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Abstract

This paper considers dynamic optimal portfolio strategies of utility maximizing

investors in the presence of risk constraints. In particular, we investigate the op-

timization problem with an additional constraint modeling bounded shortfall risk

measured by Value at Risk or Expected Loss. Using the Black-Scholes model of a

complete financial market and applying martingale methods we give analytic ex-

pressions for the optimal terminal wealth and the optimal portfolio strategies and

present some numerical results.
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1 Introduction

One of the basic problems in applied stochastic finance deals with optimal strategies for
portfolios consisting of risky stocks and riskless bonds. Giving a finite planning horizon
[0, T ] and starting with some initial endowment the aim is to maximize the expected
utility of the terminal wealth of the portfolio by optimal selection of the proportions of the
portfolio wealth invested in stocks and bond, respectively. Assuming a continuous-time
market allowing for permanent trading and rebalancing the portfolio these proportions
have to be found for every time t up to T .

This problem has been solved in the context of the Black-Scholes model of a complete
financial market, see e.g. Cox and Huang [4], Karatzas, Lehoczky and Shreve [6, 7]. Here
the portfolio can contain shares of a riskless bond and of stocks whose prices follow a
geometric Brownian motion.

Following the optimal portfolio strategy leads (by definition) to the maximum expected
utility of the terminal wealth. Nevertheless, the terminal wealth is a random variable
with a distribution which is often extremely skew and shows considerable probability
in regions of small values of the terminal wealth. This means that the optimal terminal
wealth may exhibit large so-called shortfall risks. By the term shortfall risk we denote the
event, that the terminal wealth falls below some threshold value, e.g. the initial capital
or the result of an investment in a pure bond portfolio.

In Germany companies offering some kind of private pension insurances (Riester-Rente)
are obliged by law to pay at least the invested capital without any interest to the insured
person. So the company is confronted with the risk of a terminal wealth of the portfolio
(created with the deposits of the insured person) below the value the non-interest-bearing
deposits.

In order to incorporate such shortfall risks into the optimization it is necessary to quantify
them by using appropriate risk measures. Lets denote the terminal wealth of the portfolio
at time t = T by XT . Further, let q > 0 be some threshold or shortfall level. Then the
shortfall risk consists in the random event {XT < q} or {Z := XT − q < 0}. Next we
assign risk measures to the random variable (risk) Z and denote them by ̺(Z). Using
these measures constraints of the type ̺(Z) ≤ ε for some ε ≥ 0 can be added to the
formulation of the portfolio optimization problem.

A natural idea is to restrict the probability of a shortfall, i.e.

̺(Z) = P(Z < 0) = P(XT < q) ≤ ε.

Here ε ∈ [0, 1] is the maximum shortfall probability which is accepted by the investor.
This approach corresponds to the widely used concept of Value at Risk (VaR) which is
defined as

VaRε(Z) = −ζε(Z)

where ζε(Z) denotes the ε-quantile of the random variable Z. VaR can be interpreted
as the threshold value for the risk Z such that Z falls short below this value with some
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given probability ε. It holds

P(Z < 0) ≤ ε⇔ VaRε(Z) ≤ 0 ⇔ VaRε(XT ) ≤ −q.

Another risk measure is the Expected Loss defined by

EL(Z) = EZ− = E
[

(XT − q)−
]

.

In the example of the pension insurance this is a measure for the average additional
capital the company is obliged to pay as compensation for the shortfall. The constraint
EZ− ≤ ε bounds this average additional capital by ε ≥ 0.

Further risk measures can be found in the class of coherent measures introduced by
Artzner, Delbaen, Eber and Heath [1] and Delbaen [5]. These are measures possessing
the properties of monotonicity, subadditivity, positive homogeneity and the translation
property. The above two risk measures do not belong to this class, since VaR is not
subadditive and EL violates the translation invariance property.

The paper is organized as follows. Section 2 introduces basic notation for the considered
Black-Scholes model of the financial market and formulates the portfolio optimization
problem. Thereby we restrict to the case of a financial market with only one risky asset.
The derivations of the paper can easily be generalized to the multi-dimensional Black-
Scholes model with d > 1 risky assets.

Before the optimization with constrained risk measures is considered Section 3 deals with
the unconstrained problem. Here the basic ideas of martingale methods are explained
and an application to the case of the so-called CRRA utility function is given. Based on
these results in Section 4 risk measure constraints are added to the optimization. First
in Subsection 4.1 the shortfall probability or equivalently the Value at Risk is bounded.
We follow the paper of Basak and Shapiro [2], but give slightly different solutions. In
Subsection 4.2 the expected loss is bounded. This case is not considered explicitly in [2]
and we give the detailed solution for the case of a CRRA utility function. Finally Section
5 presents some numerical results.

2 The portfolio optimization problem

We consider a continuous-time economy with finite horizon [0, T ] which is built on a
filtered probability space (Ω,F ,Ft,P), on which is defined a 1-dimensional Brownian
motion W . We assume that all stochastic processes are adapted to (Ft), the augmented
filtration generated by W . It is assumed through this paper that all inequalities as well
as equalities hold P-almost surely. Moreover, it is assumed that all stated processes are
well defined without giving any regularity conditions ensuring this, since our focus is a
characterization problem.

Financial investment opportunities are given by an instantaneously riskless money mar-
ket account and a risky stock as in the Black-Scholes model [3]. We suppose the money
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market provides an interest rate r. The stock price S is represented by a geometric
Brownian motion

dSt = µStdt+ σStdWt, (2.1)

where the interest rate r, the stock instantaneous mean return µ and the volatility σ are
assumed to be constants.

The dynamic market completeness implies the existence of a unique state price density
process Ht, given by

dHt = −Ht(rdt+ κdWt), H0 = 1, (2.2)

where κ := (µ− r)/σ is the market price of risk in the economy, which can be regarded
as the driving economic parameter in an agent’s dynamic investment problem.

We assume that an agent in this economy is endowed at time zero with an initial wealth
of x. The agent chooses an investment policy θ, where θt denotes the fraction of wealth
invested in the stock at time t. The portfolio process θt is assumed to be self-financing
so that the agent’s wealth process X follows

dXt = [r + θt(µ− r)]Xtdt+ θtσXtdWt, X0 = x. (2.3)

At time t = T the agent reaches the terminal wealthXT . The portfolio process is assumed
to be admissible in the following sense.

Definition 2.1

Given x > 0, we say that a portfolio process θ is admissible at x, and write θ ∈ A(x), if
the wealth process Xθ

t starting at Xθ
0 = x satisfies

Xθ
t ≥ 0, 0 ≤ t ≤ T.

In this economy, the agent is assumed to derive from the terminal wealth XT a utility
u(XT ) and he is looking to maximize the expected utility by choosing an optimal strategy
from the set of admissible strategies.

The dynamic problem

Find an admissible strategy θ∗ in A(x) that solves

max
θ∈A

E[u(Xθ
T )]. (2.4)

Thereby, the utility function u(·) satisfies the following conditions

• u(·) is twice continuously differentiable,

• u(·) is striclty increasing and strictly concave,

• limx→0 u
′(x) = ∞ and limx→∞ u′(x) = 0.
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3 Martingal methods for the unconstrained problem

With no additional restrictions such as risk management, the maximization problem (2.4)
was solved in the case of a complete market, by Cox and Huang [4] and independently
by Karatzas, Lehocky and Shreve [6] using martingale and duality approaches. The me-
thod consists of converting the dynamic optimization problem of finding an admissible
strategy that maximizes the expected utility from terminal wealth, into a static optimi-
zation problem consisting of finding an optimal terminal wealth, and via a representation
problem one gets the optimal strategy associated with this optimal terminal wealth.

Itô’s Formula implies that the process HtX
θ
t is a supermartingale which implies that the

so called budget constraint

E[HTX
θ
T ] ≤ x

is satisfied fo every θ ∈ A(x). This means that the expected discounted terminal wealth
can not exceed the initial wealth. Here the state price density Ht serves as a discounting
process.
In the present case of a complete market, the following theorem is a basic tool in mar-
tingale methods.[7]

Theorem 3.1

Let x > 0 be given and let ξ be a nonnegative, FT -measurable random variable such
that

E[HT ξ] = x.

Then there exists a portfolio process θ(.) in A(x) such that ξ = Xθ
T .

Define

B(x) := {ξ ≥ 0 : ξ is FT − measurable and E[HT ξ] ≤ x}.

In contrast to the dynamic problem, where the investor is required to maximize expected
utility from terminal wealth over a set of processes, in a first step the static problem is
considered. Here, the investor has the advantage to maximize only over a set of random
variables.

The static problem

Find an FT -measurable random variable ξ∗ in B(x) that solves

max
ξ∈B

E[u(ξ)]. (3.1)

In a second step the optimal strategy is found as the solution of the representation
problem.

The representation problem

Given ξ∗ ∈ B that solves (3.1), find an admissible strategy θ∗ ∈ A(x) such that Xθ∗

T = ξ∗.
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For y > 0, we denote by I(y) := (u′)−1(y) the inverse function of the derivative of the
utility function. Define χ(y) := E[HT I(yHT )].

The following lemma provides some properties of the function χ(·) and I(·), see [8].

Lemma 3.2

The function χ(·) satisfies
χ(y) <∞ for all y > 0.

Moreover, the function χ(·) is continuous, strictly decreasing on (0,∞) with

χ(0) := lim
y↓0

χ(y) = ∞, χ(∞) := lim
y→∞

χ(y) = 0.

For 0 < x, y <∞, we have

u(I(y)) ≥ u(x) + y(I(y) − x).

The next theorem stated in [8] solves the static optimization problem (3.1).

Theorem 3.3

Consider the portfolio problem (2.4). Let x > 0 and set y := χ−1(x), i.e. y solves
x = E[HT I(yHT )]. Then there exists for ξ∗ := I(yHT ) a self-financing portfolio process
θ∗t , t ∈ [0, T ], such that

θ∗t ∈ A(x), Xθ∗

T = ξ∗,

and the portfolio process solves the dynamic problem (2.4).

The representation problem can be solved using the fact that the process HtX
θ
t is a

martingale. Markov property of solution of stochastic differential equation allows the
optimal wealth process before the horizon Xθ∗

t to be written as a function of Ht for
which we apply Itô’s Formula. By equating coefficients with the wealth process (2.3) one
gets the optimal portfolio.

Example 3.4 The problem of the so called benchmark manager or non-risk managing
agent was studied by Cox and Huang [4], where the agent has a constant relative risk
aversion (CRRA) γ which is contained as a parameter of the utility function

u(x) =

{

x1−γ

1−γ
, γ ∈ (0,∞) \ {1},

lnx, γ = 1.
(3.2)

According to Theorem 3.3, the static problem (3.1) has the optimal solution

ξB = I(yHT ),

with I(x) = x
−1
γ is the inverse function of the derivative of the utility function u(·) and

y := 1
xγ e

(1−γ)(r+κ2

2γ
)T .
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Let XB
t be the optimal solution before the horizon. Itô’s lemma applied to Equations

(2.2) and (2.3) implies that the process HtX
B
t is Ft-martingale: XB

t = E
[

HT

Ht
XB

T

∣

∣Ft

]

.

Here the optimal terminal wealthX∗
T is given by Theorem 3.3 as X∗

T := ξB = I(yHT ). We
apply Markov Property of the solution Ht of Equation (2.2) to compute this conditional
expectation using the fact that lnHT is normally distributed with mean lnHt − (r +
κ2

2
)(T − t) and variance κ2(T − t). We get for the optimal terminal wealth before the

horizon the following form

XB
t =

eΓ(t)

(yHt)
1
γ

with Γ(t) :=
1 − γ

γ
(r +

κ2

2γ
)(T − t).

The optimal strategy is obtained by a representation approach. In this case we have
X∗

t = f(Ht) with f(x) = eΓ(t)

(yx)
1
γ

for which we apply Itô’s lemma to get

XB
t = f(H0) +

∫ t

0

(−rHsf
′(Hs) +

κ2

2
H2

s f
′′(Hs))ds+

∫ t

0

(−κHsf
′(Hs))dWs.

If we equate the volatility coefficient of this equation with the volatilty coefficient of
Equation (2.3), we get in the absence of risk-constraint the following constant optimal
strategy

θB
t = θB =

κ

γσ
=
µ− r

γσ2
= const.

4 Optimization with constraints

4.1 Value at Risk constraint

In this section we present the portfolio maximization problem constrained by the Value
at Risk. More precisely, we consider an investor who wishes in addition to maximize his
expected utility from terminal wealth, to control the probability for a shortfall. Given a
probability ε ∈ [0, 1] this constraint can be written as

P(Z < 0) = P(XT < q) ≤ ε. (4.1)

From the definition of VaR given in the Introduction this is equivalent to

VaRε(Z) ≤ 0 ⇔ VaRε(XT ) ≤ −q.

With constraint (4.1) the agent bounds the probability of negative values of the risk
Z = XT − q by ε. We will denote this strategy as VaR-strategy.

We give an alternative solution of the dynamic optimization problem of the VaR agent
studied by Basak and Shapiro in [2]. The problem is solved using the martingale re-
presentation approach which consists of formulating the problem as the following static
variational problem:
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max
ξ∈B

E[u(ξ)]

subject to E[HT ξ] ≤ x

P(ξ < q) ≤ ε.

The VaR constraint leads to nonconcavity with which the maximization is more complica-
ted. The optimal terminal wealth is characterized by Basak and Shapiro [2], Proposition
1, where the authors assumed that the solution exists.

Proposition 4.1

The VaR-optimal terminal wealth is

ξV aR =











I(yHT ) if HT < h,

q if h ≤ HT < h,

I(yHT ) if h ≤ HT ,

where I(·) is the inverse function of u′(·), h = u′(q)
y

, h is such that P(HT > h) = ε and

y ≥ 0 solves E[HT ξ
V aR(y)] = x.

The VaR-constraint (4.1) is binding if, and only if, h < h.

In the following proposition we present explicit expressions for the VaR agent’s optimal
wealth and portfolio strategies before the horizon.

Proposition 4.2

Let u(x) be the CRRA utility function given in (3.2). Then

(i) The VaR-optimal wealth at time t is given by

XV aR
t =

eΓ(t)

(yHt)
1
γ

−
[

eΓ(t)

(yHt)
1
γ

Φ
(

− d1(h,Ht)
)

− qe−r(T−t)Φ
(

− d2(h,Ht)
)

]

(4.2)

+

[

eΓ(t)

(yHt)
1
γ

Φ
(

− d1(h,Ht)
)

− qe−r(T−t)Φ
(

− d2(h,Ht)
)

]

,

where Φ(·) is the standard-normal distribution function, y and h are as in Propo-
sition 4.1 and

h = 1
y1qγ ,

Γ(t) := 1−γ

γ
(r + κ2

2γ
)(T − t),

d1(z,Ht) :=
ln z

Ht
+(r−κ2

2
)(T−t)

κ
√

T−t
,

d2(z,Ht) := d1(z,Ht) + 1
γ
κ
√
T − t.
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(ii) The VaR-optimal fraction of wealth invested in stock is

θV aR
t = θB

t p
V aR
t ,

where the benchmark value θB
t and the exposure to risky assets relative to the

benchmark pV aR
t are

θB
t ≡ θB =

κ

γσ
=
µ− r

γσ2

pV aR
t = 1 − qe−r(T−t)

XV aR
t

[

Φ
(

− d2(h,Ht)
)

− Φ
(

− d2(h,Ht)
)

]

+
γ

κ
√
T − tXV aR

t

eΓ(t)

(yHt)
1
γ

[

ϕ
(

d1(h,Ht)
)

− ϕ
(

d1(h,Ht)
)

]

− γqe−r(T−t)

κ
√
T − tXV aR

t

[

ϕ
(

d2(h,Ht)
)

− ϕ
(

d2(h,Ht)
)

]

respectively, and ϕ(·) is the standard-normal probability density function.

Proof.

(i) From Equations (2.2) and (2.3), Itô’s lemma implies that the process HtX
V aR
t is

Ft-martingale:

XV aR
t = E

[

HT

Ht
ξV aR

∣

∣Ft

]

= E
[

HT

Ht
I(yHt)

(

1{HT <h} + 1{h≤HT }
)∣

∣Ft

]

+ E
[

HT

Ht
q1{h≤HT <h}

∣

∣Ft

]

.

These conditional expectations are computed by applying Markov’s property of
solution of stochastic differential equation and using the fact that lnHT is normally
distributed with mean lnHt − (r + κ2

2
)(T − t) and variance κ2(T − t). Hence, we

get the form of the agent’s optimal wealth before the horizon.

(ii) From Equality (4.2) it follows XV aR
t = f(Ht) where

f(x) = eΓ(t)

(y1x)
1
γ

[

1 − Φ(−d1(h, x)) + Φ(−d1(h, x))
]

+qe−r(T−t)
[

Φ(−d2(h, x)) − Φ(−d2(h, x))
]

.

Applying Itô’s lemma to the function f(·), we get

dXV aR
t = [−rf ′(Ht)Ht +

κ2

2
f ′′(Ht)H

2
t ]dt− κf ′(Ht)HtdWt,

and equating coefficients with Equation (2.3) leads to the following equality:

θV aR
t = −κ

σ

f ′(Ht)Ht

f(Ht)
= −θBγ

f ′(Ht)Ht

f(Ht)
. (4.3)
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Computing the derivative of the f(·) we get

f ′(x) =
1

γx

[

− f(x) + qe−r(T−t)
(

Φ(−d2(h, x)) − Φ(−d2(h, x))
)

]

− eΓ(t)

(yx)
1
γ κ

√
T − tx

[

ϕ(d1(h, x)) − ϕ(d1(h, x))

]

+
qe−r(T−t)

κ
√
T − tx

[

ϕ(d2(h, x)) − ϕ(d2(h, x))

]

.

Substituting into (4.3), we get the final form of the optimal strategies before the
horizon.

4.2 Expected Loss constraint

We consider in this section an agent who wishes to limit his Expected Loss. In this case
the agent defines his strategy as one which fulfills the constraint

E[(XT − q)−] ≤ ε, (4.4)

where ε ≥ 0 is given. We will denote this strategy as EL-strategy. Our objective in this
section is to solve the agent’s optimization problem constrained by (4.4). The dynamic
optimization problem of the EL-risk manager can be restated as the following static
variational problem:

max
ξ∈B

E[u(ξ)]

subject to E[HT ξ] ≤ x

E[(ξ − q)−] ≤ ε.

The following proposition characterizes the optimal solution in the presence of the EL-
constraint (4.4). We prove that if a terminal wealth satisfies (4.5), then it is the optimal
solution.

Proposition 4.3

The EL-optimal terminal wealth is

ξEL =











I(y1HT ) if HT < h,

q if h ≤ HT < h,

I(y1HT − y2) if h ≤ HT ,

(4.5)
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where h = u′(q)
y1

, h = u′(q)+y2

y1
and y1, y2 > 0 solve the following system of equations

E[HT ξ
EL(T ; y1, y2)] = x,

E[HT

(

ξEL(T ; y1, y2) − q
)−

] = ε or y2 = 0.

The EL-constraint(4.4) is binding if, and only if, h < h.

Proof.

Suppose that E[(XEL
T − q)−] < ε, then it follows y2 = 0, and XEL(T ) = I(y1HT ) which

is optimal since we have in this case a standard problem without a risk constraint.
Otherwise, E[(XEL

T − q)−] = ε, and h < h. In order to solve the optimization problem
under EL-constraint, the common convex-duality approach is adapted by introducing
the convex-conjugate of the utility function u(·) with an additional term capturing the
EL-constraint as it is shown in the following lemma.

Lemma 4.4

The expression of ξEL
T solves the following pointwise problem ∀HT :

u(ξEL
T ) − y1HT ξ

EL
T − y2(ξ

EL
T − q)− = max

x≥0
{u(x) − y1HTx− y2(x− q)−}.

Proof.

Let z > 0 and consider the function h(x) := u(x) − y1zx− y2(x− q)−. Defining the two
functions

h1(x) := u(x) − y1zx

h2(x) := u(x) − y1zx+ y2(x− q) = u(x) − (y1z − y2)x− y2q,

the function h can be written as

h(x) =

{

h1(x) for x ≥ q,

h2(x) for x < q.
(4.6)

Since h1 and h2 are strictly concave and continuously differentiable, the function h is a
continuous and strictly concave function which is differentiable in [0, q) and (q,∞) and
possesses different one-sided derivatives in the point x = q which are h′(q − 0) = h′2(q)
and h′(q + 0) = h′1(q).
The functions h1 and h2 attain its maximum values at x1 := I(y1z) and x2 := I(y1z−y2),
respectively. Since the function I(.) is strictly decreasing and y2 > 0 it follows x1 < x2.
To find the maximum of h one has to consider the following three cases.

(i) q < x1:
Since u′ is strictly decreasing we have u′(q) > u′(x1) = u′(I(y1z)) = y1z, hence z <
u′(q)
y1

= h. Considering the one-sided derivatives at x = q one obtains

h′(q − 0) = h′2(q) = u′(q) − (y1z − y2) > u′(q) − y1
u′(q)

y1

+ y2 > 0

and h′(q + 0) = h′1(q) = u′(q) − y1z > u′(q) − y1
u′(q)

y1

= 0,
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i.e. the function h is increasing at x = q. It follows that the function h attains it maximum
on (q,∞) where h(x) = h1(x), i.e. the maximum is at x = x1 = I(y1z).

(ii) x1 ≤ q < x2:
Now the relation q ≥ x1 implies z ≥ h while q < x2 leads to

u′(q) > u′(x2) = u′(I(y1z − y2)) = y1z − y2,

i.e. z < u′(q)+y2

y1
= h, which gives h ≤ z < h. It follows that

h′(q − 0) = h′2(q) = u′(q) − (y1z − y2) > u′(q) − y1
u′(q) + y2

y1

+ y2 = 0

and h′(q + 0) = h′1(q) = u′(q) − y1z ≤ u′(q) − y1
u′(q)

y1

= 0.

From the strict concavity of h we deduce that h′(x) = h′1(x) < h′1(q) < 0 for x > q. Thus
the function h is strictly increasing for x < q and strictly decreasing for x > q, hence h
attains its maximum at x = q.

(iii) q ≥ x2:

This case is equivalent to z ≥ h = u′(q)+y2

y1
. For the one-sided derivatives at x = q one

obtains

h′(q − 0) = h′2(q) = u′(q) − (y1z − y2) ≤ u′(q) − y1
u′(q) + y2

y1

+ y2 = 0

and h′(q + 0) = h′1(q) = u′(q) − y1z ≤ u′(q) − y1
u′(q) + y2

y1

= −y2 < 0.

It follows that the function h is decreasing at x = q attains it maximum on (0, q) where
h(x) = h2(x) and hence the maximum is at x = x2 = I(y1z − y2).

Since the above considerations hold for arbitrary z > 0 the assertion of the lemma holds
pointwise for all z = HT .

To complete the proof, let η be any admissible solution satisfying the static budget
constraint and the EL-constraint (4.4). We have

E[u(ξEL
T )] − E[u(η)] = E[u(ξEL

T )] − E[u(η)] − y1x+ y1x− y2ε+ y2ε

≥ E[u(ξEL
T )] − E[y1HT ξ

EL
T ] − y2E[(ξEL

T − q)−]

−E[u(η)] + E[y1HTη] + y2E[(η − q)−]

≥ 0,

where the first inequality follows from the static budget constraint and the constraint
for the risk holding with equality for ξEL

T , while holding with inequality for η. The last
inequality is a consequence of the above lemma. Hence we obtain that ξEL

T is optimal.

We present in the following proposition the explicit expressions for the EL-optimal wealth
and portfolio strategy before the horizon.
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Proposition 4.5

Let u(x) be the CRRA utility function given in (3.2). Then

(i) The EL-optimal wealth at time t is given by

XEL
t =

eΓ(t)

(y1Ht)
1
γ

[

1 − Φ
(

− d1(h,Ht)
)

]

(4.7)

+qe−r(T−t)

[

Φ
(

− d2(h,Ht)
)

− Φ
(

− d2(h,Ht)
)

]

+G(Ht, h),

where Φ(·) is the standard-normal distribution function, y1, y2 are as in Proposition
4.3, Γ(t), d1, d2 are as in Proposition 4.2 and

h = 1
y1qγ and h = q−γ+y2

y1
,

G(z, h) := e−r(T−t)√
2π

c2(h,z)
∫

−∞

e−
1
2 (u−b)2

(y1tea+bu−y2)
1
γ
du,

c2(h, z) = 1
b
(ln(h

z
) − a), a := −(r + κ2

2
)(T − t) and b := −κ

√
T − t.

(ii) The fraction of wealth invested in stock is

θEL
t = θBpEL

t ,

where θB is as in Proposition (4.2) and the exposure to risky assets relative to the
benchmark pEL

t is

pEL
t =

1

XEL
t

eΓ(t)

(y1Ht)
1
γ

[

1 − Φ
(

− d1(h,Ht)
)

+
γ

κ
√
T − t

ϕ
(

d1(h,Ht)
)

]

− qγe−r(T−t)

XEL
t κ

√
T − t

ϕ
(

d2(h,Ht)
)

+
y1Hte

(κ2−2r)(T−t)

XEL
t

ψ0

(

c2(h,Ht), b, y1Hte
a, y2, 2b, 1, 1 +

1

γ

)

,

where ϕ(·) is the standard-normal probability density function and

ψ0(α, β, c1, c2,m, s, δ) :=
1√
2πs

∫ α

−∞

exp(− (u−m)2

2s2 )

(c1eβu − c2)δ
du.

Proof.

(i) Taking into account Equations (2.2) and (2.3) and applying Itô’s lemma one obtains
that the process HtX

EL
t is an Ft-martingale hence and
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XEL
t = E

[

HT

Ht

ξEL
T

∣

∣

∣
Ft

]

= J1 + J2,

where J1 : = E

[

HT

Ht

[I(y1Ht)1{HT <h} + q1{h≤HT <h}]
∣

∣

∣
Ft

]

,

and J2 = G(Ht, h) := E

[

HT

Ht

I(y1Ht − y2)1{h≤HT }

∣

∣

∣
Ft

]

.

The conditional expectation J1 is computed by applying Markov’s property of
solution of stochastic differential equation and using the fact that lnHT is normally
distributed with mean lnHt − (r + κ2

2
)(T − t) and variance κ2(T − t), while the

conditional expectation J2 is computed numerically. Hence, we get the form of the
optimal wealth before the horizon.

(ii) From Equation (4.7) we have XEL
t = f(Ht), where

f(x) =
eΓ(t)

(y1x)
1
γ

[

1 − Φ(−d1(h, x))

]

+qe−r(T−t)

[

Φ(−d2(h, x)) − Φ(−d2(h, x))

]

+G(x, h).

Itô’s lemma applied to the function f(·) leads to

dXEL
t = [−rf ′(Ht)Ht +

κ2

2
f ′′(Ht)H

2
t ]dt− κf ′(Ht)HtdWt.

Comparing with Equation (2.3), one gets the following equality:

θEL
t = −κ

σ

f ′(Ht)Ht

f(Ht)
(4.8)

= −θBγ
f ′(Ht)Ht

f(Ht)
.

Computing the derivative of the function f , we obtain

f ′(x) = − eΓ(t)

xγ(y1x)
1
γ

[

1 − Φ(−d1(h, x)) +
γ

κ
√
T − t

ϕ(d1(h, x))

]

(4.9)

+
qe−r(T−t)

κ
√
T − tx

[

ϕ(d2(h, x)) − ϕ(d2(h, x))

]

+
∂

∂x
G(x, h).

For the last term we have

∂

∂x
G(x, h) =

e−r(T−t)

√
2π

∂

∂x

[

c2(h,x)
∫

∞

l(x, u)du

]

=
e−r(T−t)

√
2π

[

c2(h,x)
∫

∞

∂

∂x
l(x, u)du+

∂

∂x
c2(h, x)l(x, c2(h, x))

]

,
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where

l(x, u) =
e−

1
2
(u−b)2

(y1xea+bu − y2)
1
γ

.

Finally, we get

∂

∂x
G(x, h) =

−y1

γ
e(κ

2−2r)(T−t)ψ0

(

c2(h, x), b, y1xe
a, y2, 2b, 1, 1 +

1

γ

)

+
qer(T−t)

κ
√
T − tx

ϕ(−d2(h, x)).

Substituting in (4.8), we get the final form of the optimal strategies before the
horizon.

5 Numerical results

This section illustrates the findings of the preceding sections with an example. Table
5.1 shows the parameters for the portfolio optimization problem and the underlying
Black-Scholes model of the financial market. In this example the aim is to maximize the
expected logarithmic utility (γ = 1) of the terminal wealth XT of the portfolio with the
horizon T = 20 years. The shortfall level q is set to be 80% of the terminal wealth of a
pure bond portfolio, i.e. q = 0.8xerT . We bound the shortfall probability P(XT < q) by
ε = 10%, i.e. we consider the optimization with the VaR constraint described in Section
4.1.

stock µ = 7%, σ = 20%

bond r = 4%

horizon T = 20

initial wealth x = 1

utility function u(x) = lnx i.e. γ = 1

shortfall level q = 0.8xerT = 1.78 . . .

constraint VaRε(XT − q) ≤ 0 ⇔ P(XT < q) ≤ ε

shortfall probability ε = 10%

Table 5.1: Parameters of the optimization problem

First the solution of the static problem is considered, it leads to the optimal terminal
wealth ξVaR. Figure 5.1 shows the probability density function and its cumulated coun-
terpart - the distribution function - of this random variable. For the sake of comparison
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we also give the corresponding functions for the terminal wealth resulting from portfolios
managed by the

– pure bond strategy θt ≡ θ0 = 0,

– pure stock strategy θt ≡ θ1 = 1,

– optimal strategy of the unconstrained problem θt ≡ θB = µ−r

γσ2 = 0.75

(see Example 3.4).

Additionally, on the horizontal axes the expected terminal wealths EXT for the conside-
red portfolios are marked.
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Figure 5.1: Distribution of the VaR-optimal terminal wealth

While in case of the pure bond portfolio the distribution of the terminal wealth Xθ0

T is
concentrated in the single point xerT , the terminal wealths Xθ1

T and XθB

T are absolutely
continuous. It holds

erT = Xθ0

T < EXθB

T < EXθ1

T = eµT .



Optimal portfolios with bounded shortfall risks 37

We mention that ξB = XθB

T maximizes the expected utility Eu(XθB

T ) and not the expec-
ted terminal wealth EXθB

T itself, therefore the latter inequality is not a contradiction.
For parameter sets fulfilling θB = µ−r

γσ2 > 1 the reverse inequality can be observed.

The distribution of the optimal terminal wealth ξVaR for the constrained problem contains
a discrete as well as an absolutely continuous part. This follows from the representation of
ξVaR in Proposition 4.1, which indicates that the probability P(h ≤ HT < h) = 0.1711 . . .
is concentrated in the single point q. In the density plot this probability mass built up
at the shortfall level q is marked by a vertical line at q. It is noted that there is a
gap in the support of the absolutely continuous distribution, since an interval (q0, q) =
(1.1343, 1.7804) of values below the shortfall level q (small losses) carries no probability
while the interval (0, q0] (large losses) carries the maximum allowed probability of ε =
10%. This effect demonstrates a serious drawback of the VaR constraint which bounds
only the probability of the losses but does not care about the magnitude of losses.

The comparison of the expected terminal wealths yields that the VaR-optimal portfolio
reaches an expected terminal wealth EξVaR which is very close below of EξB from the
optimal portfolio of the unconstrained problem.

The solution of the representation problem, i.e. the optimal strategy θ∗t = θVaR
t , is shown

in Figure 5.2. Again we give for the sake of comparison the strategies of the other
portfolios considered in Figure 5.1, i.e. the strategies θ0 ≡ 0, θ1 ≡ 1 and θB ≡ µ−r

γσ2 = 0.75,

which are constants. Contrary to this, the optimal strategy θVaR
t is a feedback strategy,

i.e. it is a function of time t and the state Xt which is the wealth at time t. Proposition
4.2 (ii) gives an equivalent representation of θVaR

t in terms of t and the state price density
Ht. Since Ht can be expressed in terms of t and St the optimal strategy can be written
also as a function of t and the stock price St at time t. Figure 5.2 shows the dependence
of θVaR

t on the stock price St for three instants t = 0.25T = 5, t = 0.75T = 15 and
the time just before the horizon T = 20. Moreover the dependence of the EL-optimal
strategy on time t and stock price S is visualized.

It can be seen that at the horizon T the optimal strategies θVaR
T and θB of the constrained

and unconstrained problem, respectively, coincide for small and large stock prices, i.e. for
ST ∈ (0, 0.8639) ∪ (1.5759,∞). In case of medium stock prices (ST ∈ (0.8639, 1.5759))
it holds θVaR

t → 0 for t → T , which indicates that in this case the complete capital is
invested in the riskless bond, in order to ensure that the terminal wealth exceeds q with
the required probability 1 − ε. For prior instants t in case of very small stock prices the
relation θVaR

t > θB
t can be observed. This seems to be very risky and not rational but

corresponds to the above described form of the distribution of the terminal wealth which
concentrates the maximum of the allowed probability ε in the region of very small values
of XT , i.e. in a region of large losses.

Measuring the shortfall risk using the shortfall probability leads in case of the VaR-
optimal portfolio to

P(XVaR
T < q) = ε = 0.1 or VaR0.1(XT − q) = 0.
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Figure 5.2: VaR-optimal strategy θVaR as a function of time t and the stock price S

Using the Expected Shortfall as a risk measure on obtains

EL(XVaR
T − q) = E(XVaR

T − q)− = 0.0926 . . . =: ε.

For the sake of comparison we present results for the EL-optimal portfolio which ma-
ximizes the expected utility of the terminal wealth Eu(XT ) but satisfies the constraint
EL(XT − q) ≤ ε instead of P(XT < q) = ε = 0.1.

Figure 5.3 shows the probability density and distribution function of the EL-optimal
terminal wealth ξEL = XEL

T . As in the previous example there is a discrete as well as an
absolutely continuous part of the distribution. The single point q carries the probability
P(h ≤ HT < h) = 0.1073 . . .. Contrary to the VaR-optimal terminal wealth now there is
no gap in the support of the distribution.

While both (VaR- and EL-) optimal portfolios possess the same Expected Loss ε the
shortfall probability of the EL-optimal terminal wealth is significantly higher, it holds

P(XEL
T < q) = 0.1664 . . . > 0.1 = P(XVaR

T < q).
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Figure 5.3: Distribution of the EL-optimal terminal wealth

On the other hand there is nearly no difference in the expected terminal wealths since

EXVaR
T = 3.4097 . . . ≈ 3.3938 . . . = EXEL

T .

Both values are close to the expected optimal terminal EXB
T = 3.4903 wealth of the

unconstrained problem.

Figure 5.4 is the analogue to Figure 5.2 and shows the EL-optimal strategy θEL as a
function of time t and stock price S. There is a similar behavior for medium and large
values of S. Differences can be observed for small values of S and if time t approaches
the horizon T . For t→ T the strategy θEL

t does not tend to the value θB of the optimal
strategy of the unconstrained problem but remains larger. Moreover, the region of me-
dium stock prices (1.1432, 1.5870) characterized by θEL

t → 0 for t→ T is smaller than in
case of the VaR-optimal strategy θVaR

t , where this region is the interval (0.8639, 1.5759).
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Figure 5.4: EL-optimal strategy θEL as a function of time t and the stock price S
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