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Referat

In dieser Dissertation werden Eigenschaften des ganzzahligen Quanten-Hall-Effekts
(QHE) numerisch untersucht. Im Mittelpunkt steht der Übergang zwischen den
charakteristischen Plateaus des Hall-Leitwertes, die sich bei ganzzahligen Vielfachen
von e2/h ausbilden. Im Gegensatz zum fraktionalen QHE kann dieser Phasenüber-
gang beim ganzzahligen QHE ohne Teilchen-Teilchen Wechselwirkung allein mit
der Annahme eines Lokalisierung-Delokalisierung-Übergangs der Wellenfunktion in
der Mitte jedes Landau-Bandes erklärt werden. In dieser Arbeit wird das Chalker-
Coddington(CC)-Netzwerk als Modell eines einzelnen QHE Übergangs verwendet.
Um hohe Systemgrößen zu erreichen, wird zusätzlich ein Ortsraum-Renormierungs-
gruppenansatz (RG) auf das Netzwerk angewendet. Diese Vorgehensweise erlaubt
außerdem eine einfache, aber statistisch sehr gute Beschreibung der starken charak-
teristischen Fluktuationen am Übergang im Rahmen von Verteilungsfunktionen. Die
RG Methode kann ein CC Netzwerk allerdings nur in Näherung darstellen, da in-
nerhalb der RG Iterationen nur ein Bruchstück des gesamten Netzwerks, die RG
Einheit, berücksichtigt wird. Die Konstruktion der RG Einheit besitzt deshalb
besonderen Einfluß auf die Genauigkeit der Ergebnisse. Aus diesem Grund werden
zunächst die RG Resultate mit Ergebnissen anderer Methoden verglichen. Dabei
werden die kritische Verteilungsfunktion Pc(G) des Leitwertes G am QHE Übergang
und deren Momente ermittelt. Aus dem Verhalten von P (G) in der Nähe des
Übergangs läßt sich der Wert des kritischen Exponenten ν der Lokalisierungslänge
ableiten. Diese Ergebnisse stimmen sehr gut mit exakten numerischen Simulationen
überein. Die RGMethode wird daraufhin zur Berechnung der Energieniveaustatistik
(ENS) erweitert. Die kritische ENS Pc(s) der normierten Abstände s von benach-
barten Energieniveaus und ν werden bestimmt. Anschließend wird der Einfluß von
makroskopischen Inhomogenitäten in Form von langreichweitiger korrelierter Unord-
nung auf die kritischen Eigenschaften des QHE Übergangs untersucht. Die Ergeb-
nisse zeigen eine Vergrößerung von ν. Zuletzt wird die RG zur Berechnung des Hall
Widerstandes RH eingesetzt. Die kritische Verteilung Pc(RH) läßt auf sehr starke
Fluktuationen von RH am Übergang schließen. Abseits des Übergangs in Richtung
Isolator wird, nach Wahl einer geeigneten Mittelung 〈RH〉, kein quantisiertes Ver-
halten, sondern Divergenz von 〈RH〉, gefunden. Zusammenfassend demonstrieren
alle Ergebnisse die Robustheit universeller Eigenschaften am QHE Übergang.

Schlagwörter

Fluktuationen, Lokalisierung, Netzwerkmodell, numerische Verfahren, Quanten-Hall-
Effekt, Renormierungsgruppenansatz, Universalität, ungeordnete Systeme
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Chapter 1

Introduction

Measuring the resistance of a two-dimensional (2D) electron gas at very low temper-
ature reveals a striking macroscopic phenomenon when subjected to a strong perpen-
dicular magnetic field. Investigating such a system in form of a silicon metal-oxide-
semiconductor field-effect transistor (MOSFET) von Klitzing et al. [KDP80] discov-
ered in 1980 that the Hall resistance RH shows very precise plateaus at (1/N)h/e2

where N is an integer number. In the same region the vanishing longitudinal re-
sistance RL indicates a dissipationless flow of current. Two years later in 1982,
quantization was also found at fractional values N [TSG82], which led to the dis-
tinction between the fractional and the integer quantum Hall (QH) effect. Despite
the similarities regarding the experimental observations the theoretical description
of both effects differs considerably. The integer QH effect can be explained very well
within a non-interacting electron picture, while interactions play an important role
in the fractional QH effect. In this work the integer QH effect is studied. For more
details about the fractional QH effect see [CP95,Yos02].

Because a fundamental microscopic description is still missing several other theo-
ries were proposed to explain the integer QH transition [AA81,CP95,JVFH94,Lau81,
Pra81,Pru84,TKNN82,Yos02]. One successful approach provides the localization-
delocalization (LD) scenario [AA81] where the QH effect follows from a series of LD
transitions. One assumes that the density of states is formed of separated Landau
bands. Each band consists of localized states in the tails and extended states in the
middle of the band. The change of the Hall resistance from one to another plateau
is then explained by the Fermi energy passing the extended states in the center of
the Landau band. In the range between the bands and for the localized states the
Hall resistance remains at the constant plateau value very precisely.

The focus of this work is the study of the QH transition rather than the plateau
region. It is established that the QH transition is a second-order phase transition
[Huc95] where a power-law divergence of characteristic length scales is observed.
The divergence, e.g. of the localization length λ of the wave functions, λ ∝ ε−ν ,
where ε corresponds to the distance from the transition, can be quantified by the
value of the exponent ν. The importance of the exponent stems from the fact that its
value is independent from sample size and even material. It is influenced only by the
dimensionality and by the universality class the system belongs to. A universality
class covers a wide variety of systems which all share a common symmetry, like time-
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reversal symmetry and rotational symmetry. Therefore universality has a great
impact on the construction of theoretical models. In order to predict universal
quantities measured in experiments one can investigate even very simple models
with the only constraint that they belong to the same universality class as the
experiments.

In this work the above idea is applied to the study of the QH transition. The QH
sample is approximated by the Chalker-Coddington (CC) network model [CC88].
The CC model describes a single Landau band and thus contains only one QH
transition. The electrons are treated semiclassically as non-interacting particles
moving in a smoothly varying 2D disorder potential under a strong perpendicular
magnetic field. The percolation of the electron through the sample then consists of
two main components, the motion along equipotentials interrupted by the scattering
events at saddle points (SPs) of the potential, which are mapped on links and nodes
of a 2D network.

The CC model provides a fully quantum coherent description of the QH effect.
This is similar to quantum coherent transport measurements such as in mesoscopic
devices at low temperature, where the results clearly show the large influence of
quantum interference and the measured quantities fluctuate strongly [JK88]. There-
fore it is useful to look at full distribution functions, like P (G) of the conductance
G of the sample, instead of calculating a single average quantity.

Furthermore, since the universal quantities of the QH transition are bulk prop-
erties of the sample numerical calculations have to be performed in principle for
infinitely large CC networks. In reality the size of the network is restricted by
the computational capacity. In order to obtain reliable results computations are
performed for as large as possible but finite CC networks.

The alternative method to large-scale simulations used in this work is the real-
space renormalization group (RG) approach [AJS97,GR97]. Here a very large system
size is achieved by an iterative procedure. A characteristic part of the CC network
- the RG unit - consisting of several SPs is mapped onto a single super-SP residing
in a new CC-super network. With each of these iteration steps the size increases
by a fixed factor defined by the size of the RG unit. The system grows according
to a power law while each step requires the same numerical effort. This advantage
is counterbalanced to a drawback of the method which is also the starting point of
most criticism. The construction of the RG unit is only an approximation of the
full network. Thus a specific choice of an RG unit has fundamental influence on the
reliability of the results. Unfortunately, there is no a priori proof of the accuracy
of the RG. One part of this work is therefore devoted to the demonstration of the
accuracy and strength of the chosen RG approach in comparison to exact calculations
such as large-scale simulations for example in [BS97,CC88,Huc92,KM97a,LWK93,
Met98]. For this reason the critical distributions Pc(G) and Pc(s) of the conductance
and the energy level spacings, respectively, as well as the critical exponent ν of the
localization length at the QH transition are considered. Based on this justification
the RG approach is then employed in a further study of the QH effect.

One subject is motivated by contradicting experimental results questioning the
universality. Contrary to the broad majority of experiments [HZH01, HZHP01,
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CHAPTER 1. INTRODUCTION

HWE+93, KHKP91a, KHKP91b, KHKP92, KMDK00, SVO+00, WLTP92, WTP85,
WTPP88] the measurements in [SHL+98] and [BMB98] did not observe the expected
universal power-law behavior characterized by a critical exponent. The reason of
this disagreement might be due to screening of the real critical behavior by some
other effect. In this work one possible effect - the influence of macroscopic inhomo-
geneities on the QH transition - is considered. On the experimental side, an estimate
about number and kind of inhomogeneities in a sample is difficult. On the theo-
retical side it is known from a classical model that long-range correlated disorder,
describing macroscopic inhomogeneities, leads to an increase of the critical exponent
ν at the transition [WH83]. Using the RG approach to the CC model allows one to
investigate this problem now in the quantum regime.

Another problem concerns the existence of the quantized Hall insulator. While it
is established that plateau-plateau and insulator-plateau transitions exhibit the same
critical behavior [GWSS93,HSS+98,HNF+94,LPV+02,MHL+00,PST+97, STS+95,
STS+97a, STS+96, STS+97b, SVO+00] the value of the Hall resistance RH in this
insulating phase is still rather controversial. Various experiments have found that
RH remains very close to its quantized value h/e2 even deep in the insulating regime
[HSS+98,LPV+02,PSC+03,STS+97a,STS+96]. This scenario has been dubbed the
quantized Hall insulator. On the other hand, theoretical predictions based on quan-
tum coherent models show that a diverging RH should be expected [PA99, ZS01].
Extending the RG approach to the calculation of the distribution function P (RH)
one can study the transformation of P (RH) in the transition region toward the
insulating and the plateau side, respectively.

The results of this study are presented as follows. Chapter 2 explains the QH
effect in more detail. After a brief review of the experimental facts the QH effect is
derived from a semiclassical theory. On this basis the CC model is then introduced
and further remarks about the importance of universality are given. The main tool
of this work, the RG approach to the CC model, is content of Chapter 3. It starts
with an illustration of the RG approach to classical percolation. The approach is
then applied to the CC model. Using the obtained RG equation one can compute
the critical conductance distribution Pc(G) at the QH transition and also the value
of the exponent ν of the localization length. The results are compared to other works
and the dependence on the constructed RG unit is examined. In Chapter 4 the RG
approach is extended to the study of the energy level spacing distribution (LSD).
The critical LSD is computed and compared to the predictions of universality. The
change of the LSD around the transition can be characterized by a single quantity
derived from the shape of the LSD. For a suitably chosen quantity a finite-size
scaling analysis then reveals the value of the exponent ν again, now by an alternative
method. The chapter ends with a discussion of the influence of the initial distribution
used in the RG iteration. Chapter 5 considers how macroscopic inhomogeneities
affect the critical properties of the QH transition. As a motivation the contradicting
experimental results are reviewed. The extended Harris-criterion describing the
influence of a power-law correlated disorder potential on the value of ν for classical
percolation is introduced. The long-range correlation is then incorporated into the
RG approach. The obtained results are discussed in comparison to the classical
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prediction. The determination of RH in Chapter 6 requires to derive further RG
equations. The result allows one to study not only the distribution Pc(RH) at the
QH transition but also the shape of P (RH) toward the insulating or the plateau
regime. Because of the strong fluctuations of RH a suitable averaging procedure has
to be chosen. Chapter 7 summarizes the results of this work. And Chapter 8 gives
a brief outlook on pursued studies and unanswered questions.
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Chapter 2

The quantum Hall effect

2.1 Introduction

The first foundation of this field was laid by the discovery of the Hall effect by
Edwin H. Hall in 1879 [Hal79]. It is well known as a purely classical effect based
on the interplay of electric and magnetic field in a spatially extended conductor.
For example, consider a 2D homogeneous isotropic conducting sample as shown in
Fig. 2.1 which is penetrated by an electric field E parallel to the probe. Without a
magnetic field (B = 0) the sample acts as a normal resistor where E = ρj depends
linearly on the resistivity ρ and the current density j. This situation changes when
a magnetic field (B 6= 0) is applied perpendicular to the sample. Due to the Lorentz
force FL = q(v×B) charge carriers with velocity v and charge q are deflected later-
ally which creates an additional electric field EH perpendicular to E. The resulting
force FH leads to a compensation of FL. When FH = FL the EH corresponds to the
so-called Hall voltage UH = Ly|v||B| where Ly is the width of the sample. In order
to relate UH to j one employs j = qnqv where nq is the carrier density [AM76]. It
follows

UH =
1

qnq

Ly|j||B| = AHLy|j||B|. (2.1)

Figure 2.1: Illustration of the Hall experiment. The magnetic field B leads to a potential
difference perpendicular to the direction of the current J.
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2.2. THE QUANTIZED HALL EFFECT

The Hall coefficient AH = 1/(qnq) takes the role of a proportionality constant which
depends on the material properties nq and q, where for electrons as the usual charge
carriers q = −e. The value of AH follows from the band structure of the sample
material and is therefore not influenced by the particularities of the experimental
setup [AM76]. Consequently, the experimental extraction of AH is a suitable method
to obtain information about the charge transport within a material. Besides the
information about carrier density nq, the sign of AH allows one to distinguish between
the normal Hall effect (AH < 0) with electrons and the anomalous Hall effect (AH >
0) with holes as charge carriers.

From the above explanation it is obvious that the resistivity of the 2D Hall
sample cannot be described by a simple scalar but rather by a tensor. Therefore

E =

(

ρxx ρxy
−ρxy ρxx

)

j, (2.2)

where ρxx is called longitudinal and ρxy Hall resistivity. Often one prefers the con-
ductivity instead of the resistivity tensor. The conductivity tensor is defined as the
inverse of the resistivity tensor which yields

σxx = σyy =
ρxx

ρ2xx + ρ2xy
and σxy = −σyx = −

ρxy
ρ2xx + ρ2xy

. (2.3)

Analogous to the resistivity, σxx is called longitudinal and σxy Hall conductivity. As
particularity for 2D samples one should note that ρxy and σxy coincide with the Hall
resistance RH and Hall conductance GH, respectively. This fact is useful especially
in experiments because the less accurate measurement of the sample geometry is
not required and therefore has no influence on the accuracy of the result.

2.2 The quantized Hall effect

How does the result of the Hall measurement change when it is performed not in a
classical but in a quantum regime? In order to answer this question experimentally
one has to comply with the conditions of (i) a very low temperature T < 4K, (ii)
a high magnetic field of order B = 10T and (iii) a very well defined 2D electron
system. For the latter different experimental realizations are possible. One way is to
place electrons on a free liquid helium surface, which allows densities up to 1012m−2.
The electrons move along the surface only and do not enter the helium volume which
would require an additional energy. The Fermi energy EF for this system is at most
2mK thus the electrons can be considered as non-degenerate classical particles for
experimental T > 10mK. Much more importance than to the Helium surface can be
attributed to 2D semiconductor systems, mainly because of the high charge densities
of 1015 − 1017m−2 attainable. Together with the low effective mass of the electrons
this results in an EF of an order of 100K. Therefore the electron system is degenerate
for experimental T . 2D semiconductor systems have been realized by MOSFET
and semiconductor heterostructures, where the 2D electron gas forms either at the
interface between oxide and semiconductor or at heterojunctions between adjacent
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Figure 2.2: Result of the Hall measurement from [KDP80]. Both the characteristic
plateaus of the Hall voltage UH and the decrease of the longitudinal voltage drop UPP at
the plateaus are demonstrated by varying the gate voltage Vg.

semiconductor layers, respectively. When using MOSFETs the electron density of
the 2D system and thereby EF can be varied by adjusting the gate voltage at a fixed
magnetic field which requires experimentally less effort. In the context of the Hall
measurement this method gives equivalent results to the variation of the magnetic
field where EF is constant because UH depends only on the ratio B/nq as follows
from Eq. (2.1). A deeper understanding is provided by the theoretical considerations
in the next Section. On the other hand, the heterostructures allow one to construct
higher-quality 2D electron systems because the electrons are spatially separated
from impurities caused by dopant atoms and therefore have an increased mobility.
A higher mobility leads to an increased conductivity and improves the sensitivity of
the Hall measurement.

The first accurate measurement of the resistivity tensor was performed in 1980
by von Klitzing, Dorda, and Pepper [KDP80]. In their experiment they were using
a Si-MOSFET at T = 1.5K and B = 18T. When changing the gate voltage they
observed, as shown in Fig. 2.2, characteristic plateaus in the Hall resistivity at
quantized values ρxy = (1/N)h/e2 for integer values N ≥ 1 while at the same
time ρxx drops almost to zero. The particular relevance of this integer QH effect,
especially for metrology, lies in the remarkable accuracy of the plateau value, from
which a standard resistor can be defined. Because of the importance of this discovery
the Nobel prize was awarded to von Klitzing in 1985. The resistance standard RK =
h/e2 is called the von Klitzing constant with the official value RK−90 = 25812.807Ω
recommended by the International Metrology Committee. In addition the authors
of [KDP80] could also propose a new method for the determination of the fine-
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Figure 2.3: The more recent Hall measurement from [WES+87] shows various plateaus
of the Hall resistivity ρxy also at fractional values.

structure constant αfsc = e2/(hc) because the speed of light c is also known very
precisely and since 1983 is even set to a fixed value by the SI-unit definition.

In order to test whether plateaus occur only at integer values also GaAs het-
erostructures with higher mobilities were studied. In their experiment Tsui, Störmer,
and Gossard [TSG82] could show for their sample an additional plateau at a frac-
tional value ρxy = 1/1

3
(h/e2). In later experiments at lower temperature and using

cleaner samples further fractional plateaus were observed. Figure 2.3 shows results
from [WES+87].

To summarize the current experimental situation, it is established that ρxy in the
plateau region stays constant with an accuracy of at least 10−9 [JJI97] independent
of sample size, sample material, and plateau number. In the same region ρxx = 0 is
found with an accuracy of at least 10−8.

2.3 Theory of the integer quantum Hall effect

2.3.1 Landau quantization

After the experimental discovery of the integer QH effect there have been numerous
different theoretical attempts to explain the effect. And still, more than 23 years
later, there is no fundamental theory available which describes the macroscopic
phenomenon of the integer QH effect starting from a microscopic picture. Instead
the theories rely on initial assumptions.

Apparently the integer QH effect is connected to the Landau quantization that
provides a quantum mechanical description of the electron motion in a magnetic
field. An instructive way to explain the integer QH effect is the following semi-
phenomenological approach. First, consider the electrons within the 2D Hall sam-
ple as free particles moving in a magnetic field which corresponds to the following
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Hamiltonian

Ĥ =
1

2m∗
(p̂+ eA)2 , (2.4)

where p̂ is the momentum operator, m∗ the effective mass of the electrons and A
the vector potential with rotA = B. Due to the magnetic field the electrons move
along cyclotron orbits. Therefore it is suitable to split their coordinates into two
parts

x̂ = X̂ + ζ̂ and ŷ = Ŷ + η̂. (2.5)

Here (X̂, Ŷ ) describes the center of the cyclotron motion and (ζ̂ , η̂) is the relative
coordinate of the motion around this center. Now, using the Hamiltonian (2.4), the
equations of motion

˙̂
ζ = −ωcη̂ and ˙̂η = ωcζ̂ (2.6)

can be derived from which follows that (ζ̂ , η̂) rotates with cyclotron frequency ωc =
eB/m. Using Eq. (2.6) the Hamiltonian (2.4) can now be rewritten in the form of
a harmonic oscillator in terms of (ζ̂ , η̂)

H =
~ωc

2l2B

(

ζ̂2 + η̂2
)

. (2.7)

By this, the Landau quantization of a free electron moving in a magnetic field is
related to the problem of the harmonic oscillator. Consequently, in 2D one observes
also discrete eigenenergies which are now called Landau levels

EN =

(

N −
1

2

)

~ωc, (2.8)

where the Landau level indexN corresponds to the experimentally observed plateaus
at integer values N ≥ 1. The Landau levels are equidistant with ∆E = ~ωc. Besides
this analogy there are also differences to the oscillator. First, one should note that
values of ζ̂ and η̂ have an uncertainty resulting from the commutation relation

[ζ̂ , η̂] = −il2B (2.9)

in which the cyclotron radius lB = (~/eB)1/2 of the ground state defines themagnetic
length scale. Second, in contrast to the harmonic oscillator the Landau levels are
degenerate. Because the cyclotron motion of the electrons described by (ζ̂ , η̂) is
bound spatially to the radius lB there exist various (X̂, Ŷ ) at the same energy since
their cyclotron orbits are not overlapping. This degeneracy depends therefore on lB
and the size Lx × Ly of the sample

NL =
LxLy

2πl2B
. (2.10)

The degeneracy then allows one to derive the so-called filling factor

f = 2πl2Bne = 2π
~
eB

ne. (2.11)
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Figure 2.4: Illustration of the integer QH effect explained due to a sequence of LD
transitions. For finite systems the width of the extended states at the band centers of the
disorder-broadened Landau levels is finite.

The filling factor is usually denoted by the variable ν in literature. Because of a
conflict with the critical exponent, which has historically the same symbol, here f
is used instead.

By the definition (2.11), the single dimensionless quantity f can describe both
experimental situations, the change of electron density ne, e.g. by adjusting the
gate voltage, and the variation of the magnetic field. On the other hand f can be
expressed in a microscopic view as the ratio between the number of electrons and
the number of flux quanta h/e in the sample. So the value of f shows the filling
of Landau levels, e.g. an integer value f = 2 means that exactly the lowest two
Landau levels are occupied.

The Landau quantization of the energy spectrum can explain the position of
integer QH transitions. But it does not provide an insight why between the transi-
tions plateaus in ρxy and σxy are observed nor why in the same regime ρxx and σxx

drop to nearly zero. Therefore disorder has been incorporated into the model. As a
result of disorder in the sample, the Landau levels broaden to bands as illustrated
in Fig. 2.4. It is known from other models handling disorder, e.g. the Anderson
model of localization [And58], that not all states in the band are extended. Due
to disorder the states in the tails of the bands are localized (see Fig. 2.4). Thus
they do not contribute to charge transport. Following from this assumption the QH
effect can now be understood as a series of LD transitions. The peak in σxx occurs
exactly at the position of integer f where the EF passes the extended states existing
in the center of the Landau band. In the region between the Landau band centers
states are localized and therefore σxx = 0. For σxy the same argument holds. The
difference with respect to σxx is the non-dissipative character of the Hall current,
where the extended states of all filled Landau levels contribute. Therefore σxy is
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(a)

<V>- ED

<V>+ ED

<V>

(b)

B

Figure 2.5: Illustration of (a) the weakly varying random potential V with equipotential
lines at 〈V 〉 and 〈V 〉 ±∆E which allows one (b) in a strong magnetic field B to separate
the electron motion (black orbit) into cyclotron motion and motion of the guiding center
along equipotentials.

constant while EF is in the range of localized states and increases by e2/h to the
next plateau exactly when passing a Landau band center.

Besides this semi-phenomenological models simply assuming an LD transition,
more sophisticated theories [CP95, JVFH94, Yos02] exist considering, e.g. gauge
invariance [Lau81], topological quantization [TKNN82], scattering [Pra81] and field
theoretical approaches [Pru84].

2.3.2 The Chalker-Coddington network model

In this work a semi-classical approach is used to model the integer QH transition.
It is based on an extension of the high-field model [Ior82] suggested by Chalker
and Coddington [CC88], the so-called CC network model which is one of the main
”tools” for the quantitative study of the QH transition [JMZ99, KHA95, KHA97,
KM95,KM97a,KZ01,LC94,LCK94,LWK93,Met98,RF95,WLW94].

In order to include the LD scenario the classical high-field model relies on two ba-
sic prerequisites. First, the 2D sample is penetrated by a very strong perpendicular
magnetic field and second the electrons are non-interacting and move in a smoothly
varying 2D potential energy landscape V (r) illustrated in Fig. 2.5. As a result the
magnetic field B forces an electron onto a cyclotron motion with radius lB much
smaller than the potential fluctuations. Thus the electron motion can be separated
into cyclotron motion and a motion of the guiding center along equipotentials of the
energy landscape [Ior82]. The cyclotron motion leads to the required quantization
into discrete Landau levels whereas its influence on the electron motion in the po-
tential can be neglected. Besides the fundamental assumption about the difference
of length scales the model therefore contains no further dependence on B. The
quantum effects of the electron transport through the sample are only determined
by the height of the SPs in the potential energy landscape. This picture is related
to a classical bond percolation problem on a square lattice [SA95] when mapping
SPs onto bonds. A bond is connecting only when the potential of the corresponding
SP equals the potential energy ε of the electron. From percolation theory [SA95]
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I

I

OO *

*

Figure 2.6: From the equipotentials of Fig. 2.5a at E = 〈V 〉, 〈V 〉 ± ∆E SPs of the
potential can be identified. A single SP acts as a scatterer connecting two incoming with
two outgoing channels.

follows that an infinite system is conducting only at a single ε = 〈V 〉. Consequently,
the high-field model describes only a single QH transition. It provides a qualitative
understanding of the existence of an LD transition and thus the quantized plateaus
in the conductivity σxy observed in the integer QH effect [JVFH94]. However, be-
cause of its purely classical assumptions the model is unable to exactly reproduce
the critical properties of the transition found in experiments, i.e., the divergence of
the correlation length at the transition with an exponent of ν ≈ 2.3 [KHKP91a].
Instead, it predicts ν = 4/3, the value appropriate for classical percolation.

The CC network model improved the high-field model by introducing quantum
corrections [CC88], namely tunneling and interference. Tunneling occurs, in a semi-
classical view, when electron orbits come so close to each other that the cyclotron
orbits overlap. From Fig. 2.6 one can conclude that this happens at the SPs, which
now act as quantum scatterers described by a unitary scattering matrix S

(

O
O∗

)

= S

(

I
I∗

)

=

(

t r
−r t

)(

I
I∗

)

(2.12)

which connects two incoming with two outgoing channels. Assuming a symmetric
potential at the SP the scattering rates are given by a pair of a complex transmission
and a reflection coefficient t and r, respectively. From the required unitarity of S it
follows that |t|2+ |r|2 = 1. Obviously, t and r depend on the potential energy of the
SP. It was shown [GR97] that t and r can be parametrized by

t =

(

1

ez + 1

) 1
2

and r =

(

1

e−z + 1

) 1
2

(2.13)

where z corresponds to a dimensionless energy difference between SP potential and
electron energy ε. Without restricting the generality 〈V 〉 = 0 is assumed in the
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Figure 2.7: Construction of the CC network by mapping of SPs to nodes and equipoten-
tials to links of a regular 2D square lattice.

following. In case of ε = 0 the value of z then coincides with the dimensionless SP
height. Similar to bond percolation now a network of SPs can be constructed. The
SPs are mapped onto nodes and the equipotentials correspond to links as shown in
Fig. 2.7.

While moving along an equipotential an electron accumulates a random phase
Φ which reflects the randomness of the potential. The corresponding phase factor
eiΦ can be included in the matrix S. In this work S and Φ are kept separately.
As in the high-field model this quantum percolation describes only a single QH
transition with exactly one extended state in the middle of the Landau band at
ε = 0 . The critical properties at the transition, especially the value of the exponent
ν ≈ 2.4±0.2 [LWK93], agree with experiments [KHKP91a,SVO+00] as well as with
results of other theoretical approaches [HK90,HB92]. For numerical investigations
of the CC model, one constructs a regular 2D lattice out of the SPs. Then the 2D
plane is cut into 1D slices with the associated scattering matrices transformed into a
transfer matrix. The conductivity may be calculated by transversing perpendicular
to the slices along the sample by transfer matrix multiplications [LWK93] according
to the Landauer-Büttiker approach [BILP85]. The spatial extension of the 2D plane
is limited by the computational effort although an additional disorder averaging over
many samples is not necessary for quasi-1D samples [LWK93].

The CC model is a strong-magnetic-field (chiral) limit of a general network
model, first introduced by Shapiro [Sha82] and later utilized for the study of LD
transitions within different universality classes [CRK+02, FJM98, FJM99, Jan98,
KHAC99,MJH98]. In addition to the QH transition, the CC model applies to a
much broader class of critical phenomena since the correspondence between the CC
model and thermodynamic, field-theory and Dirac-fermions models [GRS97,HC96,
Kim96,KM97b,Lee94,LFSG94,MT99,Zir94,Zir97] was demonstrated.
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2.3.3 Universality

Although there exists a variety of different theoretical descriptions a fundamental
microscopic understanding of the integer QH effect is still missing. In contrast,
approaches like the CC model are based on a simplified picture of the real world.
The reason that one can nevertheless describe and also predict experimental results
is based on the hypothesis of universality. Phase transitions, like the QH transi-
tion, are characterized by critical behavior, e.g., the divergence of length scales,
which can be quantified by a set of critical parameters. Universality assumes that
these parameters are not specific for a single experiment, material or theoretical
model. This idea was first demonstrated by Wigner [Wig51,Wig55] when studying
the statistics of nuclear spectra. Instead of using the real energy levels, the correla-
tions in the spectra could be reproduced by considering the eigenvalues of a large set
of 2× 2 matrices with elements chosen randomly according to a Gaussian distribu-
tion. The success of the approach led to the development of random matrix theory
(RMT) [Meh91]. Following from universality one expects the same universal quan-
tities, like critical exponents, in a variety of different systems which agree only in
dimensionality and the fundamental underlying symmetry. Depending on this fun-
damental symmetry which manifests itself in the symmetry of the Hamiltonian one
can distinguish between several universality classes. The classes with relevance to
this work are the basic Gaussian ensembles where the Hamiltonian is (i) orthogonal
(GOE) with time-reversal invariance and rotational symmetry, (ii) unitary (GUE)
with broken time-reversal symmetry but rotational symmetry, and (iii) symplectic
(GSE) with time-reversal invariance and broken rotational symmetry. Because the
contribution of the magnetic field breaks the time reversal symmetry, the description
of the QH transition using the CC model can be classified into GUE.
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Chapter 3

RG approach to the CC model

3.1 Introduction

RG techniques provided a powerful tool for the study of phase transitions [BDFN92,
Wil83]. One can distinguish between real-space [Car96] and field-theoretical [Sal99]
RGs. Common to both variants is the elimination of irrelevant (either short-range
or short-period) degrees of freedom. Afterward the original phase volume is restored
by a scale transformation. The system has now the same structure as the original
one but the values of its parameters, e.g. coupling constants, are renormalized.
During iteration of the above steps the parameters approach fixed points (FP),
where analysis of this convergence allows one to derive critical properties of the
transition. The technical details of RG approaches vary widely.

In this work a real-space RG approach is used. For better understanding, it
is illustrated by its application to the classical case of bond percolation on a 2D
square lattice [Ber78, RKS77, SA92], which is an instructive example showing ad-
vantages and as well as drawbacks of this technique. For the chosen 2D percolation
network, the connectivity of the network is based on links between next-neighbor
nodes only. These bonds between neighboring nodes are placed with a certain prob-
ability p which is the same all over the network. In Fig. 3.1 four sample percolation
networks, each for a different value of p, are shown. Starting with an empty network
(p = 0) of size L× L, single separated bonds appear for larger p. When increasing
p further, nodes connected by bonds start to form clusters (see Fig. 3.1a). These
clusters then grow in size until the first cluster extends over the whole sample, con-
necting one side with the opposite side of the network as shown in Fig. 3.1c. At
this point the percolation threshold pc(L) is reached and the cluster is percolating.
The value obtained for pc(L) depends on the actual random realization of the net-
work. Only in the limit L→∞ a unique value pc is found which is a characteristic
sample-independent quantity for the specific network. A high precision numerical
calculation of pc requires large computational effort. As it is demonstrated in the
following the RG approach permits to approximate pc rather easily.

The real-space RG approach is based on the assumption that a certain part of
the network, the so-called RG unit, can represent the essential physics of the entire
network. In the case of bond percolation the RG unit therefore consists of a small
number of bonds. This unit is replaced within the RG transformation by a single
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(a) (b)

(c) (d)

Figure 3.1: 2D bond percolation networks on a 30× 30 square lattice (dots) for different
bond probabilities p = 0.1 (a), 0.3 (b), 0.5 (c), and 0.7 (d). The bonds are indicated by
lines. Thick bonds belong to the percolating cluster connecting opposite borders of the
sample. The percolation threshold is at p = 0.5.
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Figure 3.2: Illustration of the RG approach to the 2D bond percolation. A five-bond RG
unit (left) is mapped onto a single super bond (right).

p5

p4(1− p)

p3(1− p)2

p2(1− p)3

Figure 3.3: All possible configurations for a connecting 2D bond RG unit grouped ac-
cording to their probability.

super bond with its probability p′ determined by the p’s of the constituting bonds.
From the super bonds one can construct again a percolation network which is then
renormalized in the same way as the original network. Successive repetition of the
RG transformation yields the information about very large samples, since, after
each RG step, the effective sample size grows by a certain factor determined by the
geometry of the original RG unit. For this example an RG unit proposed in [RKS77]
is used. A super bond consists of 5 bonds forming an H-like shape as shown in Fig.
3.2. The probability p′ of a super bond can now be calculated by the sum over all
configurations which connect the left to the right end of the RG unit as illustrated in
Fig. 3.3. The probability of a single configuration is the product over the five bond
probabilities where a closed bond contributes p while an open bond is associated
with 1− p. Therefore one obtains

p′ = p5 + 5p4(1− p) + 8p3(1− p)2 + 2p2(1− p)3. (3.1)

In order to determine pc the FP condition p′ = pc = p at the percolation threshold
is utilized. Solving Eq. (3.1) one finds three FPs. Two coincide with the trivial
solutions pc = 0 and 1. The third nontrivial result is pc = 1/2 [Gri89]. For the
estimation of the critical exponent νbond of the correlation length at the percolation
transition one can define a characteristic length

ξ = a(pc − p)
−νbond , (3.2)
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where a is the lattice constant in the original network. In the super network the
same behavior should be observed, but here the lattice constant is 2a since the size
of the RG unit has to taken into account. Using ξ = ξ ′ and pc = 1/2 one obtains
from Eq. (3.2)

νbond =
ln 2

ln (dp′/dp)

∣

∣

∣

∣

p=1/2

≈ 1.428 (3.3)

This result is derived purely analytical. Therefore the deviation from the exact value
νbond = 4/3 [SA92] of only 7% is the consequence of the chosen RG unit and its
ability to describe the network.

The above example demonstrates that the RG approach is very appropriate for
the study of large systems since with each RG transformation the system size scales
with a certain factor depending on the size of the RG unit. On the other hand it
is obvious, that the RG approach cannot provide exact results because a single RG
unit is a rather crude approximation of the real network, e.g, the full connectivity
of the network cannot be preserved. It is therefore necessary to check the accuracy
of the method for each application.

In the next Section the RG approach to the CC model is introduced. The deriva-
tion of the critical exponent is explained in Section 3.3. It follows the presentation of
the numerical results in Section 3.4 and an extensive comparison with previous works
in Section 3.5. In Section 3.6 the influence of the RG unit is studied. Concluding
remarks are given in Section 3.7.

3.2 Quantum RG approach

The real-space RG approach [AJS97,GR97] can be applied to the CC network anal-
ogously to the case of 2D bond percolation described in the previous Section. An
RG unit is constructed containing several SPs from a CC network. For these SPs the
RG transformation has to relate their S matrices with the S matrix of the super-SP.
The RG unit used here is extracted from a CC network on a regular 2D square
lattice. The super-SP consists of five original SPs connected according to Fig. 3.4.
In Fig. 3.4 the very same RG unit is illustrated in two different ways. In Fig. 3.4a
circles correspond to SPs and lines to links in the network. Using this intuitive
picture one can identify the loss of connectivity in comparison with the original CC
network, namely, the four edge nodes within a 3× 3 SP pattern are fully neglected
and their outer bonds are left out. Thus the super-SP has the same number of in-
coming and outgoing channels as an original SP. Fig. 3.4b is used to emphasize the
relation with the 2D bond percolation RG. Here SPs are drawn as lines and links as
arcs. In analogy to bond percolation the SPs of the RG unit form an H-like shape.
Therefore, also for this RG to the CC network, the size of the RG unit in terms of
lattice spacings equals 2.

Between the SPs of the RG unit an electron travels along equipotential lines, and
accumulates a certain Aharonov-Bohm phase as in the original network. Different
phases are uncorrelated, which reflects the randomness of the original potential
landscape. As mentioned in Section 2.3 each SP is described by an S matrix which
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Figure 3.4: Two illustrations of the same RG unit used for Eq. (3.8) combining five SPs.
The upper figure shows nodes as circles and links as lines. The dotted circles indicate
nodes of the CC network that are neglected in the construction of the RG unit. In the
lower picture the nodes correspond to thick dashed lines — in analogy with classical 2D
bond percolation RG presented in Fig. 3.2 [Ber78, RKS77]. Φ1, . . . ,Φ4 are the phases
acquired by an electron drifting along the contours indicated by the arrows.
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contributes two equations relating the wave-function amplitudes of incoming Ii, I
∗
i

and outgoing Oi, O
∗
i channels. All amplitudes Ii, I

∗
i besides the external I1 and I∗4

can then be expressed by Oi, O
∗
i using the phases, e.g. I5 = eiΦ15O1, where Φ15 is

the phase shift along the link between SPs I and V . The resulting ten modified
scattering equations form a linear system which has to solved in order to obtain the
transmission properties of the corresponding super-SP:

Ax = b (3.4)

with

A =
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(3.5)

x = (O1, O
∗
1, O2, O

∗
2, O3, O

∗
3, O4, O

∗
4, O5, O

∗
5)

T (3.6)

and

b = (t1I1, r1I1, 0, 0, 0, 0, r4I
∗
4 , t4I

∗
4 , 0, 0)

T . (3.7)

Note that the amplitudes on the external links coincide with the amplitudes of the
super-SP as I1 = I ′, I∗4 = I ′∗, O5 = O′ and O∗

2 = O′∗. Setting the incoming links of
the super-SP according to I ′ = 1, I ′∗ = 0 one can deduce the transmission coefficient
t′ of the super-SP, since O′ = t′I ′ = t′1 = t′. For the transmission coefficient of the
super-SP this method yields the following expression [GR97]:

t′ =

∣

∣

∣

∣

t1t5(r2r3r4e
iΦ3 − 1) + t2t4e

i(Φ1+Φ4)(r1r3r5e
−iΦ2 − 1) + t3(t2t5e

iΦ1 + t1t4e
iΦ4)

(r3 − r2r4eiΦ3)(r3 − r1r5eiΦ2) + (t3 − t4t5eiΦ4)(t3 − t1t2eiΦ1)

∣

∣

∣

∣

.

(3.8)
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Here Φj corresponds to the sum over the three phases forming a closed loop within
the RG unit (see Fig. 3.4). Equation (3.8) is the RG transformation, which allows
one to generate (after averaging over Φj) the distribution P (t′) of the transmission
coefficients of super-SPs using the distribution P (t) of the transmission coefficients
of the original SPs. Since the transmission coefficients of the original SPs depend
on the electron energy ε, the fact that delocalization occurs at ε = 0 implies that a
certain distribution, Pc(t) — with Pc(t

2) being symmetric with respect to t2 = 1
2
—

is the FP distribution of the RG transformation Eq. (3.8). The distribution Pc(G)
of the dimensionless conductance G can be obtained from the relation G = t2, so
that

Pc(G) ≡
1

2t
Pc(t) . (3.9)

3.3 Critical exponent

Since the dimensionless SP height zi and the transmission coefficient ti at ε = 0 are
related by Eq. (2.13), transformation (3.8) also determines the height of a super-SP
by the heights of the five constituting SPs. Correspondingly, the distribution P (G)
determines the distribution Q(z) of the SP heights via Q(z) = P (G)|dG/dz| =
1
4
cosh−2(z/2)P [(ez + 1)−1]. In fact, Q(z) is not a characteristic of the actual SPs,

but rather, as demonstrated below, represents a convenient parametrization of the
conductance distribution.

The language of the SP heights provides a natural way to extract the critical
exponent ν. Suppose that the RG procedure starts with an initial distribution,
Q0(z) = Qc(z − z0), that is shifted from the critical distribution, Qc(z), by a small
z0 ∝ ε. The meaning of z0 is an additional electron energy measured from the center
of the Landau band. The fact that the QH transition is infinitely sharp at z0 = 0
implies that for any z0 6= 0, the RG procedure drives the initial distribution Q(z−z0)
away from the FP. Since z0 ¿ 1, the first RG step would yield Qc(z − τz0) with
some number τ independent of z0. At the nth step the center of the distribution
will be shifted by zmax,n = τnz0, while the sample size will be magnified by 2n. After
a certain number of steps, say nL, the shift will grow to

zmax,nL = τnLz0 ∼ 1, (3.10)

where a typical SP is no longer transmittable. Then the localization length ξ can
be identified with the system size 2nLa where a is the lattice constant of the original
RG unit. Using this relation one can rewrite τ nL in Eq. (3.10) as a power of (ξ/a)

(ξ/a)(ln τ/ ln 2)z0 ∼ 1. (3.11)

from which follows that ξ diverges as

ξ ∼ az
−(ln 2/ ln τ)
0 = az−ν

0 (3.12)

with ν = ln 2/ ln τ . When the RG procedure is carried out numerically, one should
check that z0 is small enough so that zmax,n ∝ z0 for large enough n. Consequently,
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the working formula for the critical exponent can be presented as

ν =
ln 2n

ln
(

zmax,n

z0

) (3.13)

which should be independent of n for large n.

3.4 Numerical results

In order to find the FP conductance distribution Pc(G), the RG is started from
a certain initial distribution of transmission coefficients, P0(t) (see below). The
distribution is discretized in at least 1000 bins, such that the bin width is typically
0.001 for the interval t ∈ [0, 1]. From P0(t), the ti, i = 1, . . . , 5, are obtained and
substituted into the RG transformation (3.8). The phases Φj, j = 1, . . . , 4 are chosen
randomly from the interval Φj ∈ [0, 2π). In this way at least 107 super-transmission
coefficients t′ are calculated. In order to decrease statistical fluctuations the obtained
histogram P1(t

′) is then smoothed using a Savitzky-Golay filter [PFTV92] over 13
consecutive bins approximated by a 6th order polynomial. At the next step the
procedure is repeated using P1 as an initial distribution. The convergence of the
iteration process is assumed when the mean-square deviation

∫

dt[Pn(t)− Pn−1(t)]
2

of the distribution Pn and its predecessor Pn−1 deviate by less than 10−4.
The actual initial distributions, P0(t), were chosen in such a way that correspond-

ing conductance distributions, P0(G), were either uniform or parabolic, or identical
to the FP distribution found semianalytically [GR97]. All these distributions are
symmetric with respect to G = 0.5. One can observe that, regardless of the choice of
the initial distribution, after 5–10 steps the RG procedure converges to the same FP
distribution which remains unchanged for another 4–6 RG steps. Small deviations
from the symmetry with respect to G = 0.5 finally accumulate due to numerical
instabilities in the RG procedure, so that typically after 15–20 iterations the distri-
bution becomes unstable and flows toward one of the classical FPs P (G) = δ(G) or
P (G) = δ(G − 1). Therefore the symmetry of the P0(G) with respect to G = 0.5
is an important requirement in order to converge to the quantum FP at all. Note
that the FP distribution can be stabilized by forcing Pn(G) to be symmetric with
respect to G = 0.5 in the course of the RG procedure.

Figure 3.5 illustrates the RG evolution of P (G) and Q(z). In order to reduce
statistical fluctuations the FP distribution is averaged over nine results obtained
from three different P0(G)’s. The FP distribution Pc(G) exhibits a flat minimum
around G = 0.5, and sharp peaks close to G = 0 and G = 1. It is symmetric with
respect to G ≈ 0.5 with 〈G〉 = 0.498±0.004, where the error is the standard error of
the mean of the obtained FP distribution. Consequently, the FP distribution Qc(z)
is symmetric with respect to z = 0, which corresponds to the center of the Landau
band. The shape of Qc(z) is close to Gaussian.

Let us now turn to the critical exponent ν. As a result of the general instability
of the FP distribution, an initial shift of Qc(z) by a value z0 results in the further
drift of the maximum position, zmax,n, away from z = 0 after each RG step. As
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Figure 3.5: Top: P (G) (thin lines) as function of conductance G at a QH plateau-to-
plateau transition. Symbols mark every 20th data point for different initial distributions
(¥,¨,N), the FP distribution (©) and a distribution for RG step n = 16 (+). The vertical
dashed line indicates the average of the FP distribution. Bottom: Corresponding plots for
the distribution Q(z) of SP heights.
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Figure 3.6: Critical exponent ν obtained by the QH-RG approach as function of effective
linear system size L = 2n for RG step n. The error bars correspond to the error of linear
fits to the data. The dashed line shows ν = 2.39. Inset: ν is determined by the dependence
of the maximum zmax,n of Qn(z) on a small initial shift z0. Symbols indicate the eight RG
steps in accordance with the main plot. Dashed lines indicate the linear fits.

expected, zmax,n depends linearly on z0. This dependence is shown in Fig. 3.6 (inset)
for different n from 1 to 8. The critical exponent is then calculated from the slope
according to Eq. (3.13). Figure 3.6 illustrates how the critical exponent converges
with n to the value 2.39 ± 0.01. The error corresponds to a confidence interval of
95% as obtained from the fit to a linear behavior.

Due to the high accuracy of the calculation of Pc(G), one is able to reliably
determine many central moments 〈(G−〈G〉)m〉 of the FP distribution Pc(G). These
moments are plotted in Fig. 3.7. The results in the context of other works are
discussed more thoroughly in the next Section.

3.5 Comparison with other works

By dividing the CC network into units, the RG approach completely disregards
the interference of the wave-function amplitudes between different units at each
RG step. For this reason it is not clear to what extent this approach captures
the main features and reproduces the quantitative predictions at the QH transition.
Therefore, a comparison of the RG results with the results of direct simulations of the
CC model is crucial. These direct simulations are usually carried out by employing
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Figure 3.7: Moments 〈(G − 〈G〉)m〉 of the FP distribution Pc(G) (◦). Dashed lines are
the results from [WJL96]. The dotted line corresponds to the moments of a constant
distribution. Inset: Higher moments of Pc(G) following an exponential behavior.

either the quasi-1D version [MK81] or the 2D version [FL81] of the transfer-matrix
method. The results when applying the version of [MK81] to the CC model are
reported in [CC88] and [LWK93]. In [CF97,JW98,WJL96] the other version [FL81]
was utilized. For the critical exponent the values ν = 2.5 ± 0.5 [CC88] and later
ν = 2.4± 0.2 [LWK93] were obtained. Note that the result of the previous Section
is in excellent agreement with these values, and is also consistent with the most
precise ν = 2.35± 0.03 [Huc92]. This already indicates the remarkable accuracy of
the RG approach.

In [CF97, JW98,WJL96] the critical distribution Pc(G) of the conductance was
studied. Pc(G) was found to be broad, which is in accordance with Fig. 3.5.
However, a more detailed comparison is impossible, since the results of the sim-
ulations [CF97, JW98,WJL96] do not obey the electron-hole symmetry condition
Pc(G) = Pc(1−G). On the other hand, within the RG approach, the latter condi-
tion is satisfied automatically. Nevertheless, one can compare the moments of Pc(G)
to those calculated in [WJL96] and [CF97]. In [CF97] only the standard deviation

(〈G2〉 − 〈G〉2)
1/2
≈ 0.3 was computed. The RG result is 0.316. In [WJL96] moments

up to m = 8.5 were obtained and fitted by two analytical functions, which are shown
in Fig. 3.7. They agree with the RG calculations up to the sixth moment. Here
one should point out that the moments from [WJL96] can hardly be distinguished
from the moments of a uniform distribution. This reflects the fact that Pc(G) is
practically flat except for the peaks close to G = 0 and G = 1.

In [WLS98] and [ABB99] Pc(G) was studied by methods which are not based on
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Figure 3.8: Pc(G) found by Avishai et al. [ABB99] showing similar behavior as the RG
result in Fig. 3.5 but with less accurate statistics.

the CC model. Both works reported a broad distribution Pc(G). In [WLS98] Pc(G)
was found to be almost flat. The major difference between [WLS98] and Fig. 3.5 is
the behavior of Pc(G) near the points G = 0 and 1. That is, P (G) drops in [WLS98]
to zero at the ends, while Fig. 3.5 exhibits maxima. In [ABB99], as shown in Fig.
3.8, the behavior of Pc(G) is qualitatively similar to Fig. 3.5, with maxima at G = 0
and 1. However, the statistics in [ABB99] are rather poor, which again rules out
the possibility of a more detailed comparison with the results presented here.

Finally, one should point out that the results of this work agree completely
with [JMMW98,JMW98,WJ98] where a similar RG treatment of the CC model was
carried out. The numerical data of this work have a higher resolution, and show
significantly less statistical noise. This is because one could take advantage of faster
computation by using the analytical solution (3.8) of the RG [GR97]. Also note
that in [WJ98] and [JMMW98] the critical exponent ν = 3.5 ± 0.3 was calculated
using a procedure different from that described in Section 3.3. In order to compare
the results ν has to be rescaled by ln 2/ ln 3 which yields ν ≈ 2.2 [WJ98]. Thus the
values of ν determined by both methods are close. One should emphasize that a
systematic improvement of the RG procedure, i.e., by inclusion of more than five SPs
into the basic RG unit as reported in [JMMW98, JMW98,WJ98], leads to similar
results. In contrast, using a smaller RG unit [ZS01] discussed in the next Section
fails in describing the critical properties of the QH transition correctly. In order to
study the critical distribution of the conductance experimentally the measurement
has to be performed in a coherent transport regime. Due to the relatively large
sample size in usual QH experiments the measured conductance is an average over
the incoherent parts of the sample. Then one obtains a smooth behavior at the
transition as demonstrated in Figs. 2.2 and 2.3 instead of fluctuations. For a coherent
measurement mesoscopic QH samples were used [CBF99,CK96]. Figure 3.9 shows
that an almost uniform conductance distribution was found [CK96]. Although this
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Figure 3.9: Experimental results for Pc(G) from [CK96]. The left plot shows the fluctu-
ations of the two-terminal conductance at the first QH transition as function of the gate
voltage Vg. Averaging over a 16mV interval yields the thick line. The right plot displays
Pc(G) as a histogram of the conductance data from the left side.

result is consistent with theoretical predictions with respect to the dominating flat
part of the distribution, further detailed analysis of the mesoscopic pattern [CBF99]
has revealed the crucial role of the charging effects, which were neglected in all
theoretical studies.

3.6 Test of a different RG unit

Apparently, the quality of the RG approach crucially depends on the choice of the
RG unit. For the construction of a properly chosen RG unit two conflicting aspects
have to be considered. (i) With the size of the RG unit also the accuracy of the
RG approach increases since the RG unit can preserve more connectivity of the
original network. (ii) As a consequence of larger RG units the computational effort
for solving the scattering problem rises, especially in the case where an analytic
solution, as Eq. (3.8), is not attained. Because of these reasons building an RG
unit is an optimization problem depending mainly on the computational resources
available. As mentioned in the previous Section larger RG units were already studied
in [JMMW98,JMW98,WJ98]. In these works the authors could not benefit from an
analytic solution and achieve only a similar and less accurate statistics in comparison
with the results presented here. In this Section the opposite case is studied using a
small RG unit proposed in [ZS01] in the context of the Hall resistivity.

The super-SP now consists only of 4SP as shown in Fig. 3.10. It resembles the
5SP unit (see Fig. 3.4) used previously leaving out the SP in the middle of the
structure. Again the scattering problem can be formulated as a system of now 8
equations which is solved analytically:

t′4SP =

∣

∣

∣

∣

t1t4(r2r3e
iΦ3 − 1) + t2t3e

iΦ2(r1r4e
−iΦ1 − 1)

(1− r2r3eiΦ3)(1− r1r4eiΦ1) + t1t2t3t4eiΦ2

∣

∣

∣

∣

. (3.14)

The result can be verified using Eq. (3.8) after setting t3 = 0 and r3 = 1, joining
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Figure 3.10: RG unit constructed from 4SP indicated by full circles. Some connectivity is
neglected (dotted circles). The phases Φj are accumulated by the electron motion (arrows)
along contours of the energy potential.

the phases Φ1 and Φ4 and renumbering the indices.

The RG transformation (3.14) is then applied within the RG approach analo-
gously to the 5SP unit. First the FP distribution Pc(G) is obtained. A comparison
of Pc(G) for both RG units is shown in Fig. 3.11. The 4SP unit yields differing
results. While Pc(G) is still rather flat it is clearly asymmetric, which already indi-
cates that the 4SP unit cannot describe all of the underlying symmetry of the CC
network.

The Pc(G) for the 4SP unit is then used in the calculation of the critical exponent
ν to construct the shifted initial distributions Q0(z). Note that the maximum of
Qc(z) is already shifted away from z = 0 due to the asymmetry of Pc(G). The
behavior of ν as function of n for the 4SP and 5SP RG units is demonstrated in
Figure 3.12. Both curves approach convergence monotonously from larger values of
ν. During all iteration steps, ν for the 4SP differs from the 5SP result by an almost
constant positive shift. After 8 iterations, which equals an increase of system size
by a factor of 256, one finds ν5SP = 2.39 ± 0.01 and ν4SP = 2.74 ± 0.02. The error
describes a confidence interval of 95% as obtained from the fit to a linear behavior.
The result for ν4SP deviates clearly from the 5SP result and also from the values
obtained by other methods [CC88, Huc92, LWK93]. In addition to these findings
also the discussion in Section 3.4 indicates that the 4SP RG unit fails to describe
the critical properties at the QH transition correctly. This fact underlines again the
importance of the RG unit for a successful application of the RG approach.
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Figure 3.11: Comparison of the critical distribution of the conductance Pc(G) at the QH
transition obtained using the 5SP (dashed line) and 4SP (dotted line) RG unit. The latter
clearly deviates from the expected symmetry with respect to G = 0.5.
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Figure 3.12: The critical exponent ν as function of the effective system size N = 2n for
4SP (dotted line) and 5SP unit (dashed line). Inset: Maximum zmax,n of Q(z) vs. initial
shift z0 for 8 RG iterations (symbols) using 4SP. Dashed lines indicate linear fits. The
iterations start with zmax < 0 because of the asymmetry of Pc(G) for the 4SP unit.

39



3.7. CONCLUSION

3.7 Conclusion

The real-space RG approach allows only a crude approximation of the network,
since links of the network are cut and the full connectivity of the network is not
preserved. Therefore for the determination of Pc(G) and ν, it is essential to construct
the RG unit in such a way that it includes the symmetry of the network and the
corresponding physical problem.

It was shown that a suitable chosen 5SP unit permits the study of the QH
transition with high accuracy. The critical distribution Pc(G) of the conductance
was obtained precisely and the critical exponent ν = 2.39±0.01 could be calculated.

Furthermore it was demonstrated that a simple 4SP RG unit only provides a
rough picture of the critical properties of the QH transition while the slightly larger
5SP unit yields surprisingly accurate results. It also seems obvious that the accuracy
of the RG approximation should be further enhanced when increasing the size of
the RG unit [WJ98]. However from a numerical point of view one benefits from the
analytic form of Eq. (3.8), which is not known for larger RG units.

One can conclude that the test of the RG approach against other simulations
proves that this approach provides a very accurate quantitative description of the
QH transition. It can now be used to study the phases of the RG unit as presented
in the following Chapter.
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Chapter 4

RG approach to the LSD

4.1 Introduction

The calculation of the energy LSD is an established method in the study of an LD
transition. It relies on the exact knowledge about consecutive eigenenergies of a
system. The LSD P (s) describes the probability to find neighboring energy levels
at an energy distance s. At the LD transition the wave functions of the electrons
change from being extended in the conducting to being localized in the insulating
regime. This crossover is also observed in the correlation of the corresponding energy
levels. Hence the shape of the LSD at the LD transition is a consequence of the
localization behavior of the wave function. Wave functions of localized electrons
are bound to a small volume in space. Therefore the wave functions are spatially
uncorrelated which results in an uncorrelated energy spectrum. Thus the LSD agrees
with the Poisson statistics characterized by an exponential decay. On the conducting
side wave functions extend over a large part of the sample. The overlap of the wave
functions creates a correlation in the energy spectrum, which leads to level repulsion
for small s. As explained in Section 2.3.3 the shape of P (s) in the metallic regime is
predicted by RMT [Meh91,Wig55] and depends on the universality class the system
belongs to. In case of the CC model this is the GUE from which follows

PGUE(s) =
32

π2
s2e−

4
π
s2 . (4.1)

Exactly at the mobility edge separating localized and extended states a third
system-size independent, so-called critical LSD Pc(s) is found. Pc(s) lies between
PGUE(s) and the Poisson distribution and inherits properties of both distributions.
The discussion of the shape of Pc(s) concentrates on the behavior in the tails. For
small s it is established [BSZK96, KOSO96,Met98] that Pc(s) resembles the level
repulsion found for extended wave functions. The large-s behavior of Pc(s) attracted
more attention [BS97,BSK98,BSZK96,Eva94,Eva95,FAB95,HS94b,KOSO96,Met98,
Met99,MV98,OO95, SZ95, VHSP95, ZK97] because of contradicting initial predic-
tions [KLAA94, SSS+93]. First numerical studies [Eva94, FAB95,HS94b,VHSP95]
found agreement with the analytic prediction [KLAA94] Pc(s) ∝ exp(−asγ) for
s À 1 obtained by mapping the LSD to a Gibbs distribution of a classical one-
dimensional gas. Here level repulsion is partially preserved also for spacings much
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larger than the mean level spacing. Furthermore the exponent γ = 1 + (νd)−1

was expected to be related to the spatial dimension d and the critical exponent ν
of the localization length at the LD transition. However, later numerical simula-
tions [BSK98,Eva95,KOSO96,Met98,Met99,MV98,OO95, SZ95, ZK97] questioned
these relations and rather favored a simple exponential decay Pc(s) ∝ exp(−bs) sug-
gested previously by Shklovskii et al. [SSS+93]. The absence of level repulsion for
spacings much larger than the mean level spacing could be demonstrated by high
accuracy simulations [BSK98, ZK97]. The numerical works capture all mentioned
universality classes and are based mainly on tight-binding models, like the Anderson
model of localization [And58].

Moreover, the behavior of the LSD close to the mobility edge allows one to
determine the value of the correlation length exponent ν [SSS+93], thus avoiding
an actual analysis of the spatial extent of the wave functions. For this reason,
the energy level statistics constitutes an alternative to the MacKinnon-Kramer
[PS81a, PS81b, MK81, MK83] and to the transmission-matrix [FL81, Lan70] ap-
proaches to the numerical study of localization. A common problem of all ap-
proaches is that the exponential divergence of the correlation length holds only for
the infinite system, which is not evaluable directly by these numerical methods.
Therefore calculations performed for finite system sizes are to be extrapolated by a
suitable finite-size scaling (FSS) approach. In order to extract ν from the LSD the
one-parameter-scaling hypothesis [AALR79] is employed. This theory describes the
scaling of a quantity α(N ; {zi}) — depending on the system size N and (external)
system parameters {zi} — onto a single curve by using a scaling function f

α (N ; {zi}) = f

(

N

ξ∞({zi})

)

. (4.2)

Using the scaling assumption one can now extrapolate f to N →∞ from the finite-
size results of the computations. The knowledge about f and ξ∞ then allows one to
derive the value of ν.

Considering a 2D sample, all the states are localized in the absence of a magnetic
field. The presence of a magnetic field breaks the time-reversal symmetry and leads
to an infinitely sharp LD transition in two dimensions, the QH transition. For the
critical LSD the existence of a Poissonian tail has been demonstrated by a numerical
study [BS97]. Furthermore, using FSS a value of ν close to the results of large-size
simulations ν = 2.5 ± 0.5 [CC88], 2.4 ± 0.2 [LWK93], and 2.35 ± 0.03 [Huc92] was
obtained [BS97].

In this study again the CC model is employed together with a real-space RG
approach. First, in Section 4.2 the RG approach is extended to the LSD at the QH
transition. In Section 4.3 the numerical results for the LSD are presented and the
validity of this method is demonstrated. The FSS analysis of the obtained LSD at
the QH transition is subject of Section 4.4. Here a comparison with the obtained
value of ν from other works is given, in particular with the result of the RG ap-
proach to the conductance distribution from Section 3.4. The latter is by no means
trivial, since the original RG transformation [GR97] related the conductances, i.e.,
the absolute values of the transmission coefficients, while the phases of the trans-
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Figure 4.1: Illustration how to construct the LSD.

mission coefficients were assumed random and uncorrelated. In contrast, the level
statistics at the transition corresponds to the FP in the distribution of these phases.
Therefore, the success of the RG approach for conductances does not guarantee that
it will be equally accurate quantitatively for the level statistics. Rather the universal
features of the energy level statistics in a macroscopic fully coherent sample at the
QH transition complement the universality in the conductance distribution.

4.2 Description of the RG approach to the LSD

The LSD is one of the prime level statistics besides the Σ2 and ∆3 statistics [Meh91].
The evaluation of the LSD is schematically shown in Fig. 4.1. The necessary eigenen-
ergies are usually obtained from the time-independent Schrödinger equation HΨ =
EkΨ by diagonalizing the Hamiltonian H [PFTV92]. After sorting the eigenener-
gies in ascending order the LSD is accumulated from spacings sk = (Ek+1−Ek)/∆,
where Ek+1 and Ek are neighboring energy levels and ∆ corresponds to the mean
level spacing. With the CC model based on wave propagation through the sample,
H is not accessible directly. In this work therefore an alternative approach is used
in order to reveal the eigenenergies. It has been shown by Fertig [Fer88], that the
energy levels of a 2D CC network can be computed also from the energy dependence
of the so-called network operator U(E). U is constructed similar to the system of
equations for obtaining the transmission coefficient t′ of the RG unit as presented in
Section 3.2. Every SP of the network contributes two scattering equations. Each of
them describes the amplitude of one outgoing channel using the amplitudes of the
two incoming channels weighted by the transmission and reflection coefficients t and
r in which also the random phase Φ of the links between SPs can be incorporated.
When comparing to the calculation of the transmission coefficient t′ an essential
difference has to be taken into account. Energy levels are defined only in a closed
system which requires to apply appropriate, usually periodic, boundary conditions.
The energy dependence of U(E) enters through the energy dependence of the ti(E)
of the SPs, whereas the energy dependence of the phases Φj(E) of the links is usually
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Figure 4.2: CC network on a square lattice consisting of nodes (circles) and links (arrows).
The RG unit used to construct the matrix (4.5) combines five nodes (full circles) by
neglecting some connectivity (dashed circles). Φ1, . . . ,Φ4 are the phases acquired by an
electron along the loops as indicated by the arrows. Ψ1, . . . ,Ψ4 represent wave function
amplitudes, and the thin dashed lines illustrate the boundary conditions used for the
computation of level statistics.

neglected. Considering the vector Ψ of wave amplitudes on the links of the network,
U acts similar as a time evolution operator. The eigenenergies can now be obtained
from the stationary condition

U(E)Ψ = Ψ. (4.3)

Nontrivial solutions exist only for discrete energies Ek, which coincide with the
eigenenergies of the system [Fer88]. The eigenvectors Ψk correspond to the eigen-
states on the links. The evaluation of the Ek’s according to Eq. (4.3) is numerically
very expensive. For that reason a simplification was proposed [KM97a]. Instead
of solving the real eigenvalue problem calculating a spectrum of quasienergies ω is
suggested following from

U(E)Ψl = eiωl(E)Ψl. (4.4)

For fixed energy E the ωl are expected to obey the same statistics as the real eigenen-
ergies [KM97a]. This approach makes it perfectly suited for large-size numerical
simulations, e.g. studying 50× 50 SP networks.

In order to combine the above algorithm with the RG iteration, in which a
rather small unit of SPs is considered, some adjustment is necessary. First, one has
to “close” the RG unit at each RG step in order to discretize the energy levels. From
the possible variants the closing is chosen as shown in Fig. 4.2 with dashed lines.

For a given closed RG unit with a fixed set of ti-values at the nodes, the positions
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of the energy levels are determined by the energy dependences, Φj(E), of the four
phases along the loops. These phases change by ∼ π within a very narrow energy
interval, inversely proportional to the sample size. Within this interval the change
of the transmission coefficients is negligibly small. The closed RG unit in Fig.
4.2 contains 10 links, and, thus, it is described by 10 amplitudes. Each link is
characterized by an individual phase. On the other hand, it is obvious that the
energy levels are determined only by the phases along the loops. One way to derive U
is to combine the individual phases into phases Φj connected to the four inner loops
of the unit. The Φj are associated with the corresponding “boundary” amplitudes
Ψj (see Fig. 4.2). The original system of ten equations, which resembles Eq. (3.4)
except for the boundary conditions, can then be transformed to four equations by
expressing all amplitudes in terms of the Ψj. The resulting network operator takes
the form

U =









(r1r2 − t1t2t3)e
−iΦ1

−t1r3r4e
−iΦ2

−t1t4r3e
−iΦ4

−(t2r1 + t1t3r2)e
−iΦ3

(t1r2 + t2t3r1)e
−iΦ1

r1r3r4e
−iΦ2

t4r1r3e
−iΦ4

−(t1t2 − t3r1r2)e
−iΦ3

⇒

⇒

t2t5r3e
−iΦ1

−(t4r5 + t3t5r4)e
−iΦ2

(r4r5 − t3t4t5)e
−iΦ4

t5r2r3e
−iΦ3

t2r3r5e
−iΦ1

(t4t5 − t3r4r5)e
−iΦ2

−(t5r4 + t3t4r5)e
−iΦ4

r2r3r5e
−iΦ3









,

(4.5)

which can be substituted in Eq. (4.4). Then the energy levels, Ek, of the closed
RG unit including phases Φj(E) = Φj(Ek), are the energies for which one of the
four eigenvalues of the matrix U is equal to one, which corresponds to the condition
ω(Ek) = 0. Thus, the calculation of the energy levels reduces to a diagonalization of
the 4× 4 matrix. It should be emphasized that the reduced size of U in comparison
with the 10 × 10 matrix resulting from the “straightforward” approach described
in the beginning of this Section directly follows from considering the only relevant
energy dependence in the four phases of the RG unit. Therefore a larger size of U
would lead to redundant information for the energy levels.

The crucial step now is the choice of the energy dependence Φj(E). If each loop
in Fig. 4.2 is viewed as a closed equipotential as it is the case for the first step of the
RG procedure [CC88], then Φj(E) is a true magnetic phase, which changes linearly
with energy with a slope governed by the actual potential profile, which, in turn,
determines the drift velocity. Thus

Φj(E) = Φ0,j + 2π
E

sj
, (4.6)

where a random part, Φ0,j , is uniformly distributed within [0, 2π), and 2π/sj is a
random slope. Here the coefficient sj acts as an initial level spacing connected to
the loop j of the RG unit by defining a periodicity of the corresponding phase.
Strictly speaking, the dependence (4.6) applies only for the first RG step. At each
step, n > 1, Φj(E) is a complicated function of E which carries information about
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Figure 4.3: Energy dependence of the quasienergies ω for two sample configurations.
Instead of using the quasispectrum obtained from ωl(E = 0) (©) the real eigenenergies
are calculated according to ω(Ek) = 0 (2). Different line styles distinguish different ωl(E).
Note, that the observed behavior varies from sample to sample between remarkably linear
(a) and strongly nonlinear (b).

all energy scales at previous steps. However, in the spirit of the RG approach,
one can assume that Φj(E) can still be linearized within a relevant energy interval.
The conventional RG approach suggests that different scales in real space can be
decoupled. Linearization of Eq. (4.6) implies a similar decoupling in energy space.
In the case of phases, a “justification” of such a decoupling is that at each RG step,
the relevant energy scale, that is the mean level spacing, reduces by a factor of four.

With Φj(E) given by Eq. (4.6), the statistics of energy levels determined by the
matrix equation (4.4) is obtained by averaging over the random initial phases Φ0,j

and values ti chosen randomly according to a distribution P (t). For every realization
the levels Ek are computed from the solutions ω(Ek) = 0 of Eq. (4.4) as illustrated
in Fig. 4.3.

The energy interval is scanned in discrete energy steps ∆E which define the
accuracy of the obtained Ek. The used value ∆E = min{sj}/250 is adapted to each
random realization of the Φ0,j and takes the periodicity in Eq. 4.6 and its influence
on the behavior of ω(E) into account. In particular, each realization yields three
level spacings which are then used to construct a smooth LSD. Thus the situation
is comparable with estimating the true RMT ensemble distribution functions from
small, say, 2 × 2 matrices only [Meh91,Wig51]. The outline of the RG procedure
for the LSD is as follows. The slopes sj in Eq. (4.6) determine the level spacings
at the first step. They are randomly distributed with a distribution function P0(s).
Subsequent averaging over many realizations yields the LSD, P1(s), at the second
step. Then the key element of the RG procedure, as applied to the level statistics,
is using P1(s) as a distribution of slopes in Eq. (4.6). This leads to the next-step
LSD and so on.

The approach of this work relies on the “real” eigenenergies of the RG unit.
The simpler computation of the spectrum of quasienergies adopted in large-scale
simulations within the CC model [KM97a,Met98] cannot be applied since the en-
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ergy dependence of phases Φj in the elements of the matrix is neglected and only
the random contributions, Φ0,j , are kept. Nevertheless it is instructive to compare
the two procedures: Fig. 4.3 shows the dependence of the four quasienergies ωk on
the energy E calculated for two RG units, with ti chosen from the critical distribu-
tion Pc(t). The energy dependence of the phases Φj was chosen from LSD of the
GUE according to Eq. (4.6). One can see that the dependences ω(E) range from
remarkably linear and almost parallel (Fig. 4.3a) to strongly nonlinear (Fig. 4.3b).

4.3 Numerical results

4.3.1 The LSD at the QH transition

First, the shape of the LSD at the QH transition is considered. As the starting
distribution P0(s) of the RG iteration the LSD of GUE is chosen, since previous
simulations [BS97,KM97a] indicate that the critical LSD is close to GUE. According
to P0(s), sj is drawn randomly and Φj, j = 1, . . . , 4 is set as in Eq. (4.6). For the
transmission coefficients of the SP the FP distribution Pc(t), obtained in Section
3.4, is used. As known from Section 3.4, Pn(t) drifts away from the FP within
several further iterations due to unavoidable numerical inaccuracies. In order to
stabilize the calculation, the FP distribution Pc(t) is therefore used in every RG
step instead of Pn(t). This trick does not alter the results and also speeds up the
convergence of the RG for Pc(s) considerably. By finding solutions ω(Ek) = 0 of Eq.
(4.4) the new LSD P1(s

′) is constructed from the “unfolded” energy level spacings
s′k = (Ek+1 − Ek)/∆, where k = 1, 2, 3, and the mean spacing ∆ = (E4 − E1)/3.
Due to the “unfolding” [Haa92] with ∆, the average spacing is set to one for each
sample and in each RG-iteration step spacing data of 2 × 106 super-SPs are taken
into account. The resulting LSD is discretized in bins with largest width 0.01.
In the following iteration step the procedure is repeated using the P1(s) as initial
distribution. Convergence of the iteration process is assumed when the mean-square
deviation of Pn(s) deviates by less than 10−4 from its predecessor Pn−1(s). The above
approach now enables one to determine the critical LSD Pc(s). The RG iteration
converges rather quickly after only 2− 3 RG steps. The resulting Pc(s) is shown in
Fig. 4.4 together with the LSD for the unitary random matrix ensemble from Eq.
(4.1).

Although Pc(s) exhibits the expected features, namely, level repulsion for small s
and a long tail at large s, the overall shape of Pc(s) differs noticeably from GUE. In
the previous large-size lattice simulations [BS97,KM97a] the obtained critical LSD
was much closer to GUE than Pc(s) in Fig. 4.4. This fact, however, does not neces-
sarily imply a lower accuracy of the RG approach. Indeed, as it was demonstrated
recently, the critical LSD – although being system-size independent — neverthe-
less depends on the geometry of the samples [PS98] and on the specific choice of
boundary conditions [BMP98, SP98]. Sensitivity to the boundary conditions does
not affect the asymptotics of the critical distribution, but rather manifests itself in
the shape of the “body” of the LSD. One should note that the boundary conditions
which have been imposed to calculate the energy levels (dashed lines in Fig. 4.2) are
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Figure 4.4: FP distributions Pc(s) obtained from the spectrum of ωl(E = 0) and from
the RG approach using the real eigenenergies Ek in comparison to the LSD for GUE. As
in all other graphs P (s) is shown in units of the mean level spacing ∆.

non-periodic in contrast to usual large-size lattice simulations [KM97a].
As mentioned in the last Section there is another possibility to assess the critical

LSD, namely by the distribution of quasienergies. In Fig. 4.4 the result of this
procedure is shown. It appears that the resulting distribution is almost identical to
Pc(s). This observation is highly non-trivial, since, as follows from Fig. 4.3, there is
no simple relation between the energies and quasienergies. Moreover, if instead of
the linear E-dependence of Φj, another functional form is chosen, say,

Φj(E) = Φ0,j + 2arcsin

(

E

sj
− 2p

)

, (4.7)

where the integer p insures that
∣

∣

∣

E
sj
− 2p

∣

∣

∣
≤ 1, then the RG procedure would yield an

LSD which is markedly different (within the “body”) from Pc(s). This is illustrated
in Fig. 4.5. Both procedures, using quasienergies instead of real energies, as in
[KM97a], and linearization of the energy dependence of phases [as in Eq. (4.6)] are
not rigorous. Linearization is dictated by the RG concept. The coincidence of the
results of the two procedures indicates that the concept of quasienergies, namely,
that they obey the same statistics as real energies, is equivalent to the RG.

4.3.2 Small-s and large-s behavior

Here, the focus is on two further characteristic properties of Pc(s), the small-s and
the large-s behavior, which have received considerable attention previously [BS97,
BSZK96,Eva94,Eva95,HS94a,KOSO96,KLAA94,Met98,SSS+93,ZK97].
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Figure 4.5: FP distributions Pc(s) for a linear and an arcsin energy dependence of the
phases Φj . The form of Pc(s) is clearly influenced by the actual choice of Φj(E). Thus
universal behavior is not expected in the bulk shape. The inset illustrates examples of the
two different functions Φj(E) as in Eqs. (4.6) and (4.7).

As it was mentioned above, the general shape of the critical LSD is not universal.
However, the small-s behavior of Pc(s) must be the same as for the unitary random
matrix ensemble, namely Pc(s) ∝ s2. This is because delocalization at the QH
transition implies the level repulsion [FM97,SSS+93]. Earlier large-scale simulations
of the critical LSD [BS97,BSK98,BSZK96,FAB95,KOSO96,KM97a,Met98,Met99,
MV98, OO95, OOK96] satisfy this general requirement. The same holds also for
the result of this work, as can be seen in Fig. 4.6. The given error bars of the
numerical data are standard deviations computed from a statistical average of 100
FP distributions each obtained for different random sets of ti’s and Φj’s within the
RG unit. In general, within the RG approach, the s2-asymptotics of P (s) is most
natural. This is because the levels are found from diagonalization of the 4×4 unitary
matrix (4.5) with absolute values of elements widely distributed between 0 and 1.

The right form of the large-s tail of P (s) is Poissonian, Pc(s) ∝ exp(−bs)
[SSS+93]. For the Anderson model in three dimensions, unambiguous confirmation
of this prediction in numerical simulations became possible only when very high nu-
merical accuracy had been achieved [BSZK96,ZK97]. This is because Pc(s) assumes
the Poissonian asymptotics only at large enough s & 3∆. For the QH transition, a
linear behavior of lnPc(s) with a slope corresponding to the value b ≈ 4.1 has been
found in [BS97] from the analysis of the interval 2 < s/∆ < 4. The data of this
work, as shown in Fig. 4.7, has a high accuracy only for s/∆ . 2.5. For such s, the
distribution Pc(s) does not yet reach its large-s tail. Thus, the value of parameter
b extracted from this limited interval is somewhat ambiguous. Namely, one obtains
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Figure 4.6: Pc(s) for small s in agreement with the predicted s2 behavior. Due to the
log-log plot errors are shown in the upper direction only.
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as decay coefficient b = 5.44 for s/∆ ∈ [1.5, 2.0] and b = 6.80 for s/∆ ∈ [2.0, 2.5].
At this point it seems that only the s2-behavior of Pc(s) for small s proves to

be robust within the RG approach and obeys the expected universal level repulsion.
The accuracy of the RG approach is insufficient to discern the non-trivial feature
of the critical LSD, i.e., the Poissonian asymptotics. But as will be shown in the
next Section universality can be found also in additional quantities derived from the
critical LSD.

4.4 Scaling results for the LSD

4.4.1 Finite-size scaling at the QH transition

The critical exponent ν of the QH transition governs the divergence of the correlation
length ξ∞ as a function of the control parameter z0, i.e.,

ξ∞(z0) ∝ |zc − z0|
−ν , (4.8)

where zc is the critical value. As presented in Chapter 3 the RG approach for the
conductance distribution yields a rather accurate value ν = 2.39± 0.01. In Section
4.2 a complimentary RG approach to the distribution of the energy levels at the
transition has been introduced. It can be expected on general grounds that the LSD
obtained from the RG approach obeys scaling at small enough |zc − z0|. However,
while it would be in accordance to universality, it is not known a priori, whether the
values of ν extracted from different variants of the RG approach are consistent.

The FSS analysis of the LSD is described by Eq. (4.2). In order to define a suit-
able control parameter z0 in the transition region, again the natural parametrization
of the transmission coefficients t, i.e., t = (ez + 1)−1/2 [GR97], from Section 3.3 is
used. One should recall that for such a parametrization, z can be identified with
a dimensionless electron energy. The QH transition occurs at z = 0, which corre-
sponds to the center of the Landau band. The universal conductance distribution at
the transition, Pc(G), corresponds to the distribution Qc(z) which is symmetric with
respect to z = 0 and has a shape close to a Gaussian. The RG procedure for the
conductance distribution converges and yields Qc(z) only if the initial distribution
is an even function of z. This suggests to choose as a control parameter in Eq. (4.2),
the position z0 of the maximum of the function Q(z), where z0 is an energy shift
away from the center of the Landau band. Because the QH transition occurs exactly
at z0 = 0 any initial distribution Q(z − z0) with z0 6= 0 will evolve during the RG
procedure toward an insulator, either with complete transmission of the network
nodes (for z0 > 0) or with complete reflection of the nodes (for z0 < 0).

4.4.2 Scaling for αP and αI

In principle, one is free to choose for the FSS analysis any characteristic quantity
α(N ; z0) constructed from the LSD which has a systematic dependence on system
size N for z0 6= 0 while being constant at the transition z0 = 0. Out of the large
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Figure 4.8: RG of the LSD used for the computation of ν. The dotted lines corresponds
to the first 9 RG iterations with an initial distribution P0 shifted to the metallic regime
(z0 = 0.1) while the full thin lines represent results for a shift toward localization (z0 =
−0.1). Within the RG procedure the LSD moves away from the FP as indicated by the
arrows. At s/∆ ≈ 1.4 the curves cross at the same point which is used when deriving a
scaling quantity from the LSD.

number of possible choices [BS97,HS94b,SSS+93,ZK95b,ZK95a,ZK97] a restriction
is made to quantities that are defined mainly by the small-s behavior which is
accurately described by the RG approach. The quantities are obtained by integration
of the LSD and have already been successfully used in [HS93,HS94b], namely

αP =

∫ s0

0

P (s)ds (4.9)

and

αI =
1

s0

∫ s0

0

I(s)ds, (4.10)

with I(s) =
∫ s

0
P (s′)ds′. The integration limit is chosen as s0 = 1.4 which approxi-

mates the common crossing point [HS94b] of all LSD curves as can be seen in Fig.
4.8. Thus P (s0) is independent of the distance |z − zc| to the critical point and the
system size N . Note that N is directly related to the RG step n by N = 2n. The
double integration in αI is numerically advantageous since fluctuations in P (s) are
smoothed. One can now apply the finite-size-scaling approach from Eq. (4.2)

αI,P(N, z0) = f

(

N

ξ∞(z0)

)

. (4.11)
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Since αI,P(N, z0) is analytical for finite N , one can expand the scaling function f at
the critical point. The first-order approximation yields

α(N, z0) ∼ α(N, zc) + a|z0 − zc|N
1/ν (4.12)

where a is a coefficient. Better results are obtained using a higher-order expansion
proposed by Slevin and Ohtsuki [SO99]. In [SO99] they expand f twice, first, in
terms of Chebyshev polynomials of order Oν and, second, as Taylor expansion with
terms |zc − z0| in the order Oz. With this procedure one can describe deviations
from linearity in |zc− z0| at the transition. Contributions from an irrelevant scaling
variable can be neglected since the transition point z0 = 0 is known, as demonstrated
by the data shown in the upper plots of Figs. 4.9 and 4.10.

In order to obtain the functional form of f the fitting parameters, including ν,
are evaluated by a nonlinear least-square (χ2) optimization. In Figs. 4.9 and 4.10
the resulting fits for αP and αI at the transition are shown. The fits are chosen in a
way such that the total number of parameters is kept at a minimal value and the fit
agrees well with the numerical data. The corresponding scaling curves are displayed
in the lower part of Figs. 4.9 and 4.10. In the plots the two branches for complete
reflection (z0 < 0) and complete transmission (z0 > 0) can be distinguished clearly.
In order to estimate the error of the fitting procedure the results for ν obtained by
different ordersOν andOz of the expansion, system sizes N , and z ranges around the
transition are compared. A part of the over 100 fit results that have been obtained
is given in Table 4.1.

The value of ν is calculated as average over all 120 individual fits for which the
resulting error of ν was smaller than 0.02. The error is then determined as the
standard deviation of the contributing values. By this method one can assure that
the result is not influenced by local minima of the nonlinear fit. So ν = 2.37± 0.02
can be considered as a reliable value for the exponent of the localization length at
the QH transition obtained from the LSD which is also in excellent agreement with
2.39± 0.01 calculated in the previous Chapter.

Besides αP and αI also a parameter-free scaling quantity αS =
∫∞

0
s2P (s)ds

[ZK95b] was tested, where the whole distribution P (s) is taken into account. The
obtained data are presented in Fig. 4.11. Due to the influence of the large-s tail
only a less reliable value ν = 2.33± 0.05 was obtained.

4.4.3 Test of different initial distributions

Finally the influence of the initial conditions on the result of the LSD and the one-
parameter scaling is studied. So far the starting distributions P0(G) and P0(s) of the
RG iteration were constructed from the critical distributions Pc(G) and Pc(s). The
function Pc(G) is shown in Fig. 4.12 (inset) with a full line. In order to understand
the importance of the fact that Pc(G) is almost flat, the calculations have been
repeated choosing instead of Pc(G) a relatively narrow Gaussian distribution P (G) ≡
PGauß(G). This distribution is shown with a dashed line in Fig. 4.12 (inset). The
corresponding LSD as presented in Fig. 4.12 is obtained similar to the calculation
of Pc(s), where now Pn(G) = PGauß(G) is used in all iterations. Obviously, it agrees

53



4.4. SCALING RESULTS FOR THE LSD

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06
z0

0.88

0.89

0.90

0.91

0.92
α P

2
4
8
16
32

64
128
256
512

6 8 10 12 14 16
Log(ξ∞/N)

−0.13

−0.12

−0.11

−0.10

−0.09

−0.08

Lo
g(

α P
)

2
4
8
16
32

64
128
256
512

1    t
2
   

1    r
2
  

Figure 4.9: Upper plot: Behavior of αP at the QH transition as results of the RG of the
LSD. Data are shown for RG iterations n = 1, . . . , 9 corresponding to effective system sizes
N = 2n = 2, . . . , 512. Full lines indicate the functional dependence according to FSS using
the χ2 minimization with Oν = 2 and Oz = 3. Lower plot: FSS curves resulting from the
χ2 fit of the upper data. Different symbols correspond to different effective system sizes
N = 2n. The data points collapse onto a single curve indicating the validity of the scaling
approach.

54



CHAPTER 4. RG APPROACH TO THE LSD

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06
z0

0.31

0.32

0.33
α I

2
4
8
16
32

64
128
256
512

6 8 10 12 14 16
Log(ξ∞/N)

−1.17

−1.15

−1.13

−1.11

Lo
g(

α I)

2
4
8
16
32

64
128
256
512

1    r
2
  

1    t
2
  

Figure 4.10: Behavior of αI at the QH transition and resulting FSS curves analogously
to Fig. 4.9.
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N [z0min, z0max] Oν Oz ν
αP

2− 64 [−0.07, 0.07] 2 1 2.383± 0.019
2− 64 [−0.07, 0.07] 2 3 2.384± 0.019
2− 128 [−0.07, 0.07] 1 3 2.384± 0.019
2− 128 [−0.07, 0.07] 3 2 2.352± 0.018
2− 128 [−0.07, 0.07] 1 2 2.384± 0.019
2− 128 [−0.07, 0.07] 2 3 2.398± 0.015
2− 256 [−0.05, 0.05] 2 1 2.361± 0.016
2− 512 [−0.05,0.05] 2 3 2.397± 0.015
4− 512 [−0.05, 0.05] 2 2 2.379± 0.014
8− 512 [−0.05, 0.05] 2 2 2.373± 0.015
16− 512 [−0.07, 0.07] 3 1 2.318± 0.011

...
αI

2− 256 [−0.07, 0.07] 2 1 2.380± 0.011
2− 512 [−0.05, 0.05] 2 2 2.368± 0.013
2− 512 [−0.05,0.05] 2 3 2.368± 0.014
2− 512 [−0.07, 0.07] 3 2 2.353± 0.012
2− 128 [−0.07, 0.07] 2 2 2.375± 0.016
2− 512 [−0.05, 0.05] 3 2 2.374± 0.017
4− 512 [−0.05, 0.05] 3 1 2.352± 0.017
8− 512 [−0.07, 0.07] 2 3 2.376± 0.012
8− 512 [−0.07, 0.07] 3 3 2.335± 0.015
16− 512 [−0.07, 0.07] 2 3 2.379± 0.014
16− 512 [−0.07, 0.07] 2 1 2.407± 0.016

...
2.37± 0.02

Table 4.1: Fit results for ν obtained from αI and αP for different system sizes N , intervals
around the transition, and orders Oν and Oz of the fitting procedure. The error of ν is
the standard deviation obtained as result of the nonlinear χ2 fit. The two lines in bold
face correspond to the plots in Figs. 4.9 and 4.10, respectively.

much worse with GUE than the LSD computed using the true Pc(G), which can be
considered as a reference point.

For the determination of the critical exponent, the distribution is again disturbed
by an energy shift z0 and the change of the LSD in the course of the RG iterations
is studied by means of αI and αP. The data for αP and αI calculated for P (G) =
PGauß(G) are plotted in Fig. 4.13.

The curves for small system sizes N exhibit strong deviations, i.e., there is ini-
tially no common crossing point, while for large N a behavior similar to Figs. 4.9
and 4.10 is observed. On first sight this behavior might indicate the influence of
an irrelevant scaling variable. A deeper look at Fig. 4.13 shows that the required
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Figure 4.11: Behavior of αS at the QH transition and resulting FSS curves analogously
to Fig. 4.9. Because of large deviations data for N = 2 were excluded from the fitting.
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Figure 4.12: Comparison of the LSD Pc(s) and PGauß(s) obtained from the corresponding
conductance distributions shown in the inset.

condition, a systematic system-size dependence of the crossing points, is not found
for small N . Within the range of the data small-N curves do not cross each other at
all and for αI crossings with larger N even occur on both sides of the transition. On
the other hand the crossing point between larger N curves stays the same. Therefore
small-N data are better neglected in the scaling analysis. The χ2 fits for αI and
αP are carried out using z0 ∈ [−0.05, 0.05] and N = 16 − 512. They yield slightly
less accurate values νI = 2.43± 0.02 and νP = 2.46± 0.03 which are still reasonably
close to ν = 2.37± 0.02 obtained for the correct initial distributions. Obviously the
initial failure is reduced and smeared out already after a few RG iterations.

Overall, Figs. 4.12 and 4.13 illustrate the consistency of the RG approach for
the conduction distribution and for the level statistics, in the sense, that a better
FP distribution of the level spacings is obtained from the FP of the conductance
distribution rather than from a strongly non-uniform distribution.

4.5 Conclusion

The usual way to study the LSD in lattice or network models is to examine the
spectra of systems as large as possible. This allows one to obtain the huge number
of energy levels required for a reliable statistics which is a prerequisite in order to
compare to the predictions following from universality. In this study the energy
spectrum is obtained by an alternative method. Instead of a large CC network only
a 5SP RG unit is used to extract the eigenenergies. This RG approach is based
on a specific assumption of the energy dependence (4.6) of the phases in the RG
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Figure 4.13: Behavior of αP and αI computed for initial distributions PGauß, as shown in
Fig. 4.12. Data are plotted for RG iterations n = 1, . . . , 9 corresponding to effective system
sizes N = 2n = 2, . . . , 512. Curves for small n do not cross at the common point z0 = 0.
Full lines indicate the functional dependence according to FSS using the χ2 minimization
with Oν = 2 and Oz = 3 (for αP) and Oν = 2 and Oz = 2 (for αI).
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unit which has an influence also on the shape of the LSD. The overall form of the
computed critical LSD Pc is not universal but still shows a quadratic level repulsion
for small s, which is one of the predicted characteristic properties.

The robustness of universal properties is moreover demonstrated by a FSS anal-
ysis of the LSD around the QH transition. The exponent ν = 2.37 ± 0.02 of the
localization length obtained by a nonlinear χ2 minimization is in excellent agreement
with the value calculated in previous works.

This result is surprisingly good when keeping in mind that it was derived just
from the four loops of the RG unit. Nevertheless this RG unit seems to capture
the essential physics of the QH transition. The success of the RG approach can
be attributed to the description of the transmission amplitudes t of the SPs by a
correct distribution function P (t) while for network models usually a fixed value t(E)
is assigned to all SPs for simplicity. The phases are associated with full loops in the
network and not with single SP-SP links, and the design of the RG unit describes
the underlying symmetry of the QH transition, which is not accessible, e.g., with
the 4SP RG unit considered in [ZS01]. Due to these reasons the RG iteration is
always governed by the quantum critical point of the QH transition. Even when
starting the iteration with a distribution P0(G) totally different from Pc(G), but
still symmetric with respect to G = 0.5, one approaches the same results after a few
iterations.
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Chapter 5

Macroscopic inhomogeneities

5.1 Introduction

The investigation of the influence of macroscopic inhomogeneities is motivated by
contradicting experimental results which are described in the following in more de-
tail. The experimental study of the critical behavior of the resistivity in the transi-
tion region at strong magnetic field B has a long history which can be divided into
three periods.

The first experimental works [HWE+93,KHKP91a,KHKP91b,KHKP92,WTP85,
WLTP92,WTPP88] reported a narrowing of the transition peak of ρxx with tem-
perature T , e.g. as in Fig. 5.1, according to a power law T κ with κ ∼ 0.4. The
spread in the actual value of κ ∝ 1/ν measured in different experiments was at-
tributed to the difference in the type of disorder in the samples of [WTP85,WTPP88]
and [KHKP91a]. In another experimental method to explore the critical behavior
[KHKP91b,KHKP92], κ was deduced from the sample size dependence of the width,
∆B, of the transition region. The value of κ obtained by this technique appeared to
be consistent with temperature measurements [KHKP91a], in the sense that κ was
found to be sample dependent. On the other hand, it was argued [WLTP92] that the
lack of universality in [KHKP91a,KHKP91b,KHKP92] has its origin in the long-
ranged character of the disorder in GaAs-based heterostructures studied in these
works. This is because for a smooth disorder the energy interval within which the
electron transport is dominated by localization effects is relatively narrow [WLTP92].
The measurements [WTP85,WTPP88] suggesting the universality of κ were carried
out on InxGa1−xAs/InP heterostructures in which disorder is believed to be short-
ranged [Col99]. Despite the disagreement about the universality of the exponent κ,
the fact that the narrowing of the plateau transition occurs as T κ was not ques-
tioned [HWE+93,KHKP91a,KHKP91b,KHKP92,WLTP92,WTP85,WTPP88].

Absence of scaling was reported first for the QH plateau-insulator transition
[SHL+98] and then for the plateau-plateau transition [BMB98]. In the latter pa-
per the conclusion about the absence of scaling was drawn from the analysis of
the frequency dependence of ∆B in GaAs/AlyGa1−yAs heterostructures as shown
in Fig. 5.2 (in contrast to the similar analysis in [ESKT93]). That is, the authors
of [SHL+98] and [BMB98] concluded, that the width of the transition region sat-

urates as T → 0. A possible explanation of this behavior [Shi99, SAK98] is based
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Figure 5.1: Experimentally observed temperature dependence of the width ∆B of the ρxx
peak from [WTPP88]. In the log-log scale the data (symbols) agree very well with linear
fits (solid lines) indicating a power-law behavior. Different symbols correspond to different
QH transitions and different refrigerators (filled – 3He, open – dilution). Note that a power
law is also observed when studying the temperature dependence of the maximum slope of
ρxy as shown by the upper three curves.

on the scenario of tunneling between electron puddles with a size larger than the
dephasing length. The microscopic origin of these puddles was attributed to sample
inhomogeneities [CHHR97,RCH96,SH94].

Very recent experimental results [SVO+00] on scaling of plateau-insulator as
well as plateau-plateau QH transitions carried out on the same InxGa1−xAs/InP
sample as in [HWE+93] suggested that the narrowing of the transition width with
temperature follows a power-law dependence ∆B ∝ T κ with κ ≈ 0.4. Even when
the authors of [SVO+00] analyzed their data using the procedure of [SHL+98], i.e.,
by plotting the logarithm of the longitudinal resistance versus ∆B, they obtained
straight lines with slopes proportional to T κ′ with κ′ ≈ 0.55. They attributed the
difference between κ and κ′ to the marginal dependence of the critical resistance on
T . It was also speculated [SVO+00] that this dependence most likely results from
macroscopic inhomogeneities in the sample. In the latest papers [HZH01,HZHP01,
KMDK00] the frequency dependence of the QH transition width was studied. The
results did not support the saturation of the width [BMB98, SHL+98], but rather
confirmed the scaling hypothesis.

Summarizing, it is now conclusively established that the insulator-plateau and
the plateau-plateau transitions exhibit the same critical behavior. It is also rec-
ognized that macroscopic inhomogeneities can either mask the scaling or alter the
value of κ [SVO+00].

On the theoretical side, in all previous considerations inhomogeneities were
incorporated into the theory through a spatial variation of the local resistivity
[CHHR97,RCH96,Shi99,SAK98,SH94]. In other words, all existing theories are ei-
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Figure 5.2: Saturation of the peak width ∆B for microwave frequency f → 0 from
[BMB98]. The results are obtained for the 2 → 1 plateau-plateau transition. The width
∆B is measured at half (¥) and quarter (+) maximum. The inset shows half maximum
data for temperatures 150 (¥), 330 (∆) and 700mK (©). The linear fit for 150mK (solid
line) leads to a finite intercept ∆B(0) violating the scaling assumption.

ther ”homogeneous quantum coherent” or ”inhomogeneous incoherent”. Note that
sometimes the term ”long-ranged disorder” is also used for a disorder that has a finite
correlation radius which is larger than the magnetic length, see, e.g., [EMPW99].
This is different from the present situation. Meanwhile, there is another scenario
which has never been explored. Close to the transition the localization length ξ
becomes sufficiently large. Then the long-ranged disorder can affect the character
of the divergence of ξ. In this Chapter the effects of quenched disorder on quantum

percolation are investigated.

In order to study the role of the quenched disorder on the LD transition the CC
model is treated again within the real-space RG approach. First, in Section 5.2 the
classical case is briefly reviewed. After that, in Section 5.3, the quenched disorder
is incorporated by an extension to the RG approach. The numerical results are the
content of Section 5.4. The side effect of intrinsic short-range disorder is discussed
in Section 5.5 before the concluding remarks are given in Section 5.6.

5.2 Macroscopic inhomogeneities in classical per-

colation

At the beginning one should recall the classical case where the motion of an electron
in a strong magnetic field and a smooth potential reduces to the drift of the cyclotron
orbit along the equipotential lines. Correspondingly, the description of the LD
transition reduces to the classical percolation problem. In this limit [Wei84,WH83]
the long-ranged disorder affects the value of the critical exponent in the percolation
problem. Obviously, when the disorder is long-ranged but has a finite correlation
radius, any changes in the critical behavior are not expected. The principle finding
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of [WH83] and [Wei84] is that the critical exponent can change when the correlator
of the disorder 〈V (r)V (r′)〉 falls off with distance as a power law (quenched disorder)

〈V (r)V (r′)〉 ∝ |r− r′|−α. (5.1)

According to [Wei84,WH83] the critical exponent of the classical percolation ν = 4/3
crosses over to ν = 2/α for α < 3/2, i.e., when the decay of the correlator is slow
enough.

In order to understand how the critical behavior is affected by the quenched
disorder, the following argument was put forward in [WH83]. In the absence of the
quenched disorder, the correlation length, ξ0, for a given energy ε in the vicinity of
the transition is proportional to ε−ν . Now consider a sample with an area A = ξ20 .
The variance of the quenched disorder within the sample is given by

∆2
0 = 1

A2

〈∫

A
d2rε(r)

∫

A
d2r′ε(r′)

〉

= 1
A2

∫

A
d2r

∫

A
d2r′〈ε(r)ε(r′)〉

∝ ξ−2
0

∫ ξ0
0
drr1−α,

(5.2)

where the last relation follows from substituting Eq. (5.1), assuming an isotropic
correlation and ξ À 1.

The critical behavior remains unaffected by the quenched disorder if the condition
∆2

0/ε
2 → 0 as ε→ 0 is met. Using Eq. (5.2), the ratio ∆2

0/ε
2 can be presented as

∆2
0

ε2
∝







ε2ν−2, α > 2 ,
ε2ν−2 ln(ε−ν), α = 2 ,
εαν−2, α < 2 .

(5.3)

Thus on can conclude that quenched disorder is irrelevant when

ν > 1, for α ≥ 2,
αν > 2, for α < 2 .

(5.4)

The first condition corresponds to the original Harris criterion [Har74] for uncorre-
lated disorder, while the second condition is the extended Harris criterion [WH83].
It yields the critical value of the exponent α, i.e., αc = 2/ν.

As follows from the above consideration, for classical percolation the quenched
disorder is expected to cause a crossover in the exponent νc, describing the size
of a critical equipotential from νc = 4/3 to νc = 2/α for α < 3/2. This predic-
tion [Wei84] was made on the basis of Eq. (5.2). It was later tested by numerical
simulations [PHSS92] which utilized the Fourier filtering method to generate a long-
range-correlated random potential. The exponent νc(α) was studied using the same
classical real-space RG method [RKS77] that was utilized above. The values of νc
inferred for α < 1 were consistently lower than 2/α. For example, from α = 0.4
follows νc = 5 [Wei84], whereas νc = 3.4± 0.3 was observed.

The classical version of the LD transition is instructive, since it allows one to
trace how the critical equipotentials grow in size upon approaching the percolation
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Figure 5.3: Illustration of the influence of quenched disorder by means of classical bond
percolation on a 60× 60 square lattice with bond probability p = 0.2. In the uncorrelated
case (left) bonds are distributed homogeneously. Adding correlation leads to a clustering
of bonds (right).

threshold, and how the quenched disorder affects this growth. For an illustration
of this behavior see Fig. 5.3. Roughly speaking, in the absence of long-ranged cor-
relations, the growth of the equipotential size is due to the attachment of smaller
equipotentials to the critical ones. As a result, the shape of a critical equipoten-
tial is dendritelike. As the threshold is approached, different critical equipotentials
become connected through the narrow “arms” of the dendrite. Long-ranged cor-
relations change this scenario drastically. As could be expected intuitively, and as
follows from the simulations [MHSS96], critical equipotentials become more compact
due to correlations. In fact, for α < 0.25, the “arms” play no role [PHSS92], i.e.,
the morphology of a critical equipotential becomes identical to its “backbone”. As
a result, the formation of the infinite equipotential at the threshold occurs through
a sequence of “broad” merges of compact critical equipotentials. The correlation-
induced enhancement of νc indicates that due to these merges the size of the critical
equipotential in the close vicinity of the threshold grows faster than in the uncorre-
lated case.

5.3 Macroscopic inhomogeneities in the RG ap-

proach

A natural way to incorporate a quenched disorder into the CC model is to ascribe
a certain random shift, zQ, to each SP height, and to assume that the shifts at
different SP positions, r and r′, are correlated as

〈zQ(r)zQ(r
′)〉 ∝ |r− r′|−α, (5.5)
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with α > 0. After this, the conventional transfer-matrix methods of [FL81,MK81]
could be employed for numerically precise determination of 〈G〉, the distribution
Pc(G), its moments, and most importantly, the critical exponent, ν. However, the
transfer-matrix approach for a 2D sample is usually limited to fairly small sizes (e.g.,
up to 128 in [JW98]) due to the numerical complexity of the calculation. Therefore,
the spatial decay of the power-law correlation by, say, more than an order in mag-
nitude is hard to investigate for small α. In principle the quasi-1D transfer-matrix
method [CC88,MK81] can easily handle such decays at least in the longitudinal di-
rection, where typically a few million lattice sites are considered iteratively. A major
drawback, however, is the numerical generation of power-law correlated randomness
since no iterative algorithm is known [PHSS92, MHSS96]. This necessitates the
complete storage of different samples of correlated SP height landscapes [RKB+99],
and the advantage of the iterative transfer-matrix approach is lost. Furthermore,
in order to deduce the critical exponent [LWK93], one needs to perform finite-size
scaling [MK81] with transverse sizes that should also be large enough to capture the
main effect of the power-law disorder in the transverse direction. Consequently, even
for a single transfer-matrix sample, the memory requirements add up to gigabytes.

On the other hand, the RG approach is perfectly suited to study the role of
the quenched disorder. First, after each step of the RG procedure, the effective
system size doubles. At the same time, the magnitude of the smooth potential,
corresponding to the spatial scale r, falls off with r as r−α/2. As a result, the
modification of the RG procedure due to the presence of the quenched disorder
reduces to a scaling of the disorder magnitude by a constant factor 2−α/2 at each RG
step. Second, the RG approach operates with the conductance distribution, Pn(G),
which carries information about all the realizations of the quenched disorder within a
sample of size 2n. This is in contrast to the transfer-matrix approach [FL81,MK81],
within which a small increase of the system size requires the averaging over the
quenched disorder realizations to be conducted again.

The above consideration suggests the following algorithm. For the homogeneous
case all SPs constituting the new super-SP are assumed to be identical, which means
that the distribution of heights, Qn(z), for all of them is the same. For the correlated
case these SPs are no longer identical, but rather their heights are randomly shifted
by the long-ranged potential. In order to incorporate this potential into the RG
scheme, Qn(zi) should be replaced by Qn(zi − ∆

(n)
i ) for each SP, i, where ∆

(n)
i is

the random shift. Then the power-law correlation of the quenched disorder enters
into the RG procedure through the distribution of ∆

(n)
i . That is, for each n the

distribution is Gaussian with the width β(2n)−α/2. For large enough n the critical
behavior should not depend on the magnitude of the correlation strength β, but on
the power, α, only.

5.4 Numerical results

Here the results of the application of the algorithm outlined in the previous Section
are presented. First, for all values of α > 0 in correlator (5.5) the FP distribution

66



CHAPTER 5. MACROSCOPIC INHOMOGENEITIES

is identical to the uncorrelated case as found within the accuracy of the calculation.
In particular, 〈G〉 = 0.498 is unchanged. However, the convergence to the FP is
numerically less stable than for uncorrelated disorder due to the correlation-induced
broadening of Qn(z) during each iteration step. In order to compute the critical
exponent ν(α) the RG procedure is started from Q0(z − z0), as in the uncorrelated
case, but in addition the random shifts are incorporated. As already explained these
shifts are a result of the quenched disorder in generating the distribution of z at each
RG step. The outcome is shown in Figs. 5.4–5.7. It illustrates that for increasing
long-ranged character of the correlation (decreasing α) the convergence to a limiting
value of ν slows down drastically. Even after eight RG steps (i.e., a magnification
of the system size by a factor of 256), the value of ν with long-ranged correlations
still differs appreciably from ν = 2.39 obtained for the uncorrelated case. The
RG procedure becomes unstable after eight iterations, i.e., zmax,9 can no longer be
obtained reliably from Q9(z). Unfortunately, for small α the convergence is too slow
to yield the limiting value of ν after eight steps only. For this reason, the above
method is, strictly speaking, unable to unambiguously answer the question whether
sufficiently long-ranged correlations result in an α-dependent critical exponent ν(α),
or whether the value of ν eventually approaches the uncorrelated value of 2.39.
Nevertheless, the results in Figs. 5.4-5.7 indicate that the effective critical exponent
exhibits a sensitivity to the long-ranged correlations even after a large magnification
by 256×256. Since this factor coincides with the change in scale from the microscopic
magnetic length to the realistic samples with finite sizes of several µm, macroscopic
inhomogeneities are able to affect the results of scaling studies. Note further that
as shown in the inset of Figs. 5.4-5.7 one can observe scaling of ν values when plotted
as function of a renormalized system size 2αn/2 only for large correlation strength β.
In this case the disorder broadening during the first RG steps becomes comparable
to the FP distribution. Therefore in the QH-RG the correlated disorder dominates
over the initial FP distribution. One should emphasize that ν(α) obtained after
eight RG steps always exceeds the uncorrelated value.

Figure 5.8 shows the values of ν obtained after the eighth RG step as a func-
tion of the correlation exponent α for different dimensionless strengths β of the
quenched disorder. It is seen that in the domain of α, where the values of ν dif-
fer noticeably from ν = 2.39, their dependence on β is strong. According to the
extended Harris criterion, ν(α) is expected to exhibit a cusp at the β-independent
value αc = 2/2.39 ≈ 0.84. From the results in Fig. 5.8, two basic observations can
be made. For a small enough magnitude of the long-range disorder, one observes a
smooth enhancement of ν(α) with decreasing α without a cusp. Although such a
behavior might be caused by the relatively small number of RG steps, the data can
be relevant for realistic samples which have a finite size and a finite phase-breaking
length governed by temperature. At the largest β = 4, there is still no clear cusp
but the α-dependence for α < αc is closer to the ν = 2/α predicted by the extended
Harris criterion. Unfortunately, the numerics becomes progressively unstable, for-
bidding to go to even larger β. The origin for this strong β dependence of the results
is a profound difference between the classical and quantum percolation problems as
discussed in the next Section.
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Figure 5.4: Critical exponent ν obtained by the QH-RG approach as a function of RG scale
2n for β = 1 and different correlation exponents α. The dashed line indicates ν = 2.39,
which is the value obtained for uncorrelated disorder. For clarity, the errors are shown
only for α = 0.2 and 4. Inset: ν vs 2αn/2 does not scale.

2 4 8 16 32 64 128 256
2

n

2.5

ν

2.5

3.0

3.5

4.0

ν

α=0.2
α=0.5
α=1.0
α=1.5
α=2.0
α=2.5
α=3.0
α=4.0

0 2 4 6 8

log102
αn

2.5

3.0

3.5

4.0

ν

β=2

Figure 5.5: Critical exponent ν obtained by the QH-RG for β = 2 plotted analogously to
Fig. 5.4. The increase of β leads to rising values ν. Inset: Scaling is not observed.
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Figure 5.6: Critical exponent ν obtained by the QH-RG for β = 3 plotted analogously to
Fig. 5.4. ν is shifted again to higher values. Inset: Deviations from scaling decrease.
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Figure 5.7: Critical exponent ν obtained by the QH-RG for β = 4 plotted analogously to
Fig. 5.4. The values of ν increased even further. Inset: Data show only small deviations
from scaling indicating the dominating influence of correlated disorder due to the large β.
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Figure 5.8: Dependence of the critical exponent ν on correlation exponent α for different
β = 1, 2, 3, and 4 as obtained after eight QH-RG iterations. The dotted line indicates
αc = 0.84. The dot-dashed line ν = 2/α for α < αc follows from the extended Harris
criterion [WH83] for classical percolation.

5.5 Intrinsic short-range disorder in quantum per-

colation

Here one should note that there is a crucial distinction between the classical case
and the quantum regime of the electron motion considered in the present work. In
this study, the correlation of the heights of the SPs has been incorporated into the
RG scheme. At the same time it was assumed that the Aharonov-Bohm phases ac-
quired by an electron upon traversing the neighboring loops are uncorrelated. This
assumption implies that, in addition to the long-ranged potential, a certain short-
ranged disorder causing a spread in the perimeters of neighboring loops of the order
of the magnetic length is present in the sample. The consequence of this short-
range disorder is the sensitivity of the results to the value of β which parametrizes
the magnitude of the correlated potential. The presence of this short-range disor-
der affecting exclusively the Aharonov-Bohm phases significantly complicates the
observation of the cusp in the ν(α) dependence at α ≈ 0.84, as is expected from the
extended Harris criterion.

In order to understand the origin of these complications, one can consider a
general form of the correlator for long-range disorder

〈V (r)V (r′)〉 = V 2
0 F

(

|r− r′|

l

)

(5.6)

where l is the microscopic length and F (0) = 1, F (x) ∝ x−α for xÀ 1. Now suppose
that the correlator contains an additional short-range term W 2

0G(|r − r′|/l), with
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G(0) = 1 and G(x) falling off much more rapidly than F (x) for xÀ 1. The extended
Harris criterion implies that this term will not change ν(α) in an infinite sample. It
is obvious, however, that in order to “erase the memory” of the short-range disorder,
many more RG iterations have to be performed or, equivalently, much larger system
sizes should be analyzed. Moreover, the larger the ratioW0/V0, the more challenging
the numerics becomes. At this point, one should take into account that in quantum
percolation the short-range term emulated by the randomness in the phases has
a huge magnitude. Indeed, if in the first RG step all five SPs were chosen to be
identical with transmission amplitudes t2i = 0.5, then due to the phases, the width of
the Q(z) distribution after the first step is already ±2.5 [GR97]. This translates into
an enormously wide spread in the transmission coefficients of effective SPs ranging
from 0.075 to 0.92. In order to suppress this intrinsic “quantum white noise”, one
either has to perform more RG steps or to increase the magnitude of V0 (∼ β in
the notation of Section 5.3). Both strategies are limited by numerical instabilities.
In particular, a larger β leads to more weight in the tails of the Q(z) distribution
in which the uncertainty is maximal. In other words, at large β the role of rare
realizations is drastically emphasized.

The obtained numerical results demonstrate that when the critical exponent
depends weakly on the sample size (large n in Figs. 5.4-5.7), it still depends on
the “strength” β of the quenched disorder. Thus it is important to relate this
strength to the observable quantities. One can roughly estimate β assuming that
the microscopic spatial scale (lattice constant) is the magnetic length, lB, while the
microscopic energy scale (the SP height) is the width of the Landau level. Denoting
by γ a typical fluctuation of the filling factor within a region with size L, then the
estimate for β is β ∼ γ (L/lB)

α/2. Naturally, for a given γ, the larger values of α
correspond to the “stronger” quenched disorder parameter β.

In fact, if one had to draw a quantitative conclusion on the basis of the accuracy
achieved, it should be based on the curve in Fig. 5.8 corresponding to the maximal
value β = 4. Actually, for this β, the agreement with the extended Harris criterion
is fairly good. In particular, for α = 0.5, ν ≈ 3 is found, whereas 2/α = 4. Note
that only very recently the authors of [SMK03] could demonstrate by a different
method a better agreement with the extended Harris criterion.

5.6 Conclusion

It was argued for a long time that the enhanced value of the critical exponent
ν extracted from the narrowing of the transition region with temperature has its
origin in the long-ranged disorder present in GaAs-based samples. To my knowledge,
the present work is the first attempt to quantify this argument. As a result the
random potential with a power-law correlator leads to values of ν exceeding ν ≈ 2.35,
which is firmly established for short-ranged disorder. Since an enhancement of the
critical exponent due to the correlations is observed also for classical case, the main
result can be formulated as follows: quenched disorder affects classical and quantum
percolation in a similar fashion.
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The result indicates that macroscopic inhomogeneities must lead to smaller val-
ues of κ ∝ 1/ν. Experimentally, the value of κ smaller than 0.42 was reported in a
number of early (see, e.g., [KHKP92] and references therein) as well as recent [Lan]
works. This fact was accounted for by different reasons (such as temperature depen-
dence of the phase breaking time, incomplete spin resolution, valley degeneracy in
Si-based MOSFETs, and inhomogeneity of the carrier concentration in GaAs-based
structures with a wide spacer). Briefly, the spread of the κ values was attributed
to the fact that the temperatures were not low enough to assess the truly critical
regime. The possibility of having κ < 0.4 due to the correlation-induced dependence
of the effective ν on the phase-breaking length or, ultimately, on the sample size, as
in Figs. 5.4–5.7, was never considered.

It should be pointed out that the limited number (eight) of RG steps permitted
by the numerics nevertheless allows one to trace the evolution of the wave functions
from microscopic scales (of the order of the magnetic length) to macroscopic scales
(of the order of 5µm) which are comparable to the sizes of the samples used in the
experimental studies of scaling (see e.g., [KHKP91b, KHKP92]) and much larger
than the samples [CBF99,CK96] used for the studies of mesoscopic fluctuations.

Another qualitative conclusion of this study is that the spatial scale at which the
exponent ν assumes its “infinite-sample” value is much larger in the presence of the
quenched disorder than in the uncorrelated case. In fact this scale can be of the
order of microns. This conclusion can also have serious experimental implications.
That is, even if the sample size is much larger than this characteristic scale, this
scale can still exceed the phase-breaking length, which would mask the true critical
behavior at the QH transition.

Note also, that throughout this study localization of a single electron has been
considered. The role of electron-electron interactions in the scaling of the integer
QH effect was recently addressed in [HB99] and [WFGC00].
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Chapter 6

RG approach to the Hall
resistivity

6.1 Introduction

In the previous Chapters the RG approach to the CC model has been applied suc-
cessfully for the determination of the conductance distribution and the LSD. Now
an RG approach is derived also for the computation of the Hall resistance RH which
allows a third independent characterization of the QH transition.

On the experimental side one usually considers the resistance rather than the
conductance, because the components of the resistance tensor can be determined
directly, e.g., by a four-terminal measurement using a Hall bar geometry [KDP80,
Yos02]. Once knowing RH and RL the components of the conductance tensor are
then calculated using Eqs. (2.3). In Chapter 3 it was demonstrated that the distri-
bution Pc(G) of the conductance at the QH transition exhibits strong fluctuations,
which should manifest also in Pc(RH). The shape of Pc(RH) is therefore another
possibility to study the characteristic of the fluctuations.

A second interesting question concerns the behavior of RH in the insulating
regime. For increasing B the sequence of QH transitions between adjacent Landau
levels is finalized by a transition from a Landau plateau to an insulator, which is
characterized by a diverging RL. Note that recent experimental [HSS+00] and the-
oretical [SW00] works suggest the existence of a plateau-insulator transition also
for higher Landau plateaus which are not considered in the context of this work.
Since at the transition σxx → 0 and σxy → 0 the determination of RH according
to Eqs. (2.3) is difficult and depends on the relation between σxx and σxy. Espe-
cially, if the ratio σxy/σ

2
xy stays finite one obtains also a finite value for RH which

corresponds to a new insulating regime called Hall insulator [KLZ92]. In agreement
with experimental results [GST88,GWSS93] (see Fig. 6.1a) a Drude-like behavior
RH ∝ B/enc was predicted [KLZ92, ZKL92]. In contrast, more recent experimen-
tal studies [HSS+98, LPV+02, PSC+03, STS+97a, STS+96] of the insulating regime
found a quantized RH unchanged from the plateau value as demonstrated in Fig.
6.1b. The extension of the quantization of RH into the insulator, dubbed quantized

Hall insulator, was proven to be consistent with transport models based on the local-
conductivity approach [DM94] and more generally with incoherent network models
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Figure 6.1: Different behavior of the Hall resistivity ρxy at the QH plateau to insulator
transition observed in [GWSS93] (a) and [PSC+03] (b). The dotted line corresponds to
ρxx (a) or the transition point (b), respectively. ρxy is obtained as average over two
measurements with opposite directions of the magnetic field B (thin lines).

of weakly coupled QH puddles [SA97]. For strong localization where the localization
length is much smaller than the dephasing length an incoherent model fails. Quan-
tum interference becomes more and more important. As shown by coherent methods
in recent theoretical works [PA99, SW99, ZS01] the quantized Hall insulator is not
sustained but rather a diverging RH is found. In particular, deep in the insulating
regime RH follows a power-law RH ∼ Rµ

L [PA99,ZS01]. An exponent µ ≈ 0.32−0.35
was obtained numerically in [PA99] while µ = 1/2 [ZS01] was derived by an ana-
lytical approximation based on a RG approach to the CC model using a 4SP RG
unit. It was demonstrated in the previous Chapters that this 4SP unit yields less
accurate results at the QH transition than the 5SP unit. Whether this situation is
preserved also in the insulating regime is uncertain and should be verified.

6.2 RG equation for RH

First, the value of RH has to be related to the RG unit. For this purpose one
calculates the resistance R = U/J defined by the potential difference U across the
RG unit and the current J flowing through the unit. In Fig. 6.2 this ansatz is
illustrated for the 5SP RG unit used previously.

Assuming that the current enters the RG unit via one incoming link (I ′) only
and the other incoming link is inactive (I ′∗ = 0) the resulting power transmission
coefficient t′2 = O′2/I ′2 of the RG unit can be associated with J . In order to
determine U one considers the quantities au = O2

1/I
′2 and av = O∗2

5 /I
′2 as chemical

potentials measured by weakly coupled voltage probes at these opposite links of
the RG unit. Thus the voltage drop is given by U = au − av. Because of the
four-terminal geometry the obtained R contains beside the Hall resistance RH also
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Figure 6.2: To determine the Hall resistance RH of the RG unit as illustrated here for
the 5SP case the voltage U and the current J are calculated for positive magnetic field B
(left) and the opposite direction −B (right). For −B the value of RH can be obtained by
measuring J either between the upper (H-flip) or lower (V-flip) two links, respectively.

a contribution from the longitudinal resistance RL. The separation of the unwanted
part RL is accomplished by employing the antisymmetry of the Hall voltage UH

under the reversal of the direction of the magnetic field B

UH =
1

2

(

U (B) − U (−B)
)

. (6.1)

Considering the 5SP RG unit again one therefore obtains

RH =
1

2

(

a
(B)
u − a

(B)
v

)

−
(

a
(−B)
u − a

(−B)
v

)

t′2
. (6.2)

The quantities a
(B)
u and a

(B)
v are calculated by solving the system of equations

(3.4) analogously to the determination of t′ in Section 3.2. One finds

a(B)
u =

∣

∣

∣

∣

t1(1− r2r3r4e
iΦ3 − t3t4t5e

iΦ4)− t2e
iΦ1(t3 − t4t5e

iΦ4)

(r3 − r2r4eiΦ3)(r3 − r1r5eiΦ2) + (t3 − t4t5eiΦ4)(t3 − t1t2eiΦ1)

∣

∣

∣

∣

2

(6.3)

and

a(B)
v =

∣

∣

∣

∣

r4(r1r3t2e
iΦ1 − r5t2e

i(Φ1+Φ2) + r5t1t3e
iΦ2)

(r3 − r2r4eiΦ3)(r3 − r1r5eiΦ2) + (t3 − t4t5eiΦ4)(t3 − t1t2eiΦ1)

∣

∣

∣

∣

2

. (6.4)

Under the reversed field −B the electrons travel along the same equipotentials but in
the opposite direction. In the corresponding RG unit the links therefore only change
their direction, as shown in Fig. 6.2. The value of U (−B) can then be computed in
two different ways. First, the same direction of the current is used for both B fields.
Therefore one measures the currents J (B) and J

(−B)
V−flip on different channels of the

RG unit [ZS01]. Second, when measuring on the same channels the currents J (B)
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and J
(−B)
H−flip have opposite directions. As a consequence the sign of U (−B) changes

too, which has to be incorporated in Eq. 6.2.
Technically, a full rederivation of the RG equation for −B can be omitted if the

structure of the RG unit is taken into account. The result with identical directions
of the current is obtained by flipping the unit vertically (V-flip) while the other case
corresponds to a horizontal flip (H-flip). The comparison to the original RG unit
then shows how to map the indices of the SPs and the phases in order to adopt
the RG equation to −B, which is demonstrated here for the V-flip result where
(r1, t1)↔ (r2, t2), (r4, t4)↔ (r5, t5), and Φ2 ↔ Φ3:

a(−B)
u =

∣

∣

∣

∣

r5(r2r3t1e
iΦ1 − r4t1e

i(Φ1+Φ3) + r4t2t3e
iΦ3)

(r3 − r1r5eiΦ2)(r3 − r2r4eiΦ3) + (t3 − t4t5eiΦ4)(t3 − t1t2eiΦ1)

∣

∣

∣

∣

2

(6.5)

and

a(−B)
v =

∣

∣

∣

∣

t2(1− r1r3r5e
iΦ2 − t3t4t5e

iΦ4)− t1e
iΦ1(t3 − t4t5e

iΦ4)

(r3 − r1r5eiΦ2)(r3 − r2r4eiΦ3) + (t3 − t4t5eiΦ4)(t3 − t1t2eiΦ1)

∣

∣

∣

∣

2

. (6.6)

Using Eq. (6.2) one is now able to determine the distributions of P (RH) at the
QH transition iteratively in course of the RG iterations.

In the original work [ZS01] introducing the RG approach to RH, the 4SP RG unit
from Section 3.6 was used. As demonstrated in Section 3.6 this RG unit yields less
accurate results. Nevertheless it might be useful to compare the numerical result
with the analytically predicted behavior [ZS01]. The derivation of RH,4SP resembles
the construction of t′4SP out of the 5SP result t′. Consequently, it yields

RH,4SP =
1

2

(

a
(B)
u,4SP − a

(B)
v,4SP

)

−
(

a
(−B)
u,4SP − a

(−B)
v,4SP

)

(t′4SP )
2 (6.7)

with

a
(B)
u,4SP =

∣

∣

∣

∣

t1(1− r2r3e
iΦ3) + t2t3t4e

iΦ2

(1− r2r3eiΦ3)(1− r1r4eiΦ1) + t1t2t3t4eiΦ2

∣

∣

∣

∣

2

(6.8)

and

a
(B)
v,4SP =

∣

∣

∣

∣

r3t2(r1 − r4e
iΦ1)

(1− r2r3eiΦ3)(1− r1r4eiΦ1) + t1t2t3t4eiΦ2

∣

∣

∣

∣

2

. (6.9)

Also for the 4SP unit one can derive U (−B) in the two different ways, e.g. the V-flip
result:

a
(−B)
u,4SP =

∣

∣

∣

∣

r4t1(r2 − r3e
iΦ3)

(1− r1r4eiΦ1)(1− r2r3eiΦ3) + t1t2t3t4eiΦ2

∣

∣

∣

∣

2

(6.10)

and

a
(−B)
v,4SP =

∣

∣

∣

∣

t2(1− r1r4e
iΦ1) + t1t3t4e

iΦ2

(1− r1r4eiΦ1)(1− r2r3eiΦ3) + t1t2t3t4eiΦ2
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2

. (6.11)
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Figure 6.3: Critical distribution Pc(RH) at the QH transition for the V-flip and the H-
flip method obtained with the 5SP RG unit. Inset: The long tails of Pc(RH) plotted
logarithmically. Data points are the average over 10 consecutive bins.

6.3 Numerical results

6.3.1 Behavior at the QH transition

As explained above the RG approach can be used to determine the conductance
distribution P (G) and the resistance distribution P (RH) simultaneously. The nu-
merical strategy therefore corresponds to the method used in Section 3.4. Namely,
the RG is started from a certain initial P0(t) and the Pi(t) are discretized in 1000
bins within t ∈ [0, 1]. Using Eq. (6.2) or (6.7), respectively, one obtains besides
Pi+1(t) now also the distribution Pi+1(RH). Unlike t the value of RH is not bound
to a fixed interval. To perform a discretization requires to set lower and upper
bounds appropriately. In this work the resulting histogram is limited to [−100, 100]
containing 40000 bins. For the 108 samples used to construct each Pi+1(RH), the
part of values exceeding these bounds is found to be less than < 1% for calculations
around the QH transition. Thus these values are neglected for the shape of the
histogram. Nevertheless the resulting distribution Pi+1(RH) can be normalized cor-
rectly because the total number of exceeding values is stored. By this RG approach,
the FP distribution Pc(RH) is now calculated. Since Pc(t) is already known from
Section 3.4 one can speed up the determination by using Pc(t) as initial P0(t) and
therefore obtain Pc(RH) already after the first iteration. In Figures 6.3 and 6.4 the
resulting Pc(RH) is plotted for the 5SP and the 4SP RG unit. Both graphs show a
significant difference in the shape of Pc(RH) between the results of H-flip and V-flip.
The H-flip distributions are characterized by a very sharp nearly symmetric peak at
RH = 1 which coincides with the value of RH at the first Landau level. In addition
there appears a small kink at RH = 0 which is more pronounced for the 4SP unit
and hardly visible in case of the 5SP unit. For V-flip an asymmetric distribution
is found with a strong peak at RH = 1. Surprisingly, there exists also a kink at
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Figure 6.4: Critical distribution Pc(RH) at the QH transition for V-flip and H-flip method
calculated with the 4SP RG unit. Inset: The long tails of Pc(RH) plotted as in Fig. 6.3.

RH = 0.5 that would correspond to the second Landau level, which is not described
by the CC model. The origin of the “wrong” kink must stem from a difference
between the calculation of RH according to H-flip and V-flip method, respectively.
Both methods differ only in the (−B) part of RH. As illustrated in Fig. 6.2, the
H-flip method measures J between the same SPs I and V as for (+B). In contrast,
the J for V-flip is obtained between SPs II and IV . While one can expect the same
result for H-flip and V-flip when considering only the (−B) contribution separately,
the final V-flip result for RH according to Eq. (6.2) obviously contains an additional
correlation reflected by the kink at RH = 0.5. A common attribute to all Pc(RH) is
demonstrated in the insets of Figs. 6.3 and 6.4. All FP distributions have very long
tails indicating strong fluctuations of RH.

The behavior of P (RH) is now studied also around the QH transition. For this
purpose the RG iteration is started using a disturbed FP distribution with an initial
shift z0, analogously to the calculation of the critical exponent in Section 3.3. The
resulting distributions Pn(RH) for z0 = ±0.1 are shown in Figures 6.5 and 6.6. For
z0 = 0.1 the initial distribution P0(t) is disturbed toward complete transmission
(t = 1). In course of the RG iterations the shift in this direction increases (see
left insets in Figs. 6.5 and 6.6). Considering Pn(RH) also a systematic behavior is
observed. Originating from Pc(RH) the width of the distribution starts to shrink
while at the same time the peak at RH = 1 grows. This observation holds for both
V-flip and H-flip results and is less pronounced for the 4SP unit. For z0 = −0.1
the distribution Pn(t) moves to the opposite direction toward complete reflection
(t = 0). Here the results of the V-flip and H-flip method behave differently. For the
V-flip method the kink at RH = 0.5 transforms to an increasing peak while the peak
at RH = 1 is shrinking. Thereby the width of the distribution is nearly unchanged
compared with Pc(RH). This signature of a quantized RH in the insulating regime
is questioned by the origin of the structure at RH = 0.5 which has been discussed
already above. On the other hand, for the H-flip Pn(RH) the peak at RH = 1
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Figure 6.5: Change of P (RH) in the course of the QH RG iterations when starting with
initial shifts z0 = ±0.1 away from the FP using the 5SP RG unit. Only iteration steps
1, 4, and 8 are shown. The shaded area corresponds to the FP distribution. Left: Results
for the V-flip unit. The inset contains the corresponding P (t2). Right: Same for the H-flip
unit. In the inset the same data are plotted logarithmically.
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Figure 6.6: Change of P (RH) in course of the QH RG iterations, analogously to Fig. 6.5
now using the 4SP RG unit.

stays at its position but broadens rapidly moving all weight into the tails. The
H-flip result is dominated by strong fluctuations of RH. For the characterization
of P (RH) the arithmetic mean is therefore ineligible, because it is highly influenced
by rare RH values from the tails. As another possible mean, the geometric mean is
more suitable for long tails but cannot deal with the negative RH. Instead a more
robust averaging procedure was suggested by defining a typical value of RH [ZS01].
Based on scattering through a one-dimensional chain, it is argued that this more
appropriate mean is obtained by averaging not RH itself but each of the constituting
quantities separately [ZS01]

RH,typ =
1

2

(

〈a
(B)
u 〉typ − 〈a

(B)
v 〉typ

)

−
(

〈a
(−B)
u 〉typ − 〈a

(−B)
v 〉typ

)

〈t′2〉typ
, (6.12)
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Figure 6.7: The typical value RH,typ as function of the RG iteration n close to the QH
transition. Data are shown for the 5SP unit (circles) and the 4SP unit (squares). With
the initial disturbance z0 from the FP distribution one can drive the RG either toward
complete transmission (solid line) or complete reflection (dashed line). The single symbols
at n = 0 correspond to the FP result.

where 〈x〉typ ≡
∏N

i=1 x
1/N
i is the geometric mean for N samples. Obviously, the

calculation of RH,typ is not limited to the chosen discretization interval and therefore
all results can be taken into account. Furthermore this method of averaging should
also resolve the discrepancy between the V-flip and H-flip results. Since in Eq.
6.12 all quantities, i.e. the amplitudes determining the value of U , are averaged
separately, correlations between the (B) and (−B) representation of a single RG
unit are not preserved. One can therefore expect the same RH,typ for V-flip and
H-flip.

In Figure 6.7 the evolution of RH,typ is shown as function of the iteration step
for z0 = ±0.1 and the 4SP and 5SP RG unit. As expected the typical means for the
V-flip and the H-flip method yield identical results. All curves show a monotonic
behavior. For z0 = 0.1 the value of RH,typ decreases in course of the RG iterations
which agrees with the more and more dominating influence of the peak at RH = 1
observed in Figs. 6.5 and 6.6. On the other hand, starting the iterations with a
negative shift z0 = −0.1 leads to a steadily increasing RH,typ. While for P (RH)
obtained by the H-flip method this behavior could be extracted from the very long
tails of the distribution using the typical average (6.12), Figs. 6.5 and 6.6 suggest a
different dependence for the V-flip results. The P (RH) for the V-flip method shows
an increasing peak at RH = 0.5 for t → 0. Therefore one might expect rather a
decrease of RH,typ from a higher value ≈ 1 toward RH,typ ≈ 0.5. This contradiction
is another indication that the shape of P (RH) as obtained by the H-flip method
seems to be more reasonable. Furthermore the FP value associated with Pc(RH) is
larger than 1 in contrast to the shape of Pc(RH) in Figs. 6.3 and 6.4. The reason for
this discrepancy lies in the very long tails of P (RH) in connection with the definitions
(6.2) and (6.12) of RH and RH,typ, respectively. Very large absolute values of RH
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are obviously the consequence of a very small denominator t′2 in Eq. (6.2) meaning
that the current is almost totally reflected by the RG unit. As can be seen in the
insets of Figs. 6.5 and 6.6 this scenario is possible since Pn(t

2) also exhibits strong
fluctuations and spreads over the whole range between 0 and 1. In the definition
of RH,typ in Eq. (6.12) the independent averaging over each term does not preserve
all correlations possible for RH in Eq. (6.2) and suppresses the influence of rare
realizations of the RG unit.

6.3.2 Behavior away from the QH transition

Throughout this study the strength of the RG approach close to the QH transition
has been demonstrated. Now, at last, it will be applied to the two extreme cases
where t→ 0 and t→ 1. Recalling the results of Chapter 3, depending on the initial
conditions one or the other limit is approached by default provided that the number
of RG iterations was large enough. Unfortunately, this method has a numerical
drawback. During the RG steps the distribution Pn(t) becomes sharply peaked at
either t = 0 or t = 1, which can already be seen in the left insets of Figs. 6.5 and
6.6. Thus the algorithm used for obtaining random ti according to a P (t) is less and
less efficient and finally breaks down. To circumvent this problem the ti are chosen
according to artificially constructed distributions

P (t2) =
1

m
(t2)

1−m
m and P (t2) =

1

m
(1− t2)

1−m
m (6.13)

within the interval [0, 1] and an integer m > 0. Note that Eq. (6.13) is simply a
result of taking uniformly distributed random numbers within [0, 1] to the power of
m/2. By this method only one RG iteration can be calculated, because the resulting
distributions are even sharper peaked and cannot be used as initial distributions for
the next RG step as explained above. The accuracy of the method therefore depends
crucially on how fast the RG transforms the artificial input distribution to the
quantum regime. From the findings of the previous Chapters one can assume that a
few iterations are sufficient and a single RG step allows only a crude approximation.
The results for P (t2) and P (RH) of the 5SP unit are shown in Figs. 6.8 and 6.9.
For t → 0 a similar behavior as for z0 = −0.1 is observed. In the V-flip result
the peak at RH = 0.5 grows to a maximum of 50.0 for m = 15 while the peak at
RH = 1 is still preserved and only shrinks in width. In addition a small peak occurs
at RH = 0. Contrary, the H-flip method shows a strong broadening of the peak at
RH = 1. For m = 15 the maximum of the distribution is below 0.01 and 82% of
the RH results lie outside the discretization interval [−100, 100]. The distributions
exhibit long tails following from the very small values of t as described above and
also demonstrated in Fig. 6.10. Seemingly, the shape of P (RH) cannot be directly
related to the expected insulating behavior for t→ 0. On the other side, for t→ 1,
the situation is clearer. Only one sharp peak at RH = 1 is found which is steadily
growing, e.g., for m = 15 it is exceeding 100 for both V-flip and H-flip method. This
observation indicates the regime of the Landau plateau RH = 1 where RH takes a
constant value without fluctuations.
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Figure 6.8: Behavior of P (RH) calculated by the V-flip (left) and the H-flip (right)
method for t → 0 as a result of a single RG iteration using the 5SP unit. The ti were
chosen according to the distribution functions (6.13) with m = 1, 5, 10, 15. For better
visibility the peaks of the distributions are cut, e.g. in the left plot at m = 15 the peak
has a maximum of 50.0. The left inset displays the corresponding P (t2). The right inset
shows P (RH) on a logarithmic scale.
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Figure 6.9: Behavior of P (RH) calculated by the V-flip (left) and the H-flip (right) method
for t→ 1 analogously to Fig. 6.8.

In order to clarify the behavior of RH on the insulating side again RH,typ is
evaluated. Similar to Fig. 6.7 RH,typ is shown in Fig. 6.11 using m = 1, . . . , 15
for t → 0 and t → 1. When t → 1 the value of RH,typ converges to 1 which
resembles the result obtained from P (RH). Not so in case of t→ 0. Now one finds
agreement with an insulator characterized by a diverging RH,typ for t→ 0. Therefore
the result does not support the existence of a quantized behavior in the insulating
regime [DM94,STS+97a,SA97].

For the comparison with other works it is useful to plot RH,typ independent of
the parameter m as function of the typical longitudinal resistance RL,typ. The value
of RL,typ can be calculated simultaneously to RH,typ within the RG step according
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to

RL,typ =
〈r′2〉typ
〈t′2〉typ

. (6.14)

The resulting dependence is presented in Fig. 6.12. For RL,typ → 0 the Landau
plateau at RH,typ = 1 is approached. In the other limit RL,typ →∞ the data suggest
a power-law divergence of RH,typ. As already shown in Fig. 6.11, the typical means
for H-flip and V-flip method coincide. Nonlinear fits in the range of RL,typ within
[103, 108] yield the exponent µ = 0.38 for the 5SP unit within [102, 107] the exponent
µ = 0.32 for the 4SP unit which is in agreement with the result µ ≈ 0.32 − 0.35
from [PA99]. Surprisingly, the values of µ for the 4SP and the 5SP unit are rather
close and deviate clearly from the analytically obtained µ ≈ 1/2 [ZS01] using the
4SP unit.

6.4 Conclusion

The RG approach was extended to the calculation of the Hall resistance RH. Anal-
ogously to the RG approaches to the transmission coefficient in Chapter 3 and to
the level spacings in Chapter 4 an analytical form of the RG transformation (6.2)
was derived. With this prerequisite for a fast numerical computation the FP distri-
bution Pc(RH) at the QH transition could be calculated with high accuracy. The
value of RH was computed for two different assumptions about the current when
the magnetic field is reversed. In the first case the shape of Pc(RH) is characterized
by two structures, a kink and a peak, exactly at the position of the first and the
second Landau plateau with RH = 1 and RH = 0.5, respectively. In the study of
P (RH) around the transition the weight of P (RH) shifts from the peak at RH = 1 to
RH = 0.5 when approaching the insulating regime. The occurrence of the structure
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at RH = 0.5 is rather surprising since the CC model used as basis of this RG ap-
proach can describe a single QH transition only. In order to relate the distribution
to a single quantity comparable to experiments the typical value RH,typ, which is
the same for both cases, was introduced. Since the shape of P (RH) also contradicts
the behavior of RH,typ this method appears to be unsuitable for the calculation of
P (RH). More reasonable results are obtained in the second case, where Pc(RH) has
a single peak at RH = 1. The distribution is characterized by very long tails, which
can be attributed to the strong fluctuations already observed in Pc(G). Toward
the insulating regime the peak at RH = 1 broadens until P (RH) is nearly flat. On
the other side RH,typ steadily increases. The reason of this behavior is again the
strong fluctuations in P (RH) that become even stronger toward the insulator but
are averaged out in the typical value RH,typ.

Furthermore the existence of a quantized Hall insulator was tested by computing
P (RH) and RH,typ away from transition in the strong insulating regime. In contrast
to previous studies [DM94,SA97] the CC model allows a coherent description of a QH
system. Instead of a quantization of RH,typ a divergence was observed in agreement
with other works [PA99, SW99,ZS01] using coherent methods. Considering P (RH)
as function of P (RL) the divergence follows a power law with an exponent µ = 0.38,
very close to µ ≈ 0.32− 0.35 found in [PA99].

The comparison between the 5SP and the 4SP unit shows qualitatively equivalent
behavior. Because of the lack of predictions a quantitative analysis is difficult. An
exception is the insulating regime where a power-law divergence with µ = 0.32 is
obtained for the 4SP RG unit which agrees within the expected accuracy to the 5SP
result. This might indicate that away from the transition the difference in accuracy
between both RG units decreases. Both values deviate clearly from the analytical
result for the 4SP unit µ ≈ 0.5 of [ZS01].
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Chapter 7

Summary

In this work the integer quantum Hall (QH) effect was studied by the application of
a real-space renormalization group (RG) approach to the Chalker-Coddington (CC)
model. The focus was laid on the determination of universal properties of the QH
transition. Here, the first part including the calculation of the critical exponent ν
of the localization length concerned mainly the comparison with other methods in
order to show the stability and accuracy of the RG approach. On this ground the
second part was dedicated to a deeper understanding of the influence of macroscopic
inhomogeneities and the distribution of the Hall resistance at the QH transition.

Before a more detailed discussion is given the essential idea behind the RG
approach is briefly recalled. The underlying CC model describes the motion of
non-interacting electrons in a smoothly varying two-dimensional disorder potential
under a strong perpendicular magnetic field in terms of a semi-classical quantum
percolation. The percolation network consists of saddle points (SPs) which are
connected by equipotentials. This basic CC model characterizes a single Landau
band and therefore contains only one integer QH transition at the band center.
Within the RG approach the SP network is represented by a fragment, the RG unit,
which itself can be mapped by a transformation on a single super-SP. Iterating this
procedure, large effective system sizes are easily attained exceeding the dimension
of CC networks used in numerical simulations.

To prove the accuracy of the RG approach it was demonstrated that the conduc-
tance distribution at the QH transition, Pc(G), can be reproduced very precisely.
The shape of Pc(G) was shown to be symmetric with respect to G = 0.5. The
distribution is governed by a broad flat minimum around G = 0.5 surrounded by
sharp peaks close to G = 0 and G = 1. Therefore the moments of Pc(G) are close
to the moments of a uniform distribution and agree with the distribution observed
experimentally [CK96]. Because of the instability of the fixed point (FP) distribu-
tion Pc(G) the drift of P (G) away from the FP provides a method to calculate the
critical exponent ν. The obtained value ν = 2.39 ± 0.01 is in accordance with the
results of large scale numerical simulations [CC88,Huc92,LWK93].

The RG approach was then extended to the study of energy level spacings. While
the conductance distribution depends on the absolute value of the transmission
amplitude of the SPs, the energy levels of the RG unit are defined by the phases.
The RG unit contains only four independent phases from which four energy levels
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and consequently only three level spacings are derived. The determination of the
level spacing distribution (LSD) therefore relies on the averaging over a very large
number of different random realizations of the RG unit in contrast to the study of
large SP networks, where the statistics of energy levels can be calculated from a single
sample. Unfortunately, this alternative method requires an initial assumption on the
energy dependence of the phases which affects also the shape of the resulting LSD.
Hence a universal shape of the LSD was not found. Nevertheless prominent universal
features are preserved. First, the quadratic level repulsion for small spacings could
be observed. Second, from a finite-size-scaling analysis of the LSD around the QH
transition the exponent ν = 2.37 ± 0.02 was computed. This value agrees very
well with the result of other numerical approaches and also with the ν from the
conductance distribution obtained previously. Taking into account that the RG
approach is based on a rather crude approximation the accuracy of the results is
surprisingly good. Therefore the RG approach appears to be a suitable method for
the study of universal properties at the QH transition.

Encouraged by these results it seems to be justified to apply the RG approach
to the new scenario where the QH transition is influenced by macroscopic inhomo-
geneities in the sample. The modeling of the macroscopic inhomogeneities using a
long-range power-law correlation allows one to introduce the inhomogeneities in the
RG approach easily, because each RG step is naturally connected with an effective
length scale. The outcome of the computations indicates an increase of the critical
exponent ν for growing strength and range of the correlations exceeding the value for
the usual short-range disorder studied before. This behavior resembles the classical
case where the extended Harris criterion [Wei84,WH83] predicts the dependence of
ν on the power-law exponent α of the correlation. Comparing this relation to the
results of the RG approach one observes only qualitative agreement. Instead of a
sharp crossover at the critical αc, when the correlation starts to increase the value
of ν, a rather smooth transition is found. The reason of the discrepancy seems to be
attributed to the additional intrinsic short-range disorder contained in the phases of
the RG unit. Note that only a very recent work [SMK03] using a different approach
shows better agreement with the extended Harris criterion.

Since the numerics limit the calculation to eight iteration steps one cannot un-
ambiguously exclude that ν approaches finally the value of the uncorrelated case.
Nevertheless already within these iterations the effective system size increases by
a factor of 256 corresponding to a magnification from microscopic scales, like the
magnetic length, to macroscopic scales of several microns. Therefore one should
expect that the results are relevant also for experiments where the system is much
larger but the true critical behavior is hidden because the phase breaking length
does not exceed the characteristic length covered by the RG approach.

In the last part of this work the RG approach was employed for the calcula-
tion of the Hall resistance RH. From two possible ways to compute RH only one
method could obtain a reasonable distribution P (RH). The FP distribution Pc(RH)
is characterized by a sharp nearly symmetric peak at RH = 1, which corresponds
to the center of the first Landau band, and very long tails. Away from the tran-
sition toward the plateau regime (G → 1) the width of the peak shrinks while the
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peak broadens to an almost flat distribution toward the insulator (G → 0). In
the latter case P (RH) is dominated by strong fluctuations. In order to extract a
typical value RH,typ the averaging procedure from [ZS01] was applied which is less
sensitive to the rare events from the tails. In the plateau regime RH,typ → 1. For
the strong insulating regime RH,typ diverges as shown in [PA99, SW99, ZS01]. A
power-law dependence RH,typ ∼ Rµ

L with µ = 0.38 is found which agrees very well
to µ ≈ 0.32− 0.35 observed in [PA99]. The results therefore contradict a quantized
Hall insulator.

Throughout this study also the influence of the chosen RG unit on the results
was investigated. Beside the five SPs RG unit a RG unit consisting of four SPs was
tested. Because of the smaller size this structure can contain less information from
the underlying CC network and is therefore expected to provide less accurate results.
This assumption is confirmed in the majority of the calculations, e.g. the obtained
asymmetric FP distribution Pc(G) and the value of ν = 2.74± 0.02 differing about
15% from the five SPs result. These findings illustrate that the construction of the
RG unit is the prominent part for the successful application of the RG approach.
The chosen five SPs RG unit seems to be the smallest part of the CC network
suitable to describe the QH transition.

One can argue that the presented findings indicate a large robustness of universal
properties of the QH transition. Using a simple non-interacting semiclassical picture
of electron propagation and the rather crude RG approach one is able to reveal uni-
versal behavior. On the other hand experimental results [ESKT93,PST+97] clearly
show the influence of electron interaction at the QH transition. A fundamental
theory of the QH transition is still far from complete.
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Chapter 8

Outlook

Finally, the results of this work form the basis of a number of possible continued
studies, which can be grouped in i) improvements of the algorithm and the computa-
tion and ii) application of the RG approach to a broader class of physical problems.
This is explained in the following in more detail.

To the first group belongs the construction of the RG unit out of the CC network.
In this work it was shown that a 5SP RG unit describes the QH transition quite
accurately in contrast to the results of a smaller 4SP unit. On the other hand a larger
RG unit should produce even more accurate results. In [JMMW98,JMW98,WJ98]
several of these RG units have already been tested but with rather pure statistics
because an analytical formulation of the RG equation was not obtained. To preserve
the statistical quality of this work, a larger RG unit has to be found, which still
allows the derivation of the RG equation analytically. Another improvement of the
calculations concerns the numerics limiting the number of RG steps especially in
the study of the macroscopic inhomogeneities and of the Hall resistivity RH away
from the transition. So far all computations are based on the distribution P (t) of
the transmission coefficient t, which is bound to the interval [0, 1] and discretized in
bins with equal width. When starting the RG iteration with an initial distribution
disturbed from the FP distribution the weight of P (t) moves either toward t = 0
or t = 1, respectively. The resulting large peaks then lead, first, to a slowing down
of the computation because the algorithm to draw random t’s is less efficient and,
second, to a pure representation of the peak by only a few bins. These problems
can be circumvented when instead the distribution Q(z) of the SP heights z is used.
Then the number of RG steps should be limited by the size of the discretization
interval of Q(z) only. This will also permit to study the transition of P (RH) from
the FP toward the insulator within a real RG iteration instead of using artificially
chosen distributions. Connected to this problem is the choice of a suitable averaging
procedure for P (RH) because of the influence of strong fluctuations. Beside the
typical value [ZS01] used here also other characteristic quantities such as median,
mode, and harmonic mean should be investigated.

The second part concerns the application of the RG approach to other problems.
A broad and obvious area of research is the application to extended variants of the
standard CC model, e.g. a network with two channels per link in order to describe
the mixing of Landau levels [WLW94]. Since these problems were already studied
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by other methods, e.g. large scale simulations, the application of the RG approach
would be only another test of the reliability of the method but no new physical insight
can be revealed. Nevertheless there are still some interesting questions. One example
is the behavior of the critical properties at the QH transition when changing from
strong to weak magnetic field. This case could be modeled by bi-directional links in
the network, which would allow one to trace the transition from the universality class
GUE to GOE. And there still exists the most striking controversy, that the integer
QH effect can be very well described within a non-interacting electron picture, but
experimental results clearly indicate the influence of interactions [ESKT93,PST+97].
Because a full treatment of many-body interactions is rather difficult one considers
in an approximate view only a few interacting particles. In this approach the two-
interacting particle problem is reduced to a single-particle problem by increasing
the effective spatial dimension and including long-range correlations in the disorder
potential [She94]. Concerning the CC model one has to construct an effective four-
dimensional network. From this new CC network a suitable RG unit should be
extracted. These tasks are by no means trivial and there is no guarantee for success.
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habe weder früher noch derzeit an anderer Stelle ein Promotionsverfahren beantragt.
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