic
order, we use Delone (Delaunay) sets. Here we construct and study certain operator
algebras which can be naturally associated with Delone sets and reflect the aperiodic
order present in a Delone dynamical system. In particular, we use Connes noncom-
mutative integration theory to build a von Neumann algebra. This is achieved
in Section 2 after some preparatory definitions and results gathered in Section 1.
Let us stress the following facts: it is not too hard to write down explicitely the
von Neumann algebra N (Q, T, i) of observables, starting from a Delone dynamical
system (Q2,T) with an invariant measure u. As in the case of random operators,
the observables are families of operators, indexed by a set 2 of Delone sets. This
set represents a type of (aperiodic) order and the ergodic properties of (2,7) can
often be expressed by combinatorial properties of its elements w. The latter are
thought of as realizations of the type of disorder described by (Q,7T). The alge-
bra N (2, T, ) incorporates this disorder and playes the role of a noncommutative
space underlying the algebra of observables. To see that this algebra is in fact a
von Neumann algebra is by no means clear. At that point the analysis of Connes
[9] enters the picture.

In order to verify the necessary regularity properties we rely on work done in [29],
where we studied topological properties of a groupoid that naturally comes with
(©,T). Using this, we can construct a measurable (even topological) groupoid. Any
invariant measure i on the dynamical system gives rise to a transversal measure A
and the points of the Delone sets are used to define a random Hilbert space H. This
latter step uses specifically the fact that we are dealing with a dynamical system

IResearch partly supported by the DFG in the priority program Quasicrystals
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consisting of point sets and leads to a noncommutative random variable that has
no analogue in the general framework of dynamical systems. We are then able to
identify NV (Q,T, 1) as Endy(H). While in our approach we use noncommutative
integration theory to verify that a certain algebra is a von Neumann algebra we
should also like to point out that at the same time we provide interesting examples
for the theory. Of course, tilings have been considered in this connection quite from
the start as seen on the cover of [10]. However, we emphasize the point of view of
concrete operators and thus are led to a somewhat different setup.

The study of traces on this algebra is started in Section 3. Traces are intimately
linked to transversal functions on the groupoid. These can also be used to study
certain spectral properties of the operator families constituting the von Neumann
algebra. For instance, spectral properties are almost surely constant for the mem-
bers of any such family. This type of results is typical for random operators. In fact,
we regard the families studied here in this random context. An additional feature
that is met here is the dependence of the Hilbert space on the random parameter
w e Q.

In Section 4 we introduce a C*-algebra that had already been encountered in
a different form in [6, 17]. Our presentation here is geared towards using the
elements of the C*-algebra as tight binding hamiltonians in a quantum mechanical
description of disordered solids (see [6] for related material as well). We relate
certain spectral properties of the members of such operator families to ergodic
features of the underlying dynamical system. Moreover, we show that the eigenvalue
counting functions of these operators are convergent. The limit, known as the
integrated density of states, is an object of fundamental importance from the solid
state physics point of view. Apart from proving its existence, we also relate it to
the canonical trace on the von Neumann algebra N (Q, T, ;1) in case that the Delone
dynamical system (€, 7T) is uniquely ergodic. Results of this genre are known as
Shubin’s trace formula due to the celebrated results from [36].

We conclude this section with two further remarks.

Firstly, let us mention that starting with the work of Kellendonk [17], C*-algebras
associated to tilings have been subject to intense research within the framework of
K-theory (see e.g. [18, 19, 32]). This can be seen as part of a program originally
initiated by Bellissard and his co-workers in the study of so called gap-labelling
for almost periodic operators [3, 4, 5]. While the C*-algebras we encounter are
essentially the same, our motivation, aims and results are quite different.

Secondly, let us remark that some of the results below have been announced in
[28, 29]. A stronger ergodic theorem will be found in [30] and a spectral theoretic
application is given in [20].

1. DELONE DYNAMICAL SYSTEMS AND COLOURED DELONE DYNAMICAL SYSTEMS

In this section we recall standard concepts from the theory of Delone sets and in-
troduce a suitable topology on the closed sets in euclidian space. A slight extension
concerns the discussion of coloured (decorated) Delone sets.

A subset w of R? is called a Delone set if there exist 0 < r, R < oo such that
2r < ||z — y|| whenever z,y € w with x # y, and Br(z) Nw # @ for all x € R%
Here, the Euclidean norm on R¢ is denoted by || - | and Bs(z) denotes the (closed)
ball in R? around 2 with radius s. The set w is then also called an (r, R)-set. We
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will sometimes be interested in the restrictions of Delone sets to bounded sets. In
order to treat these restrictions, we introduce the following definition.

Definition 1.1. (a) A pair (A, Q) consisting of a bounded subset Q of R? and
A C Q finite is called a pattern. The set Q is called the support of the pattern.
(b) A pattern (A, Q) is called a ball pattern if Q = Bs(z) with x € A for suitable
r€R? and s € (0,00).

The pattern (A1, Q1) is contained in the pattern (Ay, Q) written as (A1, Q1) C
(Ag,Q2) if Q1 C Q2 and A; = Q1 N Ag. Diameter, volume etc. of a pattern are
defined to be the diameter, volume etc of its support. For patterns X; = (A1, Q1)
and X5 = (A2, Q2), we define fx, Xa, the number of occurences of X1 in Xa, to be
the number of elements in {t € RE:A +tC Ay Q1+t C Q2}.

For further investigation we will have to identify patterns that are equal up to
translation. Thus, on the set of patterns we introduce an equivalence relation by
setting (A1, Q1) ~ (A2, Qo) if and only if there exists a t € R? with A; = Ay +¢ and
Q1 = Q2 +t. In this latter case we write (A1, Q1) = (A2,Q2) +t. The class of a
pattern (A, Q) is denoted by [(A, @)]. The notions of diameter, volume, occurence
etc. can easily be carried over from patterns to pattern classes.

Every Delone set w gives rise to a set of pattern classes, P(w) viz P(w) =
{[@ Aw] : @ C R?bounded and measurable}, and to a set of ball pattern classes
Pp(w)) ={[Bs(z) Nw] : € w,s > 0}. Here we set Q Aw = (wNQ,Q).

For s € (0,00), we denote by P (w) the set of ball patterns with radius s; note
the relation with s-patches as considered in [21]. A Delone set is said to be of finite
local complezity if for every radius s the set Py (w) is finite. We refer the reader to
[21] for a detailed discussion of Delone sets of finite type.

Let us now extend this framework a little, allowing for coloured Delone sets. The
alphabet A is the set of possible colours or decorations. An A-coloured Delone set is
a subset w C R% x A such that the projection pri(w) C R? onto the first coordinate
is a Delone set. The set of all A-coloured Delone sets is denoted by Dj.

Of course, we speak of an (r, R)-set if pri(w) is an (r, R)-set. The notions of
pattern, diameter, volume of pattern etc. easily extend to coloured Delone sets.
E.g.

Definition 1.2. A pair (A, Q) consisting of a bounded subset Q of R® and A C
Q x A finite is called an A- decorated pattern. The set ) is called the support of
the pattern.

A coloured Delone set w is thus viewed as a Delone set pri(w) whose points
x € pri(w) are labelled by colours a € A. Accordingly, the translate Tiw of a
coloured Delone set w C R? x A is given by

Tiw={(z+t,a): (z,a) € w}.

From [29] we infer the notion of the natural topology, defined on the set F(R%) of
closed subsets of R%. Since in our subsequent study in [30] the alphabet is supposed
to be a finite set, the following construction will provide a suitable topology for
coloured Delone sets. Define, for a € A,

Pa: Dy — FRY), pa(w) = {z € RY: (z,a) € w}.

The initial topolgy on D, with respect to the family (p,)qca is called the natural
topology on the set of A- decorated Delone sets. It is obvious that metrizability and
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compactness properties carry over from the natural topology without decorations
to the decorated case.

Finally, the notions of Delone dynamical system and Delone dynamical system
of finite local complexity carry over to the coloured case in the obvious manner.

Definition 1.3. Let A be a finite set. (a) Let Q2 be a set of Delone sets. The pair
(Q,T) is called a Delone dynamical system (DDS) if Q is invariant under the shift
T and closed in the natural topology.

(a%) Let 2 be a set of A-coloured Delone sets. The pair (Q,T) is called an A-coloured
Delone dynamical system (A-DDS) if Q is invariant under the shift T and closed
in the natural topology.

(b) A DDS (Q,T) is said to be of finite local complexity if U,eqP5(w) is finite for
every s > 0.

(b") An A-DDS (Q,T) is said to be of finite local complexity if U,cqPg(w) is finite
for every s > 0.

(c) Let 0 < 7, R < 00 be given. A DDS (Q,T) is said to be an (r, R)-system if every
w € Q is an (r, R)-set.

(¢’) Let 0 <1, R < 00 be given. An A-DDS (,T) is said to be an (r, R)-system if
every w € Q is an (r, R)-set.

(d) The set P(Q) of pattern classes associated to a DDS Q is defined by P(Q2) =
UweQP(W).

In view of the compactness properties known for Delone sets, [29], we get that
2 is compact whenever (2,T) is a DDS or an A-DDS.

2. GROUPOIDS AND NON COMMUTATIVE RANDOM VARIABLES

In this section we use concepts from Connes non-commutative integration theory
[9] to associate a natural von Neumann algebra with a given DDS (©2,T). To do
so, we introduce

e a suitable groupoid G(Q2,T),
e a transversal measure A = A, for a given invariant measure y on (2, 7T)
e and a A-random Hilbert space H = (Hy)wen

leading to the von Neumann algebra
N(Q,T, p) := Enda(H)

of random operators, all in the terminology of [9]. Of course, all these objects will
now be properly defined and some crucial properties have to be checked. Part
of the topological prerequisites have already been worked out in [29]. Note that
comparing the latter with the present paper, we put more emphasis on the relation
with noncommutative integration theory.

The definition of the groupoid structure is straightforward see also [6], Sect.
2.5. A set G together with a partially defined associative multiplication - : G2 C
G x G — G, and an inversion ~! : G — G is called a groupoid if the following
holds:

(g7 t=gforalgeg,
If g1 - go and go - g3 exist, then g1 - go - g3 exists as well,
g~ - g exists always and g~ - g - h = h, whenever g - h exists,

h-h~! exists always and g - h- h~! = g, whenever g - h exists.
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A groupoid is called topological groupoid if it carries a topology making inversion
and multiplication continuous. Here, of course, G x G carries the product topology
and G2 C G x G is equipped with the induced topology.

A given groupoid G gives rise to some standard objects: The subset G = {g-g~
g € G} is called the set of units. For g € G we define its range r(g) by r(g) = g-g~
and its source by s(g) = g~!-g. Moreover, we set G¥ = r~1({w}) for any unit
w € G% One easily checks that g - h exists if and only if r(h) = s(g).

By a standard construction we can assign a groupoid G(2,T) to a Delone dy-
namical system. As a set G(Q,T) is just @ x RY. The multiplication is given by
(w, z)(w—2,y) = (w, z+y) and the inversion is given by (w,z) " = (w—x, —z). The
groupoid operations can be visualized by considering an element (w, z) as an arrow
w—1 — w. Multiplication then corresponds to concatenation of arrows; inversion
corresponds to reversing arrows and the set of units G(€2, T)° can be identified with
Q.

Apparently this groupoid G(€2,T) is a topological groupoid when  is equipped
with the topology of the previous section and R carries the usual topology.

The groupoid G(2,T) acts naturally on a certain topological space X. This
space and the action of G on it are of crucial importance in the sequel. The space
X is given by

1
J

X ={(w,z) €G:xcw}CcG(QT).

In particular, it inherits a topology form G(92,T). This X can be used to define
a random variable or measurable functor in the sense of [9]. Following the latter
reference, p. 50f, this means that we are given a functor F' from G to the category
of measurable spaces with the following properties:

e For every w € GY we are given a measure space F(w) = (Y%, 3°).

e For every g € G we have an isomorphism F(g) of measure spaces, F(g) :
V@) — Yr9) such that F(g1g2) = F(g1)F(g2), whenever g;g is defined,
i.e., whenever s(g1) = 7(g2).

e A measurable structure on the disjoint union

y = Uweﬂyw

such that the projection 7 : Y —  is measurable as well as the natural
bijection of 77! (w) to Y¥.
e The mapping w — B¢ is measurable.

We will use the notation F': G ~~ ) to abbreviate the above.

Let us now turn to the groupoid G(2,7") and the bundle X defined above. Since
X is closed ([29], Prop.2.1), it carries a reasonable Borel structure. The projection
m : X — Q is continuous, in particular measurable. Now, we can discuss the
action of G on X. Every g = (w,x) gives rise to a map J(g) : XA°@) — x7(9)
J(g)(w —z,p) = (w,p+ x). A simple calculation shows that J(g192) = J(g1)J(g92)
and J(g~') = J(g)~!, whenever s(g1) = r(g2). Thus, X is an G-space in the sense
of [27]. It can be used as the target space of a measurable functor F' : G ~ X. What
we still need is a positive random wvariable in the sense of the following definition,
taken from [29]. First some notation:

Given a locally compact space Z, we denote the set of continuous functions on
Z with compact support by C.(Z). The support of a function in C.(Z) is denoted
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by supp(f). The topology gives rise to the Borel-o-algebra. The measurable non-
negative functions with respect to this o-algebra will be denoted by F(Z). The
measures on Z will be denoted by M(Z).

Definition 2.1. Let (2,T) be an (r, R)-system.

(a) A choice of measures 5 : Q — M(X) is called a positive random variable
with values in X if the map w — B“(f) is measurable for every f € FH(Xx), g*
is supported on X%, i.e., (X — X¥) =0, w € Q, and (3 satisfies the following
mvariance condition

[ emasOw = [ @)
Xs(9) Xr(9)
forallg € G and f € FH(x7).
(b) A map Q x Co(X) — C is called a complex random variable if there exist
an n € N, positive random variables B;, i =1,....,n and \; € C, i =1,...,n with

Be(f) = 2250 B2 ()

We are now heading towards introducing and studying a special random variable.
This variable is quite important as it gives rise to the ¢%-spaces on which the
Hamiltonians act. Later we will see that these Hamiltonians also induce random
variables.

Proposition 2.2. Let (2,T) be an (r, R)-system. Then the map o : @ — M(X),
a?(f) = X e. f(p) is a random variable with values in X. Thus the functor Fy
given by Fp(w) = (X%, a%) and Fo(g) = J(g) is measurable.

Proof. See [29], Corollary 2.6. O

Clearly, the condition that (2,7") is an (r, R)-system is used to verify the mea-
surability conditions needed for a random variable. We should like to stress the
fact that the above functor given by X and «°® differs from the canonical choice,
possible for any dynamical system. In the special case at hand this canonical choice
reads as follows:

Proposition 2.3. Let (Q,T) be a DDS. Then the map v : Q@ — M(G), v¥(f) =
fle f(w,t)dt is a transversal function, i.e., a random variable with values in G.

Actually, one should possibly define transversal functions before introducing ran-
dom variables. Our choice to do otherwise is to underline the specific functor used
in our discussion of Delone sets. As already mentioned above, the analogue of the
transversal function v from Proposition 2.3 can be defined for any dynamical sys-
tem. In fact this structure has been considered by Bellissard and coworkers in a
C*-context. The notion almost random operators has been coined for that; see [3]
and the literature quoted there.

After having encountered functors from G to the category of measurable spaces
under the header random variable or measurable functor, we will now meet random
Hilbert spaces. By that one designates, according to [9], a representation of G in
the category of Hilbert spaces, given by the following data:

e A measurable family H = (H,,),ego of Hilbert spaces.
e For every g € G a unitary Uy : Hy(g) — Hy(g) such that

U(g192) = U(g1)U(g2)
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whenever s(g1) = r(g2). Moreover, we assume that for every pair (£,7n) of
measurable sections of H the function

G — C,g— (En(9) = &)U (9)ns(g))

is measurable.

Given a measurable functor F : G ~ ) there is a natural representation L% o F,
where

Hw — L2(yw’ﬁw)
and U(g) is induced by the isomorphism F'(g) of measure spaces.

Let us assume that (Q2,7) is an (r, R)-system. We are especially interested in
the representation of G(Q,T) on H = (£2(X¥,a¥)),ecq induced by the measurable
functor F, : G(Q,T) ~~ X defined above. The necessary measurable structure
is provided by [29], Proposition 2.8. It is the measurable structure generated by
Ce(X).

The last item we have to define is a transversal measure. We denote the set
of nonnegative transversal functions on a groupoid G by £7(G) and consider the
unimodular case (§ = 1) only. Following [9], p. 41f, a transversal measure A is a
linear mapping

A:EY(G) — [0, 0]

satisfying
e A is normal, i.e., A(supvy,,) = sup A(v,,) for every increasing sequence (v,)
in £T(G).
e A is invariant, i.e., for every v € £1(G) and every kernel A with A¥(1) =1
we get

Alv ) =Av).

Given a fixed transversal function v on G and an invariant measure p on G° there
is a unique transversal measure A = A, such that

Al xA) = p(A*(1)),

see [9], Theoreme 3, p.43. In the next Section we will discuss that in a little more
detail in the case of DDS groupoids.
We can now put these constructions together.

Definition 2.4. Let (2, T) be an (r, R)-system and let pn be an invariant measure
on 2. Denote by Vy the set of all f : X — C which are measurable and satisfy
flw,) € 2(X¥, a®) for every w € Q.

A family (Ay)wea of bounded operators A, : £2(w, o) — 2(w,a®) is called
measurable if w — (f(w), (Awg)(w))e is measurable for all f,g € V1. It is called
bounded if the norms of the A, are uniformly bounded. It is called covariant if it
satisfies the covariance condition

Hyyo = UHUS, weQ,teRY,

where Uy : £2(w) — £2(w + 1) is the unitary operator induced by translation. Now,
we can define

N(Q,T, ) :={A=(A,)wealA covariant, measurable and bounded}/ ~,

where ~ means that we identify families which agree p almost everywhere.
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As is clear from the definition, the elements of N (2, T, 1) are classes of families
of operators. However, we will not distinguish too pedantically between classes and
their representatives in the sequel.

Remark 2.5. It is possible to define N'(Q,T, ) by requiring seemingly weaker
conditions. Namely, one can consider families (A, ) that are essentially bounded
and satisfy the covariance condition almost everywhere. However, by standard
procedures (see [9, 25]), it is possible to show that each of these families agrees
almost everywhere with a family satisfying the stronger conditions discussed above.

Obviously, N (Q,T, ) depends on the measure class of p only. Hence, for
uniquely ergodic (Q,7), N(Q,T,u) =: N(Q,T) gives a canonical algebra. This
case has been considered in [28, 29].

Apparently, N'(Q,T,u) is an involutive algebra under the obvious operations.
Moreover, it can be related to the algebra Ends () defined in [9] as follows.

Theorem 2.6. Let (2,T) be an (r, R)-system and let p be an invariant measure
on Q. Then N(Q,T, n) is a weak-*-algebra. More precisely,

N(Q7 T, /1/) = EndA(H)a
where A = A, and H = ((2(X%,a%)),cq are defined as above.
Proof. The asserted equation follows by plugging in the respective definitions. The
only thing that remains to be checked is that H is a square integrable representation
in the sense of [9], Definition, p. 80. In order to see this it suffices to show that the
functor F,, giving rise to H is proper. See [9], Proposition 12, p. 81.
This in turn follows by considering the transversal function v defined in Propo-

sition 2.3 above. In fact, any u € C.(R?)¥ gives rise to the function f € F*(X) by
f(w,p) := u(p). It follows that

(z/*f)(w,p):/Rdu(ert)dt:/ w(t)dt,

Rd

so that v f = 1 if the latter integral equals 1 as required by [9], Definition 3, p.
55. a

We can use the measurable structure to identify L?(X,m), where m = [, o pu(w)
with fée £2(Xx%,a%) du(w). This gives the faithful representation
7 N(Q, T, p) — B(L*(X,m)), 7(A) f(w,2)) = (Auwfo)((w, 2))
and the following immediate consequence.
Corollary 2.7. 7(N(Q,T,un)) C B(L%(X,m)) is a von Neumann algebra.

Next we want to identify conditions under which (N (€, T, u)) is a factor. Recall
that a Delone set w is said to be non-periodic if w 4+t = w implies that ¢t = 0.

Theorem 2.8. Let (Q,T) be an (r, R)-system and let  be an ergodic invariant
measure on Q. If w is non-periodic for p-a.e. w € Q then N(Q, T, ) is a factor.

Proof. We want to use [9], Corollaire 7, p. 90. In our case G = G(Q,T), G° = Q
and

GY ={(w,t):w+1t=uw}
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Obviously, the latter is trivial, i.e., equals {(w, 0)} iff w is non-periodic. By our as-
sumption this is valid p-a.s. so that we can apply [9], Corollaire 7, p. 90. Therefore
the centre of N'(, T, ) consists of families

f=(fl)n,)we;

where f : QQ — C is bounded, measurable and invariant. Since p is assumed to be
ergodic this implies that f(w) is a.s. constant so that the centre of N (Q,T, ) is
trivial. O

Remark 2.9. Since p is ergodic, the assumption of non-periodicity in the theorem
can be replaced by assuming that there is a set of positive measure consisting of
non-periodic w.

Note that the latter result gives an extension of part of what has been announced
in [28], Theorem 2.1 and [29], Theorem 3.8. The remaining assertions of [29] will
be proven in the following Section, again in greater generality.

3. TRANSVERSAL FUNCTIONS, TRACES AND DETERMINISTIC SPECTRAL
PROPERTIES.

In the preceding section we have defined the von Neumann algebra N(Q, T, 11)
starting from an (r, R)-system (Q,7T) and an invariant measure g on (Q,7). In
the present section we will study traces on this algebra. Interestingly, this rather
abstract and algebraic enterprise will lead to interesting spectral consequences. We
will see that the operators involved share some fundamental properties with “usual
random operators”.

Let us first draw the connection of our families to “usual random operators”,
referring to [7, 31, 39] for a systematic account. Generally speaking one is concerned
with families (A, ),eq of operators indexed by some probability space and acting
on £2(Z%) or L?(R%) typically. The probability space © encodes some statistical
properties, a certain kind of disorder that is inspired by physics in many situations.
One can view the set {2 as the set of all possible realization of a fixed disordered
model and each single w as a possible realization of the disorder described by €.
Of course, the information is mostly encoded in a measure on €2 that describes the
probability with which a certain realization is picked.

We are faced with a similar situation, one difference being that in any family
A= (AL)wea € N(,T, i), the operators A, act on the possibly different spaces
£2(w). Apart from that we have the same ingredients as in the usual random busi-
ness, where, of course, Delone dynamical systems still bear quite some order. That
is, we are in the realm of weakly disordered systems. For a first idea what this might
have to do with aperiodically ordered solids, quasicrystals, assume that the points
p € w are the atomic positions of a quasicrystal. In a tight binding approach (see [6]
Section 4 for why this is reasonable), the Hamiltonian H,, describing the respective
solid would naturally be defined on £2(w), its matrix elements H,,(p, q),p,q € w de-
scribing the diagonal and hopping terms for an electron that undergoes the influence
of the atomic constellation given by w. The definite choice of these matrix elements
has to be done on physical grounds. In the following subsection we will propose a
C*-subalgebra that contains what we consider the most reasonable candidates; see
also [6, 17]. It is clear, however, that N'(Q, T, 1) is a reasonable framework, since
translations should not matter. Put in other words, every reasonable Hamiltonian
family (H,,)wecq should be covariant.
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The remarkable property that follows from this “algebraic” fact is that certain
spectral properties of the H,, are deterministic, i.e., do not depend on the choice of
the realization w p-a.s.

Let us next introduce the necessary algebraic concepts, taking a second look
at transversal functions and random variables with values in X'. In fact, random
variables can be integrated with respect to transversal measures by [9], i.e for a
given non-negative random variable § with values in X’ and a transversal measure
A, the expression [ FzdA is well defined. More precisely, the following holds:

Lemma 3.1. Let (2,T) be an (r, R)-system and p be T-invariant.

(a) Let B be a mnonnegative random wvariable with values in X.  Then
Jo B (f(w, ) du(w) does not depend on f € F*(X) provided f satisfies [ f((w +
t m—&—t)dt- 1 for every (w,z) € X and

[ (st dute) = [ Fadn,

where Fg : G ~» X is the measurable functor induced by Fg(w) = (X¥, %) and
A = A, the transversal measure defined in the previous section.

(b) An analogous statement remains true for a complex random variable 3 =
>k Ak, when we define

/ngA: > M /Fﬂde
=~

and restrict to f € FT(X) with suppf compact.

Proof. Part (a) is a direct consequence of the definitions and results in [9]. Part
(b), then easily follows from (a) by linearity. O

A special instance of the foregoing lemma is given in the following proposition.

Proposition 3.2. Let (2,T) be an (r, R)-system and let u be T-invariant. If X is
a transversal function on G(Q,T) then

wH/Q(/\“’,@)du(W)

defines an invariant functional on C.(R%), i.e., a multiple of the Lebesgue measure.
In particular, if 1 is an ergodic measure, then either A¥(1) =0 a.s. or A¥(1) = oo
a.s.

Proof. Invariance of the functional follows by direct checking. By uniqueness of the
Haar measure, this functional must then be a multiple of Lebesgue measure. If p is
ergodic, the map w — A“(1) is almost surely constant (as it is obviously invariant).
This easily implies the last statement. |

Each random operator gives rise to a random variable as seen in the following
proposition whose simple proof we omit.

Proposition 3.3. Let (Q,T) be an (r, R)-system and p be T-invariant. Let (A,) €
N(Q,T,p) be given. Then the map Ba : @ — M(X), B4(f) = tr(AuMy) is a
complex random variable with values in X .
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Now choose a nonnegative measurable u on R? with compact support and
fle x)dx = 1. Combining the previous proposition with Lemma 3.1, f(w,p) :=
u(p), we infer that the map

T N(Q,T,u) — C, 7(A) = /Qtr(AwMu) dp(w)

does not depend on the choice of f viz u as long as the integral is one. Important
features of 7 are given in the following lemma.

Lemma 3.4. Let (2,T) be an (r, R)-system and p be T-invariant. Then the map
T N(Q,T, u) — C is continuous, faithful, nonegative on N'(Q, T, u)* and satisfies
7(A) = 7(U*AU) for every unitary U € N(Q,T, ) and arbitrary A € N(Q,T, i),

i.e., T 1S a trace.

We include the elementary proof, stressing the fact that we needn’t rely on the
noncommutative framework; see also [27] for the respective statement in a different
setting.

Proof. Choosing a continuous u with compact support we see that |7(A) —7(B)| <
J |Aw — B|[trMydp(w) < ||A — B||C, where C' > 0 only depends on u and 2. On
the other hand, choosing u with arbitrary large support we easily infer that 7 is
faithful. It remains to show the last statement.

According to [12], 1.6.1, Cor.1 it suffices to show 7(K*K) = 7(KK*) for every
K = (Ky)wea € N(Q,T,pn). We write ky(p, q) := (Ku,04]0p) for the associated
kernel and calculate

T(K*K)

/Qtr(K:,KwMu)du(w)

/tr(M KKM 1)dp(w)

/ZHKM b [21i()

mew

|3 etmPutm) [ =t

l,meEw

where we used that [p,u(l —t)dt = 1 for all | € w. By covariance and Fubinis
theorem we get

/]Rd/ﬂlz |kw t l—t m—t)| ( )u(l—t)du(w)dt,

As p is T-invariant, we can replace w — ¢t by w and obtain

_ / /Q kol — t,m — 0)u(m)u(l — t)didu(w)

lnLEw+i

_ // S Jko () Pu(m + tu(l)dtdp(w)
lymew

_ /Q (K K M, ) dp(w)

by reversing the first steps. a
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Having defined 7, we can now associate a canonial measure p 4 to every selfadjoint

AeNQ,T, ).

Definition 3.5. For A € N(Q,T,u) selfadjoint, and B C R Borel measurable, we
set pa(B) = 7(xB(A)), where xp is the characteristic function of B.

For the next two results we refer to [27] where the context is somewhat different.

Lemma 3.6. Let (2,T) be an (r,R)-system and p be T-invariant. Let A €
N(Q, T, i) selfadjoint be given. Then pa is a spectral measure for A. In particular,
the support of pa agrees with the spectrum X of A and the equality pa(F) = 7(F(A))
holds for every bounded measurable F' on R.

Lemma 3.7. Let (2,T) be an (r,R)-system and p be T-invariant. Let p
be ergodic and A = (A,) € N(Q,T,u) be selfadjoint. Then there exists
Y, Yac, Xsey Lpp, Vess C R and a subset Q of Q of full measure such that ¥ = o(A,)
and ce(Ay) = Lo for @ = ac, sc,pp, ess and 0gisc(Ay) =0 for every w € Q. In this
case, the spectrum of A is given by X.

We now head towards evaluating the trace 7.

Definition 3.8. The number
/ FodA =: Dg ,
is called the mean density of Q with respect to p.

Theorem 3.9. Let (Q,T) be an (r, R)-system and p be ergodic. If w is non-periodic
for p-a.e. w € Q then N(Q,T, pn) is a factor of type IIp, where D = Dq ,, i.e., a
finite factor of type II and the canonical trace T satisfies T(1) = D.

Proof. We already know that A(Q, T, i) is a factor. Using Proposition 3.2 and [9],
Cor. 9, p. 51 we see that N'(Q, T, i) is not of type I. Since it admits a finite faithful
trace, N'(Q, T, i) has to be a finite factor of type II.

Note that Lemma 3.1, the definition of 7 and a give the asserted value for
7(1). O
Remark 3.10. It is a simple consequence of Proposition 4.6 below that

. #(wN Bgr(0))
D, = lim
¥ R=co |Br(0)]
exists and equals Dgq , for almost every w € Q. Therefore, the preceding result
is a more general version of the results announced as [28], Theorem 2.1 and [29],

Theorem 3.8, respectively. Of course, existence of the limit is not new. It can
already be found e.g. in [6].

4. THE C*-ALGEBRA ASSOCIATED TO FINITE RANGE OPERATORS AND THE
INTEGRATED DENSITY OF STATES

In this section we study a C*-subalgebra of N'(2, T, 1) that contains those oper-
ators that might be used as hamiltonians for quasicrystals. The approach is direct
and does not rely upon the framework introduced in the preceding sections.

We define

X xoX ={(pw,q) eRIx QxR : p,q € w},
which is a closed subspace of R% x Q x R? for any DDS Q.
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Definition 4.1. A kernel of finite range is a function k € C(X xq X) that satisfies
the following properties:
(1) k is bounded.
(ii) k has finite range, i.e., there exists Ry > 0 such that k(p,w,q) = 0, when-
ever |p — q| > Ry.
(iii) k is invariant, i.e.,

k(p+t,w+t,qg+t)=k(pw,q),
for (p,w,q) € X xq X and t € R%.
The set of these kernels is denoted by KI™(Q,T).

We record a few quite elementary observations. For any kernel k € K/ (Q,T)
denote by m,k := K, the operator K, € B(¢?(w)), induced by

(Kw6q|6p) = k(pa‘UJQ) fOI‘ b q € w.

Clearly, the family K := 7k, K = (K, )weq, is bounded in the product (equipped
with the supremum norm) II,coB(¢%(w)). Now, pointwise sum, the convolution
(matrix) product
(a-b)(pw,q) ==Y alp,w,x)b(x,w,q)
TEW

and the involution k*(p,w, ¢) := k(q,w, p) make K/ (Q, T) into a *-algebra. Then,
the mapping m : K/™(Q,T) — H,caB(f?(w)) is a faithful *-representation. We
denote Af"(Q,T) := (K™ (Q,T)) and call it the operators of finite range. The
completion of A/ (Q,T) with respect to the norm [|A|| := sup,cq [|Ao| is de-
noted by A(Q,T). It is not hard to see that the mapping =, : A/™(Q,T) —
B(f*(w)), K — K, is a representation that extends by continuity to a representa-
tion of A(£,T) that we denote by the same symbol.

Proposition 4.2. Let A € A, T) be given. Then the following holds:
(a) Tyiit(A) = Uy, (AU} for arbitrary w € Q and t € RY.
(b) For F € C.(X), the map w > (m,(A)F,, F,)o is continuous.

Proof. Both statements are immediate for A € Af™(Q,T) and then can be ex-
tended to A(2,T) by density and the definition of the norm. O

We get the following result that relates ergodicity properties of (Q,T), spectral
properties of the operator families from A(2,T) and properties of the representa-
tions .

Theorem 4.3. The following conditions on a DDS (,T) are equivalent:
(i) (,T) is minimal.
(ii) For any selfadjoint A € A(Q,T) the spectrum o(Ay) is independent of
w e Q.
(iii) 7, is faithful for every w € Q.

Proof. (1)==(ii):

Choose ¢ € C(R). We then get 7, (#(A)) = ¢(m,(A)) since 7, is a continuous
algebra homomorphism. Set Qy = {w € Q : 7,(¢p(A)) = 0}. By Proposition 4.2
(a), Qo is invariant under translations. Moreover, by Proposition 4.2 (b) it is closed.
Thus, Q9 = 0 or Q¢ = Q by minimality. As ¢ is arbitrary, this gives the desired
equality of spectra by spectral calculus.
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(i) == (ii):

By (ii) we get that |7, (A)||> = |7 (A*A)| does not depend on w € . Thus

7w (A) = 0 for some A implies that 7, (A4) = 0 for all w € 2 whence A = 0.
(iil) = (i):

Assume that © is not minimal. Then we find wy and wy such that wy & (wo + R9).
Consequently , there is r > 0,p € w,d > 0 such that

dp((wo — p) N B-(0), (w1 — q) N B-(0)) > 25
for all ¢ € wy. Let p € C(R) such that p(t) = 0 if t > 1 and p(0) = 1. Moreover,

let 1 € C.(R?) such that suppy C Bs(0) and ¢ € C,(R%) and ¢ = 1 on By,.(0).
Finally, let

a(z,w,y) = p <| <Z qu/}) Tpg — (Z qu) Tyolloo
pPEW gEwo
+ <Z pr) To — (Z qu) Ty¢|oo)
pPEWo qEw

It is clear that a is a symmetric kernel of finite range and by construction the
corresponding operator family satisfies A,,, = 0 but A, # 0, which implies (iii). O

Let us now comment on the relation between the algebra A(Q, T') defined above
and the C*-algebra introduced in [6, 17] for a different purpose and in a different
setting. Using the notation from [6] we let

Y={we:0ecw}
and
Gy ={(w,t) e Y xR tcw} CA.
In [6] the authors introduce the algebra C*(Gy), the completion of C.(Gy) with
respect to the convolution

fg(w7Q) = Zf(w7t)g(w - tyq - t)
tEw
and the norm induced by the representations
I, : Co(Gy) = B (), Tu(f)é(@) = D flw =t = q)é(q),q € w.
tew
The following result can be checked readily, using the definitions.

Proposition 4.4. For a kernel k € Kf™(Q,T) denote fi(w,t) := k(0,w,t). Then
J: KI™Q,T) — Cu(Gy), k — fi

is a bijective algebra isomorphism and 7, = I, 0J for allw. Consequently, A(Q,T)
and C*(Gy) are isomorphic.

Note that the setting in [6] and here are somewhat different. In the tiling frame-
work, the analogue of these algebras have been considered in [17].

We now come to relate the abstract trace 7 defined in the last section with
the mean trace per unit volume. The latter object is quite often considered by
physicists and bears the name integrated density of states. Its proper definition
rests on ergodicity. We start with the following preparatory result for which we
need the notion of a van Hove sequence of sets.



ALGEBRAS OF RANDOM OPERATORS 147

For s > 0 and Q C R?, we denote by 95Q the set of points in R whose distance
to the boundary of @ is less than s. A sequence (Q,) of bounded subsets of R? is
called a van Hove sequence if |Q,|™1|0sQn| — 0,n — 0 for every s > 0.

Proposition 4.5. Assume that (Q,T) is a uniquely ergodic (r, R)-system with in-
variant probability measure p and A € A(Q,T). Then, for any van Hove sequence
(Qn) it follows that

}Llén IQTL' (AOJ‘Qn) = T(A)

for every w € Q.

Clearly, Ay|q denotes the restriction of A, to the subspace £2(w N Q) of £2(w).
Note that this subspace is finite-dimensional, whenever Q C R? is bounded.
We will use here the shorthand A, (p, q) for the kernel associated with A,,.

Proof. Fix a nonnegative u € C.(R?) with Jga w(x)dz = 1 and support contained
in B,(0) and let f(w,p) := u(p). Then

T(4) = /ﬂtr(AwMu)du(w)

/(ZA pp )du()

pPEW

| Py dnte),

=Y Au(p,p)ulp)

pEW
is continuous by virtue of [29], Proposition 2.5 (a). Therefore, the ergodic theorem
for uniquely ergodic systems implies that for every w € Q:

F(w+t)dt—>/QF(w)d/L(w).

where

1
@ul Ja,
On the other hand,

1
— = Aoyt
o, F(w+t)dt ‘in o, < Z +t(p,p)u )) dt

pEw—tt
= ZA ¢, Qu(g+1t) | dt
o o \ &
In,

by covariance of A,. Since suppu C B,(0) and the integral over u equals 1, every
¢ € w such that ¢+ B,.(0) C Q,, contributes A, (g, ¢)-1 in the sum under the integral
I,,. For those ¢ € w such that ¢ + B,.(0) N Q, = 0, the corresponding summand
gives 0. Hence

1
Aw ; —In >~ 67 nyf’ Aw
I > Aulg.q) | < Iin #{q € 92,Qu} - [| AL |

qEWNQy

|82rQn‘
< C -
|Qnl
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since (@) is a van Hove sequence. O
A variant of this proposition also holds in the measurable situation.

Proposition 4.6. Let pu be an ergodic measure on (Q,T). Let A € N(Q,T,u)
and an increasing van Hove sequence (Q,) of compact sets in R with R? = UQ,,,
0€ @ and |Qn — Qn| < C|Qn| for some C >0 and all n € N be given. Then,

lim ——tr(Aulg,) = 7(A)

neN |Qn|

for p-almost every w € €.

Proof. The proof follows along similar lines as the proof of the preceeding proposi-
tion after replacing the ergodic theorem for uniquely ergodic systems by the Birkhoff
ergodic theorem. Note that for A € N(Q,T, ), the function F defined there is
bounded and measurable. |

In the proof we used ideas of Hof [14]. The following result finally establishes
an identity that one might call an abstract Shubin’s trace formula. It says that the
abstractly defined trace 7 is determined by the integrated density of states. The
latter is the limit of the following eigenvalue counting measures. Let, for selfadjoint
A€ AQ,T) and Q C R*%:

(DA Q) = ﬁtrw(m@)), o€ C(R).

Its distribution function is denoted by n[A,, @], i.e. n[A,, Q](E) gives the number
of eigenvalues below E per volume (counting multiplicities).

Theorem 4.7. Let (2,T) be a uniquely ergodic (r, R)-system and p its ergodic
probability measure. Then, for selfadjoint A € A(Q,T) and any van Hove sequence
(@n).

(PplAw, Qn], ) — T(p(A)) as n — oo
for every ¢ € C(R) and every w € Q. Consequently, the measures p<n converge
weakly to the measure pa defined above by (pa, ) := 7(0(A)), for every w € Q.

Proof. Let ¢ € C(R) and (Q,) be a van Hove sequence. From Proposition 4.5,
applied to p(A4) = (ap(Aw))weQ, we already know that

lim = \Qn\ tr(p(Aw)lQ.) = T(¢(4))

for arbitrary w € Q. Therefore7 it remains to show that

lim |Qn|< H(e(Au)le.) — tr(p(Aule)) =0 (x).

This latter property is stable under uniform limits of functions ¢, since both
w(Aulg,) and p(Ay)|g, are operators of rank dominated by ¢ - |Qy].
It thus suffices to consider a polynomial ¢.
Now, for a fixed polynomial ¢ with degree N, there exists a constant C' = C(yp)
such that
le(4) — (Bl < CllA = BII(IAll + I BI)Y

for any A, B on an arbitrary Hilbert space. In particular,

[tr(e(Au)lQ,) = tr(p(Bu)l,)l < CllAw = Bull(l4u]l + 1Bo )™

1
|Qn|
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and
1

N ltr(p(Avl@n)) — tr(p(Ba

for all A, and B,,.

Thus, it suffices to show (*) for a polynomial ¢ and A € Af™(Q,T), as this
algebra is dense in A(£2,T'). Let such A and ¢ be given.

Let R, the range of the kernel a € C(X xq X) corresponding to A. Since the
kernel of A* is the k-fold convolution product b := a- - a one can easily verify that
the range of A* is bounded by N - R,. Thus, for all p,q € w N Q,, such that the
distance of p, ¢ to the complement of @Q,, is larger than N - R, the kernels of A* Qn
and (A|g, )* agree for k < N. We get:

((p(Aw)l@,)dql0p) = bp,w, @) = (¢(Aulq, )dql0p)-
Since this is true outside {¢ € wNQ,, : dist(q,QS) > N-R,} C In.r, Qn the matrix
elements of (¢(A,)|g,) and ¢(Au|g, ) differ at at most ¢ |On.r, Q| sites, so that

ltr(p(Aw)lQ.) — tr(v(AulQ. )l < C - |ON. R, @nl-

Since (@) is a van Hove sequence, this gives the desired convergence.

Q)| < CllAu = Bull (1Al + 1 Bu D™

O

The above statement has many precursors: [2, 3, 4, 31, 36] in the context of
almost periodic, random or almost random operators on £?(Z%) or L?(R%). It gen-
eralizes results by Kellendonk [17] on tilings associated with primitive substitutions.
Its proof relies on ideas from [2, 3, 4, 17] and [14]. Nevertheless, it is new in the
present context.

For completeness reasons, we also state the following result.

Theorem 4.8. Let (2,T) be an (r, R)-system with an ergodic probabiltiy measure
. Let A e A(Q,T) be selfadjoint (Qy) be an increasing van Hove sequence (Q.,)
of compact sets in R® with UQ, = R%, 0 € Qrand |Q, — Qn| < C|Qy| for some
C >0 and all n € N. Then,

(P[Aw, Qnl, ) — T(p(A)) as n — oo

for pu-almost every w € Q. Consequently, the measures p@» converge weakly to the
measure pa defined above by (pa,p) := 1(p(A)), for u-almost every w € Q.

The Proof follows along similar lines as the proof of the previous theorem with
two modifications: Instead of Proposition 4.5, we use Proposition 4.6; and instead
of dealing with arbitrary polynomials we choose a countable set of polynomials
which is dense in C.([—||A|l — 2, || 4] + 2]).

The primary object from the physicists point of view is the finite volume limit:
N[A|(E) := nler;O n[Ay, Qn](E)

known as the integrated density of states. It has a striking relevance as the number
of energy levels below F per unit volume, once its existence and independence of w
are settled.

The last two theorems provide the mathematically rigorous version. Namely,
the distribution function N4 (E) := pa(—o0, E] of p4 is the right choice. It gives a
limit of finite volume counting measures since

plAu, Qn] — pa weakly as n — oo.
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Therefore, the desired independence of w is also clear. Moreover, by standard
arguments we get that the distribution functions of the finite volume counting
functions converge to N4 at points of continuity of the latter.

In [30] we present a much stronger result for uniquely ergodic minimal DDS that
extends results for onedimensional models by the first named author, [26]. Namely
we prove that the distribution functions converge uniformly, uniform in w. The
above result can then be used to identify the limit as given by the tace 7. Let us
stress the fact that unlike in usual random models, the function N4 does exhibit
discontinuities in general, as explained in [20].

Let us end by emphasizing that the assumptions we posed are met by all the
models that are usually considered in connection with quasicrystals. In particular,
included are those Delone sets that are constructed by the cut-and-project method
as well as models that come from primitive substitution tilings.
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ABSTRACT. We study strictly ergodic Delone dynamical systems and prove
an ergodic theorem for Banach space valued functions on the associated set of
pattern classes. As an application, we prove existence of the integrated density
of states in the sense of uniform convergence in distribution for the associated
random operators.
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1. INTRODUCTION

This paper is concerned with Delone dynamical systems and the associated ran-
dom operators.

Delone dynamical systems can be seen as the higher dimensional analogues of
subshifts over finite alphabets. They have attracted particular attention as they
can serve as models for so called quasicrystals. These are substances, discovered in
1984 by Shechtman, Blech, Gratias and Cahn [38] (see the report [18] of Ishimasa et
al. as well), which exhibit features similar to crystals but are non-periodic. Thus,
they belong to the reign of disordered solids and their distinctive feature is their
special form of weak disorder.

This form of disorder and its effects have been immensely studied in recent
years, both from the theoretical and the experimental point of view (see [2, 19,
34, 37] and references therein). On the theoretical side, there does not exist an
axiomatic framework (yet) to describe quasicrystals. However, they are commonly
modeled by either Delone dynamical systems or tiling dynamical systems [37] (see
[25, 26] for recent study of Delone sets as well). In fact, these two descriptions are
essentially equivalent (see e.g. [31]). The main focus of the theoretical study lies
then on diffraction properties, ergodic and combinatorial features and the associated
random operators (see [2, 34, 37]).

Here, we will deal with ergodic features of Delone dynamical systems and the
associated random operators. The associated random operators (Hamiltonians)

* Research partly supported by the DFG in the priority program Quasicrystals.
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describe basic quantum mechanical features of the models (e.g. conductance prop-
erties). In the one dimensional case, starting with [5, 36], various specific features
of these Hamiltonians have been rigorously studied. They include purely singu-
lar continuous spectrum, Cantor spectrum and anomalous transport (see [8] for a
recent review and an extended bibliography). In the higher dimensional case our
understanding is much more restricted. In fact, information on spectral types is
completely missing. However, there is K-Theory providing some overall type in-
formation on possible gaps in the spectra. This topic was initiated by Bellissard
[3] for almost periodic operators. It has then been investigated for tilings starting
with the work of Kellendonk [20] (see [4, 21] for recent reviews).

Now, our aim in this paper is to study the integrated density of states. This
is a key quantity in the study of random operators. It gives some average type of
information on the involved operators.

We will show uniform existence of the density of states in the sense of uniform
convergence in distribution of the underlying measures. This result is considerably
stronger than the corresponding earlier results of Kellendonk [20], and Hof [15],
which only gave weak convergence. It fits well within the general point of view that
quasicrystals should behave very uniformly due to their proximity to crystals.

These results are particularly relevant as the limiting distribution may well have
points of discontinuity. In fact, points of discontinuity are an immediate conse-
quence of existence of locally supported eigenfunctions. Such eigenfunctions had
already been observed in certain models [1, 13, 23, 24]. In fact, as discussed by
the authors and Steffen Klassert in [22], they can easily be “introduced” without
essentially changing the underlying Delone dynamical system. Moreover, based on
the methods presented here, it is possible to show that points of discontinuity of the
integrated density of states are exactly those energies for which locally supported
eigenfunctions exist (see [22] again).

Let us emphasize that the limiting distribution is known to be continuous for
models on lattices [10] (and, in fact, even stronger continuity properties hold [6]).
In these cases uniform convergence of the distributions is an immediate consequence
of general measure theory.

To prove our result on uniform convergence (Theorem 3) we introduce a new
method. It relies on studying convergence of averages in suitable Banach spaces.
Namely, the integrated density of states turns out to be given by an almost additive
function with values in a certain Banach space (Theorem 2). To apply our method
we prove an ergodic theorem (Theorem 1), for Banach space valued functions on
the associated set of pattern classes.

This ergodic theorem may be of independent interest. It is an analog of a result
of Geerse/Hof [14] for tilings associated to primitive substitutions. For real valued
almost additive functions on linearly repetitive Delone sets related results have
been obtained by Lagarias and Pleasants [26]. The one-dimensional case has been
studied by one of the authors in [28, 29].

The proof of our ergodic theorem uses ideas from the cited work of Geerse and
Hof. Their work relies on suitable decompositions. These decompositions are nat-
urally present in the framework of primitive substitutions. However, we need to
construct them separately in the case we are dealing with. To do so, we use tech-
niques of “partitioning according to return words” as introduced by Durand in
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[11, 12] for symbolic dynamics and later studied for tilings by Priebe [35]. Note,
however, that we need quite some extra effort, as we do not assume aperiodicity.

The paper is organized as follows. In Section 2 we introduce the notation and
present our results. Section 3 is devoted to a discussion of the relevant decompo-
sition. The ergodic theorem is proved in Section 4. Uniform convergence of the
integrated density of states is proven in Section 5 after proving the necessary almost
additivity.

2. SETTING AND RESULTS

The aim of this section is to introduce some notation and to present our results,
which cover part of what has been announced in [30]. In a companion paper [31]
more emphasis has been laid on the topological background and the basics of the
groupoid construction and the noncommutative point of view.

For the remainder of the paper an integer d > 1 will be fixed and all Delone sets,
patterns etc. will be subsets of R?. The Euclidean norm on R¢ will be denoted by
| - || as will the norms on various other normed spaces. For s > 0 and p € R, we
let B(p,s) be the closed ball in R? around p with radius s. A subset w of R? is
called Delone set if there exist r > 0 and R > 0 such that

o 2r < |z — y|| whenever x,y € w with = # y,
e B(x,R)Nw # ( for all x € RY,

and the limiting values of r and R are called packing radius and covering radius,
respectively. Such an w will also be denoted as (r, R)-set. Of particular interest
will be the restrictions of w to bounded subsets of R?. In order to treat these
restrictions, we introduce the following definition.

Definition 2.1. (a) A pair (A, Q) consisting of a bounded subset Q of R? and
A C Q finite is called pattern. The set Q) is called the support of the pattern.

(b) A pattern (A, Q) is called ball pattern if Q = B(x,s) with x € A for suitable
z €R? and s > 0.

The diameter and the volume of a pattern are defined to be the diameter and the
volume of its support respectively. For patterns X; = (A1, Q1) and Xo = (A3, Q2),
we define fx, X2, the number of occurrences of X; in X5, to be the number of
elements in {t € R?: Ay +t = Ay N (Q1 +1), Q1 +t = Q2}. Moreover, for patterns
Xi= (A, Q),i=1,....k and X = (A,Q), we write X = ©F_| X; if A = UA;,
Q = UQ; and the Q; are disjoint up to their boundaries.

For further investigation we will have to identify patterns which are equal up to
translation. Thus, on the set of patterns we introduce an equivalence relation by
setting (A1, Q1) =~ (As,Q2) if and only if there exists a t € R? with Aj = Ay + ¢
and Q1 = Q2 +t. The class of a pattern (A, Q) is denoted by [(A, @)]. The notions
of diameter, volume occurrence etc. can easily be carried over from patterns to
pattern classes.

Every Delone set w gives rise to a set of pattern classes, P(w) viz P(w) =
{Q ANw : @ C R?bounded and measurable}, and to a set of ball pattern classes
Pp(w)) ={[B(p,s) Aw] : p € w, s € R}. Here we set

(1) QAw=(wnNQ,Q).
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Furthermore, for arbitrary ball patterns P, we define s(P) to be the radius of the
underlying ball, i.e.

(2) s(P) =s for P =[(A, B(p, s))].

For s € (0,00), we denote by Pj(w) the set of ball patterns with radius s. A
Delone set is said to be of finite type if for every radius s the set P (w) is finite.

The Hausdorff metric on the set of compact subsets of R? induces the so called
natural topology on the set of closed subsets of R Tt is described in detail in
[31] and shares some nice properties: Firstly, the set of all closed subsets of R? is
compact in the natural topology. Secondly, the natural action T of R? on the closed
sets given by T;C = C 4+t is continuous.

Definition 2.2. (a) If Q is a set of Delone sets that is invariant under the shift
T and closed under the natural topology, then (Q,T) is called a Delone dynamical
system and abbreviated as DDS.

(b) A DDS (Q,T) is said to be of finite local complexity if U,cqPg(w) is finite for
every s > 0.

(¢) A DDS (Q,T) is called an (r, R)-system if every w € Q is an (r, R)-set.

(d) The set P(2) of patterns classes associated to a DDS ) is defined by P(Q2) =
Uweﬂp(w).

Due to compactness of the set of all closed sets in the natural topology a DDS
Q) is compact.

Let us record the following notions of ergodic theory along with an equivalent
“combinatorial” characterization available for Delone dynamical systems (see e.g.
[26, 39] for further discussion and references) : (Q2,T) is called aperiodic if Tiw # w
whenever w € Q and t € R? with ¢ # 0. Is is called minimal if every orbit is
dense. This is equivalent to P(2) = P(w) for every w € Q. This latter property is
called local isomorphism property in the tiling framework [39]. It is also referred to
as repetitivity. Namely, it is equivalent to the existence of an R(P) > 0 for every
P ¢ P(Q) such that B(p, R(P)) A w contains a copy of P for every p € R? and
every w € Q. Note also that every minimal DDS is an (r, R)-system.

We are interested in ergodic averages. More precisely, we will take means of
suitable functions along suitable sequences of patterns and pattern classes. These
functions and sequences will be introduced next. Here and in the sequel we will use
the following notation: For Q C R%and h > 0 we define

Qn={rcQ:dist(z,0Q) > h}, Q" ={z e R?: dist(x,Q) < h},

where, of course, dist denotes the usual distance and 0@ is the boundary of Q.
Moreover, we denote the Lebesgue measure of a measurable subset Q@ C R by Q|-
Then, a sequence (Q,,) of subsets in R¢ is called a van Hove sequence if the sequence
(|Qn|~1 Q" \ Qn.1|) tends to zero for every h € (0,00). Similarly, a sequence (P,)
of pattern classes, (i.e. P, = [(An, @n)] with suitable @Q,,, A;,) is called a van Howve
sequence if @, is a van Hove sequence. (This is obviously well defined.) We can now
discuss unique ergodicity. A dynamical system (2, T) is called uniquely ergodic if it
admits only one T-invariant measure (up to normalization). For a Delone dynamical
system, this is equivalent to the fact that for every pattern class P the frequency

(3) f(P) Enhl}ololQn‘_lﬁP(W/\Qn)v



ERGODIC THEORY AND THE INTEGRATED DENSITY OF STATES 159

exists uniformly in w € Q for every van Hove sequence (Q,,). This equivalence was
shown in Theorem 1.6 in [31] (see [27] as well). It goes back to [39], Theorem 3.3,
in the tiling setting.

Definition 2.3. Let Q be a DDS and B be a vector space with seminorm || - ||.
A function F : P(Q) :— B is called almost additive (with respect to || - ||) if
there exists a function b: P(Q) — [0,00) (called associated error function) and a
constant D > 0 such that

(A1) IF(@f, P) = S50y F(R)I < Sy b(P),

(A2) | F(P)] < DIPI 4 b(P).

(A3) b(P1) < b(P) + b(Py) whenever P = P, @ P,

(A4) limp—oo | Py 710(Py) = 0 for every van Hove sequence (Py,).

Now, our first result reads as follows.

Theorem 1. For a minimal, aperiodic DDSF (Q,T) the following are equivalent:
(i) (,T) is uniquely ergodic.

(ii) The limit limy_ | P| " F(Py) ezists for every van Hove sequence (Py) and
every almost additive F' on (Q,T) with values in a Banach space.

The proof of the the theorem makes use of completeness of the Banach space in
crucial manner. However, it does not use the nondegeneracy of the norm. Thus,
we get the following corollary (of its proof).

Corollary 2.4. Let (Q,T) be aperiodic and strictly ergodic. Let the vector space
B be complete with respect to the topology induced by the seminorms || - |., ¢ €
I. If F: P — B is almost additive with respect to every || -||,. ¢ € T , then
limg 00 | Pe| "L F(Py) exists for every van Hove sequence (Py) in P().

The main theorem may also be rephrased as a result on additive functions on
Borel sets. As this may also be of interest we include a short discussion

Definition 2.5. Let (2,T) be a DDS and B be a Banach space. Let S be the family
of bounded measurable sets on RY. A function F : S x Q — B is called almost
additive if there exists a function b: S — [0,00) and D > 0 such that
(A0) b(Q) =b(Q +1t) for arbitrary Q € S and t € R? and || F,,(Q) — F,,(Q")|| <
b(Q) whenever w AQ =wAQ'.
(AL) [[FLu(UT1Qy) = >25—) Fu(Q))] < X272, b(Qy) for arbitrary w € Q and Q; €
S which are disjoint up to their boundaries,
(A2) [|Fu(Q)] < DIQ|+b(Q).
(A3) b(Q1) < b(Q) 4 b(Q2) whenever Q = Q1 U Q2 with Q1 and Qo disjoint up
to their boundaries.
(A4) limg—co |Qr|710(Qr) for every van Hove sequence (Qy) -
Corollary 2.6. Let (Q,T) be a strictly ergodic DDS and F : S x Q be almost
additive. Then limy_ o |Qr| " F,(Qy) ezists for arbitrary w € Q and every van
Hove sequence (Qy,) in RY and the convergence is uniform on .
Our further results concern selfadjoint operators in a certain C* algebra associ-

ated to (©,T). The construction of this C* algebra has been given in our earlier
work [30, 31]. We recall the necessary details next.

Definition 2.7. Let (Q,T) be a DDSF. A family (A,) of bounded operators A, :
0?(w) — £%(w) is called a random operator of finite range if there ewists a constant
5> 0 with
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o A,(z,y) =0 whenever ||z —y|| > s.
o A,(z,y) only depends on the pattern class of (K(z,s) UK (y,s)) Aw) .

The smallest such s will be denoted by R*.

The operators of finite range form a x-algebra under the obvious operations.
There is a natural C*-norm on this algebra and its completion is a C*-algebra
denoted as A(2, T) (see [4, 30, 31] for details). It consists again of families (A, )wen
of operators A, : (?(w) — £2(w).

Note that for selfadjoint A € A(Q,T) and bounded @ C R? the restriction A,|q
defined on £?(Q Nw) has finite rank. Therefore, the spectral counting function

n(Ay, Q)(E) := #{ eigenvalues of A,|q below E}

is finite and ﬁn(Aw, Q) is the distribution function of the measure p(A4,, @), de-
fined by

(Ao for ¢ € CulR).

These spectral counting functions are obviously elements of the vector space
D consisting of all bounded right continuous functions f : R — R for which
limg oo f(z) = 0 and lim,_,o f(x) exists. Equipped with the supremum norm
| flloc = sup,cr |f(z)| this vector space is a Banach space. It turns out that the
spectral counting function is essentially an almost additive function. More precisely
the following holds.

(p(Au, Q), @) =

Theorem 2. Let (2,T) be a DDS. Let A be an operator of finite range. Then
FA . P(Q) — D, defined by FA(P) = n(A,,Qpa) for P = [(wA Q)] is a well

defined almost additive function.

Remark 1. The theorem seems to be new even in the one-dimensional case.
(There, of course, it is very easy to prove.)

Based on the foregoing two theorems it is rather clear how to show existence
of the limit limg o |Qx| " n(A,, @) for van Hove sequences (Q). This limit is
called the spectral density of A. It is possible to express this limit in closed form
using a certain trace on a von Neumann algebra [30, 31]. We will not discuss this
trace here, but rather directly give a closed expression. This will be done next. To
each selfadjoint element A € A(Q,T), we associate the measure p* defined on R by

pA(F) = /ﬂ b (M (@) (F(A)) ) dp().

Here, tr,, is the standard trace on the bounded operators on ¢?(w), f is an arbitrary
nonnegative continuous function with compact support on R? with Jpa f()dt =1
and Mj(w) denotes the operator of multiplication with f in ¢?(w) (see [30, 31]
for details). Tt turns out that p“ is a spectral measure for A [31]. Our result on
convergence of the integrated density of states is the following.

Theorem 3. Let (2, T) be a strictly ergodic DDSF. Let A be a selfadjoint operator
of finite range and (Qx) be an arbitrary van Hove sequence. Then the distributions
Ew— pg‘;((—oo,ED converge to the distribution E +— p?((—oc, E]) with respect to
Il lloo and this convergence is uniform in w € Q.
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Remark 2. (a) The usual proofs of existence of the integrated density of states
only yield weak convergence of the measures.

(b) The proof of the theorem uses the fact, already established in [31, 32], that the
measures p(A,, Q,) converge weakly towards the measure p# for every w € Q and
Ae AQ,T).

As mentioned in the preceeding remark, the usual proofs of existence of the
integrated density of states only give weak convergence of the measures ,03:. Weak
convergence of measures does in general not imply convergence in distribution.
Convergence in distribution will follow, however, from weak convergence if the
limiting distribution is continuous. Thus, the theorem is particularly interesting in
view of the fact that the limiting distribution can have points of discontinuity.

Existence of such discontinuities is rather remarkable as it is completely different
from the behaviour of random operators associated to models with higher disorder.
It turns out that a very precise understanding of this phenomenon can be obtained
invoking the results presented above. Details of this will be given separately [22].
Here, we only mention the following theorem.

Theorem 4. Let (Q,T) be a strictly ergodic DDSF and A an operator of finite
range on (Q,T). Then, E is a point of discontinuity of p if and only if there
exists a locally supported eigenfunction of A, — E for one (every) w € Q.

3. DECOMPOSING DELONE SETS

This section provides the main geometric ideas underlying the proof of our er-
godic theorem, Theorem 1. We first discuss how to decompose a given Delone set
in finite pieces, called cells, in a natural manner, Proposition 3.2. This is based on
the Voronoi construction, as given in (4) and Lemma 3.1, together with a certain
way to obtain Delone sets from a given Delone set and a pattern. This decom-
position will be done on an increasing sequence of scales. As mentioned already,
here we use ideas from [11, 35]. Having described these decompositions, our main
concern is to study van Hove type properties of the induced sequences of cells. This
study will be undertaken in a series of lemmas yielding as main results Proposition
3.12 and Proposition 3.14. Here, the proof of Proposition 3.14 requires quite some
extra effort (compared with the proof of Proposition 3.12) as we have to cope with
periods.

We start with a discussion of the well known Voronoi construction. Let w be
an (r, R)-set. To an arbitrary € w we associate the Voronoi cell V(z,w) C RY
defined by

(4) V(z,w) = {peR?:|p—=z|| <|p—y| forall y € w with y # z}

() = Nyewyra{p ERY: p—2ll < p—yll}-

Note that {p € R? : |[p—2|| < ||[p—y]|} is a half-space. Thus, V (z,w) is a convex set.
Moreover, it is obviously closed and bounded and therefore compact. It turns out

that V(z,w) is already determined by the elements of w close to x. More precisely,
the following is valid.

Lemma 3.1. Let w be an (r, R)-set. Then, V(z,w) is determined by B(x,2R) Aw,
viz V(z,w) = Nyepory{p € R : |lp— 2| < |p—yll}. Moreover, V(z,w) is
contained in B(x, R).
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Proof. The first statement follows from Corollary 5.2 in [37] and the second one
is a consequence of Proposition 5.2 in [37]. O

Next we describe our notion of derived Delone sets. Let w be an (r, R)-set and
P be a ball pattern class with P € P(w). Then, we define the Delone set derived
from w by P, denoted as wp, to be the set of all occurrences of P in R?, i.e.

wp={t €R?: [B(t,s(P)) Aw] = P}.

Now, let (Q,7) be minimal. Choose w €  and P € Pg(f2). Then, the Voronoi
construction applied to wp yields a decomposition of w into cells

C(z,w,P) =V (r,wp) \N\w, = € wp.
More precisely,
RY = Upew, V(z,wp), and int(V(z,wp)) Nint(V(y,wp)) = 0,

whenever x # y. Here, int(V') denotes the interior of V. This way of decomposing
w will be called the P-decomposition of w. It is a crucial fact that each C(z,w, P)
is already determined by

B(x,2R(P)) A w,
as can be seen by Lemma 3.1, where R(P) denotes the covering radius of wp. Thus,
in particular the following holds.

Proposition 3.2. Let (2,T) be a minimal DDS and P € Pp(2) be fized. Let
w € Q with 0 € wp and set Q = B(0,2R(P)) Aw. Then C(Q) = [V(0,wp) A w]
depends only on [Q] (and not on w). Moreover, if C is a cell occurring in the
P-decomposition of some wy € Q, then [C] = C(Q) for a suitable w € Q with
0€wp.

The proposition says that the occurrences of certain cells in the P-decompositions
are determined by the occurrences of the larger @ € {[B(z,2R(P))A\w] : ¢ € wp,w €
Q2}. The proposition does not say that different @ induce different C(Q) (and this
will in fact not be true in general).

The main aim is now to study the decompositions associated to an increasing

sequence of ball pattern classes (P,). We begin by studying minimal and maximal
distances between occurrences of a ball pattern class P. We need the following
definition.
Definition 3.3. Let (Q,T) be minimal and P € Pg be arbitrary. Define r(P) as
the packing radius of wp, i.e., by r(P) = sinf{llz — y[| : z # y, 2,y € wp,w €
0} and the occurrence radius R(P) by R(P) = inf{R > 0 : #p([B(p, R) A w]) >
1 for every p € R? and w € Q1.

Lemma 3.4. Let (2,T) be minimal. Then R(P) = min{R > 0 : tp([B(p,R) A
W) > 1 for every p € RY and w € Q}. Moreover, wp is an (r(P), R(P))-set for
every w € ).

Proof. We show that the infimum is a minimum. Assume the contrary and set
R’ := R(P). Then there exist p € R? and w € Q such that B(p, R') A w does not
contain a copy of P. However, by definition of R', B(p, R’ + €) A w contains a copy
of P for every € > 0. As w is a Delone set, B(p, R’ + 1) A w contains only finitely
many copies of P and a contradiction follows. The last statement of the lemma is
immediate. a
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We will have to deal with Delone sets which are not aperiodic. To do so the
following notions will be useful. For a minimal DDS (,T) let £ = L£(2) be the
periodicity lattice of (2,7, i.e.

L=LQ)={tcR): Tiw=w for all w € Q}.
Clearly, £ is a subgroup of RY; it is discrete, since every w is discrete. Thus, (see
e.g. Proposition 2.3 in [37]), £ is a lattice in RY, i.e. there exists D(L) € N and

vectors ey, ...,epr) € R? which are linearly independent (in R?) such that
D(L)

L=Ling{e;:j=1,...D(L)}={)  aje;:a; €Z,j=1,...,D(L)}.
j=1

We define (L) by
re)=4 , oo ;lf[,Z{O}
smin{[/t]| : t € L\ {0} : ; otherwise.
Next, we provide a result on minimal distances, viz. Lemma 3.6. Variants of this
result have been given in the literature on tilings [35] and on symbolic dynamics

[11]. To prove it in our context we recall the following lemma concerning the natural
topology from [33]:

Lemma 3.5. A sequence (wy,) of Delone sets converges to w € D in the natural
topology if and only if there exists for any l > 0 an L > 1 such that the w, N B(0, L)
converge to w N B(0, L) with respect to the Hausdorff distance as n — oco.

Lemma 3.6. Let (Q,T) be minimal. Let (P,) be a sequence of ball pattern classes
with s(P,) — 00, n — co. Then,
liminfr(P,) > r(L).

n— oo

Proof. As (Q,T) is minimal, it is an (r, R)-system. Assume that the claim is
false. Thus, there exists a sequence (P,) in Pp(Q2) with s(P,,) — oo, n — oo, but
r(P,) < C with a suitable constant C' > 0 with C' < r(£). Then, there exist w,, € Q
and t, € R with ||¢,,| < 1C (and, of course, [|t,|| > 37) with

(6) B(0,s(Pn)) Awn = B(0,5(Py)) A (wn, — tp)-

By compactness of 2 and B(0, %C), we can assume without loss of generality that
wp, — w and t, — t, with ¢t € B(0,C), n — oo. Thus, (6) implies

(1) w=w-—"t.

In fact, let p € w. Fix R > 0 such that p € w N B(0, R). By Lemma 3.5 we find
Pn € wy, N B(0, R), for n sufficiently large, such that p, — p for n — co. Assuming
R < s(P,) and utilizing (6) we find ¢,, € w,, such that p,, = ¢, —t,. Since g, — p+t
and w, — w we see that ¢ = p 4+t € w leaving us with

wNB(0,R) C (w—1t)NB(0,R).

By symmetry and since R was arbitrary, this gives (7). Minimality yields that (7)
extends to allw € Q. As 0 <7 < ||t|| < C < r(L), this gives a contradiction. O

Definition 3.7. For a compact convex set C C R? denote by s(C) > 0 the inradius
of C, i.e. the largest s such that C' contains a ball of radius s.
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In the sequel we write wy, p, = (wn)p, to shorten notation

Lemma 3.8. Let (2,,T), n € N be a family of minimal DDS. Let a pattern class
P, € P(Q,), an w, € Q, and z, € w be given for any n € N. If r(P,) — oo,
n — 00, then s(V(xn,wn,p,)) — 00, for n — co.
Proof. Without loss of generality we can assume that x, = 0 for every n € N.
By construction of V,, = V(z,,,wn,p, ), we have
r(Pn)
2

This implies s(V,,) — o0, n — 0. O

dist(0, 0V;,) > =s(V,),neN.

Our next aim is to show that a sequence of convex sets with increasing inradii
must be van Hove. We need the following two lemmas.

Lemma 3.9. For every d € N, there exists a constant ¢ = c¢(d) with
(1+s8)?—(1—s)<ecs
for|s| < 1.
Proof. This follows by a direct computation. |

For C ¢ R% and A > 0 we set

AC={ z:zeC}.

Lemma 3.10. Let C be a compact convex set in R® with B(0,s) C C, then the
inclusion

oM\ ac i+ heva-Ye

holds, where we set (1 —hs™1)C =0 if h > s. In particular,

h h4
|Ch \ Ch‘ < Kmax g, 87}‘C|,
with a suitable constant k = k(d).

Proof. The first statement follows by convexity of C'. The second is then an im-
mediate consequence of the change of variable formula combined with the foregoing
lemma. |

Lemma 3.11. Let (C,) be a sequence of convex sets in R with s(C,) — oo,
n — o0o. Then (Cy,) is a van Hove sequence.

Proof. Let h > 0 be given and assume without loss of generality that
B(0,s(Cp)) C Cyp. The lemma follows from the foregoing lemma. O

The following consequence of the foregoing results is a key ingredient of our proof
of Theorem 1.

Proposition 3.12. Let (2, T) be minimal and aperiodic. Let (P,) be a sequence
in Pp(Q) with s(P,) — oo, n — co. Let (w,) C Q and z,, € wy, p, be arbitrary.
Then, V(&pn,wn p,) is a van Hove sequence.
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Proof. By Lemma 3.6, aperiodicity of (Q,T) together with s(P,) — oo, n — oo
yields 7(P,) — oo, n — oco. Therefore, by Lemma 3.8, we have s(V(zy,wn,p,)) —
00, for n — oo. Now, the statement is immediate from Lemma 3.11. O

We will also need an analogue of this proposition for arbitrary (i.e. not neces-
sarily aperiodic) DDS. To obtain this analogue we will need some extra effort.

Let a minimal DDS (2, T') with periodicity lattice £ be given. Let U = U(L) be
the subspace of R? spanned by the e;, j = 1,...,D(£) and let Py : RY — U be
the orthogonal projection onto U. The lattice £ induces a grid on R?. Namely, we
can set

D(L)
Go={zeR":Pyz =) XNe;;with0<); <1,j=1,...,D(L)}
j=1
and
Gny,ompey) =M1€1+ ...+ npeyepc) + Go,
for (n1,...,np(c)) € 7P’

We will now use coloring of Delone sets to obtain new DDS from (£2,7"). These
new systems will essentially be the same sets but equipped with a coloring which
“broadens” the periodicity lattice. Coloring has been discussed e.g. in [31].

Let C be a finite set. A Delone set with colorings in C is a subset of R x C' such
that p; (w) is a Delone set, where p; : R x C is the canonical projection p; (z, ¢) = .
When referring to an element (x,c¢) of a colored Delone set we also say that z is
colored with ¢. Notions as patterns, pattern classes, occurrences, diameter etc. can
easily be carried over to colored Delone sets.

Fix w € Q with 0 € Q. For every | € N, we define a DDS as follows: Let w®
be a Delone set with coloring in {0,1} introduced by the following rule: z € w is
colored with 1 if and only if there exists (n1,...,np)) € ZP(£) with

T e G(lnl,...7

l’nD(L‘/))’

in all other cases x € w is colored with 0. Set Q) = Q(w®) = {T}w® : t € R4},
where the bar denotes the closure in the in the canonical topology associated to
colored Delone sets [31]. Moreover, the DDS (Q(), T) is minimal, as can easily be
seen considering repetitions of patterns in w®. Also, (Q(l), T) is uniquely ergodic
if (2,T) is uniquely ergodic, as follows by considering existence of frequencies in
w®. The important point about ("), T) is the following lemma.

Lemma 3.13. Let (2, T) be a minimal DDS and (Q®,T) for 1 € N be constructed
as above, then r(L(QW)) =1-r(L(Q)).
Proof. This is immediate from the construction. O
Now, we can state the following analog of Proposition 3.12.

Proposition 3.14. Let (Q,T) be minimal and (™), T), n € N constructed as
above. For each n € N, choose a pattern class P, € P(Q™). Let (w,) C Q™ and
Ty, € wp,p, be arbitrary. If s(P,) — 0o, n — 00, then, V(zy,wn,p,) is a van Hove
sequence.

Proof. By the foregoing lemma and Lemma 3.6, we infer
r(P,) — 0o,n — 0.

The statement then follows as in the proof of Proposition 3.12. o
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4. THE ERGODIC THEOREM

In this section we prove Theorem 1. The main idea of the proof is to combine the
geometric decompositions studied in the last section with the almost additivity of
F to reduce the study of F' on large patterns to the study o F' on smaller patterns.

Proof of Theorem 1. (ii) ==(i). For every @ € P the function P — fg(P) is
almost additive on P. Thus, its average lim,,_, |Pn| ™ o (Py) exists along arbitrary
van Hove sequences (P,) in P. But this easily implies (3) which in turn implies
unique ergodicity, as discussed in Sectiuon 2.

(i) = (ii). Let F : P(Q2) — B be almost additive with error function b. Let
(P,) be a van Hove sequence in P(). We have to show that lim,, . |P,| "t F(P,)
exists. As B is a Banach space, it is clearly sufficient to show that (|P,| ™1 F(P,))
is a Cauchy sequence. To do so we will provide F*) in B such that

I[P tF(P,) — F®|| is arbitrarily small for n large and k large.

To introduce F*) we proceed as follows: Fix w € Q with 0 € w. We will now
first consider the case that (Q,7) is aperiodic. The other case can be dealt with
similarly. We will comment on this at the end of the proof. Let B(*) be the ball
pattern class occurring in w around zero with radius k i.e.

(8) B® = [w A B(0,k)].

Thus, (B®) is a sequence in Pg(Q) with k = s(B*)) — oo fork — oo and the
assumptions of Proposition 3.12 are satisfied.

As (Q,T) is of finite local complexity, the set {[B(z,2R(B®)) Aw]: 2z € w,w €
Q with [B(x, k) Aw] = B®} is finite. We can thus enumerate its elements by B](-k),
j=1,...,N(k) with suitable N(k) € N and B\" € P(Q). Let C") = C(B") be

the cells associated to B](-k) according to Proposition 3.2. By Proposition 3.12,

(%) (Cj(i" )) is a van Hove sequence

for arbitrary (Ix) C N with I — oo, k — oo, and ji € {1,..., N(lx)}. This will be
crucial. Denote the frequencies of the Bj(k) by f(B](.k))7 ie.

(9) F(B) = lim |Pa ™ g P
Define
N (k)
. k k
FO =3 f(BIYF(C),
j=1

Choose € > 0. We have to show that
[P, ' F(P,) — F®)|| <, for n and k large
(as this will imply that |P,|"*F(P,) is a Cauchy sequence). By (x), there exists
k(e) > 0 with
(10) ICP |71 < % for every j = 1,..., N(k)
whenever k > k(e). (Otherwise, we could find (I}) in N and j € {1,...,N(lx)}

with [ — 00,k — oo such that

(k) —1 (k) ¢
C ) = ¢
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Since (C’j(f)) is a van Hoove sequence by (x), this contradicts property (A4) from
Definition 2.3.)

Let P € P be an arbitrary pattern class. By minimality of (€2, T"), we can choose
Q = Q(P) c R? with [Q Aw] = P.

The idea is now to consider the decomposition of w A @ induced by the B®*)-
decomposition of w. This decomposition of w A Q will (up to a boundary term)
consist of representatives of C](-k)7 j=1,...,N(k). For P = P, with n € N large,
the number of representatives of a Cj(k) for j fixed occurring in @ Aw will essentially
be given by f (Cj(k))|P,L|. Together with the almost-additivity of F', this will allow

us to relate F(P,) to F*) in the desired way. Here are the details:
Let I(P,k) = {z € wpw : B(z,2R(B™)) c Q}. Then, by Lemma 3.1 and
Proposition 3.2

(11) QANw=SANwd @ C(x,w,B(k))

z€l(P,k)

with a suitable surface type set S C R? with

(12) S CQ\Qurpr)-

The triangle inequality implies

F(P) (k) F(P) - F([SAw]) - ZzeI(P,k) F([C(z,w, BM)])|
I —FP <l
|P] P
1 F(SAw])+ erz(z;,T) F([C(x,w, B™))) _ P

= Dy (P, k) + Dy(P, k).

The terms D;(P, k) and Do(P, k) can be estimated as follows.
By almost additivity of F', we have

Dy (P, k)

A

- (k)
Pl 2 I e B [P

b(P) + b([Brer(ppC (2w, BF)])
- |P|
b([C(x,w, BM)))
|C(x,w, BW)]

+sup{ :er(P,k:)}.

In the last inequality we used (A3).
Fix k = k(e) from (10) and consider the above estimate for P = P,. Then,
W) +W(BacripnClaiss BY)) ¢
| P 3
As (P,) is a van Hove sequence, it is clear from (12) that
([®rer(pr)C(z,w, B®)]) is a van Hove sequence as well. Thus

b(Pn) + 0([©eer(p, )C (2, w, B®) b(P,)

|Pn P

Dl(Pna k) é
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b([@wEI(Pmk)C(ma w, B(k>)D | [@wEI(Pn ,k)C(xa W, B(k))} ‘
[@se1(p, a0 C(@,w, B [Pl
tends to zero for n tending to infinity by the definition of b. Putting this together,
we infer

€

D1 (P, k) <

[\

for large enough n € N.

Consider now Ds. Invoking the definition of F(*)| we clearly have
[E(S AwD

1P|

+J§) #{z € I(P,k): [B (m];?(Bk))Aw]:BJ('k)} — fB®)| [P

Choose k as above and consider P = P,,. By (12) and the almost additivity of F
(property (A2)), we infer that the first term tends to zero for n tending to infinity.
Again by (12) and the definition of the frequency, we infer that the second term
tends to zero as well. Thus,

D2(P7k) <

D(Posk) < 5
for n large. Putting these estimates together, we infer
[[Pa " F(P) — FO)| < Dy(n, k) + Da(n, k) < e
for large n and the proof is finished for aperiodic DDS.
For arbitrary strictly ergodic DDS, we replace the definition of B*) in (8), by
B® = [B(0,k) Aw™®)],

where w®) e Q®) is defined via colouring; see the paragraphs preceding Lemma
3.13 in Section 3. Then B®) belongs to P (Q*) for every k € N and

¥ = s(BW) — o0,k — ooc.

Thus, Proposition 3.14 applies. The proof then proceeds along the same lines as
above, with Q replaced by Q*) and Proposition 3.12 replaced by Proposition 3.14
at the corresponding places. O

Remark 3. Using what could be called the k-cells, C’J(.k), keNj=1,...,N(k)
from the preceding proof we have actually proven that
N (k)

. (0)) (k) F(Pn)

Proof of Corollary 2.4. We use the notation of the corollary. Apparently, the
reasoning yielding (i) = (ii) in the foregoing proof remains valid for arbitrary

seminorms || - ||. Thus, if F is almost-additive with respect to seminorms || - ||,,
t € Z, then (|P,|"1F(P,)), is a Cauchy sequence with respect to || - ||, for every
t € Z. The corollary now follows from completeness. |

Proof of Corollary 2.6. This can be shown by mimicking the arguments in the
above proof. Alternatively, one can define the function F:P—B by setting
F(P) := F(Q,w), where (Q,w) is arbitrary with P = [w A Q]. This definition may
seem very arbitrary. However, by (A0), it is not hard to see that F(P) is (up to
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a boundary term) actually independent of the actual choice of @ and w. By the
same kind of reasoning, one infers that F is almost-additive. Now, existence of the
limits | P,,| L F(P,) follows for arbitrary van Hove sequnences (P, ). Invoking (A0)
once more the corollary follows. |

5. UNIFORM CONVERGENCE OF THE INTEGRATED DENSITY OF STATES

This section is devoted to a proof of Theorem 2 and Theorem 3. We need some
preparation.

Lemma 5.1. Let B and C be selfadjoint operators in a finite dimensional
Hilbert space. Then, |n(B)(E) — n(B + C)(E)| < rank(C) for every E € R,
where n(D) denotes the eigenvalue counting function of D, i.e. n(D)(E) =
#{ Figenvalues of D not exceeding E}.

Proof. This is a consequence of the minmax principle, see e.g. Theorem 4.3.6 in
[17] for details. O

From this lemma we infer the following proposition.

Proposition 5.2. Let U be a subspace of the finite dimensional Hilbert space X with
inclusion j : U — X and orthogonal projection p : X — U. Then, |n(A)(F) —
n(pAj)(E)| < 4-rank(l — jop) for every selfadjoint operator A on X.

Proof. Let P : X — X be the orthogonal projection onto U, i.e. P = jop. Set
P+ =1 — P and denote the range of P+ by UL. By
A— PAP = PYAP + PAP* + P+ AP+,
and the foregoing lemma, we have |[n(A4)(E) — n(PAP)(E)| < 3rank(P*). As
obviously,
PAP :pA_] @OUL7
with the zero operator Oy : U+ — U=, f — 0, we also have
[n(PAP)(E) — n(pAj)(E)| < dim(U™).

As dim U+ = rank(P~), we are done. O

Lemma 5.3. Let (Q,T) be an (r, R)-system and w € Q and Q a bounded subset of
R?. Then,

QNw< Q"
W()|
Proof. As (Q,T) is an (r, R)-system, balls with radius  around different points
in w are disjoint and the lemma follows. a

Our main tool will be the following consequence of the foregoing two results.

Proposition 5.4. Let (Q,T) be an (r, R)-system. Let Q,Q; CR?, j=1,...,n be
given with QQ = Ui _1Q; and the Q; pairwise disjoint up to their boundames Set
0(w, s) = |d1m€2(QS Nw) = dim (U7, (Qj.s Nw))| for w € Q and s > 0 arbitrary.
Then,

d(w,s) < \dime(Qﬁw) dlmﬂz( Ui 1(Qj,s Nw))|

0 r ‘ Z ‘QT\QJ,G-H"
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Proof. Apparently
dimEQ(Uyzl(Qjﬁs Nw)) < dim 3(Qs Nw) < dim £2(Q Nw).

Now the first inequality is clear and the second follows by

dim *(Q Nw) — dim F(U_,Q;s Nw) < Zﬁ (Q;\ Qjs) Nw)

j=1
< B YOI Qe
> s+l
[B(0, )] 2= 7 %
Here, the last inequality follows by the foregoing lemma. o

We are now able to prove Theorem 2.

Proof of Theorem 2. We have to provide b : P(2) — (0,00), and D > 0 such
that (A1), (A2) and (A3) of Definition 2.3 are satisfied. Set

. 2
V= B0
and define b by
b(P) |B( )\'Q \QRA+1"|

whenever P € P(Q) with P = [(Q,A)]. Apparently, b is well defined. Moreover,
(A4) follows by the very definition of b and the van Hove property.

Now, (A2) is satisfied as

IFAP) = (A Qra)llos < 8(Qpa Nw) <

By |1 < DIPL+(P),

for P = [Q A w]. (A3) can be shown by a similar argument. It remains to show
(Al). Let P = @7_;P;. Then, there exists w € {2 and bounded measurable sets
Q,Qj, 7 = 1,...,n in R? with @, pairwise disjoint up to their boundaries and
Q@ = Uj_1Q; such that

P=[QAw] and P;=[Q; Aw],j=1,...,n
As A is an operator of finite range, it follows from the definition of R* that
AW‘U’]@:IQ]’RA A |QJ RA

and in particular,

n

(13) > n(Au, Qjra) = n(Au, Uj_,Qj pa)-
j=1

Thus, we can calculate as follows
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|F4(P) *ZF(PJ)II In(Au, Qra) = Y n(Au, Qj pa)ll

Jj=1 Jj=1

In(Aw, Qra) — n(Aw, Uj=1Qj ra)lloo
(Prop 5.2) < 4(dim(*(Qpa) — dim é2(U‘;-L:1Qj’RA)

4 L
(Prop 5.4) < 7|B(0,7’)| ]; |Qj \ Qj rA4r|
n
< D b(F)
j=1
This finishes the proof. m|

We can now proceed to show Theorem 3. The theorem will be an immediate
consequence of Theorem 1 and Theorem 2, once we have proven the following
lemma.

Lemma 5.5. Let (Q,T) be a strictly ergodic (r, R)-system. Let A be a finite range
operator with range RA. Then, |n(Ay, Q) — FA([w A Q)|lee < 4/B(0,7)|71Q" \
QRrai,| for allw € Q and all bounded subsets Q in R?.

Proof By definition of F4, we have

In(Aw, Q) = FA([w A Q))lloo = [In(Au, Q) — n(Au, Qra)lloc-

Invoking Proposition 5.2, we see that the difference is bounded by 44(Q\ Qra) Aw.
The statement of the lemma now follows by Lemma 5.3. 0.

Proof of Theorem 3. Let (Q,) be a van Hove sequence. Then ([@Q, A w]) is a
van Hove sequence in P(£2) independent of w. Thus, |Q,| ™ FA([Q, Aw]) converges
uniformly in w € Q by Theorem 1 and Theorem 2. The proof follows from the
foregoing lemma. |

REFERENCES

[1] M. Aral, T. TokIHIRO and T. FUJIWARA, Strictly localized states on a two-dimensional
Penrose lattice, Phys. Rev. B 38 (1988) 1621-1626

[2] M. BAAKE and R.V. Mooby, EDSs Directions in Mathematical Quasicrystals, CRM Mono-
graph series, AMS, Providence RI (2000),

[3] J. BELLISSARD, K—theory of C*—algebras in solid state physics. In: Statistical mechanics
and field theory: mathematical aspects

[4] J. BELLISSARD, D. J. L. HERMANN, and M. ZARROUATI, Hulls of Aperiodic Solids and
Gap Labelling Theorem, In: Directions in mathematical quasicrystals, CRM Monogr.
Ser., 13, Amer. Math. Soc., Provicence, RI, 2000, 207-258

[5] M. CASDAGLI, Symbolic dynamics for the renormalization map of a quasiperiodic
Schrédinger equation, Commaun. Math. Phys. 107 (1986), 295-318

[6] W. CralG, B. SIMON, Log Hélder continuity of the integrated density of states for sto-
chastic Jacobi matrices. Comm. Math. Phys. 90 (1983), 207-218

[7] A. CONNES, Sur la théorie non commutative de l'intégration. LNM, vol. 725, Springer,
Berlin, 1979

[8] D. DAMANIK, Gordon type arguments in the theory of one-dimensional quasicrystals, in
[2], pp

[9] B. DELAUNAY [B.N. DELONE], Sur la sphére vide, lzvestia Akad Nauk SSSR Otdel. Mat.
Sov. Nauk. 7 (1934), 793-800



172

(10]
(11]
(12]

(13]

[14]
[15]
[16]
17]
[18]

19
[20]

(21]

(22]
(23]
(24]
[25]
(26]
(27]
28]
29]

(30]

(31]
32]
(33]

34

(35]
(36]

37]

D. LENZ, P. STOLLMANN

F. DELYON B. SouiLLARD,Remark on the continuity of the density of states of ergodic
finite difference operators, Comm. Math. Phys. 94 (1984), 289-291

F. DURAND, A characterization of substitutive sequences using return words, Discrete
Math. 179 (1998) 89-101

F. DURAND, Linearly recurrent subshifts have a finite number of non-periodic subshift
factors, Ergodic theory & Dyn. Syst., 20, (2000) 1061-1078

T. Funnwara T., M. Aral, T. TokIHIRO and M. KOHMOTO, Localized states and self-
similar states of electrons on a two-dimensional Penrose lattice, Phys. Rev. B 37 (1988)
2797-2804

C.P.M. GEERSE and A. HoF, Lattice gas models on self-similar aperiodic tilings, Rev.
Math. Phys., 3, 1991, 163-221

A. Hor, Some remarks on discrete aperiodic Schrodinger operators, J. Statist. Phys., 72,
(1993) 1353-1374

A. Hor, A remark on Schrédinger operators on aperiodic tilings, J. Statist. Phys., 81,
(1996) 851-855

R. HOrN and C.R. JOHNSON, Matrix Analysis, Cambridge University Press, Cambridge
(1985)

T. Ishimasa, H. U. Nissen and Y. Fukano, New ordered state between crystalline and
amorphous in Ni-Cr particles, Phys. Rev. Lett. 55 (1985) 511-513.

C. JANOT, Quasicrystals: A Primer, Oxford University Press, Oxford, 1992

J. KELLENDONK, Noncommutative geometry of tilings and gap labelling, Rev. Math.
Phys., 7, 1995, 1133-1180

J. KELLENDONK and I. F. PurnaM, Tilings; C*-algebras, and K-theory. In: Directions
in mathematical quasicrystals, CRM Monogr. Ser., 13, Amer. Math. Soc., Provicence,
RI, 2000, 177-206

S. KLASSERT, D. LENZ and P. STOLLMANN, Discontinuities for the integrated density of
states. Comm. Math. Phys., to appear

M. KoumoTo and B. SUTHERLAND, Electronic States on a Penrose Lattice, Phys. Rev.
Lett. 56 (1986) 2740-2743

M. KrAJCf and T. FUJIWARA, Strictly localized eigenstates on a three-dimensional Pen-
rose lattice, Phys. Rev. B, 38 (1988) 12903-12907

J. C. LAGARIAS, Geometric Models for Quasicrystals I. Delone Sets of Finite Type,
Discrete Comput. Geom., 21 (1999), 161-191.

J. C. LAGARIAS and P.A.B. PLEASANTS, Repetitive Delone sets and Quasicrystals, Er-
godic Theory Dynam. Systems, to appear

J.-Y. LEE, R.V. MooDY and B. SoLOMYAK, Pure Point Dynamical and Diffraction Spec-
tra, Ann. Henri Poincaré, 3 (2002), 1003-1018.

D. LENz, Uniform ergodic theorems for subshifts over finite alphabets, Ergodic Theory
Dynam. Systems,

D. LENz, Hierarchical structures in Sturmian dynamical systems, Theoret. Comput. Sci-
ence, 303 (2003), 463-490

D. LENZ and P. STOLLMANN, Delone dynamical systems, groupoid von Neuman algebras
and Hamiltonians for quasicrystals, C. R. Acad. Sci. Paris, Ser. I, 334 (2002), 1131 —
1136

D. LENZ and P. STOLLMANN, Delone dynamical systems and associated random opera-
tors, in J.-M. Combes et al. (eds) Proc. ”Operator Algebra

D. LENZ and P. STOLLMANN, Algebras of random operators associated to Delone dynam-
ical systems, Math. Phys. Anal. Geom., to appear

D. LENz and P. STOLLMANN, Aperiodic order and quasicrystals: spectral properties.
Ann. Henri Poincaré, 4 (2003), 787 — 796

J. PATERA (ED), Quasicrystals and Discrete Geometry, Fields Institute Monographs, vol.
10, AMS, Providence, RI 1998

N. PrIEBE, Towards a characterization of self-similar tilings in terms of dereived Voronoi
tesselations, Geometriae Dedicata, 79 (2000) 239-265

A. Sit6, The spectrum of a quasiperiodic Schrédinger operator, Commun. Math. Phys.
111 (1987), 409415

M. SENECHAL, Quasicrystals and Geometry, Cambridge University Press, Cambridge,
1995



ERGODIC THEORY AND THE INTEGRATED DENSITY OF STATES 173

[38] D. SHECHTMAN, I. BLECH, D. GRATIAS and J.W. CAHN: Metallic phase with long-range
orientational order and no translation symmetry, Phys. Rev. Lett., 53, 1984, 1951-1953

[39] B. SoLoMYAK, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems, 17,
1997, 695-738






CHAPTER 11

M. Baake, D. Lenz, Dynamzical systems on
translation bounded measures and pure point
diffraction, Ergodic Theory & Dynamical Systems
24 (2004), 1867—1893.






DYNAMICAL SYSTEMS ON TRANSLATION BOUNDED MEASURES:
PURE POINT DYNAMICAL AND DIFFRACTION SPECTRA

MICHAEL BAAKE AND DANIEL LENZ

ABSTRACT. Certain topological dynamical systems are considered that arise from actions
of o-compact locally compact Abelian groups on compact spaces of translation bounded
measures. Such a measure dynamical system is shown to have pure point dynamical spectrum
if and only if its diffraction spectrum is pure point.

1. INTRODUCTION

This paper deals with certain dynamical systems build from measures on o-compact locally
compact Abelian groups. These dynamical systems give rise to two spectra: the dynamical
spectrum and the diffraction spectrum. After introducing the dynamical systems and dis-
cussing their basic topological features, we will focus on studying the relationship between
these two spectra. Particular attention will be paid to the case where one of the spectra is
pure point. This will be shown to happen if and only if the other is pure point as well (read
on for details and a discussion of related results.)

The motivation for our study comes from physics and, more precisely, from the study of
solids with long range aperiodic order and crystal-like diffraction spectrum. Such solids are
known as genuine quasicrystals. The existence of quasicrystals is now a well-established and
widely accepted experimental fact. Even if discussions about the precise structures will still
be going on for a while, the common feature of aperiodicity has opened a new chapter of
crystallography and solid state research.

The original discovery of quasicrystals [35, 19] was somewhat accidental and only possible
through one of their most striking features, namely their sharp Bragg diffraction with point
symmetries that are not possible for 3-dimensional crystals (such as n-fold rotation axes with
n = 8,10,12, or icosahedral symmetry); see [1] for a summary and [2] for a guide to the
literature. These experimental results called for a mathematical explanation and created a
subject now often referred to as mathematical diffraction theory.

Mathematical diffraction theory deals with the Fourier transform of the autocorrelation
measure (or Patterson measure) of a given translation bounded (possibly complex) measure
w. Here, w is the mathematical idealisation of the physical structure of a solid or, more
generally, of any state of matter. In its simplest form, w is just a Dirac comb, i.e., a countable
collection of (possibly weighted) point measures which mimic the positions of the atoms (and
their scattering strengths). The autocorrelation measure «,, of w (see below for a precise
definition) is then a positive definite measure. Its Fourier transform 7, is a positive measure,
called the diffraction measure, which models the outcome of a diffraction experiment; see [10]

for background material and details on the physical justification of this approach.
177



178 MICHAEL BAAKE AND DANIEL LENZ

Now, given this setting, one of the most obvious questions to address is that for (the
characterisation of all) examples of measures w with a diffraction measure 7, that is pure
point, i.e., consists of point measures only.

This was addressed by Bombieri and Taylor in [8]. However, no rigorous answer could
be given at that time. Soon after, Hof [17] showed that structures obtained from the cut-
and-project formalism [21] possess a pure point diffraction spectrum under rather decent
assumptions, and Solomyak started a rather systematic study of substitution dynamical sys-
tems with pure point spectrum in [37]. By now, large classes of examples are known [5, 22],
also beyond the class of ordinary projection sets [6]. Moreover, Schlottmann was able to free
the cut-and-project formalism from basically all specific properties of Euclidean space [33]
and established that all regular model sets are pure point diffractive [34], see also [26] for a
summary on model sets.

A cornerstone in many of these considerations is the use of ergodic theory and the so-called
Dworkin argument [11] (see [18, 34] as well). This argument links the diffraction spectrum
to the dynamical spectrum. It can be used to infer pure point diffraction spectrum from
pure point dynamical spectrum. These investigations heavily depend on the underlying point
sets being point sets of finite local complexity (FLC). This, however, is not necessary, as
becomes clear from two alternative approaches, one for general Dirac combs and measures
on the basis of almost periodicity by Moody and one of the authors [5], and the other for
so-called deformed model sets by Bernuau and Duneau [9)].

Thus, at the moment, there is a considerable gap between the cases that can be treated
by the method of almost periodicity of measures [14, 5] and those using ergodic theory and
requiring FLC together with unique ergodicity. It is the primary aim of this article to narrow
this gap. This will be achieved by thoroughly analysing the link between the diffraction
spectrum and the dynamical spectrum given by the Dworkin argument.

The analysis carried out below will also be a crucial ingredient in a forthcoming paper of
ours [4] which investigates the stability of pure point diffraction. Namely, we will set up a
perturbation theory for pure point diffraction by studying deformations of dynamical systems
with pure point dynamical spectrum. Particular emphasis will be put on deformed model sets
and isospectral deformations of Delone sets. Note that the deformation of model sets almost
immediately leads to point sets which violate FL.C.

Let us now discuss our results in more detail. The first step in our approach is to choose
a setting of measures rather than point sets. Defining appropriate dynamical systems with
measures on a locally compact Abelian group will free us from essentially all restrictions
mentioned. This setting is presented in Section 3, where also the relevant topological questions
are discussed. The relationship between our measure dynamical systems and point dynamical
systems is investigated in Section 4. It is shown that the measure dynamical systems enclose
the usual Delone dynamical systems. This section introduces a topology on Delone sets
(and actually all closed subsets of the group) with very nice compactness properties. The
results generalise and strengthen the corresponding considerations of [34, 23] and may be
of independent interest in further studies of point sets not satisfying FLC. The extension of
diffraction theory and the Dworkin argument (as developed for point sets in, e.g., [11, 34]) to
our setting is achieved in Section 5.

The main result of our paper is summarised in Theorem 7 in Section 7. It states that,
under some rather mild assumptions,
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e pure point dynamical spectrum is equivalent to pure point diffraction spectrum.

This generalises the main results of Lee, Moody and Solomyak [22] in at least three ways:
It is not restricted to dynamical systems arising from Delone sets, and, in fact, not even
to dynamical systems arising from point sets. It does not need any condition of finite local
complexity. It does not need an ergodicity assumption for the invariant measure involved.

Let us mention that a generalisation of the main result of [22] sharing the last two features
had already been announced by Gouéré [15, 16], within the framework of point processes
and Palm measures, see his recent work [15] for a study of this framework as well. His result
applies to the point dynamical systems studied below in Section 4. Thus, there is some overlap
between his result an ours. However, in general, our setting, methods and results are quite
different from his, as we leave the scenario of point sets. In fact, the measure theoretical
setting seems very adequate and natural in view of the physical applications, where point sets
are only a somewhat crude approximation of the arrangements of scatterers.

Let us also mention that, in general, the diffraction spectrum and the dynamical spectrum
can be of different type, as has been investigated by van Enter and Miegkisz in [12].

Our proof of the equivalence of the two notions of pure pointedness relies on two results
which are of interest in their own right. These results are

e an abstract characterisation of pure point dynamical spectrum for arbitrary topolog-
ical dynamical systems,
e a precise interpretation of the Dworkin argument.

Here, the abstract characterisation is achieved in Theorem 1 in Section 2. Roughly speaking,
it states that a system has pure point spectrum once it has a lot of point spectrum. The
precise interpretation of the Dworkin argument is given in Theorem 6 in Section 6. It says
that the diffraction measure is a spectral measure for a suitable subrepresentation of the
translation action at hand.

The relationship between suitable subrepresentation with pure point spectrum and the
original representation can actually be analysed in more detail. To do so, we take a second look
at the abstract theory in Section 8. Namely, we discuss how the group of all eigenvalues and
the continuity of eigenfunctions is already determined by the set of eigenvalues and continuity
of eigenfunctions associated to a suitable subrepresentation with pure point spectrum.

This material is rather general and may be of independent interest. Here, we apply it to
our topological measure dynamical systems. This gives a criterion for the continuity of the
eigenfunctions. More importantly, it shows that the group of all eigenvalues is generated by
the support of the diffraction spectrum. The validity of such a result was brought to our
attention by R. V. Moody for the case of point dynamical systems satisfying FLC [27].

The material presented above, and the abstract strategy to prove our main result, can be
adopted to study a measurable framework (as opposed to a topological one). This will be
analysed in the future.

2. AN ABSTRACT CRITERION

In this section, we introduce some notation and provide a simple result which lies at the
heart of our considerations. It is rather general and might also be useful elsewhere.



180 MICHAEL BAAKE AND DANIEL LENZ

Let §2 be a compact topological space (by which we mean to include the Hausdorff property)
and G be a locally compact Abelian (LCA) group which is o-compact. Let

(1) a: Gx 2 —

be a continuous action of G on {2, where, of course, G x {2 carries the product topology
(later on, we will specify it via o(P) = t + P for P C G and t € G). Then, (£2,a) is
called a topological dynamical system. The set of continuous functions on {2 will be denoted
by C(£2). Let m be a G-invariant probability measure on (2 and denote the corresponding
set of square integrable functions on 2 by L?(2,m). This space is equipped with the inner
product (f,g) := [ f(w)g(w)dm(w). The action « induces a unitary representation 7' of G
on L?(£2,m) in the obvious way, where T'h is defined by (T%h)(w) := h(a_,(w)). Whenever
we want to emphasise the dependence of the inner product and the unitary representation on
the chosen invariant measure m, we write (f, g)m and T, instead of (f,g) and T

The dual group of G is denoted by @, and the pairing between a character § € G and an
element t € G is written as (§,t), which, of course, is a number on the unit circle, compare
(31, Ch. 4] for background material.

A non-zero h € L%(2,m) is called an eigenvector (or eigenfunction) of T if there exists an
§ € G with T'h = (§,t)h for every t € G. The closure (in L2(£2,m)) of the linear span of all
eigenfunctions of 7" will be denoted by H,,(T').

The following is a variant (and an extension) of a result from [22].

Lemma 1. Let (2, «) be a topological dynamical system with an invariant measure m. Then,
Hpp(T)NC(£2) is a subalgebra of C(§2) which is closed under complex conjugation and contains
all constant functions. Similarly, Hy,(T) N L*°(£2,m) is a subalgebra of L*°(£2,m) that is
closed under complex conjugation and contains all constant functions.

Proof. We only show the statement about H,,(7") N C(£2). The other result can be shown in
the same way.

The set H,,(T') NC(£2) is a vector space because it is the intersection of two vector spaces.
Moreover, every constant (non-vanishing) function is obviously continuous and an eigenvector
of T' (with eigenvalue 1, i.e., with the trivial character (s,t) = 1).

It remains to be shown that H,,(T) NC({2) is closed under complex conjugation and under
forming products.

Closedness under complex conjugation: Let f be an eigenfunction of T to, say, §. Then,
f is an eigenfunction of T to the character . Here, of course, the inverse §~! of § € G is
given by t — (§,t), where the bar denotes complex conjugation. Using this, it is not hard to
see that Hp,(T') is closed under complex conjugation. As this is true of C'({2) as well, we see
that the intersection Hy,(7') N C(2) is closed under complex conjugation.

Closedness under products: This is shown in Lemma 3.7 in [22] in the case that m is not
only translation invariant but also ergodic. To adopt their argument to the case at hand, we
note that every eigenfunction can be approximated arbitrarily well (in L?(£2,m)) by bounded
eigenfunctions via a simple cut-off procedure. More precisely, if f is an eigenfunction, then
|f| is an a-invariant function. Therefore, for an arbitrary N > 0, the function

) = {f(w)’ @) <N

0, otherwise

(2)
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is again an eigenfunction (with the same § as f). Apparently, the f¥ converge to f in
L?(£2,m) as N — oo.

After this preliminary consideration, we can conclude the proof following [22]: Let two
functions f, g € H,p(T) NC(£2) be given. Then, fg belongs to C'(£2). It remains to be shown
that it belongs to Hp,(T") as well.

Choose € > 0 arbitrarily. Observe that ||g|lcc < 00, as g € C(§2) with {2 compact. Since f
is in Hpp(T'), there exists a finite linear combination f' = 3" a; f; of eigenfunctions of 7' with

€
|‘f*2aifi|’2 < m

By the preliminary consideration around Eq. (2), we can assume that all f; are bounded
functions. Thus, in particular, ||f/||e < co.

Similarly, choose another finite linear combination ¢’ = > b;g; of bounded functions g; in
Hpp(T') with

€
lg =Y bigjlla < 75— -
11/ lloo
Then,
1fg=F'g'llz < 1fllollg = g'll2+ llgllos 1f = fll2 < 2e.

The proof is complete by observing that f'¢g’ is in H,,(T) because the product of bounded
eigenfunctions is again a bounded eigenfunction. O

With Lemma 1, the following result is a rather direct consequence of the Stone-Weierstrafl
Theorem.

Theorem 1. Let (2,a) be a topological dynamical system with invariant probability measure
m. Then, the following assertions are equivalent.

(a) T has pure point spectrum, i.e., Hyp(T) = L*(£2,m).

(b) There exists a subspace V C Hpp(T) N C(§2) which separates points.

Proof. (a) = (b): This is clear, as one can take V = Hp,(T) N C(2) = C(12).

(b) = (a): By Lemma 1, H,,(T) N C(£2) is an algebra which is closed under complex
conjugation and contains the constant functions. It also separates points as it contains a
subspace, V, with this property by (b). Thus, we can apply the Stone-Weierstrafi Theorem
(compare [28, Thm. 4.3.4]), to conclude that H,,(T") N C(£2) is dense in C({2). By standard
measure theory, see [28, Prop. 6.4.11], H,,(T) is then dense in L?(£2,m) as well. As H,,(T)
is closed, statement (a) follows. 0

3. MEASURE DYNAMICAL SYSTEMS

For the remainder of the paper, let G be a fixed o-compact LCA group with identity 0.
Integration with respect to Haar measure is denoted by |, ¢ - -+ dt, and the measure of a subset
D of G is denoted by |D|. The vector space of complex valued continuous functions on G
with compact support is denoted by C.(G). It is made into a locally convex space by the
inductive limit topology, as induced by the canonical embeddings

Ck(G) — C.(G), K C G compact.

Here, C'k(G) is the space of complex valued continuous functions on G with support in K,
which is equipped with the usual supremum norm ||.||«. The support of ¢ € C.(G) is denoted

by supp(p).
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The dual C.(G)* of the locally convex space C.(G) is denoted by M(G). The space M(G)
carries the vague topology. This topology equals the weak-* topology of C.(G)*, i.e., it is the
weakest topology which makes all functionals p — p(p), ¢ € C.(G), continuous. As is well
known (see e.g. [28, Thm. 6.5.6] together with its proof), every u € M(G) gives rise to a
unique |u| € M(G), called the total variation of p, which satisfies

() = sup{|u()| : ¢ € Ce(G,R) with |[¢] < ¢}

for every ¢ € C.(G)+. Apparently, the total variation || is positive, i.e., |u|(¢) > 0 for all
¢ € C(G)4. In particular, it can be identified with a measure on the o-algebra of Borel sets
of G that satisfies

o |u|(K) < oo for every compact set K C G,
o |u|(A) =sup{|p|(K): K C A, K compact} for every Borel set A C G

(see, e.g., [28, Thm. 6.3.4]). As G is o-compact, we furthermore have
o |u|(A) = inf{|u|(B): A C B, B open} for every Borel set A C G

by [28, Prop. 6.3.6], i.e., || is an (unbounded) regular Borel measure, in line with the Riesz-
Markov Theorem [30, Thm. IV.18]. Finally, we note that there exists, by [28, Thm. 6.5.6], a
measurable function u: G — C with |u(t)| = 1 for |p|-almost every ¢ € G such that

(3) ulg) = /G pudly] for all g € C,(G).

This polar decomposition permits us to identify the elements of M(G) with the regular
complex Borel measures on G, which is the Riesz-Markov Theorem for this situation.

For later use, we also introduce some notation concerning Fourier transforms and convolu-
tions, compare [32, 7] for details. The Fourier transform of a quantity ¢ will always be denoted
by . For ,1 € C.(G), we define the convolution ¢ * 1) by (¢ * ¥)(t) := [, ¢(s)P(t — s)ds
and the function ¢ € C.(G) by @(t) = p(—t). For p € M(G) and ¢ € C.(G), the
convolution ¢ * p is the function given by (p * u)(t) := [, ¢(t — s)du(s). For two con-
volvable measures p,v € M(G), the convolution p * v is the element of M(G) given by
(1 xv)(p) = Jo o e(s+t)du(s) du(t) for ¢ € C.(G); the measures i and i are defined by
(@) :== (@) and 7i(p) := u(P), respectively. For p € M(G) and a measurable set B C G,
we denote the restriction of p to B by . Finally, for € G, we define the measure §, to be
the normalised point measure at x.

We will consider actions of G on spaces consisting of measures on GG. The relevant set of
measures will be defined next.

Definition 1. Let C > 0 and a relatively compact open set V in G be given. A measure
w € M(G) is called (C,V)-translation bounded if |u|(t + V) < C for all t € G. It is simply
called translation bounded if there exist C,V such that it is (C,V)-translation bounded. The
set of all (C,V)-translation bounded measures is denoted by Mc,yv(G) and the set of all
translation bounded measures by M™>(G).

The vague topology on M(G) has very nice features when restricted to the translation
bounded measures.

Theorem 2. Let C' > 0 and a relatively compact open set V in G be given. Then, Mc,v(G)
is a compact Hausdorff space. If G is second countable, Mc v (G) is metrisable.
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To prove the theorem, we start with the following simple result from measure theory.

Proposition 1. Let p € M(G) and a relatively compact open set V in G be given. Then,
[ul(V) = sup{|u(p)| : ¢ € Ce(G) with supp(p) C V and [lpfoc < 1}.

Proof. Denote the supremum in the statement by S. Recall the polar decomposition and the
definition of v in Eq. (3). As w is |u| almost surely equal to 1, a direct calculation easily
gives S < |u|(V). Conversely, as C.(V) is dense in L'(V,|ul,,) (see, e.g., [28, Prop. 6.4.11]),
there exists a sequence (¢,,) in C(V) with ¢, ~— @-1y, in L*(V, |p|y,) . By the |u|-almost
sure boundedness of u, this implies up,, ~—— u@ - 1, = 1y, in L'(V,|u|;,). Then, a short
calculation, invoking (3) again, shows S > lim, . |u(p,)| = |u|(V). This proves the
proposition. O

Proof of Theorem 2. By definition of M¢ v (G), for each ¢ € C.(G), there exists a radius
R(p) > 0 such that u(p) € Br) for every pp € Mcv(G), where B, is the (open) ball of

radius r around 0 and B, its closure. Thus, we can consider Mc,v(G) as a subspace of
1I .= HgoeCC(G) BR(<p) equipped with the product topology via the embedding

jr Mey(G) = I, (j(1)(p) = p(yp).
As IT is obviously a compact Hausdorff space, this shows immediately that Mc v (G) is
relatively compact and Hausdorff. It remains to be shown that j(Mc (G)) is closed. This
is a direct consequence of Definition 1 together with Proposition 1.
The statement about metrisability is standard: if G is second countable, there exists a
countable dense subset {¢,, : n € N} in C,(G). Then,

: N V) = -n |M(§0n)_7/(§0n)|
4 Mev(G) x Moy (G) — R, dlwv) : 71€ZN2 1+ |u(en) — vien)

gives a metric on M¢ v (G) which generates the topology. O

Having discussed the topology of M(G), we can now introduce the topological dynamical
systems associated to subsets of M(G). To do so, we will use the obvious action a of G on

M(QG) given by
a: GXM(G) — M(G),  (t,p) = ay(p) := 0t * p,
or, more explicitly, (a,(1))(¢) = [ (t+s) du(s). We use the same symbol for the action as

in Eq. (1), since misunderstandings are unlikely, and we will usually write o, for v, ().
This action is compatible with the topological structure of G and M(G).

Proposition 2. Let C > 0 and a relatively compact open set V. C G be given. Then, the
action a: GxMcy(G) — Mcv(G) is continuous, where Gx Mc v (G) carries the product
topology.

Proof. Let (t,,,) be a net in G x Mc y(G) converging to (¢, ). We have to show that the
net (oy, (p,)) converges to ay(u), i.e., we have to check that

/cp(s +t,)dp,(s) — /(,0(8 +t)du(s), forall p € C.(G).

By t, — t, there exists an index ¢, and a compact set K such that the support of ¢ and the
supports of all ¢, with ¢ > ¢, are contained in K. Moreover, as p, € Mcy(G) for every ¢,
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there exists a constant C’ with |u|(K) < C" as well as |u,|(K) < C’ for all .. Now, the desired
statement follows easily from

I (p(-+ 1) = ule(-+ 1)) < (e +8) — o+ )]+ [l + 1) — (e +1))]
< (O le(c + 1) — o+ )lloo + [ (@(- +1) — pule(- + 1)),

as both terms on the right hand side tend to zero for t, — t and u, — pu. d
The dynamical systems we are interested in are defined as follows.

Definition 2. (£2,a) is called a dynamical system on the translation bounded measures on
G (TMDS) if there exist a constant C > 0 and a relatively compact open V' C G such that 2
is a closed subset of Mcy(G) that is invariant under the G-action o

Remarks. (a) The a invariant subsets of M(G) are called translation stable sets in [14].
Thus, a TDMS is just a closed translation stable subset of M¢c v (G).

(b) The space {2 of a TMDS is always compact by Theorem 2 and the action « is continuous
by Proposition 2. Thus, a TMDS is a topological dynamical system in the sense of Section 2.
(¢) The considerations of this section (and those of the next) do not use commutativity of
the underlying group GG. They immediately extend to arbitrary o-compact locally compact
groups. But since we need harmonic analysis later on, we stick to Abelian groups here.

4. POINT DYNAMICAL SYSTEMS

This section has two aims. Firstly, we present an abstract topological framework which
allows us to treat point dynamical systems which are not of finite local complexity. Secondly,
we show how these systems fit into our setting of measure dynamical systems. As for the first
aim, we actually introduce a topology on the set of all closed subsets of G. For the case of
R, this topology has already been studied by Stollmann and one of the authors in [23]. Our
extension to arbitrary locally compact groups is strongly influenced by the investigation of
Schlottmann [34] (which, however, is restricted to FLC systems).

As pointed out by the referee, the topology we introduce can also be obtained as a special
case of a topology introduced by Fell in [13]. This is further discussed in the appendix. Given
this connection, Theorem 3 below is a corollary of Theorem 1 in [13]. For this reason, we only
give an outline of how it can be established in our setting.

We start by defining the relevant sets of points.

Definition 3. Let G be a o-compact LCA group, and V an open neighbourhood of 0 in G.

(a) A subset A of G is called V-discrete if every translate of V contains at most one point
of A. The set of all V-discrete subsets of G is denoted by Dy (G).

(b) A subset of G is called uniformly discrete if it is V-discrete for some V. The set of
all uniformly discrete subsets of G is denoted as UD(G).

(c) The set of all discrete and closed subsets of G will be denoted by D(G).

(d) The set of all closed subsets of G is denoted as C(G).

(e) A subset A of G is called relatively dense if there is a compact K with A+ K = G.

Note that a uniformly discrete subset of G is closed. As it presents no extra difficulty,
we will actually topologise not only D(G) but rather the larger set C(G). This will be done
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by providing a suitable uniformity (see [20, Ch. 6] for details on uniformities). Namely, for
K C G compact and V a neighbourhood of 0 in G, we set

UK,V = {(P],PQ) € C(G) X C(G) :PNKCP,+Vand BPLNK C P+ V}
It is not hard to check that

(P,P) e Uky, Ukyv = U;}}V, Uk,ukovinve C Uk v VUK, vy Uk—ww oUk—ww C Uky
for V' a neighbourhood of 0, W a compact neighbourhood of 0 with W+ W C V, K in G
compact, and P any closed subset of G. Here, on sets U, Uy, Uy consisting of ordered pairs,
we define U~! := {(y,2) : (z,y) € U} and
UioUs; := {(z,2): Jy € G with (x,y) € Uy and (y,z) € Us}.
This guarantees that {Ugy : K compact, V open with 0 € V'} generates a uniformity, and
hence a topology on C(G) via the neighbourhoods
Ukyv(P) == {Q:(Q,P)eUkyv}, PeC(G).

Note that we could equally well generate the same uniformity with V' running through compact
neighbourhoods of 0 € G.

Definition 4. The topology defined this way is called the local rubber topology (LRT).

This topology essentially means that two sets Pj, P» are close if they “almost” agree on
large compact sets.

Fundamental properties of the LRT are given in the following result (see [23] for an earlier
result on R?).

Theorem 3. With the LRT, the set C(G) of closed subsets of G is a compact Hausdorff
space. If the topology of G has a countable base, then C(G) is metrisable.

Proof. The set C(G) is Hausdorff, as the intersection of all Uk y contains only the diagonal
set {(P,P): P € C(G)}, see [20, Ch. 6].

We next show completeness: Let (P,),cr be a Cauchy net in C(G), where I is an index set
directed by <, compare [20, Ch. 2].

We have to show that the Cauchy net converges to a closed subset of G, hence an element of

C(@). To this end, we introduce the set P of those z € G such that, for every neighbourhood
V of 0, there exists Ly v €1 with

(4) (z+V)NP, # @ forale>y, .

It is not hard to see that P is closed. P will turn out to be the limit of our Cauchy net.
To show this, let a compact K in G and a neighbourhood V of 0 be given. We have to
provide an ¢ KV with
PNK CP+V and PNK C P+V

for every v > vp v
Rather direct arguments show existence of ¢y, with PN K C P, +V for all ¢ > ¢y, We
next establish the other inclusion. By a compactness argument,

(5) PNC # o,
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whenever C' C G is compact and P,NC # & for all kK > K, and some x; € I. Assume, without
loss of generality, that V' is compact and symmetric. As (P,) is a Cauchy net, there exists
a gy with (P, Py) € Uk, for all 1,k > 1) y,. Consider ¢ > ¢y, and choose an arbitrary
qE]bLﬂK. Then, 7 ’

(q+V)NP, # @

for every £ > 1y, as V' is symmetric and P, N K C P, +V by (P, Ps) € Uk,v. Thus, (5)
gives existence of a p € P with p € ¢+ V. In particular, invoking the symmetry of V' once
more, we have ¢ € p+V C P+ V. As ¢ € P,N K was arbitrary, we infer the desired inclusion
PNK Cc P+V.

These considerations prove the desired completeness statement.

Finally, we show compactness of C(G). As C(G) is complete, it suffices to prove it is
precompact. Thus, for any given K compact and V an open neighbourhood of 0 in G, we have
to provide a natural number n and P; € C(G), 1 <14 < n, such that C(G) C U, Ukv ().
Since Uk v (P) D Uk, yn(-v)(P) for all P € C(G) and V N (—V) is symmetric, we can assume,
without loss of generality, that V'is symmetric (i.e., V = —V). As K is compact, there exists
a finite set D C K with K C D + V. Direct calculations then give

C(G) C U UK,V(DI'),

where D;, 1 < i < n, is an enumeration of the power set of D.

The statement about metrisability is a direct consequence of [20, Thm. 6.13] and the remark
thereafter. 0

Having topologised C(G), and thus UD(G) as well, we can now introduce our point dy-
namical systems. The natural action of G on C(G) by translation will also be denoted by «.
Explicitly, we define a,(P) = ¢+ P for P € C(G), where t + P = {t + = : * € P} as usual.

Definition 5. Let {2 be a subset of G and o the translation action just defined.

(a) The pair (§2,a) is called a set dynamical system if (2 is a closed subset of C(G)
which is invariant under a.

(b) A set dynamical system (£2, ) is called a point dynamical system if (2 is a subset of
Dy (G) for some open neighbourhood V of 0.

(c) A point dynamical system (§2, a) is called a Delone dynamical system, if every element
of 12 is a relatively dense subset of G.

It follows from Theorem 3 that a set dynamical system is indeed a topological dynamical
system in the sense of Section 2.

A special way of obtaining set dynamical systems is the following: Choose P € C(G). Then,
the LRT-closure X (P) of the orbit {c,(P) : t € G} of P in C(G) is a closed a-invariant subset
of C(G), hence compact. Thus, (X (P), ) is a set dynamical system. We say that P and P’
are locally indistinguishable if P C X (P') and P’ C X (P), hence if X(P) = X(P’). The set
of all P’ which are locally indistinguishable form P is called the RLI class of P, written as
RLI(P). Here, as before, the letter R stands for “rubber”.

Given these notions, we can characterise minimality of a set dynamical system in the
following way, which extends [34, Prop. 3.1] to our setting.
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Proposition 3. Let P € C(G) be given. Then, the following assertions are equivalent.

(a) The set dynamical system (X (P),«) is minimal.

(b) X(P) =RLI(P).

(c) The set {t € G: (t+ P,P) € Uk} is relatively dense in G for all compact K C G
and all open neighbourhoods V of 0.

(d) The set P is repetitive, i.e., for every K compact and every open neighbourhood V
of 0, there is a compact set C = C(K,V) C G such that, for ti,ts € G, there is an
s € C with (t1+ P,s+ty+ P) € Uky.

Proof. The equivalence of (a) and (b) is clear by the definition of minimality and the lo-
cal indistinguishability class. This is also known as Gottschalk’s Theorem, compare [29,
Thm. 4.1.2]. The remaining assertions can be shown by mimicking and slightly extending the
proof of [34, Prop. 3.1]. Since we do not use these results later on, we skip further details. O

Having discussed point dynamical systems, we can now relate them to special dynamical
systems on measures. The connection relies on the map

§: UD(G) — M™(G), 6(A):=> 6.,
zeA
Note that ¢ is indeed a map into M*>(G), as every A € UD(G) is uniformly discrete.

Lemma 2. The map 6: UD(G) — M™>(Q) is injective, continuous and compatible with
the action of G. The inverse 6~ 1: §(UD(G)) — UD(G) is continuous as well.

Proof. Injectivity and compatibility with the action of G' are immediate. In particular, using
Ot1+a = Ot * 05, one can check that

Slay(A)) = 8(t+A) = 6,%5(A) = a,(5(A)).

To show continuity of d, we have to show §(A,)(p) — 6(A)(yp) for all ¢ € C.(G), whenever
A, — A. Let V be an open neighbourhood of 0 in G such that A € Dy (G). Let ¢ € C.(G)
be given, so supp(p) is compact. By a simple partition of unity argument, we can now write
= 2?21 @;, where each ¢;, j = 1,...,n, has its support in a set of the form W + ¢;, with
W + W C V. Now, for such ¢;, the convergence 6(A,)(p;) — 6(A)(p;) follows easily. This
yields the desired convergence for . The continuity of 6~! can be shown similarly. O

As can be seen from simple examples, §(UD(G)) is, in general, not closed in M>(G) and
the LRT is not the same as the vague topology on §(UD(G)). For example, if (z,) is a
sequence in G with =, — 0 and =z, # 0, then, A,, := {0,z,} € UD(G) with 4, — {0}
in the LRT. However, §(4,) — 20y in the vague topology, and 20y does not belong to
d(UD(G)). Nevertheless, the following still holds.

Proposition 4. Let V be an open neighbourhood of 0 in G. Then, Dy (G) is compact in the
LRT and 6(Dy(G)) is compact in the vague topology.

Proof. By compactness of C(G) and continuity of ¢, it suffices to show that Dy (G) is closed.
Since V' is open, this is easy. O

Our main result on the relationship of point dynamical systems and the framework of
measure dynamical systems reads as follows.
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Theorem 4. If (£2, ) is a point dynamical system, the restriction §|o: 2 — §(£2) of § to
0 establishes a topological conjugacy between the dynamical systems (£2,a) and (6(£2), ).

Proof. By Lemma 2, d|g, is an injective and continuous map which is compatible with the
group action. As {2 is compact, so is §(§2). By a standard argument [28, Prop. 1.6.8],
| is then a homeomorphism between ({2, ) and (§({2), ). Together, this establishes the
topological conjugacy. O

We finish this section by briefly discussing the relationship of the LRT and the topology
usually considered for Delone dynamical systems with the FLC property. A thorough discus-
sion of the latter topology has been given in [34]. This discussion actually gives a topology
on the closed subsets of G (though this is not explicitly noted in [34]). This topology will be
called the local matching topology (LMT).

The definition of the LMT in [34] shows immediately that the LRT is coarser than the
LMT. Thus, the identity

id: (C(G),LMT) — (C(G),LRT), P+~ P
is continuous. This yields the following result, which essentially shows that our way of topol-

ogising the uniformly discrete sets coincides with the usual topology when restricted to sets
of finite local complexity.

Proposition 5. Let {2 be a subset of C(G). If (2 is compact in the LMT, then {2 is compact
in the LRT as well, and the two topologies agree on 2.

Proof. The restriction idgp: (2,LMT) — (£2,LRT) of the identity to {2 is continuous. Thus,
as (2,LMT) is compact, so is its image ({2, LRT). Now, continuity of the inverse is standard,
cf. [28, Prop. 1.6.8]. Thus, the two topologies agree. O

5. THE DIFFRACTION SPECTRUM

The basic concepts in the mathematical treatment of diffraction experiments are the auto-
correlation measure and the diffraction measure. In the context of Delone dynamical systems,
these concepts have been developed and investigated in a series of articles by theoretical physi-
cists and mathematicians [3, 5, 11, 17, 18, 33, 34]. This will now be generalized and extended
to our measure dynamical systems. More precisely, we show the existence of the autocorrela-
tion measure by a limiting procedure, provided certain ergodicity assumptions hold.

Let us mention that we will provide an alternative approach to these quantities later on.
It will be more general in that it does not need an ergodicity assumption.

To phrase our results, we need two more pieces of notation. Firstly, recall from [34] that a
sequence (By,) of compact subsets of G is called a van Hove sequence if

lim 0% B |
n—00 |Bn|
for all compact K C G. Here, for compact B, K, the “K-boundary” 0% B of B is defined as
0B := (B+K)\B)U(G\B—-K)NB,

where the bar denotes the closure. The existence of van Hove sequences for all o-compact
LCA groups is shown in [34, p. 249], see also Section 3.3 and Theorem (3.L) of [38, Appendix].
Moreover, every van Hove sequence is a Fglner sequence, i.e., |B,A(By, + K)|/|Bn| —= 0,

=0
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for every compact set K C G, where /A denotes the operator for the symmetric difference
of two sets, compare Section 3.2 of [38, Appendix]; for a partial converse, consult Theorem
(3.K) of the same reference.

Secondly, for ¢ € C.(G) and p € M(G), we define

Foli) = (p#u)(0) = /G o(—s) du(s).

This gives a way to “push” functions from C.(G) to C(§2). In fact, up to the sign, f, is just
the canonical embedding of C.(G) into its bidual M(G)*. Basic features of the map ¢ — f,
are gathered in the following lemma.

Lemma 3. Recall the definition a,u = §; * pn for measures p, and set Bi(p) = 0, x ¢ for
functions . Then one has:
(a) The function f,: M(G) — C, p > fo(n) is continuous, for all ¢ € C.(G).
(b) If (£2,c) is a TMDS, the map f: C.(G) — C(£2), ¢ — f,, is linear, continuous
and compatible with the action of G in that f,(ouu) = f,(p)(1)-

Proof. (a) For ¢ € C.(G), we have f,(u) = pu(p.), where ¢ (t) = p(—t). Thus, continuity of
f,, is immediate from the definition of the topology on M(G).

(b) Linearity of the map f is obvious. To show continuity of f, recall that C.(G) is equipped
with the inductive limit topology induced from the embeddings C (G) — C.(G) with K C G
compact. Thus, it suffices to show the continuity of the map

Jr: Cg(G) — Co(G), ¢ fp

for every compact K in G. So, let (¢,) be a net in Cj (G) converging to ¢ € Cp(G). Then,
llo. — ¢lloo — 0, and supp(y),supp(¢,) C K for all v. As 2 C Mc,v(G) with suitable C,V,
this easily implies f,, — f,. Finally, a direct calculation shows fi, () = fa,() (1) O

Remark. The lemma is particularly interesting as there does not seem to exist any canonical
map from 2 to G or from G to 2 in our setting (let alone a map which is compatible with
the corresponding group actions). However, if one views a function ¢ as the Radon-Nikodym
derivative of a measure that is absolutely continuous with respect to the Haar measure of G,
the action «, induces [3; as defined.

Now, our result on existence of the autocorrelation function reads as follows.

Theorem 5. Let « be the translation action of G on M™(G) as introduced above.

(a) If (2,) is a uniquely ergodic TMDS, there exists a translation bounded measure
v on G such that the sequence (ﬁ@}i % wp, ) converges, in the vague topology,
to v for every van Hove sequence (By) and every w € {2. Moreover, the equation
(@* v *7)(t) = (fp, T fy) holds for arbitrary ¢, € Co(G) and t € G.

(b) Let G have a topology with countable base. Let (£2,a) be a TMDS with ergodic
probability measure m. Then, there exists a translation bounded measure v on G such
that the sequence (ﬁ wp *wp ) converges, in the vague topology, to v for m-almost
every w € ), whenever (By,) is a van Hove sequence along which the Birkhoff ergodic
theorem holds. Moreover, the equation (§5 * U * *y) (t) = <f¢,th¢> holds for arbitrary
o, € Co(G) and t € G.
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Remarks. (a) Every LCA group with a countable base of the topology admits a van Hove
sequence along which the Birkhoff ergodic theorem holds, as follows from recent results of
Lindenstrauss [24], see also Tempelman’s monograph [38], in particular its Appendix, for
background material. More precisely, every van Hove sequence is a Fglner sequence, and thus
contains a so-called tempered subsequence with the desired property, compare [24]. Note also
that G second countable implies o-compactness as well as metrisability of G.

(b) The theorem generalises the corresponding results of [11, 34, 18].

To prove Theorem 5, we need some preparation in form of the following results.

Lemma 4. Let D be a dense subset of C.(G). Let C' > 0 and a relatively compact open V
in G be given. If (p,) is a net of measures in Mc,v(G) such that p,(p) converges for every
@ € D, then there exists a translation bounded measure p € M(G) such that (p,) converges
vaguely to p.

Proof. As D is dense, every p in M(G) is uniquely determined by its values on D. Thus, all

converging subnets of (u,) have the same limit. As M¢ y(G) is compact by Theorem 2, there
exist converging subnets. Putting this together, we arrive at the desired statement. O

Lemma 5. [34, Lemma 1.2] Let u,v be translation bounded measures on G and (B,) a van
Hove sequence. Then, in the vague topology, lim, ﬁ(/‘Bn *vp —p*vg ) =0. O

Lemma 6. [34, Lemma 1.1 (2)] Let (By,) be a van Hove sequence in G and p a translation
bounded measure. Then, the sequence (|u|(By)/|Bnl|) is bounded. O

Proof of Theorem 5. (a) As w € M¢,y(G), Lemma 6 and a short calculation give a constant
C’ > 0 and and a relatively compact open V'’ C G such that the sequence ((wABJn xwp )/|Bnl)
is contained in Mcryr. Moreover, the set {¢ x ¢ : ¢,1p € C.(G)} is dense in C.(G) by
standard arguments involving approximate units [32]. Thus, by Lemma 4 and Lemma 5, it
suffices to show limy, oo |B—1n|(<5 * Y xwp * an)(t) = (fs, T" f) for arbitrary ¢, € C.(G)
and t € G. By Lemma 5, it suffices to show
1
lim —(g@*zp*w *wp, )(t) = <f4p,th¢>.

This follows by unique ergodicity and a Dworkin type calculation [11, 34, 22]. As the details
are somewhat more involved than in the case of Delone sets, we include a sketch for the
convenience of the reader. We define Z,, := (@ kxR0 xwp )(t) Then,

7, = /G(a*w)(t—u)d(wa /// (0t +r)(v— )15, (s) dv da(r) dw(s),

where 15, denotes the characteristic function of B,,. Using Fubini’s Theorem and sorting the
terms, we arrive at

Zn:/G</G<p(v—t+) ></1/)v—813()dw()>dv.

We will now study the two terms in brackets. A short calculation shows [, @(v—t+r)do(r) =
fo(oy_w). As for the other term, we consider the difference function

/1/11)—5 1p, (s) dw(s /wv—s dw(s)1p, (v).
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Let K be a compact set with K = —K, 0 € K and supp(¢)) C K. Then, it is not hard to
see that the difference D(v) (and in fact each of its terms alone) vanishes for v ¢ B, + K.
Similarly, one can show that D(v) is supported in 0% B,. Apparently, |D(v)| is bounded
above by C := 21|/ sup {|w|(t + supp(¥)) : t € G} < 0. As (B,,) is a van Hove sequence,
we conclude that
K
0= o [ |PE) ] a0 < Ol 2o
[Bnl Ja | Byl

0.

Noting that [ (v — s)dw(s) = fy(a_,w), and putting these considerations together, we

arrive at 7
n . 1 I e
lim = lim —/ Joloy_w) fy(a_,w)1p,(v)dv.
|Bn| G

n—00 |Bn| n—00

This yields

N

i
n00 | By

/ Folag) fo(w) dm(w) = / Fol@) folor_w) dm(w)
(] (]

/Q Fo@) (T ) (@) dm(w) = (fo T fy),

where we used the pointwise ergodic theorem for continuous functions on a uniquely ergodic
system in the first step and a-invariance of m in the second step. (Note that this ergodic
theorem only relies on compactness of the underlying space 2 and does not require separability
of G. This can easily be seen by going through a proof of this theorem as presented, e.g., in
[39, Thm. 6.19].)

(b) This can be seen similarly: After replacing the pointwise ergodic theorem for uniquely
ergodic systems by the Birkhoff ergodic theorem, the considerations of (a) can be carried
through to show that, for each function ¢ * v, there exists a set (2., C 2 of full measure

such that )
By (P @B, +ws,)(0) 2= (o o)

for every w € f2, . As G is second countable, there exists a countable set D in C.(G) such
that D and {@¢ v : p,9 € D} are dense in G. Thus, there is a set 2y C (2 of full measure

such that
1

| Bnl
for all p,9 € D and all w € 2y. By the density of {g 1 : p,9 € D} in C.(G) and Lemma 4,
the vague convergence of (wp, * w Bn) /|Bn| towards a translation bounded measure v with

(@ * 9= fy) (0) = (fy, fy) for all p,4p € D follows. This gives the desired vague convergence.
It remains to show the last part of the statement: As D is dense in C.(G) and f is a
continuous map, the formula

n—oo

(B *wp, xwp ) (0) == (fy, fy)

(@* v *7)(0) = (fo, fy)
does not only hold for ¢, € D, but for arbitrary ¢, € C.(G). For t € G, this implies

(@ xy)(t) = (6@ x7)(0) = (&x (64 %) *7)(0) = (fp, fo_up)-

By Lemma 3, we have

fo_mp(@) = fa_ypy(w) = fpla_w) = T'fy(w).
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Thus, we can conclude

((Z* (S 7)(t) = <f90’ f54*¢> - <f$0’th¢> :
This finishes the proof. g

Remark. By Lemma 5, the convergence of |B,| 'wp, * wp, towards v discussed in the
previous theorem implies convergence of |B,|~'@ * wp, towards 7 as well.

The measure

Y= T = nlggo|B |wB *Wwp,

appearing in the theorem is called the autocorrelation measure (or autocorrelation for short)
of w € 2. It is obviously positive definite, and hence transformable. By Bochner’s Theo-
rem, compare [7, Ch. 1.4], its Fourier transform is then a positive measure on @, called the
diffraction measure of w € 2. We will have to say more about autocorrelation and diffraction
measures in the next section.

6. RELATING DIFFRACTION AND DYNAMICAL SPECTRUM

In this section, we show that the diffraction spectrum is equivalent to the spectrum of
a certain subrepresentation of 7. This type of result is implicit in essentially every work
using the so-called Dworkin argument [11, 17, 34, 36]. However, it seems worthwhile to make
this connection explicit. In fact, this is one of the two cornerstones of our approach to the
characterisation of pure pointedness, the other being Theorem 1. A key ingredient in our
considerations will be Proposition 7 below.

We start by giving a closed formula for the autocorrelation measure. This closed formula
does not rely on any ergodicity assumptions. Thus, via this formula, an autocorrelation
measure can be attached to any TMDS with an invariant probability measure m. We should
like to mention that this is inspired by recent work of Gouéré [15], who gives a closed formula
in the context of Palm measures and point processes.

Proposition 6. Let (£2,a) be a TMDS with invariant probability measure m. Let a function
o € C.(G) be given with [, o(t)dt =1. For ¢ € C.(G), define

wwM%—ALthW@®®MW)

This leads to the following assertions.
(a) The map v, ,,,: Ce(G) — C is continuous, i.e., Yy, € M(G).

(b) For ¢, € Co(G), the equation (@ * 1 * rYa,m) (t) = (fp, T" fy) holds.
(c) The measure 7, ,, does not depend on o € Ce(G), provided [, odt=1.
(d) The measure 7, , is positive definite.

Proof. Note that f,(a,w) = fa(as(w)).

(a) Obviously, |f,(@)| < ||¢|leo sup {|w|(t + supp(y)) : t € G}. As o has compact support,
Yo.m () is then finite. Moreover, ¢, — ¢ implies §, — % which, in turn, yields f% — fw
by continuity of f. As ¢ has compact support and 2 C M¢c y(G), this gives

/mat o(t) de(t) e/m_t<mw»
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uniformly on 2. The desired continuity statement follows.
(b) We first show the statement for ¢ = 0. To this aim, we define

Z = (g *7,,,)(0) = /G(QZ*’(/J)( ) Ay m (s //f~ a_w)o(t) dw(t) dm(w).

Then, we can calculate

z = [ | [ Got=ndu(s) ot do(t) dm(e)
= [ ][] #twuts =t = du dats)ott) doo mie)
_ /Q /G /G /G Bt + 8)(—t — u) du dw(s)o (1) dw(t) dm(w)
= [ [ ] ot - ot dut) dmw)

where we used the translation invariance of the Haar measure in the second last step, and
Fubini’s Theorem and [, @¢(u+ s) dw(s) = f(ow) in the last step. By the invariance of m,
and Fubini’s Theorem together with [ o(¢)dt = 1, this gives:

z = [ [ [ 7t - woaaw)o ant) du

///f“’ Jo(t —u) dw(t) dm(w) du
/Qfsa(w)fqp(w)dm(w) = (o fo)-

The case of arbitrary ¢ € G can now be treated by mimicking the last part of the proof of
part (b) of Theorem 5.

(¢) This is immediate from (b) and (a) as {g 9 : ¢, € C.(G)} is dense in C.(G).

(d) This is a direct consequence of (b). O

Part (b) of the Lemma shows, in particular, that the measure Yo,m €quals the autocor-
relation measure introduced in the last section if m is ergodic. Part (d) shows that v, ,, is
positive definite. Thus, by Bochner’s Theorem, see [7], its Fourier transform is a positive
measure on the dual group G.

Definition 6. Let (2,a) be a TMDS with invariant probability measure m. The measure
Y i= Vom» Where o € Co(G) with [, odt =1, is called the autocorrelation measure of the
dynamical system (£2,«) with invariant measure m. Its Fourier transform 7, is called the
diffraction measure of the dynamical system ({2, «) with invariant measure m.

We summarise the preceding considerations in the following lemma, where we use 1) for
the function defined by 1 (t) = ¢ (—t).

Lemma 7. Let (£2,«) be a TMDS with invariant probability measure m. Then, there exists
a unique measure on G assigning the value (fy, fy) to the function @ * 1, for ¢, € C(G).
This measure is the autocorrelation measure ,, of (§2,a).
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Proof. Uniqueness is clear as the set {g * 1) : 9,9 € C.(G)} is dense in C.(G). Existence
follows from Proposition 6, as

V(@ * 1) = (@9 x79,)(0) = (fi, f)-

This proves the lemma. O

Remark. This definition of the autocorrelation and the diffraction of a dynamical system
is to be compared with the corresponding objects of a single measure (namely an element in
£2) studied in the last section. In the latter case, one faces the problem of its dependence of
the measure m, or of the averaging sequence (B,). It is reasonable, both mathematically and
physically, to replace this by the objects defined in Definition 6, at least for most aspects of
the spectral theory connected with it.

Having cast the diffraction measure in an abstract context, we will now briefly discuss the
basic quantities in the spectral theory of dynamical systems: Let (£2,«) be a TMDS. By
Stone’s Theorem (compare [25, Sec. 36D]), there exists a projection valued measure

Er: Borel sets on G — Projections on L2(£2,m)
with

(T = /§<§,t>d<f,ET<§>f> - /C?(at)dpf@),

where p, is the measure on G defined by ps(B) == (f, Er(B)f). 1t is then not hard to see that
T has pure point spectrum (in the sense defined in Section 2) if and only if all the measures
py, With f € L?(£2,m), are pure point measures.

To ¢ € C.(G), we have associated the function f, € L?(£2,m) in the last section. It turns
out that the measure Py, can be calculated in terms of the diffraction measure. While this
connection is not hard to prove, it is underlying the main result of this section. Therefore,
we isolate it in the following proposition (compare [7, 14]).

Proposition 7. Let (§2,«) be a TMDS with invariant probability measure m. Then, the
equation py = |2|? Am holds for every ¢ € Ce(G).

Proof. By the very definition of py_ above, the (inverse) Fourier transform (on G) of py, is
t— (fp,T'f,). By Lemma 6, we have (f,,T"f,) = (cﬁ* O * ’Vm) (t). Thus, taking the Fourier
transform (on G), we infer Py, = 1512 Ym- O

Note that every closed T-invariant subspace V of L?(f2,m) gives rise to a representation
T|y of G on V by restricting the representation T' to V. The spectral family of T'|, will
be denoted by FEr|,. With the canonical inclusion i), : V — L?(£2,m) and projection
P,: L*(2,m) — V), we obviously have

In our setting, a translation invariant subspace appears naturally. This is discussed next.

Lemma 8. Let (£2, ) be a TMDS with invariant probability measure m. The set of functions
Uy :={f,: ¢ € Cc(G)} is a translation invariant subspace of L*(2,m), and so is its closure.

Proof. The first part of the statement follows from Lemma 3 (b). The second part of the
statement is then immediate. O
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Definition 7. Let U be the closure of the space Uy from Lemma 8 in L?(£2,m).

Before we can give a precise version of the relationship between 7,, and T we need one
more definition.

Definition 8. Let p be a measure on G and S be an arbitrary unitary representation of G
on L%*(£2,m). Then, p is called a spectral measure for S if the following holds for all Borel
sets B: Eg(B) =0 if and only if p(B) = 0.

Now, the relationship between 7, and T' = T,,, can be phrased as follows.

Theorem 6. Let (§2, ) be a TMDS with invariant probability measure m. Then, the measure
Ym 18 a spectral measure for the restriction Ty of T to U.

Proof. Let B be a Borel set in G. Then, obviously, ET‘M(B) = 0 if and only if we have

0= (f%ET‘M(B)f@) for every ¢ € Co(G). As (fo, Er(B)f,) = (fWET‘M(B)f@) for every
¢ € Cc(G), by the very definition of U and E7y,,, we infer that E7|, (B) = 0 if and only if

(fo, E7(B)f,) = 0, forevery ¢ € Cc(G).

By Proposition 7, we have Py, = |2|?Ym and, in particular,

o Er(B)fs) = py,(B) = /B B2 .

These considerations show that Ery, (B) = 0 if and only if 0 = [, || d¥,,, for every function
¢ € Cc(G). Thus, it remains to be shown that 7,(B) = 0 if and only if 0 = [5|3]>d¥n
for every ¢ € C.(G). The only if part is clear. As for the converse, recall that the image of
LY(G, dt) under the Fourier transform separates points in G, see [32]. As C,(G) is dense in
in L(G, dt), the same holds for the image of C.(G) under the Fourier transform. Therefore,
for every § € G, there exists a ¢ € C.(GQ) with ¢(8) # 0. Thus, 4,,(BN K) = 0 for every
compact K is a direct consequence of 0 = [ |3]* dyp, for every ¢ € C.(G). As 4y, is regular,
Am(B) = 0 follows. 0O

We finish this section with a brief discussion of some consequences of the above results for
the definition of ~,,. We thank the referee for useful comments on this point.

The following is a consequence of Proposition 7 (compare [5, Prop. 3] and discussion pre-
ceding it for similar considerations).

Corollary 1. Let (p,) be an approzimate unit in C.(G) with respect to convolution, i.e.,
@, — 1p in C(G) for everyp € Co(G). Then, the measures py, converge vaguely to Am-

Proof. As (¢,) is an approximate unit in C.(G), the continuous functions ¢, * ¢,, viewed as
absolutely continuous measures with respect to the Haar measure on G, converge vaguely
towards dp, the unit point measure at 0 € G. Thus, Levy’s continuity theorem [7, Thm 3.13]
gives us compact convergence of |, |? towards (% = 1. This easily implies vague convergence of
the measures |, > 7, towards ¥,,. As py, = |@|? 4m by Proposition 7, we infer the statement

of the corollary. O

Note that Corollary 1 gives another way to define the diffraction measure 7,,. Namely, we
can define 7, to be any accumulation point of the net (py,, ) whenever (¢,) is an approximate
unit in C.(G). The result is unique, once m is chosen.



196 MICHAEL BAAKE AND DANIEL LENZ

7. THE MAIN RESULT

In this section, we state and prove our main result. It shows equivalence of pure point
diffraction and pure point dynamical spectrum for rather general measure theoretic dynamical
systems.

Theorem 7. Let (2, ) be a TMDS with invariant probability measure m. Let T,, be the as-
sociated unitary representation of G by translation operators and 7,, the associated diffraction
measure. The following assertions are now equivalent.

(a) The diffraction measure 7,, is pure point.
(b) The representation T,, has pure point spectrum.

Proof of Theorem 7. (a) => (b). This is a consequence of Theorem 1. More precisely, we
will show that the vector space

V= {fo:9€C(G)}

satisfies assertion (b) of this theorem:

As 7, has pure point spectrum by (a), Theorem 6 gives that T'|z; has pure point spectrum,
where U is the closure of V. Thus, in particular, f, belongs to H,,(T') for every ¢ € C.(G).
As every element of the form f, is continuous by Lemma 3, we see that V is indeed a subspace
of Hpp(T) N C(12).

It remains to be shown that V separates points. Let w; and wy be two different points of
2. Then, w; and w, are different measures on G. Therefore, there exists a ¢ € C.(G) with
wy () # wy(p). This implies fy, (wy) # fip (wy) With ¢ (¢) == (1)

(b) = (a). This is immediate from Theorem 6. O

8. SPECTRAL PROPERTIES DETERMINED BY SUBREPRESENTATIONS

The ideas of the preceding sections can be refined to give some further information on
how spectral properties of T' are determined by spectral properties of Tj;. This concerns
the continuity of the eigenfunctions, and the set of eigenvalues. While the TMDS are the
application we have in mind here, the underlying result can be phrased rather abstractly.

We need a special concept on “density of a subspace with respect to multiplication”. This
is defined next.

Definition 9. A subspace V of L*(2,m) is said to satisfy condition MD if the set of products
firooo o fpwithn €N, f e VONL®(2,m) or f; € VNL>®(2,m), 1 <i < n, is total in
L2(£2,m).

Theorem 8. Let (£2,«) be a topological dynamical system over G with a-invariant measure
m. Let V be a closed T-invariant subspace of L*(£2,m) satisfying MD. If T|y has pure point
spectrum, then the following assertions hold:

(a) T has pure point spectrum.

(b) The group of eigenvalues of T is generated by the set of eigenvalues of Ty .

(c) If V has a basis consisting of continuous eigenfunctions of T|y, then L*(§2,m) has
a basis consisting of continuous eigenfunctions of T, provided the multiplicity of each
eigenvalue of T is at most countably infinite.
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Remarks. (a) The countability assumption in (c) is trivially satisfied if the Hilbert space
L?(£2,m) is separable, (which holds, e.g., if £2 is metrisable). It is also satisfied if « is ergodic
with respect to m. In this case, the multiplicity of each eigenvalue is one.

(b) While we have stated the theorem for topological dynamical systems, its proof does not use
the topology on 2. It can therefore be carried over without changes to give the corresponding
result for measurable actions of G on a measure space {2.

Proof. (a)/(b) Let 81 be an orthonormal basis of V consisting of eigenfunctions of T'|y. Set
Sy = {fN:feS8 or feS,NeN},

where, for N € N and a function f, the function fV is defined in (2). As mentioned there,
[V is again an eigenfunction of 7. However, f"V need not belong to V. Let S3 be the set of
finite products of elements of Sy. In particular, all elements of S3 are bounded functions, and
the same is true of all finite linear combinations of elements of Ss.

Claim. Every finite product fi-...- f, with n € N, and f; or fi in V N L>(§2,m), can be
approzimated arbitrarily well (in L2(2,m)) by finite linear combinations of elements of Ss.

Proof of the Claim. This is shown by induction. The case n = 1 is simple, as S; is an
orthonormal basis of V. Assume that the claim holds for fixed n € N. As in Lemma 1, we
use again a variant of Lee, Moody and Solomyak [22]. Let ¢ > 0 be given. By the induction
assumption, there exists a finite linear combination g of elements of S3 with

€
Ifi-fo=gl2 € 57—
! [ frtall

Here, g is a bounded function (as all functions in Sz are bounded). Thus, there exists a finite
linear combination h of elements in S3 with

3
[ fo+1 = hll2 <

9lloe
The proof of the claim can now be finished as in Lemma 1. O

The claim shows that S3 is total in LQ(Q, m), as the products appearing in its statement
are total in L?(£2,m) by the density assumption MD. Now, obviously, the elements of S3 are
eigenfunctions of T" and the corresponding eigenvalues are just the group generated by the
eigenvalues of T'|y. This proves (a) and (b).

To prove (c), we consider a basis S; of V consisting of continuous eigenfunctions of T'|y

and define
Sy = {fl-...-fn:TLEN, fl‘Esl or fiESl}.

As above, one can show that Sy is total in L?(§2,m). Apparently, the elements in Sy are
continuous eigenfunctions of T. Moreover, by general principles, eigenfunctions belonging to
different eigenvalues are orthogonal. We now apply the Gram-Schmidt orthogonalisation pro-
cedure in each eigenspace, compare [28, Sec. 3.1.13]. This is possible because the multiplicity
of each eigenspace is at most countably infinite by (c¢). As a result, we obtain a basis of
eigenfunctions which are continuous. (Note that Gram-Schmidt deals only with finite sums
in each step and therefore does not destroy continuity. ) O

The preceding considerations can be applied to any TMDS. This will briefly be discussed
next. To apply Theorem 8, we need the following reformulation of previous results.
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Proposition 8. Let (£2,«) be a TMDS with invariant probability measure m, let U be the
space introduced in Definition 7 and denote the characteristic function of §2 by 1q. Then,
the subspace V := U + {clg : ¢ € C} is closed, invariant and satisfies assumption MD.

Proof. The subspace S := {c1p : ¢ € C} is one-dimensional. So, as U is closed, V=U+ S
is closed as well. As U and S are T-invariant, so is V. It remains to be shown that MD
is satisfied. This is a consequence of the Stone-Weierstra Theorem as {f, : ¢ € C.(G)}
separates points (see the proof of Theorem 7). O

It is possible to base the proof of our main result, Theorem 7, on Theorem 8 and Proposi-
tion 8. Here, our focus is in a somewhat different direction.

Theorem 9. Let (£2,a) be a TMDS with invariant probability measure m, T, be the corre-
sponding unitary representation of G by translation operators, and 7, the associated diffrac-
tion measure. Let U be the space of functions defined in Definition 7. If 7, is a pure point
measure, the following assertions hold.
(a) The group of eigenvalues of Ty, is generated by the set of points in G of positive 7,
measure, i.e., the points § with 7,,({5}) > 0.
(b) If U has a basis of continuous eigenfunctions of T, then so has L?*(£2,m), provided
the multiplicity of each eigenvalue is at most countably infinite.

Proof. As 74, is a pure point measure, T'|;; has pure point spectrum by Theorem 6. Set
V:=U+{clg:c e C}. As lp is obviously a (continuous) eigenfunction of 7' (to the
eigenvalue 1), T has pure point spectrum as well. Moreover, by Proposition 8, V is invariant,
closed and satisfies assumption MD. Thus, the conditions of Theorem 8 are satisfied, and our
assertions follow. O
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APPENDIX A. THE LOCAL RUBBER TOPOLOGY IS A FELL TOPOLOGY

The aim of this appendix is to show that the topology introduced in Section 4 is a special
case of a topology introduced by Fell in [13] on the closed subsets of an arbitrary locally
compact space.

We start by recalling the definition of Fell’s topology: The locally compact space in question
is G. For a compact set C' in G and a finite family F of open sets in G, we define U(C, F) by

UC,F):{CeC(G): ANC =2 and AN A+# @ for every A € F}.

The family of all 4(C, F) with C compact in G and F a finite family of open sets in G is a
basis of the Fell topology. This is a typical example of a so-called “hit and miss” topology,
where U(C, F) consists of all closed sets which hit the sets of F and miss the set C'.

This topology agrees with the one introduced in Section 4, as follows from the next lemma.
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Lemma 9. (a) Let C C G compact and F a finite family of open subsets of G be given
with U(C, F) # &. Then, there exists a closed set H in G, a compact K C G and an open
neighbourhood V of 0 € G with

U]gv(H) C U(C,f)

(b) Let a closed set H in G, a compact subset K C G and an open neighbourhood V of 0 € G
be given. Then, there exists a compact C C G and a finite family of open sets F in G with
UC,F) # @ and

U(C,]:) - UKyv(H).
Proof. (a) By U(C,F) # @, we have A\ C # & for every A € F. Thus, in every A € F there

exists an x4 € A\ C. As A\ C is open and F is a finite family, we can find a neighbourhood
V of 0 in G with V = —V such that

(6) xa+V C A\C for every A € F.
Define H :=={z4: A€ F} and K:=CU(H +V). Then, K is the disjoint union of C' and
H +V by the very construction of H.
Now, let an arbitrary L € Uk, (H) be given. We have to show that L € U(C, F):
By L € Uk y(H), wehave LNK C H+V C H+V C K\ C and, as C C K, this implies
LNC =LNCNK = @.
Moreover, for every A € F, we have x4 € H = HNK C L+V and therefore (z4—V)NL # @.
By V = —V and (6), this implies
g # (za+V)NL Cc (A\NC)NL C ANL
for every A € F. These considerations show L € U(C,F). As L € Uk y(H) was arbitrary,
we infer U v (H) CU(C, F).

(b) Let W be an open neighbourhood of 0 in G with W = —W and W + W C V. Define
C:= K\ (H+ W), where H and K are given by assumption. As K N H is compact, there
exist ty,...,t, € G with

(7) KnH c |Jt:+W) and (t;+W)n(KNH) # @ for1<j<n.
i=1
Set F:={t; + W :1<j<n}
Let now L € U(C, F) be arbitrary. We have to show that L € Uk y(H):
By L € U(C,F) and the definition of C, we have @ = LNC = LN (K \ (H + W)), so
LNK=LN(KNH+W))ULNK\(H+W))=LN(KNH+W))CH+W CH+V.

By LN(tj+W)#@,1<j<n,and W—W CV, we also have t; + W C L+ V. Combined
with (7), this implies
HNK c [J;+W) ¢ L+V
j=1
and we infer L € Ux v (H). As L € U(C,F) was arbitrary, the inclusion U(C,F) C Uk,v(H)
is established. Moreover, U(C, F) is not empty, as it obviously contains H. O
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DEFORMATION OF DELONE DYNAMICAL SYSTEMS
AND PURE POINT DIFFRACTION

MICHAEL BAAKE AND DANIEL LENZ

ABSTRACT. This paper deals with certain dynamical systems built from point sets and, more
generally, measures on locally compact Abelian groups. These systems arise in the study
of quasicrystals and aperiodic order, and important subclasses of them exhibit pure point
diffraction spectra. We discuss the relevant framework and recall fundamental results and
examples. In particular, we show that pure point diffraction is stable under “equivariant”
local perturbations and discuss various examples, including deformed model sets. A key step
in the proof of stability consists in transforming the problem into a question on factors of
dynamical systems.

1. INTRODUCTION

Aperiodic order has become a topic of intense research over the last two decades [34, 38, 7,
47, 49]. While the term is not rigorously defined (yet), it roughly refers to forms of order at the
very verge between periodic and non-periodic structures. As such, it has attracted attention in
various branches of mathematics including geometry, combinatorics, ergodic theory, operator
theory and harmonic analysis.

An important trigger in these developments has been the actual discovery of physical
substances with strong aperiodic order [42], which are now called quasicrystals. They owe
their discovery to their remarkable diffraction patterns: These patterns imply a high degree
of order as they are pure point spectra (or Bragg spectra), while, at the same time, they
exclude periodicity by their non-crystallographic symmetries. Accordingly, the study of pure
point diffraction has been an important topic in this context ever since.

This paper is concerned with pure point diffraction. More precisely, we study the stability
of pure point diffraction under certain deformations. This issue is a very natural one, both
from the physical and the mathematical point of view. In order to study stability under
deformations, we need to review the undeformed case first. To make the paper essentially
self-contained, this discussion is carried out at some length, including relevant concepts and
examples. Moreover, we hope that the paper can serve as an introductory survey over the
treatment of diffraction via dynamical systems for the reader unfamiliar with the field.

Delone sets provide an important model class for the description of aperiodic order. In
particular, they can be viewed as a mathematical abstraction of the set of atomic positions
of a physical quasicrystal (at zero temperature, or at a given instant of time). Many of
the rather intriguing spectral properties of quasicrystals can be formulated, in a simplified
manner, on the basis of Delone sets. This is also a rather common class of structures in
the mathematical theory of aperiodic order [29]. It is attractive because it admits a direct
geometric interpretation with two Delone sets being close to one another if large patches
(around some fixed point of reference, say) coincide, possibly after a tiny local rearrangement
of the individual points.
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However, from a more physical point of view, other scenarios are also very important. In
particular, the description of an aperiodic distribution of matter by means of (continuous)
quasi- or almost periodic density functions has been emphasized right from the very beginning
of quasicrystal theory [9]. Here, closeness of two structures is more adequately described by
means of the supremum norm, as in the theory of almost periodic functions.

As is apparent, these two pictures are not compatible — unless they are embedded into
a larger class of structures that admit both the Delone (or tiling) picture and the contin-
uous density description as special cases. One possibility is the use of translation bounded
(complex) measures, equipped with the vague topology. Here, two structures (i.e., measures)
are close if their evaluations with continuous functions supported on a large compact set K
are close. This entails both situations mentioned above, one being described by pure point
measures, the other by absolutely continuous measures with continuous Radon-Nikodym den-
sities.

In view of the fact that the original distinction between the discrete and the continuous
approach led to rather hefty disputes on the justification and appropriateness of the two
approaches, we believe that the systematic development of a unified frame is overdue. We take
this as our main motivation for a dynamical systems approach based on measures, though we
will also spell out the details for the more conventional (and perhaps more intuitive) approach
via Delone sets.

As mentioned already, one important issue in this context is that of the stability of certain
features, e.g., stability under slight modifications or deformations. The question of stability
of pure point diffractivity is addressed in this paper.

Our main abstract result shows that pure point diffraction is stable under local “equivari-
ant” perturbations. The proof relies on two steps: We use a recent result of ours [3] (see
[30, 22] for related material) which establishes when pure point dynamical spectrum is equiv-
alent to pure point diffraction spectrum. This effectively transforms the stability problem into
a question on dynamical systems. This question is then solved by studying certain factors of
the original dynamical system.

To give the reader a flavour of this procedure, we include the following rather informal
statement of our main result, when restricted to Delone sets.

Result. The hull of an admissibly deformed Delone set is a topological factor of the hull of
the original Delone set. In particular, if a Delone set has pure point diffraction spectrum, its
deformation has pure point diffraction spectrum as well.

A precise version of this result is given in Theorem 3. As mentioned already, our setting
is general enough to treat not only the case of Delone sets but rather the case of arbitrary
measure dynamical systems. This is made precise in Theorem 4.

The abstract result is applied to various examples. In particular, we study perturbations
of model sets in the context of cut and project schemes. This generalizes the corresponding
considerations of Hof [24] and Bernuau and Duneau [11]. It also shows that related results of
Clark and Sadun [12] fall well within our framework.

Our results should be compared to complementary results of Hof [26]. They show that
random perturbations do not leave a pure point spectrum unchanged, but rather introduce
an absolutely continuous component, see also [2, 5] for further examples.

We are well aware of the fact that considerable parts of the following investigation dealing
with topological dynamical systems can be generalized to measurable dynamical systems.
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However, by its very nature, the subject of aperiodic order seems to be a topological one. For
this reason, we stick to the topological category.

The paper is organized as follows. In Section 2, we introduce some basic notation concerning
topological dynamical systems. In Section 3, we recall and establish various facts on factors.
These considerations are the abstract core behind our deformation procedure. Section 4 is
devoted to a discussion of diffraction in the context of dynamical systems of Delone sets and
measures. The abstract deformation procedure and the stability of pure point diffraction
under this type of deformation is discussed in Section 5. Applications to model sets are
studied in Section 6, which also contains a brief summary of their general definition. The
various concepts and results will then be illustrated with a concrete example, the silver mean
chain, in Section 7. Further aspects of the deformation procedure, in particular concerning
topological conjugacy, are discussed in Section 8.

2. GENERALITIES ON DYNAMICAL SYSTEMS

Our considerations are set in the framework of topological dynamical systems. We are
dealing with o-compact locally compact topological groups and compact spaces. Thus, we
start with some basic notation and facts concerning locally compact topological spaces used
throughout the paper.

Whenever X is a o-compact locally compact space (by which we mean to include the
Hausdorfl' property), we denote the space of continuous functions on X by C(X) and the
subspace of continuous functions with compact support by C.(X). This space is equipped
with the locally convex limit topology induced by the canonical embeddings Cx(X) — C.(X),
where Cx(X) is the space of complex continuous functions with support in a given compact
set K C X. Here, each Ck(X) is equipped with the topology induced by the standard
supremum norm.

As X is a topological space, it carries a natural o-algebra, namely the Borel o-algebra
generated by all closed subsets of X. The set M(X) of all complex regular Borel measures
on G can then be identified with the space C.(X)* of complex valued, continuous linear
functionals on C.(G). This is justified by the Riesz-Markov representation theorem, compare
[39, Ch. 6.5] for details. In particular, we can write [, fdu = p(f) for f € Ce(X) and
simplify the notation this way. The space M (X) carries the vague topology, i.e., the weakest
topology that makes all functionals 1 — u(p), ¢ € Cc(X), continuous. The total variation of
a measure 1 € M(X) is denoted by |u].

We now fix a o-compact locally compact Abelian (LCA) group G for the remainder of the
paper. The dual group of G is denoted by G and the pairing between a character § € G
and t € G is written as (§,t). Whenever G acts on the compact space {2 (which is then also
Hausdorff by our convention) by a continuous action

a: Gx 2 — 2, (tw)— oq(w),

where G x {2 carries the product topology, the pair ({2, «) is called a topological dynamical
system over G. We will often write a,w for oy (w). If w € §2 satisfies a,w = w, ¢ is called a
period of w. If all t € G are periods, w is called G-invariant, or a-invariant to refer to the
action involved.

The set of all Borel probability measures on {2 is denoted by P({2), and the subset of
a-invariant probability measures by Pg(f2). As {2 is compact, C.({2) equipped with the
supremum norm is a Banach space. The vague topology on M({2) is then just the weak-x
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topology. By Alaoglu’s theorem on weak-+ compactness of the unit sphere (compare [39,
Thm. 2.5.2]), we easily conclude that P({2) is compact. As Pg(f2) is obviously closed in
P(S2), it is then compact as well. Apparently, Pg(f2) is convex. More importantly, it is
always non-empty. For G = Z, this is standard, compare Section 6.2 in [50]. This proof only
uses the existence of a van Hove sequence and the compactness of P(§2). Thus, it can be
carried over to our setting (for the existence of van Hove sequences, we refer the reader to
[44, p. 145] and [48, Appendix, Sec. 3.3]).

An a-invariant probability measure is called ergodic if every (measurable) invariant subset
of {2 has either measure zero or measure one. The ergodic measures are exactly the extremal
points of the convex set Pg(£2). The dynamical system (£2,«) is called uniquely ergodic if
Pa(£2) is a singleton set, i.e., if it consists of exactly one element. As usual, (2, «) is called
minimal if, for all w € §2, the G-orbit {oyw : t € G} is dense in 2. If (£2, ) is both uniquely
ergodic and minimal, it is called strictly ergodic.

Given an m € Pg(£2), we can form the Hilbert space L?({2,m) of square integrable mea-
surable functions on {2. This space is equipped with the inner product

(f.9) = (frg)a == /Q F@) g(w) dm(w).

The action a gives rise to a unitary representation 7' = T% := T(2>™) of G on L?(£2,m) by
T;: L*(2,m) — L*(2,m), (Tif)(w) = fla_w),

for every f € L?(£2,m) and arbitrary t € G.

An f € L?(£2,m) is called an eigenfunction of T with eigenvalue § € G if T.f = (50 f
for every t € G. An eigenfunction (to §, say) is called continuous if it has a continuous
representative f with f(a_,w) = (§,t) f(w), for all w € 2 and t € G. The representation T
is said to have pure point spectrum if the set of its eigenfunctions is total in L2(£2,m). One
then also says that the dynamical system ({2, ) has pure point dynamical spectrum.

By Stone’s theorem, compare [32, Sec. 36D], there exists a projection valued measure

Er: Borel sets of G — projections on L2(£2,m)
with

T = /§<§,t>d<f,ET<é>f> = /a@,t)dpf(é),

where p, = p? = p(f(),a,m) is the measure on G defined by pp(B) = (f, Er(B)f). In fact,

by Bochner’s theorem [41], p; is the unique measure on G with (f,T,.f) = Ja (5,1) dp(8) for
every t € G.

3. FACTORS

Factors of dynamical systems and the corresponding subrepresentations will be an impor-
tant tool in our study of deformation. In this section, we recall their basic theory, most of
which is well known. Since details are somewhat scattered in the literature, we sketch some
of the proofs for the sake of completeness, or give precise references. Readers who are familiar
with it, or are more interested to first learn about diffraction, may skip this section at first
reading.
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Let (£2,«) and (O, 3) be two topological dynamical systems under the action of G, with a
mapping @: 2 — O that gives rise to the following diagram:

n—2.0

(1) qsl Jqs

o .6

Definition 1. Let two topological dynamical systems (£2,«) and (O, ) under the action of
G and a mapping @ : 2 — O be given. Then, (0,0) is called a factor of (§2,a), with
factor map @, if ¢ is a continuous surjection that makes the diagram (1) commutative, i.e.,

b(ay(w)) = By(P(w)) for all w e 2 and t € G.

Factors inherit many features from the underlying dynamical system. Due to the commu-
tativity of diagram (1), a period t € G of w is also a period of @(w). Clearly, the converse need
not be true, as we will see in an example later on. Let us next recall three other properties
of dynamical systems which are inherited by factors.

Fact 1. Let (©,3) be a factor of (£2,«) with factor map ®: 2 — O. Then, U C O is open
if and only if ®~Y(U) is open in 2.

Proof. As @ is continuous, the only if part is clear. So, assume that U C © is given with
@~ Y(U) open. Then, &~ 1(O\U) = 2\ & 1(U) is closed and thus compact, as §2 is compact.
Thus, by continuity and surjectivity of @, the set © \ U = &(¢~1(0 \ U)) is compact and, in
particular, closed. Thus, U is open. O

Clearly, @ induces a mapping @,: M(£2) — M(O), i D, (1), via (D (1)) (g9) := p(goP)
for all g € C(O). If p is a probability measure on {2, its image, @, (1), is a probability measure
on ©. Moreover, if @ is a factor map, invariance under the group action is preserved. So, in
this case, we obtain the mapping

(2) bu: Pa(f2) — Pa(O), p— Pulp),

where we stick to the same symbol, @, for simplicity.

Fact 2. Let (©,0) be a factor of (§2,«) with factor map &: 2 — O. Then, @, of (2) is a
continuous surjection. Moreover, it satisfies @,‘(Zz ciui) =Y, ciDPi(pi), whenever Y, c;ipu;
is a finite conver combination of measures u; € Pg(§2). Finally, &, maps ergodic measures
to ergodic measures, and thus extremal points of Pg(§2) to extremal points of Pg(O).

Proof. By [15, Prop. 3.2], the mapping @, is continuous, and by [15, Prop. 3.11], it is onto.
Direct calculations show @, (>, cipti) = >, ¢i Ps(p;) for every finite convex combination
>, cipvi of measures in Pg(12).

Let p € Pa(§2) be ergodic, i.e., any a-invariant measurable subset A of (2 satisfies either
p(A) =0 or pu(A) = 1. Consider v := &, (1) € Pe(O), and let B be a f-invariant measurable
subset of O, i.e., 3;(B) = B for all t € G. Clearly, one has v(B) = u(®~(B)), where
A:=&"1(B) ={we N:d(w) € B} is a-invariant, as a consequence of (1). So, v(B) = u(A)
is either 0 or 1, and v is also ergodic. The final claim about the extremal points is then
standard, compare [15, Prop. 5.6]. O

Fact 3. Let (0©,0) be a factor of (£2,«) with factor map @: 2 — O. If (2, ) is uniquely
ergodic, minimal or strictly ergodic, the analogous property holds for (©,3) as well.
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Proof. If (£2, &) is uniquely ergodic, Pg({2) is a singleton set, and Pg(O) = @, (P(£2)) must
then also be a singleton set, by Fact 2. So, also (©, ) is uniquely ergodic. Apparently, every
G-orbit in © is the image of a G-orbit in {2, under the factor map @. Continuity of ¢ implies
®(C) c (C) C ®(C) for arbitrary C C 2. If C is dense, C = £2, and &(C) = &(C) = O
because @ is onto. This shows that minimality is properly inherited, and the last claim on
strict ergodicity is then obvious. O

Now, let (0, 3) be a factor of ({2, ) with factor map @: 2 — O and let m € Pg(£2) be
fixed. For the remainder of this section, we denote the induced measure on © by n = &,(m).
Consider the mapping

(3) i L2(O,n) — L*(2,m), fr fod,
and let pg: L2(£2,m) — L*(O,n) be the adjoint of . The maps i? and pg are partial

isometries. More precisely, i® is even an isometric embedding because

(i®(9). (Mo = /0(9045) (fod)dm = (P.(m))(@f) = (9.f)e

for arbitrary f,g € L?(©,n). As i® is an isometry from L?(©,n) with range i?(L?(0,n)),
standard theory of partial isometries (compare [51, Thm. 4.34]) implies

p¢0i¢ = idLQ(Q,n) and Z@Opé = PZ»@(LQ(@JL)),

where id/» (g, is the identity on L?*(©,n) and Pio(12(0,5)) is the orthogonal projection of
L%(£2,m) onto V := i®(L?(O,n)).
Given these maps, we can discuss the relation between the spectral theory of T and T°.

Theorem 1. Let L?*(£2,m) and L*(©,n) be the canonical Hilbert spaces attached to the
dynamical systems (§2,«) and (0, 3), with factor map ® and n = @.(m). Then, the partial
isometries i® and Py are compatible with the unitary representations T2 and T® of G on
L%(£2,m) and L?*(O,n), i.e.,

i*oTP = T 0i® and T ops = ppo Ty,
for all t € G. Similarly, the spectral families Epe and Erpe satisfy
i® o Ere(:) = Epa(-)o i and Ere(-)opg = pgo Epal’).

The corresponding measures satisfy p? = pl.%(g) for every g € L*(O,n).

Proof. Let g € L?(0,n) be given. As @ is a factor map, a short calculation gives

(T7(i*(9) (W) = g(P(a—w)) = g(b—B(w)) = (((*TF)(9))(w)
and the first of the equations stated above follows. The second follows by taking adjoints.
Choose g € L?(©,n). As discussed above, p? is the unique measure on G with

0.7%00 = [[(GHAFE). forallteG.

Similarly, pz.%(g) is the unique measure on G with

@) TP o = [ (5.0df,)6), forallted.
G
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® is an isometry, we obtain from the statements proved so far that

(9. TP 9)o = ((9),i*(TP9)) o = (i"(9). T%i"(9)) g -

Putting the last three equations together, we obtain

L6086 = [0,

for every t € G. By the mentioned uniqueness of the involved measures, this gives

Moreover, as 4

e _ N
Pg = Pit(g):
This, in turn, implies

(9: Bre(B)g)e = pg(B) = plo(B) = (i*(9), Era(B)i®(9)) o = (9:paEre(B)i®(9))q

for all Borel measurable B C G and every g € L?(O,n). As g € L?(6,n) is arbitrary, we infer
Ere(-) = pgEra ()i O

One succinct way to summarize the core of Theorem 1 is to say that the following diagram
is commutative, with the map i? (resp. pg) being injective (resp. surjective).

,L'45
L2(O,n) —— LX(2,m) —2— L*O,n)

(4) T° l 7% l T° l

Py

i@
L?(O,n) —— L*(2,m) —2— L*(O,n)

Corollary 1. Assume the situation of Theorem 1 and define V = i®(L?(©,n)). Then,
U: L2(6,n) — V, f + i®(f), is a unitary map, the subspace V of L%*(2,m) is invariant
under T, and the restriction TQ|V of T* to V is unitarily equivalent to T® via U.

Proof. As i® is an isometric embedding, the map U: L?(0,n) — i®(L?(6,n)) is unitary. By
Theorem 1, we have i® o TP = T 0i?. Consequently, the space V = i?(L?*(O,n)) is invariant
under T, with T9|,Ug = UT®g for every g € L?(60,n). O

The foregoing results describe the relationship between 7€ and T* in the general case. In
the special case of pure point spectrum, we can be more explicit as follows.

Proposition 1. Let (0,08) be a factor of the dynamical system (§2,a), with factor map
®: 2 — O. Let m € Pg(2) be given, n = &,(m), and let L*(O,n) and L*(£2,m) be the
corresponding Hilbert spaces. Then, the following assertions hold.

(a) If g is an eigenfunction of T® to the eigenvalue 3, i®(g) = g o ® is an eigenfunction
of T* to the eigenvalue §.

(b) If T has pure point dynamical spectrum, the same is true of T©.

Proof. (a): Let g be an eigenfunction of T€. Then, i®(g) = g o @ is an eigenfunction of T,
as i® o TP = T/’ 0 i? by Theorem 1.

(b): If T*? has pure point dynamical spectrum, there exists an orthonormal basis of L?(£2,m)
which entirely consists of eigenfunctions of 7. Now, by Theorem 1, we have Ttepq) = p¢Tt9.
Therefore, pgf is an eigenfunction of T® (or zero) if f is an eigenfunctions of 7. As Dy 1S
onto, the statement follows. O
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Let us now discuss the continuity of eigenfunctions. Recall that a sequence (By,)nen of
compact sets in G with non-empty interior is called van Hove, if it exhausts G and if
. |05 B, |
im
n—00 |Bn|

=0

for every compact K in G, where 0% B := (B+ K)\ B)U((G\ B — K)N B).

For G = R? and G = Z%, the following lemma (and much more) was shown by Robinson
in [40]. His proof carries over easily to our situation. For the convenience of the reader, we
include a brief discussion.

Lemma 1. Let (£2,«) be a uniquely ergodic dynamical system. Denote the unique invariant
probability measure on 2 by m. Let § be an eigenvalue of T = T%*™)  Then, the following
assertions are equivalent.

(i) There exists a continuous eigenfunction f to § (i.e., f is continuous with f(a_,(w)) =
(8,t)f(w) for all t € G and w € §2).
(ii) The sequence Ap, (h) of continuous functions on {2, defined by
1
1Bnl /B,

Ag, (h)(w) = (8, ) h(a—i(w)) dt,

converges uniformly, for every van Hove sequence (By) and every h € C(£2).

Proof. (i) = (ii) (cf. [40]). If f is the continuous eigenfunction, |f| is invariant and continu-
ous. As (2, «) is uniquely ergodic, we may assume, without loss of generality, that | f(w)| =1
for every w € £2. Let h € C(£2) be given. Apparently, the function g = hf is continuous.
Therefore, by unique ergodicity, the functions

|B|/ ol dt|B|/ (a-tw)) fla—i(w) dt = féw/

converge uniformly in w € 2. Multiplying by f and using ff = 1, we infer (ii).

(8,8) h(a—y(w)) dt

(ii) = (i). As § is an eigenvalue of T', the projection E({s}) onto the eigenspace of § is
not zero. Since C(§2) is dense in L?(§2,m), there exists an h € C(§2) with E({3})h # 0.
Now, by the von Neumann ergodic theorem, see [28, Thm. 6.4.1] for a formulation that allows
its derivation in the generality we need it here, the sequence Ap, (h) converges in L?(£2,m)
to E({8})h. By assumption (ii), this sequence converges uniformly to a function g. Thus,

= E({8})h in L?(£2,m). Moreover, by uniform convergence, g is continuous and satisfies
gla_i(w)) = (5,t)g(w) for every w € 2 and t € G. This gives (i). O

Lemma 1 has the following interesting consequence.

Proposition 2. Let (£2,«) be a uniquely ergodic dynamical system, all eigenfunctions of
which are continuous. If (©,0) is a factor of (£2,«a) with factor map @, it is a uniquely
ergodic dynamical system, all eigenfunctions of which are continuous as well.

Proof. Fact 3 gives that (6, §) is uniquely ergodic. Let 3 be an eigenvalue of T€. Then, § is
an eigenvalue of T* by Proposition 1. We now apply Lemma 1 to infer continuity. To that
end, choose an arbitrary g € C(©), wherefore h = g o @ belongs to C(£2). By (i) = (ii) of
Lemma 1, the sequence (Ap, (h)) converges uniformly for every van Hove sequence (By). A
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short calculation then gives
1 Y 1 -
A, (1)) = e [ (e a@)TEDd = o [ gl @) E o
|Bnl JB, |Bnl JB,

As @ is onto, this shows uniform convergence of 6 — ﬁ [, 9(B-1(0))(3,1)dt. As g € C(O)
was arbitrary, this gives the desired continuity statement, by (ii) = (i) of Lemma 1. O

Although we have not made use of it so far, it is possible to express pg via a disintegration.
Since it is instructive and also useful in applications, we finish this section by giving the
details for the case when (2 and © are metrizable. We are in the somewhat simpler situation
that a continuous map @: 2 — O exists. By standard theory, compare [19, Thm. 5.8] and
[37, Thm. 4.5], there exists a measurable map

k: @ — M(2), 0k’
that satisfies the following three properties.

(1) For n-almost every ¢ € @, kV is a probability measure on {2 supported in ~1(¥9).

(2) For all f € L'(£2,m), the function f*¥: © — C, ¥ — k?(f), is integrable with
respect to n = P.(m).

(3) For all f € L'(£2,m), one has n(f{#}) = m(f).

In terms of integrals, the last property reads

Ls@an= [ [ seaeano = [

REMARKS. (1) Note that [37, Thm. 4.5] only deals with bounded functions f. However, using
standard monotone class arguments, it is not hard to extend the statements given there to
functions f € L'(£2,m). This yields (2) and (3).

(2) The function f* can also be considered as a conditional expectation of f (see part (i) of
[19, Thm. 5.8] or part (b) of [37, Thm. 4.5]).

Given this disintegration, one can now describe the action of pg on f € L?(£2, m) explicitly,

namely in terms of partial averages over the fibres &~1(1).

Proposition 3. Assume that 2 and © are compact metric spaces, and let n = P.(m) as
before. Then, the equation (p¢(f))(19) = EY(f) holds for all f € L*(2,m) and n-almost
every ¥ € 6.

Proof. Fix f € L?(£2,m), and let g € L?(6,n) be arbitrary. Then, f belongs to L!(£2,m),
since §2 is compact and go® - f belongs to L'(£2,m), as it is the product of two L? functions.
Using the properties of k, we can then calculate

01 = [arthan = [ G0 [ )i an)

//7 mf(w)dkﬁ(w)dn(ﬂ) = ﬂ((i‘p(g)f){k})
e Jo—1(9)

= m(®(g)f) = /Q 9B@) f(w)dm(w) = (®(9). f)o

= (9.ps(/))e-
As g € L?(O,n) is arbitrary, this gives fI¥ = p,(f) in L?(6,n), and our claim follows. O
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4. DIFFRACTION THEORY OF MEASURE AND DELONE DYNAMICAL SYSTEMS

In this section, we specify the dynamical systems we are dealing with and discuss the
necessary background from diffraction theory. The material is taken from [3], where the
proofs and further details can be found. For related material dealing with point dynamical
systems, we refer the reader to [16, 23, 30, 44, 45, 46].

As discussed in the introduction, our main focus is on measure dynamical systems which
includes the case of point dynamical systems. For the convenience of the reader, however, we
start this section with a short discussion of point dynamical systems and discuss the general
case of measures only afterwards.

Let V be an open neighbourhood of 0 in G. A subset A of G is called V-discrete if every
translate of V' contains at most one point of A. Such sets are necessarily closed. A set is
uniformly discrete if it is V-discrete for some open neighbourhood V' of 0. The set of V-discrete
point sets in G is abbreviated as Dy (G), while the set of all uniformly discrete subsets of G
is denoted by UD(G). The set UD(G) (and actually even the set C(G) of all closed subsets
of G) can be topologized by a uniformity as follows. For K C G compact and V an open
neighborhood of 0 in G, we set

Ukyv = {(P,Py) € UD(G) x UD(G) : PLNK C Py+V and PN K C P, + V}.

It is not hard to check that {Ug y : K compact, V open with 0 € V'} generates a uniformity
(see [27, Ch. 6] for basics about uniformities), and hence, via the neighbourhoods

Ukv(P) = {Q:(Q,P)eUkyv}, PecUDQ),

a topology on UD(G). This topology is called the local rubber topology (LRT). For each open
neighbourhood V of 0 in G, the set Dy (G) is compact in LRT. Apparently, G acts on UD(G)
by translation. By slight abuse of notation, this action is again called «, i.e., we define

a,(A) = {t+z:xe A} =t+ A

To distinguish (compact) sets of measures w from sets of point sets A, we will use the suggestive
notation {2 and (2, from now on.

Definition 2. The pair (§2,,a) is called a point dynamical system if (2, is a closed a-
invariant subset of Dy (G) for a suitable neighbourhood V of 0 in G.

Apparently, every A € UD(G) gives rise to a point dynamical system (£2(A), «), where
£2(4) is the closure of {ay(A) : t € G} in LRT and « is the action induced from the natural
action of G on UD(G).

After this short look at point dynamical systems, we now introduce our main object of
interest: measure dynamical systems. As mentioned already, they generalize point dynamical
systems (see below for details).

Let C > 0 and a relatively compact open set V in G be given. A measure pu € M(G) is
called (C,V)-translation bounded if |u|(t+V) < C for allt € G. It is called translation bounded
if there exists such a pair C,V so that p is (C, V)-translation bounded. The set of all (C,V)-
translation bounded measures is denoted by Mc v (G), the set of all translation bounded
measures by M (G). In the vague topology, the set M¢ v/ (G) is a compact Hausdorff space.
There is an obvious action of G on M*(G), again denoted by «, given by

a: GXM™(G) — M™Z(GQ), (t,p) — oyp with  (a,p) = §, * p.

Restricted to Mc v (G), this action is continuous.
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Here, the convolution of two convolvable measures u, v is defined by
(3 0)e) = [ olr+9)du(r) dv(s).

Definition 3. (2, «) is called a dynamical system on the translation bounded measures on G
(TMDS for short) if there exist a constant C > 0 and a relatively compact open set V.C G
such that §2 is a closed a-invariant subset of Mcy(G).

It is possible to consider a point dynamical system as a TDMS. Namely, define
d: UD(G) — M™=(G), 0(A) == > ,c1 0z,
where ¢, is the unit point (or Dirac) measure at z. The mapping 0 is continuous and injective.

Lemma 2. If (§2,,«) is a point dynamical system, the mapping 6 : 2, — §2 := 0(£2)
establishes a topological conjugacy between the point dynamical system (§2,, ) and its image,

the TMDS (£2,a).

Proof. By [3, Lemma 2], §: £, — 6({2;,) is a homeomorphism that is compatible with the
G-action a, i.e., 6(at ) « ( ) forall A € 2, and all t € G. So,  provides a topological
conjugacy as claimed. O

Having introduced our models, we can now discuss some key issues of diffraction theory.
Let (£2, @) be a TMDS, equipped with an a-invariant measure m € Pg(§2). We will need the
mapping

ﬂwm—wm,mw:éwww@

Then, there exists a unique measure v = ~,, on G, called the autocorrelation (often called
Patterson function in crystallography [14], though it is a measure in our setting) with

7(¢ * w,) = <f997 f¢>
for all ¢, € C.(G), where ¢ (s) := 1)(—s). The convolution ¢ * ¢ is defined by (¢ *¥)(t) =
J ot — s)i(s)ds. For a more explicit formulation in terms of a weighted average, see [3,
Prop. 6].
The measure + is positive definite. Therefore, its Fourier transform is a positive measure
7; it is called the diffraction measure. This measure describes the outcome of a diffraction
experiment, see [14] for background material.

REMARK. This concept of an autocorrelation is defined via the entire dynamical system,
which implicitly involves a local averaging procedure. The conventional approach uses a limit
of a sequence of finite measures along a van Hove averaging sequence in G. If the dynamical
system is (uniquely) ergodic, the two notions coincide [3]. In general, the definition we use here
has the advantage of removing the dependence of the averaging sequence and automatically
deals with the typical autocorrelation, at least with reference to the measure m.

In view of the fact that, in reality, one always faces finite structures, one can give a justifica-
tion along the following lines. Among all elements of the full system that are compatible with
a given finite part, “typical” ones are those to be considered, if no other piece of information
is available. This means to take into account all structures which, after a small translation
and/or up to some tiny local deformation, coincide with a fixed finite patch. One way to do
so is to take an average over all these possibilities (on the level of their autocorrelations),
which is essentially what our v does. In the situation of unique ergodicity, compare [3], the
precise method for forming the average is irrelevant — the result is independent of it.
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Theorem 2 (Theorem 7 in [3]). Let (£2,a) be a TMDS with invariant measure m. Then,
the following assertions are equivalent.

(i) The measure ¥ is a pure point measure.
(ii) T has pure point dynamical spectrum. O

Theorem 2 links pure point diffraction spectrum to pure point dynamical spectrum. This
is of particular relevance for our considerations. It will allow us to set up a perturbation and
stability theory for pure point diffraction spectrum by studying (perturbations of) dynamical
systems. This is the abstract core of our investigation, to be analyzed next.

5. DEFORMING MEASURE AND DELONE DYNAMICAL SYSTEMS: ABSTRACT SETTING

In this section, we introduce a deformation procedure for dynamical systems that, under
certain conditions, is isospectral, i.e., the deformation does not change the dynamical spec-
trum. In particular, we will later consider deformations of regular model sets and show that
a relevant class of deformations preserves their pure point diffraction property. As discussed
in the introduction, these considerations are motivated by questions from the mathematical
theory of quasicrystals. They generalize the corresponding results in [24, 11].

For pedagogic reasons, we start with a short discussion of deformations of Delone dynamical
systems. This results in Theorem 3. The general case of measure dynamical systems is treated
afterwards.

Let (£2,,a) be a Delone dynamical system with (2, contained in Dy (G) and consider a
continuous mapping ¢: {2, — G whose image then is a compact set. In fact, let us assume
that ¢(£2,) — ¢(£2,) C V for some neighbourhood V of 0 € G. Note that there exists an open
neighbourhood V' of 0 in G with

V' +q(82,) — q(£2,) C V.

In particular, for arbitrary A € 2, and y, z € A with y # 2z, we have y+q(A—y) # z+q(A—=z)
as well as
(5) Ay = {z+qA—2z):2€ A} C Dy(Q).
Aq can be viewed as a “deformed” version of A, which exlains the terminology. Moreover,
28 .= {A, : A € £2,} can rather directly be seen to be a-invariant and closed in Dy (G).
Thus, (2, @) is a point dynamical system, and we have a mapping ¢7: 2, — 27 given by
@9(A) = A,. This map can easily be seen to be a factor map.

In fact, it turns out that we do not need ¢ to be defined on the whole of {2, to obtain a
factor map. It suffices to have it defined on a “transversal”. To be more precise here, we
introduce the following subset of (2,,

(6) Z = {Ae2,:0e A}
Since the elements of (2, are non-empty point sets of G, it is clear that each G-orbit in (2,

contains at least one element of =. Moreover, the following holds.

Lemma 3. If (2, is a point dynamical system under the action of the LCA group G, the
subset = of (6) is compact.

Proof. By definition, (2, is a closed subset of Dy (G) for a suitable neighbourhood V' of 0 in
G. As Dy(G) is compact in LRT, 2, is compact in LRT as well. So, we need to show that
Z C {2, is a closed set.
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Let (I,) be a net in = (so, 0 € I, for all ¢) which converges to some A, where the latter
must then lie in {2,. Assume that 0 ¢ A. Since A is itself a closed subset of G, we know
that G\ A is an open set. By assumption, this open set would contain 0, and hence also an
entire open neighbourhood of 0. This, however, contradicts the convergence I, — A in the
LRT. O

As Z is compact, every continuous function ¢ on = can be extended to a continuous function
g on {2, (the latter being compact and hence normal) by Tietze’s extension theorem, compare
[39, Prop. 1.5.8]. The very definition of {2}, compare (5), shows that it only depends on ¢
(and not on the extension chosen). In this situation, we can thus consistently define

(7) Q20 = Q.
Now, we can state our result on Delone dynamical systems.

Theorem 3. Let (£2,, ) be a point dynamical system under the action of the LCA group G
with £2, C Dy (G) for a suitable neighbourhood V of 0 in G. Let q: = — G be continuous
with q(£25) — q(£2,) C V. Then, the following assertions hold.

(a) If (£2p, ) has pure point diffraction spectrum (w.r.t. an invariant probability measure
m), so does (28, a) (w.r.t. the measure ®%(m)).

(b) If (2, ) is minimal or uniquely ergodic, then so is (23, ).

(c) If (£2p, ) is uniquely ergodic with pure point diffraction spectrum and all of its eigen-
functions are continuous, the same holds for (§2%, ).

Proof. Let ¢ be a continuous extension of g from = to {2,. As discussed above in (7), we then
have a factor map @7 : 2, — (21. Now, we can prove the assertions.

(a): If (£2p, o) has pure point diffraction spectrum, it has pure point dynamical spectrum,
by Theorem 2. As (2%, «) is a factor of (§2, «), it has pure point dynamical spectrum as well,
by Proposition 1. Now, another application of Theorem 2 shows that (£2{, @) has pure point
diffraction spectrum.

(b): This follows from Fact 3.

(c): The statement about continuity of the eigenfunctions is immediate from Proposition 2.
The other statements follow by (a) and (b). O

Having discussed the special case of point dynamical systems, we now treat the general
case. Let (§2, ) be a TMDS. We will deform ({2, «) by means of a measure-valued mapping

A 2 — M(G), w—= A,

which satisfies the following two properties.

(D1) The mapping 2 x C.(G) — C, (w, @) — A¥(¢p), is continuous.
(D2) There exists a compact K C G such that supp(A“) C K for all w € {2.

Such a deformation map A\ will be called admissible. This definition entails the case that
A = 6y, which we will call the trivial deformation map.

Proposition 4. Let ({2, «) be a TMDS and let A: 2 — M(G) be an admissible deformation
map. Then, w — |A*|(1) is bounded.
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Proof. Let K be given according to (D2), and let V' C G be open and relatively compact.
Since K 4+ V is compact, one has

A“1(1) = MK+ V) = sup{[A“(p)] : supp(p) C K +V, [[¢llec <1},

where we used [3, Prop. 1] in the last step. Due to compactness of {2, the statement now
follows from (D1) and the uniform boundedness principle (see [39, Thm. 2.2.9]). O

For w € 2 and ¢ € C.(G), we define the actual deformation of w into *(w) via

(* // 4 8) dA*r ) () dw(r),

where the double integral exists by (D1) and (D2). The constant deformation map \¥ = é,,
with t € G, results in a translation, i.e., *(w) = 6, *w in this case, for all w € £2. The trivial
deformation map thus induces the identity. In general, the following is true.

Proposition 5. Let a TMDS (£2,«) be given and let A be an admissible deformation map.
Then, the following assertions hold.

(a) For every w € {2, the map ®*(w): Ce(G) — C, ¢ — (2Mw))(p), is continuous,
i.e., @ (w) belongs to M(G). Moreover, the map @A 2 — M(GQ), w s PNw), is
continuous as well.

(b) There exists a constant C' > 0 and an open neighbourhood V of 0 in G such that
PANw) belongs to M,y (G), for all w € (2.

(c) Forall t € G and w € 2, one has P (ay(w)) = (P (w)).

Proof. (a): Let K be compact according to (D2). For fixed w € 2 and ¢ € C.(G) with
support in the compact set L, the function

ro— / o(r + 5) A=) (s)
G

has support contained in L — K. Moreover, this function is continuous, since it can easily be
expressed as a composition of continuous functions. In fact, extending this type of reasoning,
one can show that

F: 2xC(GQ) — C(Q), F(w,p)(r) = /Gso(rJrs) A= )(s),

is continuous. In particular, C.(G) — C, ¢ — w(F(w,¢)), is continuous for fixed w € 2
and 2 — C, w— w(F(w,p)), is continuous for ¢ € C.(G). As

PN w)(p) = w((F(w, ),
we infer (a).
(b): Let L be an arbitrary non-empty open set with compact closure. Let 1;_, be the

characteristic function of L — K, where K is taken from (D1). Then, for every ¢ € Cr(G),
we have

2} (w)(p)] < /G A=) lelloo 1z_ g (r) dlw|(r) < CN)lloe [w] (L = K),
where C()) is the bound on w +— |A¥|(1) obtained in Proposition 4. Thus,

[PAWIL+1) = sup{|2*(w)(p)|: ¢ € CLu(G), ol < 1}
CV)llelloo lwl (t+ L - K)

IA
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is uniformly bounded in ¢t € G, as w is translation bounded, and (b) follows.
(c): This is immediate from

(@ o)) (p) = / / (r + 5) AT+ (8 d () (1)
- // (r + 5 4 £) AN (5) du(r)
= (a(@*W))) (),
which is valid for every ¢ € C.(G). O

Define the set of periods of a measure w as
(8) Per(w) := {t € G: aqyw = w}.
We then have the following consequence.

Corollary 2. Let (£2,a) be given and let X be an admissible deformation map. For any
w € 2, with resulting deformation ®*(w), one has

Per(w) C Per(d*(w)).

Moreover, if any w € £2 exists where Per(®M(w)) is a true superset of Per(w), the mapping
PN 2 — M(QG) fails to be injective.

Proof. The first claim follows at once from part (c) of Proposition 5. For the second claim,
let ¢ be a period of $*(w) that is not a period of w. Then, w # a,w, but their images under
& are equal. (|

Part (a) of Proposition 5 implies that, for a given TMDS ({2, «), the set
= {PMNw):we N}

is compact, as it is the image of a compact set under a continuous map. Furthermore, by
part (c) of the same proposition, £2* is invariant under . In fact, by part (b) of Proposition
5, 2 is a subset of My (G) for suitable C, V. Putting this together, we have proved the
following result.

Lemma 4. Let (£2,«a) be a TMDS and let \: 2 — M(G) be an admissible deformation
map. Then, (2),a) is a TDMS. Moreover, (2},a) is a factor of (£2,ca), with factor map
P 2 — N O

If the situation of Lemma 4 applies, we call (2}, a) an admissible deformation of (12, a),
with deformation map A. The main abstract result of this paper now reads as follows.

Theorem 4. Let (§2,a) be a TMDS and let A: 2 — M(G) be an admissible deformation
map. Then, the following assertions hold.

(a) If (£2, @) has pure point diffraction spectrum (w.r.t. some invariant probability measure
m), so does (2),a) (w.r.t. the corresponding induced measure).

(b) If (£2,a) is minimal or uniquely ergodic, then so is (2%, a).

(c) If (£2,«) is uniquely ergodic with pure point diffraction spectrum and all of its eigen-
functions are continuous, the same holds for (2%, a).
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Proof. The proof is essentially the same as the proof of Theorem 3.

(a): If (£2, ) has pure point diffraction spectrum, it has pure point dynamical spectrum,
by Theorem 2. As (2%, a) is a factor of (£2,a) by Lemma 4, it has pure point dynamical
spectrum as well, by Proposition 1. Now, another application of Theorem 2 shows that
(2%, @) has pure point diffraction spectrum.

(b): This follows from Fact 3.

(c): The statement about continuity of the eigenfunctions is immediate from Proposition 2.
The other statements follow by (a) and (b). O

REMARKS. (1) Of course, the previous discussion of TMDS includes the case of Delone dy-
namical systems treated at the beginning of the section. To see this, one has to apply the
mapping ¢: {2, — {2 introduced in the previous section.

(2) The discussion of point dynamical systems given above requires a non-overlapping con-
dition under deformation, here written as ¢({2,) — q(£2,) C V for a suitable open set V. In
the TMDS setting, such a restriction is not necessary, which shows once more the greater
flexibility of the approach via measures.

6. MODEL SETS AND THEIR DEFORMATION

Model sets probably form the most important class of examples of aperiodic order. In their
case, one starts with a periodic structure in a high dimensional space and considers a partial
“image” in a lower dimensional space. This image will not be periodic any more but still
preserve many regularity features due to the periodicity of the underlying high dimensional
structure. For a survey and further references, we refer the reader to [33, 35].

Let us start with a brief recapitulation of the setting of a cut and project scheme and the
definition of a model set. We need two locally compact Abelian groups, G and H, where G is
also assumed to be o-compact, see [44] for the reasons why this is needed. As usual, neutral
elements will be denoted by 0 (or by Og, Of7, if necessary). A cut and project scheme emerges
out of the following collection of groups and mappings:

G <& GxH ™, H

U U U dense
9) [ S

I |

L * L*

Here, L is a lattice in G x H, i.e., a cocompact discrete subgroup. The canonical projection
7 is one-to-one between L and L (in other words, L N {0g} x H = {0}), and the image
L* = wint(i) is dense in H, which is often called the internal space. In view of these properties
of the projections 7 and m,,, one usually defines the x-map as (.)*: L — H via a* :=
(Tt © (m|2) 1) (2), where (7|1) " (z) = 7 (z) N L, for all z € L.

A model set is now any translate of a set of the form

(10) AW) == {zeL:a*eW}

where the window W is a relatively compact subset of H with non-empty interior. Without
loss of generality, we may assume that the stabilizer of the window,

(11) Hy = {ceH:c+W =W},
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is the trivial subgroup of H, i.e., Hy = {0}. If this were not the case (which could happen
in compact groups H for instance), one could factor by Hy and reduce the cut and project
scheme accordingly [44, 4]. Furthermore, we may assume that (/W — W), the subgroup of H
that is algebraically generated by the subset W — W is the entire group, i.e., (W — W) = H,
again by reducing the cut and project scheme to this situation, compare [43] for details.

There are variations on the precise requirement to W which depend on the fine properties
of the model sets one is interested in, compare [35, 44]. In particular, a model set is called
regular if OW has Haar measure 0 in H, and generic if, in addition, OW N L* = @.

As discussed immediately after Definition 2, every model set A gives rise to the dynamical
system (§2(A),«). It is one of the central results of this area, compare [35, 44] and references
given there, that model sets provide a very natural generalization of the concept of a lattice.

Theorem 5. [44] Regular model sets are pure point diffractive. In fact, (2(A), @) is uniquely
ergodic with pure point dynamical spectrum and continuous eigenfunctions. O

For our purposes, it is sufficient to restrict our attention to regular model sets where W is
a compact subset of H with W° = W (in particular, W then has non-empty interior and, due
to regularity, a boundary of Haar measure 0). This is motivated by the fact that diffraction
cannot distinguish two model sets A (W) and A (W’) if the symmetric difference WAW' of
the windows has Haar measure 0 in H.

A regular model set with compact window W can be deformed as follows [23, 11]. Let
¥: H — G be a continuous function with compact support, which, in view of the discussion
around (7), we may assume to include W if necessary. If A = A (W), one defines

(12) Ay == {x+9@"):xe A} = {z+9"):x€ L and z* € W}.

To make sure that Ay is still a Delone set, one usually requires that the compact set K :=
Y(H)—9(H) satisfies K C V where V is an open neighbourhood of 0 € G so that A € Dy (G).
Note that Ay (if it is Delone) has a well defined density, and one obtains

(13) dens(Ay) = dens(A).

In other words, an admissible deformation does not change the density.

Our aim is now to show that the continuous mapping ¢ induces a deformation map ¢ on
Z. To do so, we will need the following lemma. It essentially says that the x-map on A can
be extended to a unique continuous map on =.

Lemma 5. Let A= A(W), with W = W° compact, be a reqular model set and assume that
Hy = {0}. Then, the set {A—x : x € A} is dense in the compact set = and there is precisely
one continuous mapping o: = — W with o(A — ) = z* for every x € A.

Proof. First, let us show that {A — x : © € A} is dense in =, the latter being compact by
Lemma 3.

To this end, let I" € = be given and consider an arbitrary neighbourhood Uk v (I") of I,
where K C G is compact and V' is an open neighbourhood of 0 in G. Replacing K by K U{0}
if necessary, we can assume 0 € K without loss of generality. We have to provide an element
of the form A — p with p € A which belongs to Uk v (I).

To do so, choose a compact neighbourhood V' of 0 € G with

VI+V' cV and V' =-V.
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As = is a subset of {2,(A), which is the orbit closure of {t + A : t € G}, there exists a t € G
with

t+ A € UK+V’,V/(F)~
As 0 belongs to both I and K, we infer that

Oel'nNKclInK+V)c@t+4)+V.

Therefore, 0 =t + p + v with p € A and v € V', or, put differently, p = —t — v’ € A. This
gives

A—p = A+t+ € UK+V/7V/(F) +9 C UK,V(F)7
where the last inclusion follows by our choice of V’. As discussed above, this proves the
density statement.

It remains to show the existence and uniqueness of a continuous map o: = — H with
o(A —x) = x* for every © € A, where the uniqueness will be an immediate consequence of
the continuity of o and the already established denseness of {A —x: 2z € A} in =.

Existence: By [44, Lemma 4.1], for every I € = the set

(14) o) = (W —y")

yel’
is a singleton set in H (note that the sign change in our formulation does not affect this
statement). In the sequel, we will tacitly identify the singleton set o(T') with its unique
element. Then, o can be considered as a map on = with values in H.

By (14), I* C W —o(I'). As 0 € T'*, we infer 0 = w — o(I") for some w € W, and hence
o(I') € W. If I' = A—xz for some x € A, then we claim that 2* € o(A—z) = (\,c4_, (W —y").
This is so because y € A—x implies y = £ —x for some £ € A, hence W —y* = W — ({* —x*) =
(W —£*) 4+ z*. Clearly, £ € W, s0 0 € W — ¢*, and this gives 2* € W —y*. Withy e A — =z
arbitrary, we obtain o(A — x) = {z*}, as o(T") is a singleton set.

Next, following [44, Prop. 4.3], we can show continuity of the mapping o. Let I' € =, and
let V= V(o(I")) be an open neighbourhood of o(I") in H. Since o(I") =, cp(W —y*) is a
singleton set, one has

W -y)\V = @.

yel’
As V is open, each (W — y*) \ V is closed, hence also compact. So, there must be a finite set
F' C I' such that we already have (), (W — y*) \ V = @. This implies that a compact set
K exists such that (), ¢ o (W — v )\ V =2, so

| W-y) cV.

yel'NK
This inclusion means that I"NK = I'NK, for any I'"" € =, implies o(I"") C V. By a standard
argument, this can now be turned into the claimed continuity of o. O

We can now show how ¢ induces a deformation g¢.

Proposition 6. Let A = A (W), with W = W° compact, be a reqular model set and assume
that Hy = {0}. Let 9: W — G be continuous. Then, there is precisely one continuous
mapping q: & — G with q(A — x) = 9(z*) for all x € A.

Proof. This follows directly from Lemma 5: Uniqueness follows because {A —z : x € A} is
dense in =. Existence follows as we can simply define ¢ := 1 o o with the o of Lemma 5. O
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REMARK. Let us point out that continuity of 1 is not necessary to obtain continuity of Joo.
In fact, it is easy to construct examples where ¥ may even have countably many points of
discontinuity (at points of L*, in fact).

Based on Proposition 6, we can now directly prove our result on deformed model sets.

Theorem 6. Let A be a reqular model set and ¥ : H — G a continuous map. Let Ay be
defined according to (12), with the restriction that it is still a Delone set. Then, Ay is pure
point diffractive. In fact, the dynamical system (£2(Ay), «) is uniquely ergodic with pure point
dynamical spectrum and continuous eigenfunctions.

Proof. Consider the map q: = — G constructed in Proposition 6. Plugging in the definitions,
we easily find A, = Ay. This, in turn, gives

(2(A)7" = 2(4g) = 2(Ay).

Thus, it suffices to show that ((Q(A))q,a) is uniquely ergodic with pure point dynamical
spectrum and continuous eigenfunctions. This, however, is immediate from Theorem 3. [

REMARK. Let us mention that the abstract result of Theorem 6 has a very concrete extension
in that it is possible to calculate the diffraction of Ay explicitly. For the Euclidean setting,
this is explained in [24, 11], and we illustrate it below in a concrete example.

7. EXAMPLE: THE SILVER MEAN CHAIN

Let us explain the various notions with a simple example in one dimension, compare [6,
Sec. 8.1]. To this end, consider the two letter substitution rule

a — aba

(15) o b a

which allows the construction of a bi-infinite (and reflection symmetric) fixed point as follows.
Starting from the (admissible) seed w; = ala, where | denotes the reference point, and defining
w, 1 = o(w,), one obtains the iteration sequence

ala v abalaba 7> abaaabalabaaaba +7 ... T w = o(w)

where w is a bi-infinite word in the alphabet {a, b} and convergence is in the obvious product
topology as generated from the alphabet together with the discrete topology.
The corresponding substitution matrix reads

2 1
v = (1 o)

where My, is the number of symbols of type ¢ in the word o(k), for k,¢ € {a,b}. This
matrix is primitive, with Perron-Frobenius eigenvalue s = 1 + /2, which happens to be a
Pisot-Vijayaraghavan number. It is often called the silver mean, due to its continued fraction
expansion (s = [2;2,2,2,...], in contrast to [1;1,1,1,...] = (1++/5)/2 for the golden mean).
The corresponding eigenvectors (left and right) code the frequencies of the letters a and b in
w, and also the information for a proper geometric representation of w as a point set in R,
such that the substitution turns into a geometric inflation rule. One convenient choice here
is to represent a by an interval of length 1 4+ v/2, and b by one of length 1. Their frequencies
are %\/ﬁ and %(2 — \/i), respectively.

This is an example of a so-called Pisot substitution with two symbols, and the derived
point set is known to be a regular model set (with the projection scheme yet to be derived).
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Also, the fixed point is a non-singular (or generic) member of the LI-class defined by it. At
the same time, it is a Sturmian sequence, and we could have started with a concrete cut and
project scheme (then with the compatibility with the inflation to be established). We prefer
the former possibility here, as there is a rather elegant number theoretic formulation which
we will now use.

Let A, and A, denote the left endpoints of the intervals of type a and b, with our reference
point (formerly marked by |) being mapped to 0 in this process. Both point sets are subsets
of the Z-module

ZV2] = {m+nvV2:m,neZ}
which happens to be the ring of integers in the quadratic field Q(v/2). There is one non-trivial
algebraic conjugation in this field, defined by *: /2 — —+/2, which maps Z[v/2] onto itself.
This will take the role of the x-map in the cut and project scheme, which looks as follows.

R <~ RxR 2, R
dense U U U dense
Zva) — L > z|V2

where L = {(x,2*) : € Z[V2]} is a (rectangular) lattice in R?. In comparison to the
standard situation of model sets, compare [35], this cut and project scheme is self-dual, see
also [33, p. 418]. In particular, the x-map is then one-to-one on Z[v/2].

An explicit geometric realization of L with basis vectors is

- ()0

which has the nice property that we can directly work with the standard Euclidean scalar
product for our further analysis (rather than with the quadratic form defined by the lattice).
In particular, we will later also need the dual lattice

(17) LI* = {yeR?:aycZforallz € L} = <i<_\/\%>,;<i>>z

(note the different star symbol), which has the projections
~ 1 n ~
L° = n(l*) = {§(m + \ﬁ) myn € Z} = (DY) = (L°).

Note that the x-map is well defined on the rational span of L which includes L°.
Let us continue with the construction of our model set. By standard theory for the fixed
point of a primitive substitution, the sets A, and A satisfy the equations

Ay = sl U (sdg+ (1+35)) U sy
Ay = sA,+s
with s = 1 + /2 from above, and U denoting the disjoint union of sets. Under the *-map
followed by taking the closure, one obtains a new set of equations for the windows W, = A%
and Wy, = Ay,
We = W, U (sWo+ (1+5%)) U s'W,
Wy, = sW,+s*
where s* = 1 — /2 is less than 1 in absolute value. This new set of equations constitutes a
coupled iterated functions system that is a contraction. By standard Hutchinson theory, there
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is a unique pair of compact sets W, and W, that solves this system, compare [6, Thm. 1.1
and Sec. 4] for details. It is easy to check that this solution is given by

(18) Wo = [S528], Wy = [, %52].
From here, one can also see that W = W, U W, = [ — g, ?] is the window for the full set

A = AUy, with W = W°. Moreover, since +1//2 are not elements of Z[/2], we see that
A= A(W)= A(W?), so that A (and also A, and Ap) are regular, generic (or non-singular)
model sets. The density of A is dens(A) = 1/2.

The deformation is now achieved by a suitable function 1: R — R which is continuous on
W and vanishes on its complement. This is consistent with (7) because the deformation rule
(12) does not require the knowledge of ¢ for any value outside of W. A simple but interesting
candidate is

(19) 9(y) = {O‘y”’ e

0, ygw

with some constants o, 3 € R. For admissible values of «, the affine nature of ©¥ on W has
the effect of changing the relative length ratio of the a and b intervals, with § being a global
translation. It is easy to check that the admissible values of « include

1< a<3+V2

which results in the ratio

length(a,) 11—«

20 = ——= =1 2.

(20) ® = length(b,) a2
Here, we use a, and b, for the intervals that result from the deformation (19). For a given
ratio, the parameter « is given by a = (v2 41 — 9)/(v/2 — 1+ g). We will come back to this
discussion in the next section.

Of particular interest is the fact that one does not only get the theoretical result of pure
point diffraction, but also an explicit formula for the diffraction measure. A detailed account
for its calculation can be found in [11], which can also be derived explicitly via Weyl’s lemma
on uniform distibution, compare [43, 36] for a formulation of the latter in the context of model
sets. The result is

(21) Tay = D 1As(k)[* )
keLe

where the so-called Fourier-Bohr coefficients (or diffraction amplitudes) are given by

1 -
22 Ag(k) = — 2mi(k*y—k9(y)) d
(22) (k) 2\/§/We y

for all k € L°, and Ay(k) = 0 otherwise. Note that Ay(0) = 1/2 = dens(A) in agreement
with a previous remark.

To arrive at (21) and (22), one first shows that Ag(k) must vanish for all k& ¢ L°, which
is part of [11, Thm. 2.6]. Then, let k € L°, and consider the points of A in a (large) finite
patch, e.g., in the ball B,(0) of radius r around 0. We denote such a patch by A" and set

A = {z 9t e A}
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If we place unit point measures at the points of Ag), we obtain a finite measure whose Fourier
transform exists and reads

Z e*Zﬂ'ikz/ _ Z e*QTI’i(k‘QZJrk}’lg(I*)) _ Z eZ‘/ri(k*ac*fkﬁ(z*))

2reA) zEAM) €A

where the last step used the fact that e=27(k#+k"2") — 1 for k € L° and = € L. Now, after
dividing by the volume of B,(0), one obtains the coefficient Ay(k) by taking the limit as
r — oo, which exists and gives (22) by Weyl’s lemma.

Let us also mention that, if we use the formulation via measures, the diffraction formula
(21) remains valid for all (continuous) functions ¥, not just for those which preserve the
Delone property.

For our special choice (19), one obtains

sin(z)
2z lz=n(ak—k*)V2

(23) Ay p(k) = e 2mibk
for all k£ € L°.

8. TOPOLOGICAL CONJUGACY AND FURTHER ASPECTS

In this section, we briefly comment on the question whether (Q’\, ) is topologically conju-
gate to (2, a). A deformed model set need not be topologically conjugate to the undeformed
system. In our silver mean example, with the deformation function ¢ of (19), we can find
values of the scaling parameter « where the factor becomes periodic, while A itself (which
corresponds to a« = = 0) is aperiodic. In such a case, in view of Corollary 2, we cannot
have topological conjugacy. Note that, in contrast to [12], we do not keep track of the type
of the intervals here. If we did that (e.g., by giving different weights to the points of a and b
intervals), topological conjugacy would always be preserved under the deformation.

In particular, « = 1 (which gives ¢ = 1) results in Ay = 2Z + 5. Eq. (21) then reduces
to ¥ Ny = %(52 J2r @S it has to. This is a concrete example of the phenomenon of an extinction
rule, which can often be used to detect situations where topological conjugacy fails. Here, by
analyzing (23) in detail, one finds that the Fourier-Bohr spectrum

Ea,ﬁ = {k ER: Aaﬁ(/{) 75 0}
is independent of 3, but depends on a. Concretely, one has

1
=7 a=1
b =2
< aﬂ>z {LO7 otherwise.

Here, the Z-span is needed because one can have systematic extinctions also for « # 1. This
happens for o € Q and for o = 1 + /2 with » € Q, through solutions of sin(z) = 0 in
(23). Such an extinction phenomenon is usually linked to the existence of symmetries. In our
case, for these special values of «, the point set Ay admits an inflation symmetry, and the
extinctions can be understood from that [17], see [18] for a general discussion.

Whenever o # 1, the deformed model Ay set is actually topologically conjugate to the
original model set A, though in general not via a local derivation rule, compare [13] for a
recent clarification of the relation between these concepts.

Another interesting phenomenon is the appearance of periodic diffraction, even if the un-
derlying structure is non-periodic. For simplicity, let us concentrate on the case 8 = 0.
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Whenever p of (20) is a rational number, ¢ = p/q say with p, g coprime, the set of positions
of Ay is a subset of a lattice in R (of period A = length(a,)/p = length(b,)/q). Consequently,
by [1, Thm. 1], the diffraction measure of the corresponding Dirac comb is periodic, with
period 1/, As the diffraction is also pure point, by our Theorem 6, it is of the form u* dz /25
where p is a finite positive pure point measure on [0,1/A). Unless a = 1, the Fourier-Bohr
spectrum is dense in R, and the underlying Dirac comb based on Ay is not periodic. So, in
our example, failure of topological conjugacy coincides with the existence of periods for Ay.

In the example, and also in our general discussion, we started from a model set and con-
structed a deformation scheme. In general, a deformation will not result in another model
set, though its Fourier-Bohr spectrum remains unchanged. The latter is of central importance
for the actual structure determination in crystallography, e.g., from a diffraction experiment.
It is often implicitly assumed that the underlying structure is a model set, but our above
analysis shows that this need not be the case. An important open question is thus how to ef-
fectively characterize model sets versus deformed model sets by means of intrinsic properties,
preferably by easily accessible ones. Some first results can be infered from [4], but more has
to be done in this direction.
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