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Aufgabenstellung

Ziel der Arbeit ist ein Beitrag zur Analyse des lokalen Inkorrektheitsverhaltens nicht-
linearer Operatorgleichungen

F(x) = y (x ∈ D(F) ⊂ X , y ∈ Y )

mit einem Operator F, der auf einem konvexen Definitionsbereich D(F) definiert ist
und zwischen unendlich-dimensionalen Hilberträumen X and Y wirkt.

Speziell soll der Fall betrachtet werden, dass die Fréchet-Ableitung F ′(x0) von F im
Punkt x0 ∈ D(F) eine Komposition eines kompakten linearen Integraloperators J von
X in Y mit einer wohlbekannten Abklingrate der absteigend geordneten Singulärwerte
si(J) of J gegen Null für i → ∞ und eines Multiplikationsoperators M ist. Solche Gle-
ichungen treten als Anwendungen in den Naturwissenschaften und der Finanzmathe-
matik auf.

Wenn für X = Y = L2(0,1) der Operator F = N ◦J auf dem Halbraum D(F) = {x ∈
L2(0,1) : x(t) ≥ c ≥ 0 f.ü. auf [0,1]} definiert ist als

[F(x)](t) = k (t, [J(x)](t)) (0 ≤ t ≤ 1)

mit dem einfachen Faltungsoperator [J(x)](t) =
R t

0 x(τ)dτ (0≤ t ≤ 1) und ein Nemytskii-
Operator [N(z)](t)= k(t,z(t)) durch die hinreichend glatte Kernfunktion k(t,s) ((t,s)∈
[0,1]× [0,∞)) erzeugt wird, so liegt die oben beschriebene Situation vor. Die Fréchet-
Ableitung F ′(x0) nimmt im Punkt x0 ∈ D(F) die Gestalt F ′(x0) = M ◦ J bzw.

[

F ′(x0)(h)
]

(t) = m(t) [J(h)](t) (0 ≤ t ≤ 1, h ∈ X)

mit einem Multiplikationsoperator M an, der über die Multiplikatorfunktion

m(t) =
∂k (t, [J(x0)](t))

∂s
(0 ≤ t ≤ 1)

definiert wird. Dann überträgt sich für m ∈ L∞(0,1) die Kompaktheit von J auf den
beschränkten linearen Operator F ′(x0). Mehr noch, im Falle eines positiven wesentli-
chen Infimums von m gilt si(F ′(x0)) ∼ 1/i für die Asymptotik der singulären Werte,
welche die lokale Inkorrektheit von F(x) = y im Punkt x0 charakterisiert. Falls jedoch
die Multiplikatorfunktion m eine wesentliche Nullstelle aufweist, z.B. bei t = 0 und für
ein ν > 0 in der Form m(t) = tν oder m(t) = exp

(

− 1
tν
)

(0 < t ≤ 1) darstellbar ist, so
ist die Bestimmung des lokalen Grades der Inkorrektheit im Punkt x0 kompliziert. Aus-
gehend von einer weitreichenden Literaturrecherche zu diesem Problemkreis sollen die
Möglichkeiten und Grenzen der Analysis für solche Fragen ausgelotet werden. Weiter
sollte die Hypothese untersucht werden, dass derartige Multiplikationsoperatoren mit
isolierten Nullstellen in m nur einen begrenzten Einfluss auf Chancen der Regularisie-
rung derartiger nichtlinearer Operatorgleichungen haben. In diesem Kontext spielen
Quelldarstellungen gewiss eine Schlüsselrolle. Durch eine Serie systematischer nu-
merischer Fallstudien sollen auch Antworten auf den Teil der Fragen gefunden werden,
der sich nicht analytisch behandeln lässt.
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Abstract

In this thesis we deal with the degree of ill-posedness of linear operator equations Bx =
y in Hilbert spaces X =Y = L2(0,1), where B may be decomposed into a compact linear
integral operator J with a well-known decay rate of singular values and a multiplication
operator M.

This case occurs for example for nonlinear operator equations F(x) = y, where F =
N ◦J. Then the local degree of ill-posedness is investigated via the Fréchet derivative in
x0 ∈ D(F) which has the form F ′(x0) = M ◦ J providing the situation described above.

If the multiplier function has got zeroes, the determination of the local degree of
ill-posedness is not trivial. We are going to investigate this situation, provide analytical
tools as well as their limitations. By using several numerical approaches for computing
the singular values of F ′(x0) we find that the degree of ill-posedness does not change
through those multiplication operators. We even provide a conjecture, verified by sev-
eral numerical studies, how these multiplication operators influence the singular values
of F ′(x0) = M ◦ J.

Finally we analyze the influence of those multiplication operators on the opportu-
nities of Tikhonov regularization and corresponding convergence rates. In this context
we also provide a short summary on the relationship between nonlinear problems and
their linearizations.





Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Grad der Inkorrektheit linearer Operatorgle-
ichungen der Form Bx = y in Hilberträumen X = Y = L2(0,1), wobei B als Kom-
position eines vollstetigen linearen Integraloperators J mit bekannter Abklingrate der
Singulärwerte und eines Multiplikationsoperators M dargestellt werden kann.

Dieser Fall tritt beispielsweise bei nichtlinearen Operatorgleichungen F(x) = y,
wobei F = N ◦ J. Dann wird der lokale Inkorrektheitsgrad über die Fréchet-Ableitung
in x0 ∈ D(F) bestimmt, welche mit F ′(x0) = M ◦ J die oben beschriebene Form hat.

Falls die Multiplikatorfunktion Nullstellen hat, ist die Bestimmung des lokalen
Grades der Inkorrektheit nicht einfach. Möglichkeiten und Grenzen der Analyis für
diese Situation werden betrachtet. Unterschiedliche numerische Ansätze für die Bes-
timmung der Singulärwerte von F ′(x0) liefern das Ergebnis, dass der Grad der Inko-
rrektheit durch die Multiplikatorfunktionen nicht beeinflusst wird. Es wird sogar ein
Zusammenhang gefunden, wie diese Multiplikationsoperatoren die Singulärwerte von
F ′(x0) = M ◦ J beeinflussen.

Schließlich werden noch die Möglichkeiten der Tikhonov Regularisierung unter
Einfluss der Multiplikationsoperatoren untersucht. In diesem Zusammenhang wird
auch eine kurze Zusammenfassung zur Beziehung von nichtlinearen Problemen und
ihren Linearisierungen gegeben.
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Chapter 1

Introduction

The work described in this diploma thesis deals with the ill-posedness of inverse prob-
lems and especially how specific multiplication operators influence the degree of ill-
posedness of an integral operator.

Inverse problems are very old and ubiquitous in science, finance and engineering
and have received a great deal of attention by applied mathematicians, engineers and
statisticians. Most inverse problems cannot be solved analytically, hence numerical
methods have to be used. We are interested in the question, how ill-posed a certain
problem, namely the inverse problem of an operator B = M ◦ J, which can be decom-
posed into a multiplication operator M and an integral operator J, is.

The first three chapters of this thesis contain background material related to inverse
problems and the concept of ill-posedness. Chapter 2 deals with inverse problems and
ill-posedness in general. In this chapter linear and nonlinear operators are introduced
and the origin of multiplication operators in the context of nonlinear operators and its
linearizations is described.

Chapter 3 provides properties of linear operators in Hilbert spaces. The singular
value decomposition of compact operators is explained which is important for the de-
termination of the degree of ill-posedness. Several examples for integral equations and
their degree of ill-posedness are given.

Chapters 4 and 5 provide the main analytical results obtained for the singular value
decomposition (and therefore the degree of ill-posedness) of integral operators. Chapter
4 contains a characterization of multiplication operators and several analytical tools for
the determination of the singular value decomposition, whereas in chapter 5 the integral
operator is transformed into a Sturm-Liouville problem and an overview of relevant
results for such problems is given.

Chapter 6 covers the important topic of computing the singular value decomposition
for the integral operator numerically. Several approaches are used in order to achieve
this. Firstly, finite difference methods are applied to the Sturm-Liouville problem. Then
Galerkin and Rayleigh-Ritz methods are used in order to determine the singular value
decomposition of the integral equation with multiplication operators. All computations

1



Chapter 1. Introduction

were carried out in MATLAB1 , version 6.1 (R12). Approximation properties are intro-
duced for all three methods and several types of multiplier functions are considered,
containing polynomial type as well as exponential type functions. Finally, very good
approximations are produced for the singular values and their asymptotic behaviour,
which is important for the determination of the degree of ill-posedness.

Chapter 7 examines the influence of multiplication operators M on the regulariza-
tion of an ill-posed problem. Therefore we consider the nonlinear problem F(x) = y in
addition to the linearized problem, i.e. the integral equation with operator B = M ◦ J.
Tikhonov regularization applied to the nonlinear as well as the linear problems and
convergence rates properties are considered.

Finally chapter 8 presents a summary of all our analytical and numerical results.

1MATLAB is a registered trademark of The MathWorks, Inc.

2



Chapter 2

Motivation

In this first chapter we want to give a short introduction on inverse problems, and ill-
posedness of linear and nonlinear operators. Furthermore we want to describe how
multiplication operators develop from nonlinear operator equations and mention some
applications in science and finance.

2.1 Inverse Problems and Hadamard’s definition of well-
posedness

Inverse problems arise in a variety of important applications in science and technology,
industry and finance. In this chapter we want to give a short introduction to inverse
problems and the concept of well-posedness.

The following explanation of an inverse problem can be found in [33]. An inverse
problem is a problem, which is posed in a way that is inverted from that in which most
direct problems are posed. The so-called direct problem we have in mind is that of de-
termining the effect y from given causes and conditions x, when a definite mathematical
model

F(x) = y

is given. Hence, in an inverse problem we are looking for special parameters x, i.e. a
special cause or a special condition of our mathematical model. The solution of a direct
problem is the precise mathematical description of a mathematical problem whereas the
solution of an inverse problem can be described as the construction of x from data y.
In studying inverse problems we often face a lack of information as it can be seen
through many examples (see for example [4], [33], [43], [45] and [80]). An inverse
problem does not necessarily have a solution or even a unique solution. Furthermore,
if a solution exists, it does not continuously depend on the data, i.e. it is unstable. This
leads to the following definition of well-posedness for identification problems taken
from [4], which was first introduced by Hadamard:

3



Chapter 2. Motivation

Definition 2.1. Let X and Y be two Banach spaces and F : X 7→ Y be a mapping from
X into Y . According to Hadamard the operator equation

F(x) = y, x ∈ D ⊂ X , y ∈ Y (2.1)

is said to be well-posed, if the following three conditions hold:

(i) For every y ∈ Y there exists at least one x ∈ D satisfying F(x) = y (existence).

(ii) The element x satisfying F(x) = y is uniquely determined in D (uniqueness).

(iii) The solution x depends continuously on the right hand side y (stability).

If one of these conditions is not satisfied, then the problem (2.1) is called ill-posed in
the sense of Hadamard.

If equation (2.1) is well-posed, then F has a well-defined, continuous inverse opera-
tor F−1. Direct problems are usually well-posed whereas the nature of inverse problems
leads to ill-posed problems as a characteristic property. Further explanations, theory
and examples on inverse and ill-posed problems can be found in [4], [33], [45], [61]
and [81].

2.2 Linear and nonlinear operator equations

In addition we want to introduce the class of bounded linear operators A that plays an
important role in understanding direct and inverse problems (see [45]):

Definition 2.2. An operator A : X 7→ Y is said to be linear, if

A(λ1x1 +λ2x2) = λ1Ax1 +λ2Ax2

holds for all x1,x2 ∈ X, λ1,λ2 ∈ R. If there exists a constant K ≥ 0 such that

‖Ax‖Y ≤ K‖x‖X

holds for all x ∈ X, then the linear operator A is called bounded.

Bounded linear operators A between X and Y form a Banach space denoted by
L(X ,Y) (see [41]). The norm in this space is defined by

‖A‖L(X ,Y ) :=
‖Ax‖Y

‖x‖X
.

If the operator A is not linear, it is said to be a nonlinear operator. For nonlinear opera-
tors we will need the definition of local ill-posedness.

For nonlinear operator equations (2.1) conditions (i) and (ii) of definition 2.1 are
generally not satisfied in the global sense. Hence, we need a local definition of ill-
posedness, in which we focus on the stable dependence of the solution on the right
hand side. This definition is taken from [45]:
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2.2. Linear and nonlinear operator equations

Definition 2.3. The operator equation (2.1) is said to be locally ill-posed in x0, if for
any small radius r > 0 there exists an infinite sequence {xn} of elements from the ball
BD

r (x0), that does not converge to x0 and whose image set {F(xn)} ⊂ Y does converge
to F(x0), i.e.

F(xn) → F(x0) in Y, but xn 6→ x0 in X for n → ∞. (2.2)

Otherwise (2.1) is called locally well-posed.

We see, that for local well-posedness, there exits a radius r0, such that

F(xn) → F(x0) in Y, xn ∈ BD
r0
(x0) but xn → x0 in X for n → ∞.

holds. This corresponds exactly to the condition (iii) in Hadamard’s definition of well-
posedness. The local ill-posedness is a very disadvantageous property that often ap-
pears for nonlinear identification problems for the reconstruction of a solution.

Some examples (see [45]) of nonlinear ill-posed problems, which we will also de-
rive in the next section, are given by operators of the form

[[F(x)](s) = c0 exp

(

c1

Z s

0
x(t)dt

)

, (0 ≤ s ≤ T ), (2.3)

with c0 6= 0 and c1 6= 0. Both in spaces X = Y = L2(0,T ) and X = Y = C[0,T ] the
operator F : X → Y with D = X is defined and continuous everywhere in X . But the
nonlinear operator equation (2.1) with the operator F and spaces given above are lo-
cally ill-posded in all points x0 ∈ X according to definition 2.3. We can show this by
considering X = Y = C[0,T ], c0 = c1 = 1 and x0(t) = 0, (0 ≤ t ≤ T ) with [F(x0)](s) =
1, (0 ≤ s ≤ T ). Then there are sequences of continuous functions

xn(t) =
r cosnt

2(1+ r sinnt
2n )

, (0 ≤ t ≤ T ),

for arbitrarily small radii r > 0, with

‖xn‖C[0,T ] ≤
r

2(1+ r
2n)

≤ r

and xn ∈ BD
r (x0) for n large enough. Furthermore

lim
n→∞

‖xn‖C[0,T ] =
r
2

and therefore xn 6→ x0 in C[0,1] for n → ∞. However, the sequence of image functions

[F(xn)](s) = 1+
r sinns

2n
, (0 ≤ s ≤ T )

converges in C[0,1] to F(x0), since

lim
n→∞

‖F(xn)−F(x0)‖C[0,1] = lim
n→∞

r
2n

= 0.
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Chapter 2. Motivation

This corresponds to the definition of local ill-posedness of the operator equation (2.1)
in x0 and therefore the nonlinear operator equation (2.3) is locally ill-posed.

In the next section we are going to state some more examples of nonlinear ill-
posed problems and how so-called multiplication operators arise from those nonlinear
equations. This motivates the interest in such multiplication operators which we want
to examine in this thesis.

2.3 On the origin of multiplication operators

In this work we want to analyze the local ill-posedness properties of nonlinear operator
equations

F(x) = y, x ∈ D(F) ⊂ X , y ∈ Y (2.4)

with an operator F , defined on convex D(F) and mapping between infinite dimensional
Hilbert spaces X and Y . We will show, how multiplication operators emerge from this
nonlinear operator. To this end we are going to introduce three examples for nonlinear
ill-posed problems arising in science and technology as well as in finance. The first
example concerning growth rates is mentioned in Groetsch [33], the second example
concerning the heat equation can be found in Anger [4]. The last example from financial
mathematics was discussed by Hofmann/Hein [38].

Chemical reaction This example can be found in the book by Groetsch [33]. From
the kinetics of chemical reactions we know that the change of concentration of a certain
material in time is proportional to the current concentration u(t) of this special material
for all considered times t ≥ 0. Let the alteration rate x(t) be variable in time. Then the
linear first order ordinary differential equation

u′(t) = x(t)u(t)

with initial condition
u(0) = u0

is valid, where u0 > 0 is the given initial concentration. Notice that this kind of problem
does not only appear in chemistry but also in many other applications. The direct
problem is to determine the concentration u(t) for 0 ≤ t ≤ T , if the initial concentration
u0 and the parameter function x(t), (0 ≤ t ≤ T ) is given. The nonlinear operator F of
the direct problem may be written in the form

[F(x)](s) = u0 exp

(

Z s

0
x(t)dt

)

, (0 ≤ s ≤ T ), (2.5)

as a composition F = N ◦ J as a composition of a nonlinear Nemytskii operator N and
the linear operator J given by

[J(x)](s) :=
Z s

0
x(t)dt, (0 ≤ s ≤ T ).

6



2.3. On the origin of multiplication operators

Now, the inverse problem is given by the identification of the variable parameter func-
tion x(t) in time interval [0,T ] on the basis of given measurements of the concentration
u(t). This problem regularly arises in applications. We may determine the Fréchet
derivative F ′(x0) of F for all points x0 ∈ L2(0,1) (see [45]):

Definition 2.4. A bounded linear operator A ∈ L(X ,Y) is called Fréchet derivative of
operator F : D ⊆ X 7→ Y in x0 ∈ int(D) if there exists an open ball Br(x0) ⊆ D and a
positive real functional ε : Br(x0) ⊂ X 7→ R with limx→x0 = 0 such that

‖F(x)−F(x0)−A(x− x0)‖Y ≤ ε(x)‖x− x0‖X

for all x ∈Br(x0). The operator F is called Fréchet differentiable on the open set S ⊆ D,
if it has a Fréchet derivative F ′(x0) := A in all points x0 ∈ S.

The Fréchet derivative of operator F from (2.5), which is defined on L2(0,1) for
X = Y = L2(0,1) is given by the following composition

[F ′(x0)(h)](t) = [F(x0)](t)[J(h)](t), (0 ≤ t ≤ 1, h ∈ X = L2(0,1)), (2.6)

where the integral operator J ∈ L(L2(0,1),L2(0,1)) of first order differentiation is
given by

[J(h)](t) =
Z t

0
h(τ)dτ. (2.7)

Hence F ′(x0) may be decomposed into F ′(x0) = M ◦ J with the convolution operator J
and a multiplication operator M, which attains the form

m(t) := [F(x0)](t).

Notice that m(t) > 0 because of the exponential function in (2.5). Hence

0 < c ≤ |m(t)| ≤C < ∞

is valid for all t. We are going to examine another problem with multiplication operators
arising in engineering.

Heat conduction This example can be found in the book by Anger [4]. Consider a
one dimensional heat conduction problem on the interval [0,1], where x(t), (0 ≤ t ≤ T )
is the coefficient of thermal conductivity, which is variable in time. Then the second
order partial differential equation which describes this problem has got the form

∂u(z, t)
∂t

= x(t)
∂2u(z, t)

∂z2 , (0 < z < 1, 0 < t < T ),

where u(z, t), (0 ≤ z ≤ 1, 0 ≤ t ≤ T ) describes the temperature field. Obviously this
assumption is justified, because the thermal conductivity may vary in time due to tem-
perature and material changes. The initial condition is assumed to be

u(z,0) = sin(πz), (0 ≤ z ≤ 1).

7



Chapter 2. Motivation

Furthermore we assume homogenous boundary conditions given by

u(0, t) = u(1, t) = 0 (0 ≤ t ≤ T ).

Let the temperature be measurable in the middle of the rod (i.e. at z = 1
2 ), for example

with the help of a sensor. Hence, we may observe

y(t) := u

(

1
2
, t

)

(2.8)

Then the operator of the direct problem is given by the nonlinear mapping x(t) → y(t).
Using the initial values and the boundary conditions we may find the solution u to the
above problem, which is given by

u(z, t) = sin(πz)exp

(

−π2
Z t

0
x(τ)dτ

)

.

From (2.8) it follows that

y(t) = exp

(

−π2
Z t

0
x(τ)dτ

)

.

The inverse problem is then given by the identification of the thermal conductivity
as a function in time on the basis of a time-dependent temperature measuring which
was provided by a single sensor in the middle of the temperature field. This problem
corresponds to the solution of the nonlinear problem

[F(x)](t) = exp

(

−π2
Z t

0
x(τ)dτ

)

, (0 ≤ t ≤ T ), (2.9)

which may also be written as a composition F = N ◦ J (see previous example). The
Fréchet derivative of operator F from (2.9), which is defined on L2(0,1) for X = Y =
L2(0,1) is given by the following composition

[F ′(x0)(h)](t) = −π2[F(x0)](t)[J(h)](t), (0 ≤ t ≤ 1, h ∈ X = L2(0,1)), (2.10)

where the integral operator J is given by (2.7). Therefore F ′(x0) may be decomposed
into F ′(x0) = M ◦ J with the convolution operator J and a multiplication operator M,
which attains the form

m(t) := −π2[F(x0)](t).

Notice that m(t) < 0 because of the exponential function in (2.9). Therefore, as in the
previous example,

0 < c ≤ |m(t)| ≤C < ∞

is valid for all t. Finally we are going to examine multiplication operators arising in
financial mathematics.
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2.3. On the origin of multiplication operators

Option pricing This example is taken from [38]. We analyze the inverse problem
of identifying a purely time-dependent volatility function where the data is given by a
maturity-dependent option price function with varying remaining term. This problem is
formulated in the following discussion. Let X =Y = L2(0,1) and the nonlinear operator
F = N ◦ J defined on

D(F) = {x ∈ L2(0,1) : x(t) ≥ c ≥ 0 a.e. in [0,1]} (2.11)

be given by
[F(x)](t) = k(t, [J(x)](t)), (0 ≤ t ≤ 1), (2.12)

where J is a simple inner linear convolution operator, J = 1∗ x given by

[J(x)](t) :=
Z t

0
x(τ)dτ, (0 ≤ t ≤ 1) (2.13)

and N is an outer nonlinear Nemytskii operator given by

[N(z)](t) = k(t,z(t)),

where k(t,s), (t,s) ∈ [0,1]× [0,∞) is a sufficiently smooth kernel function. This situ-
ation arises for example in financial mathematics in option pricing (see [38]), where
the Nemytskii operator is given by the Black-Scholes function. This formula arises
in financial mathematics. The fair option prices u(t) on arbitrage-free markets are ex-
plicitely given by the Black-Scholes-type formula

u(t) = uBS(X ,K,r, t,S(t)), (0 ≤ t ≤ T ),

where S(t) is given by

S(t) :=
Z t

0
x(τ)dτ. (2.14)

and 0 is the starting time and T the upper time limit. This formula is based on the
Black-Scholes function uBS which is defined as

uBS(X ,K,r,τ,s) :=

{

XΦ(d1)−Ke−rτΦ(d2), (s > 0)
max0,X −Ke−rτ, (s = 0),

for a current asset price X := X(0) > 0, a fixed strike K > 0, a fixes rise-free interest
rate r ≥ 0, the time τ ≥ 0 and s ≥ 0 with

d1 =
ln X

K + rτ+ s
2√

2
, d2 = d1 −

√
2

and the cumulative density function of the standard normal distribution

Φ(y) :=
1√
2π

Z y

−∞
e−

ξ2

2 dξ.

9
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The inverse problem is now given by finding the volatility function x(t) which is not di-
rectly observable. Then the Black-Scholes function uBS allows to define the Nemytskii
operator by

[N(v)](t) := uBS(X ,K,r, t,v(t)), (0 ≤ t ≤ T ).

Therefore the nonlinear operator F is given by the above form (2.12).
The Fréchet derivative of operator F from (2.12) is given by the composition F ′(x0) =

M ◦ J of the convolution operator J with a multiplication operator M described by a
multiplier function m in the form

[F ′(x0)(h)](t) = m(t)[J(h)](t), (0 ≤ t ≤ 1,h ∈ X = L2(0,1)).

The multiplier function attains the form

m(t) =
∂k(t, [J(x0)](t))

∂s
, (0 ≤ t ≤ 1).

We may calculate m(t) for the special kernel function k(t,z(t)) = [N(z)](t) for the
Nemytskii operator if X 6= K, that means if the current asset price X is not equal to
the strike K, i.e. at-the-money-options are excluded, since only for X 6= K the Fréchet
derivative has got reasonable characteristics. Then this multiplier function m is given
by

m(0) = 0, m(t) =
∂uBS(X ,K,r, t,S(t))

∂s
(0 < t ≤ T ).

In [38] it has been shown that the linear operator F ′(x0) maps continuously into L2(0,1)
with m ∈ L∞(0,1), but only if X 6= K. For this special problem we may derive (see [38])

m(t) =
X

2
√

2πS(t)
exp

(

−(v+ rt)2

2S(t)
− (v+ rt)

2
− S(t)

8

)

> 0,

where v = ln X
K 6= 0. Based on this formula we get

1
m(t)

= K
√

S(t)exp(β(t)), (0 < t < T ),

where

β(t) =
v2

2S(t)
+

r2t2

2S(t)
+

vrt
S(t)

+
v
2

+
rt
2

+
S(t)

8
, v :=

(

X
K

)

6= 0 for X 6= K.

For S ∈ I(D(F)) from (2.14) with (2.11) we have

ct ≤ S(t)≤ d
√

t, (0 < t ≤ T ),

where d := ‖x‖L2(0,1). Then we may estimate

C
exp
(

− v2

2ct

)

4
√

t
≤ m(t) ≤C

exp
(

− v2

2d
√

t

)

√
t

, (0 < t ≤ T )
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2.3. On the origin of multiplication operators

for some positive constants C and C. Hence, for fixed v 6= 0 (i.e. X 6= K) the multiplier
function m(t) falls exponentially as t → 0 and m(t)→ 0 as t → 0. We may find several
more examples for multiplication operators, by considering the Fréchet derivative of
further nonlinear operators.

We have seen through various examples that the Fréchet derivative of operator F in
x0 ∈ D(F) is given by a composition of a compact linear integral operator J from (2.13)
with well-known singular value asymptotics

σi(J) ∼ 1
i

as i → ∞ (2.15)

and a multiplication operator M. We will explain the concept of compactness and sin-
gular values in the next chapter. We will also determine the singular value expansion of
the standard convolution operator J and therefore show that (2.15) is valid. Furthermore
we are going to see that for m ∈ L∞(0,1) the compactness of J transfers to the operator
F ′(x0). We will also see that the decay rate of singular values of an operator determines
its degree of ill-posedness. The nature of local ill-posedness of F in x0 arises from the
decay rate of singular values σi(F ′(x0)) of the linear integral operator F ′(x0). If

0 < c ≤ |m(t)| ≤C < ∞

holds (as in the first two examples which we have seen), i. e. if m has got a positive
essential infimum, it can be shown that for all points x0 ∈ L2(0,1) the Fréchet derivative
F ′(x0) from (2.6) and (2.10) and the compact linear operator J from (2.7) are spectrally
equivalent (see [44, Proposition 3] for a proof). Then the asymptotic of the singular
values does not change, i.e.

σi(F
′(x0)) ∼

1
i

as i → ∞

and we find ill-posedness of degree ν = 1.
Problems arise, if the multiplier function m(t) has got a zero, for example at t = 0.

This situation occurs for example for

m(t) = tα or m(t) = exp{− 1
tα}, α > 0.

This is the case in the third example which we have seen above. The degree of ill-
posedness, which we will define in the next chapter, is very important for measuring the
difficulties in solving a linear operator equation. Therefore it is necessary to determine
the degree of ill-posedness for the above problem. We will try to find this degree of
ill-posedness by considering analytical and numerical methods.

Finally we are going to consider the influence of multiplication operators on the
opportunities of regularization of such a nonlinear ill-posed problem.
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Chapter 3

Linear operator equations in Hilbert
spaces

In this section we consider linear operator equations (2.1) mapping between two Hilbert
spaces X and Y :

Ax = y, x ∈ D ⊂ X , y ∈ Y A ∈ L(X ,Y) (3.1)

In each Hilbert space we have an inner product 〈·, ·〉 and an induced norm ‖ · ‖. In
separable Hilbert spaces, which we want to consider, there exist finite or countable
orthonormal systems (see for example [45]) which we will need for the lemma on
singular value decomposition in the following section.

3.1 Singular value decomposition of compact operators
and the Pseudo-Inverse

Many ill-posed problems arising in applications involve compact operators. Therefore
we want to give the definition of a compact operator (see [47]):

Definition 3.1. A bounded linear operator A ∈ L(X ,Y) is compact if and only if the
image of any bounded set T ⊂ X is a relatively compact set AT = {y ∈ Y : y = Ax,x ∈
T} ⊂ Y .

Since the operator A is compact it has a non-closed range in Y , i.e. R(A) 6= R(A), the
inverse operator A−1 is unbounded and equation (3.1) is ill-posed. Nashed (see [67])
calls this situation ill-posedness of type II.

The singular value decomposition of compact operators plays an important role
for studying the Pseudo-Inverse of those operators. In order to formulate a lemma on
singular value decomposition we need the definition of adjoint operators (see [16]).

Definition 3.2. The operator A∗ ∈L(Y,X) is called the adjoint operator of A∈L(X ,Y)
if

〈Au,v〉Y = 〈u,A∗v〉X

13



Chapter 3. Linear operator equations in Hilbert spaces

holds for all u ∈ X and v ∈ Y .

The following considerations are taken from Hofmann [45]. If A = A∗ holds, the
operator is called self-adjoint. It is easy to see, that for any operator A ∈ L(X ,Y) the
products A∗A ∈ L(X ,X) as well as AA∗ ∈ L(Y,Y ) are self-adjoint.

If we consider eigenvalues λ ∈ R and eigenelements u ∈ X with u 6= 0 of a self-
adjoint operator A, which satisfy the eigenvalue equation

Au = λu

then eigenelements u1 and u2 belonging to different eigenvalues λ1 and λ2 are orthog-
onal (see for example Heuser [41]). Each operator A ∈ L(X ,Y) with finite dimensional
image space, dim(R(A)) = m, is compact. Then the operators A∗A and AA∗ have a finite
sequence of non-negative eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0,

and orthonormal systems of eigenelements

{u j}m
j=1 ⊂ X with A∗Aui = λiui (i = 1, . . . ,m)

and
{v j}m

j=1 ⊂ Y with AA∗vi = λivi (i = 1, . . . ,m).

On the other hand, for a compact operator with dim(R(A)) = ∞, A∗A as well as AA∗

have an infinite sequence of positive eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λn ≥ . . . → 0, for n → ∞

and corresponding infinite orthonormal systems of eigenelements

{u j}∞
j=1 ⊂ X and {v j}∞

j=1 ⊂ Y,

where {u j}∞
j=1 is a complete orthonormal system in R(A∗) = R(A∗A) = N(A)⊥, a sub-

space of the Hilbert space X . Similarly {v j}∞
j=1 is a complete orthonormal system

in R(A) = R(AA∗) = N(A∗)⊥, a subspace of the Hilbert space Y . From those con-
siderations we can follow, that, if A ∈ L(X ,Y) is compact then the adjoint operator
A∗ ∈ L(X ,Y) is compact, too. For further details on spectral analysis of compact oper-
ators, see [1].

Using these properties of compact self-adjoint operators we can formulate the fol-
lowing lemma about singular value decomposition which is taken from [45]:

Lemma 3.1. Let A ∈ L(X ,Y) be a compact operator between the separable Hilbert
spaces X and Y . Then there exist sets of indices J = {1, . . . ,m} for dim(R(A)) = m and
J = N for dim(R(A)) = ∞, orthonormal systems {u j} j∈J in X and {v j} j∈J in Y and a
sequence {σ j} j∈J of positive real numbers with the following properties:

{σ j} j∈J is non-increasing and lim
j→∞

σ j = 0 for J = N (3.2)
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Au j = σ jv j ( j ∈ J) and A∗v j = σ ju j ( j ∈ J). (3.3)

For all x ∈ X there exists an element x0 ∈ N(A) with

x = x0 + ∑
j∈J

〈x,u j〉X u j and Ax = ∑
j∈J

σ j〈x,u j〉X v j. (3.4)

Furthermore
A∗y = ∑

j∈J
σ j〈y,v j〉Y u j (3.5)

holds for all y ∈ Y .

For a proof of this lemma, see for example [16]. The lemma states, that for each
compact operator there exists a singular system according to the following definition
taken from [45]:

Definition 3.3. Let X and Y be separable Hilbert spaces and A∈ L(X ,Y) be a compact
operator. Then a singular system for this compact operator is a countable set of triples

{σ j,u j,v j} j∈J, (3.6)

where the index set J is given by J = {1, . . . ,m} for dim(R(A)) = m and J = N for
dim(R(A)) = ∞. It holds σ j > 0 and u j ∈ X, v j ∈ Y as defined in the previous lemma,
satisfying conditions (3.2)-(3.5). Furthermore the positive numbers

σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) ≥ . . . → 0, for n → ∞

are called singular values or s-numbers of the compact operator A and the decompo-
sition, defined in formula (3.4), is called singular value decomposition of the operator.

We are going to summarize some properties of s-numbers or singular values, taken
from [56] and [58]: Any singular value of a compact operator A satisfies

1. ‖A‖ = σ1(A) ≥ σ2(A) ≥ . . . ≥ 0, A ∈ L(X ,Y),

2. σn+m−1(A+B) ≤ σn(A)+σm(B), A,B ∈ L(X ,Y), m,n ∈ N,

3. σn(CAB) ≤ ‖C‖σn(A)‖B‖ for B ∈ L(X0,X),A ∈ L(X ,Y),C ∈ L(Y,Y0),
n = 1,2, . . . ,

4. σn(A) = 0 for rank(A) < n,

5. σn(I) = 1, where I denotes the identical map and

6. the s-numbers are continuous functions, namely

|σn(A)−σn(B)| ≤ ‖A−B‖, ∀A,B ∈ L(X ,Y).
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From
A∗Au j = σ2

ju j and AA∗v j = σ2
jv j (3.7)

and the previous consideration follows, that that the singular values σ j are the square
roots of the positive eigenvalues of A∗A as well as AA∗ and

σ j → 0, as j → ∞. (3.8)

The orthonormal systems {u j} j∈J and {v j} j∈J are complete in R(A∗) and R(A). We
can use these results in order to find expressions for the solution of the linear operator
equation (3.1) and to construct a pseudo-inverse of the compact operator A. Expressing
the right hand side y ∈ Y of the operator equation as a Fourier series and using the
singular value decomposition (3.4) we get the following form of (3.1):

∑
j∈J

σ j〈x,u j〉X v j = y0 + ∑
j∈J

〈y,v j〉Y v j, (3.9)

where y0 ∈ N(A∗). As a necessary condition for the existence of a solution we therefore
have y0 = 0 or y ∈ N(A∗)⊥. Furthermore

σ j〈x,u j〉X = 〈y,v j〉Y (3.10)

must hold for all j ∈ J and therefore, using (3.4) we get

x = x0 + ∑
j∈J

〈y,v j〉Y
σ j

u j, (3.11)

where x0 ∈ N(A) is arbitrary. The element x from (3.11) must be an element of the
Hilbert space X which corresponds to the Picard condition

∞

∑
j=1

〈y,v j〉2
Y

σ2
j

< ∞.

So there is a solution to (3.1) if and only if y ∈ N(A∗)⊥ and for dim(R(A)) = ∞ the
Picard condition holds. For x0 = 0 in (3.11) we have a unique solution of minimum
norm (see [45]),

xmn = A†y = ∑
j∈J

〈y,v j〉Y
σ j

u j, y ∈ R(A)⊕R(A)⊥, (3.12)

where A† is the so-called Moore-Penrose inverse or generalized inverse of A. Note, that
R(A) is the smaller the faster σ j tends to zero as j → ∞, since the Picard condition has
to be satisfied. In addition the influence of a perturbed right-hand side y is the stronger
the faster the σ j tend to zero. An important class of compact operators are the so-called
Hilbert-Schmidt operators [43]:
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Definition 3.4. An operator A ∈ L(X ,Y) mapping between separable Hilbert spaces
X and Y is called a Hilbert-Schmidt operator if, for an arbitrarily chosen complete
orthonormal system {e j} ⊂ X,

S(A) :=
∞

∑
j=1

‖Ae j‖2
Y < ∞

holds.

From this definition we immediately get the following lemma (see [16], [43] and
[45]):

Lemma 3.2. Any Hilbert-Schmidt operator is compact. Furthermore for all complete
orthonormal systems {e j} ⊂ X we have

S(A) =
∞

∑
j=1

‖Ae j‖2
Y =

∞

∑
j=1

σ2
j < ∞.

As a consequence of lemma 3.2 we obtain that for any Hilbert-Schmidt operator the
sum S(A) is independent of the choice of the orthonormal system {e j}. Therefore we
could define a so-called Hilbert-Schmidt norm

‖A‖HS := S(A) =
∞

∑
j=1

σ2
j < ∞,

which we will need in a later section. The so-called linear Fredholm integral operator
A mapping from X = L2(0,1) into Y = L2(0,1), defined by

[Ax](s) =
Z 1

0
k(s, t)x(t)dt (3.13)

with a quadratically integrable kernel k(s, t) ∈ L2((0,1)× (0,1)) is a Hilbert-Schmidt
operator, where

S(A) =

Z 1

0

Z 1

0
(k(s, t))2dtds =

∞

∑
j=1

σ2
j < ∞

and the kernel can be expressed by

k(s, t) =
∞

∑
j=1

σ ju j(t)v j(s).

For further details, see [16]. We are specifically interested in the singular values of an
operator, in order to regularize ill-posed problems. Unfortunately, it is not always easy
to determine the singular values (or their decay rate, see next section). We can use the
results on singular values in order to characterize the degree of ill-posedness of a linear
operator equation.
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Chapter 3. Linear operator equations in Hilbert spaces

3.2 The degree of ill-posedness of linear operator equa-
tions

The level of difficulties in solving a linear operator equation (3.1) with compact opera-
tor A in Hilbert spaces may be expressed by the degree of ill-posedness of this operator.
We will consider injective compact linear operators. From (3.12) we see, that the prob-
lem of calculating the inverse (or Pseudo-Inverse) of an operator A gets worse, the faster
the σ j tend to zero. Let the operator equation Ax = y be given and the Pseudo-Inverse
A† be applied to a perturbed right hand side yδ = y+δ for a small δ. Then the error in
the solution is given by

‖xδ
mn − xmn‖X = ‖A†yδ −A†y‖X

≤ ‖A†‖L(Y,X) ·δ.

So even for small values of δ, there might be a huge error, since ‖A†‖L(Y,X) may become
very large, depending on the convergence of the singular values σ j.

Hence, the degree of ill-posedness is given by the rate of convergence of the singular
values σ j to zero as j →∞. The faster σ j tends to zero, the more instable is the problem.
Therefore we get the following definition of the degree of ill-posedness (see [45]):

Definition 3.5. A linear operator equation (3.1) with compact operator A ∈ L(X ,Y)
and separable Hilbert spaces X and Y has got a degree of ill-posedness of ν > 0 if
there exist constants 0 ≤C ≤C < ∞, such that

Cnν ≤ 1
σn

≤Cnν, n = 1,2, . . . (3.14)

This means that the decay rate of singular values is proportional to n−ν,i.e. σn ∼
n−ν. If only the lower bound in (3.14) is satisfied, i.e. σn = O(n−ν), then the operator
equation is called at least ill-posed of degree ν > 0. If only the upper bound is satisfied,
the equation is said to be at most ill-posed of degree ν > 0. Later, especially for our
problem, we will see, that it is hard to find upper bounds on the degree of ill-posedness
analytically, whereas it is much easier to determine lower bounds.

Moreover, an operator equation is called mildly ill-posed if ν ≤ 1, moderately ill-
posed for 1 < ν < ∞ and severely ill-posed for infinite ν.

Unfortunately it is not always possible to characterize the decay rate of singular
values by a single constant ν. Therefore Hofmann and Tautenhahn [51] introduced the
so-called interval of ill-posedness:

Definition 3.6. We call the finite or infinite interval

[µ(A),µ(A)] :=

[

liminf
n→∞

− logσn(A)

logn
, limsup

n→∞

− logσn(A)

logn

]

the interval of ill-posedness of the ill-posed linear operator equation (3.1).

We now want to find bounds on the degree of ill-posedness for our problem. In
order to illustrate the degree of ill-posedness, we consider several examples of integral
equations of the first kind, where the asymptotics of singular values is known.
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3.3. Integral equations of the first kind and their degree of ill-posedness

3.3 Integral equations of the first kind and their degree
of ill-posedness

In this section we want to give a short introduction to integral equations of the first kind
and, since this type of equation is a common mathematical model for inverse problems,
we want to discuss their degree of ill-posedness according to the definition given in the
previous section.

3.3.1 Linear Volterra and Fredholm integral operators

We consider the Hilbert spaces X = Y = L2(0,1). A linear Volterra integral equation of
the first kind is given by

[Ax](s) =

Z s

0
k(s, t)x(t)dt = y(s) (0 ≤ s ≤ 1), (3.15)

which is a subset of linear Fredholm integral equations of the first kind

[Ax](s) =
Z 1

0
k(s, t)x(t)dt = y(s) (0 ≤ s ≤ 1), (3.16)

where the kernel k(s, t) defined in (s, t) ∈ [0,1]× [0,1] vanishes in the triangle {(s, t) :
0 ≤ s < t ≤ 1} for the Volterra integral equations. For a Fredholm operator equation
the integral is taken over a fixed interval, whereas the integral in a Volterra integral
equation is taken over a variable interval, which changes in s. Analytical and numerical
methods on Volterra equations can be found in [59].

Connected with the above equations is an eigenvalue problem, as stated generally
in the previous section. Here we are going to write it down especially for integral
equations.

λx(s) =

Z 1

0
k(s, t)x(t)dt (0 ≤ s ≤ 1)

is an eigenvalue problem for integral equations. A value of λ for which this equation
has got a non-null solution will be called an eigenvalue of the kernel k(s, t), and the
corresponding function x(s) will be called an eigenfunction or characteristic function.
The set of eigenvalues of a kernel, together with zero, is called the spectrum of k(s, t).
If k(s, t) is not identically zero and k(s, t) = k(t,s), i.e. a symmetric kernel in the real
case or k(s, t) = k(t,s), i.e. a Hermitian kernel in the complex case, then we know,
that two eigenfunctions x1(t) and x2(t) corresponding to two different eigenvalues are
orthogonal, that is

Z 1

0
x1(t)x2(t)dt = 0.

Furthermore a kernel k(s, t) and the corresponding operator A are said to be normal , if
A∗A = AA∗. Hermitian kernels, which we will see later, are normal.
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Chapter 3. Linear operator equations in Hilbert spaces

In general, the set of non-zero eigenvalues of a kernel k(s, t) is countable and there
is no non-zero limit point (or cluster point) for the eigenvalues. Furthermore we know
that the eigenvalues of a Hermitian kernel are real. We may obtain bounds on any
eigenvalue, which continuous kernel may possess (see [6]:

λ ≤ sup
0≤s,t≤1

|k(s, t)|.

For square integrable kernel functions we obtain

λ ≤
(

Z 1

0

Z 1

0
|k(s, t)|2dsdt

)
1
2

.

Finally we are interested in the degree of smoothness of any eigenfunction. Suppose
that x(t) is an eigenfunction corresponding to eigenvalue λ. Consider the function

F(s) =
Z 1

0
k(s, t)p(t)dt (0 ≤ s ≤ 1),

where p(t) is absolutely integrable, that is,

Z 1

0
|p(t)|dt < ∞.

If we suppose that k(s, t) is continuous we may show that

|F(s1)−F(s2)| ≤ sup
0≤t≤1

|k(s1, t)− k(s2, t)|
Z 1

0
|p(t)|dt

≤ ε
Z 1

0
|p(t)|dt =: ε1.

and ε1 may be made as small as required. Thus F(s) is continuous. If we now set
p(s) = 1

λx(s), then F(s) becomes the eigenfunction x(s) and x(s) is continuous if it is
absolutely integrable. Furthermore, a function which is square-integrable over a finite
range is also absolutely integrable.

If we proceed further, we may show that x′(s) exists if the eigenfunction x(s) is
absolutely integrable and λ 6= 0, whenever the derivative ks(s, t) is continuous. If k(s, t)
has got a finite jump at s = t but is continuous for 0 ≤ s ≤ t and t ≤ s ≤ 1, we consider
both areas separately and get the same results.

It is sometimes possible to investigate the higher differentiability of eigenfunctions
of kernels in a similar fashion.

Moreover, there are integral equations of the second kind, where the unknown func-
tion does not only appear in the integral, i.e.

y(s) = x(s)+
Z s

0
k(s, t)x(t)dt (0 ≤ s ≤ 1), (3.17)
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3.3. Integral equations of the first kind and their degree of ill-posedness

is a Volterra integral equation of the second kind and

y(s) = x(s)+
Z 1

0
k(s, t)x(t)dt (0 ≤ s ≤ 1), (3.18)

is a Fredholm integral equation of the second kind. Usually equations of the first kind
represent ill-posed problems and equations of the second kind are well-posed and there-
fore easier to solve (see [16]). For more details on integral equations, see [16], [20] and
[42]. For integral equations of the first kind in special, see [8].

3.3.2 Some examples

We are going to consider some special Fredholm and Volterra integral operators of the
first kind and we are going to determine their singular value decomposition according
to (3.4) and therefore their degree of ill-posedness.

A Volterra integral operator with kernel k(s, t) = 1

We consider the compact operator A : L2(0,1)→ L2(0,1)

[Ax](s) =
Z s

0
x(t)dt, (0 ≤ s ≤ 1). (3.19)

The adjoint operator A∗ is given by

[A∗y](t) =

Z 1

t
y(s)ds, (0 ≤ t ≤ 1),

and hence we can state the eigenvalue equation

[A∗Au](τ) = σ2u(τ) =
Z 1

τ

Z s

0
u(t)dtds, (0 ≤ τ ≤ 1),

which leads to the boundary value problem

−u(t) = σ2u′′(t) with u(1) = u′(0) = 0.

For details, we refer to [71]. Then we find the following solution for the singular system

σn =
2

(2n−1)π
, n = 1,2, . . .

and

un(t) =
√

2cos

(

n− 1
2

)

πt and vn(t) =
√

2sin

(

n− 1
2

)

πt.

Since
1
π

1
n
≤ σn ≤

2
π

1
n

the degree of ill-posedness of this problem is ν = 1.
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Chapter 3. Linear operator equations in Hilbert spaces

A Fredholm integral operator with continuous kernel

We will consider the Fredholm integral operator A : L2(0,π) → L2(0,π), given by

[Ax](s) =
Z π

0
k(s, t)x(t)dt, (0 ≤ s ≤ π), (3.20)

where

k(s, t) =











1
π
(π− s)t, (0 ≤ t ≤ s ≤ π)

1
π
(π− t)s, (0 ≤ s ≤ t ≤ π).

(3.21)

Since the kernel (3.21) is real-valued, continuous and symmetric, A is a self-adjoint
compact operator. We can transform this integral equation into a boundary value prob-
lem (as it was done in [71]) in order to get the eigenvalue equation Ax = λx. The
boundary value problem is then given by

λx′′(t)+ x(t) = 0, with x(0) = x(π) = 0.

From that we may calculate the eigenvalues and eigenfunctions and, since A is a sym-
metric operator, the singular system, which is given by

λn = σn =
1
n2 , n = 1,2, . . .

and

un(t) = vn(t) =

√

2
π

sin(nt).

Therefore, the degree of ill-posedness of this problem is ν = 2. Considering the Volterra
integral operator from the previous example again, we see, that we can express that
operator as a Fredholm integral operator with kernel

k(s, t) =

{

1, (0 ≤ t ≤ s ≤ 1)
0, (0 ≤ s ≤ t ≤ 1),

(3.22)

which is not continuous along the diagonal s = t. The decay rate of its singular values is
1
n

. Now, the kernel (3.21) that we have considered in this part is continuous, but yields

a discontinuity in the first derivative for s = t. Since the asymptotics of the singular

values of this operator is
1
n2 , we conjecture a connection between the smoothness of

the kernel and the decay rate of the singular values of an integral operator. The smoother
the kernel, the worse is the degree of ill-posedness. This conjecture is partly verified
by Chang’s proposition (4.2) in the next chapter.
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3.3. Integral equations of the first kind and their degree of ill-posedness

An integral operator with infinite degree of ill-posedness

Finally we are going to consider an example for an integral operator equation with
ν = ∞ as degree of ill-posedness. It is taken from [61]. Consider the heat equation

∂u
∂t

=
∂2u
∂x2 , (x, t) ∈ [0,π]× [0,1],

with homogeneous boundary conditions

u(0, t) = u(π, t) = 0.

Let u(x,1) = f (x) be the given temperature at time t = 1. The task is to determine the
initial temperature u(x,0) = g(x), hence the operator A : L2(0,π)→ L2(0,π) assigns the
solution of the heat equation at time t = 0 to the solution at time t = 1. The solution of
the heat equation is given by

u(x, t) =
∞

∑
n=1

ane−n2t sin(nx)

with

an =
2
π

Z π

0
u(x,0)sin(ny)dy.

Then u(x,1) is given by

u(x,1) = f (x) =
2
π

∞

∑
n=1

e−n2
sin(nx)

Z π

0
g(x)sin(ny)dy := [Ag](x).

This is an integral operator and from its kernel we can determine the singular value
decomposition singular values

σn = e−n2
, n = 1,2, . . .

and singular functions

un(t) = vn(t) =

√

2
π

sin(nt).

The degree of ill-posedness of this operator is ν = ∞. We are now going to consider a
special operator for which we want to determine the decay rate of singular values, i.e.
its degree of ill-posedness.
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Chapter 4

Asymptotics of singular values of
integral equations with multiplication
operators

We are looking for the singular value asymptotics of the composite operator B : L2(0,1)→
L2(0,1), defined by

[Bx](s) := m(s)

(

Z s

0
x(t)dt

)

, (0 ≤ s ≤ 1) (4.1)

for special multiplier functions m(s). We can write (4.1) as an operator equation B :=
M ◦ J, with the integral operator J as in (3.19) or (2.13). We are going to state some
definitions and results for these multiplication operators.

4.1 Characterization of multiplication operators

Multiplication operators occur in various fields of mathematics, typically as coefficient
operators for differential or integral equations. The following definition is taken from
[21] (see also [23] and [22]).

Definition 4.1. Let X and Y be Hilbert spaces and Φ be a Banach space over the same
set Ω. Then for every m ∈ Φ the operator

M : X → Y (4.2)

with
[M x](s) := m(s) · x(s), s ∈ Ω (4.3)

is called a multiplication operator for all x ∈ X, for which the product is defined.

In the following we want to consider the case that Ω is a bounded subset of R1. Fur-
thermore we set X = Y = L2(0,1). Then the operator of multiplication M : L2(0,1)→
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Chapter 4. Asymptotics of singular values of integral equations with multiplication operators

L2(0,1) with essentially bounded m, i.e. m ∈ L∞(0,1), is defined by

[M x](s) := m(s) · x(s), s ∈ (0,1) a.e. (4.4)

A function f belongs to the Hilbert space Lp(0,1) if

Z 1

0
| f (x)|pdx < ∞

holds. Multiplier function m has to be chosen from Φ = L∞(0,1), which is a Banach
space with norm

‖m‖L∞(0,1) := ess sup
s∈(0,1)

|m(s)|,

in order to guarantee the boundedness of the operator M and that the product M x is in
L2(0,1) for all x ∈ L2(0,1). This is a consequence from the following proposition (see
[39]).

Proposition 4.1. Let M : Lp(0,1) → Lq(0,1), 1 ≤ q ≤ p < ∞ be given by

[M x](s) := m(s) · x(s) s ∈ [0,1]. (4.5)

If

m ∈ Lr(0,1) with r :=

{ pq
p−q , q < p
∞, q = p

(4.6)

holds, then M ∈ L(Lp(0,1),Lq(0,1)) with ‖M ‖ ≤ ‖m‖Lr(0,1).

Proof. Let q < p and r as chosen above. Then

‖M x‖q
Lq = ‖mx‖q

Lq

=

Z 1

0
|m(t)|q|x(t)|qdt

≤ ‖|m|q‖Lr̂‖|x|q‖
L

p
q

with
1
r̂

+
1
p
q

= 1, i.e. r̂ =
p

p−q
.

Furthermore

‖|x|q‖
L

p
q

=

(

Z 1

0
|x|q

p
q
)

q
p

= ‖x‖q
Lp

and

‖|m|q‖Lr̂ =

(

Z 1

0
|m|

pq
p−q dt

)

p−q
p

= ‖m‖q
Lr.

Therefore we get
‖M x‖q

Lq ≤ ‖m‖q
Lr‖x‖q

Lp ,
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4.1. Characterization of multiplication operators

i.e. M is a continuous operator from Lp(0,1) into Lq(0,1) and ‖M ‖ ≤ ‖m‖Lr . If p = q
then m ∈ L∞(0,1) and

‖M x‖Lp ≤ ‖m‖L∞‖x‖Lp .

Hence, M is a bounded linear operator with

‖M ‖L(Lp(0,1),Lq(0,1)) = ‖m‖L∞(0,1).

In our case we have p = q = 2 and therefore M is bounded. If m is a piecewise con-
tinuous function, then m ∈ L∞(0,1) always holds. For m ∈ L∞(0,1) the compactness
of J is passed on to the bounded linear operator B in B = M ◦ J. This follows from the
following theorem.

Theorem 4.1. Let B : L2(0,1) → L2(0,1) be given by B = M ◦ J. Then B is a compact
operator, if J is compact and m ∈ L∞(0,1).

Proof. The compactness of B is shown by proving

xn ⇀ x =⇒ Bxn → Bx in L2(0,1).

Let {xn}∈ L2(0,1) be a sequence that converges weakly against an element x∈ L2(0,1).
From the compactness of J : L2(0,1) → L∞(0,1), which was shown in [29], follows

‖Jxn − Jx‖L∞(0,1) → 0 as n → ∞.

Now, choose 0 < r < 2 arbitrarily and consider

‖Bxn −Bx‖2
L2(0,1) =

Z 1

0
m2(t)(J(xn− x)(t))2dt

≤ ‖Jxn − Jx‖r
L∞(0,1)

Z 1

0
m2(t)(J(xn− x)(t))2−rdt

≤ ‖Jxn − Jx‖r
L∞(0,1)

Z 1

0
m2(t)t

2−r
2 ‖xn − x‖2−r

L2(0,1)
dt

= ‖Jxn − Jx‖r
L∞(0,1)‖xn − x‖2−r

L2(0,1)

Z 1

0
m2(t)t

2−r
2 dt.

Since ‖xn − x‖L2(0,1) is bounded we may follow Bxn → Bx in L2(0,1) if and only if

Z 1

0
m2(t)t

2−r
2 dt < ∞. (4.7)

Using the same arguments as in the proof of proposition 4.1 (with p = q = 2) we get
that

Z 1

0
m2(t)t

2−r
2 dt ≤ ‖m‖2

L∞(0,1)‖t
2−r

4 ‖2
L2(0,1).

Hence compactness follows for m ∈ L∞(0,1).
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Chapter 4. Asymptotics of singular values of integral equations with multiplication operators

Hence, with proposition 4.1 and theorem 4.1 the operator B = M ◦ J is a compact
bounded linear operator, if the multiplier function m satisfies m ∈ L∞(0,1). This holds
especially for continuous multiplier functions m ∈ C[0,1] and square integrable multi-
plier functions m ∈ L2(0,1) (see [60]).

Furthermore we may remark that if B : C[0,1] → C[0,1] and m ∈ C[0,1], then B is
a compact Volterra integral operator. This may be proved via the theorem of Arzela-
Ascoli, for which we refer to [60, page 180].

In the case of a positive essential infimum of m we can easily divide by m and the
degree of ill-posedness of operator B is the same as for operator J, i.e. ν = 1 (see
section 3.3.2 for details). If m(s) has got zeros, we cannot just divide by m(s) and say
that the decay rate of singular values is the same as the one for operator J. Problems
are going to occur during the calculation of the singular values and therefore for the
determination of the degree of ill-posedness.

A sequence of special multiplier functions m ∈ L∞(0,1), which we want to consider
is given by

m(s) = sα or m(s) = exp

(

− 1
sα

)

, α > 0. (4.8)

The second, exponential type of multiplier function with α = 1 arises in option 03 (see
[38]).

We have illustrated both types of multiplier functions for different values of α in
figures (4.1) and (4.2). We want to find out, how these multiplier functions influence the
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Figure 4.1: Illustration of m(s) = sα
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decay rate of singular values of an integral operator. Obviously both types of multiplier
functions satisfy m ∈ L∞(0,1) for α > 0.
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4.2 Lower bounds on the degree of ill-posedness

4.2.1 Approach using Chang’s theorem

We know the singular value decomposition of the operator J, given by

[Jx](s) =
Z s

0
x(t)dt, (0 ≤ s ≤ 1) (4.9)

in X = Y = L2(0,1). The problem corresponds to finding the first derivative of an
observed function y(t), i.e. x(t) = y′(t). The singular system of this operator is given
by

{

2
(2n−1)π

;
√

2cos

(

n− 1
2

)

πt;
√

2sin

(

n− 1
2

)

πt

}∞

n=1
, (0 ≤ s ≤ 1).

For the derivation we use (3.7) and the corresponding eigenvalue problem (see previous
chapter). Hence, the operator J from (4.9) satisfies

σn(J) ∼ n−1

and is therefore ill-posed of degree ν = 1. We want to examine, whether the degree of
ill-posedness, i.e. the decay rate of the singular values can be destroyed by a multipli-
cation operator, such as given in (4.1)-(4.8).

We therefore are going to consider some previous results. For a so-called fractional
integral operator Jr (see [29]), which is given by

[Jrx](s) :=
Z s

0

(s− t)r−1

Γ(r)
x(t)dt, (0 ≤ s ≤ 1), (4.10)

in X =Y = L2(0,1), a special Volterra integral operator equation of the first kind, Faber
and Wing [19], Dostanić and Milinković [14] and Vu Kim Tuan and Gorenflo [78] have
proved, that the asymptotics of the singular values of this operator yield

σn(Jr) ∼ n−r, for all r > 0 as n → ∞. (4.11)

Notice that for r = 1 we get our operator J from (4.9). In [78] and in [28] we may
even found results on singular value asymptotics of fractional integral operators with
weight functions. Moreover, Vu Kim Tuan and Gorenflo [78] have even found that the
fractional integral operator Jr multiplied with a pole function m(s) = s−α in L2(0,1),

[s−αJrx](s) := s−α
Z s

0

(s− t)r−1

Γ(r)
x(t)dt, (0 ≤ s ≤ 1) (4.12)

in X = Y = L2(0,1) has also got the asymptotics given in (4.11), if r > 2α ≥ 0. Hence,
this pole function does not change the singular value asymptotics of Jr and J.
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Chapter 4. Asymptotics of singular values of integral equations with multiplication operators

But we want to know, what happens to the degree of ill-posedness, if we multiply
J (or Jr) by smooth functions like the ones given in (4.8). As we have already seen in
the examples in section 3.3.2 the degree of ill-posedness usually becomes larger, the
smoother the kernel function is.

We want to use some results on Fredholm integral equations and therefore are going
to transform our Volterra operator equation of the first kind (4.1), given by

[Bx](s) =
Z s

0
m(s)x(t)dt, (0 ≤ s ≤ 1) (4.13)

into a Fredholm integral equation

[Bx](s) =
Z 1

0
k(s, t)x(t)dt, (0 ≤ s ≤ 1) (4.14)

with a kernel function k(s, t) that vanishes for values of t that are greater than s, i.e.

k(s, t) =

{

m(s), (0 ≤ t ≤ s ≤ 1)
0, (0 ≤ s ≤ t ≤ 1).

(4.15)

Therefore the kernel k(s, t), defined on the square [0,1]× [0,1] is in L2((0,1)2), since
it has got a finite jump on the diagonal s = t. For Fredholm integral operators with
quadratically integrable kernels we have a well-known connection between the kernel
smoothness and the decay rate of the singular values, which we will state below. It is
due to Chang (see [84] or [9] and [48]) and follows from a classical theorem by Hille
and Tamarkin on eigenvalues of integral operators, stated in [2].

Proposition 4.2 (Chang). Consider the Fredholm integral equation

[Ax](s) =

Z 1

0
k(s, t)x(t)dt, (0 ≤ s ≤ 1), (4.16)

with kernel k ∈ L2((0,1)2). Then for the singular values of A,

σn(A) = o(n−
1
2 ), for n → ∞ (4.17)

holds. Furthermore, if

k,
∂k
∂s

,
∂2k
∂s2 , . . . ,

∂l−1k

∂sl−1

are continuous in s for almost all t and

∂lk(s, t)
∂sl =

Z s

0
g(τ, t)dτ+h(t),

where g ∈ L2((0,1)2) and h ∈ L1(0,1), then we even have

σn(A) = o(n−(l+ 3
2 )), for n → ∞ (4.18)

for the singular values of A.
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4.2. Lower bounds on the degree of ill-posedness

Since our kernel k(s, t) given in (4.15) is quadratically integrable, but not continu-
ous, we can follow from the previous theorem, that for the decay rate of singular values
of B,

σn(B) = o(n−
1
2 ), for n → ∞

holds, i.e. the operator equation is at least ill-posed of degree ν = 1
2 . Moreover, we

know that
σn(B) ≤C(n)n−

1
2 with lim

n→∞
C(n) = 0,

by the definition of the Landau symbols. Therefore the degree of ill-posedness might
actually be higher, but unfortunately we do not know any statement on the highest pos-
sible degree of ill-posedness for this problem, since Chang’s theorem does not provide
upper bounds on the decay rate of singular values.

4.2.2 Approach using Minimax principle

Another approach to our problem is the Minimum-maximum principle by Poincaré and
Fischer (see [45]):

Lemma 4.1 (Poincaré and Fischer). Let A ∈ L(X ,Y) be a compact linear operator in
separable Hilbert spaces X and Y with a singular system {σ j;u j;v j} j∈J. Then

σn = max
Xn⊂X

min
x∈Xn\{0}

‖Ax‖Y

‖x‖X
= min

x∈span(u1,...,un)\{0}
‖Ax‖Y

‖x‖X

holds for all n ∈ J, where Xn is the set of all n-dimensional linear subspaces of the
space X.

Hence, from the obvious inequality for m ∈ L∞(0,1) with X = Y = L2(0,1) and the
discussion in section 4.1 we may follow

‖Bx‖L2(0,1) = ‖M(Jx)‖L2(0,1) (4.19)

≤ ‖M‖L(L2(0,1),L2(0,1))‖Jx‖L2(0,1) (4.20)

= ‖m‖L∞(0,1)‖Jx‖L2(0,1). (4.21)

Then, using the above lemma we obtain

σn(B) = σn(M ◦ J) ≤ ‖m‖L∞(0,1)σn(J) (4.22)

for the singular values of B. For the operator B from (4.1) with our special multiplier
functions m from (4.8) with ‖m‖L∞(0,1) = 1 we get

σn(B) ≤ σn(J)

Since we know from its singular value decomposition, that the operator J from (4.9) is
ill-posed of degree ν = 1, i.e. there exists a constant C such that the singular values of
J satisfy

σn(J) ≤Cn−1, n → ∞,
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Chapter 4. Asymptotics of singular values of integral equations with multiplication operators

the same inequality holds for the singular values of the linear integral operator B =
M ◦ J:

σn(B) ≤Cn−1, n → ∞. (4.23)

Hence, the operator B has got at least the same degree of ill-posedness, i.e. ν = 1.
We do not even have to consider special multiplier functions m, since from inequality
(4.22) we immediately obtain inequality (4.23), if m ∈ L∞(0,1). Then the constant C is
given by C := ‖m‖L∞(0,1).

The following lemma is a consequence of the minimum-maximum principle of
Poincaré and Fischer:

Lemma 4.2 (Spectral equivalence). Let B : X → Y and J : X → Z be compact linear
operators mapping between Hilbert spaces X, Y and Z such that

c‖Jx‖Z ≤ ‖Bx‖Y ≤C‖Jx‖Z ∀x ∈ X

with some constants 0 < c ≤C < ∞. Then the ordered singular values of J and B satisfy

cσn(J) ≤ σn(B) ≤Cσn(J), n = 1,2, . . . .

Hence the degrees of ill-posedness of both operators J and B coincide.

By setting X = Y = Z = L2(0,1) we could apply this lemma to our operator B from
(4.1). As we have just seen in (4.21) we may provide an upper bound on ‖Bx‖L2(0,1) and
therefore for the singular values of B, where C is given by ‖m‖L∞(0,1). For multiplication
operators with

0 < c ≤ |m(t)| ≤C < ∞

as we have seen in (2.6) and (2.10) in Chapter 2, where B = F ′(x0) we may also find a
lower bound on ‖Bx‖L2(0,1) and therefore B and J are spectrally equivalent. This is not
the case for this special multiplication operator with zeros.

4.2.3 Calculating the eigenvalues of the operator B∗B

From previous considerations we know, that the square roots of the eigenvalues of B∗B
(as well as BB∗) are the singular values of B.

Hence, we consider the linear Fredholm integral operator B : L2(0,1) → L2(0,1)
given by (4.14) with the kernel k(s, t) ∈ L2((0,1)2) given by (4.15) again:

[Bx](s) =

Z 1

0
k(s, t)x(t)dt, (0 ≤ s ≤ 1), k(s, t) =

{

m(s), (0 ≤ t ≤ s ≤ 1)
0, (0 ≤ s ≤ t ≤ 1).

.

We can determine the adjoint operator B∗ for real valued functions:

〈Bx,y〉L2(0,1) =

Z 1

0

(

Z 1

0
k(s, t)x(t)dt

)

y(s)ds

=
Z 1

0
x(t)

(

Z 1

0
k(s, t)y(s)ds

)

dt = 〈x,B∗y〉L2(0,1)
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4.2. Lower bounds on the degree of ill-posedness

Hence, for real-valued functions k(s, t) the adjoint operator is given by

[B∗y](t) =

Z 1

0
k(s, t)y(s)ds, (0 ≤ t ≤ 1), (4.24)

and finally, the operator B∗B which is needed for the calculation of the singular values
is given by

[B∗Bx](τ) =
Z 1

0
k(s,τ)

(

Z 1

0
k(s, t)x(t)dt

)

ds (0 ≤ τ ≤ 1), (4.25)

=

Z 1

0

(

Z 1

0
k(s,τ)k(s, t)ds

)

x(t)dt. (4.26)

Therefore we find the kernel K(t,τ) of the operator B∗B as a function of the kernel of
the operator B:

K(t,τ) =
Z 1

0
k(s,τ)k(s, t)ds. (4.27)

Using the definition of the kernel function (4.15) we get

K(t,τ) =
Z 1

max(t,τ)
m2(s)ds. (4.28)

The eigenvalue problem associated with equation (4.26) is given by

λx(τ) =

Z 1

0
K(t,τ)x(t)dt, (4.29)

where λ is the eigenvalue of the kernel K(t,τ) for a non-null solution x(τ) that is the
corresponding eigenfunction. We may obtain bounds on any eigenvalue applying the
Cauchy-Schwartz inequality to (4.29) and knowing that the eigenfunctions of a self-
adjoint operator are orthogonal (see section 3.1) and may be orthonormalized. Then we
get (see [6])

λ ≤
(

Z 1

0

Z 1

0
|K(t,τ)|2dtdτ

)
1
2

,

which we may determine for special kernels K(t,τ). We may obtain further bounds by
using Bessel’s inequality for an orthonormal system φ1,φ2, . . ., which is given by

∞

∑
i=1

〈 f ,φi〉2
L2(0,1) ≤ 〈 f , f 〉L2(0,1 = ‖ f‖2

L2(0,1)

for some function f . Setting f = K(t,τ) and knowing that the eigenfunctions of a
self-adjoint operator form an orthonormal system, we may state, that

∞

∑
i=1

(

Z 1

0
K(t,τ),φi(τ)dτ

)2

≤
Z 1

0
K(t,τ)2dτ,
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Chapter 4. Asymptotics of singular values of integral equations with multiplication operators

or
∞

∑
i=1

λ2
i φi(τ)2 ≤

Z 1

0
K(t,τ)2dτ.

Integrating with respect to t and using 〈φi,φi〉L2(0,1) = 1 yields

∞

∑
i=1

λ2
i ≤

Z 1

0

Z 1

0
K(t,τ)2dτdt.

Hence the sum of the squares of the eigenvalues converge and the eigenvalues cannot
heap at a finite point. This examination confirms that there is an infinite number of
eigenvalues accumulating at infinity.

We know from the considerations in the previous chapter, that the eigenvalues of a
compact operator (as the one in the present case) converge to zero. We need statements
on the decay rate of the eigenvalues (and therefore the asymptotics of the singular val-
ues) of Fredholm integral operators with kernels as the one given in (4.28). Obviously
K(t,τ) ∈ L2((0,1)2) holds and

K(t,τ) = K(τ, t),

i.e. B∗B is a compact self-adjoint operator in L2(0,1). Notice that an integral equa-
tion with symmetric kernel has got a complete system of eigenfunctions. (see [54]).
Furthermore the kernel (4.28) is positive definite, i.e.

Z 1

0

Z 1

0
K(t,τ) f (t) f (τ)dtdτ≥ 0

holds for all f ∈ L2(0,1). In order to show this we use (4.27)
Z 1

0

Z 1

0
K(t,τ) f (t) f (τ)dtdτ =

Z 1

0

Z 1

0

(

Z 1

0
k(s,τ)k(s, t)ds

)

f (t) f (τ)dtdτ

=

Z 1

0

(

Z 1

0
k(s,τ) f (τ)dτ

)(

Z 1

0
k(s, t) f (t)dt

)

ds

= 〈B f ,B f 〉L2(0,1)

= ‖B f‖2
L2(0,1) ≥ 0.

Now, we are going to use results by Reade (see [73] and [74]) on the eigenvalues of
operators with positive definite kernels:

Proposition 4.3 (Reade). Let K be a Fredholm integral operator as given in (3.16)

[Kx](s) =
Z 1

0
k(s, t)x(t)dt, (0 ≤ s ≤ 1)

with kernel function k(s, t). Then the eigenvalues of any continuously differentiable
positive definite kernel of this compact self-adjoint operator K in L2(0,1) satisfy

λn(K) = o(n−2) as n → ∞. (4.30)
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4.2. Lower bounds on the degree of ill-posedness

Moreover, if the kernel k(s, t) is p times continuously differentiable, then the eigenvalues
of K have the asymptotics

λn(K) = o(n−(p+1)) as n → ∞. (4.31)

For details and proofs, see [73] and [74]. Note, that Reade’s theorem is an im-
provement of an older result by Weyl (see [83]), stating that for an operator K with
kernel k(s, t) ∈ L2(0,1) which is in addition p times continuously differentiable, the
eigenvalues have the asymptotics

λn(K) = o(n−(p+ 1
2 )) as n → ∞. (4.32)

This result again follows from a theorem by Hille and Tamarkin (see [16]). Since our
kernel (4.28) does not even satisfy K(t,τ) ∈C1((0,1)2) (because of the involved func-
tion max(t,τ), which is only Lipschitz continuous), we cannot apply Reade’s results.
However, we can show that K(t,τ) is Lipschitz continuous in t (and also in τ due to
symmetry), i.e. there exists a constant L > 0 such that

|K(t̄,τ)−K(t,τ)| ≤ L|t̄ − t|, ∀ t̄, t,τ.

The Lipschitz condition for (4.28) is obvious for t 6= τ. Therefore we are going to
consider the critical case t = τ. We also assume (refering to section 4.1) that m ∈
L∞(0,1).

|K(t̄,τ)−K(t,τ)| = |K(t̄, t)−K(t, t)|

=

∣

∣

∣

∣

Z t̄

t
m2(s)ds

∣

∣

∣

∣

≤
Z t̄

t
|m2(s)|ds

≤ M|t̄ − t|,

using
M := ess sup

s∈(0,1)

|m2(s)|.

Since K(t,τ) is Lipschitz continuous we can use an extension of Reade’s [73] results
for operators with Lipschitz continuous symmetric positive definite kernels:

Proposition 4.4 (Reade). The eigenvalues of operators K as given in proposition 4.3
with Lipschitz continuous self-adjoint positive definite kernels k(s, t) satisfy

λn(K) = O(n−2). (4.33)

Note, that Reade also states that these results are best possible in the sense that if
K ∈C1[0,1] instead of K ∈ Lip[0,1], then λn(K) = o(n−2). Therefore, for the eigenval-
ues of the operator B∗B we have

λn(B
∗B) = O(n−2)
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Chapter 4. Asymptotics of singular values of integral equations with multiplication operators

and for the singular values of B, we get (4.23) again

σn(B) ≤Cn−1, n → ∞, (4.34)

i.e. only a lower bound on the degree of ill-posedness. Hence, as a summary, we
see, that for continuously differentiable kernels the eigenvalues have the asymptotics
o(n−2), whereas, if the kernel is only Lipschitz continuous we get O(n−2) for the decay
rate of the eigenvalues. So we only know, that the problem is at least ill-posed of degree
ν = 1.

Here, we may also state a result for continuous kernels from Pietsch [72]:

Proposition 4.5 (Eigenvalue theorem for Fredholm kernels). Let µ be any finite
Borel measure on a compact Hausdorff space X. Then K ∈ [C(X),C(X)] implies

λn(K) ∈ l2.

We need some explanation on this proposition. A Hausdorff space X is a space,
where any two points x ∈ X and y ∈ X are separated by a neighbourhood. Obviously
any metric space is a Hausdorff space and therefore X = [0,1] is a Hausdorff space.
A kernel K is said to be of Fredholm type, if K(t,τ) ∈ C([0,1]2), i.e. the kernel is
continuous.

Therefore, for integral operators with continuous kernels K(t,τ)∈C((0,1)2), as the
one given in (4.28) for the self-adjoint operator B∗B, the eigenvalues satisfy

λn(B
∗B) ∈ l2.

From previous sections we know that the singular values are the square roots of the
positive eigenvalues of B∗B or BB∗. Therefore

σn(B) =
√

λn(B∗B)

holds and
∞

∑
n=1

σ4
n(B) =

∞

∑
n=1

λ2
n(B

∗B) < ∞.

Hence, we get
σn(B) ∈ l4,

a better result as we got by using the theory of Hilbert-Schmidt operators (see section
3.1), where we found that the singular values of those Hilbert-Schmidt operators satisfy

σn(B) ∈ l2.

But this result does not help to get a better estimation for the singular values or a
better lower bound on the degree of ill-posedness than stated in (4.34) or even an upper
bound.
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4.2. Lower bounds on the degree of ill-posedness

4.2.4 Approach using results for special kernel functions

In addition to the results in [78], that are stated in (4.11), in a further paper (see [79])
Vu Kim Tuan and Gorenflo have proved, that the singular values σn(Jk

r ) of the operator

[Jk
r x](s) :=

Z s

0

(s− t)r−1

Γ(r)
k(s, t)x(t)dt, (0 ≤ s ≤ 1), (4.35)

in L2(0,1) with r > 0 have got the asymptotics

σn(J
k
r ) ∼ (nπ)−r, as n → ∞,

when the kernel can be expressed in the form

k(s, t) = 1+(s− t)h(s, t), (4.36)

and h(s, t) is a smooth enough function (see following proposition) with respect to s
and square integrable. For the case of a positive integer r, Vu Kim Tuan and Gorenflo
[79] have even shown the following proposition:

Proposition 4.6 (Vu Kim Tuan and Gorenflo). Let r be a positive integer and
∂ j

∂s j h(s, t),

j = 0,1, . . . ,r be continuous in s and almost everywhere with respect to t, and
∂r

∂sr h(s, t)∈
L2(0,1). Then

σn(J
k
r ) = (nπ)−r(1+o(1))

holds.

This result can be extended to fractional integral operator Jk
r multiplied with a pole

function m(s) = s−α,

[s−αJk
r x](s) := s−α

Z s

0

(s− t)r−1

Γ(r)
k(s, t)x(t)dt, (0 ≤ s ≤ 1) (4.37)

in X = Y = L2(0,1) has also got the asymptotics given in proposition 4.6 when r >
2α ≥ 0. See also [30] for details.

Hence, if for the special value r = 1, that we are considering, the special kernel
m(s) of the operator (4.13) can be expressed in the way described above, we can use
the theorem by Vu Kim Tuan and Gorenflo, in order to state the degree of ill-posedness.
We can do so and will get

h(s, t) =
m(s)−1

s− t
.

This function has got a discontinuity for s = t and therefore we cannot apply the above
proposition.
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Chapter 4. Asymptotics of singular values of integral equations with multiplication operators

4.3 Upper bounds on the degree of ill-posedness

So far we have seen that it is easy to find lower bounds on the degree of ill-posedness
of problem (4.1). Through various ways we have therefore found that the problem is at
least ill-posed of degree ν = 1.

Only for some special kernels, such as kernels of fractional integral operators (4.10),
fractional integral operators multiplied with a pole function (4.12) or kernels of the
form (4.35) with (4.36), upper bounds on the degree of ill-posedness were found. Since
the kernel k(s, t) of the integral operator (4.1) cannot be represented by such a special
kernel function, we will have to use other approaches.
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Chapter 5

The Sturm-Liouville problem

5.1 Formulation as an eigenvalue problem for Sturm -
Liouville equations

We are going to transform the Volterra integral operator B : L2(0,1) → L2(0,1) of the
first kind (4.13) given by

[Bx](s) =
Z s

0
m(s)x(t)dt, (0 ≤ s ≤ 1), (5.1)

into a boundary value problem, using the eigenvalue equation B∗Bu = σ2u. The adjoint
operator of B in L2(0,1) is given by

[B∗y](t) =

Z 1

t
m(s)y(s)ds, (0 ≤ t ≤ 1). (5.2)

Therefore

[B∗Bu](τ) =
Z 1

τ

Z s

0
m2(s)u(t)dtds, (0 ≤ τ ≤ 1), (5.3)

holds and we can state the eigenvalue equation for the self-adjoint operator B∗B in
integral form

B∗Bu = σ2u, (5.4)

for u ∈ L2(0,1) and m ∈ L∞(0,1) as given in section 4.1. From [69] we know that a
function

Φ(x) =
Z x

a
f (t)dt

is absolutely continuous on [a,b] for f (t) ∈ L1(a,b) and any absolutely continuous
function is continuous (for a proof, see [69]). Then, considering (5.1) with x∈ L2(0,1)⊂
L1(0,1) and m ∈C[0,1], which holds for our specific multiplier functions m from (4.8),
we get Bx ∈ C[0,1], i.e. Bx is continuous. Hence, any square integrable eigenfunction
of a continuous kernel, corresponding to a non-zero eigenvalue, is continuous. Addi-
tionally we consider (5.3) and apply the same tools. With u ∈ L2(0,1) ⊂ L1(0,1) and
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Chapter 5. The Sturm-Liouville problem

m2 ∈C1[0,1], which holds for our specific multiplier functions m from (4.8) we obtain
B∗Bu ∈ C1[0,1], i.e. the operator B∗Bu is continuously differentiable. With the eigen-
value equation (5.4), which has to be satisfied for eigenfunctions u, we furthermore
obtain u ∈ C1(0,1). Now, using u ∈ C[0,1], a solution to equation (5.3) has to satisfy
the boundary condition u(1) = 0. In addition, with u ∈C1[0,1], we get

σ2u′(τ) =
d
dτ

Z 1

τ

Z s

0
m2(s)u(t)dtds = −

Z τ

0
m2(τ)u(t)dt

after differentiation of equation (5.3) with respect to τ. Obviously, for a solution to this
equation u′(0) = 0 has to hold. Assuming that m(τ) 6= 0, we can divide by m2(τ) (for
our specific multiplier functions (4.8) this can be done for τ 6= 0). If we expect an even
stronger condition for u, i.e. that u ∈C2[0,1] and if

a(τ) =
1

m2(τ)
∈C1[0,1],

we may differentiate again to get

σ2
(

u′(τ)
m2(τ)

)′
= −u(τ).

By setting λ =
1

σ2 and a(τ) =
1

m2(τ)
we get the following boundary value problem

−(a(τ)u′(τ))′ = λu(τ), u(1) = u′(0) = 0, (5.5)

with a(τ)∈C1[0,1] and u∈C2[0,1], i.e. stronger conditions on the smoothness of a and
u as the ones given for the integral equations. If u /∈C2[0,1] we have to use a generalized
formulation of (5.5), for which we refer to the next section. We are also going to
consider some characteristics of this generalized eigenvalue problem formulation in
the next section.

5.2 Eigenvalues of symmetric positive definite opera-
tors

The problem (5.5) is an eigenvalue problem for the linear symmetric positive definite
operator

Au := −(a(τ)u′(τ))′ in the Hilbert space L2(0,1), (5.6)

with
u ∈ D(A) = {u|u ∈C2[0,1],u(1) = u′(0) = 0}

and
a ∈C1[0,1].
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5.2. Eigenvalues of symmetric positive definite operators

Now, let u,v ∈ D(A). Knowing that D(A) is dense in L2(0,1) (see [66]), we determine
the inner product of Au and v, i.e. we multiply the operator Au with v and integrate

〈Au,v〉L2(0,1) =

Z 1

0
−(a(τ)u′(τ))′v(τ)dτ

By applying partial integration we get

〈Au,v〉L2(0,1) = −a(τ)u′(τ)v(τ)|τ=1
τ=0 +

Z 1

0
a(τ)u′(τ)v′(τ)dτ

Hence, actually we only need a continuous function u with a continuous first derivative
and a quadratically integrable second derivative. Symmetry can be seen from equation
(5.2) where not only u′(0) = 0 has to be satisfied but also

lim
τ→0

a(τ)u′(τ) = 0,

in order to secure symmetry. Then this equation is invariant in exchange of u and v and
therefore

〈Au,v〉L2(0,1) = 〈u,Av〉L2(0,1)

holds for all u,v ∈ D(A). This is the definition of a symmetric operator. Furthermore,
positive definiteness is given by

〈Au,u〉L2(0,1) =
Z 1

0
a(τ)(u′(τ))2dτ

≥ a0

Z 1

0
(u′(τ))2dτ

≥ a0‖u‖2
L2(0,1) ∀u ∈ D(A),

using a0 := min
τ∈[0,1]

a(τ) = min
τ∈[0,1]

1
m2(τ)

> 0 and the inequality of Friedrichs (see [66]):

‖u‖2
L2(a,b) ≤ (b−a)(u2(a)+u2(b))+(b−a)2‖u′‖2

L2(a,b), u ∈C1(a,b),

for a = 0 and b = 1. For our special multiplier functions m from (4.8) the function

a(τ) =
1

m2(τ)
is monotonely decreasing and therefore

a(τ) ≥ a(1) =
1

m2(1)
=: a0.

We are now going to introduce the so-called generalized eigenproblem: The eigen-
problem Au = λu for the linear symmetric positive definite operator A is multiplied by
an arbitrary element η ∈ HA, where HA is the energetic Hilbert space with the inner
product

[u,v]A := 〈Au,v〉L2(0,1), u,v ∈ D(A). (5.7)
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The set D(A), given by

D(A) = {u|u ∈C2[0,1],u(1) = lim
τ→0

a(τ)u′(τ) = 0}

has to be dense in the Hilbert space L2(0,1), which is satisfied here. Equation (5.7)
indeed yields an inner product (for a proof, see [66]), hence, the set D(A) becomes
a Hilbert space (if it is incomplete we have to complete it) with this inner product.
This is the energetic Hilbert space HA. Therefore we get the following definition of a
generalized eigenproblem:

Definition 5.1. The element u ∈ HA, u 6= 0 and the number λ are called generalized
eigenelement and generalized eigenvalue , if

[u,η]A = λ〈u,η〉L2(0,1), ∀η ∈ HA. (5.8)

holds.

We will state some characteristics of this generalized eigenproblem (see [66] or [82]
for further explanations):

• The eigenelements of a positive definite operator are orthogonal to each other in
HA and in L2(0,1).

• Any eigenvalue λ of a positive definite operator satisfies

λ =
[u,u]A

〈u,u〉L2(0,1)

≥ a0 > 0.

Using the above definitions of λ and a(τ) we get

σn(B) ≤ 1√
a0

for the singular values σn(B) of (4.13). Note that for our special multiplier func-
tions (4.8) we get

σn(B) ≤ m(1).

• Let {un}∞
n=1 be an orthonormal system of eigenelements in HA. Then { un√

λn
}∞

n=1

is an orthonormal system in L2(0,1). Moreover {un
√

λn}∞
n=1 is an orthonormal

system in HA if {un}∞
n=1 is an orthonormal system in L2(0,1).

• If {un}∞
n=1 is a complete orthogonal system of eigenelements in L2(0,1) then it

is a complete orthogonal system in HA and vice versa.

Under certain conditions the generalized eigenproblem (5.8) for the symmetric operator
A in the infinite Hilbert space H has got a discrete spectrum. We are going to define the
discrete spectrum in the following.
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5.2. Eigenvalues of symmetric positive definite operators

Definition 5.2. The generalized eigenproblem (5.8) is said to have a discrete spectrum,
if

• The operator A has got an infinite countable sequence of eigenvalues

λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . . ,

that accumulate only at infinity.

• The system of eigenelements {un} is complete in H.

We get the following proposition on the discrete spectrum of a generalized eigen-
value problem.

Proposition 5.1. If the operator A is symmetric and positive definite and furthermore,
if any bounded set in HA is relatively compact in L2(0,1), then the spectrum of this
operator is discrete.

For a proof of this theorem, see Michlin [66] or [75]. In order to show the discrete-
ness of the spectrum of our elliptic (i.e. symmetric positive definite) operator A from
(5.6), we need to show that any bounded set in HA is relatively compact in L2(0,1).
To this end we will use Sobolev’s embedding theorems. For bounded Ω and piecewise
Lipschitz continuous boundary ∂Ω

H1(Ω) ↪→ L2(0,1), especially ‖u‖L2(Ω) ≤ ‖u‖H1(Ω)

holds (see [34]), i.e. for Ω = (0,1), H1(0,1) is compactly embedded into L2(0,1).
Hence, any bounded set in H1(0,1) is relatively compact in L2(0,1) and knowing that
H1(0,1) and HA have equivalent norms (see [82]), we get that any bounded set in HA is
relatively compact in L2(0,1). Therefore the operator A has got a discrete spectrum.

Hence, since the eigenvalues λ j accumulate at infinity and since

λ(A) =
1

σ2(B)
,

we get σ j → 0, which has already been stated in (3.8). The completeness of the eigen-
functions u j has already been stated as well.

Using the same assumptions as in proposition (5.1), we get results on the growth
rate of the eigenvalues of the Sturm-Liouville problem. The following theorem is stated
and proved in [66]. It uses the Minimum-maximum principle for eigenvalues of positive
definite operators of a Sturm-Liouville problem and provides bounds on eigenvalues.

Proposition 5.2. Let A and B be symmetric positive definite operators, satisfying the
assumptions of proposition (5.1). Furthermore, let HA ⊂ HB with

‖u‖B ≤ ‖u‖A ∀u ∈ HA.
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Chapter 5. The Sturm-Liouville problem

For the eigenvalues
λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . . of A,

and
µ1 ≤ µ2 ≤ . . . ≤ µn ≤ . . . of B,

we have
µi ≤ λi ∀i ∈ N.

We may use this proposition in order to get bounds on the growth rate of the eigen-
values of (5.6). We know that for our special multiplier functions m from (4.8)

a(τ) ≥ a(1) =
1

m2(1)
= a0 (5.9)

holds. We also know the eigenvalues of the trivial Sturm-Liouville eigenvalue problem
for the operator Ã which is given by

Ãu := −u′′ in L2(0,1) with u′(0) = u(1) = 0. (5.10)

They are given by

λn(Ã) =
π2(2n−1)2

4
, n ∈ N. (5.11)

Hence we may easily observe that the eigenvalues of operator A0 with

A0u := −a0u′′ in L2(0,1)

are given by

λn(A0) = a0
π2(2n−1)2

4
, n ∈ N.

Finally, since

a0

Z 1

0
u′2(τ)dτ ≤ ‖u‖2

A =

Z 1

0
a(τ)u′2(τ)dτ

we have
‖u‖A0 ≤ ‖u‖A,

and therefore using proposition 5.2 we get

a0
π2(2n−1)2

4
≤ λn(A). (5.12)

Using the definition of λ and a0 again, we get

σn(B) ≤ 2
π(2n−1)

m(1) = Cn−1, (5.13)

with some constant C for the singular values of the operator B = M ◦ J. Inequality
(5.13) yields only a lower bound on the degree of ill-posedness of the operator B again.
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5.2. Eigenvalues of symmetric positive definite operators

In order to get an upper bound on the degree of ill-posedness, we would need an upper
bound for the eigenvalues of A in (5.12) and therefore an upper bound for a(τ) in (5.9).
This is not possible, since

a(τ) =
1

m2(τ)
,

and m(τ) given by (4.8) has got a zero at τ = 0. Notice that for functions a(τ) that
are bounded from below and from above, we could state an inequality similar to (5.9),
namely

a1 ≥ a(τ) =
1

m2(τ)
≥ a0 (5.14)

and therefore (5.13) becomes

2
π(2n−1)

√
a1

≤ σn(B) ≤ 2
π(2n−1)

√
a0

. (5.15)

Therefore, the degree of ill-posedness of operator B = M ◦ J that we are looking for,
would be ν = 1.

Since several analytical methods applied to both the integral operator B = M ◦ J
(chapter 4) and the corresponding Sturm-Liouville problem with operator A from (5.6)
(chapter 5) did only provide lower bounds on the degree of ill-posedness, but no upper
bounds, we are now going to consider numerical approaches the the problem.
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Chapter 6

Numerical approaches to the problem

We are now going to consider several numerical approaches to our problem in order to
solve either the integral operator equation (4.1) or the boundary value problem (5.5).
In this chapter we are only going to consider the special multiplication operators for

multiplier functions m(s) = sα and m(s) = e−
1

sα with several values for α ≥ 0.
First we will look at the finite difference method applied to the Sturm-Liouville

problem (5.5), after that we will examine expansion methods, such as the Galerkin or
the Rayleigh-Ritz method applied to the integral eigenvalue problem for (4.1).

6.1 Finite difference methods for the Sturm - Liouville
problem

6.1.1 Introduction

We are going to consider the boundary value problem for the Sturm-Liouville equation

−(a(τ)u′(τ))′ = λu(τ), with λ =
1

σ2 and a(τ) =
1

m2(τ)
in Ω = (0,1),

(6.1)
for a ∈C1(0,1) and u ∈C2(0,1) and boundary values

u(1) = 0 and lim
τ→0

a(τ)u′(τ) = 0. (6.2)

We will discretize this problem by using a finite difference method. Difficulties will
arise in the discretization of the boundary condition at the left hand side, since limτ→0 a(τ) =
∞. We are going to use two different approaches, one with equidistant meshes and an-
other one with non-equidistant meshes.

First, we are going to find an approximate solution to the boundary value (6.1)
problem by replacing the continuous interval Ω = [0,1] by a finite set of grid points

0 = τ0 < τ1 < .. .τn−1 < τn = 1.
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Chapter 6. Numerical approaches to the problem

Here, the first problem occurs, since a(τ) is not defined for τ = 0. We will attempt this
problem later. Then we have xi+1 − xi = hi+1 for i = 0 . . .n−1 and h = max{hi} is the
maximum step size.

6.1.2 Equidistant and non-equidistant meshes

First of all, we want to consider equidistant meshes, i.e. hi = h ∀i. We may write

−(a(τ)u′(τ))′ = −a′(τ)u′(τ)−a(τ)u′′(τ),

and approximate the derivatives a′ and u′ by the central difference quotient and the
second derivative u′′ by the second difference quotient (see for example [34] or [55]):

a′(τ) ≈ (D0a)(τ) :=
a(τ+h)−a(τ−h)

2h
, (6.3)

u′(τ) ≈ (D0u)(τ) :=
u(τ+h)−u(τ−h)

2h
, (6.4)

u′′(τ) ≈ (D+D−u)(τ) :=
u(τ+h)−2u(τ)+u(τ−h)

h2 . (6.5)

Since u is assumed to be continuous we may take the exact value u(τi) at step τ = τi for
the right hand side of the eigenvalue equation. Setting u(τi) = ui and a(τi) = ai we get
the classical finite difference method for (6.1) for equidistant meshes

(

ai+1 −ai−1

4h2 − ai

h2

)

ui−1 +
2ai

h2 ui +

(

ai−1 −ai+1

4h2 − ai

h2

)

ui+1 = λui (6.6)

for i = 1 . . .n−1. The boundary values are discretized by

u(1) ≈ un = 0, (6.7)

on the right hand side and by a forward difference for the derivative on the left hand
side boundary

lim
τ→0

a(τ)u′(τ) ≈ a1u1 −a0u0

h
= 0. (6.8)

Here we face our problem again, since a0 = a(0) is not defined. We are therefore going
to introduce a variable ε, which has to be close to zero and we define

a0 := ε. (6.9)

Then, we can vary ε in order to take it as close to zero as possible.
Now we may formulate (6.6) together with the boundary conditions (6.7) and (6.8)

as a matrix eigenvalue problem:
Ahuh = λuh, (6.10)
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where

Ah =



















−a0
h

a1
h 0 . . . . . .

a2−a0
4h2 − a1

h2
2a1
h2

a0−a2
4h2 − a1

h2 0 . . .

0 a3−a1
4h2 − a2

h2
2a2
h2

a1−a3
4h2 − a2

h2 . . .
. . . . . . . . . . . . . . .

. . . 0 an−an−2
4h2 − an−1

h2
2an−1

h2
an−2−an

4h2 − an−1
h2

. . . . . . . . . . . . 1



















and
uh =

[

u0 u1 u2 . . . un−1 un
]T

.

The algebraic eigenproblem (6.10) is the discrete counterpart to the continuous one. Its
solution gives us n approximate eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn and n corresponding
eigenvectors u1,u2, . . . ,un. This is summarized in the following algorithm.

Algorithm 6.1 (Finite difference method).

1. Determine the matrix Ah ∈ Rn+1,n+1 as given above in (6.10).

2. Compute the algebraic eigenvalues λ of this matrix

Ahuh = λuh.

We are going to investigate the convergence of the scheme (6.6). To this end we
calculate the maximum difference between the true and the computed solution. The
following definition is taken from [34].

Definition 6.1. A finite difference scheme is said to be convergent of order k, if

max
i

|u(τi)−ui| ≤Chk,

where ui is the approximate solution and u(τi) is the exact solution at τ = τi and C is
independent of h.

The classical way for showing convergence is proving consistency and stability:

Definition 6.2. A finite difference scheme is said to be consistent of order k, if

‖Ah(Rhu−uh)‖∞ ≤Chk,

where uh is the approximate solution and Rhu is the restriction of the exact solution to
the mesh points.
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For our difference formulas

(D0u)(x) := u′(x)+h2R, with |R| ≤ 1
6
‖u′′′‖C(0,1), if u ∈C3(0,1),

(D+D−u)(x) := u′′(x)+h2R, with |R| ≤ 1
12

‖u′′′′‖C(0,1), if u ∈C4(0,1),

holds (see [34]). This can be proved by Taylor’s series expansion. Therefore the scheme
(6.6) is second order accurate if u ∈C4(0,1). In addition we have to check stability (see
[55]):

Definition 6.3. A finite difference scheme is said to be stable with respect to the discrete
maximum norm ‖ · ‖∞ , if there exists a constant C such that

‖A−1
h ‖∞ ≤C.

In order to check stability, we can check the three characteristics of an M-Matrix
(see [34] or [40]):

• Ah is an L-Matrix, i.e. its entries satisfy ah
ii > 0 and ah

i j ≤ 0 i 6= j∀ i, j, which
is easy to check, since a(τ) is positive and a monotone decreasing function. We
have to change the first row of Ah into

[a0
h2 −a1

h2 0 . . . . . .
]

in order to secure stability. Note that h is changed into h2 in order to secure
consistency. The same is done to the last row.

• The matrix Ah is diagonal dominant, i.e.

|ah
ii| ≥ ∑

j 6=i

|ah
i j| ∀i,

which can be checked with the characteristics of the function a(τ)

• The matrix Ah is irreducible.

Since Ah is an M-Matrix, the scheme is stable (see [34]). We also know (see [55]), that

Proposition 6.1. A consistent and stable scheme is convergent.

Therefore our finite difference scheme (6.6) is convergent of order 2.
To estimate the discretization errors that beset the eigenvector u and the eigenvalue

λ, we make use of the regular pattern in the finite difference equations (6.6), as it was
done in [25]. For convenience we use a(τ)≡ 1. Therefore (6.6) is observed to have the
solution u j = cz j, where z is a constant and substituting this solution into (6.6) yields
the characteristic equation

z2 − (2−λh2)z+1 = 0 (6.11)
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that is associated with the finite difference equation. The two roots of this equation are

z1,2 =
1
2
(2−λ′)±

√

λ′(λ′−4), λ′ = λh2.

Gershgorin’s theorem (see for example [26]) assures that for matrix Ah, 0 ≤ λ′ ≤ 4
holds. For the limiting case λ′ = 0 or λ′ = 4, the two roots z1 and z2 are equal. Hence,
the solution of the difference equation takes the form

u j = (c1 + c2 j)z j,

where c1 and c2 are determined from the boundary conditions u′0 = un = 0. But these
boundary conditions are only satisfied when c1 = c2 = 0 and so a nontrivial solution u
does not exist for λ′ = 0 or λ′ = 4; they are not eigenvalues of Ah. We conclude, that the
roots must be complex conjugates, denoted by z1 = eiΦ and z2 = e−iΦ and the general
solution to (6.6) is therefore

u j = c1 cos jΦ+ c2 sin jΦ.

Because u′0 = 0, c2 = 0 and one boundary condition is met. For the second boundary
condition we get

cosnΦ = 0, Φ = (2k−1)
π
2

h, h =
1
n
, k = 1, . . .n, (6.12)

and therefore we get u j = c2 cos(2k−1)π
2 jh for the computed eigenvectors. By putting

z = eiΦ back into (6.11) we get

λh2 = 2− (eiΦ + e−iΦ) = 2(1− cosΦ),

and, with 1− cosΦ = 2sin2 1
2Φ we have

λk =
4
h2 sin2 1

2
Φ

for the eigenvalues. At the lower end of the discrete spectrum 1
2 Φ � 1 holds and

therefore sinΦ ≈ Φ and approximately

λk =
π2(2k−1)2

4

(

1− 1
12

π2(2k−1)2

4
h2
)

, h =
1
n
.

Using (6.12) this holds for 2k � n. Hence, by a finite difference method, the few exact
eigenvalues (5.11) are approximated from below, i.e. for the kth eigenvalue

λapprox
k ≤ λexact

k , k = 1, . . . ,n (6.13)

holds. As we climb in the spectrum the relative accuracy of λk declines, but it still
converges O(h2). We can do a similar calculation for a(τ) 6= 1, but the computation is
not as trivial as this one, since the characteristic equation becomes

(

ai+1 −ai−1

4
−ai

)

z2 +(2ai−λh2)z+

(

ai−1 −ai+1

4
−ai

)

= 0, (6.14)
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whose roots are either complex conjugates or real, depending on the ai. We might even
get complex values for λ, especially for strongly varying a(τ). Therefore we cannot
state an inequality like (6.13).

Additionally we will consider non-equidistant meshes. For such meshes the finite
difference method (6.6) becomes
(

ai+1−ai−1

(hi +hi+1)2 −
2ai

(hi +hi+1)hi

)

ui−1 +
2ai

hihi+1
ui

+

(

ai−1 −ai+1

(hi +hi+1)2 −
2ai

(hi +hi+1)hi+1

)

ui+1 = λui

(6.15)

for i = 1, . . . ,n− 1. The boundary values are discretized as in the case of equidistant
meshes with (6.7) and (6.8). The analysis is similar to the one in the equidistant case,
but the scheme is only consistent of order 1 (see [34]). The sizes of the intervals are
taken to be smaller near zero, i.e. where the function a(τ) changes rapidly. The non-
equidistant mesh is generated by the following procedure: The interval [0,1] is divided
into n subintervals. We generate the grid points starting from the right boundary. The
first grid point left of the right hand side boundary (i.e. left of τn = 1) is taken to be
τn−1 = p

q τn = p
q , where p < q. All other grid points are determined by the iteration

τi =
p
q

τi+1, i = n−1, . . . ,0.

Note, that we have to choose p and q for each n in such a way, that τ0 =
(

p
q

)n
is close

enough to zero. Then we may set ε := τ0.
We are now going to apply the finite difference methods with equidistant and non-

equidistant meshes to several multiplier functions.

6.1.3 Multiplier functions of the form m(s) = sα

First, we consider multiplier functions m(s) = sα, i.e.

a(s) =
1

s2α

for different values of α. Both equidistant and non-equidistant meshes are tested. We
will try several values for n = 1

h and ε = a0. Figure 6.1 shows plots for the first 30
eigenvalues λ1, . . . ,λ30 and n = 10000 for different values of α. We can easily compute
more than 30 eigenvalues and get similar results. However, problems arise for larger
values of n (both in the equidistant and the non-equidistant case), since the condition
number of the matrix Ah becomes very large. The plots suggest that the computed
eigenvalues λn are proportional to n2 and therefore we are going to consider the loga-
rithmic scale plot for all computed eigenvalues in the case of n = 500 and for several
values of α. The results are illustrated in figure 6.2. In this plot, we firstly recognize
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Figure 6.1: First 30 computed eigenvalues of Sturm-Liouville problem −(au ′)′ = λu for
multiplier function m(s) = sα, n = 10000 and different values for α using a
finite difference method
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Figure 6.2: Computed eigenvalues of Sturm-Liouville problem −(au′)′ = λu for n = 500,
multiplier function m(s) = sα and different values for α and exact eigenvalues
for α = 0 in logarithmic scales
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α n h ε COEFFICIENT OF n2

0 500 0.002 0.001 9.8444
0 1000 0.001 0.0001 9.8584
0 10000 0.0001 0.00001 9.8686

1 500 0.002 0.001 39.4254
1 1000 0.001 0.0001 39.4657
1 10000 0.0001 0.00001 39.4790

2 500 0.002 0.001 88.5877
2 1000 0.001 0.0001 88.7683
2 10000 0.0001 0.00001 88.8278

3 500 0.002 0.001 157.2007
3 1000 0.001 0.0001 157.7383
3 10000 0.0001 0.00001 157.9156

Table 6.1: Results for eigenvalue asymptotics of finite difference method for m(s) = sα for
equidistant meshes and several values of α, n = 1

h and ε := a0

α n ε COEFFICIENT OF n2

0 500 0.0066 63.5644
0 1000 4.3171e-05 24.6671
0 10000 4.5173e-05 9.8700

1 500 0.0066 38.5485
1 1000 4.3171e-05 38.5486
1 10000 4.5173e-05 39.4700

2 500 0.0066 83.9955
2 1000 4.3171e-05 83.9955
2 10000 4.5173e-05 88.7815

Table 6.2: Results for eigenvalue asymptotics of finite difference method for m(s) = sα for
non-equidistant meshes and several values of α, n = 1

h and ε := a0

that the exact eigenvalues for α = 0 are indeed approximated from below, i.e. (6.13)
holds. For α > 0 we did not plot the last 2− 4 eigenvalues, since they were complex
conjugated (the reason for this was already mentioned in the previous analytic part).
We also observe that the plots in logarithmic scaling have the same gradient (except for
large numbers of eigenvalues), with shifts in direction of the y-axis for different values
of α. The gradient for small computed eigenvalues is 2. The computed eigenvalues
of large magnitude are no good approximations to the true eigenvalues, since the error
increases, the larger the computed eigenvalues get. We could see this by computing the
approximate eigenvalues for larger n, i.e. n = 1000 and plotting the first 500 ones in the
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same figure 6.2. We also refer to the next section, where we apply Galerkin’s method to
the integral equations and therefore do not have the difficulties with the approximation
of the left hand boundary condition (6.8).

The plots suggest that λn(A) = f (α)O(n2), where f is a monotone increasing func-
tion depending on α, as we have seen from figure 6.2. Hence, we compute the first
10 eigenvalues of smallest magnitude for several values of n, ε and α. Then, we apply
curve fitting (with a polynomial of order 2) to those values in order to get the coeffi-
cients for n2 and summarize the computed values for equidistant meshes in table 6.1,
the ones for non-equidistant meshes in table 6.2. We observe, that the coefficients for
n2 converge for n → ∞.

We are going to give a short comparison between finite difference method with
equidistant and with non-equidistant meshes. From tables 6.1 and 6.2, especially for
α = 0 we observe, that the equidistant method yields better approximations. This is due
to the fact that the equidistant finite difference method is convergent of order h2, whilst
the non-equidistant method only converges with order h. Furthermore, we are going
to compare the condition numbers in both cases. For convenience we are only going
to consider the multiplier function m(s) = s. In table 6.3 we summarize condition
numbers κ(Ah) of the matrix Ah from (6.10). From this table, we observe, that the

n κ(Ah) for equidistant meshes κ(Ah) for non-equidistant meshes

500 9.784e+09 7.051e+05
1000 3.321e+12 6.673e+06
5000 9.785e+13 5.976e+13

10000 3.321e+16 2.928e+22

Table 6.3: Comparison of condition numbers of matrix Ah arising in the finite difference
method for integral equation with multiplier function m(s) = s

condition number of Ah starts off to be smaller for non-equidistant than for equidistant
meshes for relatively small values of n. This is due to the fact that we are not close
enough to zero yet in the case of non-equidistant meshes. But the growth rate of the
condition numbers is much faster for non-equidistant meshes than for the equidistant
case. This is due to the fact that there are much more grid points close to zero, i.e. for
the entries of Ah in (6.10) we have a(τ) → ∞ in the case of non-equidistant meshes.

For non-equidistant meshes, the value of n cannot be enlarged any further, since
serious problems with the large condition number of Ah occur.

Hence, both the tables and the plots suggest, that the eigenvalues have the asymp-
totics

λapprox
n (A) ∼ f (α)n2.

Then we apply curve fitting with the help of regression. We are going to find the best
fitting second order polynomial to the first ten computed eigenvalues. The coefficients
for the best fitting polynomial are summarized in table 6.4 for several values of α. We
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take a fixed value of n for each α, since we have already observed that the coefficients
converge in the previous tables. We know the eigenvalues of the trivial operator (5.10)
with a(τ) ≡ 1 are given by (5.11),

λn =
π2(2n−1)2

4
= π2n2 −π2n+

π2

4
, n ∈ N. (6.16)

Therefore we are going to compare the computed coefficients of the assumed

λapprox
n (A) = an2 +bn+ c,

with the ones from the eigenvalues of the trivial operator. From table 6.4 we observe a

α n a b c
a
π2

b
π2

c
π2

0 10000 9.8686 -9.8685 2.4670 0.9999 -0.9999 0.2500
0.5 10000 22.2069 3.6970 -0.2692 2.2500 0.3746 -0.0273
1 10000 39.4790 9.8598 -0.5988 4.0001 0.9990 -0.0607

1.5 10000 61.6860 18.4887 -0.9894 6.2501 1.8733 -0.1002
2 10000 88.8278 29.5840 -1.4418 9.0001 2.9975 -0.1461

2.5 10000 120.9044 43.1461 -1.9563 12.2502 4.3716 -0.1982
3 10000 157.9156 59.1753 -2.5334 16.0002 5.9957 -0.2567

3.5 10000 199.8614 77.6721 -3.1736 20.2502 7.8698 -0.3216
4 10000 246.7418 98.6369 -3.8776 25.0002 9.9940 -0.3929

4.5 10000 298.5566 122.0703 -4.6460 30.2501 12.3683 -0.4707
5 10000 355.3058 147.9728 -5.4795 36.0000 14.9928 -0.5552

Table 6.4: Coefficients of the best fitting second order polynomial λapprox
n = an2 + bn + c

for eigenvalue asymptotics for multiplier function m(s) = sα with n = 10000
and several values of α

certain regularity for the coefficients a and b. We therefore conjecture

λapprox
n (A) = (α+1)2π2n2 +

1
2
(α2 +α)π2n+O(1) (6.17)

for the eigenvalues of the Sturm-Liouville problem (6.1) with a(τ) =
1

m2(τ)
and m(τ) =

τα. Hence, the singular values of the integral operator have the asymptotics

σapprox
n (B) ∼ 1

(α+1)πn
. (6.18)

Therefore we conjecture (from numerical experiments), that the multiplier function
only influences the coefficient for n−1 (i.e. the constants C and C in (3.14)), but the
degree of ill-posedness does not change.
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6.1. Finite difference methods for the Sturm - Liouville problem

6.1.4 Multiplier functions of the form m(s) = e−
1

sα

Now we consider multiplier functions of type m(s) = e−
1

sα , i.e.

a(s) = e
2

sα .

Since the function m(s) = e−
1

sα converges to zero much faster than the function m(s) =
sα, serious problems with the condition number of Ah occur already for small sizes n
of the matrix Ah. Figure 6.3 shows plots for the first 20 eigenvalues λ1, . . . ,λ20 and
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Figure 6.3: First 30 computed eigenvalues of Sturm-Liouville problem −(au ′)′ = λu for

multiplier function m(s) = e−
1

sα , n = 10000 and different values for α using a
finite difference method

n = 10000 for different values of α. Again, we are going to consider the logarithmic
scale plot for all computed eigenvalues for n = 100 and several values of α, since the
previous plots suggest that λn is proportional to n2. The results are shown in figure 6.4.
In this plot, we observe that the exact eigenvalues for α = 0 are indeed approximated
from below, i.e. again (6.13) holds. For α > 0 we did not plot the last 20 eigenvalues,
since they are complex conjugated (which was already mentioned in the previous ana-
lytic part). We also observe that the plots in logarithmic scaling have the same gradient
for the eigenvalues with small magnitude, with shifts in direction of the y-axis for dif-
ferent values of α. The gradient for small computed eigenvalues is 2. The computed
eigenvalues of large magnitude are inaccurate, since the error increases, the larger the
computed eigenvalues get. By computing the approximate eigenvalues for larger n, i.e.
n = 2000 and plotting the first 100 ones in the same figure 6.4, we could see, that the
large eigenvalues are no good approximations to the true ones. We also refer to the next
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Figure 6.4: Computed eigenvalues of Sturm-Liouville problem −(au′)′ = λu for n = 100,

multiplier function m(s) = e−
1

sα and different values for α and exact eigenval-
ues for α = 0 in logarithmic scales

sections, where we apply Ritz-Galerkin methods to the integral equations and therefore
do not have the difficulties of approximating the left hand boundary condition (6.8).

The plots suggest that λapprox
n (A) = f (α)O(n2), where f is a monotone increasing

function depending on α, as we have seen from figure 6.4. Hence, as in the previous
section, we compute the first 10 eigenvalues of smallest magnitude for several values of
n, ε and α. Then, we apply curve fitting (with a polynomial of degree 2) to those values
in order to get the coefficients for n2 and summarize the computed values, this time the
results for equidistant and non-equidistant meshes in the same table (see table 6.5). We
observe that the coefficients for n2 converge for n → ∞. We cannot increase n, since the
matrix Ah becomes badly scaled and the results may get inaccurate. For comparisons
between equidistant and non-equidistant methods we refer to section 6.1.3. The table
confirms that the eigenvalues have the asymptotics

λapprox
n (A) ∼ f (α)n2. (6.19)

Hence, we find the best fitting second order polynomial to the first ten computed eigen-
values. The coefficients for the best fitting polynomial are summarized in table 6.6 for
several small values of α. Again, we take a fixed value of n for each α, since we have
observed in table 6.5 that the coefficients converge. We find a certain regularity in the
coefficients of a and conjecture

λapprox
n (A) = g(α2)π2n2 (6.20)
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6.1. Finite difference methods for the Sturm - Liouville problem

α n h ε COEFFICIENT OF n2

0 500 0.002 0.001 72.7407
0 1000 0.001 0.0001 72.8440
0 5000 0.0002 0.0001 72.9121
0 10000 0.0001 0.00001 72.9197

0.1 500 0.002 0.001 89.4280
0.1 1000 0.001 0.0001 89.8596
0.1 5000 0.0002 0.0001 89.8534
0.1 10000 0.0001 0.00001 89.8648

0.3 500 0.002 0.001 138.2995
0.3 1000 0.001 0.0001 138.3802
0.3 5000 0.0002 0.0001 138.4059
0.3 10000 0.0001 0.00001 138.4067

0.5 500 0.002 0.001 205.2736
0.5 1000 0.001 0.0001 205.4490
0.5 5000 0.0002 0.0001 205.5051
0.5 10000 0.0001 0.00001 205.5068

1 300 0.0033 0.003 445.6933
1 2000 not equidistant 0.1352 448.3335
1 2500 not equidistant 0.0820 448.3331

Table 6.5: Results for eigenvalue asymptotics of finite difference method for m(s) = e−
1

sα

for equidistant and non-equidistant meshes and several values of α,n = 1
h and

ε := a0

α n a b c
a
π2

b
π2

c
π2

0 10000 72.9197 -72.9191 18.2291 7.3883 -7.3883 1.8470
0.1 10000 89.8648 5.3561 -1.0132 9.1052 0.5427 -0.1027
0.2 10000 111.7152 13.4608 -2.9461 11.3191 1.3639 -0.2985
0.3 10000 138.4047 23.4205 -5.2019 14.0235 2.3730 -0.5271
0.4 10000 169.7267 34.9170 -7.5728 17.1969 3.5378 -0.7673
0.5 10000 205.5068 47.9005 -10.0372 20.8222 4.8533 -1.0170
1 2500 448.3331 136.9218 -25.7772 45.4256 13.8731 -2.6118

Table 6.6: Coefficients of the best fitting second order polynomial λn = an2 + bn + c for
eigenvalue asymptotics for multiplier function m(s) = e−

1
sα and several values

of α

for the eigenvalues of the Sturm-Liouville problem (6.1) with a(τ) =
1

m2(τ)
and m(τ) =
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e−
1

τα . In order to find an expression for f (α) in (6.20) (as for multiplier functions

m(s) = sα) we are going to consider the values
a
π2 in table 6.6 and two different ap-

proaches: If we assume g(α) = (lα + e)2, we get l ≈ 4.3. But if we assume g(α) =
(emα+1)2 we get m ≈ 1. The second attempt is definitely stronger then the first one,
hence we can certainly always state

λapprox
n (A) ≤ (eα+1)2π2n2, (6.21)

but it is hard to find a more exact approximation as for multiplier function m(s) = sα,
since we would need more values for α. Hence, the singular values of the integral
operator satisfy

σapprox
n (B) ≥ 1

(lα+ e)πn
, l > 1, (6.22)

where l ≈ 4.3 has been computed from the values in the sixth column of table 6.6 for
α ≤ 1.

We can conjecture from our numerical experiments that this type of multiplier func-
tion also only influences the coefficient for n−1 but not the degree of ill-posedness.

In section 6.5 we conjecture how the multiplier functions m(s) influence the coeffi-
cient exactly.

6.2 The Galerkin method for the Fredholm integral equa-
tion of the first kind

6.2.1 Introduction

We consider the the original Fredholm integral equation of the first kind (4.14)

[K(x)](s) =
Z 1

0
k(s, t)x(t)dt = g(s), (0 ≤ s ≤ 1), (6.23)

or in operator notation
Kx = g,

with kernel function k(s, t) given by (4.15)

k(s, t) =

{

m(s), (0 ≤ t ≤ s ≤ 1)
0, (0 ≤ s ≤ t ≤ 1).

(6.24)

From the theory of Hilbert-Schmidt operators in section 3.1 (see definition 3.4), we
know, that every square integrable kernel has a singular value expansion (SVE) of the
form

k(s, t) =
∞

∑
j=1

σ ju j(t)v j(s), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, (6.25)
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6.2. The Galerkin method for the Fredholm integral equation of the first kind

in which σ j are the singular values and {u j,v j} are the left and right singular functions
of the kernel. The norm of the kernel is given by

‖K‖2 =
Z 1

0

Z 1

0
(k(s, t))2dtds. (6.26)

The algebraic singular value decomposition (SVD) of a real square matrix A ∈ Rn,n is
given by (see, for example [26])

A = UΣV T =
n

∑
j=1

s ju jvT
j , (6.27)

where
Σ = diag(s1,s2, . . . ,sn) ∈ R

n,n,

U = [u1,u1, . . . ,un] ∈ R
n,n,

V = [v1,v1, . . . ,vn] ∈ R
n,n,

with U and V being orthogonal. The singular values of A are the scalars s j, the vectors
{u j} and {v j} are the left and right singular vectors of A. The left and right singular
functions are orthonormal, and both the sets {u j} and {v j} are complete. Hence, with
the theory of Hilbert-Schmidt operators (see lemma 3.2) we can write down the norm
of ‖K‖ in terms of the singular values as

‖K‖2
HS :=

∞

∑
j=1

σ2
j < ∞. (6.28)

In the following we mean ‖K‖ := ‖K‖HS. The matrix norm of A, that corresponds to
the norm of K is the Frobenius norm ‖A‖F (see, for example [77]), which is defined by

‖A‖2
F :=

n

∑
i=1

n

∑
j=1

a2
i j =

n

∑
j=1

s2
j . (6.29)

We will summarize some relationships between the SVE for operators in the infinite
dimensional space and the SVD for real square matrices in the finite dimensional space
in table 6.7. This table is taken from a paper by Hansen [36]. As we have seen in the
previous sections, finding the SVE is hard and can only be determined analytically for
some special cases (see section 3.3.2). However, we will show, how the SVE can be
computed numerically by discretizing (6.23) and calculating the SVD of the obtained
matrix. We are going to examine the relationship between the SVE and the SVD, i.e.
the approximation properties of the algorithm that provides the singular values numeri-
cally. Especially Hansen ([37] and [36]) was dealing with the relationship between the
SVE and the SVD. Another related work is [15]. Two papers considering mainly the
condition number of the matrix obtained are [2] and [84].
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SVE SVD

σ1 ≥ σ2 ≥ σ3 . . . with σn → 0, n → ∞ s1 ≥ s2 ≥ . . .sn ≥ 0

‖K‖2 =
∞

∑
j=1

σ2
j ‖A‖2

F =
n

∑
j=1

s2
j

〈ui,u j〉 = δi j

〈vi,v j〉 = δi j.
i, j = 1,2, . . .

〈ui,u j〉 = δi j

〈vi,v j〉 = δi j.
i, j = 1,2, . . . ,n

Z 1

0
k(s, t)v j(s)ds = σ ju j(t)

Z 1

0
k(s, t)u j(t)dt = σ jv j(s).

j = 1,2, . . .
Av j = s ju j

AT u j = s jv j.
j = 1,2, . . . ,n

Table 6.7: Some properties of the SVE and the SVD

6.2.2 The algorithm and approximation properties

We are going to use the so called Galerkin method (see [6], [84] or [35]) for discretiz-
ing the integral equation (6.23). Hansen [36] introduces a generalization to the Galerkin
method, the so-called moment method with orthonormal basis functions. It is a univer-
sal expansion method for discretizing the integral equation (6.23).

Let {Ψ j} and {Φ j} be two orthonormal sets of basis functions , the left basis func-
tions Ψ1, . . .Ψn in the interval Is = [0,1] and the right basis functions Φ1, . . .Φn in the
interval It = [0,1]. Then we approximate the solution x of operator (6.23) by

x(t) =
n

∑
j=1

x jΦ j(t). (6.30)

Hence,

g(s) =
n

∑
j=1

x j

Z 1

0
k(s, t)Φ j(t)dt (0 ≤ s ≤ 1). (6.31)

Multiplying (6.31) by Ψi(s) and integrating with respect to s yields
Z 1

0
g(s)Ψi(s)ds =

n

∑
j=1

x j

Z 1

0

Z 1

0
k(s, t)Φ j(t)Ψi(s)dtds, (6.32)

or, in an easier notation

gi =
n

∑
j=1

ai jx j, (6.33)

where

gi =

Z 1

0
g(s)Ψi(s)ds

ai j =
Z 1

0

Z 1

0
k(s, t)Φ j(t)Ψi(s)dtds

= 〈KΦ j,Ψi〉L2(0,1), i, j = 1, . . . ,n
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in the normal inner product in L2(0,1). Therefore the equation (6.23) in operator form

g = Kx

becomes
g = Ax,

in matrix form, where g and x are vectors in Rn and A∈Rn,n is a matrix. By considering
this obtained matrix A ∈ Rn,n

A = (ai j), i, j = 1, . . .n (6.34)

we may derive decay rates of its singular values. In the case of Hermitian kernels k(s, t),
the Galerkin equations above are precisely the equations obtained from the Rayleigh-
Ritz method described below (section 6.3).

We could use the approach introduced by Hansen ([36]). He suggests to compute
the SVD of the matrix A numerically. Then he shows that the computed algebraic singu-
lar values (s1, ...,sn) are indeed good approximations to the first n true singular values
σi, i = 1, . . . ,n of the infinite dimensional problem (6.23). We may also compute
approximations to the singular functions u j and v j of K using

ũ j(s) =
n

∑
i=1

ui jΨi(s) ṽ j(t) =
n

∑
i=1

vi jΦi(t), j = 1, . . . ,n, (6.35)

where ui j and vi j are the elements of U and V in (6.27).
Another approach is the one by Wing et. al. using condition numbers (see [84], [2]

or [48]). The condition of the matrix A∈ Rn,n arising in the discretization process using
the Galerkin method (see (6.34)) is very important. If A is well-conditioned, the vector
x can be found quite accurately, even if there is some error in g. An ill-conditioned A
may lead to unsatisfactory solutions x. The matrix condition number κ(A) of a square
matrix A is defined as

κ(A) = ‖A‖ · ‖A−1‖,
where ‖ · ‖ is any valid matrix norm (see [26]). If we use the usual Euclidean norm
‖ · ‖2 of vectors and the associated matrix norm, then the condition number is the ratio
of the largest singular value of matrix A to the smallest, i.e.

κ(A) =
s1(A)

sn(A)
.

Since we know from section 3.2, inequality (3.14), that the singular values σ j from the
infinite dimensional problem satisfy

σ j ∼ j−ν, as j → ∞

where ν > 0 is the degree of ill-posedness there is a correspondence between the com-
puted singular values sn(A) of A to the growth rate of the condition number (see [48]),

κ(A) ∼ 1
sn(A)

∼ nν,
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with the condition number given as above.
We will consider Hansen’s ([36]) algorithm more detailed. First, we summarize the

algorithm:

Algorithm 6.2 (Galerkin method).

1. Choose {Ψ j} and {Φ j}, two orthonormal sets of basis functions in the intervals
Is = (0,1) and It = (0,1), respectively.

2. Determine the matrix A ∈ Rn,n with

ai j = 〈KΦ j,Ψi〉L2(0,1) i, j = 1, . . . ,n.

3. Compute the singular value decomposition of this matrix

Av = s(n)u.

Optionally, we could also compute approximations to the singular functions u j and
v j of K using (6.35). Note, when Is = It and K is symmetric, the algorithm is identical
to the Galerkin method for computing eigensolutions of K. Then the above procedure
is often called the Rayleigh-Ritz procedure for which we refer to [10] or [68]. We will
examine this special case in the next section.

We are now going to examine the approximation properties of the algorithm given

above. The singular values s(n)
i of A are approximations to the singular values of K.

Hansen (see [36] or [37]) has proved the following results, which we summarize in
lemma 6.1 and proposition 6.2. The analysis relies on the following definition of the
singular values σi.

Definition 6.4. The singular values σi of the real square integrable kernel K are the
stationary values of the functional

F [Φ,Ψ] :=
〈KΦ,Ψ〉
‖Φ‖‖Ψ‖ , (6.36)

where
Ψ
‖Ψ‖ and

Φ
‖Φ‖ are the corresponding left and right singular functions.

Notice that this definition is similar to the characterization of the algebraic singular
values of a real matrix, see [26]. Furthermore, there is a similarity to the Rayleigh
quotient R for a symmetric kernel K, which is given by (see [10])

R[Φ] :=
〈KΦ,Φ〉
‖Φ‖2 .

We will come back to this fact later. Now, the basic idea of the algorithm is to ap-
proximate the kernel K by a degenerate kernel K̃n whose exact SVE can be determined
with the help of the algebraic SVD. We can formulate this connection explicitly in the
following lemma 6.1 by Hansen, which we want to prove for a better understanding.
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Lemma 6.1 (Hansen 1987). The singular values si and functions ũi and ṽi computed
by the above algorithm are the exact singular values and functions of the degenerate
kernel

K̃n(s, t)≡
n

∑
i=1

n

∑
j=1

ai jΨi(s)Φ j(t), (6.37)

and they also satisfy
〈Kṽi, ũi〉 = si. (6.38)

Proof. From definition (6.4) it follows that the singular values of K̃n are the stationary
values of the functional

F̃n[Φ,Ψ] = 〈K̃nΦ,Ψ〉

which are also the stationary values of the functional F[Φ,Ψ] with the restrictions Φ ∈
span{Φ1, . . .Φn} and Ψ ∈ span{Ψ1, . . .Ψn}. Then, writing

Φ(t) =
n

∑
i=1

xiΦi(t) and Ψ(s) =
n

∑
i=1

yiΨi(s),

the latter problem leads to the algebraic problem of computing the stationary values of

G[x,y] =
yT Ax
‖x‖‖y‖ , (6.39)

with A given by (6.34), and these stationary values are exactly the singular values of A.
For the proof of (6.38) we refer to [10].

Again, note the similarity of (6.39) to the algebraic Rayleigh quotient of a symmet-
ric matrix A

R[x] =
xT Ax
‖x‖2 .

Also notice that if the basis functions are not orthonormal, then the computational prob-
lem involved in the Galerkin approach leads to the computation of the stationary values
of

GS,T [x,y] =
yT Ax

(xT SxyT T y)
1
2

, (6.40)

with symmetric matrices S and T whose elements are given by

si j = 〈Ψi,Ψ j〉 and ti j = 〈Φi,Φ j〉 i, j = 1, . . . ,n.

Note that for orthonormal basis functions S = T = I. If S and T are well conditioned,
then a change of variables, via computing the Cholesky factors of S and T , leads to the
desired results. If the basis functions are sufficiently linearly independent and S and T
symmetric positive definite, then there exist unique lower triangular matrices G and H
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such that S = GGT and T = HHT . Substituting x̄ = GT x and ȳ = HT y into (6.40) leads
to

G[x̄, ȳ] =
ȳT Āx̄
‖x̄‖‖ȳ‖ ,

where Ā = HT AG−T and we can apply the same analytical tools as before with changed
variables. Finally we are going to state approximation properties for the above algo-
rithm.

Proposition 6.2 (Hansen 1987). Let ‖K‖ denote the norm of K, defined by

‖K‖2 :=
Z 1

0

Z 1

0
|k(s, t)|2dtds =

∞

∑
i=1

σ2
i .

Moreover, let A be the matrix (6.34) in the above algorithm, let K̃n be the corresponding
kernel given by (6.37) and let ‖A‖F denote the Frobenius norm of A. Then

δ2
n := ‖K − K̃n‖2 = ‖K‖2 −‖A‖2

F . (6.41)

holds and the algebraic singular values s(n)
i , where n is the number of basis functions,

are increasingly better approximations to the true singular values σi,

s(n)
i ≤ s(n+1)

i ≤ σi, i = 1, . . . ,n. (6.42)

Furthermore, the errors of the approximate singular values s(n)
i are bounded by

0 ≤ σi− s(n)
i ≤ δn, i = 1, . . . ,n, (6.43)

where δn is given in (6.41). The sum of squares of the errors of the approximate singular

values s(n)
i is bounded by

n

∑
i=1

[σi− s(n)
i ]2 ≤ δ2

n. (6.44)

Moreover, the true singular values σi of K are bounded in terms of the computed sin-

gular values s(n)
i of A by

s(n)
i ≤ σi ≤ [(s(n)

i )2 +δ2
n]

1
2 , i = 1, . . . ,n. (6.45)

The singular functions ũi and ṽi are orthonormal and the errors of the singular func-
tions corresponding to distinct singular values are bounded by

max{‖ui− ũi‖,‖vi− ṽi‖} ≤
(

2δn

σi −σi+1

)
1
2

, i = 1, . . . ,n. (6.46)
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Proof. We state the proof from [36]. First, we show (6.41). From definition (6.26) it
follows, that

δ2
n = ‖K‖2 +‖K̃n‖2 −2

Z 1

0

Z 1

0
K(s, t)K̃n(s, t)dsdt

= ‖K‖2 +‖K̃n‖2 −2‖K̃n‖2 = ‖K‖2 −‖K̃n‖2

= ‖K‖2 −‖A‖2
F ,

where we have used lemma 6.1, equation (6.28) and the equation

Z 1

0

Z 1

0
K(s, t)K̃n(s, t)dsdt =

Z 1

0

Z 1

0
|K̃n(s, t)|2dsdt =

n

∑
i=1

n

∑
j=1

|ai j|2,

which holds for orthonormal left and right basis functions Φ1(t),Φ2(t), . . .,Φn(t) and
Ψ1(s),Ψ2(s), . . . ,Ψn(s). Equation (6.42) follows immediately from the facts that all the
basis functions Φ1, . . . ,Φn and Ψ1, . . . ,Ψn are orthogonal and that the singular values

s(n)
i and s(n+1)

i are the stationary values of the functional F[Φ,Ψ] where Φ and Ψ are
restricted to n-dimensional and n + 1-dimensional subspaces, respectively. Obviously,
increasing the size of the subspaces yields increasingly better approximations to the
singular values σi.

The first inequality in (6.43) follows directly from (6.42). In order to prove the right
inequality, notice that by Schwarz’s inequality we may derive

F[Φ,Ψ]− F̃n[Φ,Ψ] = [Ψ,(KΦ− K̃nΦ)]

≤ ‖Ψ‖‖K − K̃n‖‖Φ‖ = ‖K − K̃n‖

since ‖Ψ‖ = ‖Φ‖ = 1. Using lemma 6.1 we get that the singular values of K̃n are the
stationary values of the functional F̃n[Φ,Ψ] = 〈K̃nΦ,Ψ〉 we get

F [Φ,Ψ] ≤ s(n)
i +‖K − K̃n‖, i = 1, . . . ,n.

Finally σi are the stationary values of F[Φ,Ψ] and we obtain

σi ≤ s(n)
i +‖K − K̃n‖, i = 1, . . . ,n,

and equation (6.41) leads to (6.43). This is the same argument as used in [10, page
121]. The result (6.44) follows from the relation

n

∑
i=1

[σi − s(n)
i ]2 =

n

∑
i=1

σ2
i +

n

∑
i=1

[s(n)
i ]2 −2

n

∑
i=1

σis
(n)
i

≤
n

∑
i=1

σ2
i +‖A‖2

F −2
n

∑
i=1

[s(n)
i ]2

≤ ‖K‖2 −‖A‖2
F = δ2

n.
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The left inequality in (6.45) us just equation (6.42), which we have shown already and

which also leads to [s(n)
i ]2 ≤ σ2

i , i = 1, . . . ,n. Hence

n

∑
l=1

[s(n)
l ]2 − [s(n)

i ]2 ≤
n

∑
l=1

σ2
l −σ2

i , i = 1, . . . ,n,

and therefore

σ2
i − [s(n)

i ]2 ≤
n

∑
l=1

σ2
l −

n

∑
l=1

[s(n)
l ]2

≤
∞

∑
l=1

σ2
l −

n

∑
l=1

[s(n)
l ]2 = ‖K‖2 −‖A‖2

F = δ2
n.

Finally the orthonormality of ũi and ṽi follows immediately from definition (6.35), the
orthogonality of U and V and the orthonormality of the basis functions. For the result
(6.46) we refer to the appendix of [36].

This proposition implies that if δn → 0 as n → ∞, then the approximate singular

values s(n)
i converge uniformly in n to the true singular values σi, and the correspond-

ing approximate singular functions ũi and ṽi converge in the mean to the true singular
functions. Furthermore, the Galerkin method always gives lower bounds for the first n
eigenvalues of the operator K.

Finally, we want to make some remarks on the convergence of the singular values
(and singular functions respectively). When

Φ1(t),Φ2(t), . . .,Φn(t) and Ψ1(t),Ψ2(t), . . .,Ψn(t)

are part of complete orthonormal sets {Φ} and {Ψ}, the convergence of the singular
values is immediate.

The norm ‖K‖ of the kernel can often be evaluated rather precisely, and so the quan-
tity δn from (6.41) is not only of theoretical interest but also of practical importance.

6.2.3 Multiplier functions of the form m(s) = sα

We are now going to apply the Galerkin method described above to the problem (4.1)
with special multiplier functions m(s) = sα for several values of α. The orthonor-
mal basis functions {Ψ j} and {Φ j} are simply chosen to give piecewise constant ap-
proximations to the singular functions. The intervals Is = It = [0,1] are divided into n
subintervals [si,si+1] and [t j, t j+1] of the same length hs and ht , respectively. Since our
intervals Is and It are the same, we can chose the same subintervals and interval lengths.
The basis functions (that are also the same) are then given by

Φ j(t) =

{ √
t j − t j−1, t ∈ [t j−1, t j]

0, else
, j = 1, . . . ,n (6.47)

Ψi(s) =

{ √
si− si−1, s ∈ [si−1,si]

0, else
, i = 1, . . . ,n. (6.48)
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With h := hs = ht = (si− si−1) = (t j − t j−1) and by taking the same subintervals, such
that si = ti, ∀i we get the following entries for the matrix A from (6.34):

ai j =



















1
h

Z si+1

si

m(s)(s− si)ds, if i = j,
Z si+1

si

m(s)ds, if j < i,

0, else

(6.49)

Hence, A becomes a lower triangular matrix. This is due to the fact that the kernel
k(s, t) is only defined on the lower triangle. For m(s) = sα we can integrate these
functions analytically and determine the entries of A quite easily and exactly. We are
then going to compute the SVD of this matrix A for several values of n = 1

h and α.
We are interested in the singular value asymptotics. Therefore, we compute the first
15 singular values s1, . . . ,s15 of largest magnitude for a fixed value of n = 1000 and
plot them in figure 6.5. Since the plots suggest that the computed singular values sn are

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

number of singular value

si
ng

ul
ar

 v
al

ue

Singular value asymptotics

α=0
α=1
α=2
α=3
α=4

Figure 6.5: First 15 computed singular values of integral equation Bv = σu for multi-
plier function m(s) = sα, n = 1000 and different values for α using a Galerkin
method

proportional to
1
n

, we are going to consider the logarithmic scale plot for all computed

singular values for n = 100 and several values of α. The results are shown in figure 6.6.
There we observe that the plots in logarithmic scaling have the same gradients, with
shifts in direction of the y-axis for different values of α. Using the Galerkin method
for the integral equation, we do not have any problems with boundary conditions such
as in with the finite difference method. Moreover, proposition 6.2 even supplies error
bounds for the computed singular values.
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Figure 6.6: Computed singular values of integral equation Bv = σu for n = 100, multiplier
function m(s) = sα and different values for α in logarithmic scales

In table 6.8 we have summarized the error δn as given in (6.41) for several n and α.

The error is computed by δn =
√

‖K‖2 −‖A‖2
F . We can determine ‖K‖ by

‖K‖2 =
Z 1

0

Z 1

0
|k(s, t)|2dsdt

=

Z 1

0
m(s)2sds,

and therefore, for our special multiplier function m(s) = sα

‖K‖ =
1√

2α+2
. (6.50)

The value of ‖A‖F can be computed numerically. From table 6.8 we see, that δn → 0
as n → ∞ and therefore, we may follow, that the algebraic singular values converge to
the true ones.

The gradient that we can observe in figure 6.6 for the computed singular values
of largest magnitude is −1. The computed singular values of small magnitude are no
good approximations to the true singular values, since the error increases, the smaller
the computed singular values get. We will illustrate this effect in figure 6.7. For a
better clearness we only consider the special integral equation with multiplier function
m(s) = sα for α = 1, but we could use any value of α. From figure 6.7 and with the
help of proposition 6.2 we follow, that the true singular values lie between the thick
solid and the dotted line. By computing the first 100 singular values for n = 1000
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α n h δn

0 50 0.02 0.07071
0 100 0.01 0.05000
0 500 0.002 0.02236
0 1000 0.001 0.01581

1 50 0.02 0.04123
1 100 0.01 0.02901
1 500 0.002 0.01292
1 1000 0.001 0.00913

2 50 0.02 0.03240
2 100 0.01 0.02264
2 500 0.002 0.01002
2 1000 0.001 0.00708

3 50 0.02 0.02794
3 100 0.01 0.01933
3 500 0.002 0.00849
3 1000 0.001 0.00599

Table 6.8: Results for the errors of the Galerkin method applied to integral equations Bv =
σu with multiplier functions m(s) = sα for different values of n and α

(dashed line) this statement is confirmed. From the dashed line we also see that the
smallest computed singular values (i.e. those that are close to the matrix size n) are
very inaccurate. Therefore we only consider the largest singular values and the plots
suggest, that their asymptotics are

σapprox
n (B) = g(α)O(n−1),

where g is a monotone decreasing function depending on α. Therefore the reciprocal
value

1

σapprox
n (B)

would yield a linear function in n. Knowing that, we are going to determine the values
1

s(n)
i

, i = 1, . . . ,10 for the first ten computed singular values. Then we apply curve fitting

to those values, assuming that

1

σapprox
n (B)

= dn+ f ,

and summarize the results for different values of α and constant n = 1000 in table 6.9.
From this table we observe a regularity for the coefficients d and f . Both coefficients
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Figure 6.7: Computed singular values of integral equation Bv = σu for n = 100, multiplier
function m(s) = sα and α = 1 together with error bound

α n d f
d
π

f
π

0 1000 3.1418 -1.5714 1.0001 -0.5002
0.5 1000 4.7196 -2.8081 1.5023 -0.8938
1 1000 6.3002 -4.0655 2.0054 -1.2941

1.5 1000 7.8826 -5.3362 2.5091 -1.6986
2 1000 9.4666 -6.6166 3.0133 -2.1061

2.5 1000 11.0517 -7.9046 3.5179 -2.5161
3 1000 12.6378 -9.1990 4.0228 -2.9281

3.5 1000 14.2253 -10.4990 4.5280 -3.3419
4 1000 15.8135 -11.8040 5.0336 -3.7573

Table 6.9: Coefficients of the best fitting first order polynomial1σn
= dn + f for singular

value asymptotics for multiplier function m(s) = sα with n = 1000 and several
values of α

are linear in α, we therefore conjecture

1

σapprox
n (B)

= (α+1)πn+O(α) (6.51)

for the singular values of the integral operator (4.1) with multiplier function m(s) = sα.
Hence, the computed approximate singular values of this integral operator have the
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6.2. The Galerkin method for the Fredholm integral equation of the first kind

asymptotics

σapprox
n (B) ∼ 1

(α+1)πn
,

something we have already observed in section 6.1.3. To this end the multiplier function
only influences the coefficient for n−1 (i.e. the constants C and C in (3.14)), but the
degree of ill-posedness does not change. This is the same observation as we made in
section 6.1.3.

6.2.4 Multiplier functions of the form m(s) = e−
1

sα

Now, we are going to apply the Galerkin method to the problem (4.1) with special mul-

tiplier functions m(s) = e−
1

sα for different values of α. The orthonormal basis functions
{Ψ j} and {Φ j} are chosen as in (6.47) and (6.48). Then we get the following entries
for the lower triangular matrix A from (6.34):

ai j =



















1
h

Z si+1

si

m(s)(s− si)ds, if i = j,
Z si+1

si

m(s)ds, if j < i,

0, else

(6.52)

This time, these functions cannot be integrated analytically and so we determine the
entries of A using numerical integration. Then we compute the SVD of this matrix A
for several values of n = 1

h and α. As above we compute the first 10 singular values of

largest magnitude and determine the error δn =
√

‖K‖2 −‖A‖2
F for different n and α

as given in (6.41). We have to compute ‖K‖, given by

‖K‖2 =
Z 1

0
m(s)2sds, (6.53)

as well as ‖A‖F numerically. The results are summarized in table 6.10. Since each
entry of the matrix has to be computed by a numerical integration, the construction of
the matrix takes a very long time. Hence, we keep n, the size of the matrices restricted
to n = 200. We see, that δn → 0 as n → ∞ and therefore, we follow, that the alge-
braic singular values converge to the true ones. We are interested in the singular value
asymptotics. We compute the first 10 singular values s1, . . . ,s10 of largest magnitude
for a fixed value of n = 200 and plot them in figure 6.8. Since the plots suggest that

the computed singular values sn are proportional to
1
n

, we are going to consider the

logarithmic scale plot for all computed singular values for n = 100 and several values
of α again. The results are shown in figure 6.9. We observe that the plots in logarithmic
scaling have the same gradients, with shifts in direction of the y-axis for different values
of α. Using the Galerkin method for the integral equation, we do not have any difficul-
ties with boundary conditions such as in with the finite difference method. Moreover,
proposition 6.2 supplies error bounds for the computed singular values.
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α n h δn

0 50 0.02 0.02601
0 100 0.01 0.01839
0 200 0.005 0.01301

0.1 50 0.02 0.02362
0.1 100 0.01 0.01669
0.1 200 0.005 0.01179

0.3 50 0.02 0.01994
0.3 100 0.01 0.01407
0.3 200 0.005 0.00994

0.5 50 0.02 0.01747
0.5 100 0.01 0.01231
0.5 200 0.005 0.00869

1 50 0.02 0.01390
1 100 0.01 0.00976
1 200 0.005 0.00687

Table 6.10: Results for the errors of the Galerkin method applied to integral equations
Bv = σu with multiplier functions m(s) = e−

1
sα for different values of n and α
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Figure 6.8: First 10 computed singular values of integral equation Bv = σu for multiplier
function m(s) = e−

1
sα , n = 200 and different values for α using a Galerkin

method
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The gradient that we observe in figure 6.9 for the computed singular values of
largest magnitude is −1. The computed singular values of small magnitude are no
good approximations to the true singular values, since the error increases, the smaller
the computed singular values get. We refer to the discussion in section 6.2.3. Again,
the plots suggest, that the singular values have the asymptotics

σapprox
n (B) = g(α)O(n−1).

Then the reciprocal value
1

σapprox
n (B)

yields a linear function in n. By the same examination as in the previous section, i.e.
assuming that

1

σapprox
n (B)

= dn+ f ,

we obtain the values in table 6.11. We observe that the coefficients d are linear in α and
therefore conjecture

1

σapprox
n (B)

= h(α)πn+O(α) (6.54)

for some function h(α) and for the singular values of the integral operator (4.1) with

multiplier function m(s) = e−
1

sα . We may also compare the values of d in table 6.11
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Figure 6.9: Computed singular values of integral equation Bv = σu for n = 100, multiplier
function m(s) = e−

1
sα and different values for α in logarithmic scales
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α n d f
d
π

f
π

0 200 8.5555 -4.3129 2.7233 -1.3728
0.1 200 9.4918 -5.0727 3.0213 -1.6147
0.2 200 10.5682 -5.9964 3.3639 -1.9087
0.3 200 11.7514 -7.0389 3.7406 -2.2406
0.4 200 13.0094 -8.1580 4.1410 -2.5968
0.5 200 14.3184 -9.3250 4.5577 -2.9682
1 200 21.2426 -15.5019 6.7617 -4.9344

Table 6.11: Coefficients of the best fitting first order polynomial1σn
= dn + f for singular

value asymptotics for multiplier function m(s) = e−
1

sα with n = 200 and several
values of α

with the coefficients a in table 6.6 and we will see that a ≈ d2. Hence, the computed
singular values of this integral operator have the asymptotics

σapprox
n (B) ∼ 1

(lα+ e)πn
, l > 1

as we have already stated in section 6.1.4. The value of l can be computed by examining
the coefficients d. Then we get l ≈ 4.3. As in section 6.1.4 we can certainly always
state

σapprox
n (B) ≥ 1

(eα+1)πn
. (6.55)

Hence, the multiplier function only seems to influence the coefficient for n−1, but the
degree of ill-posedness remains the same. For more details on the influence on the
constant we refer to section 6.5.

6.3 The Rayleigh-Ritz method for symmetric kernels
and the generalized eigenvalue problem

6.3.1 Introduction

The Rayleigh-Ritz method is a special case of Galerkin’s method, although the method
by Galerkin can be applied to non-Hermitian kernels. However, the Rayleigh-Ritz
method for a Hermitian kernel is of special interest because we can guarantee one-sided
bounds on the true eigenvalues.

We consider the self-adjoint integral operator B∗B from (4.26) in section 4.2.3

[B∗Bx](τ) =
Z 1

0
K(t,τ)x(t)dt. (6.56)
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with kernel K ∈ L2(0,1) from (4.28), given by

K(t,τ) =
Z 1

max(t,τ)
m2(s)ds, (6.57)

knowing that we have to solve the eigenvalue problem (in operator notation)

B∗Bu = λu, (6.58)

in order to obtain the singular values σ =
√

λ, where the singular value problem is given
by

Bu = σv or B∗v = σu.

For convenience we set K := B∗B for the self-adjoint integral operator. The norm of K
is given by

‖K‖2 =
Z 1

0

Z 1

0
(K(t,τ))2dtdτ,

as in the previous section. The algebraic eigenvalue decomposition of a real square
matrix A ∈ Rn,n is given by (see for example [13])

A = QΛQT =
n

∑
j=1

λ jq jqT
j , (6.59)

where Λ is the diagonal matrix of eigenvalues

Λ = diag(l1, l2, . . . , ln) ∈ R
n,n,

and Q is the orthogonal matrix whose columns are eigenvectors,

Q = [q1,q1, . . . ,qn] ∈ R
n,n.

Note that the singular value decomposition of a matrix C , given by C =UΣV T is closely
related to the eigendecomposition of the symmetric matrices C ∗C and CC ∗ given by

C ∗C = VΣT ΣV T .

Hence, the algebraic singular values are the roots of the algebraic eigenvalues of C ∗C or
CC ∗, something we have already observed for the infinite dimensional case. Therefore,
for self-adjoint operators the singular values are equal to the eigenvalues of the integral
operator and for symmetric matrices the algebraic eigenvalues are equal to the algebraic
singular values. As in section 6.2 with the theory of Hilbert-Schmidt operators we can
write

‖K‖ =

√

∞

∑
j=1

λ2
j < ∞.
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The matrix norm of A corresponding to the norm of K is again the Frobenius norm,
given by

‖A‖F =

√

n

∑
i=1

n

∑
j=1

a2
i j =

√

n

∑
j=1

l2
j .

Relationships between the eigenvalue expansion for operators in the infinite dimen-
sional space and and the eigenvalue decomposition for real square matrices are similar
to the ones in table 6.7. The main difference is, that the left and right singular func-
tions (or singular vectors respectively) are equal. Then we may use the same results as
Hansen [36] for the special case of symmetric kernels. This special case of symmetric
(or Hermitian) kernels was investigated by Cochran in [10] (Note, that Cochran uses
λ−1 instead of λ) and in [68].

At this stage we are going to state an a posteriori error bound on the local error,
taken from [6].

Proposition 6.3. Suppose that the kernel K(t,τ) in the eigenvalue problem

λx(τ) =

Z 1

0
K(t,τ)x(t)dt

is Hermitian and square integrable for 0 ≤ t,τ≤ 1. If there is a non-zero number λ̃ and
a non-null square integrable function x̃(τ) such that

Z 1

0
K(t,τ)x̃(t)dt− λ̃x̃(τ) = η(τ),

then there is an eigenvalue λ of K(t,τ), such that

|λ̃−λ| ≤ ‖η(τ)‖2

‖x̃(τ)‖2
.

This proposition holds only for Hermitian kernels, and λ̃ and x̃(τ) may have been
produced by any means whatever. For a proof we refer to [6]. The result may be used
to state approximation properties of already computed eigenvalues.

6.3.2 The algorithm and approximation properties

We are going to use the same procedure as in section 6.2, but this time we call it
Rayleigh-Ritz procedure as in [10] and [68], since the Rayleigh quotient plays an im-
portant role. The Rayleigh-Ritz method was also investigated by Baker [6] who states,
that in the case of Hermitian kernels K(t,τ) the Galerkin equations from the previous
section are precisely the equations obtained from the Rayleigh-Ritz method.

Let {Φ j} be a linearly independent set of basis functions in the interval I = [0,1].
Notice that this time we need only one set of basis functions, since for an eigenvalue
expansion we have just one set of eigenfunctions, whereas for a singular value expan-
sion we have left and right singular functions (see previous section). The set {Φ j} also
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does not necessary have to be orthonormal. Then we approximate the eigenfunction u
of operator equation (6.58) by

u(t) =
n

∑
j=1

u jΦ j(t). (6.60)

Hence, equation (6.58) becomes

n

∑
j=1

u j

Z 1

0
K(t,τ)Φ j(t)dt = l(n)

n

∑
j=1

u jΦ j(τ) (0 ≤ τ ≤ 1), (6.61)

where l(n) ≈ λ is the approximate eigenvalue if we choose an n-dimensional subspace.
Multiplying (6.61) by Φi(τ) and integrating with respect to τ yields

n

∑
j=1

u j

Z 1

0

Z 1

0
K(t,τ)Φ j(t)Φi(τ)dtdτ = l(n)

n

∑
j=1

u j

Z 1

0
Φ j(τ)Φi(τ)dτ, (6.62)

or, in an easier notation
n

∑
j=1

ai ju j = l(n)
n

∑
j=1

ci ju j, (6.63)

where

ai j =

Z 1

0

Z 1

0
K(t,τ)Φ j(t)Φi(τ)dtdτ

= 〈KΦ j,Φi〉L2(0,1), i, j = 1, . . . ,n

ci j =

Z 1

0
Φ j(τ)Φi(τ)dτ

= 〈Φ j,Φi〉L2(0,1), i, j = 1, . . . ,n

in the normal inner product in L2(0,1). Therefore the equation (6.58) in operator form

B∗Bu := Ku = λu

becomes
Au = l(n)Cu,

where u is a vector in Rn and A ∈ Rn,n and C ∈ Rn,n are matrices. Hence, the eigen-
problem (6.58) in L2(0,1) becomes a generalized eigenvalue problem in Rn, which is
given by

[〈BΦ j,BΦi〉L2(0,1)]u = l(n)[〈Φ j,Φi〉L2(0,1)]u, i, j = 1, . . . ,n, (6.64)

using the definitions of A and C and knowing that 〈B∗Bx,y〉 = 〈Bx,By〉. Notice that for
orthonormal sets of basis functions {Φ j} we have ci j = δi j and therefore C = I holds.
Then (6.64) becomes a standard eigenvalue problem. Also note that if we would have
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used non-orthonormal basis functions for the singular value problem in the previous
section 6.2 we would have got a generalized singular value problem.

By solving the generalized eigenproblem (6.64) for A and C we will get approxi-
mations to the true eigenvalues of K = B∗B. This was shown in Cochran [10] and is
actually a special case of the results obtained by Hansen [36]. First we will summarize
the algorithm:

Algorithm 6.3 (Rayleigh-Ritz method).

1. Choose {Φ j}, a linearly independent (or even orthonormal set) of basis functions
in the intervals I = (0,1).

2. Determine the matrices A ∈ R
n,n and C ∈ R

n,n with

ai j = 〈KΦ j,Φi〉L2(0,1) = 〈BΦ j,BΦi〉L2(0,1) i, j = 1, . . . ,n (6.65)

and
ci j = 〈Φ j,Φi〉L2(0,1) i, j = 1, . . . ,n (6.66)

3. Compute the eigenvalue decomposition of the (generalized) eigenvalue problem

Au = l(n)Cu.

We are now going to examine the approximation properties of the algorithm given

above. The generalized eigenvalues l(n)
i of (A,C) are approximations to the eigenvalues

of K. again, we can use proposition 6.2. Obviously this proposition also holds for
symmetric kernels K. The functional F[Φ,Ψ] from definition 6.4 becomes the Rayleigh
quotient (see [10])

R[Φ] :=
〈KΦ,Φ〉
‖Φ‖2 ,

and the eigenvalues λi of the real square integrable symmetric kernel K are the station-
ary values of this functional. The corresponding orthonormal left and right eigenfunc-

tions are equal and given by
Φ

‖Φ‖ . Then the algebraic singular values si of lemma 6.1

correspond to the algebraic eigenvalues li for the symmetric problem and the left and
right singular functions ũi and ṽi are equal and correspond to the eigenfunctions. Fur-
thermore the functional G in (6.39) becomes the algebraic Rayleigh quotient (see [26])
of a symmetric matrix A

R[x] =
xT Ax
‖x‖2 .

Again, if the basis functions are not orthonormal (the case that we actually want to
consider in this section) then the algorithm leads to the computation of the stationary
values of

RC[x] =
xT Ax
xTCx

. (6.67)
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with a symmetric matrix C whose elements are given by

ci j = 〈Φ j,Φi〉L2(0,1) i, j = 1, . . . ,n.

We will see, that C ∈ Rn,n is a symmetric positive definite matrix and therefore we
can do a Cholesky factorization of this matrix. There exists a unique lower triangular
matrix G ∈ R

n,n such that C = GGT . Substituting x̄ = GT x into (6.67) leads to

R[x̄] =
x̄T Āx̄
‖x̄‖ . (6.68)

Hence, we obtain the Rayleigh quotient for changed variables. The analysis stays the
same as for unchanged variables. We are going to summarize the approximation results
for the Rayleigh-Ritz method for Hermitian kernels in the following propositions taken
from [6]

Proposition 6.4 (Cochran 1972,Baker 1977). Suppose that K(t,τ), 0 ≤ t,τ ≤ 1 is
Hermitian, positive definite and square integrable. If

ci j = 〈Φ j,Φi〉L2(0,1) = δi j, i, j = 1, . . . ,n

and
ai j = 〈KΦ j,Φi〉L2(0,1), i, j = 1, . . . ,n

is the matrix used in the Rayleigh-Ritz method, then the algebraic eigenvalues l(n)
i sat-

isfying
Au = l(n)u,

where n is the number of basis functions, are increasingly better approximations to the
true eigenvalues λi,

l(n)
i ≤ l(n+1)

i ≤ λi, i = 1, . . . ,n, (6.69)

and the algebraic eigenvalues l(n)
i exist. Furthermore, if

ci j = 〈Φ j,Φi〉L2(0,1) 6= δi j, i, j = 1, . . . ,n

and {Φi}n
i=1 are square integrable on [0,1]. If l(n)

i is the ith positive eigenvalue satisfy-
ing

(A− l(n)C)u = 0,

then inequality (6.69) holds, too.

Proof. We will state the proof by Baker, see [6, page 316]. If K(t,τ) is Hermitian and
positive definite then its real eigenvalues are

λ1 ≥ λ2 ≥ . . . ≥ λn ≥ . . . → 0, n → ∞.
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If λi exists, it may be characterized by the relation

λi = λi(K) = sup
Si

inf
Φ(t)∈Si
‖Φ(t)‖2=1

Z 1

0

Z 1

0
K(t,τ)Φ(t)Φ(τ)dtdτ (6.70)

= sup
Si

inf
Φ(t)∈Si
‖Φ(t)‖2=1

〈KΦ,Φ〉L2(0,1), (6.71)

where Si denotes some linear subspace, of square integrable functions, with dimension
i. Notice the link to the Minimum-maximum principle by Poincaré and Fischer from
lemma 4.1, where we stated this result for the singular values. Note that, since K =
K∗, 〈KΦ,Φ〉L2(0,1) = 〈Φ,KΦ〉L2(0,1). Equation (6.71) provides a natural extension to a
similar characterization of the eigenvalues of a matrix A = A∗ ∈ Rn,n. If we suppose

that the eigenvalues of A are l(n)
1 ≥ l(n)

2 ≥ . . . ≥ l(n)
n then

l(n)
i = l(n)

i (A) = sup
Vi⊆Cn

inf
x∈Vi
x∗x=1

x∗Ax, (6.72)

where Vi denotes an i-dimensional subspace of the space Cn of complex n-vectors. This
follows immediately from the Courant-Fischer Minimax Theorem, for which we refer
to [26]. Now, we are given square integrable functions Φ1,Φ2, . . . such that

ci j = 〈Φ j,Φi〉L2(0,1) = δi j, i, j = 1, . . . ,n.

The functions Φ1,Φ2, . . . ,Φn form a basis of the linear space Sn comprising functions
of the form

Φ(t) =
n

∑
i=1

aiΦi(t),

where

‖Φ(t)‖2 =
n

∑
i=1

|ai|2 = a∗a

with a = [a1,a2, . . . ,an]
T . The correspondence Φ(t) ↔ a establishes an isomorphism

between Sn and C
n.

Suppose that Si is an i-dimensional subspace of Sn. In view of (6.71)

λi(K) ≥ sup
Si⊆Sn

inf
Φ(t)∈Si
‖Φ(t)‖2=1

〈KΦ,Φ〉L2(0,1), (6.73)

In this expression langleKΦ,Φ〉L2(0,1) has the form

〈
n

∑
j=1

a jKΦ j,
n

∑
i=1

aiΦi〉L2(0,1) =
n

∑
i=1

n

∑
j=1

āia j〈KΦ j,Φi〉L2(0,1),

since Φ(t) ∈ Si ⊆ Sn. This equation is of the form

a∗Aa, where A = A∗ = [〈KΦ j,Φi〉L2(0,1)] = 〈Φ j,KΦi〉L2(0,1).
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Hence the isomorphism Φ(t) ↔ a, where ai = 〈Φ,Phii〉L2(0,1) maps each subspace Si

into an i-dimensional subspace Vi ofCn, and as noted above, ‖Φ(t)‖2 = a∗a. Conse-
quently we may rewrite (6.73)

λi(K) ≥ sup
Vi⊆Cn

inf
a∈Vi
a∗a=1

a∗Aa. (6.74)

From (6.72) it follows that
λi(K) ≥ l(n)

i (A).

Finally, since A = [〈KΦ j,Φi〉L2(0,1)] is the matrix constructed in the Rayleigh-Ritz

method so that l(n)
i (A) = l(n)

i and we obtain the result (6.69).
So far we have assumed that the functions Φi(t) were orthonormal. In practice

this may not be the case and the Rayleigh-Ritz method then entails the solution of the
eigenvalue problem

(A− l(n)C)u = 0,

where ai j and ci j are given as in the proposition and Φ1,Φ2, . . . ,Φn are linearly inde-
pendent. Then the above consideration may be modified to cover this case. We require
a slightly modified form of (6.71)

λi(K) = sup
Si

inf
Φ(t)∈Si
‖Φ(t)‖2 6=0

〈KΦ,Φ〉L2(0,1)

〈Φ,Φ〉L2(0,1)

. (6.75)

The equivalence to (6.71) is established by setting Ψ(t) =
Φ(t)

‖Φ(t)‖2
in (6.75). Now sup-

pose

Φ(t) =
n

∑
i=1

aiΦi(t),

where Φ1,Φ2, . . . ,Φn are linearly independent. Then

〈Φ,Φ〉L2(0,1) =
n

∑
i=1

n

∑
j=1

ai āj〈Φi,Φ j〉L2(0,1) = a∗Ca,

where ci j = 〈Φi,Φ j〉L2(0,1) and C = C∗ is positive definite. When Sn is defined as the
spaces spanned by Φ1,Φ2, . . . ,Φn, then

λi(K) ≥ sup
Si⊆Sn

inf
Φ(t)∈Si
‖Φ(t)‖2 6=0

〈KΦ,Φ〉L2(0,1)

〈Φ,Φ〉L2(0,1)

= sup
Vi⊆Cn

inf
a∈Vi

a∗Ca6=0

a∗Aa
a∗Ca

= sup
Vi⊆Cn

inf
a∈Vi
a6=0

a∗Aa
a∗Ca

,
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where Vi is an i-dimensional subspace of Cn. Hence the last equation characterizes

the ith positive eigenvalue l(n)
i and we have extended the result (6.69) to generalized

eigenvalue problems.

Notice that Baker [6] has stated the results not only for positive definite kernels,
but we only need them for the case of positive definite kernel functions.As in proposi-
tion 6.2 for the Galerkin method where we got error bounds on the computed singular
values, we get error bounds on the computed eigenvalues by using the Rayleigh-Ritz
method.

Proposition 6.5 (Cochran 1972,Baker 1977). Under the conditions of proposition 6.4,

the errors of the approximate singular values l(n)
i are bounded by

0 ≤ λi− l(n)
i ≤ ‖K − K̃n‖, i = 1, . . . ,n, (6.76)

where K and K̃n are the integral operators with Hermitian kernels K(t,τ) and K̃n(t,τ),
where

K̃n(t,τ) =
n

∑
i=1

n

∑
j=1

〈KΦ j,Φi〉L2(0,1)Φi(t)Φ j(τ). (6.77)

Furthermore, we obtain

0 ≤ λi− l(n)
i ≤

(

Z 1

0

Z 1

0
K(t,τ)2dtdτ−

n

∑
i=1

n

∑
j=1

a2
i j

)
1
2

, i = 1, . . . ,n. (6.78)

Note the similarity of equation (6.77) to (6.37) and of equation (6.78) to (6.43),
where we defined the norm of K to be

‖K‖2 :=
Z 1

0

Z 1

0
K(t,τ)2dtdτ

and the Frobenius norm of A as

‖A‖2
F :=

n

∑
i=1

n

∑
j=1

a2
i j,

and then we got

0 ≤ λi − l(n)
i ≤

√

‖K‖2 −‖A‖2
F =: δn, i = 1, . . . ,n. (6.79)

Proof. In order to show proposition 6.5 we state the proof given in [6].
Suppose that the functions Φ1,Φ2, . . . ,Φn are orthonormal. Then the non-zero

eigenvalues l(n)
i of the matrix A = [〈KΦ j,Φi〉L2(0,1)] are precisely the non-zero eigen-

values of the Hermitian degenerate kernel

K̃n(t,τ) =
n

∑
i=1

n

∑
j=1

ai jΦi(t)Φ j(τ).
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Notice that the kernel may be written in the form

n

∑
i=1

(

n

∑
j=1

ai jΦi(t)

)

Φ j(τ)

so that its non-zero eigenvalues are those of the matrix with the i j-th element

ai j =∈1
0 Φi(τ)

n

∑
k=1

ak jΦk(τ)dτ.

Comparing the eigenvalues λi and l(n)
i we obtain (see Baker [6])

|λi− l(n)
i | ≤ ρ(K − K̃n) ≤ ‖K − K̃n‖2.

Together with the conditions of proposition 6.4 we obtain the first result (6.76)

0 ≤ λi− l(n)
i ≤ ‖K − K̃n‖, i = 1, . . . ,n.

Inequality (6.78) may be shown in the same way as the error bound (6.41) in proposition
6.2 and by applying the definition of ‖K‖ and ‖A‖F .

We may also obtain results for the approximate eigenvalues using the Rayleigh-
Ritz method that correspond to inequalities (6.44) and (6.45) for approximate singular
values obtained by Galerkin’s method. For those results we refer also to [6] and [10].
Hence, propositions 6.4 and 6.5 imply that if δn → 0 as n → ∞, then the approximate

eigenvalues l(n)
i converge uniformly in n to the true eigenvalues λi, and the correspond-

ing approximate eigenfunctions ũi converges in the mean to the true eigenfunctions.
Furthermore, the Rayleigh-Ritz method always gives lower bounds for the first n eigen-
values of the operator K.

Finally, we want to make some remarks on the convergence of the eigenvalues (and
eigenfunctions respectively). When Φ1(t),Φ2(t), . . .,Φn(t) are part of a complete or-
thonormal set {Φ}, the convergence of the eigenvalues is immediate. To be precise, if
K(t,τ) is square integrable and the functions {Φ} are complete, then

lim
n→∞

Z 1

0

Z 1

0
|K(t,τ)− K̃n(t,τ)|2dtdτ = 0,

where

K̃n(t,τ) =
n

∑
i=1

n

∑
j=1

ai jΦi(t)Φ j(τ)

and ai j = 〈KΦ j,Φi〉L2(0,1), i, j = 1, . . . ,n. For a proof we refer to Courant and Hilbert
[12, page 43].

Then we finally get the following proposition from [6].
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Proposition 6.6. If the conditions of proposition 6.4 are satisfied and {Φ1(t),Φ2(t), . . .}
is a complete orthonormal system in L2(0,1), then

lim
n→∞

|λi− l(n)
i | = 0.

Note the similarity of inequality (6.43) in proposition 6.2 and of inequality (6.76)
in proposition 6.5 to the inequality in the following proposition by Parlett [70]:

Proposition 6.7. Let A be a symmetric n-by-n matrix and Q be any orthonormal n-by-
m matrix. Associated with it are the submatrix H (= Q∗AQ) and R(= AQ−QH ), the
residual matrix. There are m eigenvalues of A , {φ j′, j = 1, . . . ,m} which can be put in
one-to-one correspondence with the eigenvalues θ j of H in such a way that

|θ j −φ j′| ≤ ‖R‖, j = 1, . . . ,m.

For a proof, see [70]. Proposition 6.7 states, how eigenvalues of a symmetric n-by-n
matrix A are approximated by the eigenvalues of H , where H is the restriction of A to
range(Q), i.e. to an m-dimensional subspace of the original n-dimensional space, where
m < n. In proposition 6.2 we have got a more general result: The eigenvalues of an
infinite dimensional operator are approximated by eigenvalues of a finite dimensional
operator in a finite dimensional subspace. In proposition 6.2 we have stated this result
for singular values, but the same holds for the eigenvalues of symmetric operators which
we have stated in 6.4 and 6.5.

6.3.3 Multiplier functions of the form m(s) = sα

We are going to apply the Rayleigh-Ritz method to operator B∗B from (4.26) in section
4.2.3,

[B∗Bx](τ) =
Z 1

0
K(t,τ)x(t)dt, (6.80)

with kernel K ∈ L2(0,1) from (4.28), given by

K(t,τ) =

Z 1

max(t,τ)
m2(s)ds, (6.81)

in order to compute its eigenvalues. We consider multiplier function m(s) = sα for
several values of α. The basis functions {Φ j} are chosen to be piecewise linear inter-
polations. The interval Is = It = I = [0,1] is divided into n subintervals [t j, t j+1] of the
same length h. On each interval I, Φ j is a piecewise linear function given by

Φ j(t) =















t − t j−1

h
, t ∈ [t j−1, t j]

t j+1− t

h
, t ∈ [t j, t j+1]

0, else

, j = 1, . . . ,n−1. (6.82)

86



6.3. The Rayleigh-Ritz method for symmetric kernels and the generalized eigenvalue problem

For an illustration of (6.82), see for example [53, page 71]. Then the entries of matrix
C from (6.66) are given by

ci j =



















2
3

h, if i = j,
1
6

h, if |i− j| = 1,

0, else

. (6.83)

Furthermore we get

[BΦ j](s) =
m(s)

h
·



























h2, if t j−1 ≤ s, t j ≤ s, t j+1 ≤ s,

h2 − (t j+1− s)2

2
, if t j−1 ≤ s, t j ≤ s, t j+1 > s,

(s− t j−1)
2

2
, if t j−1 ≤ s, t j > s, t j+1 > s,

0, if t j−1 > s, t j > s, t j+1 > s

. (6.84)

for [BΦ j](s) in (6.65). Then we may calculate the entries of matrix A using (6.65) and
(6.84) and obtain

ai j =

Z 1

t j+1

m(s)2h2ds+ ãi j, (6.85)

where ãi j is given by

ãi j =



























































































Z t j

t j−1

m(s)2

h2

(s− t j−1)
4

4
ds

+

Z t j+1

t j

m(s)2

h2

(

h2 − (t j+1− s)2

2

)2

ds, if i = j,
Z t j

t j−1

m(s)2

h2

(s− t j−1)
2

2

(

h2 − (t j − s)2

2

)

ds

+
Z t j+1

t j

m(s)2
(

h2 − (t j+1− s)2

2

)

ds, if |i− j| = 1,

Z t j

t j−1

m(s)2 (s− t j−1)
2

2
ds

+

Z t j+1

t j

m(s)2
(

h2 − (t j+1− s)2

2

)

ds, if |i− j| ≥ 2,

. (6.86)

Obviously the matrix A is symmetric, since the operator K := B∗B was self-adjoint. For
m(s) = sα we can integrate these functions analytically and determine the entries of A
easily and even exactly. After setting up the matrices A and C we can determine the
generalized eigenvalues of (A,C) by computing l(n) in

Au = l(n)Cu.
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Figure 6.10: First 10 computed eigenvalues of integral equation B∗Bu = λu for multiplier
function m(s) = sα, n = 1000 and different values for α using a Rayleigh-Ritz
method

Since we are interested in the eigenvalue asymptotics, we compute the first 10 eigen-
values l1, . . . , l10 of largest magnitude for a fixed value of n = 1000 and plot them in
figure 6.10. Since the plots suggest that the computed eigenvalues l(n) are proportional

to
1
nx for some x, we are going to consider the logarithmic scale plot for all computed

singular values for n = 100 and several values of α. The results are shown in figure
6.11. In order to simplify a comparison, we take the same axis as in figure 6.6. In fig-
ure 6.11, we observe that the plots in logarithmic scaling have the same gradients, with
shifts in direction of the y-axis for different values of α. If we compare the plots with
the ones in figure 6.6 we observe that the gradient is larger. As the Galerkin method
the Rayleigh-Ritz method for the integral equation does not yield any problems with
boundary conditions such as with the finite difference method. Moreover, proposition
6.2 even supplies error bounds for the computed eigenvalues.

In table 6.12 we have summarized the error δn as given in (6.41) for several n and

α. The error is computed by δn =
√

‖K‖2 −‖Ā‖2
F . We can determine ‖K‖ by

‖K‖2 =
Z 1

0

Z 1

0
|k(t,τ)|2dtdτ

=

Z 1

0

Z 1

0

(

Z 1

max(t,τ)
m2(s)ds

)2

dtdτ.
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Figure 6.11: Computed eigenvalues of integral equation B∗Bu = λu for n = 100, multiplier
function m(s) = sα and different values for α in logarithmic scales

For the special multiplier function m(s) = sα we may determine ‖K‖ explicitly:

‖K‖ =
1

√

2(α+1)(2α+3)
. (6.87)

The value of ‖Ā‖F can be computed numerically. Note that we have to determine the
Frobenius norm of Ā = HT AG−T this time, since the basis functions are not orthonor-
mal an we have to do a variable change via Cholesky factorization. From table 6.12 we
see, that δn → 0 as n → ∞ and therefore, we may follow, that the algebraic eigenvalues
converge to the true ones. If we compare the results in table 6.12 to the ones in table
6.8, we notice that the error δn is smaller for each n when we use the Rayleigh-Ritz
method. This is due to the use of piecewise linear functions as basis functions. They
are better approximations to the true eigenfunctions than the piecewise constant basis
functions which we used in section 6.2.

The gradient that we can observe in figure 6.11 for the computed eigenvalues of B∗B
of largest magnitude is −2. Again, the computed eigenvalues of small magnitude are no
good approximations to the true eigenvalues, since the error increases, the smaller the
computed eigenvalues get. This effect is illustrated in figure 6.12. For a better overview
we only consider the special integral equation with multiplier function m(s) = sα for
α = 1. From figure 6.12 and with the help of proposition 6.2 we follow, that the true
singular values lie between the thick solid and the dotted line. After determining the
first 100 eigenvalues of largest magnitude for n = 1000 (dashed line) this statement is
confirmed. The dashed line suggests that the smallest computed eigenvalues (i.e. those
that are close to the matrix size n) are inaccurate. Hence, only the largest eigenvalues
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α n h δn

0 50 0.02 0.07973
0 100 0.01 0.05640
0 500 0.002 0.02523
0 1000 0.001 0.01784

1 50 0.02 0.03712
1 100 0.01 0.02619
1 500 0.002 0.01169
1 1000 0.001 0.00826

2 50 0.02 0.02427
2 100 0.01 0.01709
2 500 0.002 0.00761
2 1000 0.001 0.00538

3 50 0.02 0.01806
3 100 0.01 0.01270
3 500 0.002 0.00565
3 1000 0.001 0.00399

Table 6.12: Results for the errors of the Rayleigh-Ritz method applied to integral equations
B∗Bu = λu with multiplier functions m(s) = sα for different values of n and α

are considered and the plots in 6.11 suggest that their asymptotics are

λapprox
n (B∗B) = p(α)O(n−2),

where p is a monotone decreasing function depending on α. Therefore the reciprocal
value

1

λapprox
n (B∗B)

would yield a quadratic function in n. Knowing that, we are going to determine the

values
1

l(n)
i

, i = 1, . . . ,10 for the first ten computed eigenvalues. As in the previous

sections we apply curve fitting to those values, assuming that

1

λapprox
n (B∗B)

= an2 +bn+ c,

and summarize the results for different values of α and constant n = 1000 in table
6.13. From this table we observe a regularity for the coefficients a, b and c. All three
coefficients are quadratic in α. Knowing that

1
λn

=
π2(2n−1)2

4
= π2n2 −π2n+

π2

4
, n ∈ N (6.88)
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Figure 6.12: Computed eigenvalues of integral equation B∗Bu = λu for n = 100, multiplier
function m(s) = sα and α = 1 together with error bound

α n a b c
a
π2

b
π2

c
π2

0 1000 9.8753 -9.8753 2.4688 1.0006 -1.0006 0.2501
0.5 1000 22.2104 -25.9193 7.1664 2.2503 -2.6262 0.7261
1 1000 39.4841 -49.3940 14.3330 4.0006 -5.0047 1.4522

1.5 1000 61.6946 -80.2924 23.9628 6.2509 -8.1353 2.4279
2 1000 88.8416 -118.6141 36.0557 9.0015 -12.0181 3.6532

2.5 1000 120.9249 -164.3582 50.6112 12.2522 -16.6529 5.1280
3 1000 157.9446 -217.5254 67.6303 16.0031 -22.0399 6.8524

3.5 1000 199.9006 -287.1146 87.1116 20.2542 -28.1789 8.8262
4 1000 246.7929 -346.1268 109.0564 25.0059 -35.0700 11.0497

Table 6.13: Coefficients of the best fitting second order polynomial 1
λn

= an2 + bn + c for
eigenvalue asymptotics for multiplier function m(s) = sα with n = 1000 and
several values of α

from (6.16) for the trivial problem without multiplier function we conjecture

1

λapprox
n (B∗B)

= π2(q(α)n2 + r(α)n+ s(α)) (6.89)

for the eigenvalues of the integral operator B∗B with multiplier function m(s) = sα. We
may determine the functions q(α), r(α) and s(α) which are quadratic functions in α
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using the values in table 6.13 and applying polynomial curve fitting. Then we get

q(α) = (α+1)2,

r(α) = −
(

3
2

α2 +
5
2

α+1

)

,

s(α) =
1
2

α2 +

√
2

2
α+

1
4
.

Notice that this result does not yield a contradiction to the results for α = 0 (i.e. no
multiplier function), where we know the analytic solution which is given by (6.88).

Hence, we may conjecture that the eigenvalues of integral operator B∗B with multi-
plier function m(s) = sα have the asymptotics

λapprox
n (B∗B) ∼ 1

(α+1)2π2n2 .

Knowing that the singular values of B are given by the square roots of the positive
eigenvalues of B∗B (or BB∗), we get

σapprox
n (B) ∼ 1

(α+1)πn
.

something that we have already observed in section 6.1.3 and 6.2.3. Therefore, multi-
plier functions of the form m(s) = sα only influence the coefficient for n−1, in the same
way as we have already stated in sections 6.1.3 and 6.2.3.

6.3.4 Multiplier functions of the form m(s) = e−
1

sα

Now, we are now going to apply the Rayleigh-Ritz method described above to the
integral operator equation B∗Bu = λu from (6.56) with special multiplier functions

m(s) = e−
1

sα for several values of α. The linearly independent non-orthonormal basis
functions {Φ j} are chosen to be the same as in (6.82). Then the entries for the matrices
A and C can be determined like the ones in (6.85) and (6.83). This time the entries of A

have to be computed by numerical integration, since the integrals m(s) = e−
1

sα cannot
be determined analytically. After setting up the symmetric matrices A and C we can
determine the generalized eigenvalues of (A,C)

Au = l(n)Cu

for several values of n = 1
h and α. As before we compute the first 10 eigenvalues of

largest magnitude and determine the error δn =
√

‖K‖2−‖Ā‖2
F as given in (6.41). We

have to compute ‖K‖, given by

‖K‖2 =

Z 1

0

Z 1

0

(

Z 1

max(t,τ)
m2(s)ds

)2

dtdτ. (6.90)
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α n h δn

0 50 0.02 0.01079
0 100 0.01 0.00763
0 200 0.005 0.00540

0.1 50 0.02 0.00962
0.1 100 0.01 0.00680
0.1 200 0.005 0.00481

0.3 50 0.02 0.00776
0.3 100 0.01 0.00548
0.3 200 0.005 0.00388

0.5 50 0.02 0.00643
0.5 100 0.01 0.00454
0.5 200 0.005 0.00320

1 50 0.02 0.00443
1 100 0.01 0.00312
1 200 0.005 0.00220

Table 6.14: Results for the errors of the Rayleigh-Ritz method applied to integral equations
B∗Bu = λu with multiplier functions m(s) = e−

1
sα for different values of n and

α

as well as ‖Ā‖F numerically. The results are summarized in table 6.14. Proposition
6.2 provides error bounds for the computed eigenvalues. We observe that δn → 0 as
n → ∞ and therefore we may follow that the algebraic eigenvalues converge to the true
ones. Hence, we are interested in the eigenvalue asymptotics. We compute the first 10
eigenvalues l1, . . . , l10 of largest magnitude for a fixed value of n = 200 and plot them in
figure 6.13. Since the plots suggest that the computed eigenvalues l(n) are proportional

to
1
nx for some x, we are going to consider the logarithmic scale plot for all computed

eigenvalues and n = 100 and several values of α again. The results are shown in figure
6.14. In order to simplify a comparison, we take the same axis as in figure 6.9. As
before, in figure 6.14 we observe that the plots in logarithmic scaling have the same
gradients, with shifts in direction of the y-axis for different values of α.

The gradient that we observe in figure 6.14 for the computed singular values of
largest magnitude is −2. The computed eigenvalues of small magnitude are no good
approximations to the true eigenvalues, since the error increases, the smaller the com-
puted eigenvalues become. We refer to the discussion in section 6.3.3. Again, the plots
suggest, that the eigenvalues have the asymptotics

λapprox
n (B∗B) = p(α)O(n−2),
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yields a quadratic function in n. By the same examination as in the previous section,
i.e. assuming that

1

λapprox
n (B∗B)

= an2 +bn+ c,

we obtain the values in table 6.15. From this table we observe a regularity for the

α n a b c
a
π2

b
π2

c
π2

0 200 73.1389 -73.1439 18.2920 7.4105 -7.4110 1.8534
0.1 200 89.9191 -95.2912 25.2915 9.1107 -9.6550 2.5626
0.2 200 111.4622 -126.2863 36.7695 11.2935 -12.7955 3.7255
0.3 200 137.8438 -165.9935 52.3591 13.9665 -16.8187 5.3051
0.4 200 168.9138 -213.6950 71.3029 17.1145 -21.6518 7.2245
0.5 200 204.5018 -268.7980 93.0755 20.7204 -27.2350 9.4305
1 200 446.9897 -647.5496 239.2323 45.2895 -65.6105 24.2393

Table 6.15: Coefficients of the best fitting second order polynomial 1
λn

= an2 + bn + c for

eigenvalue asymptotics for multiplier function m(s) = e−
1

sα with n = 200 and
several values of α

coefficients a, b and c. As before, we conjecture

1

λapprox
n (B∗B)

= π2(q(α)n2 + r(α)n+ s(α)) (6.91)

for the eigenvalues of the integral operator B∗B with multiplier function m(s) = e−
1

sα

for some functions q, r and s depending on α. We will determine those functions by
using the values in table 6.15 and by applying curve fitting. Then we get

q(α) ≈ 22.65α2 +15.28α+7.38,

r(α) ≈ −(37.5α2 +20.88α+7.27),

s(α) ≈ 14.8α2 +7.75α+1.72.

Note that these are only approximate results, we do not get such convenient coefficients
as for multiplier functions of the form m(s) = sα. The results do not yield a contradic-
tion to the results for α = 0 (i.e. multiplier function e ≈ 2.718), where we know the
analytic solution from (6.88) which is given by

1
λn

= e2 π2(2n−1)2

4
= e2π2n2 − e2π2n+ e2 π2

4
, n ∈ N. (6.92)

Another attempt which is stronger than the above one and which we have already used
in section 6.1.4 provides the inequality

1

λapprox
n (B∗B)

≤ (eα+1)2π2n2,
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but it is hard to find a more exact dependence on α as for multiplier function m(s) = sα.
Hence, we may conjecture, that the eigenvalues of integral operator B∗B with mul-

tiplier function m(s) = e−
1

sα have the asymptotics

λapprox
n (B∗B) ∼ 1

(22.65α2 +15.28α+7.38)π2n2 .

Knowing that the singular values of B are given by the square roots of the positive
eigenvalues of B∗B (or BB∗), we get

σapprox
n (B) ∼ 1√

22.65α2 +15.28α+7.38πn
.

Furthermore we may certainly always state

σapprox
n (B) ≥ 1

(eα+1)πn
, (6.93)

as in section 6.1.4 and 6.2.4. Therefore, multiplier functions of the form m(s) = e−
1

sα

only influence the coefficient for n−1 in the same way as we have stated already in
sections 6.1.4 and 6.2.4, but the degree of ill-posedness remains the same.

6.4 Some further numerical approaches

So far we have seen three numerical approaches for determining the singular values
of integral operator B from (4.1). In this section we are going to state some further
methods, which are closely related to the ones described in sections 6.1, 6.2 and 6.3.

Besides the finite difference approach for the Sturm-Liouville problem

−(au′)′ = λu

we could consider a finite element method for the generalized eigenproblem from (5.8)

[u,η]A = λ〈u,η〉L2(0,1), ∀η ∈ HA. (6.94)

We choose an n-dimensional subspace HÂ := L{u1, . . . ,un} ⊂ HA and trial functions

u =
n

∑
i=1

ziui, u ∈ HÂ.

Then (see for example [31], [24] or [5, page 42]), applying proposition 5.2 we may
state that

λi(Â) ≥ λi(A), i = 1, . . . ,n

holds, i.e. the n approximate eigenvalues

λ1(Â) ≤ λ2(Â) ≤ . . . ≤ λn(Â)
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obtained by the generalized matrix eigenvalue decomposition of

Az = λ̂Bz,

where A = {[u j,uk]A}n
j,k=1 and B = {〈u j,uk〉L2(0,1)}n

j,k=1 are always upper bounds for
the first n exact eigenvalues of the Sturm-Liouville problem −(au′)′ = λu, since the
governing equation is self-adjoint and positive definite. This fact was shown in [25], for
example. There we can also find error bounds for |λi(A)−λi(Â)|. Note that this method
also yields a Ritz-Galerkin method, but this time for the Sturm-Liouville problem (see,
for example [66] or [76]). Using the definitions of displaystyleλ = 1

σ2 from chapter 5,
where σ is the singular value of the integral operator (4.1) we get

σapprox
k (B) ≤ σexact

k (B), k = 1, . . . ,n.

for the singular values of integral operator B. Together with the analytic result (see
chapter 4)

σexact
k (B) ≤Ck−1, k → ∞ (6.95)

we would get upper and lower bounds on the decay rate of the singular values of the
integral operator (4.1). The limitation of this method lies in the approximation of the
boundary condition at the left hand boundary, which we have already seen for the finite
difference methods. We would have to choose linear independent functions ui that
satisfy the boundary condition (6.1).

With the Galerkin and Rayleigh-Ritz methods described in sections 6.2 and 6.3
that are directly applied to the integral operators, we do not have any difficulties with
boundary conditions. Hence, the Galerkin method applied to the integral equation (4.1)
which yields the singular value problem

Bu = σv,

with integral operator B or the Rayleigh-Ritz method applied to the integral equation
(4.26) which yields the eigenvalue problem

B∗Bu = λu,

with integral operator B∗B, where σ =
√

λ, are more reliable than the methods for the
Sturm-Liouville problem and we even obtain error bounds through proposition 6.2.

Note that we called the approach, where we computed the singular value decom-
position, the Galerkin method and the approach, where we computed the eigenvalue
decomposition, the Rayleigh-Ritz method. This was just for a better distinction. In
literature we will find the Galerkin method just as a generalization of the Rayleigh-Ritz
method. Actually both methods apply to eigenvalue problems, but Galerkin’s method
does not require any symmetry in the kernel k(s, t) (therefore we were able to use it for
the numerical computation of the singular value decomposition), whereas the Rayleigh-
Ritz method applies only to Hermitian kernels (therefore we were able to use it for the
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computation of the eigenvalues of the symmetric kernel of B∗B). For more detailed
explanation, see [6].

Besides the Galerkin and Rayleigh-Ritz methods for the integral operators B or B∗B
that we have used we could have considered several variations of these approaches.

Instead of using orthonormal basis functions in algorithm 6.2 we could have used
only linearly independent basis functions. Then we would have got a generalized sin-
gular value problem (see [26])

Au = s(n)Cv,

where

ai j = 〈KΦ j,Ψi〉L2(0,1) and ci j = 〈Φ j,Ψi〉L2(0,1), i, j = 1, . . . ,n.

Furthermore, in algorithm 6.3 we could have used orthonormal basis functions in order
to get a normal symmetric eigenvalue problem

Au = l(n)Cu, C = I,

where

ai j = 〈KΦ j,Φi〉L2(0,1) and ci j = 〈Φ j,Φi〉L2(0,1) = δi j, i, j = 1, . . . ,n.

In addition, for both the algorithms 6.2 and 6.3 we could have used higher order basis
functions instead of only piecewise constant (as in (6.47) and (6.48)) or piecewise linear
approximations (as in (6.82)), in order to get even better numerical results.

Many more methods for eigenvalue problems for integral equations such as colloca-
tion methods, quadrature methods, least-squares methods etc., including convergence
properties are summarized in [6].

6.5 Some further investigations on multiplier functions
without a zero

In this section we are going to examine the influence of multiplier functions m̃(s), which
do not have a zero, i.e. m̃(s) 6= 0 ∀s ∈ [0,1]. To this end we are going to consider three
different functions m̃(s) given by

m̃1(s) = m(s)+δ,

m̃2(s) = m(s+δ),

m̃3(s) =

{

m(s), (δ ≤ s ≤ 1)
m(δ), (s < δ).

Figure 6.15 shows the three types of functions for the special case m(s) = s2 and δ =
0.1. Notice that for δ → 0 we get m̃i(s) → m(s) ∀i. We are going to choose small
values for δ but δ 6= 0 and modify the Galerkin method from section 6.2 such that
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Figure 6.15: Modified multiplier functions m̃(s) for m(s) = s2 and δ = 0.1

it may deal with the multiplier functions m̃i(s), i = 1,2,3 instead of m(s). Before
stating any numerical outcomes, we want to review some analytical results. In chapter
5 we obtained inequality (5.15) given by

2
π(2n−1)

√
a1

≤ σn(B) ≤ 2
π(2n−1)

√
a0

, (6.96)

where a0 and a1 are determined from

a1 ≥ a(s) =
1

m̃2(s)
≥ a0. (6.97)

Obviously we may compute a0 and a1 for the modified multiplier functions m̃(s). For
multiplier function m(s) = sα we then get

δσn(J) ≤ σn(B) ≤ (1+δ)σn(J),

for m̃1(s),
δασn(J) ≤ σn(B) ≤ (1+δ)ασn(J),

for m̃2(s) and
δασn(J) ≤ σn(B) ≤ σn(J),

for m̃3(s). We may do the same calculation for the modified multiplier function m̃(s)

with m(s) = e−
1

sα . Then we get

δσn(J) ≤ σn(B) ≤ (e−1 +δ)σn(J),
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for m̃1(s),

e−
1

δα σn(J) ≤ σn(B) ≤ e
− 1

(1+δ)α σn(J),

for m̃2(s) and

e−
1

δα σn(J) ≤ σn(B) ≤ e−1σn(J),

for m̃3(s). In all three cases for the two types of multiplier functions the degree of
ill-posedness of operator B is ν = 1. We are now going to calculate the singular value
decomposition of operator B with multiplication operator m̃ and several values for δ.
Without loss of generality and just for a better overview we only consider the special
multiplier functions m(s) = s2 and m(s) = e−

1
s . First we consider the operator B with

m̃i(s) for the potential type function m(s) = s2. In table 6.16 we summarize the quotient

Q =
σn(B)

σn(J)
,

for several δ in order to compare these results to our previous ones. Firstly we observe

δ m̃1(s) m̃2(s) m̃3(s)

1 1.333 2.314 1
0.5 0.833 1.072 0.414
0.1 0.434 0.440 0.332

0.01 0.341 0.341 0.332
0.001 0.333 0.333 0.332

δ m̃1(s) m̃2(s) m̃3(s)

1 1.333 2.333 1
0.5 0.833 1.083 0.348
0.1 0.433 0.443 0.333
0.01 0.343 0.343 0.333

0.001 0.334 0.334 0.333

Table 6.16: Left table: The quotient Q = σn(B)/σn(J) for m̃i(s), i = 1,2,3, m(s) = s2,
n = 1000 and several values of δ. Right table: The integral

R 1
0 m̃i(s)ds for

m̃i(s), i = 1,2,3, m(s) = s2 and several values of δ

that for δ → 0 the singular value asymptotics and the coefficient Q is the same as the
one obtained in the previous section, i.e. (here with α = 2)

Q =
1

α+1
.

Since we observe a certain relation between Q and the integral
R 1

0 m̃i(s)ds we are going
to determine this integral (which can be done analytically in this case) and summarize
the values in the right table of 6.16. From those two tables we may conjecture that

σn(B) ∼
Z 1

0
m(s)ds ·σn(J) ∼

Z 1

0
m(s)ds · 2

π(2n−1)
,

for the integral operator B = M ◦J. Notice that this result does not yield a contradiction
to our previous outcomes from sections 6.1-6.3.
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Now we consider the operator B with m̃i(s) for the exponential type function m(s) =

e−
1
s . In tables 6.17 we summarize the quotient

Q =
σn(B)

σn(J)
,

in the left hand side table and the integral

I =

Z 1

0
m̃i(s)ds

in the right hand side table. We observe the same relationship between Q and the

δ m̃1(s) m̃2(s) m̃3(s)

1 1.144 0.502 0.367
0.5 0.645 0.350 0.196
0.1 0.244 0.186 0.148

0.01 0.156 0.152 0.148
0.001 0.149 0.148 0.148

δ m̃1(s) m̃2(s) m̃3(s)

1 1.148 0.504 0.368
0.5 0.648 0.353 0.197
0.1 0.248 0.187 0.148
0.01 0.158 0.152 0.148

0.001 0.149 0.149 0.148

Table 6.17: Left table: The quotient Q = σn(B)/σn(J) for m̃i(s), i = 1,2,3, m(s) = e−
1
s ,

n = 200 and several values of δ. Right table: The integral
R 1

0 m̃i(s)ds for

m̃i(s), i = 1,2,3, m(s) = e−
1
s and several values of δ

integral
R 1

0 m̃i(s)ds and we may conjecture that

σn(B) ∼
Z 1

0
m(s)ds ·σn(J) ∼

Z 1

0
m(s)ds · 2

π(2n−1)
,

for the integral operator B = M ◦ J. These results do not yield a contradictions to our
previous outcomes from sections 6.1-6.3.

Hence, numerically we have found that

σn(B) ∼
Z 1

0
m(s)ds · 2

π(2n−1)
.

At this stage we might refer to the result obtained by Vu Kim Tuan and Gorenflo [78]
again. From (4.12) with r = 1 we know

[s−αJx](s) := s−α
Z s

0
x(t)dt, (0 ≤ s ≤ 1) (6.98)

in X = Y = L2(0,1) has got the same singular value asymptotics as operator J, i.e.
σn(s−αJ) ∼ n−1, if 1

2 > α ≥ 0. We may conjecture that this result also holds for 1 >

α ≥ 0, since the integral I =
R 1

0 m(s)ds exists. It does not hold for larger values of α,
since the integral I does not exist. Notice that this was also conjectured by Vu Kim
Tuan and Gorenflo [78], but has not been proved yet.
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6.6 Summary of numerical results

We are going to summarize our results for the different numerical approaches, stating
also approximation properties and limitations for the different methods. Finally we
want to compare the results for the various multiplier functions.

Finite difference methods First, we consider the finite difference methods examined
in section 6.1. We do not know how the the computed eigenvalues λapprox

k obtained by
the numerical method approximate the true eigenvalues of the Sturm-Liouville problem

Au = λu, Au := −(a(τ)u′(τ))′ u(1) = u′(0) = 0

given by (5.5) and we have not found any error bounds. But we have found that the
numerical approximation yields

σapprox
k (B) ∼ 1

(α+1)πk
or σapprox

k (B) ∼ 1
(lα+ e)πk

for the computed singular values for the different types of multiplier functions. In
chapter 5 equation (5.12) yields

σk(B) ≤Ck−1, (6.99)

i.e. an upper bound on the singular values of integral operator B and therefore a lower
bound, but no upper bound, on the degree of ill-posedness. Therefore the numerical
result confirms the analysis and even provides a constant C.

The method is limited in the sense, that the left hand boundary condition cannot
be approximated properly, i.e. we cannot set ε from (6.9) to zero. For values of ε that

are very close to zero, occurring especially for multiplier functions m(s) = e−
1

sα , the
condition number of the matrix Ah becomes very large and the results for the eigenval-
ues become inexact. Finally we want to compare the results for multiplier functions

m(s) = sα and m(s) = e−
1

sα . We know from (6.18) and (6.22), that the singular value
asymptotics are

σn(B) ∼ 1
(α+1)πn

for multiplier functions of the form m(s) = sα and

σn(B) ∼ 1
(lα+ e)πn

with l ≈ 4.3 for multiplier functions of the form m(s) = e−
1

sα . In figure 6.16 we see
a comparison between the first computed eigenvalues for the two types of multiplier
functions. We observe that the eigenvalues of the exponential type multiplier functions
integrate into the ones of the potential type multiplier functions.
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Logarithmic scaling of eigenvalue asymptotics

α = 7 for m(s) = sα

α = 6 for m(s) = sα

α = 1 for m(s) = e−1/s
α

α = 5 for m(s) = sα

α = 4 for m(s) = sα

α = 0.5 for m(s) = e−1/s
α

α = 1 for m(s) = sα

α = 2 for m(s) = sα

Figure 6.16: Comparison between first 80 computed eigenvalues of Sturm-Liouville prob-
lem −(au′)′ = λu for multiplier functions m(s) = sα and several values of α,

m(s) = e−
1√
s and m(s) = e−

1
s

Hence, we can say, that the degree of ill-posedness of the integral operator for
these two multiplier functions is the same, but the constants C and C in (3.14) are
different. For example we could compare the ill-posedness of the integral equation
with multiplier function m(s) = e−

1
s with the one of an integral operator with multiplier

function m(s) = s6. Hence, we conjecture that the speed m(s) → 0 as s → 0 does not
influence the degree of ill-posedness.

Galerkin method Considering the Galerkin approach, we see, that this numerical
method provides both lower bounds (see (6.42)) and upper bounds (see (6.45)) on the
true singular values of the integral operator. We even obtain error estimates (see (6.43)).
Hence, from inequality (6.42), we know, that the singular values σapprox

k (B) obtained
by the numerical method are always a lower bound to the true singular values of the
singular value problem for the integral equation

Bu = σv, Bu(s) :=
Z 1

0
k(s, t)u(t)dt, (0 ≤ s ≤ 1)
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given by (4.14), i.e.

σapprox
k (B) ≤ σexact

k (B), k = 1, . . . ,n. (6.100)

Analytically (see chapter 4) we have found upper bounds on the singular values, i.e.
(see (4.34))

σexact
k (B) ≤Ck−1, k → ∞. (6.101)

Since the numerical approximation yields

σapprox
k (B) ∼ 1

(α+1)πk
or σapprox

k (B) ∼ 1
(lα+ e)πk

for multiplier functions m(s) = sα and m(s) = e−
1

sα , respectively, we can combine ana-
lytical and numerical results in order to get

Ck−1 ∼ σapprox
k (B) ≤ σexact

k (B) ≤Ck−1, k → ∞, (6.102)

where C is determined appropriately according to the multiplier function. Hence, with
the help of analytical examinations and numerical results we have found that the degree
of ill-posedness does not change for integral equations with specific multiplication op-
erators. We have even found values for the constants C and C. The Galerkin method is
not as limited as the finite difference method, since we do not have any boundary condi-
tions. The only problem, that occurs is, that the setting up of the matrix A can take some

time. Especially for m(s) = e−
1

sα the numerical computation of the integrals in (6.49),
which has to be as accurate as possible, takes a long time. It is a lower tridiagonal
matrix, since the kernel k(s, t) of the integral operator B which we want to approximate
vanishes in the upper triangle {(s, t) : 0 ≤ s < t ≤ 1}. Therefore the matrix A is not
sparse, which slows down the computation of the singular value decomposition.

Concerning the comparison between the two kinds of multiplier functions we refer
to figure 6.17. We observe the same results as discussed for the finite difference method,
i.e. the singular values of the exponential type multiplier functions integrate into the
ones of the potential type multiplier functions.

Rayleigh-Ritz method If we consider the Rayleigh-Ritz method for the calculation
of the eigenvalues, we see that this approach, like the Galerkin method, provides both
lower bounds (see (6.42)) and upper bounds (see (6.45)) on the true eigenvalues of the
integral operator B∗B. In addition we obtain error estimates (see (6.43)). We there-
fore know from inequality (6.42), that the eigenvalues λapprox

k (B∗B) of operator B∗B
obtained by the numerical method are always a lower bound to the true eigenvalues of
the eigenvalue problem for the integral equation

B∗Bu = λu, Bu(s) :=
Z 1

0
k(s, t)u(t)dt, (0 ≤ s ≤ 1)
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Figure 6.17: Comparison between first 80 computed singular values of integral equation
Bv = σu for multiplier functions m(s) = sα and several values of α, m(s) =

e−
1√
s and m(s) = e−

1
s

given by (4.14),i.e.

λapprox
k (B∗B) ≤ λexact

k (B∗B), k = 1, . . . ,n. (6.103)

Knowing that the singular values are the square roots of the eigenvalues of B∗B (or
BB∗) and σk > 0, we get

σapprox
k (B) ≤ σexact

k (B), k = 1, . . . ,n. (6.104)

As stated above, we have found upper bounds on the singular values analytically (see
chapter 4), i.e. (see (6.101))

σexact
k (B) ≤Ck−1, k → ∞.

Since the numerical approximation using the Rayleigh-Ritz yields

σapprox
k (B) ∼ 1

(α+1)πk
or σapprox

k (B) ∼ 1√
22.65α2 +15.28α+7.38πk

for multiplier functions m(s) = sα and m(s) = e−
1

sα , respectively, we can combine ana-
lytical and numerical results in order to get

Ck−1 ∼ σapprox
k (B) ≤ σexact

k (B) ≤Ck−1, k → ∞, (6.105)
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where C is determined appropriately according to the multiplier function. By us-
ing analytical and numerical results we have therefore found that the degree of ill-
posedness does not change for integral equations with multiplication operators of the

form m(s) = sα or m(s) = e−
1

sα for some α > 0. Furthermore we may determine values
for the constants C and C.

As the Galerkin method, the Rayleigh-Ritz method is not as limited as the finite
difference methods, since there are no boundary conditions (that take the value infinity)
which we would have to approximate. The only problem, that occurs is the setting up
of the matrix A. This can take a long time, since the matrix is not sparse. Especially for

m(s) = e−
1

sα the numerical computation of the integrals in (6.85), which has to be as
accurate as possible, takes a long time. The matrix A is symmetric, since the operator
B∗B which we want to approximate is self-adjoint, and therefore not sparse, which
slows down the computation of the generalized eigenvalue decomposition.
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α = 3 for m(s) = sα

α = 0.5 for m(s) = e−1/s
α

α = 4 for m(s) = sα

α = 5 for m(s) = sα

α = 1 for m(s) = e−1/s
α
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α = 7 for m(s) = sα

Figure 6.18: Comparison between first 80 computed eigenvalues of integral equation
B∗Bu = λu for multiplier functions m(s) = sα and several values of α,

m(s) = e−
1√
s and m(s) = e−

1
s

Note that we get slightly better approximations by using the Rayleigh-Ritz method
with basis functions that are piecewise linear interpolations (see (6.82) than by using the
Galerkin method with basis functions that are only piecewise constant approximations
of the singular functions (see (6.47) and (6.48)). We could have used piecewise linear
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6.6. Summary of numerical results

interpolations for Galerkin method as well and would have got better approximations.
We may also use higher order interpolations for the basis functions. But the better

the approximations to the basis functions are, the more complicated becomes the deter-
mination of the matrix entries for either the singular value problem or the eigenvalue
problem. Moreover, if we do not use orthonormal basis functions (as done in the second
case for the Rayleigh-Ritz method), we obtain generalized singular value problems or
generalized eigenvalue problems.

For the comparison between the two kinds of multiplier functions we refer to figure
6.18. We observe the same results as discussed for the finite difference method and the
Galerkin method, i.e. the eigenvalues of the exponential type multiplier functions can
be integrate into the ones of the potential type multiplier functions.

Hence the integral operator B with multiplier function m(s) = e
− 1√

s is observed
to be as ill-posed as the integral operator with multiplier function m(s) = sα, where

3 < α < 4 and the integral operator B with multiplier function m(s) = e−
1
s is observed

to be as ill-posed as the integral operator with the potential type multiplier function
m(s) = sα, where 5 < α < 6.

Hence, from figures (6.16)-(6.18) we observe that the rate of convergence m(s)→ 0
as s → 0 does not influence the degree of ill-posedness.

Moreover, in section 6.5 we were able to conjecture that

σn(B) ∼
Z 1

0
m(s)ds ·σn(J) ∼

Z 1

0
m(s)ds · 2

π(2n−1)
,

holds for the integral operator B = M ◦J, if the integral
R 1

0 m(s)ds exists. This outcome
even confirms the results from sections 6.1-6.3.
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Chapter 7

On the influence of multiplication
operators on the Tikhonov
regularization

In the previous chapter we have seen through several numerical approaches that the
multiplication operator M in the composition B = M ◦ J does not influence the degree
of ill-posedness of the linear integral operator J, which is given by ν = 1.

In this chapter we want to consider the influence of this multiplication operator
on the regularization opportunities of an inverse problem given by the linear integral
operator

Bx = y, x ∈ D(F) ⊂ X ,y ∈ Y

with B = M ◦J as well as on the chances of regularization of the inverse problem given
by the nonlinear operator

F(x) = y, x ∈ D(F) ⊂ X ,y ∈ Y.

e Therefore, we are going to consider the regularization of the nonlinear problem itself
as well as the regularization of the linearized problem.

To this end, we firstly state some results on local ill-posedness of nonlinear op-
erators and the relationship between the ill-posedness of a nonlinear problem and the
linearized problem and apply this to our special problem F = N ◦ J from chapter 2,
equation (2.12).

Then we are going to consider Tikhonov regularization applied to the nonlinear
problem as well as to the linear operator equation and examine the influence of the
multiplication operator.

7.1 Local ill-posedness behavior of nonlinear operators

In chapter 2, definition 2.3 we have already seen the characterization of local ill-
posedness of a nonlinear operator F(x) = y. We are now going to see some more
definitions.
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Chapter 7. On the influence of multiplication operators on the Tikhonov regularization

7.1.1 Some definitions and application to F(x) = y

Firstly we shall extend the definition of compactness from chapter 3 to nonlinear oper-
ators:

Definition 7.1. A nonlinear operator F : D(F) ⊆ X ⇒ Y , mapping between Hilbert
spaces X and Y , is called compact on a subset S ⊆ D(F), if F is continuous in S and
if each bounded subset T ⊆ S in X maps into a relatively compact subset F(T ) = {y ∈
Y : y = F(x),x ∈ T} in Y .

Another important characteristic of nonlinear operators is weak closedness (see
[45]), which we define in the following

Definition 7.2. A nonlinear operator F : D(F) ⊆ X → Y , mapping between Hilbert
spaces X and Y , is called weakly closed if for xn ⊂ D and weak convergence of the
sequences xn ⇀ x0 in X and F(xn) ⇀ y0 in Y immediately implies the relationships
x0 ∈ D and F(x0) = y0.

We know that compact linear operators A with finite dimensional image space R(A)
always lead to ill-posed problems, since the stability condition of Hadamard is not
satisfied. We may extend this result to nonlinear operators. From the definition of
local well-posedness of a nonlinear inverse problem in chapter 2 we see that this cor-
responds to a local stability condition. Therefore, we may follow that also nonlinear
compact operators lead to locally ill-posed problems. From the two definitions above
we immediately get the following proposition taken from [45]:

Proposition 7.1. Let the domain D of the weakly closed operator F, mapping between
the infinite dimensional Hilbert spaces X and Y , satisfy the condition

Br(x0) := {x ∈ X : ‖x− x0‖X ≤ r} ⊆ D(F)

for some r > 0. Furthermore, let F be compact on Br(x0). Then the nonlinear operator
F(x) = y is locally ill-posed in x0.

A proof of this proposition can be found in [45] or [46]. We are going to state some
characteristics for the nonlinear operator F given by

F(x) = y, x ∈ D(F) ⊂ L2(0,1), y ∈ L2(0,1), (7.1)

with F from (2.12)

[F(x)](t) = k(t, [J(x)](t)), (0 ≤ t ≤ 1)

where the domain of the nonlinear operator F = N ◦ J, as a composition of an outer
Nemytskii operator [N(z)](t) = k(t,z(t)), where k(t,s), (t,s) ∈ [0,1]× [0,∞) is a suf-
ficiently smooth kernel function and an inner integral operator J, is restricted to the
domain

D(F) = {x ∈ L2(0,1) : x(t) ≥ c ≥ 0 a.e. in [0,1]}. (7.2)

First, we need the following proposition on the continuity of Nemytskii operators (see
[3, Theorem 2.2] for a proof).
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7.1. Local ill-posedness behavior of nonlinear operators

Proposition 7.2. Let Ω ∈ Rn be bounded and suppose that the kernel function k(t,s)
satisfies the Carathéodory condition, i.e.

(i) s → k(t,s) is continuous for almost every t ∈ Ω,

(ii) t → k(t,s) is measurable for all s ∈ R.

Furthermore let a growth condition

|k(t,s)| ≤ a+b|s|α, α =
p
q
,

with p,q ≥ 1 and a,b > 0 be satisfied for the Nemytskii operator. Then the Nemytskii
operator k is a continuous map from Lp(Ω) to LqΩ.

This proposition will be used in order to proof the following theorem on some
characteristics of the nonlinear operator F .

Theorem 7.1. Let the nonlinear operator F : D(F) ⊂ L2(0,1) → L2(0,1) possess a
convex and weakly closed domain D(F) as given by (7.2). Furthermore let the function
k(t,s) generating the Nemytskii operator be continuous for almost every t ∈ I, where
I = [0,1] and measurable for all s ∈ [0,∞) and let

|k(t,s)| ≤ a+b|s|, a,b > 0

be valid. Then the nonlinear operator F is compact, continuous, weakly continuous
and consequently weakly closed.

Proof. First we prove continuity and compactness. By applying proposition 7.2 with
Ω = [0,1] and p = q = 2 to k(s, t) we find that all assumptions of proposition 7.2 are
satisfied and k maps continuously from L2(0,1) to L2(0,1).

The nonlinear operator F = N ◦ J is a composition of a compact linear operator
J : L2(0,1)→ L2(0,1) (see [57] for a proof of compactness) and N : L2(0,1)→ L2(0,1),
given by [N(z)](t)= k(t,z(t)), which is a continuous nonlinear operator, as we have just
proved. Hence, the composite operator F = N ◦J is compact and continuous, too. Weak
continuity follows from continuity.

Finally we will prove weak closedness. Let the sequences xn ∈ D(F) and F(xn) be
weak convergent, i.e.

xn ⇀ x0 in X and F(xn) ⇀ y0 in Y.

Knowing that xn ∈ D(F) and with the assumption that D(F) is a weakly closed domain
we have x0 ∈ D(F). By continuity of F we then get

xn ⇀ x0 in D(F) ⇒ F(xn) ⇀ F(x0) in Y.

Since the limit of a convergent sequence in Hilbert spaces is unique we get

F(x0) = y0,

which, together with x0 ∈ D(F), yields weak closedness.
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Notice that the Carathéodory condition and the growth condition for k(s, t) are cer-
tainly satisfied if k(t,s) is continuous and uniformly bounded for all (t,s) ∈ [0,1]×
[0,∞) and we have continuity of N between spaces of power-integrable function. If we
furthermore assume that the nonlinear operator F is injective, we may formulate the
following lemma:

Lemma 7.1. The nonlinear operator F : D(F)⊂ L2(0,1)→ L2(0,1) possessing a con-
vex and weakly closed domain D(F) as given by (7.2) is injective, compact, continuous,
weakly continuous and consequently weakly closed and the inverse operator F−1 de-
fined on F(D(F)) exists.

For a proof and explanations to this lemma we refer to [38], where it was shown for
the special case of a Nemytskii operator defined by the Black-Scholes function. This
lemma, together with the results by Engl, Kunisch and Neubauer [18, Proposition A.3]
or (7.1) provides the following proposition which implies the ill-posedness of operator
F from (2.12).

Proposition 7.3. For a given right-hand side y0 ∈ F(D(F)) the operator equation (7.1)
has a uniquely determined solution x0 ∈ D(F). For any ball Br(x0) with centre x0 and
radius r > 0 there exists a sequence {xn}∞

n=1 ⊂ D(F)∩Br(x0) satisfying

xn ⇀ x0, but xn 6→ x0 and F(xn) → y0 in L2(0,1), n → ∞.

Thus, equation (7.1) is locally ill-posed in the sense of definition 2.3 and F−1, defined
on F(D(F)∩Br(x0)), is not continuous in x0.

A proof can be found in [18]. Therefore, a regularization is required for the stable
solution of (7.1). Regularization methods are going to be considered in section 7.2.4.

Before, we are going to examine the relationship between the ill-posedness of the
nonlinear operator equations and its linearizations.

7.1.2 The relationship between the ill-posedness of a nonlinear prob-
lem and the linearized problem

As we have seen in the previous section the nonlinear problem (7.1) with F = N ◦ J
given by (2.12) is locally ill-posed.

For linear problems

Ax = y, A ∈ L(X ,Y), D(A) = X

the character of ill-posedness is global and depends only on properties of the operator
A. Since we require the existence of Fréchet derivatives F ′(x) (see definition 2.4) of F ,
we may compare the nonlinear operator (7.1) to its linearization

F ′(x0)x = y
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7.1. Local ill-posedness behavior of nonlinear operators

at the point x0. In chapter 2 we have introduced the linearized problem where the
Fréchet derivative is given by

[F ′(x0)(h)](t) = m(t)[J(h)](t), (0 ≤ t ≤ 1,h ∈ X = L2(0,1)),

i.e. a composition F ′(x0) = M ◦ J of the convolution operator J with a multiplication
operator M.

In chapter 4 we have seen that this linearized operator F ′(x0) = B = M ◦ J is a
compact bounded linear operator, if the multiplier function m satisfies m ∈ L∞(0,1).
This holds especially for continuous multiplier functions m ∈ C[0,1]. Furthermore we
know from chapter 3 that compact linear operators B mapping into infinite dimensional
image spaces R(B) always lead to ill-posed problems.

But the connection between the ill-posedness of a nonlinear problem and its lin-
earization is not as strong as we might think. Engl, Kunisch and Neubauer (see [18])
provided examples that show that ill-posedness of a nonlinear problem does not nec-
essarily imply ill-posedness of its linearization. Conversely a well-posed nonlinear
problem may have ill-posed linearizations.

But in the case of compact nonlinear operators we may state a relationship between
the operator and its linearization. The compactness of the nonlinear operator transfers
to the Fréchet derivative (see [11]).

Lemma 7.2. Let F : D(F)⊆X →Y be a compact operator on the open subset S⊆D(F)
which is Fréchet differentiable in an x0 ∈ S. Then the Fréchet derivative F ′(x0) ∈
L(X ,Y) is a compact operator, too.

Several more interplays between the local ill-posedness of a nonlinear problem and
its linearization using the Fréchet derivative were considered by Hofmann [46].

The local degree of ill-posedness in x0 is defined by the degree of ill-posedness
of the corresponding linearized equation. In [49] several examinations were made on
factors influencing the ill-posedness of nonlinear problems. From there we see that
the correlation between the nonlinear operator and its linearization does not have to be
that strict. As shown in [27] the local degree of ill-posedness for the autoconvolution
operator may vary quite strongly depending on x0.

For our special nonlinear equation F(x) = y with F = N ◦ J as well as its lineariza-
tion F ′(x0) = M ◦ J we have seen through the last chapters that they are both ill-posed
and that the degree of ill-posedness is the same for the nonlinear and linearized prob-
lem. Through numerical methods we have found that the degree of ill-posedness of
those operators is one and that the multiplication operator does not influence the degree
of ill-posedness.

Here we finally want to note that we may force the local well-posedness of a non-
linear equation F(x) = y by restricting the domain of feasible solutions to a set D̂ given
by

D̂ = {x ∈ D : x− x0 = F ′(x0)
∗w, w ∈ Y,‖w‖Y ≤ τ}, (7.3)

where F ′(x0) is the Fréchet derivative in x0, F ′(x0)
∗ its adjoint operator and τ a suffi-

ciently small positive constant. Elements in D̂ satisfy a so-called source condition.
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With this condition we may formulate the following proposition (see [50] or [45]):

Proposition 7.4. Let the operator F be Fréchet differentiable with Lipschitz continuous
derivative on Br(x0), i.e.

‖F(x)−F(x0)−F ′(x0)(x− x0)‖Y ≤ L
2
‖x− x0‖2

X , x ∈ Br(x0)

holds. Then the operator equation

F(x) = y, x ∈ D̂ ⊆ X , y ∈ Y

with a restricted domain of feasible solutions D̂ given by (7.3) is always locally well-
posed in x0. We may proof a stability estimate

‖x− x0‖X ≤
√

τ(1−θ)
√

‖F(x)−F(x0)‖Y , θ :=
Lτ
2

,

where x ∈ D̂∩Br(x0).

For a proof we refer to [50] or [45].
Hence if we can choose approximate solutions to a problem that satisfy such source

conditions we may overcome the instability of such a problem. We will return to the
concept of source conditions in the next section, where we are going to consider regu-
larization tools for our inverse problems with multiplication operators.

7.2 Tikhonov regularization of the ill-posed problem

7.2.1 Introduction and definitions

We want to find stable solutions to ill-posed problems by regularization methods. Hence
we want to find

xmn = A†y, y ∈ R(A)

(see (3.12)) as stable and exact as possible, where A ∈ L(X ,Y) is a compact linear op-
erator and A† its Moore-Penrose inverse. Since only estimated non-exact data yδ ∈ Y
satisfying ‖yδ−y‖Y ≤ δ are given, we want the approximate solution to depend contin-
uous on the data and have small errors. We may introduce the following definition of a
linear regularizer from [32] or [17]:

Definition 7.3. A family of bounded linear operators {Rα} with Rα ∈ L(X ,Y) where
α > 0 is the regularization parameter is called a linear regularizer for A†, if

lim
α→0

Rαy = A†y ∀y ∈ R(A). (7.4)

From this definition we immediately get the following lemma, which holds espe-
cially for compact operators A (see [32] or [17], too).
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Lemma 7.3. If the image set of A ∈ L(X ,Y) R(A) is not closed then for the family of
bounded linear operators Rα ∈ L(X ,Y ) satisfying (7.4)

lim
α→0

‖Rα‖L(X ,Y ) = ∞

holds.

If we apply the regularization operator Rα to the approximated given data yδ we get
regularized solutions

xδ
α = Rαyδ.

Therefore we may estimate the total regularization error

‖xδ
α − xmn‖X ≤ ‖Rα‖L(X ,Y )δ+‖Rαy−A†y‖X . (7.5)

The stability component ‖Rα‖L(X ,Y )δ expresses the influence of the data error and the
approximation component ‖Rαy−A†y‖X is a measure for the distance of the regularized
problem xα = Rαy to the original unstable problem xmn = A†y. From previous consid-
erations we know that the first component tends to infinity as α → 0 whilst the second
component tends to zero. Hence we have to find an optimal αopt, which minimizes
‖xδ

α − xmn‖X by dealing with a compromise between accuracy and stability.
Finally we want to consider the question of of the convergence of a regularization,

i.e. if for δ → 0 the regularization error tends to zero.

Definition 7.4. A linear regularizer Rα for the operator A† with α = α(δ,yδ) is called
convergent if

lim
δ→0

sup{‖Rα(δ,yδ)
yδ − xmn‖X : ‖yδ − y‖Y ≤ δ} = 0

holds for all y ∈ R(A).

From this definition we get the following proposition for linear regularizations (see
[32] or [17]):

Proposition 7.5. A linear regularizer Rα for the operator A† is convergent according
to definition 7.4 if the regularization parameter α = α(δ) is chosen such that

lim
δ→0

α(δ) = 0

and
lim
δ→0

‖Rα(δ)‖L(X ,Y)δ = 0

are satisfied.

Hence, for a convergent regularization α → 0 if δ → 0 has to be satisfied. But since
‖Rα‖L(X ,Y) → ∞ for α → 0 the convergence must not be too fast.

For a compact operator one may construct such a linear convergent regularization
via the singular value expansion and filter functions (see [45]).

Here we are only going to consider the method of Tikhonov regularization, which is
now the standard method for the practical treatment of ill-posed problems. For further
methods we refer to [45].
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Chapter 7. On the influence of multiplication operators on the Tikhonov regularization

7.2.2 Tikhonov regularization of linear operators, convergence rates
and application to Bx = y

We are now going to describe the method of Tikhonov regularization and apply it to
Bx = y, where B = M◦J. Thus, we have X =Y = L2(0,1). The generalized solution x =
B†y (see (3.12)) is a least squares solution and therefore satisfies the normal equations

B∗Bx = B∗y.

Now, the self-adjoint compact operator B∗B has nonnegative eigenvalues and therefore,
for any positive number α the operator B∗B + αI, where I is the identity operator in
L2(0,1) has strictly positive eigenvalues. Then the operator B∗B + αI has a bounded
inverse and the problem

(B∗B+αI)xα = B∗y

is well-posed and
xα = (B∗B+αI)−1B∗y

is the Tikhonov approximation to B†y. For approximate data yδ we then get the regu-
larized solution

xδ
α = (B∗B+αI)−1B∗yδ,

which is the same as the solution to the minimization problem for the Tikhonov func-
tional

Tα(x) := ‖Bx− yδ‖2
L2(0,1) +α‖x‖2

L2(0,1) → min! subject to x ∈ L2(0,1).

Obviously we can define the family of linear regularizer Rα as it was introduced in the
previous section to be

xδ
α := Rαyδ = (B∗B+αI)−1B∗yδ, (7.6)

and we may state a proposition for a convergent linear Tikhonov regularization (see
[45] for a proof):

Proposition 7.6. The operator family {Rα}α>0 for the Tikhonov regularization defined
in (7.6) is a linear regularization for the operator B† with ‖Rα‖L(X ,Y) ≤ 1

2
√

α . If we

choose α = α(δ) to satisfy the conditions

α(δ) → 0 and
δ2

α(δ)
→ 0 for δ → 0 (7.7)

then the regularization is convergent.

Since Rα is a bounded linear operator the regularized solution xδ
α depends contin-

uously on the data yδ. Now we want to investigate so called convergence rates, which
state how fast the regularized solution xδ

α converges to the solution xmn = B†y. In sec-
tion 7.1.2 we have already seen that ill-posed problems may be turned into well-posed
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7.2. Tikhonov regularization of the ill-posed problem

ones by restricting the domain of the solution with the help of source conditions. For
the Tikhonov regularization this approach of source conditions may lead to the achieve-
ment of certain convergence rates.

We may state and prove the following theorem for the convergence rate of the reg-
ularized solution to the minimum-norm solution ‖xδ

α − xmn‖L2(0,1):

Theorem 7.2. Let c and C be positive constants. If a source condition

xmn = B∗w, w ∈ Y (7.8)

holds for the minimum-norm solution xmn = B†y and if we choose the regularization
parameter to be α = α(δ) = cδ, then an estimate

‖xδ
α − xmn‖X ≤C

√
δ (7.9)

holds for the regularization error.

Proof. From (7.5) we get

‖xδ
α − xmn‖X ≤ ‖Rα‖L(X ,Y )δ+‖Rαy−B†y‖X

Knowing that for Tikhonov regularization ‖Rα‖L(X ,Y) ≤ 1
2
√

α is valid and xα = Rαy as

well as xmn = B†y hold by assumption, we get

‖xδ
α − xmn‖X ≤ δ

2
√

α
+‖xα − xmn‖X . (7.10)

We are finally going to estimate ‖xα − xmn‖X by applying the exact source condition
xmn = B∗w

‖xα − xmn‖X = ‖Rαy− xmn‖X

= ‖(B∗B+αI)−1B∗Bxmn − xmn‖X

= ‖−α(B∗B+αI)−1xmn‖X

= ‖α(B∗B+αI)−1B∗w‖X

= ‖αRαw‖X

≤ α‖Rα‖L(X ,Y)‖w‖Y ≤
√

α
2

‖w‖Y .

Finally with α(δ) = cδ we obtain

‖xδ
α − xmn‖X ≤ 1+ c‖w‖Y

2
√

c

√
δ,

i.e. inequality (7.9) with C = 1+c‖w‖Y
2
√

c .
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Chapter 7. On the influence of multiplication operators on the Tikhonov regularization

Notice that in [45] this convergence rate property was shown under the aspect of
so-called discrepancy principle, i.e. the parameter αdis = αdis(δ,yδ) was chosen a pos-
teriori to satisfy

‖Bxαdis − yδ‖Y = δ.

Further convergence rate properties and other source conditions were introduced in
[45].

We want to apply the principle of source conditions to our problem Bx = y with
B = M ◦ J. Without multiplier function (i.e. M = I) we get B∗ = J∗ and therefore the
exact source condition xmn = B∗w becomes

xmn(t) =
Z 1

t
w(s)ds (0 ≤ t ≤ 1, w ∈ L2(0,1)).

This implies
xmn(1) = 0 and x′mn ∈ L2(0,1), (7.11)

i.e. xmn ∈ H1(0,1), which is a certain smoothness requirement on the minimum norm
solution xmn.

With a multiplication operator we have B∗ = J∗ ◦ M and thus, the exact source
condition becomes

xmn(t) =
Z 1

t
m(s)w(s)ds (0 ≤ t ≤ 1, w ∈ L2(0,1)),

implying

xmn(1) = 0 and
x′mn

m
∈ L2(0,1). (7.12)

Since m(s) → 0 as s → 0 holds for our specific multiplier functions 1
m 6∈ L∞(0,1) and

especially the last condition is hard to satisfy.
Therefore we introduce a so-called inexact source condition using a proposition first

stated by Baumeister [7] with X = Y = L2(0,1):

Proposition 7.7 (Baumeister 1987). Let X and Y be Hilbert spaces and B an injective
linear bounded operator B : X → Y with R(B) 6= R(B), i.e. let the range be unclosed.
Then

Bx = y, x ∈ X , y ∈ Y

is a linear ill-posed Operator equation. Consider the profile function

f (α) = ‖xα − xmn‖X

for Tikhonov regularized solutions xα = Rαy = (B∗B+αI)−1B∗y minimizing

Tα(x) := ‖Bx− y‖2
Y +α‖x‖2

X

over L2(0,1) for y = Bxmn corresponding to the regularization parameter α. Then we
have

f (α) ≤
√

η(R)2 +αR2 (α > 0), (7.13)
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where the shift value
η(R) = inf

‖w‖Y ≤R
‖xmn −B∗w‖X

measures the violation w.r.t. the exact source condition xmn = B∗w for xmn ∈ X. Fur-
thermore

lim
R→∞

η(R) = 0

is valid, since N(B) = {0} and R(B∗) = X.

For a proof of this proposition we refer to [7].
Since we are especially interested in the influence of the multiplication operator,

in a first step we assume that the exact source condition is satisfied for the operator
without multiplier function, i.e. xmn = J∗w with ‖w‖L2(0,1) = R. Then proposition (7.7)
yields η(R) = 0 and

‖xα − xmn‖L2(0,1) = R
√

α.

For the operator with multiplier function B = M ◦ J only an inexact source condition is
assumed and we are going to estimate the shift value

η(R) = inf
‖ w̃‖L2(0,1)

≤R
‖xmn −B∗w̃‖L2(0,1).

With the help of xmn = J∗w we find an upper bound on η(R)

η(R)2 ≤ ‖J∗w−B∗w‖2
L2(0,1)

= ‖J∗w− J∗ ◦Mw‖2
L2(0,1)

= ‖J∗(w−Mw)‖2
L2(0,1)

≤
Z 1

0
(1−m(t))2(w(t))2dt

Hence, if

η(R) ≤
(

Z 1

0
(1−m(t))2(w(t))2dt

)
1
2

(7.14)

is small, we get a small influence of this shift value on the convergence rate
√

δ. As
for the degree of ill-posedness (see chapter 6) we see that the integral of the multiplier
function

Z 1

0
(1−m(t))2dt

influences the regularization opportunities. If this integral is small, then η(R) is small,
too. Thus from proposition 7.7 we get

f (α) ≤
√

η(R)2 +αR2 (α > 0)
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and together with (7.10) this yields

‖xδ
α − xmn‖L2(0,1) ≤

δ
2
√

α
+
√

η(R)2 +αR2 ≤ δ
2
√

α
+η(R)+R

√
α, (7.15)

i.e. a small influence of the shift value η(R) for δ � 0 and α ∼ δ. We also see that it is
not important how fast the multiplier function m(t) with m(t)→ 0 as t → 0 approaches
zero. Only the integral

Z 1

0
(1−m(t))2dt

has got an influence on η(R) and therefore on the regularization properties. If w ∈
L∞(0,1), i.e. w(t) is smooth enough without a peak at t = 0 and

‖w‖L∞(0,1) < ∞

holds, then we may estimate (7.14) to get

η(R) ≤

√

Z 1

0
(1−m(t))2dt‖w‖L∞(0,1).

Therefore η(R) is small if the above integral is small. To this end, let us consider the
following multiplier function:

m(t) = 1 (ε ≤ t ≤ 1), (7.16)

m(t) → 0 as t → 0 (7.17)

A plot of this function can be seen in figure 7.1. Using this function and assuming that
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)

Multiplier function converging to zero

ε 

Figure 7.1: Multiplier function with fast convergence m(s) → 0 as s → 0

w ∈ L∞(0,1), we get

η(R) ≤
√

Z ε

0
(1−m(t))2dt‖w‖L∞(0,1),
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If ε > 0 is small, then η(R) is small, too. We find that not the velocity of m(s) → 0
as s → 0 is important, but only the area (it is the marked area in figure 7.1) influences
η(R) and therefore the regularization properties. We may find an upper bound for η(R)
by

η(R) ≤
√

Z ε

0
(1−m(t))2dt‖w‖L∞(0,1)

≤
√

Z ε

0
dt‖w‖L∞(0,1)

≤
√

ε‖w‖L∞(0,1)

and substituting this result into (7.15) we get

‖xδ
α − xmn‖L2(0,1) ≤

δ
2
√

α
+
√

ε+
√

αR.

If we choose the regularization parameter α = α(δ) = cδ then we can estimate

‖xδ
α − xmn‖L2(0,1) ≤

1
2
√

c

√
δ+

√
c
√

δR+
√

ε,

and for small ε
‖xδ

α − xmn‖L2(0,1) ≤C
√

δ

for some constant C > 0 holds for the regularization error. Hence, we have observed
that not the velocity m(s)→ 0 as s→ 0 influences the regularization properties, but only
the integral

R 1
0 (1−m(t))2dt. This is the same result as for the degree of ill-posedness

(see chapter 6), where we observed that the integral
R 1

0 m(t)dt influences the constant
C in (3.14).

In a further step we do not assume any exact source condition, since we have seen
that these conditions are hard to satisfy. Especially the right hand boundary value has to
be chosen to be exact (see (7.11) and (7.12)), which is not likely to happen and therefore
unsatisfactory. Hence we will use Baumeister’s lemma for inexaxt source conditions in
order to find convergence rates for the Tikhonov regularization.

7.2.3 Inexact source conditions and the application of Baumeister’s
lemma to multiplication operators

The satisfaction of exact source conditions is somehow unnatural, therefore let the
source condition not be satisfied exactly, i.e. we want to determine the shift value
η(R) from proposition 7.7 given by

η(R) = inf
‖w‖L2(0,1)≤R

‖xmn −A∗w‖L2(0,1).

Notice that there are two cases:
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If η(R) = 0 for R ≥ R0 then the classical source condition xmn = A∗w is satisfied with
‖w‖L2(0,1) = R0 and the convergence rate

‖xα − xmn‖L2(0,1) ≤ R0
√

α

is valid. If η(R) > 0 for R ∈ [0,∞) then the source condition does not hold.
The prospects of reconstruction by regularization of the element xmn ∈ L2(0,2) are not
only influenced by the degree of ill-posedness of the operator equation Ax = y, which,
for a compact operator A, can be computed via the singular value decomposition, as a
measure for the strength of smoothness of the operator A. The opportunities of regular-
ization are also influenced by the relative smoothness of the element xmn with reference
to A (see [65] for generalized source conditions with so-alled index functions).
For Tikhonov regularization η(R) is a measure of this relative smoothness of xmn with
reference to A. In the case η(R) > 0 the decay rate of η(R) → 0 for R → ∞ firstly
determines the smoothness of xmn with respect to A, i.e. the faster η(R) → 0, the better
and faster is the reconstruction of xmn with Tikhonov regularization. Furthermore it
influences the convergence rate of the regularization error. By choosing R = R(α) such
that

η(R(α)) =
√

αR(α)

is satisfied, i.e. both terms in (7.13) have the same order of magnitude and we obtain
the following property for regularization error:

‖xα − xmn‖L2(0,1) ≤ 2
√

αR2(α) ≤ 2
√

αR =: ζ(α). (7.18)

From (7.10) we get

‖xδ
α − xmn‖L2(0,1) ≤

δ
2
√

α
+‖xα − xmn‖L2(0,1) ≤

δ
2
√

α
+ζ(α). (7.19)

By equalizing
δ

2
√

α
= ζ(α) (7.20)

we may choose an optimal decay rate for the data error. Then, by setting α = g(δ),
determined from (7.20), we observe that the decay rate ζ(α) of the regularized solution
‖xα − xmn‖L2(0,1) influences the convergence rate of the Tikhonov regularization to the

minimum-norm solution, i.e. the difference ‖xδ
α−xmn‖L2(0,1). The decay rate ζ(α) may

also transfer to convergence rate of the Tikhonov regularization to the minimum-norm
solution, i.e.

‖xδ
α − xmn‖L2(0,1) = O(ζ(δ)), as δ → 0,

see [52], depending on the slowest rate of the two terms in the right hand side of (7.19).
The resulting convergence rate is always less than

√
δ, since the optimal convergence

rate
√

δ can only be obtained for exact source conditions, i.e. η(R) = 0.
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7.2. Tikhonov regularization of the ill-posed problem

We want to determine the value of η(R) in order to find convergence rates. For sim-
plicity, we are going to consider the pure multiplication operator first, i.e.

(Ax)(t) = m(t)x(t),0 ≤ t ≤ 1, x ∈ L2(0,1), (7.21)

whose adjoint operator is given by

(A∗x)(t) = m(t)x(t).

Thus, we want to optimize

‖xmn(t)−m(t)w(t)‖L2(0,1) → min! subject to ‖w‖L2(0,1) ≤ R. (7.22)

Therefore we are going to use the theory of Lagrange multipliers (see [62]) and get the
functional

L(w,λ) =
Z 1

0
[xmn(t)−m(t)w(t)]2dt +λ[

Z 1

0
w2(t)dt −R2],

which has to be minimized. If the constraint is not active, i.e.
∥

∥

∥

∥

xmn(t)
m(t)

∥

∥

∥

∥

L2(0,1)

> R

then the exact source condition may be satisfied, i.e. xmn(t) = m(t)w(t), if and only if

xmn(t)
m(t)

∈ L2(0,1).

If this condition is not satisfied, i.e. xmn(t)
m(t) 6∈ L2(0,1), we proceed by applying La-

grange’s technique. Using the Euler equations for constraint optimization

∇wL(w,λ) = fw = 0

has to be satisfied in order to achieve a minimum of L, where the function f is given by

f (w) = [xmn(t)−m(t)w(t)]2 +λ[w2(t)dt−R2].

Then we get
fw = λw(t)− [xmn(t)−m(t)w(t)]m(t)= 0

and therefore

wλ(t) =
xmn(t)m(t)
λ+m2(t)

, λ > 0.

Using this value we may estimate the shift value η(R):

η(R)2 =
Z 1

0
[xmn −m(t)wλ(t)]

2dt (7.23)

=

Z 1

0
[xmn −

m2(t)xmn(t)
λ+m2(t)

]2dt (7.24)

=

Z 1

0

λ2

(λ+m2(t))2 x2
mn(t)dt λ > 0. (7.25)
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Knowing that
Z 1

0
w2

λ(t)dt = R2 we get

R2 =
Z 1

0

m2(t)
(λ+m2(t))2 x2

mn(t)dt. (7.26)

Hence, via λ we may find an interdependence between η(R) and R. Notice that it is not
trivial to find this relationship, since the determination of λ is not easy. Then we can
choose R = R(α) such that

η(R(α)) =
√

αR(α)

is satisfied, i.e. both terms in (7.13) have the same order of magnitude and we obtain
the following property for the convergence of the regularized solution to the minimum-
norm solution:

‖xα − xmn‖L2(0,1) ≤
√

2αR2(α).

Furthermore, from (7.10) we get

‖xδ
α − xmn‖L2(0,1) ≤

δ
2
√

α
+‖xα − xmn‖L2(0,1)

for the regularization error of Tikhonov regularization and hence we obtain convergence
rates for the Tikhonov regularization to the minimum-norm solution.
In a further step we should consider the integral multiplication operator B = M ◦ J
instead of the simple multiplication operator (Ax)(t) = m(t)x(t). By the same Lagrange
approach as above, we get the functional

L(w,λ) = ‖xmn −B∗w‖2
L2(0,1) +λ‖w‖2

L2(0,1),

which has to be minimized. Using the Euler equations for constraint optimization we
obtain a minimum for

wλ = (BB∗+λI)−1Bxmn

and
R = ‖(BB∗ +λI)−1Bxmn‖L2(0,1)

and the shift value

η(R) = ‖(B∗(BB∗ +λI)−1B− I)xmn‖L2(0,1).

The further approach is as before and we get convergence rates for the Tikhonov regu-
larization to the minimum-norm solution.
Both for the simple multiplication operators and for the integral multiplication oper-
ators we may summarize three different situations occurring for the decay rate of the
shift value η(R) → 0 for R → ∞:
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Logarithmic decay rate of η(R)

Let η(R) satisfy a logarithmic decay rate, i.e.

η(R) ≤ K
(lnR)p , with constants p > 0, K > 0.

Then, by the above considerations, we get

‖xα − xmn‖L2(0,1) ≤
K

(lnR)p +R
√

α

for the regularization error. By setting R = m
√

α, m > 2 we get

‖xα − xmn‖L2(0,1) ≤
mpK

(ln 1
α)p

+ l
√

α, l =
m−2

2m
> 0.

Since
l
√

α ≤ mpK

(ln 1
α)p

is valid, which can be proved for example by the rule of L’Hospital, we may follow

‖xα − xmn‖L2(0,1) ≤C
1

(ln 1
α)p

(7.27)

for some positive constant C. From this regularization error we obtain

‖xδ
α − xmn‖L2(0,1) ≤

C

(ln 1
α)p

+
δ

2
√

α
,

for the convergence rate of the regularized solution to the minimum-norm solution. By
setting α = c0δs, 0 < s < 2 we get

‖xδ
α − xmn‖L2(0,1) = O

(

1

(ln 1
δ)p

)

, as δ → 0 (7.28)

i.e. the decay rate of the regularization error (7.27) transfers to the decay rate of the
regularized solution with data error. We obtain a very slow decay rate of the regularized
solution to the minimum-norm solution for δ → 0.

Hölder type decay rate of η(R)

Now, let η(R) satisfy a Hölder type decay rate, i.e.

η(R) ≤ K

R
µ

1−µ
, with 0 < µ < 1, K > 0.
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Notice that we can express any power Rs, s > 0. Then, by the above considerations, we
get

‖xα − xmn‖L2(0,1) ≤
K

R
µ

1−µ
+R

√
α.

By equalizing both terms 1

R
µ

1−µ
= R

√
α such that they are of the same order we obtain

R = R(α) = α
µ−1

2 and
‖xα − xmn‖L2(0,1) ≤Cα

µ
2 (7.29)

for the regularization error. In order to find the convergence rate of Tikhonov regular-
ized solution to the minimum-norm solution we have to equalize the two terms in the
right-hand side of inequality

‖xδ
α − xmn‖L2(0,1) ≤Cα

µ
2 +

δ
2
√

α
.

Hence, by choosing α = c0δ
2

1+µ we get the convergence rate

‖xδ
α − xmn‖L2(0,1) = O(δ

µ
1+µ ), as δ → 0 (7.30)

for the Tikhonov regularized solution. We observe that the larger µ, the larger is the
decay rate of η(R) and the faster is the convergence of xδ

α to the minimum-norm solution
xmn. Notice that we get very close to the optimal convergence rate

‖xδ
α − xmn‖L2(0,1) = O(

√
δ), as δ → 0

for µ ≈ 1, but the optimal convergence rate may only be obtained for exact source
conditions, i.e. η(R) = 0.

We may give an example for Hölder type decay rates. To this end we are first going
to state a proposition from Hofmann and Fleischer [48]:

Proposition 7.8. Let there be a constant K > 0 such that the multiplier function m(s)
from (7.21) satisfies

m(s) ≥ Ksν (0 ≤ s ≤ 1).

If ν > 1
4 then for Tikhonov regularization

‖xα − xmn‖L2(0,1) = O(α
1

4ν ) as α → 0 (7.31)

holds for all xmn ∈ L∞(0,1).

For a proof we refer to [48]. Now let xmn(t) = 1 and m(t) = t, such that the multi-
plication operator satisfies inequality (7.31) with ν = 1. We can confirm this result by
using Baumeister’s Lemma 7.7. Equations (7.26) and (7.25) become

R2 =
Z 1

0

t2

(t2 +λ)2 dt = − 1
2(1+λ)

+
1

2
√

λ
arctan

(

1√
λ

)
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and

η2(λ) =
Z 1

0

λ2

(t2 +λ)2 dt =
λ

2(1+λ)
+

√
λ

2
arctan

(

1√
λ

)

.

By various estimates and calculations we then get that

η(R) ≤C
1
R

, for R ≥ R0 sufficiently large

for some constant C > 0. Then, by proposition 7.7 we get

‖xα − xmn‖L2(0,1) ≤
1
R

+
√

αR

and by equalizing
1
R

=
√

αR we get

‖xα − xmn‖L2(0,1) ≤ 2 4
√

α,

which is the optimal order of magnitude according to the proposition 7.8 stated above.
It is a special case of Hölder type rates (7.29) with µ = 1

2 .
Notice that for xmn = 1 and multiplier functions m(t)= tν the exact source condition

(i.e. η(R) = 0) is satisfied, if t−ν ∈ L2(0,1), i.e. ν < 1
2 . Then we get the optimal

convergence rate ‖xα − xmn‖L2(0,1) = O(
√

α), as stated in section 7.2.2. For ν ≥ 1
2 we

only get inexact source conditions with the shift value η(R) > 0. The limit case ν = 1
2

is considered in the following paragraph.

Exponential decay rate of η(R)

Finally, let η(R) satisfy an exponential decay rate, i.e.

η(R) ≤ Ke−
Rq
2 , with q > 0, K > 0.

Then for the regularization error

‖xα − xmn‖L2(0,1) ≤ Ke−
Rq
2 +R

√
α

holds and by the same considerations as above, we choose R =
(

ln 1
α
)

1
q and obtain

‖xα − xmn‖L2(0,1) ≤ K
√

α+

(

ln
1
α

)
1
q √

α

= O

(

(

ln
1
α

)
1
q √

α

)

, for α → 0.

By applying the same procedure as above and by choosing α = c0δ we get the conver-
gence rate

‖xδ
α − xmn‖L2(0,1) = O

(

(

ln
1
δ

)
1
q √

δ

)

, as δ → 0. (7.32)
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The decay rate of the regularization error transfers to the decay rate of the Tikhonov
regularized solution to the minimum-norm solution. Notice that the convergence rate
is slightly slower than the optimal rate

√
δ. This optimal rate may only be obtained for

with exact source conditions.
Finally, we give an example for exponential type decay rates. Let xmn(t) = 1 and

m(t) =
√

t. Equations (7.26) and (7.25) become

R2 =

Z 1

0

t
(t +λ)2 dt = ln

(

1+
1
λ

)

− 1
1+λ

and

η2(λ) =

Z 1

0

λ2

(t +λ)2 dt =
λ

1+λ
.

By using several estimates again, we then get

η2(R) ≤ e−R2
for R ≥ R0 sufficiently large

and by setting R =
√

ln
( 1

α
)

we get

‖xα − xmn‖L2(0,1) ≤
√

α+

√

α ln

(

1
α

)

= O

(
√

α ln

(

1
α

)

)

, as α → 0,

which corresponds to the convergence rate in (7.32) for q = 2.

Finally, we may summarize that we can choose an arbitrary xmn and we will be able to
find a shift value η(R) for all operators A by applying the proposition by Baumeister,
stated in 7.7. Then we may find convergence rates for the regularization error

‖xα − xmn‖L2(0,1) = O(ζ(α)) as α → 0,

defined in (7.18) and hence convergence rates for Tikhonov regularization to the minimum-
norm solution

‖xδ
α − xmn‖L2(0,1) = O(χ(δ)) as δ → 0,

where χ(δ) is defined by one of the functions in (7.28), (7.30) or (7.32). We have over-
come the strict and somehow unnatural satisfaction of exact source conditions and we
have observed that the convergence rates may get very close to the optimal convergence
rate

√
δ.

7.2.4 Tikhonov regularization of nonlinear operators, convergence
rates and application to F(x) = y

Now the aim is to apply the method of Tikhonov regularization introduced in the pre-
vious section to nonlinear ill-posed problems, especially to (2.12).
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We assume that D ⊆ X is convex, F is a nonlinear continuously and weakly closed
operator possessing a Fréchet derivative for all x ∈ D. Furthermore we have X = Y =
L2(0,1) and we assume that there exists at least one solution x0 ∈ D with F(x0) = y for
the exact right-hand side y∈Y . Hence we are looking for a so-called x∗-minimum-norm
solution :

Definition 7.5. Let x∗ ∈ X be a given reference element and y ∈Y . An element xmn ∈ X
is called a x∗-minimum-norm solution if

F(xmn) = y (7.33)

and
‖xmn − x∗‖X = min{‖x− x∗‖X : F(x) = y x ∈ D}.

In [18] this x∗-minimum-norm solution was generalized to a x∗-minimum-norm
least square solution, i.e. (7.33) was replaced by

‖F(xmn)− y‖Y = min{‖F(x)− y‖Y , x ∈ D(F)}.

In general, an x∗-minimum-norm solution need not exist and even if it does, it need
not be unique. Hence we assume that an x∗-minimum-norm solution exists. Engl et al.
[18] investigated the applicability of the Tikhonov regularization to nonlinear inverse
problems. Given some approximation yδ ∈ Y of the right-hand side y with

‖yδ − y‖Y ≤ δ

and some initial guess x∗ ∈ X they suggest to minimize the Tikhonov functional

T δ
α (x) := ‖F(x)− yδ‖2

Y +α‖x− x∗‖2
X (7.34)

where α > 0 is a positive regularization parameter, in order to solve F(x) = y approx-
imately. Hence we get the regularized solutions xδ

α ∈ D according to Tikhonov by
solving the regularized least-squares problem

T δ
α (x) = min!, x ∈ D.

The existence of a solution to (7.34) is given by the following lemma (see [45] or [18]
for a proof):

Lemma 7.4. Let the conditions for the operator F formulated in this section hold.
Then at least one minimizer xδ

α ∈ D of the Tikhonov functional, i.e. of the regularized
least-squares problem (7.34) exists for all yδ ∈ Y and α > 0.

By lemma 7.1 we know that our operator F = N ◦ J satisfies all the conditions for
the previous lemma and thus a minimizer xδ

α ∈ D of the Tikhonov functional exists.
Under the same assumptions on F the solution xδ

α(δ) obtained by the Tikhonov reg-
ularization converges to the x∗-minimum-norm solution xmn, when the data quality δ
tends to zero. We may extract this property from the following proposition (see [45] or
[18, Theorem 2.3] for a proof):
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Proposition 7.9. Let y ∈ R(A) ⊂Y be perfect data and yδ be disturbed data, where the
error level is bounded by δ, i.e.

‖yδ − y‖Y ≤ δ.

Furthermore let α = α(δ) be a parameter choice rule such that

α(δ) → 0 and
δ2

α(δ)
→ 0 as δ → 0.

Then under the assumptions on F stated above for every sequence {δi}i∈N with

lim
i→∞

δi = 0 and ‖yδi
− y‖Y ≤ δi

and αi := α(δi) the sequence xδi
αi of minimizers of (7.34) has a convergent subsequence.

In addition the limit of every convergent subsequence is an x∗-minimum-norm solution.
Furthermore, if the x∗-minimum-norm solution xmn is unique, then

lim
δ→0

xδ
α(δ) = xmn.

Again, lemma 7.1 ensures that our operator F = N ◦ J satisfies the assumptions of
this proposition and the solution xδ

α obtained by Tikhonov regularization converges to
xmn.

Hence by lemma 7.4 and proposition 7.9 we find that for all regularization param-
eters α > 0 and a fixed initial guess x∗ ∈ L2(0,1) Tikhonov regularized solutions xδ

α
as minimizers of (7.34) exist for the inverse problem F = N ◦ J from (2.12) and stably
depend on the data yδ. Moreover, for

αi = α(δi) → 0 and
δ2

i

α(δi)
→ 0 as δi → 0 for i → ∞

any sequence {xδi
αi} converges to xmn in L2(0,1).

Since convergence stated in the previous proposition may be arbitrarily slow, we
are interested in convergence rates which represent the asymptotic behaviour of the
Tikhonov regularization for the error level δ. Therefore we state the following proposi-
tion which was first stated by Lukaschewitsch (see [63, Theorem 2.2.3] or [64, Theorem
4.1]).

Proposition 7.10. Let X, Y denote Hilbert spaces and F : D(F) ⊂ X → Y be a contin-
uous nonlinear operator between Hilbert spaces. Let δ > 0 and yδ ∈Y be such that the
data satisfy ‖y− yδ‖Y ≤ δ. Furthermore, let the following assumptions on F hold:

1. D(F) is convex,

2. F is weakly sequentially closed,
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3. an x∗-minimum-norm solution xmn exists,

4. F is Fréchet differentiable in a ball Bρ(xmn),

5. the derivative F ′(xmn) ∈ L(X ,Y) is Lipschitz continuous, i.e.

‖F ′(x)−F ′(xmn)‖L(X ,Y) ≤ L‖x− xmn‖X ,

for all x ∈ Bρ(xmn), where L denotes the Lipschitz constant and

6. let θ ∈ R be positive, such that there exists an element wθ ∈ Y satisfying

‖xmn − x∗−F ′(xmn)
∗wθ‖X < θ, (7.35)

where L‖wθ‖Y ≤ c0 < 1 for a c0 > 0.

Then, if ρ > 2‖xmn − x∗‖X +
√

δ0
K , where δ0 > 0 is such that δ < δ0 for all error lev-

els δ > 0 of consideration, for the parameter choice α := Kδ, where K denotes some
positive constant, the asymptotic estimates

‖F(xδ
α)− yδ‖Y ≤

(

1+
2Kc0

L

)

δ+
√

2ρKδ
1
2 θ

1
2 (7.36)

and

‖xδ
α − xmn‖X ≤ 1√

1− c0

((

1√
K

+

√
Kc0

L

)

δ
1
2 +
√

2ρθ
1
2

)

(7.37)

are valid.

A proof of this proposition can be found in [63]. This proposition is an extension of
the theorem first stated by Engl, Kunisch and Neubauer (see [18, Theorem 2.4]), where
the exact source condition

xmn − x∗ = F ′(xmn)
∗w,

i.e. θ = 0 was used instead of the inexact source condition (7.35). By using the exact
source condition we obviously get a convergence rate of

‖xδ
α − xmn‖X ≤ O(

√
δ).

from proposition 7.10. In lemma 7.1 we stated that assumptions (1)-(5) are satisfied for
our nonlinear multiplication operator F = N ◦ J. In [38] assumption (6) was examined.
The source condition may be written as

(xmn − x∗)(t) =
Z 1

t
m(s)w(s)ds (0 ≤ t ≤ 1, w ∈ L2(0,1))

using F ′(x0)
∗ = J∗ ◦M∗ = J∗ ◦M. Then the assumption (6) with exact source condition

is satisfied if and only if

(xmn − x∗)(1) = 0 and
(xmn − x∗)′

m
∈ L2(0,1), (7.38)
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i.e. xmn − x∗ ∈ H1(0,1). Furthermore

∥

∥

∥

∥

(xmn − x∗)′

m

∥

∥

∥

∥

L2(0,1)

<
1
L

(7.39)

has to be satisfied in order to ensure a convergence rate of
√

δ for the exact source
condition. These are quite strong conditions, since the initial guess has to be exact on
the right-hand boundary (7.38) and (7.39) implies that the initial guess x∗ has to be
close to the solution xmn. Furthermore condition (7.39) requires a certain smoothness
of xmn−x∗ and, since m(s)→ 0 as s → 0 the condition (7.39) on the difference xmn−x∗

is very rigorous with respect to small s.
We can partly overcome this restriction by considering inexact source conditions as

examined in proposition 7.10. Firstly, we assume that the operator J, i.e. the integral
operator without multiplier function satisfies the exact source condition, i.e.

xmn − x∗ = F ′(xmn)
∗wθ

holds for some wθ ∈ L2(0,1). Without multiplier function we get F ′(x0)
∗ = J∗ and

therefore the exact source condition becomes

(xmn − x∗)(t) =

Z 1

t
wθ(s)ds (0 ≤ t ≤ 1, wθ ∈ L2(0,1)).

Again, this implies

(xmn − x∗)(1) = 0 and (xmn − x∗)′ ∈ L2(0,1), (7.40)

i.e. with xmn−x∗ ∈ H1(0,1), a certain smoothness requirement on the difference xmn−
x∗ and

‖wθ‖L2(0,1) = ‖(xmn − x∗)′‖L2(0,1) <
1
L
, (7.41)

where L is the Lipschitz constant for operator J ∈ L(L2(0,1),L2(0,1)). Since we are
only interested in the influence of the multiplication operator, this assumption of exact
source conditions for the operator without multiplier function is justified. Assuming
that an inexact source condition is satisfied for the operator with multiplier function
F ′(xmn)

∗ = J∗ ◦M∗ = J∗ ◦M we are going to estimate θ for some w̃θ ∈ L2(0,1):

‖xmn − x∗−F ′(xmn)
∗w̃θ‖2

L2(0,1) = ‖[J∗(wθ)]− [MJ∗(w̃θ)]‖2
L2(0,1)

≤ ‖
Z 1

t
wθ(s)ds−

Z 1

t
m(s)wθ(s)ds‖2

L2(0,1)

= ‖
Z 1

t
(1−m(s))wθ(s)ds‖2

L2(0,1)

≤
Z 1

0
(1−m(s))2ds

Z 1

0
w2

θ(s)ds
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Using (7.41) we get

‖xmn − x∗−F ′(xmn)
∗w̃θ‖2

L2(0,1) ≤
1
L2

Z 1

0
(1−m(s))2ds,

and in order to achieve the inexact source condition (7.35)

1
L2

Z 1

0
(1−m(s))2ds ≤ θ2 (7.42)

has to be satisfied. Since the integral
R 1

0 (1−m(s))2ds is bounded, the right-hand side
of (7.42) is bounded, too. For our special multiplier functions m(t) = tα or m(t) =
exp{− 1

tα}, α > 0
Z 1

0
(1−m(s))2ds < 1

holds. For large L the value of θ may be chosen to be small. Thus, by considering
(7.37) for δ � 0 and small θ we get a low influence of multiplier functions. As for the
consideration of the linearized case we may investigate the influence of the velocity of
m(s) → 0 as s → 0. We can use the same function (7.16)-(7.17) which can be seen in
figure 7.1. Then, by using the results of section 7.2.2 we may estimate the left-hand
side of (7.42) to get

1
L2

Z 1

0
(1−m(s))2ds =

1
L2

Z ε

0
(1−m(s))2ds ≤ 1

L2 ε

. Hence, we force (7.42) to satisfy

1
L2 ε ≤ θ2.

By setting θ =
√

ε
L (7.37) we get

‖xδ
α − xmn‖X ≤ 1√

1− c0

((

1√
K

+

√
Kc0

L

)

δ
1
2 +
√

2ρ
(√

ε
L

)

1
2
)

,

and therefore a small influence on the convergence rate for small ε > 0. Hence, only
the integral

R 1
0 (1−m(s))2ds influences the regularization properties and not the decay

rate of m(s) → 0. This is the same result as observed for the Tikhonov regularization
applied to the linearized problem. Therefore the convergence rates

‖F(xδ
α)− yδ‖L2(0,1) ≤ O(δ)

and
‖xδ

α − xmn‖L2(0,1) ≤ O(
√

δ)

are valid. Hence we still get the convergence rate of
√

δ for the Tikhonov regularization
of operators with multiplier functions. We have overcome the restriction (7.39) which
becomes even stronger as soon as m(s) is close to zero. Therefore the influence of
multiplication operators on the regularization properties is limited, however we still
have to satisfy the rigorous conditions (7.40) and (7.41) which also have to be satisfied
for the integral operator without multiplier function.
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Chapter 8

Conclusions

The main objective of this diploma thesis was to investigate the influence of multipli-
cation operators on the ill-posedness of inverse problems.

We have shown, how these operators arise via nonlinear problems in science, en-
gineering and finance. Then we described how the degree of ill-posedness of those
operators can be measured.

We provided several analytical tools in order to derive the degree of ill-posedness
of an operator

F ′(x0) = M ◦ J,

where J is a simple integral operator, which is ill-posed of degree ν = 1. We have seen
that it is hard to find analytical results for the singular value decomposition, i.e. the
degree of ill-posedness, if the multiplication operator m(t) has got a zero, for example
at t = 0. Analytically we may always find lower bounds, but we are interested in upper
bounds on the degree of ill-posedness.

By calculating the singular value decomposition numerically using several different
approaches, such as finite difference methods for the corresponding Sturm-Liouville
problem and Galerkin as well as Rayleigh-Ritz methods for the eigenvalue or singular
value decomposition, we were able to find the degree of ill-posedness numerically. We
have also provided approximation properties and even error estimates, such that the
computations are reliable. Furthermore, we have found that the relationship

σn(F
′(x0)) =

Z 1

0
m(s)dsσn(J) =

Z 1

0
m(s)ds

2
π(2n−1)

.

is valid, i.e. only the integral
R 1

0 m(s)ds influences the singular values, but the singular
value asymptotics, which determine the degree of ill-posedness, remains the same.

Furthermore, via the consideration of the corresponding Sturm-Liouville problem

−(a(τ)u′(τ))′ = λu(τ), u(1) = u′(0) = 0

we could see that we may solve such problems with parameters a(τ) with satisfy a(τ)→
∞ as τ → 0.
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Chapter 8. Conclusions

The thesis is completed by an investigation of the influence of the multiplication op-
erator on the properties of Tikhonov regularization. In the last chapter we have observed
that this influence is limited, too. Again, the integral

R 1
0 m(s)ds plays an important role.

We have found convergence rates for ‖xδ
α − xmn‖L2(0,1), even with inexact source con-

ditions, and we have observed that the convergence rate of the Tikhonov regularization
to the minimum-norm solution are not influenced by the decay rate m(s) → 0 but by
the integral

R 1
0 (1−m(s))2ds. We may even get very close to the optimal convergence

rate
√

δ. This is a similar result to the one for the degree of ill-posedness.
Further work could involve the analytical verification of the numerical results such

as it was done by Vu Kim Tuan and Gorenflo [78].
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normierten Räumen. Akademie Verlag, Berlin, 1964.

[55] KNABNER, P., AND ANGERMANN, L. Numerik partieller Differentialgleichun-
gen. Springer-Verlag Berlin Heidelberg, 2000.
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Fréchet derivative, 7, 113
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Thesen

zu der an der Fakultät für Mathematik der Technischen Universität Chemnitz eingere-
ichten Diplomarbeit zum Thema

On the Influence of Multiplication Operators
on the Ill-Posedness of Inverse Problems

vorgelegt von Melina Freitag, MSc.

1. Diese Diplomarbeit beschäftigt sich mit dem Einfluss von Multiplikationsopera-
toren auf die Inkorrektheit von inversen Problemen.

2. Bei der Modellierung physikalischer, technischer und auch finanzmathematischer
Prozesse entstehen oftmals schlechtgestellte nichtlineare Probleme.

3. In dieser Arbeit werden solche nichtlineare Probleme betrachtet, deren Lineari-
sierung über die Fréchet-Ableitung sich als Komposition eines Multiplikation-
soperators M und eines Integraloperators J mit [J(x)](t) =

R t
0 x(τ)dτ darstellen

lässt, also
F ′(x0) = M ◦ J, (0 ≤ t ≤ 1)

wobei F ′(x0) zwischen den Hilberträumen X = Y = L2(0,1) abbildet.

4. Für m ∈ L∞(0,1) überträgt sich die Kompaktheit von J auf den beschränkten
linearen Operator F ′(x0). F ′(x0) stellt dann i.a. ein lineares schlecht gestelltes
Problem dar. Für die Lösung inverser Aufgaben, insbesondere deren Regulari-
sierung, ist es wichtig zu wissen, wie schlecht ein solches Problem gestellt ist.

5. Für die lokale Inkorrektheit des Problems mit kompakten Operator interessiert
die Abklingrate der Singulärwerte von F ′(x0), das Problem ist umso schlechter
gestellt, je größer die Abklingrate der Singulärwerte ist.

6. Durch Multiplikationsoperatoren mit 0 < c ≤ |m(t)| ≤ C < ∞ für alle t wird
die Abklingrate der Singulärwerte und damit der Grad der Inkorrektheit nicht
verändert.

7. Mit Hilfe verschiedener analytischer Betrachtungen wird der Grad der Inkorrek-
theit nach unten, jedoch nicht nach oben abgeschätzt.
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8. Das Singulärwert- bzw. Eigenwertproblem wird diskretisiert und numerische
Studien mittels Finite-Differenzen-Verfahren angewandt auf das zugehörige Sturm-
Liouville-Eigenproblem sowie Galerkin- und Rayleigh-Ritz-Verfahren angewandt
auf das Eigenwertproblem für die Integralgleichungen werden durchgeführt. Meh-
rere Tests liefern, zusammen mit Konvergenzsätzen, Approximationseigenschaf-
ten und Fehlerschätzern, obere Schranken für die Singulärwerte und damit deren
Abklingrate.

9. Analytische und numerische Untersuchungen zeigen, dass der Grad der Inkor-
rektheit durch Multiplikationsoperatoren nicht beeinflusst wird. Sie liefern sogar
die folgende Beziehung zwischen den Singulärwerten von J und F ′(x0):

σn(F
′(x0)) =

Z 1

0
m(s)dsσn(J) =

Z 1

0
m(s)ds

2
π(2n−1)

.

10. Der Einfluss der Multiplikationsoperatoren auf die Tikhonov Regularisierung
sowohl des linearen als auch des nichtlinearen Problems ist ebenfalls beschränkt.
Die Konvergenzraten der Tikhonov Regularisierung zur Minimum-Norm-Lösung
bleiben erhalten bzw. weichen nur leicht von der optimalen Konvergenzrate

√
δ

ab.

11. Für die Tikhonov Regularisierung ist festzustellen, dass, ebenso wie für den Grad
der Inkorrektheit, nicht die Geschwindigkeit der Konvergenz m(s) → 0 wenn
s → 0 entscheidend ist, sondern dass Integral

R 1
0 m(s)ds.

12. Damit ist widerlegt, dass insbesondere Problem mit m(s) = e−
1

sα stark schlecht
gestellt sind. Sie sind ebenso schwach inkorrekt wie das Problem ohne Multip-
likationsoperator.
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