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1 Abstract

The aim of this work was to use remote sensing data from the MODIS instru-
ment of the Terra satellite to detect bush fires in Australia. This included
preprocessing the demodulator output, bit synchronization and reassembly
of data packets. IMAPP was used to do the geolocation and data calibration.
The fire detection used a combination of fixed threshold techniques with dif-
ference tests and background comparisons. The results were projected in a
rectangular latitude/longitude map to remedy the bow tie effect. Algorithms
were implemented in C and Matlab. It proved to be possible to detect fires
in the available data. The results were compared with fire detections done
by NASA and fire detections based on other sensors and found to be very
similar.
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2 Introduction

This section should give an overview over problems this work is dealing with.
It begins with a general introduction why remote sensing is useful for firede-
tection. Then the used conventions and file formats are explained and at the
end some of the problems are described in detail.

2.1 South Australia and Bush Fires

South Australia is the third largest state in Australia with an area of more
than 9.84 - 10""'m? [7]. Tt is often referred as the driest state in the driest
continent. Its large agricultural, shrub and forested areas posing a high fire
hazard in most summers. There were 3204 hectares burnt and over 5 million
Australian Dollars lost in rural fires in the 1999/2000 summer alone[3].

This should make clear the need for fast fire detection. Fire reporting is
difficult because of the vast area and sparse population in most of the state.
This work tries to determine the possibility of using remote sensing data to
support the early fire detection.

2.2 ITR and ASTRA

The Institute for Communications Research (I'TR) has got the ASTRA since
December 1984[11]. ASTRA stands for Automatic Satellite Tracking Re-
search Antenna and is originally from NASA. It is a 6.8m hydraulical steer-
able parabolic dish and is currently configured for X band. It is possible to
receive Farth Resource Satellites such as ERS, JERS, SPOT, MOS, LAND-
SAT and RADARSATI11]. In this work the interest lies on the satellites
Terra (formerly EOS-AM) and Aqua (EOS-PM).

After reception with ASTRA the signal gets immediately demodulated
with ERSDEM2, a configurable demodulator capable of data streams up to
150 megabit per second developed at ITR.

2.3 Terra and MODIS

The Terra satellite is part of NASA’s Earth Observing System (FEOS). Tt was
launched in December 1999 and is referred as the flagship of the EOS. Since
February 2000 it is fully operational. On of the main instrument it carries is
the Moderate Resolution Imaging Spectroradiometer or MODIS. This sensor
sees the entire earth surface every two days and acquires data in 36 different

bands.
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MODIS is meant to be of use for a very broad range of scientists. Many
of its channels are especially designed for terrestrial, atmospheric or ocean
phenomenology. The EOS-PM or Aqua platform will carry the same instru-
ment. Aqua will be launched, according to [23], in March 2002. Then the
already good coverage will be even better. Until now, every day one overpass
can be recorded in the morning, with Aqua there will be one in the afternoon
(That’s why the satellite was called -PM).

Data collected by MODIS is transmitted immediatly via the direct broad-
cast facility or can be stored and transfered to the earth later in direct play-
back mode. ITR has the capability to receive the continuous direct broadcast
datastream from the MODIS instrument.

This work is the trial to process the data above the level 1h stage and
maybe provide useful results to organizations like the Country Fire Service.

The goal was to automatically detect bush fires from received data.

2.4 Conventions and Abbreviations

For a list of abbreviations please refer to appendix B.
"Command Tine’ usually refers to a sh shell on a Sun OS or Linux com-
puter unless otherwise stated.
The most often used symbols include:
A Center wavelength of a channel (in um)
pr  Reflectance at wavelength A
By Radiance at wavelength A
T\ Brightness temperature converted from B,
¢ Latitude values
f Tongitude values

2.5 Overview over Data flow

Firedetection does not work immediately with the received data. The files
have to be processed a few steps. To make these processing stages indepen-
dent of each other different levels have been defined and widely accepted.

Raw data is just recorded from the satellite and not processed in any way.
Level 0 data is defined as the reconstructed CCSDS packets (see section 3.2.2)
with all communication artifacts including duplicate and erroneous packets
removed. Level 1a is an intermediate product based on HDF (see section
2.6.3) produced by IMAPP (see section 3.5). Level 1b data is the radiomet-
rically calibrated data. Furthermore geolocation information is available in
the level 1b product. This includes ancillary data like the position of the
spacecraft or sensor and solar angles.
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In level 1b products enough information is available to do a successful fire
detection.

The flow of data can be seen in figure 1. Raw data is received by ASTRA
and demodulated with ERSDEM?2. These steps are not part of this report.
This work starts at the preprocessing stages when raw files are touched for
the first time in the conversion to level 0 data. Preprocessing includes the ex-
clusion of obviously bad data and the bit reversion. Level () data is produced
by FrameSync or STPS (see sections 3.3 and 3.4). IMAPP is responsible for
steps to level 1h. The actual fire detection is based on this output and is

done in Matlab.

Figure 1: Flow of data from ASTRA to fire detection result

4§

ASTRA ERSDEM2

slicer & reformat

o

level 0

level 1

— - T—-——-——-=--- Matlab detected fires
(picture and list)

2.6 Used File Formats
2.6.1 Raw recorded data
After reception of the data by ASTRA and demodulation by ERSDEM?2

data is recorded to computer files. These files have no particular format and
contain a concatenation of bits. Usually these files carry the extension raw.
Due to the Terra data rate of 13.125 megabit per second in the used direct
broadcast mode and a average overpass duration like 12 minutes the typical
file size is around one gigabyte. A more detailed description of the data and
problems associated with it are in section 3.1.

2.6.2 Production Data Sets

Data in level 0 is often called production data sets. These data sets consists of
consecutive CCSDS packets (see section 3.2.2). These packet stream should
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not contain any artifacts from the communication any more. All erroneous
and doubled packets should be removed.

Some programs like further processing software from NASA requires ad-
ditional headers containing meta information (KEDOS headers), but in this
project IMAPP (see section 3.5) is used for level 1 processing and doesn’t
need such headers.

Since these files don’t contain the protocol overhead they are a little bit
smaller than raw data files (see section 2.6.5).

The extension of these files is usually .pds for production data set or
.ccsds because they contain CCSDS packets.

2.6.3 Hierarchical Data Format

The Hierarchical Data Format (HDF) was developed by the National Center
for Supercomputing Applications. It is a open file format, it is well doc-
umented and supported and mainly used for scientific data exchange and
archival.

There are two entirely different and incompatible formats. The newer
one is HDF version five. In this project however only version four is used,
it 1s still fully supported by NCSA and many available tools operate on this
format.

One of the main features of HDF is its support to store meta data or
attributes with the data. This is used for example for human readable de-
scription of data sets or storage of additional scaling values.

Another interesting feature is the ability to store multidimensional data
sets. Here the maximum dimension used is three, since many two dimensional
bands are stored together in one data set.

An advantage of HDF over other file formats is the strict need to used
the provided interface. All accesses to the data are done through a library
and no low level knowledge of the file format is necessary.

2.6.4 Other used File Formats

Parts of this project require the store of image data. For this purpose the
format TIFF (Tagged Image File Format) was chosen. This has several
reasons including the wide support for this format across different computer
platforms and software packages. It is capable of lossless data compression
and stores 24 bit color images.

Text files include the output of the fire detection algorithm, the configura-
tion files mentioned and all source files for Matlab and C. Text files are stored
in the Unix way for line endings with 0x10 as a line end marker. To convert
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them to any DOS/Windows based platform the tool unix2dos <filename>
can be used.

The text file produced by the fire detection script are formated in a way
that further processing is easy. For example to get the number of detected
fires one can type
grep -v “# filename | wc -1
at the command line prompt. The file header contains information about
the processing done and the proportions of the produced image. Input and
output file names are stated. After the header for each fire pixel found one
line is printed. It contains the latitude and longitude values of the pixel as
well as the position of the fire pixel in the final map.

2.6.5 File Sizes

Remote sensing data tends to be large, especially with higher resolution. To
get an idea of file sizes, see table 1. All programs and algorithms dealing
with these files must be aware of this.

Table 1: Examples of File Sizes

recording date 29/11/2001 | 05/12/2001
initial file size® 411,041,792 | 312,475,648
after FrameSync? | 330,155,562 | 250,984,764
level 1a 98,713,604 | 77,012,996
geolocation data 50,765,783 | 38,511,453
1000m data 287,492,136 | 218,165,563
500m data 230,296,084 | 174,759,533
250m data 239,500,060 | 181,742,949
resulting .4iff file 8,072,286 3,074,088

“raw data

Mevel 0

2.7 Bow Tie Effect and Map Projections

The MODIS instrument has the nominal spatial resolution only near the
nadir line. As a result of the motion of the scanning mirror in the instrument,
data elements at the edge of the 110 degree swath width have a size of more
than double of the nominal one[26]. This leads to overlapping of swaths
and to a distorted image at the edges. Figure 2 is an example of the Bow

Tie effect. Tt was recorded on 30/08/2001 and shows the Ferie and York
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Peninsula in South Australia in the 500m uncalibrated color. Note the wrong
aspect ratio as a result of non square picture elements from MODIS. Another
unpleasant artifact is that the image orientation is not north but in the flight
path of the satellite.

IMAPP provides the geolocation data for every 1km pixel. This informa-
tion can be used to correct both Bow Tie and distortion effects.

Farth’s near spherical surface is not easily projected to a plane. Many
different approaches are known. Two common ones are the UTM (Universal
Transverse Mercator) and rectangular latitude/longitude. Good explanation
can be found in [27]. For conversion see for example [29]. The first provides
much better results for smaller areas but proved not practical for recorded
images with sizes up to 3420x2332km.

Rectangular latitude/longitude maps the spherical surface to a rectangle
with latitude and longitude as X and Y coordinates. This has the apparent
disadvantage of distortion near the poles (a point is mapped to a line) but
this is not a huge problem in the land area of Australia with latitude values

less than 40 degrees.

Figure 2: Bow Tie Effect

\:r.
14
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3 Data Processing to Level 1b

3.1 Preprocessing

After recording the raw data from the satellites direct broadcast facility a
number of processing steps are necessary. The first is the preprocessing to
get rid of larger amounts of bad data recorded from the demodulator. There
are blocks of unusable data at the beginning and the end of each recording.
Further bad data blocks may be there when the tracking of the satellite fails
for some reason or when the satellite’s transmitter is switched off for the
reception of deep space probes.

This is done with the small program slicer, which is based on a similar
program from Ricky Luppino. Source code can be seen in appendix F.2.
It performs a kind of an auto correlation of the raw data. If this correla-
tion peaks at 1024 because of the repeated sync markers (section 3.2.2), the
program assumes good data and passes the data to the next steps.

Another preprocessing is necessary for the use of the STPS package de-
scribed in section 3.4. This program can’t deal with byte reversed data
available in ITR. The program reformat (see section 3.4.1) cancels this re-

version.

3.2 Introduction into Frame Synchronization

As described before, the output of previous stages is the concatenation of
bits. Until now, no alignment is done and none of the bits has a meaning. In
the files the raw recording from all broadcast communication of the satellite
is saved. Another name for this type of data is raw telemetry channel data.
The next task is to byte align these bits. After this, the protocols used
have to be understood and the data we are interested in can be extracted.

3.2.1 Bit Synchronization

Data in the satellite downlink is organized in so called Channel Access Data
Units (CADU) or frames. All CADUs have the same length of 1024 octets.
To support the search for frame starts, the first part of each frame is an
Attached Sync Marker (ASM) of 32 bit. The chosen bit pattern for the
Terra satellite is 0001 1010 1100 1111 1111 1100 0001 1101 or in hexadecimal
notation Ox1TACFFC1D. This sync marker is recommended for telemetry data
channels by Consultative Committee for Space Data Systems (CCSDS). Tt
will be used by other satellites like Aqua. Bit synchronization is considered
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done when the sync sequence is recognized. However, further checks can be
done like

e Arethere other sync markers 1024 octets before and after this position?
e Does the content of the frame passes any error test?
e Does the content of the frame makes sense to the next protocol layers?

Another task can utilize the attached sync marker pattern. In some
demodulator configurations the polarity of bits may be inverted. The known
pattern can be used to detect this condition and switch all the bits back.
With ERSDEM2 and Terra this problem does not occur.

3.2.2 Frame Format

The next step is the extraction of MODIS packets, since the data stream until
now may contain data from other on-board instruments or other telemetry
data. Moreover the protocol overhead for the transport layer has to be re-
moved.

As mentioned before, data from the spacecraft is organized in frames
called Channel Access Data Unit (CADU). Fach CADU has the constant
size of 1024 byte. The first 32 bits of each CADU 1is the attached sync
marker. The second part is exactly one Coded Virtual Channel Data Unit
(CVCDU) of 1020 bytes.

FEvery CVCDU consists of 892 bytes Virtual Channel Data Unit (VCDU)
and 128 bytes appended Reed Solomon forward error correction code. The
purpose of virtual channels is the possibility to transmit several different
data channels (for example different instruments) over one physical link (the
satellite downlink).

The virtual channel data unit has two main parts. The first part divided
into the VODU header and a M_PDU header. The second part consists of
COSDS packets.

The VCDU header contains the version number of the protocol which is
1 in the Terra and Aqua satellites. The next field states the globally unique
spacecraft 1D assigned by CCSDS. Terra has the 1D 0x2a, Aqua will have
the 1D 0x9a [8].

The spacecraft identification field is followed by the number of the virtual
channel. All virtual channel data units with the same spacecraft TI) and
the same channel number form one virtual channel. For the assignment of
channel numbers see [19] page 61. A special channel 1D is 0x3f which is used
for empty VCDUs.
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The next field is a count of virtual channel data units for each virtual
channel. With this field it is possible to detect duplicated or missing parts
in the telemetry data stream.

Figure 3: Downlink Packet Format

end of previous CADU CADU (1024 octets) start of next CADU
Attached Sync Marker (4 octets) Coded VCDU (1020 octets)
VCDU (892 octets) Reed Solomon Code (128 octets)
VCDU header (6 octets) VCDU data (886 octets)
M_PDU header (2 octets) end of last CCSDS packet CCSDS packet(s) (variable size) start of next CCSDS packet
Primary Header Secondary Header MODIS header MODIS data Checksum

After the M_PDU header the CCSDS packets follow. Since these packets
can have different lengths (for example day, night or fill packets), each packet
carries its own length field and there is a pointer to the beginning of the first
COSDS packet in the M_PDU header. It is possible for a CCSDS packet to
be split over multiple VCDUs. Even the header field of a CCOSDS packet may
be divided. Tt is also possible to have more than one packet per VCDU. It is
the task of the raw to level 0 software to reassemble theses fragments.

To avoid repeating patterns besides the sync marker and ensure data
transition density in the downlink stream, bits are XOR-ed with a pseudo
random noise sequence

h(rt:):rtzg—l—m7—|—r1:5—|—r1:3—|—m1

[20]. This sequence is initialized to all One’s at the start of every VCDU.
Fach VCDU is followed by 128 octets Reed Solomon code for forward
error correction to form a CVCDIU.
The sequence of the two different codings varies between Terra and Aqua.
In order to successfully decode frames the steps are for Terra
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1. Decode Reed Solomon (RS) for entire VCDU (CADU without syne
marker and RS code)

2. PN Decode VCDU but not the VCDU header
while for Aqua the steps are

1. PN decode CVCDU (including VCDU header and RS code)
2. Decode RS for entire VODU.

3.3 The Program FrameSync

To perform the tasks described above, the program FrameSync was written
at the University of Hawaii. The original version did not work very good on
the data available at ITR so a few changes were done.

At first, the program starts to look for the sync marker pattern. The
original version did this by bit shifting the whole data until the marker pat-
tern appears at the beginning of a block. The changed variant shifts the
sync marker through all possibilities and compares the orginal data with the
shifted sync patterns, which is much faster. Internally the program works
with 16 bit data, but the orginal version checked only for eight different bit
shifts. Obviously 16 different byte shifts are possible with word size data.
The search for the remaining eight contingencies was added.

Also added were a number of checks to prevent the output of invalid
COSDS packets. These include checks for packet size and correctness of
header fields. To support the debuging a facility for dumping VCDUs was
subjoined.

The program FrameSync was not tested with MODIS night packets since
such data was not available. Further changes must be done when the Aqua
satellite will be launched because the decoding sequence is slightly changed
and a different spacecraft 11 will be used.

3.4 Frame Synchronization with STPS

As described before, the program FrameSync as several disadvantages. Al-
though there have been some improvements, a few bugs remain. For example,
any damaged frame is still regarded as complete as long there is a attached
sync marker at the beginning of it. The program ignores the Reed Solomon
codes provided by the satellite. Another way of checking frames would be
looking for the next sync marker, but FrameSync doesn’t do this.

At the next stage, COSDS packets have to be assembled from the VCDUs.
(The format of the data stream is explained in [10].) If a CCSDS packet
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is not finished in the current frame, FrameSync waits for the second half.
The next arriving fragment of a packet is appended to the first half, if the
VCOCDU counter is the successor of the previous one. This works fine, because
packages from all other Virtual Channels are discarded earlier. As mentioned
above, the data used to complete packets is not checked. For example, if the
pointer to the first CCSDS packet in the second frame is corrupt, a invalid
packet would result. A length check is done, but MODIS night packets will
fail this check.

Finally, the packets are written without checking the available CRC at
the end of each MODIS packet.

That’s why another way of doing this task was figured out. The software
in the package STPS_V3.41.tar.gzfrom NASA Goddard Space Flight Center
(GSFC) proved to be able to solve some of the problems. STPS stands for
Satellite Telemetry Processing System.

The overall task is not done by a single program. In NASA’s approach
the programs f2s, stpsce, dltp and pk are involved. Additionally the tool
reformat is necessary.

For all above programs except reformat and f2s it is necessary that a
variable in the environment points to the base directory of STPS. In the csh
or tcsh shell the needed command looks like
'setenv STPS_LOCATION /home/.../stps’. With the sh or bash shells it
should be
‘export STPS_LOCATION=/home/.../stps’.

The interaction between the different programs can be seen in figure 4
one page 18.

3.4.1 reformat

It was found that the .raw files available in I'TR are byte-reversed. This is
not a problem for the program FrameSync because the switch -r is made
for this condition. However the program dltp cannot deal with such files so
the have to be turned externally. Michael Sloman wrote the tool reformat
which can do this task. If the bits in the files are ordered 1-2-...-7-8-9-10-
- 15-16-17-..., after running through the tool the sequence is changed to
8-T-...-2-1-16-15-...-10-9-17...

The program acts as a filter, so a common way to call it is
reformat < inpul file > oulput file

Since the input files are not byte or word swapped and reformat reads the
entire files byte by byte, it does not matter whether the executing computer
is little endian or big endian machine.
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Figure 4: Data flow in STPS

bit reversed .raw file f2s

on ingest

/ TCP port 8003 /

stpscc ditp
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pk vc42ap64.dat
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3.4.2 f2s

The tool f2s reads a file from disk, waits for a connection attempt on a
specified TCP port and a hit from the keyboard. After transmitting the file
via this connection, the program exits.

There are two reasons for using this tool. First the next stage programs
dltp and pk can only run on big endian computers, so the data has to be
transfered there somehow. Second the program dltp doesn’t read from disk
files, only from TCP ports.

The program’s execution is controlled by a configuration file. An example
of such a file is included in section F.1. For f2s it is necessary that the file
contains a line starting with F2S and one starting with *END*. Any line not
starting with a keyword is regarded as comment.

After the keyword F2S there have to be seven parameters. Their meaning
are

e Name of the remote host, where dltp is running. It can be an TP address.
e TCP port number for the connection. 8003 is recommended.

e Block size for transmission. Small values increase transmission time.
32000 is large enough so larger numbers don’t speed up the process any

more.

e Wait time between packets in milliseconds. This value can be used to
reduce system load on the target computer.

e Number of repeats. In this application it is not useful to set it to other
values than 1.

e Mode of operation. A value of 0 means opening the socket in server
mode, 1 client mode. Here only server mode is used.

o If the last value is set to 1 instead of 00, f2s outputs a few more status
messages, which can be useful.

There are slightly different variants of f2s. The variants called edos_f2sx
transmit additional EDOS-header information in the TCOP stream. Since
dltp gets confused with this information, its use is not recommended. Other
differences are whether f2s reads in the entire file at startup or reads it in
in blocks as necessary. The author of f2s claims the first method would be
faster. This could not be reproduced. The files are large compared to system
memory, thats why the second method has been used.
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3.4.3 stpscc and dltp

The reason why these two programs are described together in one section
is their close interaction. The Channel Controller stpscc is responsible for
reading in the configuration file, starting and stopping the child process dltp
and printing out progress information.

It has some other capabilities like reading from DSP devices or commu-
nicating via UDP with a graphical user interface. These features have not
been used here.

Asusual, stpsccis configured via parameters on the command line and via
a configuration file. On the command line there have to be four parameters.
The first one names the configuration file, all the others deal with commu-
nication with the GUI and are not important here. Because all parameters
are necessary for a successful start, a tiny shell script runSTPS is provided.

Once started, stpsce runs forever. The way to end the program is to send
it a terminating signal either via control-C or via the kill command. Tf stpsee
receives such a signal, it shuts all open connections down and kills dltp. Then
the program exits.

The important program here is dltp. 1t receives via a TCP link the data
from f2s. After the sync pattern is found several times at the expected place
the LOCK state is entered. Then frames are forwarded to the EDOS output
modules, where PN derandomization is done. In the output module the next
step is the Reed Solomon decoding. A number of bit errors can be corrected.
If there more errors than can be recovered, the frame is discarded.

After the frame was successful PN and RS decoded, it send via another
TCOP link to pk. In this data stream in front of each frame a EDOS header
is send, which is necessary for pk to understand them.

An example of a working configuration file has been included in section
F.2. The way stpscc reads in this file is not especially smart, thats why all
lines have to appear and the sequence must not be changed. Comments in
the file are not allowed.

In table 2 the explanation of some important lines can be seen. In a
working file all lines have to be included, even if they have no meaning in
this case, like the lines about the DSP process.

This software was developed on Sun machines using the GNU C compiler.
On Linux computers it can be compiled only with changing the Makefiles and
some source code lines. It doesn’t run well on Linux machines.
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Table 2: Some important settings in the configuration file of stpsce

VERSION 3.41
error_log_file_dir ..
status_log_file_dir ..
dsp_process_up ()

input_buffer_size
input_data_type 0

checkinput_block_cre 0
dltp_up 1
dltp_frame_data_to_file 0

dltp_socket_host_machine
fs_bitReverseFrames 0

fs_pnDecodeCCSDS 0
fs_outputFramesState 2

fs_framesPerModel 9
check frame_crc 0
rsd_enabled 1
rsdHeaderOnly 0
EdosOutputServerHost
FEdosDiscardBadFrames 1
EdosOutputSync 1
TerraSpecificPNdecode 1

Necessary because the format of this configu-
ration file changed between versions

A directory where some progress information
are stored.

A directory where some progress information
are stored.

Here no attempt is made to read directly from
DSPs

Amount of data read in at once

Indicates data is not formated in any way. If
this setting is not correct, dltp would not be
able to read data.

Frames are not protected by a CRC.

This line brings up the dltp process.

Because data is send to the next stage it is not
necessary to save it.

Where f2s1s running

not the same as reformat

PN decoding is done later in the EDOS mod-
ule, which is configured at the end of the file.
meaning of state or mode: (0-Search, 1-Check,

2-T.ock, 3-Flywheel .

Frames don’t have CR(’s

The computer pk is running on

“Flywheel mode in dltp is not comparable to flywheel mode in FrameSync
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3.4.4 pk

The packet processor pk is used to extract CCSDS data packets from the
stream of frames, reassemble them and separate them for different virtual
channel and application 1D. Here virtual channel 42 and application 64
(MODIS) in this channel are of interest.

The program resides in the subdirectory pkSERVICE_PROCESSOR. Tt
started from the command line, usually with the switch -s <configuration
file> set. If no filename is given, the default is pk.config. An example of
the configuration file is given in section F.3.

For each channel and each application II) a separate file is written. All
files are named vc<VC ID>ap<app ID>.dat so here the output file called
vc42ap64.dat is the interesting one.

Normally pk writes EDOS headers in the output files. IMAPP is used in
the next stage of data processing and doesn’t understand them. That’s why
pk was patched to output only CCSDS packets. The output file can then
be moved to the computer running IMAPP. Until now this is done via FTP,
later maybe it should be done via NFS.

The program was implemented on a big endian machine and is dependent,
on this feature. Tt doesn’t run on little endian computers.

3.5 IMAPP

IMAPP stand for International MODIS Processing Package and is derived
from the operational MODIS processing software developed at NASA God-
dard Space Flight Center. Tt consist of three main components.

The first part converts level 0 data to level Ta by examining the content of
COSDS packets. Then they get reformatted into an HDF file by the program
I.0_to_l.1a. This program does a few checks on the data, for example it verifies
the time ordering of the packets.

The second step is the geolocation of the data. Here a digital elevation
model (DEM) is necessary to provide altitude information. The program
geolocate can also do the geolocation without correction for the terrain
which can save a little bit of processing time. Then the DEM is not necessary,
a saving of hard disk space of about three gigabytes. In most cases the terrain
correction is kept on, because the output is more accurate.

The last step is the calibration of the data the program calibrate and
the production of the output HDF files with.

The calibrated data can be used for further level 2 processing. One ex-
ample of data processing can be Dimple for classification (see appendix A).

In this work Matlab is used to produce a fire detection product.
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4 Fire Detection

In the first part of this section the algorithms used for detecting any fires
are described together with associated procedures like data input and output
while in the next one (from section 4.4 onwards) the implementation of these
algorithms is explained.

4.1 Algorithms for Preparing Fire Detection
Data in the HDF files produced by IMAPP is stored in 16 bit unsigned

integers. The task is to assign a physical meaning to these values.

Fach scientific data set in a HDF file can have associated attributes. For
example, a long name of the data set can be stored. Here three attributes
are important. To use the full possible range of 16 bit, a scale and a offset is
used. The third attribute stores the physical unit.

2. um ™" - steradian” ' Tf

The unit of radiance values is usually in W -m™
scale s, offset 0 and the data x from the HDF file are known, the radiance B

can be computed as

w

m? - um - steradian

B=(x—o0)-s-

The same formula applies for reflectance values with the modification that
reflectance does not have a physical unit associated.

But most algorithms for fire detection do not work directly with radiance
values, they need data in means of brightness temperature. Brightness tem-
perature is the temperature where a black body would emit the same amount,
of radiation for the given value.

To convert radiance values to brightness temperature, the inversion of
Planck’s formula is used as found in [12] or [2].

Oy \

D= eI BT

where

first radiation constant Cy = 2he? = 1.1910439 - 107 Wm ?
second radiation constant Cy = hek™' = 1.4387686 - 1072 mK
brightness temperature (K)

W
m2-m-steradian )
center wavelength of channel (m)

radiance (

Planck constant

speed of light

R AR BN RO

Boltzmann constant
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Table 3: Possible values for land / sea mask

Value | Meaning

0 Shallow Ocean (Ocean less than 5km from coast OR less than 50m
deep).

1 Land (not anything else).

2 Ocean Coastlines and Lake Shorelines.

3 Shallow Inland Water (Inland Water less than 5km from shore OR

less than 50m deep).
Ephemeral (intermittent) Water.

) Deep Inland Water (Inland water more than 5km from shoreline
AND more than 50m deep).

6 Moderate or Continental Ocean (Ocean more than 5km from coast
AND more than 50m deep AND less than 500m deep).

7 Deep Ocean (Ocean more than 500m deep).

If B is still in W/m? - um - steradian a factor of 10° has to be inserted
like in [12] or appendix C.2.

4.1.1 Evaluation of the Land / Sea Mask

The land /sea mask is provided by IMAPP in a Tkm resolution and can have
the values listed in table 3 as mentioned in [22]. Only pixels with a land/sea
mask value of 1 (land) or 2 (land with coastline / shoreline) should be tested
for fires, all other pixels are ignored.

4.1.2 Creation and Evaluation of the Snow Mask

Snow has a very high reflectance in many bands and possibilities are to
confuse fire pixels with pixels containing snow. Even if snow and ice is not
common in most parts of Australia, the Snowy Mountains are covered in
most of the years.

To find snow pixels in the image, the Normalized Differential Snow Index
(NDST) is utilized. This index has been tested with data from Landsat and
data from MODIS instruments. Tt is the basis of [17] and [13]. The thresholds
used in this work are based on [13].

The NDST works similar to the NDVI (normalized differential vegetation
index), but uses the bands centered at 555 nm and 1640 nm' instead of red

"™MODIS channels 4 and 6



4 FIRE DETECTION 25

and near infrared:

NDST — P0.555 — P1.64
Po.555 + P1.64

The snow mapping consists of three tests.
o NDST > 04
® posss > 1% (band 2)

® posss > 10% (band 4)

The two latter tests prevent very dark pixels to be mapped as snow. Only if
all three tests are passed the algorithm considers the area as snow covered.

The use of the created snow mask is that on snow pixels there can’t be
any fire.

4.1.3 Cloud Detection

Similar to snow, clouds have large reflectance values and if no care would be
taken, they would be regarded as fires. In [1] a lot of effort is undertaken
to classify different type of clouds like thin cirrus, clouds over snow fields or
high thick clouds. Similarin [4] at least eight different test for different cloud
types are done. Here this differentiation is not necessary and so a different
approach was chosen.

As mentioned, clouds reflect many wavelengths very good. So again three
test are done:

® 0p.488 > 95% (ba,nd ]0)
® 531 > 95% (ba,nd ]])

® pPpns551 > 95% (ba,nd ]2)

If and only if all three tests are passed, a pixel is declared cloudy and no
fire detection is done. The test was validated with day images from MODIS
only.

4.2 Fire Detection Algorithms

There are a different approaches to detect fires in remote sensing data. The
simplest form compares the brightness temperature around 4um with a given
threshold. This works well if the remaining image is relatively cool (especially
at night) but this is not the case for the area in South Australia.
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Other works like [6] use a ratio between the AVHRR 3.7um channel and
the background. Kudoh describes in [14] the use of normalized difference
indices between NOAA AVHRR channels 3A, 2 and 1.

In [16] also two traditional threshold test are employed plus a difference
between NOAA channels 3 and 4.

Fach technique has its disadvantages. Fixed threshold methods have
problems with the different types ecosystem found in large images from
MODIS. Additionally these fixed threshold vary seasonally. Some other
methods like the neural network approach in [18] need much computation
time not available for near real time applications like this work.

Here a algorithm similar to the one in [15] is used. It contains difference
tests, comparisons with backgrounds and threshold tests.

The simplest test is a fixed threshold test. If

T59 > 360K (])

then a fire is assumed regardless of the results of other tests. Fven if the
fire on the ground is much hotter, the effective brightness temperature rarely
reaches this value. This has different reasons. The spatial resolution in the
channels used is 1 km, so most fires are smaller than a pixel. Second the
radiance is scattered in the atmosphere and often obstructed by the smoke
plume from the fire.

Next the brightness temperature is compared to another value

Ts59 > 320K (2)

but thisis only an intermediate result. Then the difference between Channel

21 (3.9um) and channel 31 (11pm)
AT = Tag — Thy
is computed and compared to the fixed threshold
AT > 25K (3)

With the background values T5gq, and AT, and their standard deviations
6759, and SAT, two further tests are done

Ts9 > Tsgy+ 46759 (4)

The values are compared with their background. If the difference is larger
than four times the standard deviation the test states a possible fire on the
given location.
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If the following logical combination
Testl V ((Test2V Testd) A (Test3V Testh))

is true then the pixel is declared to be a fire pixel. So it has to pass one of
the 3.9um tests and one of the AT tests. Additionally, if it passes the big
threshold test (1) it is declared a fire pixel regardless of the outcome of all
other tests.

For night passes which may be recorded in the future, other threshold
values are suggested. The values of 360K, 25K and 325K should be replaced,
according to [15] with 330K, 10K and 315K. Since until now no night pass is

available, these values couldn’t be verified in any way.

4.3 Algorithms using the Results of Fire Detection

With the results of the fire detection at hand, next steps are the visualiza-
tion of these results. The goal is first a list of all fires found and second a
undistorted map with fire pixels marked.

4.3.1 Map Projection

As explained in section 2.7, data from MODIS is subject to the Bow Tie
effect and a few other artifacts. To remove these effects and to put the
data into common format, the rectangular latitude/longitude projection was
chosen. With this projection all latitude and longitude lines are assumed
parallel and of equal distance. Of course this is not true so this projection
introduces distortions (as every projection from a sphere to a plane does, see
[27]) into the image. The further apart from the equator, the more expanded
the data get. To balance out this effect a little bit the following assumptions
are made:

o The distance between latitude lines (set of points with the same integer
latitude value) is 111.2km. This not exact for every point on earth but
sufficient, for this application.

e The distance between longitude lines is
111.2km - cos ¢

for the entire image. This also assumes a spherical earth but has a
sufficient, accuracy here.

e ¢ was chosen to be 34.86 degrees South as this is the position of the
receiving dish in Mawson Lakes/Adelaide.
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e The size of the smallest pixels in the nominal Tkm resolution is exactly
1 km x 1 km. This is usually only true for pixels along the nadir line.

These assumptions have the consequence that the image gets compressed for
parts north of Adelaide and expanded for parts south of Adelaide. Another
result of trading all images with the same assumptions is that these images
can fit together to form a bigger map if desired.

With the now known distance between latitude and longitude lines a grid
can be constructed based on the maximum latitude and longitude values
found in the geolocation data. Fach pixel in the constructed grid has a

height of

km km deg
(111.2=—)"" - 1= = 0.0089928 —
deg prrel prxel
and a width of
km km de
(111222 1 2 cos(dugetaiae) = 0.010959——2

deg prrel pizel

These values are constant for all images. The maximum shift between two
different images is one pixel because of different image origins. Despite of
this one pixel (or less) shift different images fit together.

4.3.2 Smoothing

The drawback of the described projection is that many pixels in the resulting
image stay black because the image element size at the left and right edge
is much larger than Tkm. In fact a image element can grow based on the
55 degree maximum view angle of MODIS up to 5x2km. Since only the one
recorded element gets projected in the final grid, many spots in this grid
remain black. These black spots have to be filled with data in order to get a
viewable image.

Two different ways of filling these black points have been tried. The first
approach was the use of median rank ordering filters for each color band. For
each pixel to be filled the median filter considers all its neighbors according
to the filter size, sorts them in value order and selects the one in the middle.
For larger filter sizes this apparently introduces errors because pixels far away
from the one to be filled can largely influence the result. For small filter sizes
the number of candidates often gets even (like 2). Since the filter now can’t
take the middle value the images gets either too dark (if the filter choose
value 1) or too bright (if the filter tries value 2 in this case).

The second variant of pixel filling was with a averaging filter. Here the
sum of all non zero pixels in the filter size is divided by their count. The
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disadvantage of larger filter sizes is like above the influence of extreme pixels
(like clouds) spread over a large area. If a smaller filter size is chosen, many
dark pixels remain.

The remaining black pixels can be eliminated by reapplying the filter.
The best results have been found with an averaging filter of size 3x3 applied
twice. Smaller square shaped filter sizes do not make sense since a 1x1 filter
doesn’t change anything and a 2x2 filter shifts the image in one direction.
The next larger odd sized filter (5x5) already introduces many more errors.

4.4 Implementation of Fire Detection

For the realization of the described algorithms Matlab 6 Release 12 was the
chosen language. This has several reasons:

e Matlab has a good support for all needed file formats, particularly the
input format HDF and the output format TTFF.

o Algorithms are easy to formulate in Matlab. The written programs are
easier to understand than similar programs in for example C.

e The resulting programs are highly platform independent and can run
on every platform supported by Matlab.

e The execution speed is very good while doing matrix operations and
sufficient in all other cases.

e Many common exceptions are caught by Matlab. For example a divi-
sion by zero is not uncommon while computing the NDSI. This causes
only a suppressible warning message and the result NaN (not a number)
and not a runtime error with program abort.

A disadvantage of Matlab is its demand to store every data for computations
in 64 bit double values. This is especially memory inefficient for 1 bit logical
arrays.

All computations from the end of the IMAPP run are mainly done in one
Matlab function. The aim of this section is to describe the implementation
of the algorithms mentioned above and the running of the Matlab script
firedetection in some details.

A sample run of the script produces output which looks similar to the
one in figure 5. There the main parts of the implementation can be seen.
The function consists of the following parts:

1. Reading in all necessary data, i.e. importing parts of the HDF files
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2. FExecuting sanity checks like detection of clouds and water
3. The actual fire detection

4. computation of the map

5. And finally the output of the results.

Now follows a more detailed look at the source code of the function and
its execution. The entire source code of the script is in appendix C.1.

The first main task is the import of necessary data. Data from IMAPP
is stored in HDF (Hierarchical Data Format) files. For a better description
of the file format see section 2.6.3 and [25]. Since Matlab has an excellent
support for the HDF format, the functions for reading data (sds_read.m in
appendix C.4) and associated attributes (attribute read.min appendix C.3
can be kept short.

For the different algorithms a number of bands and some meta informa-
tion is necessary. So the script reads in the MODIS bands 1, 2, 3, 4, 6, 10,
11,12, 21 and 31. Additionally the meta information latitude, longitude and
land /sea mask are read. Error checking is done where applicable.

The algorithm for firedetection needs data in terms of brightness tem-
perature, but values in the HDF files are stored as radiances. To auto-
mate the conversion from radiance to brightness temperature the function
radiance2teff.m was written. Calling syntax is
result=radiance2teff(radiance,lambda)
where radiance is expected in W/m? - um - steradian as found in the HDF
files and lambda should be in ym. After successtul completion result is re-
turned in Kelvin. The parameter radiance can be a matrix, so many values
can be converted at once.

The source code is found in appendix C.2. The usual Matlab help facility
via help radiance2teff is supported.

The next step in the fire detection script is the elimination of appar-
ently bad data. This includes reflectance values greater than one, brightness
temperatures greater than the saturation values of the sensor, values where
radiance2teff computed invalid results or where the bad data marker was
inserted by IMAPP (-999 for latitude/longitude values).

The evaluation of the provided land/sea mask is done as described above,
only values of 1 or 2 are regarded as possible places for fires. The elegance
of implementing such algorithms in Matlab can be seen in lines like

land = (landseamask==1 | landseamask==2);
which creates a logic array of the necessary size containing true for all land
pixels and false for all others.
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Figure 5: Sample output from the script firedetection

>> firedetection(FILENAME) ;

read data from disk
meta information
1km emissive
1km reflective
250m reflective
500m reflective
reading finished
converting radiances to temperature values
4um
11um
looking for bad data
eliminating bad data
evaluating land/sea mask
detecting snow
detecting clouds
detecting fires
computing backgrounds
testing
finding
number of fire pixels detected: 78
creating rgb image
producing rectangular map
calculating vectors and copying data
one degree latitude is 111.2 pixels high
one degree longitude is 91.2453 pixels wide
smoothing (1/2)
finding black spots
count pixels we have got
filtering
red
green
blue
smoothing (2/2)
finding black spots
count pixels we have got
filtering
red
green
blue
painting fires
writing image
writing ASCII output
all done

>>
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A problem during snow detection (in fact during computing the NDST)
arises when both values are zero. Then the divisor becomes zero and a
division by zero warning occurs. This warning can be and is suppressed.
The invalid result is no problem because when both band values are zero
then there is definitely no snow at this point. Additionally one of the other
two tests fails too.

The cloud detection works straightforward except at the end, the found
cloud mask is broadened by one pixel. This is done by convoluting the cloud
mask with a 3 by 3 matrix containing only ones. Because the cloud mask
is a array of logic values, the filter could be described as a 3 by 3 logic OR
filter. The effect is a smother cloud mask including cloud edges.

For the fire detection the computation of the pixels background is needed.
This is achieved with the filter

|
—_
—_
—_ = D D D = =
—_ = D D D = =
—_ = D D D = =
—_
—_

The problem with convolution filters is always at the edges. That’s why
the edges are excluded from further processing.

The standard deviation of each band is computed for the whole image
and then background values are compared to the pixels. All threshold tests
are done with day time values. A night time test was not done at all.

The rest of the function deals mainly with the computation of the rect-
angular latitude/longitude map.

The values in the visible bands have to be compressed into the 8 x 3 bit
in order to display them. To further improve the image, a clipping of higher
values is done in the subfunction stretch.

The latitude and longitude values have to be converted to X and Y po-
sitions in the final map. This is the task of the function cstretch, which
takes the gridding factor as an input. The gridding factor is 111.2 kilometer
for latitude values and 111.2km - cos(@ ageiaide) for longitude values. When
the conversion is finished, the red, green and blue pixel values are copied into
the map.

Not all pixels in the final map get filled with this procedure. The remain-
ing pixels are filled with averages of their neighbors.

After the detected fire pixels are marked with red spots in the smothed
map, the image is written to disk and the reporting text file is generated. At
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this point the function returns.
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5 Conclusions

All programs mentioned and all algorithms described are called and run in
the necessary sequence by the small shell script in appendix E.3. This script
does all work from the recorded raw file to the fire detection product.

In this script the program FrameSync is used instead of STPS. This deci-
sion was made to simplify the process and keep all computation on one place.
Additionally it proved difficult to coordinate the many different programs of
the STP System, sometimes keystrokes are necessary. This is not desirable
in an automatic system. Because slicer eliminates most of the bad data
already, the lack of error checking in FrameSync is not that adverse.

The results of the fire detection algorithms have been empirically vali-
dated in a number of ways:

o At first a visual inspection of the resulting map was done. All fires
found are on land and not obstructed by clouds. All fires were near
either a visible smoke plume or a visible fire scar. However some smoke
plumes don’t have a fire pixel near them. This has several reasons.
Some fires are just too small to be picked up by the Tkm x Tkm reso-
lution of MODIS. In some cases the smoke plume itself prohibits the
detection of the causing fire by either being detected as a cloud or just
obstructing the view to the ground.

o Next step was the comparison to similar pictures published by NASA in
[24]. Since the available images were four days apart, only a very rough
comparison was possible, but it showed a similar configuration of fire
pixels. Some fires have advanced a distance, others were extinguished
or ignited.

e Last the data was compared to the data published daily by DOLA [9]
on their web site. There the NOAA-AVHRR data is used to detect
fires. The comparison looks promising and shows many similar results.
Differences are caused by the different recording time and the use of
another sensor. A statistical analysis was not done because of lack of
enough data.

All validations done show the results are very reasonable. The lack of more
data prevented a more statistical evaluation of the correctness of the algo-
rithm.

A sample output of the work can be see in figure 6. The found fires in
this figure are listed (among others) in figure 7. The image was recorded
on 10/08/2001 and shows an area near Gulf of Carpinteria in the Northern
Territory. Fire scars and smoke plumes can easily be spotted.
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Figure 6: Picture of detected fires
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Figure 7: List of detected fires

# Results of firedetection

# input files:

* /dd1/IMAPP_RUN/ter10augh8-174.geo.hdf

* /dd1/IMAPP_RUN/ter10augh8-174.1000m.hdf

# output files:

* /dd1/IMAPP_RUN/ter10augh8-174.fires.tiff

# image range: -20.9236/133.1496 to -14.3969/155.9702

# pixelhigh: 0.0084998 degrees latitude

# pixelwidht: 0.016104 degrees longitude

* /dd1/IMAPP_RUN/ter10augh8-174.fires.txt (this file)

# starting time: 25-Nov-2001 11:31:18

# finishing time: 25-Nov-2001 11:33:46

*

# the following fires were found:

# latitude longitude posit-x posit-y
-16.87312 135.21036 291 128
-16.87901 135.21593 292 128
-16.88553 138.45078 293 329
-16.88549 138.44351 293 329
-16.88902 138.46284 293 330
-16.88893 138.47014 293 330
-16.89471 138.42897 294 328
-16.89810 138.44839 294 329
-16.89806 138.44115 294 329
-16.90503 135.20378 295 128
-16.90158 138.46049 295 330
-16.90147 138.46777 295 330
-16.90994 138.57751 296 337
-16.90902 138.58495 296 338
-16.91895 138.55623 297 336
-16.91815 138.56363 297 336
-16.92238 138.57518 297 337
-16.92145 138.58260 297 337
-16.97014 138.40166 303 326
-16.97005 138.40747 303 326
-16.97369 138.42108 303 327
-16.97346 138.42691 303 328
-17.05182 141.13303 312 496
-17.05598 141.09351 313 493
-17.74360 136.74628 394 223
-17.75962 136.76088 396 224
-17.76906 136.73309 397 223
-17.78312 136.73033 398 222
-17.78768 136.75540 399 224
-17.79222 136.78035 399 225
-17.79673 136.80521 400 227
-17.81071 136.80246 402 227
-17.96402 136.60155 420 214
-17.96860 136.62700 420 216
-17.97316 136.65234 421 218
-18.14500 138.27626 441 318
-18.14830 138.29526 441 320
-18.15743 138.27394 442 318
-18.16072 138.29294 443 319

-18.16398 138.31187 443 321
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6

Recommendation

There are a number of fields where further work can be done. These include

Attempt to forecast fire intensity like in [21]

The mapping has disadvantages. Especially when a temporal analysis

is desired, a more accurate gridding of the data is necessary. Works
like [28] show how this can be done.

It is possible to detect the amount of smoke to draw conclusions about,
the fires. Zhanqing i et.al. suggested in [18] the use of neural networks
to distinguish between smoke and clouds.

Fire scar detection is useful for the estimation of the amount of burnt
area and the amount of produced CO,. In [5] this is shown with

AVHRR data.

The program slicer.c should be modified to slice even when no bad
data is found at certain file sizes like every 400 megabyte. This would
prevent some lack of memory problems and speed up processing. Ad-
ditionally the storage of images may be easier.

Further validation must be done. Especially DOLA [9] should be a
good resource for this work.

When Aqua will be launched a few adjustments must be done to the
FrameSync program to adopt changes in

— sequence in PN and RS decoding
— and different spacecraft 11).

Processing of night images was not tried at all and may promise good
results in fire detection (but not in imagery). For this to work some mi-
nor changes to FrameSync are necessary. The function firedetection
also has to be changed a bit because some bands are not available at

night.
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A  Dimple

Dimple is a digital image processing system from Process Software Solu-
tion Wollongong, Australia. Tt is designed as a general image manipulation
and processing system but has some interesting features specially for remote
sensing and satellite imagery.

The general features include some image transformations like from RGB
to grey scale images, 31 plots or different image ratios. Since normalized
ratios are supported, the latter one can be used for producing indices like
NDVT or NDSI.

The image enhancement part has the standard filters including convo-
lution and rank order filters. Special filters are for example the de-striping
filters for satellite images.

The built-in filters can be enhanced with the Image Operation Language
TOT. which is a simple programming language for image manipulation.

The rectification, registration and resampling algorithms provided work
all with ground control points which have to be supplied by the user. This
is a manual process and was therefor not seen as an option for this project.
The same is true for the classification algorithms. They have to be trained
manually.

The main disadvantage in conjunction with MODIS data is the inability
of Dimple to read HDF files. To overcome this Matlab was used to import
HDF files and export them in a format Dimple can read. Appendix 1).2
contains the source code of this Matlab function. Data is exported in binary
files containing no other information than the actually calibrated data from
IMAPP. To import these files in Dimple, Dimple has to know how to read
them, so the user has to supply for example the resolution of the image and
the number of bands to import.

Dimple can read such binary files with different data types after the user
has supplied this information. For example it is possible to transfer lati-
tude/longitude data as real numbers and integer data as uint16.
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B Glossary

ASM Attached Sync Marker; beginning of every CADU

ASTRA Automatic Satellite Tracking Research Antenna; receiving facility
in TR

AVHRR Advanced Very High Resolution Radiometer; Instrument on board
NOAA satellites

Byte Eight bits, used synonymously with octet.
CADU Channel Access Data Unit; consists of ASM and CVCDU

CCSDS Center for Computational Science and Advanced Distributed Sim-
ulation

CVCDU Coded Virtual Channel Data Unit; consists of VCDU and Reed

Solomon Code
DEM Digital Flevation Model
HDF Hierarchical Data Format; used for data storage in level 1a and level 1b
ITR Institute for Telecommunications Research

MODIS Moderate Resolution ITmaging Spectroradiometer; Instrument on
board Terra and Aqua satellites

M_PDU Multiplexed Protocol Data Unit

NCSA National Center for Supercomputing Applications
NDST Normalized Difference Snow Index

NDVI Normalized Difference Vegetation Index

NOAA National Oceanic and Atmospheric Administration; part of U.S.
Department of Commerce

Octet Eight bits, used synonymously with byte.
STPS Satellite Telemetry Processing System; Software from GSFC

VCDU Virtual Channel Data Unit; transport entity for CCSDS packets

word sixteen bits of data
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C Matlab Source Files for Fire Detection

In this section all Matlab files used while firedetection are listed. Some
additional functions, which are not necessary but sometimes helpful, can be
seen in appendix D.

C.1 firedetection.m

function f=firedetection(filename);
% FIREDETECTION detect fires using data in ‘filename
fire detection is a longer script

%
%
% for documentation, please refer to
% the source code and

% ZKendy Kutzner:

% "Processing MODIS Data for Fire Detection in South Australia',

% 2001, ITR, Adelaide

% change history

% 08/2001 to 10/2001 written by kendy kutzner

% 11/2001 documented by kendy

% 12/2001 speed up by vectorizing mapping by kendy
% 12/2001 further documentation by kendy

% let’s start
starttime=now;

no failure until now

most common errors are catched.

of course not all.

probably the the most seriuos not catched

error is out of memory. In this case matlab

aborts the function. This script tries to clear memory

B

as early as possible.
£=0;

% read all the data

disp(’read data from disk’);

% at first, we need some information about the data in
% the .1000m.hdf file

disp(’ meta information’);

filenamel=[filename ’.geo.hdf’];

% for obvious reasons we need these:
[latitude,stat1]=sds_read(filenamel, ’Latitude’);
[longitude,stat2]=sds_read(filenamel, ’Longitude’);
% there are no fires on water, so make use of

% the land/sea mask
[landseamask,stat3]=sds_read(filenamel, ’Land/SeaMask’);
% to have better visual control when needed all

% data is transposed so it can be viewed with

% imagesc(bandX)

% additionally, the imwrite() function wants the

% data in this direction to produce images in the
% ’right’ direction

latitude=double(latitude’);
longitude=double(longitude’);
landseamask=landseamask’;
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% catch some errors

if (stat1”=0 | stat2”=0 | stat3"=0)
f=-1;
disp(’Can’’t read Latitude/Longitude or Land/Sea Mask’);
return;

end

% now we read in all the data bands we need.
disp(’ 1km emissive’);
filenamel=[filename ’.1000m.hdf’];
bandname=’EV_1KM_Emissive’;
[emissives,statl]=sds_read(filenamel, bandname) ;
[scales,stat2]=attribute_read(filenamel, bandname, ’radiance_scales’);
[offsets,stat3]=attribute_read(filenamel, bandname, ’radiance_offsets’);
[names,stat4]=attribute_read(filenamel, bandname, ’band_names’);
if (stat1”=0 | stat2"=0 | stat3"=0 | stat4~=0)

f=-1;

disp(’Can’’t read Emissive Bands’);

return;
end
offsets=double(offsets);
scales=double(scales);
% data in .hdf files is stored with scale and offset
% to make better use of 16bit data fields.
% We need the actual values so convert them.
band21=((double(emissives(:,:,2))-offsets(2))*scales(2))’;
% transpose the arrays for the reason above
band31=((double(emissives(:,:,11))-offsets(11))*scales(11))’;
% these arrays tend to be quite big, so free memory if we can
clear emissives;
% if lack of memory is still a problem, a ’pack’ statement can
% be inserted on the critical points.

disp(’ 1km reflective’);
filenamel=[filename ’.1000m.hdf’];
bandname=’EV_1KM_RefSB’;
[reflectives,statl]=sds_read(filenamel, bandname) ;
% for reflective values, different scales and offsets apply
[scales,stat2]=attribute_read(filenamel, bandname, ’reflectance_scales’);
[offsets,stat3]=attribute_read(filenamel, bandname, ’reflectance_offsets’);
[names,stat4]=attribute_read(filenamel, bandname, ’band_names’);
if (stat1”=0 | stat2"=0 | stat3"=0 | stat4~=0)

f=-1;

disp(’Can’’t read Reflective Bands (1km)’);

return;
end
offsets=double(offsets);
scales=double(scales);
band10=((double(reflectives(:,:,3))-offsets(3))*scales(3))’;
band11=((double(reflectives(:,:,4))-offsets(4))*scales(4))’;
band12=((double(reflectives(:,:,5))-offsets(5))*scales(5))’;
clear reflectives;

disp(’ 250m reflective’);
filenamel=[filename ’.1000m.hdf’];
bandname=’EV_250_Aggrikm_RefSB’;
[reflectives,stat1]=sds_read(filenamel, bandname) ;
[scales,stat2]=attribute_read(filenamel, bandname, ’reflectance_scales’);
[offsets,stat3]=attribute_read(filenamel, bandname, ’reflectance_offsets’);
[names,stat4]=attribute_read(filenamel, bandname, ’band_names’);
if (stat1”=0 | stat2"=0 | stat3"=0 | stat4~=0)

f=-1;
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disp(’Can’’t read Reflective Bands (250m)’);

return;
end
offsets=double(offsets);
scales=double(scales);
bandi1=((double(reflectives(:,:,1))-offsets(1))*scales(1))’;
band2=((double(reflectives(:,:,2))-offsets(2))*scales(2))’;
clear reflectives;

disp(’ 500m reflective’);
filenamel=[filename ’.1000m.hdf’];
bandname=’EV_500_Aggrikm_RefSB’;
[reflectives,statl]=sds_read(filenamel, bandname) ;
[scales,stat2]=attribute_read(filenamel, bandname, ’reflectance_scales’);
[offsets,stat3]=attribute_read(filenamel, bandname, ’reflectance_offsets’);
[names,stat4]=attribute_read(filenamel, bandname, ’band_names’);
if (stat1”=0 | stat2"=0 | stat3"=0 | stat4~=0)

f=-1;

disp(’Can’’t read Reflective Bands (500m)’);

return;
end
offsets=double(offsets);
scales=double(scales);
band3=((double(reflectives(:,:,1))-offsets(1))*scales(1))’;
band4=((double(reflectives(:,:,2))-offsets(2))*scales(2))’;
band6=((double(reflectives(:,:,4))-offsets(4))*scales(4))’;
clear reflectives;
clear scales offsets bandname filenamel
% hopefully now we got all the data we need
disp(’reading finished’);
% correctness of values until now verified with HDFLook
% from now on, we are on our own

disp(’converting radiances to temperature values’);
% calculate the middle of the channels on the fly
disp(’ 4um’);

band21=radiance2teff(band?21, (3.989+3.929)/2);
disp(’ 11um’);
band31=radiance2teff(band31,(10.780+11.280)/2);

disp(’looking for bad data’);
% if the conversion above produced complex values,
% the argument to log() was negative. Something
Y% is seriously wrong, we want to get rid of this.
imags=imag(band21) | imag(band31);
% the 4um channel saturates at 500K, the 11um channel at 400K
% so all values above are bad
% same to reflective bands: values above 100% are bad
baddata=find(band1>1 | band?2 >1 | band3>1 | band3>1 | band4>1
band6>1 | band21>500 | band31>400 | imags
latitude==-999 | longitude==-999);
clear imags;
disp(’eliminating bad data’);
for i=[1 2 34 6 10 11 12 21 31]
istr=num2str(i) ;
evalstring=[’band’ istr ’(baddata)=0;’];
eval(evalstring);
end
% special case for 1at/1ong, because we need the
% min() and max() function later. If we would insert
% zeros, one of them would get confused.
% min() and max() take care of WNalls, so we can use it
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latitude(baddata)=nan;
longitude(baddata)=nan;

disp(’evaluating land/sea mask’);

% we want only "land" or "land with coastline"
land=(landseamask==1 | landseamask==2);

clear landseamask

disp(’detecting snow’);

%next line may produce division by zero warning.
% this is ok, so turn it off

warning off;

ndsi=(band4-band6) ./ (band4+bandsb) ;

% we want to hear warnings again

warning backtrace;

% this is the snow detection algorithm
snow=((ndsi>.4 & band2 > .11) & band4>.1);
snowpos=find(snow & land);

% next to the clouds
disp(’detecting clouds’);
cloud=((band11> 0.95*max(band11(:))) &
(band10> 0.95%max(band10(:))) &
(band12> 0.95%max(band12(:))));
% the above cloud detection algorithm is not the best
% To get all the cloud edges, we broaden the cloud mask
% with a smoothing filter
cloud=conv2(cloud,ones(5),’same’) ;
% bring cloud mask to logic array again
cloud=cloud & 1;
cloudpos=find(cloud & “(snow & land));

% now to the main part

disp(’detecting fires’);

Y% at first we construct a background filter
backgroundfilter=ones(7);

Y% we are only interested in the surrounding
backgroundfilter([3 4 5],[3 4 5])=0;

% normalize the filter so it doesn’t disturb data
backgroundfilter=backgroundfilter/sum(backgroundfilter(:));

disp(’ computing backgrounds’);

% oit proved convinient to mark bad data with Nall
band21(band21==0)=nan;

band31(band31==0)=nan;

t41=band21-band31;
t4b=conv2(band21,backgroundfilter, ’same’);
t41b=conv2(t41,backgroundfilter,’same’);

% by filtering, the edge of each matrix becomes invalid
% so we construct a invalid mask
invalid=zeros(size(t4b));

invalid([1:6, size(invalid,1)-5:size(invalid,1)],:)=1;
invalid(:,[1:6, size(invalid,2)-5:size(invalid,2)])=1;
% now we can see why nan was the better bad data marker
invalid=invalid | isnan(t4b) | isnan(t41b);

% we compute the standard deviation only for valid data
dt4b=std (t4b(~invalid));

dt41b=std(t41b(~invalid));

% next is the performing of the different fire tests
disp(’ testing’);
day=1;

43



C MATLAB SOURCE FILES FOR FIRE DETECTION

night=2;

% the next line has to be replaced by the actual

% day/night detection

time=day;

% the threshold values are based on atbd-mod-14

threshold=[330 25 360 ; 315 10 330];

% now the five tests

firetest1=(band21>t4b+dt4b*4);

firetest2=band21>threshold(time,1);

firetest3=(t41>t41b+dt41b*4) ;

firetest4=t41>threshold(time,?2);

firetest5=band21>threshold(time,3);

disp(’ finding’);

% combining of the tests

fire=(((firetestl | firetest2) & (firetest3 | firetest4))
| firetest5) & “invalid;

% fires can only be on land, with no clouds, and no snow

firepos=find(fire & land & “snow & “cloud);

% the actual fire detection is now done.

% rest of the script deals with map construction

disp([’ number of fire pixels detected: ’> num2str(size(firepos,1))]);
% testing is done, so we can clean up a little bit

clear firetestA firetestB firetesta firetestb firetestc;

clear t41 t41b t4b dt4b dt4ib;

clear band2 band6é band10 band11 band12 band21 band31;

clear fire cloud snow baddata invalid land landseamask ndsi;

% now produce output image
disp(’creating rgb image’);
rgb=stretch(cat(3, bandl, band4, band3));

the following lines were used for debugging.
If they are turned on again, they produce a nice
image too.

imagesc(rgb) ;

rgh2=rgb;

rgb2(firepos)=1;
rgb2(firepos+size(rgb2,1)*size(rgh2,2))=0;
rgb2(firepos+size(rgbh2,1)*size(rgb2,2)*2)=0;
rgb2(snowpos)=0;

rgb2 (snowpos+size(rgbh2,1)*size(rgh2,2))=0;
rgb2(snowpos+size(rgbh2,1)*size(rgb2,2)*2)=1;
rgb2(cloudpos)=0;
rgb2(cloudpos+size(rgb2,1)*size(rgh2,2))=0;
rgb2(cloudpos+size(rgb2,1)*size(rgh2,2)*2)=0;
figure

S L B

imagesc(rgb2)
% continue with the real stuff

disp(’producing rectangular map’);
disp(’ calculating vectors and copying data’);

% we don’t want to loose data, so in the middle of the

% map a pixel should be 1km x 1km.

% one degree latitude should be 111.2km everywhere

% size of one degree longitude is dependent on latitude

% we use australia/adelaide/mawson lakes
ourlatitude=-34.86;

% the ’0-’ in the next line is there because latitudes are
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% counted from south to north while matlab images from top

% to bottom

[nlat,latfac]=cstretch(0-latitude,111.2);

disp([’> one degree latitude is > num2str(latfac) ’ pixels high’]);
% cos(latitude) is the shrinking factor for longitude values

% this assumes a spherical earth which is perfectly right for

% this purpose

[nlong,longfac]=cstretch(longitude,111.2 * cos(ourlatitude/180%pi));
disp([’> one degree longitude is ’> num2str(longfac) ’ pixels wide’]);
% matlab indices start with 1

nlat=nlat+1;

nlong=nlong+1;

% create the target matrix to speed up copying
recmap=zeros(max(nlat(:)) ,max(nlong(:)),3);

% the next lines copy the data from rgb(:,:,:) to

% recmap(:,:,:) according to the information

% in from latitude/longitude

vector=sub2ind([size(recmap,1) size(recmap,2)], nlat(:), nlong(:));
recmap (vector)=rgb(:,:,1);

recmap (vector+size(recmap,1)*size(recmap,2))=rgb(:,:,2);

recmap (vector+size(recmap,1)*size(recmap,2)*2)=rgb(:,:,3);

% because not all pixels are of the same size, in recmap()
% are black spots. We want to fill them.

% this operation will need some memory, so clean up again
clear vector

clear cloudpos rgb snowpos

clear bandl band3 band4

pack;

disp(’ smoothing (1/2)7);
recmap=rgbfilter (recmap) ;
disp(’ smoothing (2/2)7);
recmap=rgbfilter (recmap) ;

%
% the code to paint a line grid may be inserted here

%

% next thing is to mark the fires with big red pixels
disp(’ painting fires’);
nfp=cat(2,nlat (firepos),nlong(firepos));
for i=1:size(nfp,1)
recmap (nfp(i,1)+1,nfp(i,2)+1,:)=[1 0 0];
end

% if you want to see the result...
%

Y%figure;

%imagesc(recmap) ;

%

disp(’writing image’);

% imwrite tends to use a lot of memory

% so clear up and convert the data beforehand
clear bandl band3 band4 rgb rgb2 cloudpos
recmap=uint8(round(recmap*255)) ;

pack;

imwrite(recmap,[filename ’.fires.tiff’],’tiff’);

% here we are!
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finishtime=now;

% last things is to write the report
% if other information are needed in the report
% it is easy to modify it
disp(’writing ASCII ouput’);
msg=[’# Results of firedetection’ 10
’# input files:’ 10

o > filename ’.geo.hdf’ 10
# > filename ’>.1000m.hdf’> 10
’# output files:’ 10
o > filename ’.fires.tiff’> 10
o image range: ’ num2str(min(latitude(:))) ’/’
num2str(min(longitude(:)))
>’ to ’ num2str(max(latitude(:))) */?
num2str(max(longitude(:))) 10
o pixelhigh: °’ num2str(i/latfac)
> degrees latitude’ 10
¥ pixelwidht: ’> num2str(1/longfac)
> degrees longitude’ 10
# > filename ’.fires.txt (this file)’ 10
'# starting time: ’ datestr(starttime) 10
'# finishing time: ’ datestr(finishtime) 10

# 7 10
’# the following fires were found:’ 10 ...
’# latitude longitude posit-x posit-y’ 10
15
% fopen() should not fail. If it fails, we can’t do anything anyway
fid=fopen([filename ’.fires.txt’],’w’);
furite(fid,msg, ’char’);
fireinfo=cat(2,latitude(firepos),longitude(firepos),
nlat(firepos) ,nlong(firepos));
if isempty(fireinfo)
furite(fid, #NONE’,’char’);
else
fireinfo=sortrows(fireinfo,[3 4 1 2]);
fprintf(£fid,’%10.5f %10.5f %10.0f %10.0f\n’, fireinfo’);
end
fclose(fid);
% if we reach this point we are happy!
disp(’all done’);
return;

% some helpful internal functions

%
% stretching color in the rgb image

function res=stretch(inp);
mi=min(inp(inp~=0));
tmp=inp-mi;

ma= .3 * max(tmp(:));
res=tmp/ma;

res(res>1)=1;
res(res<0)=0;

return;

% stretching 1at/1ong values to matrix coordinates

function [res, factor]=cstretch(inp,s);
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secondfactor=1;
tmp=inp-min(inp(:));
factor=s*secondfactor;
tmp=round (tmp*factor);
tmp(isnan(tmp))=1;
res=tmp;

return;

% the filtering out of the black pixels

function recmap=rgbfilter(recmap);

fs=1; %size of the filter

xy=size(recmap);

disp(’> finding black spots’);

% first we need to find which pixels can be filled
recmapcopy=sum(recmap,3) ;
recmapcopy=conv2(recmapcopy,ones(2*fs+1),’same’) ;
% exclude the edges again %% necessary??
recmapcopy ([1:fs+1 xy(1)-fs-1:xy(1)],:)=0;
recmapcopy(:, [1:fs+1 xy(2)-fs-1:xy(2)]1)=0;
cxy=find (sum(recmap,3)==0 & recmapcopy =0);

% all coordinates in cxy can potentially filled
% with data

disp(’> count pixels we have got’);

% how many nonzero neighbors has a pixel?

% we need this as a divisor in the averaging
divi=zeros(size(recmapcopy));

clear recmapcopy

al=(2%fs+1);

% in the next line the ’% 1’ converts the double array
% in a logical array of ones and zeros.

% we then sum over these ones.
divi=conv2((recmap(:,:,1) & 1), ones(al), ’same’);
disp(’ filtering’);

disp(’ red’);
tmp=conv2(recmap(:,:,1),ones(al),’same’);

recmap (cxy)=tmp(cxy) ./ divi(cxy);

disp(’ green’);
tmp=conv2(recmap(:,:,2),ones(al),’same’);

recmap (cxy+xy (1) *xy(2))=tmp(cxy) ./ divi(cxy);
disp(’ blue’);
tmp=conv2(recmap(:,:,3),ones(al),’same’);

recmap (cxy+xy (1) *xy (2)*2)=tmp(cxy) ./ divi(cxy);

return;

C.2 radiance2teff.m

function teff=radiance2teff(radiance,lambda) ;

% RADIANCE2TEFF convert radiance values to brightness temparatures
%

% input values:

% radiance in W/m~2/um/sterrad as found in IMAPP HDF files

% lambda in um

% radiance can be a matrix

% ouput values:

% teff effective brightness temperature in kelvin

% change history
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% 08/11/2001 written by kendy kutzner from scratch using citation below
% ?7/11/2001 added computation of c1 and c2
% 7??/11/2001 documented

% citing http://ltpwww.gsfc.nasa.gov/MAS/masdug.html

% MODIS Airborne Simulator Research and Documents

% Data User Guide

% by Liam Gumley, Paul Hubanks, and Ed Masuoka April 1994

% Conversion from IR radiance to Planck equivalent temperature

% or ’brightness temperature’ may be done by inverting the Planck
% equation. The

% inverse equation is of the form

% T(L,B) =C2 /L % lage ( C1 / ( L5 * B(L,T) * 106) + 1 )
% where,

% T(L,B) = brightness temperature in degrees Kelvin,
%C2=(Ch . c) / k=1.438768 . 10-2 m K
%Cl=2.h . c2=1.1910439 . 10-16 W m-2

% 1= wavelength in meters

% B(L,T) = Planck radiance in W m-2 sr-1 um-1

%Planck constant
h=6.62606876e-34;

Zspeed of light in vacuum
c=299792458;

%Boltzmann constant
k=1.3806503e-23;

%c1=1.1910439e-16;
%c2=1.4387686e-2;

Yfirst radiation constant
c1=2%h*c~2;

Y%second radiation constant
c2=h*c/k;

radiance=radiance.*1e6;

%bring radiance to W/m~2/m/sterrad
lambda=lambda./1e6;

%bring wavelength to m
teff=c2./lambda./log(cl./(lambda~5 .* radiance)+1);
Y%voila!

C.3 attribute_read.m

function [res,f]l=attribute_read(filename, sdsname, attrname);
%ATTRIBUTE_READ reads in Scientific Data Sets from .HDF files
% [res,status] = sds_read(filename, sdsname, attrname)

% filename is the name of the .HDF file to open. It is not parsed in

% any way, so it may contain path information and it must contain

% the extension .HDF

% sdsname is the name of the data set to be opened. It must appear exactly
% as in the .HDF file.
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% attrname is the name of the attribute to read. It must appear
% exactly as in the .HDF file.

% res result. It may have more than one dimension and may not

% be of type double.

% status contains O after successful execution, "0 otherwise.

% change history
% 22/11/2001 written by kendy kutzner

£=0; % no failures until now

% open the file

sd_id = hdfsd(’start’, filename, ’read’);

if sd_id==-1 % failure
disp([’error: could not open file "’, filename, ’"’]) ;
f=-1;
return ;

end

% search for data set and open it
sds_idx = hdfsd(’nametoindex’, sd_id, sdsname);
sds_id = hdfsd(’select’, sd_id, sds_idx);
if sds_id==-1 Y%failure
outstring=sprintf(’error: sds "%s' not found\n’,sdsname);
disp(outstring);
f=-1;
return;
end

Y%search for attribute and read it
attr_id=hdfsd(’findattr’, sds_id, attrname);
[res, status]=hdfsd(’readattr’, sds_id, attr_id);
if status”™0
disp([’Attribute "’ attrname ’" not found’]);
f=-1;
return;
end

%close data set and file
statl = hdfsd(’endaccess’,sds_id);
stat2 = hdfsd(’end’,sd_id);
if (stat17=0) | (stat27=0)
disp([’warning: problems closing file filename]);
end

return

C.4 sds_read.m

function [mat,f]=sds_read(filename, sdsname) ;
%SDS_READ reads in Scientific Data Sets from .HDF files
% [res,status] = sds_read(filename, sdsname)

% filename is the name of the .HDF file to open. It is not parsed in
% any way, so it may contain path information and it must contain

% the extension .HDF

% sdsname is the name of the data set to read. It must appear exactly
% as in the .HDF file.
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% res all the data. It may have more than two dimension and may not
% be of type double.
% status contains O after successful execution, "0 otherwise.

written by kendy kutzner

change history

25/10/2001 written from scratch
08/11/2001 added file closure

£=0;
mat=[];

sd_id = hdfsd(’start’, filename, ’read’);

if sd_id==- % failure
disp([’error: could not open file "’, filename, ’"’]) ;
f=-1;
return ;

end

sds_idx = hdfsd(’nametoindex’, sd_id, sdsname);
sds_id = hdfsd(’select’, sd_id, sds_idx);
if sds_id==-1 Y%failure
outstring=sprintf(’error: sds "%s' not found\n’,sdsname);
disp(outstring);
f=-1;
return;
end
[dsname, dsndims, dsdims, dstype, dsatts, stat] = hdfsd(’getinfo’,sds_id);
if (stat™=0)
disp([’warning: problems getting info for ’ sdsname]) ;
end

ds_start = zeros(1,dsndims); % Creates the vector [0 O] where we want to start
ds_stride = []; % we don’t skip anything
ds_edges = dsdims; 9% and read to the end
[mat, status] = hdfsd(’readdata’,sds_id,ds_start,ds_stride,ds_edges);
if status™=0
disp([’warning: problems reading sds ’ sdsname]) ;
end

Y%close hdf file
statl = hdfsd(’endaccess’,sds_id);
stat2 = hdfsd(’end’,sd_id);
if (stat17=0) | (stat27=0)
disp([’warning: problems reading sds ’> sdsnamel);
end

return
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D Additional Matlab source files

D.1 all500m2tiff.m

With the growing number of available data files there were increasing diffi-
culties to keep the overview which file contain which overpass. To solve these
problems the small function a11500m2tiff .m was written. The function con-
verts all 500m HDF levellb files in directory to TTFF files by reading bands
red, green and blue in 500m resolution, stretching contrast in each of them
individually and combining them to a RGB image

The only input parameter is the name of the directory containing the
HDF files. The parameter must have a trailing ’/’. The directory where the
TTFF files are written is hardwired in the code of the function.

The function runs autonomously if no errors occur. A disadvantage is the
need of memory, about twice the size of the largest HDF file.

function all500m2tiff(directory);
% ALL5OOM2TIFF(directory)

% Converts all 500m HDF levellb files in directory
% to TIFF files by reading bands red, green and blue
% in 500m resolution, stretching contrast in each of
% them individually and combining them to a RGB

% image.

% Caution: needs lot of memory (roughly twice the size of
% the largest HDF file in directory)

% directory: name of the directory containing the
% HDF files. The parameter must have trailing ’/’.
% The directory where the TIFF files are written
% is hardwired in the code of the function.

% functions needed:
%  IMPORTHDF
%  STRETCH

% change history
% 25/10/2001 written by kendy kutzner from scratch
% 19/11/2001 documented by kendy

targetdir=’/home/ingest/kendy/tiffs/’;

f=dir([directory ’*500m.hdf’]);
s=size(f);
format compact;
for i=1:s(1)
disp([’working on ’> f(i).name ’ (size: > num2str(round(f(i).bytes/1024/1024)) ’M)’]1);
[a,b,c,d]=fileparts(f(i) .name);
disp(’reading..’);
[nir,red,green,blue]=importhdf ([directory (i) .name]);
clear nir;
disp(’stretching..’);
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rgb(:,:,1)=uint8(round(stretch(double(red))*255));
rgb(:,:,2)=uint8(round(stretch(double(green))*255));
rgb(:,:,3)=uint8(round(stretch(double(blue))*255));

clear red green blue;
hdfml(’closeall?)
whos rgb;
disp(’packing..’);
pack;
disp(’writing tiff..’);
imwrite(rgb, [targetdir b ’.tiff’], ’tiff’);
disp(’clearing up..’);
clear rgb;
pack;

end;

function res=stretch(inp);
mi=min(inp(:));
tmp=inp-mi;

ma= .4 * max(tmp(:));
res=tmp/ma;

res(res>1)=1;

return;

D.2 hdf2bin.m

The DIMPLE software (see section A) can’t read HDF files itself. As a way
to export data from IMAPP to DIMPLE the Matlab function hdf2bin was
written. Tt exports all data bands in Tkm resolution to a binary file and some
meta information from the geolocation process to another. These files can
be read by Dimple via its raw files import facility.

To limit the resulting files in size, an area of interest can be provided and

hdf2bin can cut the image along latitude and/or longitude values.

This script does no data processing in any way, it just exports the level 1h
data to the binary file. Especially no corrections for the Bow Tie effect or
pixel compression are done.

function f=hdf2bin(filename, latmin, latmax, longmin, longmax)
% status = HDF2BIN(filename, latmin, latmax, longmin, longmax)

% Reads in HDF 1km & geo files, stores output in binary files
% to be read by dimple or similar programs

% filename is the basename of both HDF files. The extensions
% .1km.hdf and .geo.hdf are added.

% all remaining parameters give the boundaries where the data
% should be cutted. If no cutting is desired, give

% -90, 90, -180, 180 as values

% status equal O after successful execution, -1 after an

% error occured.

% The filename of the output files are created with the

% basename, then the resolution of the image after cutting
% in pixels and the extension data.bin for the actual data
% and lalohe.bin for the meta information latitude, longitude

% and height.
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% created 02/10/2001 by kendy kutzner
% modified 03/10/2001 by kendy

% - now output are two files, one with single precision (lat, long & height)
% the other with uint16 (data bands)

% - bands are now in numerical order

% (12345678910 11 12 1310 13hi 1410 14hi 15 16 17

% 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 )

% - filename now with resolution in pixels

% modified 19/11/2001 by kendy

% - added documentation

% some constants
nanreplace=0; % should invalid data be replaced by Nali?
rigidcut=1; % leave data outside specified region or not?

£=0; % no failure until now

%open the geo-file

actname=[filename, ’.geo.hdf’];

sd_id = hdfsd(’start’, actname, ’read’);

if sd_id==- % failure
disp([’could not open file "’, actname, ’"’]) ;
f=-1;
return ;

end

%reading in latitude
ds_data=readdsbyname(sd_id, ’Latitude’, 2, nanreplace);
lat=ds_data;

%reading in longitude
ds_data=readdsbyname(sd_id, ’Longitude’, 2, nanreplace);
long=ds_data;

Zreading in heigh information
ds_data=readdsbyname(sd_id, ’Height’, 2, nanreplace);
height=ds_data;

%finished with the .geo file
hdfml(’closeall’);

%open the 1000m-file

actname=[filename, ’.1000m.hdf’];

sd_id = hdfsd(’start’, actname, ’read’);

if sd_id==-1 % failure
disp([’could not open file "’, actname, ’"’]) ;
f=-1;
return ;

end

% lat, long and height have the same dimension, so

% cutting these three (lat, long, height) together

[area, xmin, xmax, ymin, ymax]=coordcut(lat, long, latmin, latmax, longmin, longmax) ;
nlat=lat(ymin:ymax, xmin:xmax) ;

nlong=long(ymin:ymax, xmin:xmax);

height=height (ymin:ymax, xmin:xmax);

bands=single([]);
bands=cat(3,bands,nlat);
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bands=cat(3,bands,nlong);
bands=cat(3,bands,,height) ;

% read the data and cut it as early as possible
ds_data=readdsbyname(sd_id, ’EV_250_Aggrikm_RefSB’, 3, nanreplace);
tmp=ds_data(ymin:ymax, xmin:xmax,:);

bands=cat(3,bands,tmp) ;

ds_data=readdsbyname(sd_id, ’EV_500_Aggrikm_RefSB’, 3, nanreplace);
tmp=ds_data(ymin:ymax, xmin:xmax,:);

bands=cat(3,bands,tmp) ;

ds_data=readdsbyname(sd_id, ’EV_1KM_RefSB’, 3, nanreplace);
tmp=ds_data(ymin:ymax, xmin:xmax,:);

bands=cat(3,bands,tmp) ;

ds_data=readdsbyname(sd_id, ’EV_1KM_Emissive’, 3, nanreplace);
tmp=ds_data(ymin:ymax, xmin:xmax,:);

bands=cat(3,bands,tmp) ;

hdfml(’closeall’);

%clean up a little bit, maybe we need mem
clear tmp;
clear ds_data;

% cut rectangular or along lat/long ?

if (rigidcut)

areaf=area(ymin:ymax, xmin:xmax);

j=size(bands);

for i=1:j(3) ;

bands(:,:,i)=single(double(bands(:,:,i)) .* double(areaf));
end;

end;

Y% now we are ready to write the data:
bandssize=size(bands);
count=length(bands(:));

if (bandssize(3) =41) disp(’error: not able to read 41 bands of data’); f=-1; return; end;

actname=[filename, ’.’, num2str(bandssize(1)), ’x’, num2str(bandssize(2)), ’.lalohe.bin’];
fid=fopen(actname, ’w’);
if fid==-
disp(’warning: could not open output file "’, actname, ’"’);
f=-1;
return;
end;

%write lat, long, and height in 32 bit float precision
count=count-fwrite(fid,bands(:,:,1:3), ’single’);
fclose(fid);

actname=[filename, ’.’, num2str(bandssize(1)), ’x’, num2str(bandssize(2)), ’.data.bin’];

fid=fopen(actname, ’w’);

if fid==-1 disp(’warning: could not open output file '"’, actname, ’'"’); f=-1; return; end;

%all succesive writes in uintié precision
%250m bands 1, 2

count=count—-fwrite(fid,bands(:,:,4:5), ’uint16’);

%500m bands 3 4 5 6 7

count=count—-fwrite(fid,bands(:,:,6:10), ’uint16’);

Y%1ikm refl bands 8,9,10,11,12,1310,13hi,1410,14hi,15,16,17,18,19
count=count-fwrite(fid,bands(:,:,11:24), ’uint16’);

%1km emissive bands 20,21,22,23,24,25
count=count-fwrite(fid,bands(:,:,26:31), ’uint16’);

%1km refl band 26

count=count—-fwrite(fid,bands(:,:,25), ’uint16’);

%1km emissive bands 27,28,29,30,31,32,33,34,35,36



D ADDITIONAL MATLAB SOURCE FILES

count=count-fwrite(fid,bands(:,:,32:41), ’uint16’);
fclose(fid);
if count”™=0 f=-1;
disp([’warning: not all data written correctly (’,
num2str(count),’ elements left)’]);

end;

return;

%getting sds_id by name
function sds_id=getsdsidbyname(sd_id, sdsname)

sds_idx = hdfsd(’nametoindex’, sd_id, sdsname);
sds_id = hdfsd(’select’, sd_id, sds_idx);
if sds_id==-1 Y%failure
outstring=sprintf(’warning: sds "%s' not found\n’,sdsname);
disp(outstring);
f=-1;
return;
end
return;

Y%read all data from a given sd-set

function ds_data=readallsdsdata(sds_id, dsndims, dsdims)

ds_start = zeros(1,dsndims); % Creates the vector [0 O]

ds_stride = [];

ds_edges = dsdims;

[ds_data, status] = hdfsd(’readdata’,sds_id,ds_start,ds_stride,ds_edges);
return;

Zcompute the cutting matrix
function [area, xmin, xmax, ymin, ymax]= ...
coordcut(lat, long, latmin, latmax, longmin, longmax)

if latmin>=latmax disp(’warning: latmin>=latmax’); end

if longmin>=longmax disp(’warning: longmit>=longmax’); end
lat(lat<latmin | lat > latmax)=0;

lat(lat™=0)=1;

long(long<longmin | long > longmax) = O;

long(long™=0)=1;

%area contains only O or 1, so

Y%convert area to uint8 to save memory
area=uint8(double(lat) .* double(long));
yx=size(area);

if length(yx) =2 disp(’dimension error’); return; end

Y%now look for boundaries

xmin=yx(2);

ymin=yx(1);

xmax=0;

ymax=0;

for y=1:yx(1)

if max(area(y,:))>0

ymin=min(ymin,y);
ymax=max (ymax,y) ;
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end
end
for x=1:yx(2)
if max(area(:,x))>0
xmin=min(xmin,x) ;
xmax=max (xmax,x) ;
end
end
return;

Y%read an entire data set by name
function ds_data=readdsbyname(sd_id, dsname, dimension, nanreplace)

sds_id=getsdsidbyname(sd_id, dsname);
if sds_id==-1 f=-1; return; end
[dsname, dsndims, dsdims, dstype, dsatts, stat] = hdfsd(’getinfo’,sds_id);

if (dsndims "= dimension) % safety check
disp([’warning: unexpected format in "’ dsname IR D
f=-1;
return;

end

ds_data=readallsdsdata(sds_id, dsndims, dsdims);
attr_idx = hdfsd(’findattr’,sds_id,’_FillValue’);
[attr, status] = hdfsd(’readattr’, sds_id, attr_idx);
if status==-1
attr=-999; % attribute not found, using default
disp(’Attribute "_FillValue'" not found in "Latitude'’);
end
if (nanreplace) ds_data(ds_data==attr)=nan; end %replacing fill values with Nall
return;
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E Other source codes

This section lists other used source codes. This includes the programs FrameSync
and slicer. Section E.3 describes the shell script which calls all other pro-
grams.

E.1 FrameSync.c

The entire FrameSync.c file would be far too long so only the differences
to the original one are shown below. The difference file was created by the
standard GNU diff program. For explanation of the changes please refer to
section 3.3.

58457

< int f_DumpFrameDecoded = FALSE; /* dump frames found after removing PN-randomization */
60d58

< int fframed = 1;

85,87d82

< fs_short Start_Sync_Match2[16];
<

<

126,130d120

< /* by kendy */

int offbyonebyte = O;

int f_flywheel = FALSE;
int nObits = O;
160,161d149

< puts

<
<
<
<

< (" -4 [filename] = dump frame to the output file after removing PN-randomization");
283,307d4270

case ’4’:
f_DumpFrameDecoded = TRUE;
if (option_typel[i + 1] == OPT_TYPE_OTHER)
{
++1;

5

#ifdef _WIN32
if ((fframed =
open (option[i], O_RDWR | O_CREAT | O_TRUNC | O_BINARY,
_S_IREAD | _S_IWRITE)) < 0)
#else
if ((fframed =
open (option[i], O_RDWR | O_CREAT | O_TRUNC,
0644)) < 0)
#endif
{
sprintf (tbuf, "Couldn’t open output file %s",
option[il);
(void) MyError (1, tbuf);

}
}
else
(void) MyError (1, '"-4 option requires a filename');
break;

ANANANAANAANAANAANAANANAANANAANANANANANNA
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513,514c476

< /x if (bitshift > 7) %/

< if (bitshift > 15)

> if (bitshift > 7)

549 ,550c511

< /% for (i = 0; i < 8; ++i) */
< for (i = 0; i < 16; ++i)

> for (i = 0; i < 8; ++i)

555,573d515

/**** version 2 of makeSyncSearchTable **kk****/

/* by kendy kutzner */

/* I’m working on bits 16-31 of sync pattern

because these contain valid bits for any possible bit shift
The values are stored in Start_Sync_Match2 */

<
<
<
<
<
<
<
< void

< Make_Sync_Search_Table2 (long pattern)
< {

< int i;

<
< for (i = 0; i < 16; i++)

< {

<
<
<
<
<

Start_Sync_Match2[i] = pattern >> i;
}

606,607c548

< /% for (i = 0; i < 8; ++i) */

< for (i = 0; i < 16; ++i)

> for (i = 0; i < 8; ++i)

646,7274586

< /* Find_Start_Sync2 written by Kendy Kutzner */

< /% much faster on noise data, but not as accurate as the orginal */
< /* this doesn’t matter because another check is done afterwards */
< int

< Find_Start_Sync2 (fs_long startsrch)

<A

< int i, j, r;

<

< for (i = startsrch; i < FrameSize; i++)
< {

< r = CVCDU_Raw_Frame[i + 1];
< for (j = 0; j < 16; j++)

< {

< if (r == Start_Sync_Match2[j])
< {

< offset = i;

< bitshift = j;

< return (1);

< ¥

< ¥

< ¥

< return (0);

<}

<

<

<
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749a609,610
> static int f_flywheel = FALSE;
> static int nObits = 0;

833¢c694
< if (!'Find_Start_Sync2 (startsync))
> if (!Find_Start_Sync (startsync))

904,911c765

< /*by kendy */

< else

< {

< nObits = 0; /* sync failed, so reset consecutive good counter.
< the slight chance to find a bad sync marker in the date

< we accept */

< ¥

< } /*end for */

> ¥

9144767

< nObits = 0;

1362d1214

< Make_Sync_Search_Table2 (ShortSync[0] * 0x10000 + ShortSync[1]);
1474c1326

< if (VCDU_Primary_Header.Virtual_Channel_I ==

< Ch_ID_MODIS && VCDU_Primary_Header.SpaceCraft_ID == 0x2a)
< /* 0x2a == TERRA */

> if (VCDU_Primary_Header.Virtual_Channel_ID == Ch_ID_MODIS)
1485,1502d1336
/s s ok ok sk ok ok sk ok sk o sk ok sk sk ok ok sk ok ok sk ok /
/***x* If Dumping decoded Frames ***xx*/
/s s ok ok sk ok ok sk ok sk o sk ok sk sk ok ok sk ok ok sk ok /
if (f_DumpFrameDecoded)
{
write (fframed, (char *) CVCDU_Raw_Frame, FrameSize);
/***** setup the next frame to check *k**xx/
CVCDU_Raw_Frame[0] = lastword;
if (!'ReadData ((char *) &CVCDU_Raw_Frame[1], FrameSize))
break;
lastword = CVCDU_Raw_Frame[ShortFrameSize];
continue;
}
#endif

#ifdef DEBUG
561,1574d1394
/* added by kendy kutzner */
if (End_0f_Prev_Packet + Start_0f_Packet >
Max_Packet_Size)
{
#ifdef DEBUG
fprintf (stderr,
"bogus telemetry packet size (nblks=%i, nFramesRead=%1li\n",
nblks, nFramesRead) ;
#endif
Have_Start_0f_Packet = FALSE;
continue;

}

AANAAAANAAAANAANAAANAREAAAAANAAAANAANAANAANAANANAANAANANANAN
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1616c1436
< if (ImageInfo.fout && f_flywheel)
> if (ImageInfo.fout)

1728,1730d1547
< /* inserted by kendy */

< Start_0f_Packet += (Packet_Size + 7);
< /*end insert */

1737c1554

< if (ImageInfo.fout && f_flywheel)
> if (ImageInfo.fout)

E.2 slicer.c

The program slicer is explained in section 3.1, based on ctest.c written by
Ricky TLuppino and shown below.

#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdarg.h>

#define CHUNK 1024%1024
#define BLK 1024
#define FNS 300

int main(int argc, char *argv[])
{

unsigned char buf[CHUNK];
// unsigned char res[BLK];

char filename[FHNS + 1];

char targetfile[FNS + 1];

char tmpfile[FHNS + 17;

FILE *fp;

FILE *of;

int fileopen;

int start_chunk;

int chunk_count;

int correl[BLK];

int winval[BLK];

int i, j, offset;

int k;

int count_array[256];

int highest;

int highest_v;

int highcor;

if (arge < 2) {
fprintf(stderr, "Usage \n slicer <filename> [<targetfile>] \n");
exit(1);
}
strncpy(filename, argv[1], FHNS);
if (argec > 2) {
strncpy(targetfile, argv[2], FNS);
} else
strncpy(targetfile, filename, FNS);
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strncat(filename, " .raw", FHNS);

fp = fopen(filename, 'rb");

if (fp == WULL) {
fprintf(stderr, "could not open %s\n", filename);
exit(1);

}

snprintf(tmpfile, FNS, "%s.slicer%i.tmp", targetfile, getpid());

chunk_count = 0;
start_chunk = 0;
fileopen = O;

// loop around and do chunks until EOF

while (fread(buf, 1, CHUNK, fp) == CHUNK) {
for (offset = 0; offset < BLK; offset++) {

j = offset;

for (k = 0; k < 256; k++)
count_array[k] = 0;

while (j < CHUNK) {
count_array[buf[j]]++;
j += BLK;

}

// find highest

highest = 0;

highest_v = count_array[0];

for (k = 1; k < 256; k++)
if (count_array[k] > highest_v) {

highest_v = count_array[k];

highest = k;

correl[offset] = highest_v;
winval[offset] = highest;

// find max correl value in the CHUNK and print
highcor = 0;
for (i = 0; i < BLK; i++) {
if (correl[i] > highcor)
highcor = correllil;
}
chunk_count++;
// printf(“'chunk %d = %d\n", chunk_count, highcor);
fprintf(stderr,".");
if (highcor == BLK) {
if (fileopen) {
furite(buf, 1, CHUNK, of);
} else {
of = fopen(tmpfile, "w");
if (of == WULL) {
fprintf(stderr, "could not open temp file ¥%s\n",
tmpfile) ;
exit(1);
}
fileopen = 1;
furite(buf, 1, CHUNK, of);
start_chunk = chunk_count;

}

} else {

if (fileopen) {
// close file
fileopen = 0O;

61
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fclose(of);

snprintf(filename, FNS, "%s-%i-%i.raw", targetfile,
start_chunk, chunk_count - 1);

// printf("attempt to rename %s to %s \n", tmpfile, filename);

printf("%s-%i-%i\n",targetfile, start_chunk, chunk_count -1);

if (0 != rename(tmpfile, filename))
fprintf(stderr, "error: %s\n", strerror(errno));
}
}
}
if (fileopen) {
fclose(of);

snprintf(filename, FNS, "%s-%i-%i.raw", targetfile,
start_chunk, chunk_count);
// printf("attempt to rename %s to %s \n", tmpfile, filename);

printf("%s-%i-%i\n",targetfile, start_chunk, chunk_count );

if (0 != rename(tmpfile, filename))
fprintf(stderr, "error: %s\n", strerror(errno));
}
fclose(fp);
fprintf(stderr,"\n");
return O;

E.3 The shell script
This small shell script ties it all together. It calls the programs

Slicer

o reformat

FrameSync

e IMAPP consisting of

- LO_tO_L]a,
— geolocate

— calibrate
e Matlab with the function firedetection

with all their necessary arguments. It also can update some files needed by
IMAPP. The only parameter it takes is the name of the (freshly recorded)
raw file.

#!'/bin/bash
IMAPPDIR=/dd2/IMAPP_RUN2
#IMAPPDIR=/dd1/IMAPP_RUN
IMAPP=$IMAPPDIR/geoimapp.csh
SLICER=/home/ingest/bin/slicer
FS2=/home/ingest/bin/fs2
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WGET=/usr/bin/wuget
MATLAB=/app/matlabl12/bin/matlab
REFORMAT=/home/ingest/bin/reformat
CP=/bin/cp

MV=/bin/mv

# we should check write permission in the current directory

# maybe the next four lines should appear in
# a weekly cronjob

#$WGET ftp://acdisx.gsfc.nasa.gov/pub/.dbs/ancillary/leapsec.dat
#$WGET ftp://acdisx.gsfc.nasa.gov/pub/.dbs/ancillary/utcpole.dat
$CP leapsec.dat /data/IMAPP/levella/static
$CP utcpole.dat /data/IMAPP/levella/static

# check for command line arguments

# start operation
$SLICER $1 > $1.slicer
for actfile in ‘cat $1.slicer‘ ; do
echo "working on file $actfile";
# turn the bytes arround
# this would not be neccesary with fs2 but with stps
# so do it
1s $actfilex -1
$REFORMAT < $actfile.raw > $actfile.tmp
1s $actfilex -1
$MV $actfile.tmp $actfile.raw
# TMAPP calls the levelO files .PDS,
# in ITR they are called .CCSDS
*
# in some future the FS2 line may be replaced with a line
# calling STPS
$FS2 -i $actfile.raw -o $actfile.ccsds
$IMAPP $actfile.ccsds
# check the results of IMAPP
*
echo firedetection\(\’$IMAPPDIR/$actfile\’\) | $MATLAB -nojvm -nosplash;
done
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F Configuration Files

This section list necessary configuration files, most of them for the STPS
suite of programs.

F.1 socapps.cfg

F2S nugget 8003 32000 0 1 0 1

EDOS_F2S nugget 8003 10000 0 1 0 1

S2F stps28 1999 32000 0O

S2S stps28 5000 600 edosl 5001 600 0 1
*END*

F.2 stps.cfg

VERSION 3.41
CHANNEL O

CC_MODE 1
CC_ENGR_DISPLAY 1
DISPLAY STRING MY--TelemetryFromFileToFile

ERROR_LOG_FILE_DIR ./my
STATUS_LOG_FILE_DIR ./my

DSP_PROCESS_UP 0
DSP_DEVICE 0
DSP_SOCKET_SERVER_PORT 8002
DSP_SOCKET_OUTPUT_ON 1
DSP_SOCKET_SEND_DATA_HEADER 1
DSP_SESSION_TIME_OUT 30
DSP_RECORD 0
DSP_REC_DIR_NAME ./my

INPUT_BUFFER_SIZE 655360
INPUT_DATA_TYPE O

CHECK_INPUT_BLOCK_CRC O

REC_DATA_MAX_FILE_SZ -1
REC_DATA_TIME_LIMIT -1

DLTP_UP 1
DLTP_FRAME_DATA_TO_FILE 0
DLTP_PROCESSED_DATA_DIR /home/kendy/stps/my
DLTP_SOCKET_HOST_MACHINE ingest
DLTP_SOCKET_CLIENT_PORT 8003
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DLTP_SOCKET_RECV_DATA_HEADER O

FS_frameLength 1024
FS_bitReverseFrames 0
FS_lossOfLockBits O
FS_autoPolarity O
FS_pnDecodeCCSDS 0O
FS_pnDecodeBeforeReverse 0O
FS_noFlywheelFramesFlag 0O
FS_outputFramesState 2
FS_framesPerModeO 3
FS_framesPerModel 9
FS_framesPerMode2 3
FS_framesPerMode3 1
FS_bitFlipsPerModeO
FS_bitFlipsPerModel
FS_bitFlipsPerMode2
FS_bitFlipsPerMode3
FS_bitSlipsPerModeO
FS_bitSlipsPerModel
FS_bitSlipsPerMode2
FS_bitSlipsPerMode3
FS_fsPatternLength 4
FSPO 1A

FSP1 CF

FSP2 FC

FSP3 1D

W o W wwo ww

CHECK_FRAME_CRC O

RSD_ENABLED 1
RSD_BITS_PER_SYMBOL 8
RSD_MAX_CORRECTABLE_ERRS 16
RSD_Mo 112

RSD_POA 11
RSD_VIRTUAL_FILL O
RSD_INTERLEAVE 4

RSD_MODE 1

__EXTERNAL_MODULES_INPUT_PARAMS_BEGIN_

_EDOS_BEGIN_

ESH_VER 1
TGT_PORT AA

RSDheaderOnly O
EDOSSocOutPort 2005
EDOSoutputServerHost nugget
EDOSdiscardBadFrames 1
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EDOSuseUNIXtime O

EDOSinFreq 1000000

EDOSoutputSync 1

EDOSoutputCLCW O

EDOCclcwPortlum O
EDOSclcwMulticastAddress 225.2.7.000
TERRAspecificPNDECODE 1

__EXTERNAL_MODULES_INPUT_PARAMS_END__

_END_PARAMS_

F.3 pk.cfg

# Configuration File Format

# all comments must have a '"#" in the first column

# all parameters must have a space in the first column
#

#

Total frame length including sync, and RS symbols if present
TOTAL_FRAME_LENGTH= 1024

# RS interleave, set to 0 if RS symbols are not present
RS_INTERLEAVE= 4

# Base directory where packet files are placed
PKT_DIRECTORY= .

#For each VC to process, enter parameters, no spaces or
# comments are allowed in between parameters.
# 1= yes, 0 = no

VCID= 1

INSERTZONE_SIZE= 0O
CLCW_PRESENT= 0O
CRC_PRESENT= 0

( VC 2-40 have been cut, out to shorten this document.)

VCID= 41
INSERTZONE_SIZE= 0O
CLCW_PRESENT= 0O
CRC_PRESENT= 0

VCID= 42
INSERTZONE_SIZE= 0O
CLCW_PRESENT= 0O
CRC_PRESENT= 0

66



F' CONFIGURATION FILES

VCID= 43
INSERTZONE_SIZE= 0O
CLCW_PRESENT= 0O
CRC_PRESENT= 0

(VC 44 62 have been cut out to shorten this document.)

VCID= 63
INSERTZONE_SIZE= 0O
CLCW_PRESENT= 0O
CRC_PRESENT= 0
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