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Chapter 1
Introdution
In the early 1980s Shehtman et al. [1℄ made an astonishing disovery. They measured seleted-area eletron di�ration patterns of rapidly quenhed metalli AlMn alloys (about 14% Mn ontent)and observed something whih seemed to ontradit the basis of rystallography. The di�rationpatterns of grains of about 2 �m in size onsisted of sharp Bragg peaks, what pointed to a periodiatomi struture in the samples, but were invariant under iosahedral symmetries that alreadyare \forbidden" symmetries in periodi rystals. After rotating the speimen through angles of theiosahedral point group the di�ration pattern displayed six �vefold, ten threefold and �fteen twofoldaxes. Indeed, we learn already in the elementary ourse of solid state physis [2, 3℄ that the onlypoint symmetries whih an our in periodi strutures are two-, three-, four- and six-fold rotations.One therefore dealt with a qualitatively new kind of di�ration patterns, that suggested that theatomi struture of the sample an be neither periodi nor amorphous (without long-range order) butit is, in a ertain sense, intermediate between these two regimes. For some years after Shehtman'sdisovery one ould not answer the puzzling question, what the atomi struture of the measuredsamples was. The �rst explanations, supported by Linus Pauling, whih referred to twined rystalswith very large unit ells appeared, however, to be inonsistent with observed di�ration patterns.Yet at the end of the eighties a onsensus has been ahieved as far as solving of the atomi strutureof the iosahedral phase alloys is onerned. It appeared that the Penrose tiling [4℄, a �lling of theplane by two kinds of tiles - the fat and the thin rhombus or a kite and a dart - devised by the famousEnglish mathematiian and astrophysiist Roger Penrose in the late 1970s, with a ertain atomideoration exhibited a very similar di�ration pattern as those measured by Shehtman. Some timelater the Penrose tiling was generalised to three dimensions (the Amman-Kramer-Neri tiling [5℄). Anon-periodi �lling of the spae by two kinds of rhombohedra was onstruted, and it was shown thatthe di�ration pattern of this struture had an iosahedral point group, whih was also present inthe full, 3D, di�ration patterns of the Shehtman alloys. Now, the sienti� ommunity agrees thatShehtman alloys are quasirystals the atomi struture of whih an be modelled by quasiperioditilings like the Penrose or Amman-Kramer-Neri tilings. Di�ration patterns of these materials displayanother unusual property besides iosahedral symmetries. It follows from theoretial alulationsof Fourier transforms of quasiperiodi tilings, that the set of di�ration spots having not-vanishingpeaks �lls the spae densely. Due to a �nite resolution one an, however, distinguish sharp, isolatedpeaks, emerging from a di�usive bakground. When inreasing the resolution more peaks appearand their mutual distanes grow smaller. Besides iosahedral quasirystals, whih are aperiodi inall three dimensions of spae, also periodially layered strutures with planar quasiperiodi orderand non-rystallographi rotational symmetries were found, omprising dodeagonal [6℄, deagonal[7℄, and otagonal [8℄ phases with twelve-, ten-, and eightfold symmetry, respetively. Althoughthe fundamental question \where are the atoms?" has only been answered partially to date, most1
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struture models of quasirystals are based on 2D or 3D quasiperiodi tilings or their disorderedversions (random tilings).Quasirystals have rather peuliar physial properties. As far as transport properties are on-erned they are rather loser to semiondutors or amorphous materials than to metals. Despitea relatively large onentration of Al (more than 60%) these alloys are very bad ondutors. Fora series of AlCuFe and AlPdMn quasirystalline alloys the ondutivity �(T ) an be written as�(T ) = �4 K + Æ�(T ) where the value �4 K for T = 4 K is very low, of the order of 100 (
m)�1,and dereases with improvement of strutural quality of the sample. The term Æ�(T ) is an inreasingfuntion of temperature, i.e. reverse as in metals where � dereases with temperature, and is inde-pendent of the sample [9℄. Also mehanial properties of quasirystals have been studied intensively.Quasirystals are brittle at ambient temperature, they beome dutile at higher temperatures. In[10℄ speimens of single-quasirystals AlPdMn, grown by the Czohralski method, of 7� 2� 2mm3in size were deformed in ompression at temperatures between 680 and 800 oC with a strain rate10�51=s. The stress-strain � � � urves were haraterised by a linear dependene �(�) for small �followed by a violent drop of stress after reahing the plastiity limit and followed further by a on-tinuous derease of stress with inreasing strain. One observed a very high plastiity, the ontinuousderease of � with inreasing � did not disappear even for deformations � up to 20%. The trybology,it means surfaes properties of quasirystalline alloys, are interesting in view of potential industrialappliations of these materials. The surfae energy was found to be rather low on the basis of asmall wetting of these substanes by liquids. The feature of small wetting found already appliationin Frane where prodution of frying pans oated by a quasirystalline layer on an industrial salestarted. Moreover, the frition of two surfaes overed by a thin layer of a quasirystalline alloy issubstantially diminished. Therefore, works are arried out on applying these alloys to oat innersurfaes of pistons of ombustion engines or outer surfaes of airplanes in order to redue frition.Reently one found another very promising feature of a ertain lass of iosahedral-ordered Ti-basedalloys. These alloys ould be improved materials for hydrogen storage. As reported in [11℄, the iosa-hedral Zr69:5Ni12Ci11Al7:5 phase an absorb large amounts of hydrogen, with proton to metal ratioas high as 1:9 what puts these materials on a ompetitive basis with respet to solutions urrentlyused in eletrohemial devies like batteries.This thesis is devoted to two subjets, theoretial investigations of magneti and of eletroniproperties of quasirystals. The onept of this work is to deal with a general problem of �nding theinuene of quasiperiodi order onto various physial properties of the system. Unfortunately, dueto the laking periodiity, and laking symmetries of the problem, there are only very few modelsof quasiperiodi strutures whih an be solved exatly. Most of them are 1D models, tight-bindingor Ising models, whih an be treated with methods like the transfer-matrix method (see [12℄ for aextensive review of the subjet). Beyond doubt, these are very interesting from the mathematialpoint of view, but the results an be hardly ompared with the experiment.On the other hand quasiperiodi strutures possess \almost symmetries" or long-range order,what suggests that many models should be solvable analytially. The preise meaning of the notions\almost symmetries" and long-range order will be expliated beneath. The most frequently itedexplanation of the onept long-range order is the so alled Conway theorem for the Penrose tiling,whih states that every �nite path with radius R an be found at in�nitely many positions inthe tiling and that its next ourrene is not further than 2R from the entre of the path. Thenotion \almost symmetry" an be explained as follows. One often says that the Penrose tiling is�ve-fold symmetri, what is not true in the exat meaning of this word. Indeed, only a glimpse atthe tiling suÆes to asertain, that the pattern is not globally �ve-fold symmetri. We an, however,always �nd an arbitrarily large portion of the tiling, whih, due to the Conway`s theorem, ours atin�nitely many positions, and whih is invariant under a rotation by 2�=5. In other words the �ve-
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fold rotational symmetry refers to this portion rather than to the entire tiling. The pair-orrelationfuntion, whih is an inverse Fourier transform of the modulus of the di�ration pattern, is howeverexatly �ve-fold symmetri. The onept of symmetry is therefore well de�ned in the di�rationpattern, whereas in the position spae we deal with generalised symmetries, in the sense desribedabove.We know that, if a model has symmetries we an always �nd onservation laws assoiated withthem, due to the N�other theorem. In quantum mehanis every symmetry orresponds to an op-erator whih ommutes with the Hamiltonian and thus its expetation value does not depend ontime, i.e. it is onserved. In other words, if the model is invariant under ertain symmetries it islikely to be solvable. Now, a question arises whether it is also true for \almost symmetries" our-ring in quasiperiodi strutures. The belief that also \almost symmetries" will produe onservedquantities and an imply a method of solving the problem exatly was an inspiration for this work.It appeared �nally, that one has to ombine analytial and numerial methods in order to makereliable statements about the models under onsideration.In the �rst hapter of this thesis we onsider lassial Ising models de�ned on quasiperiodi tilingsand examine their ritial behaviour. Here we use two di�erent approahes. Firstly we ompute agraphial series expansion of the free energy F , a method known and suessfully used for periodisystems sine the 1950s, speially adapted for quasiperiodi tilings. Seondly we alulate thermo-dynami quantities, like F or the spin-spin orrelation funtion, on so-alled periodi approximantsexatly and try to draw onlusions about the behaviour of these quantities on the quasiperioditiling. Here, we are able to make preise estimates of the ritial temperatures of the Ising model.The seond hapter is devoted to an analysis of tight-binding models on quasiperiodi tilingswhere we try to �nd some exat eigenstates of these models, at least for speial values of the energyand the oupling onstants. The eigenstates appear to be multifratals, i.e., they have a self-similarspatial struture, and we analyse them with respet to their spatial loalisation. This part an beviewed as a ontribution to formulating a general theory of eigenstates in quasiperiodi potentials.
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Chapter 2
Quasiperiodi Ising models
2.1 Aim of the investigationsThe magneti properties of quasirystals have been of major interest sine the disovery of thesematerials. Despite of the fat that many quasirystals ontain atoms arrying magneti moments(like Fe, Mn or rare-earth elements), magnetially ordered phases, like ferro-, ferri- and antiferro-magnets are rather rare. This is due to the fat that the magneti moments are usually sreenedvery e�etively and, onsequently, one �nds a weak paramagneti or diamagneti behaviour, seee.g. [13, 14℄.Investigations of the inuene of quasiperiodi order on magneti properties, however, startedalready before the �rst quasirystals have been experimentally observed. In most ases one on-sidered either 1D quantum spin hains with aperiodi sequenes of oupling onstants or lassialIsing models on 2D quasiperiodi graphs (the reent review [12℄ ontains a rather omplete list ofreferenes). A lassi�ation sheme for magnetially ordered quasirystals has also been proposed[15℄.One of the entral questions whih an be posed in this ontext is whether the quasiperiodiorder inuenes the universal properties at the phase transition, suh as the ritial exponents, inomparison to the periodi ase. Luk [16℄ formulated a heuristi riterion onerning the relevaneof aperiodiity based on a result of Harris [17℄ for random defets. Aording to this riterion, the\topologial disorder" enountered in quasirystals, generated by the ut-and-projet method, isirrelevant; in other words an Ising model on a quasiperiodi tiling should be haraterised by thesame set of ritial exponents as the Ising model on the square lattie. Certainly, the non-universalproperties, like for instane the loation of ritial points of lattie models, do, in general, dependon the partiular system under onsideration.The aim of this hapter is to examine thoroughly the relevane of quasiperiodiity on the ritialbehaviour of lassial Ising models. Using various methods we are going to hek the preditions ofthe Harris-Luk riterion by examining the temperature dependene of thermodynami quantitiesaround the ritial point, more preisely as it was possible before. In fat it appears that our estimatesof ritial indies are in some ases not satisfatory but our method an be applied to a wide lassof systems and due to making use of an analytial result an be systematially improved, yieldingmore and more preise results. We will also ompute, with high auray, non-universal quantitieslike ritial temperatures T on periodi approximants of quasiperiodi tilings. Extrapolating thesequene of T(m) for the mth periodi approximant towards m ! 1 we will alulate the ritialtemperature on the orresponding quasiperiodi tiling.In addition, the omplex temperature phase diagram is onsidered by alulating the zeros ofthe Ising model partition funtion in the omplex temperature plane, so alled Fisher zeros. These5
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results will be ompared to previous alulations of Fisher zeros on quasiperiodi tilings [18, 19℄whih however, were muh less aurate. The reason why we are able to alulate many quantitieswith a higher preision is due to the fat that we use an analytial result expressing the Ising modelpartition funtion on a periodi tiling by a determinant of a �nite matrix, the so alled Ka-Wardmatrix [20℄. While this determinant an, in priniple, be alulated exatly as a funtion of theoupling onstants, we are able to obtain an exat, losed formula for the partition funtion, at leastif the size of the unit ell is not too large. In the ase of interest the dimension of the determinantis very large, making it therefore almost impossible to alulate the determinant exatly, but theappliation of the analytial result is still of advantage beause it redues drastially the omplexity ofthe numerial algorithm by omputing temperature expansions of thermodynami funtions. We willshow that the alulation of the nth expansion oeÆient of the free energy amounts to omputingthe nth power of the Ka-Ward matrix, what, for a given dimension of the Ka-Ward matrix,is a problem of omplexity log2(n). This is muh less than the exponential omputational e�ort(� exp(n)) of determining the expansion oeÆients from the de�nition of the partition funtion,i.e., as sums over losed graphs ourring in the lattie.The Ka-Ward result has a long history and is interesting itself. The derivation of this result willbe reviewed in a separate setion, here we only want to mention the topi shortly. This approahallows to hange the ombinatorial problem of a summation over graphs, whih appears in thealulation of the partition sum, into an algebrai problem. This results in a drasti redution ofthe omplexity.A question arises whether suh a formalism is possible also for other lattie models, for instanefor the q-state Potts model or for the Ising model with non-zero magneti �eld. The Ka-Wardresult is only valid for 2D systems. One ould therefore larify whether it is possible to extend thismahinery to 3D systems, it means whether one an sum up the terms of the lattie-model partitionfuntion by alulating a determinant of a ertain matrix whih is related to the lattie. A positiveanswer to this question ould give rise to a breakthrough in statistial mehanis, beause the q-statePotts model (for q > 2) or the 3D Ising model have not been solved exatly up to now. We willremark on this later on.The Ka-Ward result enables also an exat alulation of the spin-spin orrelation funtion h�i�jion periodi approximants. Again, similarly to the ase of the free energy the losed expression is,for large unit ells, rather lengthly and diÆult to analyse. We an, however, expand the resultin a power series and analyse it in the same way as the graphial expansions of F . The squaredspontaneous magnetisation of the Ising model an be expressed by h�i�ji in the limit when thedistane between the sites i and j tends to in�nity. Therefore we will ompute h�i�ji on periodiapproximants for a large distane between the sites i and j and try to alulate at least the leadingterms of the magnetisation and make estimates for the ritial exponent � of the magnetisation.We also onstrut an aperiodi Ising model with relevant modulation aording to the Harris-Luk riterion in order to obtain a behaviour di�erent from the square lattie ase, to be referred toin what follows as a non-Onsager ritial behaviour.Aording to the riterion the ritial properties are determined by utuations of ouplingonstants J around the mean value hJ � hJii2, see the next hapter for a preise explanation.Surprisingly, it is rather diÆult to obtain a non-Onsager ritial behaviour if the interation ofthe Ising model ontains only one oupling onstant J , i.e., when the disorder follows only fromthe fat that di�erent sites have a di�erent number of nearest neighbours. The reasons for thiswill be eluidated in the next setion. However, if we introdue at least two oupling onstants, orremove ertain interations by setting the respetive oupling onstants equal to zero, it is possibleto distribute them aperiodially on the square lattie in suh a way that a non-Onsager ritialbehaviour arises. One an onstrut examples of substitution rules and, using arguments based on
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an approximative renormalisation group, show that the behaviour in the viinity of the ritial pointshould be di�erent to that of the square lattie. The renormalisation group treatment, however,is inapable to give even rough estimates of the ritial exponents. By the use of the Ka-Wardmethod we will investigate the ritial properties rather preisely.
2.2 The Harris-Luk riterion2.2.1 Review of various disorder-relevane riteriaThe aim of this hapter is to explain a heuristi riterion for the inuene of disorder onto theuniversal ritial properties of a seond-order phase transition of an Ising model. Our onsiderationsare based on referenes [17℄,[21℄ and [16℄. In the pioneering work, Harris [17℄ onsidered a smallamount of unorrelated, quenhed disorder and gave a ondition for the spei� heat exponent� = 2 � d� whih, via a saling relation, is onneted with the dimension d of the system and theorrelation length exponent �. The disorder is relevant, what means that it leads to a di�erentritial behaviour, if � > 0 in the pure system, for � < 0 the disorder is irrelevant. Notie that thease � = 0, whih ours, for instane for the Ising model on the 2D square lattie, is marginal,whih means that one annot deide whether the disorder is relevant or not. For the 3D ubi lattiethere are, however, onvining hints that � > 0, thus a small amount of randomness should lead toa di�erent ritial behaviour than in the periodi ase.Some years later, Weinrib and Halperin [21℄ formulated an extension of the Harris riterion forsystems with long-range randomness. Preisely speaking, Weinrib and Halperin onsidered a modelwhere the ritial temperature T(~x) utuates with the site ~x and these utuations arose from"inhomogeneities" in the system haraterised by a orrelation funtion falling rather slowly withdistane. They assumed that the orrelation funtion of the loal ritial temperature hT(~x)T(~y)i�hT(~x)i2 obeys a power law � j~x�~yj�a for large separations j~x�~yj. The riterion was formulated interms of the ritial temperature orrelation exponent a and the orrelation length exponent �. Ifthe ritial temperature orrelation funtion deays slowly with distane, more preisely for a < d,the disorder was relevant if 2�a� > 0, while for a > d one reovers the Harris riterion: the disorderis relevant if � = 2� d� > 0.In the same spirit, Luk [16℄ formulated a relevane riterion for Ising models on aperiodistrutures, omprising quasi-periodi, random or self-similar strutures. In partiular he explainswhy rystals and quasirystals exhibit the same ritial behaviour. We want to analyse Luk'sargumentation and apply his riterion to 2D quasirystals, whih we will investigate thoroughly inthe following setions.
2.2.2 Model systems and utuationsTo start with let us speify was is meant by randomness or disorder in our latties. We are going toonsider model systems where randomness is introdued in two manners:1. Topologial disorder, i.e., the oordination number (the number of nearest-neighbours) of site~x varies. The oupling onstants between nearest-neighbour spins are onstant.2. Irregularly distributed spin oupling onstants on a regular lattie (for this ase we will on-strut a system were the randomness leads to a di�erent universality lass).
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For de�niteness, let us onsider a lassial Ising model (see setion 2.3.1 for the de�nition of theIsing model) with nearest-neighbour interations given by the Hamilton funtionH = �Xhj;kiJj;k�j�k (2.1)
It has to be stressed, however, that the argumentation of this setion is valid for a larger lass ofmodels of magnetism, it omprises in partiular quantum-mehanial Heisenberg models or Pottsmodels. We will onsider systems whih are homogeneous on suÆiently large sales. This meansthat the mean oordination number n0, or the site-averaged oupling onstant J0, should be well-de�ned in the thermodynami limit. Let us sum the oupling onstants Jj;k over an approximatelyspherial path V ontaining N spins hJiV = Phj;ki2V Jj;k: We will assume that the utuationsof oupling onstants or oordination numbers around their values in the in�nite system an bedesribed by a power law: GV (N) = �hJiV � J0n02 N� � N! (2.2)where ! is alled the wandering exponent and desribes the saling behaviour of the utuationsGV (N) with the volume V .The lass of model systems for whih this assumption holds is rather large, it omprises, inpartiular, substitutional strutures. These are latties or 1D hains whih onsist of a �nite numberof building bloks, tiles, sites with a given nearest-neighbour on�guration or intervals with a givenlength in the ase of 1D hains, and an be onstruted, starting from one building blok, by aniterative appliation of a deterministi substitution rule. Let us now de�ne a substitutional systemand explain how to alulate the wandering exponent for given substitutional rules.We onsider a primitive substitution � on an alphabetA onsisting of n lettersA := fa1; a2; : : : ; ang.� : ai �! wi for i = 1; : : : ; n (2.3)where wi is a word (�nite sequene of letters) onsisting of letters from A. The word \primitive"means that for a suÆiently large power k0 of the substitution � all letters ai 2 A are inluded inevery word �k0(ai). The mth-generation letter hain wmi is now onstruted as an m-fold appliationof the substitutional rule � on the ith letter of the alphabet A: wmi = �m(ai). As the letter aiorresponds to a building blok of our lattie, we an assoiate to it a ertain \oupling-onstant"�i. The �i's an have various physial interpretations, for a 1D spin hain or a 2D Ising model ona regular lattie these are oupling onstants between nearest neighbour spins, while for systemswith topologial (bond) disorder, and all spin-oupling onstants equal, these an be oordinationnumbers varying with the site ai.Now, we de�ne a substitution matrix M� whose entries (M�)i;j ount the number of letters ai inthe word wj , whih we denote as #ai(wj).(M�)i;j := #ai(wj) (2.4)Apparently the jth olumn of (M�)m ounts the letters ourring in �m(aj). Furthermore we de�ne�i to be the sequene of magnitude-ordered eigenvalues of the matrix M� i.e. j�1j > j�2j > : : : > j�nj,f~v1; ~v2; : : : ; ~vng is the eigenbase of matrix (M�) and f~v(t)1 ; ~v(t)2 ; : : : ; ~v(t)n g is the eigenbase of thetransposed matrix M (t)� . We assume also that both matries (M�) and M (t)� have n linear inde-pendent eigenvetors; if it is not the ase we an use the Jordan-base instead of the eigenbasewhat modi�es slightly the �nal result, see [22℄. We normalise eah vetor in the 1-norm, it meansj~vij1 = Pni=1 jvi;j j = 1.
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By � := Pni=1 �ipi we denote the average oupling onstant in the in�nite hain w1 expressed bythe frequenies of letters pi = #ai(w1). We introdue the vetor of utuations ~g = f�i��gi=1;:::;nand a vetor onsisting of frequenies of letters in a �nite word w: ~W := f#ai(w)gi=1;:::;n. Finallywe de�ne the utuations G(w) of the average oupling onstant in a �nite word w

G(w) := nXi=1(�i � �)#ai(w) = ~g � ~w (2.5)
Following statements onneting the statistial properties of the in�nite hain with the substi-tutional matrix M� hold:1. The eigenvetor ~v1 = fpig orresponding to the eigenvalue of largest modulus �1 has onlypositive entries pi > 0, whih give us the ourrene frequenies of the letter ai in the in�nitehain.2. The utuations G(w) of the average oupling onstant in a �nite word w are given as a linearombination of terms whih sale with the length of the word jwj aording to a power law� jwj!i where the exponents !i are determined by eigenvalues of the substitutional matrix M�:

G(w) = nXi=2 bijwj!i where !i = log j�ijlog j�1j (2.6)
For the in�nite hain jwj �! 1, only one term in the above sum survives, namely the onewith the largest exponent !i. We see that, exept for some marginal ases when �i = 1, theutuations sale with the number of spins jwj aording to the assumption (2.2).From the assumption that the substitution � is primitive it follows that for a ertain k0 all entriesof the matrix (M�)k, k � k0 are di�erent from zero and positive. In this ase the Perron-Frobeniustheorem states that the largest eigenvalue �1 of M� is positive and non-degenerate. �1 gives us theresaling fator of the in�nite hain after applying the substitution � to it and the orrespondingPerron-Frobenius eigenvetor ~v1 onsists of frequenies of letters in the in�nite hain.Let us now derive the seond statement. For this purpose notie that the vetor ~g is perpendiularto the Perron-Frobenius eigenvetor.

~g � ~v1 = nXi=1(�i� ��)pi = nXi=1 �ipi� �� nXi=1 pi = �� � �� �1 = 0
Therefore ~g belongs to a (n � 1)-dimensional spae spanned by the vetors ~v(t)i , i = 2; : : : ; n , i.e.,~g = Pni=2Bi~v(t)i where Bi are some real numbers. After inserting the expression for ~g into thede�nition of utuations G(w) (2.5) and exploiting the fat that the hain was produed as an m-fold appliation of � onto one of the letters w = �m(a1), i.e., ~w = (M�)m~e1 with ~e1 = (1; 0; : : : ; 0),we obtain:

G(w) = nXi=2 Bi~v(t)i � ~W = nXi=2 Bi~v(t)i � (M�)m~e1 = nXi=2 Bi�mi ~v(t)i � ~e1 = nXi=2 bi�mi (2.7)
where bi = Bi~v(t)i � ~e1. Now, we notie that the length of the word jwj depends on the Perron-Frobenius eigenvalue �1 and on the number of iterations m as jwj = �m1 , what immediately impliesthat �mi = jwj!i .
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2.2.3 Phenomenologial argumentation for the relevane of disorderIn this subsetion we follow very losely the argumentation from [16℄ and [22℄. In order to establish ariterion for the relevane of disorder in substitutional strutures desribed in the previous subsetionwe make one essential assumption. We assume that the utuation in oupling onstants G(w)amounts to a loally shifting of the ritial temperature, i.e., a quenhed disorder leads to a site-dependent temperature �eld T(~x) and the redued temperature t = (T � T)=T is proportional tothe averaged oupling onstant hJiV (~x) in a roughly spherial volume V around the site ~x.t � hJiV (~x) (2.8)In d dimensions the spins are orrelated inside a volume V � �d with a linear extension equal to theorrelation length �.Using (2.5) and (2.8) we an express the shift of the redued temperature Æt as follows:

Æt � hJiV (~x) � J0Nn0=2J0Nn0=2 � N!�1 � ��d(1�!) � jtjd�(1�!) (2.9)where in the last estimate on the right-hand side we used the fat that the orrelation length �diverges with the redued temperature as � � jtj�� . These onsiderations are onsistent with theassumption (2.8) only if the quotient Æt=t goes to zero when jtj �! 0. This provides a ondition onthe wandering exponent !: d�(1� !) > 1 =) ! < 1� 1d� (2.10)Therefore we an formulate the relevane riterion:The Harris-Luk relevane riterionAn aperiodi modulation in a d-dimensional ferromagneti Ising spinsystem with a orrelation length exponent � isrelevant ! > !marginal if ! = ! where ! = 1� 1d�irrelevant ! < !In partiular, in two dimensions the Onsager orrelation-length exponent is � = 1, therefore! = 1=2. Aording to (2.6) the seond largest eigenvalue �2 has to be larger than the square rootof the Perron-Frobenius eigenvalue (�2 > p�1) if one wants to hange the ritial behaviour.2.2.4 Critial behaviour of Ising models on quasiperiodi tilingsIn this subsetion we want to disuss some 2D quasiperiodi tilings whih an be generated byination rules. At �rst we give a brief introdution to the ut-and-projet formalism and its onne-tion to ination-deation symmetries. Then, we express the ination rules in terms of substitutionrules for the vertex-types (verties with a given nearest-neighbour environment), onstrut the re-spetive substitution matrix M�, ompute the vertex-type frequenies and the wandering exponent! = log j�2j= log �1 determining the utuations of the average oordination number.In the subsequent setion we will perform a detailed analysis of Ising models on planar quasiperi-odi tilings like the �ve-fold symmetri Penrose tiling or the otagonal Amman-Beenker tiling. Priorto this let us apply the Harris-Luk riterion to Ising models on these tilings and �nd out whetherone might expet to �nd a ritial behaviour that di�ers from that of the square lattie ase.Quasiperiodi graphs an be generated by the ut-and-projet method [23℄. Here we do notaim at presenting all di�erent variants of this method (the Klotz method, atomi surfaes [24℄),
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we only want to give a presription for the generation of our tilings and point out to a onnetionwith ination rules (a kind of substitution rules) whih enter the Harris-Luk riterion. In theut-and-projet method one starts from a higher-dimensional periodi lattie and projets a ertainpart of it onto a lower-dimensional \physial" or \parallel" spae Ek. It appears that the minimaldimension of the higher-dimensional lattie required to obtain an N -fold symmetri tiling is equal to'(N) [25, 26℄ where ' is Euler's totient funtion. For the two ases of interest, the Penrose and theotagonal Amman-Beenker tiling, the latties have to be at least four-dimensional ('(5) = '(8) = 4),the minimal hoie being the the root lattie A4 for the Penrose ase [27℄ and the hyperubilattie Z4 for the otagonal ase [28℄. The root lattie A4 an be onsidered as a sublattie of Z5 ,wherefore the latter, albeit not minimal, is frequently used to generate the Penrose tiling. Thephysial spae Ek is determined as an invariant subspae with respet to the relevant subgroup (inour examples D5 and D8, respetively) of the point group of the periodi lattie. Its orthogonalomplement, the perpendiular spae E?, is then also an invariant subspae of this symmetry. Thequasiperiodi tiling is now obtained by projeting all those lattie points to Ek whose projetiononto E? falls into a ertain set alled the \window" or \aeptane domain" A. In the minimal ase,this aeptane domain has the same dimension as E?; however, if we projet the Penrose tilingfrom the hyperubi lattie Z5 , the perpendiular spae is 3D and the aeptane domain onsists offour regular pentagons Pm (m = 1; 2; 3; 4) situated on equidistant, parallel planes, and two isolatedpoints (P0 and P5), see �gure 2.1. Let us de�ne vetors ~V (j)k and ~V (j)? as projetions of the jthanonial-base vetor from Z5 onto the parallel Ek and the perpendiular spae E?.

~V (j)k = r25 � os 2�j5sin 2�j5 � ~V (j)? =  ~V (j)?1V (j)?2
! where

V (j)?1 = r25 � os 4�j5sin 4�j5 � ~V (j)?2 = q15 and j = 1; : : : ; 5 (2.11)
The Penrose tiling an be now desribed by8<: 5Xj=1 nj ~V (j)k j 5Xj=1 nj ~V (j)? 2 A and nj 2 Z9=;
and the disjoint parts of the aeptane domain Pm;m = 0; : : : ; 5 read

Pm = 8<: 5Xj=1 �j ~V (j)? j �j 2 [0; 1℄ and 5Xj=1 �j = m9=;
For the Amman-Beenker tiling, the situation is simpler; we have four pairs of 2D vetors ~V (j)kand ~V (j)? ~V (j)k = 12 � os 2�j8sin 2�j8 � ~V (j)? = 12 � os 6�j8sin 6�j8 � where j = 1; : : : ; 4 (2.12)the aeptane domain is obtained as the projetion of the four-dimensional hyperube to E? andis a regular otagon O O = 8<: 4Xj=1 �j ~V (j)? j �j 2 [0; 1℄9=;
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P0
P1 P2 P3 P4

P5

Figure 2.1: The aeptane domain of the Penrose tiling, onsisting of four regular pentagons P1,P2, P3, P4, and two isolated points P0, P5, situated on equidistant parallel planes in the 3D spaeE?.The polytope spanned by the lines is the projetion of the 5D hyperube to E?.
and the tiling takes the form8<: 4Xj=1 nj ~V (j)k j 4Xj=1 nj ~V (j)? 2 O and nj 2 Z9=;A harateristi property of ut-and-projet tilings is the so-alled ination-deation symmetry.In the projetion framework this symmetry an be desribed as an expansion by a fator � inthe parallel spae and a ontration by ertain other fators �I in respetive subspaes of theperpendiular spae, suh that the sum of all these operations leaves the hyperubi lattie ZDinvariant. Let us denote the projetors onto Ek and the respetive subspaes of E? (numbered byI) as �k and �?I where:(�k)ij := ~V (i)k � ~V (j)k (�?I)ij := ~V (i)?I � ~V (j)?I i; j = 1; : : : ;D (2.13)For the Penrose tiling that ondition an be expressed as
M = ��k + �1�?1 + �2�?2 where � = 2 os 2�5 ; �1 = 2 os 4�5 ; �2 = 2 and Mij 2 Z (2.14)In the ase of the otagonal tiling the perpendiular spae does not ontain any nontrivial in-variant subspaes, therefore there is only one projetor �? ( where (�?)ij := ~V (i)? � ~V (j)? ) and theination ondition reads:M = ��k + �1�? where � = 2 os 2�8 ; �1 = 2 os 6�8 and Mij 2 Z (2.15)Ination an also be interpreted as a substitution rule for tiles or other building bloks of thetiling. Eah tile is disseted into �gures of the same shape as the original tiles but ontrated in
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length by a fator �. For the Penrose tiling, whih onsists of two rhombi, a fat F and a thin T one,the fat one merges into two F and one T, whereas the thin one is transformed into one F and one T(see �gure 2.2). F �! 2F + T T �! F + TSimilarly, for the otagonal tiling whih onsists of squares F and rhombi T, the substitution rulereads (see �gure 2.3): F �! 3F + 4T T �! 2F + 3TThe ination rules are also onneted to so-alled mathing rules whih determine whih edges ofadjaent rhombi an be put together. The mathing rules an be expressed by arrow deorations oftiles, i.e., two tiles an be adjaent along their edges, if and only if the arrow deorations of theseedges oinide.

Figure 2.2: Ination rules and arrow deorations of the tiles of the Amman-Beenker tiling.

Figure 2.3: Ination rules and arrow deorations of the tiles of the Penrose tiling.The substitution rules, however, are not onvenient for our purposes. Indeed, it is our goal toestimate the utuations of the averaged oordination number around the oordination number inthe in�nite tiling, whih is equal to four as for the square lattie. We therefore have to onsiderbuilding bloks of the tiling suh that eah blok orresponds to one site of the lattie and the lettersai, ourring in the de�nition of the substitution rule (2.3), assigned to this blok are equal to theoordination number of the site. It is onvenient to take the Voronoi ell V(~r) of the site ~r as suha building blok and formulate the substitution rules in terms of them.The Voronoi ell of a site ~r is de�ned as a set of points whih lie loser or equally distant to ~rthan to any other point of the lattie.There are eight vertex types in the Penrose tiling and seven vertex types in the Amman-Beenkertiling. Eah orresponds to a Voronoi ell, see �gures 2.4 and 2.5. Note that some of the vertextypes have the same shape but di�erent arrow deorations of edges, the fourth and the eighth vertextype of the Penrose tiling and the third and fourth one of the Amman-Beenker tiling. For eah
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vertex type one an ompute, in the framework of the ut-and-projet formalism, its frequeny ofourrene in the in�nite tiling. We list these frequenies in table 2.1 in order to ompare them laterwith the omponents of the Perron-Frobenius vetors of the respetive substitution matries. Here,� denotes the golden mean � = (1 +p5)=2.Number Frequeny Num. value Number Frequeny Num. value1 �8 + 5� � 0:090170 1 �1 +p2 � 0:4142162 �3 + 2� � 0:236068 2 17� 12p2 � 0:0294373 2� � � 0:381966 3 �7 + 5p2 � 0:0710684 18=5� 11=5� � 0:040325 4 �7 + 5p2 � 0:0710685 13� 8� � 0:055728 5 34� 24p2 � 0:0588756 5� 3� � 0:145898 6 6� 4p2 � 0:3431467 �21 + 13� � 0:034442 7 �41 + 29p2 � 0:0121938 47=5� 29=5� � 0:015403Table 2.1: Frequenies of ourrene of vertex types from the Penrose (on the left) and the Amman-Beenker tiling (on the right). The labelling orresponds to �gures 2.4 and 2.5 .The ination rules for the vertex types are presented in �gures 2.6 and 2.7 for the Penrose andthe otagonal tiling respetively. For ertain reasons, whih will beome lear in the next hapterwe have performed a double ination for the Penrose tiling and only a single ination step for theAmman-Beenker tiling. Finally, the substitution matries MP� and MA� for the Penrose and theAmman-Beenker ase, respetively, are given in (2.16) and (2.17). We refrain from writing exatvalues of the matrix entries, whih are linear ombinations of 1 and � with rational oeÆients,beause it would spoil the learness of notation. Moreover, we use the matries only for numerialalulations of its eigenvalues and eigenvetors, hene their exat values are not important for us.

MP� =
0BBBBBBBBBB�

0:5205 0:8265 0:8265 0:8675 0:0000 0:1735 0:0000 0:00000:5642 2:7179 0:8590 0:7052 4:7179 0:4231 4:8590 5:00004:2030 2:0000 2:7970 5:0000 0:0000 3:4059 0:0000 0:00001:0000 0:0000 0:0000 1:0000 0:0000 1:0000 0:0000 0:00000:0000 0:0000 1:0000 0:0000 0:0000 0:0000 0:0000 0:00000:0000 1:2165 1:5669 0:0000 1:0827 0:0000 1:0827 1:08270:0000 1:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:00000:0000 0:0000 0:0000 0:0000 1:0000 0:0000 1:0000 1:0000

1CCCCCCCCCCA (2.16)

MA� =
0BBBBBBBB�

1:0000 5:3333 4:0000 6:3333 6:0000 2:0000 5:66670:0000 1:0000 0:0000 1:0000 1:0000 0:0000 1:00001:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:00001:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:00000:0000 0:0000 0:0000 0:0000 0:0000 1:0000 0:00002:0000 0:0000 2:0000 0:0000 0:0000 3:0000 0:00000:0000 0:0000 1:0000 0:0000 0:0000 0:0000 0:0000

1CCCCCCCCA (2.17)
The Perron-Frobenius eigenvetors of both matries MP� and MA� , normalised in suh a way thatthe sum of its omponents is equal to one, have omponents equal to the frequenies of vertex typeslisted in table 2.1. The Perron-Frobenius eigenvalues �1 are equal to the saling fators by whihthe areas of tiles are hanged during ination, i.e, �1 = �4 for the Penrose tiling and �1 = (1 +p2)2for the otagonal tiling. We ompute also the wandering exponents from formula (2.6) and obtain

! = log j�2jlog j�1j = � 0:377694 for the Penrose tiling0:435486 for the otagonal tiling (2.18)
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1 2 3 4

5 6 7 8Figure 2.4: The eight vertex types of the Penrose tiling and the orresponding Voronoi ells (shaded).

1 2 3 4

5 6 7Figure 2.5: The seven vertex types of the Amman-Beenker tiling and the orresponding Voronoiells (shaded).
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Figure 2.6: Result of a two-fold ination of the Voronoi ells of the eight vertex types of the Penrosetiling. The numbers denote the double-arrow potential values on the sites of the inated tiling. Thezero of the potential is set at the entral site of the path.
Basing on the Harris-Luk riterion (! < 1=2) we an, therefore, draw the onlusion that theutuations of the average oordination numbers are, in both ases, too weak to ause a hangeof the ritial behaviour as ompared to the ritial behaviour on the square lattie. The valuesof ! are, however, lose to 0:5 what suggests that one should expet some di�erent behaviour ofthe partition funtion when ompared to the square-lattie ase. This will indeed be on�rmed in



16 CHAPTER 2. QUASIPERIODIC ISING MODELS

Figure 2.7: Result of a one-fold ination of the Voronoi ells of the seven vertex types of the Amman-Beenker tiling.
the setion devoted to graphial expansions of the free energy F . Let us only mention two fatsnow. Firstly, the oeÆients of the high-temperature expansion of F will show strong, osillatingdeviations from their asymptoti behaviour and seondly, the distribution of omplex zeros of thepartition funtion (Lee-Fisher zeros) will also strongly di�er from the square lattie ase.
2.3 The Ka-Ward methodIn this setion we review an algebrai approah to the alulation of the partition funtion Z of anIsing model in zero �eld (to be referred to what follows as the Ka-Ward method). The setion isorganised as follows. Firstly we de�ne the Ising model and give a short aount of its history andattempts of solutions. Seondly we will present the main result, namely a relationship between Z andthe determinant of a matrix whose elements are indexed by oriented edges of the underlying lattie,and sketh its proof. We deided to present the lues of the proof of this relationship beauseit is widely used in this disputation and beause the original literature on this subjet is hardlyavailable. We will also shortly omment on the orrespondene between this relationship and thepfaÆan method used to alulate the partition funtion of planar dimer models. It appears that thesolvability of these two lattie models follows in priniple from the same fat. In the remainder ofthe setion we will draw some onlusions about a possible appliation of this algebrai approah to3D Ising models and to the planar q-state Potts model with q > 2. Exept for the speulations inthe last part of the setion the ontents of this setion is based on literature and is thought to be asummary of known results.
2.3.1 De�nition of the Ising modelThe Ising model whih has originally been formulated as a model of a ferromagnet [29℄, is knownto be properly representative for ondensation phenomena in 2D systems formed by adsorption ofgases on the surfae of rystals (lattie gases) [30℄.The model is de�ned as follows. At eah site of a �nite lattie G with N sites we plae a spin�j 2 f�1g and let two spins �j and �k, loated at neighbouring sites, interat with an energy�Jj;k�j�k, where Jj;k is an exhange-interation onstant, depending in general on the positionsj; k. In an external magneti �eld B the spin has an additional energy equal to �B�j. Hene the
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energy of a on�guration ~� = f�1; �2; : : : ; �Ng on G is given byE(~�) = �Xhj;kiJj;k�j�k �BXj �j (2.19)
where in the �rst term we sum over all nearest-neighbour pairs hj; ki and the seond sum runs overall sites j. Let us denote � = 1=(kBT ) where kB is the Boltzmann onstant and T the temperature.The problem onsists in the alulation of the partition funtion Z(G) whih is de�ned asZ(G) = X~� exp [��E(~�)℄ (2.20)
where we sum over all 2N spin on�gurations ~�. One Z(G) is known, various thermodynamifuntions an be alulated from it or from its logarithmi derivatives. For instane, the free energyF and the magnetisation M are given byF = 1� lnZ(G); M = 1� d lnZ(G)dB (2.21)
2.3.2 The algebrai Onsager solutionThe �rst exat solution of the Ising model in zero �eld for a system showing a seond order phasetransition at T 6= 0 was found by Onsager [31℄. Onsager alulated the partition funtion Z(G) onan N � N square lattie with periodi boundary onditions in the x diretion and free boundaryonditions in the y diretion.He expressed Z(G) as the trae of the Nth power of a 2N � 2N matrix M , the so-alled transfermatrix. The omputation of the partition funtion in the thermodynami limit is then redued tothe alulation of the eigenvalue of the transfer matrix with the largest modulus. This follows fromthe following equalities
�F = 1N lnZ(G) = 1N ln Tr(MN) = 1N ln 2NXi=1 �Ni = 1N 0�ln�N1 + ln 2NXi=1(�i�1 )N1A N!1�! ln�1(2.22)where �i are the eigenvalues of the transfer matrix M . The seond logarithm in the expression inparenthesis vanishes beause �1 has the largest modulus, whih means ( �i�1 )N �! Æi;1 for N �!1.The transfer matrix is equal to a produt of three matries M = V3V2V 01V 01 = (2 sinh 2�J)N=2 � NY�=1 exp �X�; V2 = NY�=1 exp�JZ�Z�+1; V3 = NY�=1 exp�BZ�whih ould be further expressed through diret produts of 2 � 2 Pauli matries �x; �y; �z andidentity matries 1: X� = 1
 1
 : : :
 �x 
 : : :
 1Y� = 1
 1
 : : :
 �y 
 : : :
 1Z� = 1
 1
 : : :
 �z 
 : : :
 1where eah of the produts ontains N terms and the Pauli matrix is at the �th position. The2N dimensional problem is therefore redued to ertain sets of 2 � 2 problems, at least in the asewhen B = 0, i.e., V3 = 1. After a ompliated analysis of the algebra spanned by the Pauli matriesX�; Y�; Z�, Onsager sueeded to alulate the largest eigenvalue �1 and therefore solved the problemexatly.
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2.3.3 The ombinatorial approahWhile the mathematial mahinery involved to solve this problem was very ompliated, the �nalresult for the free energy appeared to be rather simple. This fat suggested that there must be aneasier method to solve this problem, whih was indeed found only eight years later by Ka and Ward[32℄. Let us briey sketh their approah. The alulation of the partition funtion an be reduedto a ombinatorial problem of summation of ertain graphs ourring in the lattie. Making use ofthe identity exp�x = oshx + � sinhx = oshx(1 + � tanhx) (2.23)valid for j�j = 1 and an arbitrary x, we an rewrite the partition Z(G) asZ(G) = (osh�J)M(osh�B)N �X~� Yhj;ki(1 + �j�kw)Yj (1 + �jz) (2.24)
where w = tanh�J and z = tanh�B, and where M , N are the number of nearest-neighbourpairs and the number of sites in the lattie, respetively. After expanding the produts in (2.24) weobtain a sum of terms of type: �p1i1 �p2i2 : : : �prir wnzm (2.25)It is readily seen that the above term yields, after summing over all spin on�gurations, either zeroor 2N . This is a onsequene of the fat that the sum over spins fatorises and1X�=�1�p = � 2 if p is even0 otherwiseHene, the term (2.25) yields a non-zero ontribution only if all exponents p1; p2; : : : ; pr are evennumbers. Now we an interpret eah term (2.25) as a lattie graph aording to the following rules.1. If the term ontains a fator �j�kw we draw a line onneting the sites j and k.2. Eah fator �jz is assigned to a irle entred on the site j.In this way the alulation of Z(G) is redued to a purely ombinatorial problem and onsists ofounting graphs. Indeed, the partition funtion reads

Z(G) = 2N (osh�J)M(osh�B)N � ~Z(G); ~Z(G) = 1 + 1Xn=1 1Xm=1 g(n;m)wnzm (2.26)
where g(n;m) stands for the number of graphs onsisting of n bonds and m odd sites, denoted byirles aording to the above rules. Here, odd and even sites are sites that belong to an odd andeven number of bonds, respetively. In the following, we will all ~Z(G) the redued partition funtionon the lattie G.The idea of Ka and Ward [32℄ was to perform the graph summation, in the ase B = 0, byonstruting a matrix, whose determinant is equal to ~Z(G). They worked out the Onsager formulafor the free energy dealing with several points only in a heuristi manner. Their intention was toshow that a ombinatorial approah is indeed possible, rather than to resolve the problem with allits subtleness rigorously. This approah indeed provided a new insight to the problem, and initiatednumerous attempts to generalise this result to other latties [33, 34, 35℄.Ka and Ward have onstruted a matrix A by onsidering a 4� 4 square lattie with periodiboundary onditions in x and y diretions. The dimension of the matrix was 64 and its entries
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were labelled by oriented lattie bonds. The determinant det A an be expanded into a sum overpermutations of olumns � as followsdet A = X� sgn� A1;�1A2;�2 : : : A64;�64

By identifying the terms of the above expansion with even graphs ourring in the lattie, Kaand Ward sueeded to de�ne a matrix A, suh that det A = ~Z(G). In the proof they made useof a geometrial theorem, whih however appeared to be not orret, as indiated by Sherman [34℄.Feynman, in some unpublished leture notes, developed a variation of the Ka-Ward approah basedon a onjetured identity (see (2.28)) between graphs and paths on a lattie. This identity was provedand generalised by Sherman [34℄. This paper was also the �rst orret treatment of the ombinatorialmethod. Sherman's proof was quite ompliated and at one plae even inomplete, but two yearslater Burgoyne [35℄ provided a simpler and more intuitive proof. In the following we want to brieyintrodue Feynman's onjeture, without proving it, and show how the Onsager formula for the freeenergy follows from it. The derivation is based on Burgoyne's work [35℄.From now on let us onsider the ase of a zero �eld B = 0 and arbitrary, in general site-dependent,oupling onstants wj;k = tanh (�Jj;k). The partition funtion an be fatorised, in a similar way asin (2.26), into produts of hyperboli osine funtions and ~Z(G), whih is now equal to~Z(G) = 1 +Xg I(g); I(g) = Y(j;k)2gwj;k (2.27)
where the sum runs over all even graphs g and the produt in the de�nition of I(g) is taken over allbonds of the graph g. Let us de�ne a path as a de�nite sequene of bonds. Eah onseutive bondstarts at the site where the previous bond ended, and an ontinue in an arbitrary diretion butnot bakwards over the previous line. We onsider only losed paths, therefore the last line mustend at the site at whih the �rst line started. We all a path multiple if it an be onstruted froma sub-path by exatly repeating it two or more times. A path is nonmultiple if it is not multiple.Finally we de�ne a weight W (p) of a path p asW (p) = sign(p) Y(j;k)2pwj;k
where the produt is taken over all bonds (j; k) of the path p and sign(p) depends on whether thepath rosses itself an even (sign(p)=1) or an odd (sign(p)=�1) number of times.Exploiting these de�nitions we an formulate Feynman's onjeture whih states that~Z(G) = Yp [1 + W (p)℄ (2.28)
where the produt is taken over all nonmultiple paths.Exploiting the above onjeture we writeln ~Z(G) = Xp ln [1 + W (p)℄ = Xp �W (p)� 12W (p)2 + 13W (p)3 � : : :� (2.29)
where the last equality follows from the expansion of the logarithm. Now, we notie that the �rstterm on the right-hand side is a sum over all nonmultiple paths while the other terms just give thesum over all multiple paths. In other words ln ~Z(G) is equal to the sum of W (p)=! taken over alllosed paths p with multipliity !.
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This is due to the fat that every multiple path is made by repeating a nonmultiple path ! times,! = 2; 3; : : : and aording to Whitney's result [36℄ the sign of a multiple path, with multipliity !,is equal to (�1)!+1.Therefore the weight of a path with multipliity ! an be expressed by the weight of its nonmul-tiple sub-path W (p) as (�1)!+1W (p)!. After dividing it by ! we �nd exatly those terms whihour in (2.29).The only thing that now remains to be done is to �nd an expression for the sum of W (p)=!taken over all losed paths p with multipliity !. Let us de�ne a matrix M

M = w0BB� X1 0 �X1 �X10 X1 �X1 �X1�X2 �X2 X2 0�X2 �X2 0 X2
1CCA

where X1 = exp i�1;X2 = exp i�2; � = exp i�=4 and w = tanh�J .It an be heked that �N2l 12�2 Z 2�0 Z 2�0 Tr(M l) d�1d�2 (2.30)is equal to the sum of W (p)=! taken over all losed paths p (with multipliity !). Indeed, one aneasily see that a produt Mi1;i2Mi2;i3 : : :Mil;il+1 in M l orresponds to a ertain path starting at a�xed site P1 of the lattie, moving in the diretion i1 to P2, then moving in diretion i2 to P3, andso on. By integrating over the angles �1 and �2 we remove all paths whih are not losed, whereastaking the trae ensures that the path returns to P1 in a orret diretion (see [35℄ for a more detailedexplanation).Summing (2.30) over l we get
ln ~Z(G) = N4�2Tr 1Xl=1

2�Z
0

2�Z
0 �1l M ld�1d�2 = N4�2Tr 2�Z

0
2�Z
0 ln (1�M)d�1d�2 (2.31)

Now Tr[ln (1�M)℄ = ln det(1�M) and the determinant of the 4 � 4 matrix an be easilyalulated yielding:1N ln ~Z(G) = 14�2 2�Z
0

2�Z
0 ln �(1 + w2)2 + 2(w3 �w)(os �1 + os �2)�d�1d�2 (2.32)

whih is the Onsager result. Equation (2.32) is exat only if one neglets the e�ets of the boundaryof the lattie, what is orret in the thermodynami limit N �!1.The essene of this approah was, that we mapped the problem of ounting graphs on the lattieto an easier problem of ounting paths, whih an be solved by algebrai methods, not only for thesquare lattie but in general for every periodi 2D lattie. For an arbitrary periodi lattie we anuse, in priniple, the same formalism as above, only the dimension of the matrix M will be larger.2.3.4 Solution of the Ising model on an arbitrary, planar lattieEnouraged by the suess of the ombinatorial approah for the 2D Ising model, one may betempted to try to extend this method to the 3D ase or to the Ising model with magneti �eldB. Unfortunately, despite numerous e�orts whih were made during the last �fty years, nobodysueeded in solving the 3D Ising model even for the simplest lattie, namely for the ubi lattie.
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It was only possible to simplify the Ka-Ward approah to suh an extent that it an be applied to aplanar Ising model on any lattie with arbitrary oupling onstants Jj;k. This has reently been doneby Dolbilin et al. [20℄. A thorough analysis of the ombinatorial approah based on the methodoutlined above or on the pfaÆan method of solving planar dimer models, whih will be shortlyreviewed later in this setion, suggests that the generi ase, i.e., the 2D Ising model with arbitraryoupling onstants, ould have been solved already in the 1960s. The mathematis involved, washowever rather ompliated, thus it was diÆult to onstrut the Ka-Ward determinant. Thereforethis formalism was not popular for desribing Ising models on planar periodi latties with largerunit ells. The merit of Dolbilin et al. was to simplify the method onsiderably, so that it allowsan exat desription of the ritial behaviour in systems with very large unit ells, for instane onperiodi approximants of quasiperiodi latties with about 10000 sites in the unit ell.
Dimer models and pfaÆansBefore presenting the Ka-Ward approah developed by Dolbilin et al. we want to mention briey thepfaÆan method of solving planar dimer models and its onnetion to the Ising model. The onnetionof these two subjets has been originally found by Kasteleyn [37℄. Let us onsider overings of edgesof a square lattie, with N sites and M edges, by domino tiles (dimers) in suh a way that everysite of the lattie belongs to exatly one domino tile. We have M=2 dimers belonging to s di�erentgroups. We onsider overings of the lattie with ni dimers of the ith type, where i = 1; ::; s andPsi=1 ni = M=2, and we assign a fugaity wi to eah tile of the ith type. The problem amounts toomputing a partition funtionZ = Xn1+n2+:::+ns=M=2 g(n1; n2; : : : ; ns)wn11 wn22 : : : wnss (2.33)
where g(n1; n2; : : : ; ns) is the number of overings with ni dimers of the ith type, with i = 1; ::; s.The densities of dimers of the ith type hnii an now be alulated from partial derivatives of Z withrespet to wi as hnii = �Z=�wi � wi=Z.It appears [38℄ that if free boundary onditions are imposed the partition funtion Z an bealulated as a pfaÆan of an N �N antisymmetri matrix Z = Pf(A). A pfaÆan Pf(A) is a linearoperation on the matrix A de�ned asPf(A) = Xp sgn(p)Ap1;p2Ap3;p4 : : : ApN�1;pN (2.34)
where the sum runs over all permutations p of N numbers satisfying following onditions: p1 <p2; p3 < p4; : : : ; pN�1 < pN and p1 < p3 < : : : < pN�1. The pfaÆan is di�erent from zero only if Ais antisymmetri, i.e., Ai;j = �Aj;i and the square of the pfaÆan is equal to the determinant of thematrix Pf(A)2 = det(A).Let us de�ne a matrix A(i; j), with i; j labelling the sites of the lattie i; j = 1; ::; N , so that theelement A(i; j) di�ers from zero only if the sites are nearest neighbours and in that ase A(i; j) =s(i; j)wi. Here wi is the fugaity of a dimer overing the bond (i; j) and the modulus of s(i; j) isequal to one. Now we desribe every dimer on�guration on the lattie jp1; p2jp3; p4j::jpN�1; pN j withadditional onstraints pi < pi+1 and pi < pi+2 for i = 1; 3; 5; : : :. These notations mean that wehave N dimers overing bonds (p1; p2), (p3; p4) and so on. We also assume that the initial point ofthe bond has always a smaller label than the end of the bond and that the initial points of di�erentbonds are sorted into asending order of their labels. We realize that the partition funtion (2.33)an be now expressed as a sum over permutations of N numbers pi; i = 1; ::; N , satisfying the
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onditions pi < pi+1 and pi < pi+2, as follows:Z = Xp �pAp1;p2Ap3;p4 : : : ApN�1;pN (2.35)
where �p is equal to a produt of signs of the matrix elements ourring in the addend. In otherwords, sine every term in the partition funtion has to be positive we multiply the addend by�p in order to anel out the possible minus sign stemming from the signs s(i; j). Now it anbe proved [38℄ that it is possible to de�ne s(i; j) so that the matrix A(i; j) is antisymmetri andthat �p = s(p1; p2)s(p3; p4) : : : s(pN�1; pN ) is equal to the sign of the permutation �p = sgn(p).Comparing (2.35) with the de�nition of the pfaÆan (2.34) we realize that the relation Z = Pf(A)has been proved q.e.d..The merit of the dimer model for statistial mehanis onsists in the fat that it an be mappedto an Ising model. In other words, for a given planar lattie G and a zero �eld Ising model there existsa planar lattie G0 suh that the partition funtion of the dimer model on G0 equals the partitionfuntion of the Ising model on G. Let us now shortly sketh how this orrespondene works. Thealulation of the zero �eld partition funtion amounts to ounting graphs onsisting of sites withan even number of neighbours, see (2.26). In other words we sum over graphs on the lattie suhthat at every site we have one of the eight on�gurations presented in the upper row of �gure 2.8.The bonds of the graph in ontrast to the bonds of the lattie are marked by fat solid lines. Now,the idea is to replae every site of the square lattie G by a luster of sites and additional bonds,onstituting a new lattie G0, so that eah of the eight on�gurations at a site of G is in one-to-oneorrespondene with a dimer on�guration overing the bonds of the luster of sites building G0.This one-to-one orrespondene is shown in �gure 2.8. We distinguish now two lasses of bonds(s = 2), horizontal or vertial bonds between lusters having fugaity w and bonds within a lusterhaving fugaity 1. Therefore, the produt of fugaities in eah dimer on�guration in the lower rowin �gure 2.8 is equal to wq where q is the number of fat lines emanating from the respetive site ofthe square lattie. The weight of an even graph with n sites labelled by i on the square lattie isequal to w(Pni=1 qi) whih is, as one an easily realize, wm where m is the number of fat lines in thegraph.It is therefore readily seen that the partition funtion of the zero �eld Ising model Z on G anbe expressed by the partition funtion of a dimer model on G0 with N sites, whih an be furtheralulated as a pfaÆan, or a square root of a determinant of an N � N matrix. If G is periodithen G0 is periodi too and the matrix is yli, what yli means will be explained beneath, and Zan be thus expressed by a determinant of a �nite matrix. Sine it is also not diÆult to generalisethis onstrution to every planar lattie G onsisting of sites with an even number of neighbours(even sites), one an say that with this approah we an takle the zero �eld Ising model on everyplanar, periodi lattie, under the assumption that it has only even sites. The onstrution of thepfaÆan is in the generi ase, however, rather ompliated [38℄ thus this method is not onvenientfor the investigation of the Ising model on periodi latties with a large unit ell. The approah byDolbilin et al., desribed beneath, removes this obstale, i.e. it is simpler and has therefore widerappliations.Dolbilin's methodAfter this long digression about dimer models we want to introdue the result of Dolbilin et al. andshow the lues of its proof, referring the reader to the original work [20℄ for more detail. We will alsotry to explain why it is so diÆult to takle the 3D ase and will present some ideas, whih after anintrinsi analysis, ould perhaps yield some interesting results regarding the 3D ase.
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Figure 2.8: The one-to-one orrespondene of the Ising model vertex on�gurations and dimeron�gurations on the six-site luster.
Let us onsider one more an Ising model with nearest-neighbour interations on a planar lattieG. Denote by E = fe1; e2; : : : ; eMg the set of all nearest-neighbour bonds ourring in the lattie.The oupling onstant dj = tanh (�Jj) assigned to the bond ej an take an arbitrary value, in generalsite-dependent. Our aim is to onstrut a matrix A whose determinant is equal to the square of theredued partition funtion ~Z(G). For this purpose, let us distinguish the two possible diretions forevery bond of the lattie G and denote by E the set of all bonds from E taking into aount thediretions: E = f~e1; ~e2; : : : ; ~eM ; ~eM+1; : : : ; ~e2Mg (2.36)The oupling onstants assigned to the same bond ej taken in two opposite diretions ~ej and ~eM+jare equal, thus wj = w(~ej) = w(~eM+j) for j = 1; : : : ;M . Let us denote by f(~e) and b(~e) the initialand the endpoint of the oriented edge ~e, respetively, and by \(~ej ; ~ek) the angle between the orientededges ~ej and ~ek ounted from �� to �. We de�ne the Ka-Ward matrix A, whose entries are indexedby pairs of oriented bonds, (~ej ; ~ek), 1 � j; k � 2M

A(~ej; ~ek) = 8<: 1 if ~ej = ~ek�wj exp f i2 \(~ej ; ~ek)g f(~ej) = b(~ek) and f(~ej) 6= b(~ek)0 otherwise (2.37)
The de�nition of the matrix di�ers only slightly from the de�nition given by Ka and Ward [32℄. Itis easy to see that the matrix is the same exept for the sign of the o�-diagonal elements A(~ej ; ~ek).The introdution of the minus sign is unimportant for the square lattie but it beomes essential forthe ase of an arbitrary planar lattie. Now we an formulate Dolbilin's result.
Assertion 1 The determinant of the Ka-Ward matrix is equal to the square of the redued partitionfuntion ~Z(G) det A = ~Z(G)2 (2.38)Before presenting an outline of the proof of the above assertion we would like to make some remarks.Equation (2.38) is formulated in a rather general way but there are still some limitations for theplanar latties for whih the result holds. One takes for granted that the bonds in E do not intersetexept at their endpoints. This requirement exludes for instane the solvability of the square-lattieIsing model with next-to-nearest neighbours by this method. Also for \quasi 3d systems", it meansfor several layers of planar latties with spins oupled within the layer and between neighbouringlayers, the assertion (2.38) annot be applied. However, the Ising model on a 3D luster is equivalent
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to a 2D Ising model on a surfae of a genus whih depends on the number of sites of the luster,or in other words on a lattie where ertain distint sites have to be identi�ed (aepted as equal).For instane, the Ising model on two oupled layers of a 5 � 5 square lattie is equivalent to aplanar Ising model on a lattie shown in �gure 2.9 where dashed lines marked by the same digithave to be identi�ed. In priniple, this is also a planar Ising model but on a surfae whih hasrather ompliated topologial properties. Dolbilin has informed us that he sueeded to express
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Figure 2.9: Two layers of a 5� 5 square lattie presented as a planar lattie in suh a way that theIsing models on both latties are equivalent. The dashed and the dotted lines marked by the samenumber have to be glued together.the redued partition funtion on a surfae with an arbitrary genus by pfaÆans of matries de�nedon the 3D luster. Using this result it seems to be possible to alulate ~Z(G) at least on relativelylarge 3d lusters in a more eÆient way than by other methods.Despite of its limitations the assertion (2.38) allows us to investigate the Ising model on a varietyof latties. For eah periodi lattie with non-interseting nearest-neighbour bonds ~Z(G) an bealulated exatly as a determinant of a �nite matrix. In order to substantiate this statement let uslabel the oriented bonds by triples (k; l; �), where k; l = 1; : : : ; N label the unit ell whih ontainsthe beginning of the bond, and � = 1; : : : ;M denotes the number of the bond in the unit ell.Beause of the lattie periodiity, the Ka-Ward matrix is yli in k and l, i.e., the matrix elementshk; l; �jAjk1; l1; �1i depend on k; k1; l; l1 only through their di�erenes k�k1 and l� l1. Here we haveused the bra-ket notation from quantum mehanis to denote the matrix elements of A. Applying aFourier transformation to A, we obtain a blok-diagonal matrix:h!; �; �jP�1AP j!1; �1; �1i = Æ!;!1Æ�;�1 ~A(�; �1; exp (i2�!=N); exp (i2��=N)) (2.39)wherehk; ljP j!; �i := 1N exp i2�(k! + l�) ~A(�; �1;X1;X2) := 1N NXk=1 NXl=1hk; l; �jAj0; 0; �1iXk1X l2(2.40)
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Beause the determinant is invariant with respet to a similarity transformation, we an express theredued partition funtion by a produt of determinants of diagonal bloks taken over all !,� from1 to N . Denoting by ~A(X1;X2) the M �M matrix f ~A(�; �1;X1;X2) gM�;�1=1 we an write~Z(G)2 := det A = NY!=1 NY�=1det ~A(exp i2�!; exp i2��) (2.41)
A periodi lattie onsisting of N�N unit ells with M oriented bonds in eah ell ontains N2M=4sites. The logarithm of the redued partition funtion divided by the number of sites in the lattieis essentially the free energy, or more preisely that part of the free-energy funtion that is singularat the ritial point and thus determines the ritial behaviour. It reads1N2M=4 ln ~Z(G) = 12N2M=4 NX!=1 NX�=1 ln det ~A(exp i2�!; exp i2��)

N!1�! 18�2M=4 2�Z
0

2�Z
0 ln det ~A(exp i!; exp i�)d!d� (2.42)

The formula (2.42) ontains some information about the ritial properties of the Ising model evenwithout the detailed knowledge of the matrix ~A. The following onsiderations are based on thetextbook [39℄. Let us assume, for simpliity, that there is only one oupling onstant w = tanh�Jin the Ising Hamilton funtion. Then the determinant in the integrand on the right-hand side of(2.42) is a polynomial in w of order at most M , and the oeÆients are trigonometri funtions ofthe angles ! and �. For example, the determinants on the square lattie det ~A(1) and on the �rstapproximant of the otagonal tiling with seven sites in the unit ell [28℄ det ~A(2) take the formdet ~A(1) = 1 + 2w2 + w4 + (2 os! + 2 os�)(w3 �w) (2.43)det ~A(2) = f0(w) + f1(w)(os! + os�) + f2(w)(os 2! + os 2�) + f3(w) os (! � �) +f4(w) os (! + �) + f5(w)(os (2! + �) + os (! + 2�)) (2.44)where f0(w) = (1 + w2)2(1� 2w2 + 17w4 + 52w6 + 325w8 + 806w10 +1519w12 + 1088w14 + 282w16 + 8w18) (2.45)f1(w) = 2w3(�1 + w2)3(5 + 26w2 + 81w4 + 152w6 + 163w8 + 78w10 + 7w12) (2.46)f2(w) = 4w6(�1 + w2)6(1 + w2) (2.47)f3(w) = �8w4(�1 + w4)4 (2.48)f4(w) = 2w4(�1 + w2)4(�5� 20w2 � 38w4 � 16w6 + 11w8 + 4w10) (2.49)f5(w) = 2w7(�1 + w2)7 (2.50)The determinant should take only positive values for 0 � !; � � 2� and 0 � w � 1 beauseof the logarithm ourring in the integrand. This determinant has a minimum equal to zero at aertain positive value of w = w; the respetive temperature T where w = tanhJ=(kBT) is thetemperature of the phase transition. In order to �nd the behaviour of the free energy in the viinityof the phase transition we expand the determinant around its minimum in powers of the temperaturet = (T � T)=T, and angles ! and �. The integral on the right-hand side of (2.42) reads2�Z
0

2�Z
0 ln �1t2 + 2(!2 + �2)�d!d� (2.51)
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where 1 and 2 are ertain onstants. The oeÆients of !2 and �2 are equal beause the determinantis invariant with respet to interhanging ! and �.After performing the integration, we �nd that the ritial behaviour of the free energy is givenby �F ' a + 12b(T � T)2 log jT � Tj (2.52)where a and b are also ertain onstants. This derivation has not been rigorous but we an draw thefollowing onlusions� The ritial temperature of the Ising model is given by the zero of det ~A(exp i!; exp i�),� If the determinant has a minimum equal to zero at ! = � = 0, then the free-energy ritialexponent is equal to 2 (see (2.52)), i.e., it is the same as on the square lattie.We see that only from the assumption that the lattie is periodi one ould work out a formula forthe free energy F of the Ising model and make some statements about the ritial behaviour of F .An interesting question arises, whether it is possible to �nd formulae or to estimate roughly theritial exponents of other thermodynami funtions whih annot be alulated from F as partialderivatives, for example the suseptibility � or the spontaneous magnetisation M . We will ommenton this below.After this long digression about the meaning of the Ka-Ward formula (2.38) let us �nally skethits proof and make some remarks on the 3D Ising model.Proof of the Ka-Ward formula At �rst let us reall that the alulation of ~Z(G) amountsto ounting all even graphs of the lattie G, i.e., suh graphs where eah site belongs to an evennumber of bonds. Let us de�ne an oriented even graph as an even graph with a �xed diretionof traversing its bonds (any even graph has at least two orientations; an even graph onsisting ofp disjoint omponents has 2p orientations, beause eah of its omponents an be oriented in twoopposite diretions).The lue of the proof of (2.38) is that:Any even oriented graph on a planar lattie orresponds to a permutation of oriented bonds.
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8 � 1 2 3 42 3 4 1 � �� 5 6 7 86 7 8 5 �Figure 2.10: An oriented, even graph and the orresponding permutation, a produt of two yles.This orrespondene is illustrated in �gure 2.10. The graph shown there onsists of two ompo-nents and the permutation an be deomposed into a produt of two yles. A yle of length q is apermutation � of numbers i = 1; : : : ;M suh that there exists a sequene fikg for k = 1; : : : ; q that�(ik) = ik+1 for k = 1; : : : ; q and �(j) = j if j 62 ik� = � i1 i2 : : : iq�1 iqi2 i3 : : : iq i1 � (2.53)It is easy to see that an oriented even graph onsisting of p omponents orresponds to a produt ofp yles.
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The mapping between oriented graphs and permutations an of ourse be inverted, i.e., for everypermutation of oriented bonds there is exatly one oriented graph orresponding to this permutation,whih, however, is not even in general. Now, the idea is to ount permutations of oriented bonds fromE = f~ejg2Mj=1 instead of ounting oriented even graphs. Counting permutations an be arranged byalulating a determinant of a 2M � 2M matrix A, beause the determinant an be expanded intoa sum over permutations of olumnsdet A = X� sgn(�) A(~e1; ~e�1)A(~e2; ~e�2) : : : A(~e2M ; ~e�2M ) (2.54)

The only problem is to devise the matrix elements A(~ej ; ~ek) suh that only oriented, even graphsare ounted, i.e., graphs whih are not even do not provide a non-zero ontribution. We will nowsubstantiate that the de�nition (2.37) is orret, it means there is a one-to-one orrespondenebetween the non-zero terms in the expansion of the determinant and oriented, even graphs in thelattie G.First of all notie that every permutation � an be deomposed into yles. Let us thereforeonsider the ontribution of a yle of length q in (2.54). Substituting the de�nition of the Ka-Ward matrix (2.37) into (2.54) we �nd
sgn(�) exp0� i2 qXj=1 �j;j+11A qYj=1(�wij) (2.55)

where �j;j+1 is the angle between oriented bonds ~eij and ~eij+1 . Note that the de�nition of the Ka-Ward matrix ensures that only for q > 2 the term (2.55) is di�erent from zero. Indeed, for q = 2 wehave two oriented bonds ~ei1 and ~ei2 suh that the endpoint of ~ei1 is equal to the initial point of ~ei2and the endpoint of ~ei2 oinides with the initial point of ~ei1 . But the de�nition (2.37) forbids suhsituations, whih means that A(~ei1 ; ~ei2) = 0.Now, we make use of two simple fats.1. The sign of a yle � of length q is sgn(�) = (�1)q+1,2. We de�ne the sign t() of an oriented graph  as the number of times the graph  rossesitself. The sum of angles �j;j+1 by whih we rotate while traversing the graph  with lengthq is always an integer multiple of 2� and equals Pqj=1 �j;j+1 = 2�(t() + 1). In partiular, ifthe graph does not ross itself the sum is 2�. This result is due to Whitney [36℄ and we alreadymentioned it when disussing the derivation of the Onsager formula for the free energy fromFeynman's onjeture (2.28).Exploiting these two fats we an simplify the addend (2.55) onsiderably and obtain(�1)t((�)) � qYj=1w�j (2.56)
where t((�)) is the sign of a losed, oriented graph  whih orresponds to the yli permutation� (see �gure 2.10).Now, we want to express the determinant (2.54) as a polynomial depending on the ouplingonstants wj . Let us make some de�nitions.From �gure 2.11 it is lear that the graphs we are dealing with an onsist, in general, of doublebonds oriented in opposite diretions. Eah graph  an be deomposed into the set of its singleand double bonds X1 and X2 respetively. For instane for the graph shown in �gure 2.11X1 = fei1 ; ei2 ; ei3 ; ei4 ; ei5 ; ei6 ; ei9 ; ei10 ; ei11g and X2 = fei7g = fei8g (2.57)
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i8 � = � i1 i2 i3 i4 i5 i6 i7i2 i3 i4 i5 i6 i7 i1 � �� i8 i9 i10 i11i9 i10 i11 i8 �Figure 2.11: A orrespondene between a permutation �, whih is a produt of two yles of length7 and 4, and an oriented, even graph (�). The sign of the graph is t((�)) = 0
Now, for a given pair of sets of single and double bonds X1 and X2 we de�ne the multitude �(X1;X2)of all oriented graphs  orresponding to (X1;X2) and their signature S(X1;X2)�(X1;X2) := fjX1() = X1;X2() = X2g (2.58)S(X1;X2) := X2�(X1;X2)(�1)t() (2.59)
where X1() and X2() denote the set of all bonds whih the oriented path traverses one and twie,respetively. For (X1;X2) given in (2.57) �(X1;X2) onsists of two oriented graphs; the one shown in�gure 2.11, and a graph where the diretion of all arrows are reversed. The signature of (X1;X2) isequal to two beause both oriented graphs do not ross themselves, S(X1;X2) = (�1)0 + (�1)0 = 2.Finally w(X) denotes the produt of oupling onstants over all bonds taken from the set X,thus w(X) = Qej2X wj . The produt Qqj=1w�j of oupling onstants taken over all bonds of anoriented graph  2 �(X1;X2) is equal to w(X1)w(X2)2 beause the bonds in X1 our in  one andthe bonds in X2 twie.Making use of these de�nitions we an write down the expansion of the determinant (2.54)det A = 1 + X� (�1)t((�)) � qYj=1w�j (2.60)

= 1 + X(X1;X2)6=(;;;) X2�(X1;X2)(�1)t()w(X1)w(X2)2 (2.61)
= 1 + X(X1;X2)6=(;;;)S(X1;X2)w(X1)w(X2)2 (2.62)

In the �rst equation (2.60) we simply substituted (2.56) into (2.54). In the seond equation we splitthe sum over all permutations into a sum over all pairs (X1;X2) of sets of single and double bonds,and a sum over all orientations  of a given pair (X1;X2). Finally, in the third equation we used thede�nition (2.59) of the signature of a pair (X1;X2).Let us now write down the right-hand side of the Ka-Ward assertion (2.38) and try to bring itto the same form as (2.62). We denote g and g1 two even, unoriented graphs in the lattie G andw(g) and w(g1) the orresponding produts of oupling onstants taken over bonds from g and g1,respetively. Moreover, let us de�ne Q(X1;X2) as a deomposition of a pair (X1;X2) of single anddouble bonds into pairs of graphs g; g1 and de�ne P (X1;X2) as the number of elements of Q(X1;X2)Q(X1;X2) := f(g; g1)jjgj [ jg1j = X1 [ X2; jgj \ jg1j = X2g (2.63)P (X1;X2) := #Q(X1;X2) (2.64)
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where jgj denotes the set of bonds of a graph g. For the pair (X1;X2) given in (2.57), Q(X1;X2)onsists of two elements. The �rst pair of graphs (g; g1) onsists of the 7-gon as the �rst graph gand of the square as the seond graph g1 (see �gure 2.11). In the seond pair (g; g1), the graphs areinterhanged. Therefore P (X1;X2) = S(X1;X2) = 2. The square of the redued partition funtionreads ~Z(G)2 =  Xg w(g)! Xg1 w(g1)! = Xg;g1 w(g)w(g1) (2.65)

= X(X1;X2)6=(;;;) X(g;g1)2Q(X1;X2)w(X1)w(X2) (2.66)
= 1 + X(X1;X2)6=(;;;)P (X1;X2)w(X1)w(X2)2 (2.67)

Dolbilin et al. alulate the oeÆients P (X1;X2) and S(X1;X2) and asertain that they are equal;we omment on this in the remainder of this setion. Therefore, the polynomials in (2.62) and (2.67)are idential, what proves the Ka-Ward assertion (2.38).Let us now try to onsider the oeÆients P (X1;X2) and S(X1;X2) without going into detail.Assume that the set X1 onsists of q disjoint parts and eah of these parts ontains only vertieswith exatly two bonds emanating from it; in other words, these parts do not have any rossingpoints. Then P (X1;X2) = 2q. In order to see this, we have to ount in how many ways (X1;X2) anbe deomposed into pairs of unoriented even graphs (g; g1). We an hoose as g a multiomponentalgraph onsisting of r (0 � r � q) disjoint parts of (X1;X2) and hoose g1 as the remaining q�r parts.We have q!= [r!(q � r)!℄ possibilities of suh hoies, hene P (X1;X2) = Pqr=0 q!= [r!(q � r)!℄ = 2q.Now let us onsider the value of S(X1;X2) in this ase. The signature S(X1;X2) was de�ned asa sum of signs of oriented graphs  2 �(X1;X2) . If X1 onsists of q disjoint parts, without anyrossing points, eah part an have two opposite orientations and the sign of this orientation is equalto one. Therefore there are 2q possible orientations, eah of them with a sign +1. It means thatS(X1;X2) = 2q.In the generi ase, when X1 ontains verties of valene 4, whih means that there are four bondsmeeting at a vertex, the expression for the oeÆients P (X1;X2) and S(X1;X2) is more ompliated.Dolbilin et al. [20℄ prove thatP (X1;X2) = S(X1;X2) = 2q+Pv2X1 [k(v)�1℄ (2.68)where 2k(v) is the number of bonds of X1 whih meet at vertex v, and q is the number of disjointomponents of X1.2.3.5 Comments and possible extensions to other modelsAll approahes presented in this setion, exept for the algebrai approah by Onsager, have some-thing in ommon. They rely on Whitney's result [36℄ for losed loops on a plane. For any losedloop, no matter how ompliated it is, we an assign weights to its orners, suh that a produt ofthese weights over all orners is equal to �1. The weight of the jth orner reads exp i�j;j+1=2, where�j;j+1 is an angle between the jth and the (j + 1)th oriented bond. This assignment is however notlonger valid for 3D losed loops, i.e., that the produt of suh weights di�ers from �1 for a generi3D losed loop.Let us onsider a losed graph built up from bonds of a 3D ubi lattie. We assign ertainweights to \turns", i.e., hanges of diretion in the orners of the graph. These weights an beelements of an, in general nonommutative, �eld.
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There are four possible turns ; one an go straight ahead with a weight s, turn right with aweight r, turn left with a weight l, go up with a weight u or down with weight d. Now, for eahlosed graph a produt of the respetive weights over all orners must be equal to �e, where e isthe identity element of the �eld. Ka and Ward proved, however, that no suh uniform assignmentof �eld elements is possible. There is still a possibility to onsider 30 \turns" whih are spei�ed byordered pairs of bonds onsisting of the inoming diretion followed by the outgoing diretion andassoiate 30 di�erent weights to them. In our opinion it is rather doubtful whether this approahmay be suessful.In the remainder of this setion we want to disuss two models of statistial mehanis, namelythe 2D Ising model with non-vanishing �eld and the 2D q-state Potts model, whih perhaps ouldbe solved by similar methods to those used by Ka and Ward. The Potts model, introdued in 1952[40℄, is a generalisation of the Ising model, see (2.19), where the spins �j ; �k take q di�erent values�j ; �k = 1; : : : ; q and their interation energy is di�erent from zero only if �j = �k. The Ising modelorresponds to the ase q = 2.Although both models have been formulated a long time ago, the full form of the free energyhas never been alulated for arbitrary �eld (Ising model), or arbitrary q and T (Potts model). Ourbelief that methods similar to those desribed above ould be useful for summing up the terms of thepartition funtion Z is based on the fat that one an formulate graphial expansions of Z whih runover the same set of graphs as those entering in the expansion of the 2-dimensional zero-�eld Isingmodel. In the following we disuss these expansions and make some remarks on how the formula(2.38) ould possibly be extended in order to yield the partition funtion of the respetive models.We are onvined that a loser inspetion of this approah ould lead to some interesting results.Let us start with the Ising model with non-vanishing �eld. First of all notie that the high-temperature expansion of the redued partition funtion is rather inonvenient for our purposes.Indeed, aording to (2.26), we have to sum over all possible graphs, not neessarily even, ourringin the lattie. The ontribution of a graph onsisting of n bonds and m odd sites is wnzm wherew = tanh�J and z = tanh�B. If a graph is not even, it is rather diÆult to treat it as a permutationof its oriented bonds whih was the essene of the ombinatorial approah.It may be worthwhile, however, to pay more attention to the low-temperature expansion. Letus therefore shortly disuss this tehnique. At T = 0, the system is in a two-fold degenerate groundstate: all spins are parallel, taking the same value �. An exited state for low temperatures T > 0onsists of lusters of inverted spins, exitation islands emerging from an oean of aligned spins s.It is therefore lear, even at �rst sight, that the low-temperature expansion will be a sum over theseexited lusters, whih an be regarded as loops on the so-alled dual lattie (the exat de�nitionfollows below).The ground-state energy is equal to E = �JM �BN (2.19) where M and N denote the numberof nearest-neighbour bonds and the lattie sites, respetively. Consider an exited state with minverted and n nearest-neighbour pairs of opposite spins (+;�). The energy of this exited state isequal to E1 = �J(M � 2n)�B(N � 2m) and is larger than the ground-state energy by J2n+B2m.Denoting by x := exp (�2�J) and y := exp (�2�B) the expansion variables, we see that the partitionfuntion an be written as followsZ = Xlusters exp (��E1) = exp (��E) Xlusters exp (��J2n) exp (��B2m)

= x�M=2y�N=2(1 + 1Xm=1 1Xn=3 g(n;m)xnym) (2.69)where g(n;m) is the number of spin on�gurations having n nearest-neighbour pairs of oppositespins and m inverted spins, respetively. Any suh on�guration an niely be presented as an even
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graph whih is onstruted as follows. For eah nearest-neighbour pair of opposite spins (�1; �2)draw a line onneting the entres of two tiles whih ontain the bond (�1; �2). In this way, oneobtains an even graph (onsisting of onneted loops) whose verties lie in the entres of tiles of theoriginal lattie. A lattie, whose sites are equal to the entres of tiles of a given lattie G is alledthe dual lattie of G. We see, therefore, that the fator g(n;m) an be interpreted as the number ofeven graphs (sets of onneted loops) on the dual lattie, whih have length n and omprise m sitesof the lattie in their interior. For the square lattie, this formulation an be simpli�ed; in this asean even graph with length n and surfae m ontributes to the expansion a term xnym.Now, we pose the question whether it is possible to modify the de�nition of the Ka-Ward matrix A(2.37) on lattie G, for example by some additional fators, suh that the relation det A = ~Z(G)2still holds for a non-vanishing �eld. For an arbitrary losed loop of length n, onsisting of bonds~ei where i = 1; ::; n, we have to assign a weight W (~ei; ~ei+1), depending on the magneti �eld B, tothe ith vertex of the graph suh that the produt of the weights over all verties is equal to thearea m omprised by the loop Qni=1W (~ei; ~ei+1) = m. If we were able to onstrut suh weights,we ould modify the de�nition of the Ka-Ward matrix (2.37) by multiplying its o�-diagonal ele-ments A(~ej ; ~ek) by W (~ej; ~ek). From the proof of the Ka-Ward formula it is rather lear that thedeterminant of the modi�ed Ka-Ward matrix would yield the squared partition funtion ~Z(G)2.It is doubtful whether suh set of weights W (~ei; ~ei+1) an be found for arbitrary losed loops. Inthe ase of loops being boundaries of onvex regions suh weights ould perhaps exist, but of oursenot-onvex loops also ontribute to the expansion. Perhaps it ould be possible to sum up at least apart of all graphs, what is not suÆient to onstrut the whole partition funtion but might perhapsbe useful to alulate the zero-�eld derivatives of the free energy �p logZ=�Bp for p = 1; 2 : : : andyield the zero-�eld magnetisation or the suseptibility of the system.Let us now onsider the q-state Potts model. The partition funtion for this model on a lattieG with N sites and M bonds equalsZq(G) = Xf�jg exp f�JXhj;ki Æ(�j; �k)g (2.70)
where the sum over spin on�gurations f�jg = f�1; �2; : : : ; �Ng onsists of N sums, eah of whihruns from 1 to q and Æ(�j; �k) is a Kroneker delta, i.e. it equals one if �j = �k and zero oth-erwise. Potts [40℄ showed that one an formulate two series expansions of the partition funtionZq(G), namely a low-temperature expansion in the variable u = exp (��J) and a high-temperatureexpansion in the variable D(u) = (1� u)=(1 + (q� 1)u) suh that, up to an irrelevant multipliativeonstant, the high-temperature expansion on a lattie G is equal to the low-temperature expansionon the dual of the lattie G. For self-dual latties, for example the square lattie, Zq(G) is invariantunder a duality transformation u �! D(u).We will now onsider the high-temperature expansion and investigate what kind of graphs enterto it and what are their ontributions. In the derivation of the high-temperature expansion wefollow a good tutorial review [41℄ whih we reommend for readers interested in the Potts model. Itis readily seen that the partition funtion (2.70) an be rewritten as follows:Zq(G) = Xf�jgYhj;ki [1 + (exp(�J)� 1)Æ(�j; �k)℄ = Xf�jgYhj;ki [t(1 + D(u)fj;k)℄

= tM Xf�jgYhj;ki [(1 +D(u)fj;k)℄ (2.71)
where t = (1 + (q � 1)u)=(qu) and fj;k = (�1 + qÆ(�j; �k)). We see that the last expression at theright-hand side of (2.71) has the same form as the formula (2.24) for the Ising model for B = 0,
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where t, D(u) and fj;k in the Potts model are replaed by os�J , w and (2�j � 3)(2�k � 3) in theIsing model, respetively. We an therefore use this form of the partition funtion for developing agraphial expansion in the same manner as for the Ising model, see setion 2.3.3. There is, however,a di�erene to the Ising model ase with respet to graphs whih ontribute to the expansion. It iseasy to see that qX�k=1 fj;k = 0 but qX�k=1 f2p+1j;k 6= 0 for p = 1; 2; : : : (2.72)while for the Ising model (q = 2), the sums of powers of the fators fj;k = (2�j � 3)(2�k � 3) areequal zero for every odd power:qX�k=1(2�j � 3)2p+1(2�k � 3)2p+1 = (2�j � 3)2p+1(1� 1) = 0 (2.73)
This implies that the Potts model partition funtion an be written as a sum over graphs g whihdo not have any vertex of degree one. Even graphs, entering in the Ising model expansion onstitutea sublass of graphs g ontributing to the Potts model expansion:Zq(G) = tMXg2G w(g) (2.74)
where the weights w(g) = Pf�jgQhj;k2gi fj;k depend on q and on the so alled topology F (g) of thegraph g. The following remarks refer to graphs g ontributing to (2.74), it means graphs withoutverties of degree one. Every graph an be redued to its skeleton by removing all verties of degreetwo and onneting bonds whih abut on a degree-two vertex. Now, two graphs whih have the sameskeleton are topologially isomorphi and the skeleton identi�es the topology of the graph. Anotherquantity whih haraterises a graph topology is the ylomati number  equal to the number ofbonds l minus the number of verties v plus one  = l � p + 1. All graphs with a given topologyhave the same ylomati number but  does not determine the topology uniquely, i.e., there an bedi�erent topologies having the same value of . A detailed disussion of these notions an be foundin the textbook of Domb and Green [42℄, setion 1, pages 3{16. Graph topologies an be lassi�edaording to the ylomati number [42℄. There is one topology with  = 1, a loop denoted by p, onetopology with  = 2, denoted by �, four topologies orresponding to  = 3, designated by �,�,,Ærespetively. For higher  values the number of topologies grow rather rapidly, there are 17 topologiesorresponding to  = 4, 118 topologies orresponding to  = 5 and 1198 topologies orrespondingto  = 6. Notie that in this nomenlature graphs entering in the Ising model expansion havep-topology with  = 1.After this brief disussion of notions of graph theory let us return to the weights w(g) in thehigh-temperature Potts model expansion (2.74). It an be shown [41℄ that the weights read:w(g) = qv(g)�1 PF (g)(q) D(u)l(g) (2.75)where v(g) and l(g) are the number of verties and bonds of the graph g, not its skeleton, respetivelyand PF (g)(q) is a polynomial in q with integer oeÆients with order equal to +1. This polynomialdepends exlusively on the graph topology F (g). From the de�nition of the weight we have alulatedthe polynomials PF (q) for topologies orresponding to  � 3, see table 2.2. We skip the symbol g inthe notation of the topology F . Inserting (2.75) into (2.74) we an write the Potts model expansionas follows:Zq(G) = tMXF PF (q)Xg2F qv(g)�1D(u)l(g) = tMXF PF (q)=qXg2F(qD(u))l(g) (2.76)
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Topology Cylomati PF (q)F number  = l � v + 1p 1 q(q � 1)� 2 q(q � 1)(q � 2)� 3 q(q � 1)(q � 2)(q � 3)� 3 q(q � 1)(q � 2)2 3 q(q � 1)(q � 2)2Æ 3 q(q � 1)(q2 � 3q + 3)Table 2.2: Contributions of graphs aording to their topology to the high-temperature expansionof the Potts model.

where the �rst sum on the right-hand side runs over topologies F and the seond over graphs ghaving a given topology. In the last equality on the right-hand side we expressed v(g) by l(g) andthe ylomati number .The idea is now to sum graphs with given topologies F by algebrai methods similar to theKa-Ward method. For the p-topology the problem is already solved by the Ka-Ward theorem.Now, we want to onstrut suh generalisations of the Ka-Ward matrix AF , that for every topologyF we have a formula det(AF ) = Pg2F wl(g). Then the partition funtion reads:
Zq(G) = tMXF PF (q)=qdet(AF ) (2.77)

If we were able to onstrut the matries AF we ould use the formula (2.77), by trunating the sumat topologies orresponding to an arbitrary high ylomati number , for determining the high-temperature expansion of the partition funtion in a muh more eÆient way as diretly from thede�nition. Note that graph topologies have been systematised and the alulation of PF (q) for  > 3does not present diÆulties either. The formula (2.76) is also superior to other series expansionsof the Potts model partition funtion, whih an be found in [41℄, due to the fat that the weightsdepend only on the number of bonds of the graph l(g) and not on other properties like the areaenlosed by the graph or its number of onneted parts. Another argument suggesting that theonstrution of matries AF should be possible is that, every graph g an be deomposed into loops,p-topologies, whih an be ounted by the Ka-Ward theorem. This approah is, in our opinion,worthwhile of a loser inspetion.
2.4 Graphial expansions for Ising modelsIn this setion, we are going to investigate Ising models on quasiperiodi graphs by means of graphialhigh-temperature expansions. The tehnique of graphial expansions of various thermodynamifuntions is a powerful tool to examine ritial phenomena. Series expansions of the Ising modelon the square lattie have been introdued by Kramers and Wannier in 1941, three years beforeOnsager [31℄ found his exat solution, and were subsequently applied by Opehowski and Kramers[43℄ to the Heisenberg model, the expansion variable being � = 1=kT .The aim of Kramers and Wannier was to test the validity of losed-form approximations like theBragg-Wiliams or the Bethe-Peierls methods [44℄ whih were invented in the 1930s and were the�rst suessful attempt to takle the mirosopi model of ferromagnetism formulated by Ising, astudent of Lenz, in 1925 [29℄.
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A omparison of these losed-form results with exat series expansions showed that even thebest approximations produed only a few terms orretly. This suggested, therefore, that theseapproximations are probably unreliable in the ritial region, what was beautifully on�rmed byOnsager's solution. This was the �rst suess of series expansions, namely to point out to theinappliability of mean-�eld methods for the desription of ritial phenomena.Some years later Domb suggested that expansions of suÆient length might provide an assessmentof the ritial behaviour. A systemati investigation of Ising models on a variety of two- and 3Dlatties ommened in the early 1950s [45℄,[46℄ and methods of extrating information about theritial behaviour were steadily improved. A number of tehniques like the Pad�e- or di�erential-approximants were developed whih approximate the singular part of the thermodynami funtionunder investigation by a sequene of funtions, for instane rational funtions, whih were hosenin suh a way that maximum information about the ritial behaviour ould be extrated. We willdesribe these tehniques in detail later, after having presented our results on quasiperiodi Isingmodels.An essential issue in the investigation of ritial phenomena with series expansions is the hoieof the thermodynami funtion and the type of expansion. Let us now shortly disuss what types ofseries expansions are possible and whih thermodynami funtions are best suited for these expansiontehniques. In the following, we will refer to some statements from a textbook by Domb and Green[42℄ whih ontains useful information about series expansions of lattie models.2.4.1 High-temperature expansions of \moment" or \umulant" typeLet us slightly generalise the partition funtion Z (2.20) by replaing B with site-dependent mag-neti �elds Bi. The omputation of Z amounts to summing over all spin on�gurations and thusorresponds to an average of the Boltzmann fator exp[��E(~�)℄ over the distribution of energiesZ = hexp[��E℄i. Expanding the exponential in a power series and taking an energy average of eahterm, we obtain an expansion in � = 1=kT valid for high temperatures (small �).

Z = hexp[��E℄i = 1 + 1Xj=1 (��)jj! hEji (2.78)
This is a \moment" expansion beause the jth term depends on the jth moment of the spin distri-bution hEji = P~� E(~�)j. The respetive expansion for the free energy F � logZ may be alled a\umulant" expansion, beause it is expressed by the umulants h(E�hEi)ji of the spin distribution

logZ = ��hEi+ 1Xj=2 (��)jj! h(E � hEi)ji (2.79)
It turns out (see setion 6 II.C of [42℄) that the \moment" expansion (2.78) an be expressed as asum over ertain graphs Gp;l, whih are olletions of p points (verties) with l lines (edges) betweenertain pairs of points

Z = XGp;l w(Gp;l) where w(Gp;l) � lY(q;s)Jiq;is pYi=1Bi (2.80)
The expression for the weight w(Gp;l) on the right-hand side of (2.80) has the following meaning.For a given enumeration of points iq, where q = 1; : : : ; p, the weight is proportional to a produtof oupling onstants over all l lines onneting ertain pairs of these points and to a produt of
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magneti �elds Bi over p points. The exat proportionality fator is not important, beause we willuse a slightly modi�ed kind of this expansion.The \umulant" expansion of the free energy is also a graphial expansion, running over allpossible onneted graphs C(p; l) (onsisting of p points and l lines), whose number is muh smallerthan the number of graphs that enter in (2.80). A graph is said to be onneted if there is at leastone path between any two points, otherwise it is disonneted.The weights w(Gp;l) satisfy two assumptions. Firstly, they are independent of the labelling ofpoints. Seondly, if the graph Gp;l onsists of onneted parts (Cq;k), the weight is a produt overweights assoiated with the onneted onstituents w(Gp;l) = Q(Cq;k) w(Cq;k). Therefore, aordingto theorem I on page 17 in [42℄, the expansion of the free energy runs only over onneted graphsand reads F � logZ = XCp;l b(Cp;l) where b(Cp;l) � 1p! lY(q;s)Jiq ;is pYi=1Bi (2.81)
As we an see, the weights b(Cp;l) are now de�ned in the same way as in (2.80) exept for aproportionality fator 1=p!.If the magneti �eld is zero (B = 0), one an arry out a further simpli�ation of the free energyexpansion by limiting the set of graphs only to star graphs (Sq;k) with q points and k lines. A stargraph is a graph with no artiulation point, i.e., a point whih when omitted would ause the graphto disintegrate into disonneted parts. In zero magneti �eld, the weights w(Cp;l) also satisfy theprodut ondition, i.e., w(Cp;l) = Q(Sq;k)w(Sq;k) where (Sq;k) is a star-graph deomposition of theonneted graph (Cp;l). This implies that the \umulant" expansion (2.81) an be expressed onlyin terms of star graphs, see theorem II, page 19 in [42℄. Let us now formulate this theorem beausewe need to work out an expression for the weights of star graphs entering in our high-temperatureexpansion of quasiperiodi Ising models. In the following, we will skip, for simpliity, the subsriptdenoting the number of lines in the symbol of a graph, i.e., Sq now denotes a star graph with qpoints.Assertion 2 De�ne a generating funtion S(x) for star graphs:

S(x) = 1Xq=2 sqxqq! where sq = X(Sq)w(Sq) summing over all stars (2.82)
For the generating funtion of onneted graphs f(x) = P1p=1 fpxp=p! de�ne
R(x) = x�f�x = 1Xp=1 fp xp(p� 1)! where fp = X(Cp)w(Cp) summing over all onneted graphs(2.83)Then the funtion R(x) satis�es the following funtional relationR(x)x = expS0[R(x)℄ = 1 + 11! 1Xq=2 sqR(x)(q�1)(q � 1)! + 12! 1Xq;p=2 sqsp R(x)(q+p�2)(q � 1)!(p� 1)! + : : : (2.84)

Note that for x = 1 the generating funtion for onneted graphs f(1) is nothing but the \umulant"expansion of the free energy (2.81) .This theorem enables us to express the expansion of the free energy in terms of star graphs inthe lattie. Indeed, from (2.84), we an express the onneted-graph oeÆients fp through the
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star-graph oeÆients sp:f1 = 1f2 = s2f3 = s3 + s22f4 = s4 + 3s2s3 + s32f5 = s5 + 4s2s4 + 3s23 + 6s22s3 + s42f6 = s6 + 5s2s5 + 10s3s4 + 10s22s4 + 15s2s23 + 10s32s3 + s52 (2.85)The above equations provide us with all possibilities of deomposing a onneted graph Cp intoolletions of star graphs Sq. For instane, from the �fth line in (2.85) we �nd that any onnetedgraph onsisting of 5 points an be deomposed either into one star with 5 points or into two starswith 2 and 4 points, or into two stars with 3 points eah, into three stars with 2, 2 and 3 points, or,�nally, into four stars onsisting of 2 points eah.All the above onsiderations were onerned with quite general lattie models, not only disretebut also ontinuous models with arbitrary, even long-range interations, see setion 1 III, page 42 in[42℄. We obtain the result that the free energy an be written as an expansion over star graphs in thelattie. Now, let us work out a star-graph expansion whih is more onvenient to use in numerialalulations, but only holds for the Ising model. Additionally, we assume that the oupling onstantsJj;k take only one non-vanishing value J for nearest-neighbour spins pairs hj; ki.We now make use of the expansion (2.26) of the partition funtion Z(G) on lattie G. In ourgraph-theoreti terminology, this expansion runs over all possible graphs, in general disonneted,whih our in the lattie. After taking the logarithm on both sides we obtain, apart from a fator�1=�, the expansion of the free energy

logZ(G) = N log 2 + M ln [osh (�J)℄ +N log osh (�B) + N 1Xn=3 1Xm=1h(n;m)wnzm (2.86)
where the oeÆients h(n;m) are obtained by expanding log ~Z(G) into a power series and groupingthe terms with the same powers of w = tanh (�J) and z = tanh (�B) together. In our graph-theoreti framework, ompare (2.81), the sum extends over onneted graphs. The value of theoeÆient h(n;m) does not, however, have a simple interpretation; in partiular it is not equal tothe number of onneted graphs onsisting of n edges and m odd points.First note that the oeÆients g(n;m) ourring in the expansion (2.26) of ~Z(G) will, in general,be linear ombinations of ertain powers of the total number of verties N in the lattie. Indeed, agraph with n bonds and m odd verties (n;m-graph) in general onsists of i onneted parts, wherei = 1; : : : ; r. The number of n;m-graphs onsisting of i onneted parts g(n;m; i) is also a linearombination of powers of N where the largest power equals to i, hene g(n;m) = Pri=1 g(n;m; i) =Pri=1 �iN i where �i are ertain real numbers. It is not diÆult to see that the oeÆient h(n;m) isequal to the linear term in the expansion of g(n;m), i.e., h(n;m) = �1N .There is also a di�erene between the sets of graphs entering in the expansions (2.86) and (2.81),beause the expansion variables are di�erent (J and B in (2.81) and w and z in (2.86)). The\smallest" onneted graph Cp;l entering in the \umulant" expansion (2.81) is a single edge (p = 2and l = 1) whereas the graphs ontributing to (2.86) onsist of at least three edges (these are meshesof the lattie, for the square lattie the expansion starts with n = 4). After expanding all termsof our high-temperature expansion (2.86) in powers of J and B one should, of ourse, retrieve theumulant expansion (2.81).
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In zero magneti �eld we an make use of the theorem (2.84), rearrange the sum in (2.86) andobtain a star-graph expansion of the free energy. The assumption B = 0 is neessary beause only inthis ase the weights wnzm have the \produt property" required in (2.84), namely that the weightof a onneted graph equals to a produt of weights orresponding to its star onstituents. Hene,the logarithm of the redued partition funtion log ~Z(G) reads

log ~Z(G) = logZ(G)�N ln 2�M ln [osh (�J)℄ = N 1Xn=3h(n; 0)wn = Xr (Sr;G) kr(w) (2.87)
where the last sum runs over star graphs Sr of G. The quantity (Sr;G) denotes the so-alled lattieonstant of the star Sr in G, ounting the number of ways Sr an be embedded in G. The weightfuntions kr(w) depend only on Sr, not on G.We an alulate the weight funtions kr(w) from the partition funtion ~Z(Sr) on the graph Sr.For this purpose, let us generate all star graphs and arrange them in a sequene fSrgr=1;2;::: suhthat Ss annot be embedded in Sr for r < s. In other words, the lattie onstant (Ss;Sr) may benon-zero only if s � r, whih, in general, does not determine the sequene uniquely. Having arrangedthe graphs in suh a way, the expansion (2.87) for a graph Sr gives

log ~Z(Sr) = rXs=1(Ss;Sr) ks(w) (2.88)
and, taking into aount that (Sr;Sr) = 1, we obtain the orresponding weight kr(w)

kr(w) = ln ~Z(Sr) � r�1Xs=1(Ss;Sr) ks(w) (2.89)
expressed in terms of ks(w) with s < r. Therefore, we an ompute the weights kr(w) suessivelyprovided we know the partition funtion ~Z(Sr) and the lattie onstants (Ss;Sr) of all star graphsSs that are subgraphs of Sr.We note that any star graph has a boundary whih is a losed loop. Therefore, we an rearrangethe sum in (2.87) as log ~Z(G) = 1Xn=3Xr Xs (S(n)r;s ;G) k(n)r;s (w) (2.90)
where r labels losed loops l(n)r onsisting of n bonds, and S(n)r;s are all possible omplete \�llings"of the loop l(n)r . By �llings we mean all proper graphs of G whih have the loop as their boundary.Here, the funtions k(n)r;s (w) have the formk(n)r;s (w) = wn + O(w(n+1)) (2.91)Hene, trunating the sum over n in (2.90) yields all terms in the expansion up to the nth orderin w. In summary, in order to alulate the high-temperature expansion (2.90) of the Ising modelto order nmax we have to perform following steps:1. generate all loops l(m)r in the lattie G onsisting of m � n bonds,2. onstrut all �llings S(m)r;s of l(m)r ,3. alulate log ~Z(S(m)r;s ), the logarithm of the partition funtions for the subgraphs S(m)r;s ,
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4. alulate the lattie onstants (S(m)r;s ;G) and (S(m0)r0;s0 ;S(m)r;s ),5. ompute the weight funtions k(m)r;s (w) by suessive use of (2.89),6. alulate the expansion (2.90).This sheme is designed for alulating a series expansion of the free energy, whih however,is not the best thermodynami funtion to examine the ritial behaviour. Indeed, the singularpart of the free energy on the square lattie ontains a logarithmi term (see (2.52)) and thereforethe deviations of the expansion oeÆients from their asymptoti values will be rather large (theonvergene rather slow). We expet that this will also be the ase for our quasiperiodi tilingsbeause the Harris-Luk riterion onjetures that the model belongs to the same universality lass.Experiene based on examining Ising models on various regular latties show that the zero-�eldsuseptibility �0 = 1=��2 logZ=�B2B=0 is more suitable to explore the ritial region beause theexpansion oeÆients behave in a smooth and regular way. After inserting (2.86) into the de�nitionof �0, we obtain �0 = � "1 + 2Xn=3h(n; 2)wn# (2.92)

i.e, the graphs entering in the expansion of �0 have exatly two odd verties (suseptibility graphs).Suh graphs are more numerous than the zero-�eld free energy graphs and ounting of large numberof di�erent types that our rapidly beomes laborious and liable to error. Sine in quasiperioditilings the number of di�erent zero-�eld free energy graphs is muh larger than in periodi latties,as it will turn out in the next setion, we expet that the number of suseptibility graphs will betremendous. Hene, a diret alulation of the suseptibility expansion is rather diÆult and we willlimit ourselves �rstly to the free energy series.There are however attempts to formulate the suseptibility expansion only in terms of \losed"graphs, i.e., graphs ontaining verties with more than one neighbour, see [47℄ and [42℄ page 378{382.After a suitable transformation of �0 one an write it as a series expansion where the nth oeÆientgn is a linear sum of lattie onstants, in general disonneted, of losed graphs satisfying followingonditions� only lattie onstants with n lines our in gn,� only zero-�eld and suseptibility graphs our.Despite the fat that the method requires the use of disonneted lattie onstants it does not appearto be a serious obstale for low expansion terms. This result was a breakthrough in the alulationsof suseptibility series expansions and it allowed, in the early 1970s, to ompute these series fortwo- and 3D regular latties up to the order twenty. This method takes, however, for granted thatthe underlying lattie is regular, i.e., eah site has the same number of neighbours, thus its diretappliation to quasiperiodi tilings, where the number of neighbours depends on the site, is notpossible. In our opinion a ounterpart of this method for irregular latties ould also be formulatedand it is worthwhile to pursue researh in this diretion.
2.4.2 Low-temperature expansions of \exitation" typeLow-temperature expansions of the free energy have already been mentioned in subsetion (2.3.5)when we disussed whether it is possible to solve the Ising model with B 6= 0 by methods similarto the Ka-Ward method. Here we want to put the emphasis on numerial series expansions and
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answer the question what physial quantities, whih are diÆult to obtain from high-temperatureexpansions, an be expanded. The presentation will be rather short beause we did not perform anylow-temperature expansions on quasiperiodi tilings.In the ferromagneti ase, the spins will all align at suÆiently low temperatures even in zero�eld. We an, therefore, onsider exited states arising from groups of overturned spins havingon�gurations with more and more bonds onneting opposite spins. Taking the logarithm of thelow-temperature expansion (2.69) we obtain:

logZ = �M2 log x� N2 log y + 1Xn=3 1Xm=1h(n;m)xnym (2.93)
where x := exp (�2�J) and y := exp (�2�B). The oeÆients h(n;m) are now obtained fromg(n;m) in (2.69) in the same way as for the high-temperature expansion (2.86), namely by expandingthe logarithm of the respetive sum into a power series and olleting all terms with the same powersof x and y.This kind of expansion is useful, in partiular, for alulating the spontaneous magnetisationM0 = limB!0+ M(B;T ), whih is impossible to obtain from the high-temperature series beause M0vanishes in the onvergene region (T � T) of this series. Indeed, the magnetisation reads

NM(B;T ) = 1� � logZ�B = �2y� logZ�y = N � 2 1Xn=3 1Xm=1mh(n;m)xnym (2.94)
Therefore the spontaneous magnetisation expansion reads

M0 = 1� 2 1Xn=3 1N 1Xm=1mh(n;m)xn (2.95)
The only graphs whih enter in (2.95) are loops, and this is exatly the same kind of graphswhih is needed for the high-temperature free energy expansion (2.90). One we have generatedthese graphs on planar quasiperiodi tilings we an use them to alulate the expansion of M0 onthe respetive dual tiling.2.4.3 Frequenies of graphs of quasiperiodi tilingsIn this subsetion we will disuss how to ount, how many times a given graph sr an be embeddedin a quasiperiodi graph. Beause of the lak of periodiity the problem of determining graphfrequenies is not trivial, but in the ut-and-projet framework, see setion 2.2.4, it an be solved ina nie way.In fat, we want to obtain the expansion (2.87) for the Ising model on an in�nite quasiperiodigraph G. Therefore, we have to ompute the orresponding \averaged lattie onstants" per vertexhsr;Gi := limN!1 1N (sr;GN ) (2.96)where GN denotes �nite pathes with N verties approahing the in�nite graph G. In other words,we need to alulate the frequeny of a subgraph sr in the in�nite graph G. The main hallengenow is to ompute these quantities for a given quasiperiodi graph whih an be generated by theut-and-projet method. In the following we will onsider two examples in detail: the rhombiPenrose tiling and the otagonal Amman-Beenker tiling, starting with the Penrose ase. We denote,as in setion 2.4.5, the aeptane domain (window) of a tiling by A, the pentagons, parts of the
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window of the Penrose tiling by Pm, the sites of the tiling (points in parallel spae) by ~rk and theirorresponding partners from perpendiular spae by ~r?.Considering an arbitrary motive s onsisting of a olletion of points s = f~r(i)k j i = 1; : : : ; pgin physial spae, we want to ompute its ourrene frequeny, i.e., how often translated opiesof the point set our in the in�nite tiling. Assoiated to the set s of points in physial spae isa orresponding aeptane domain A(s) � A in perpendiular spae, obtained by interseting popies of the aeptane domain A shifted appropriately with respet to eah other. The aeptanedomain A(s) has a simple interpretation. If we hoose a referene point of the motive s, and, forall ourrenes of the motive in the in�nite tiling we lift the positions of this referene point to thehigher-dimensional spae and then projet them to E?, they will always fall into A(s) and �ll itsinterior densely. Hene, the area of A(s), divided by the area of A, is the ourrene frequeny of ourmotive, as follows from the uniform distribution on the aeptane domain, see [48℄ and referenestherein.We remind that in the Penrose ase, the aeptane domain A(s) onsists of six piees Am(s) �Pm (m = 0; 1; 2; 3; 4; 5) whih have to be taken into aount. They are given byAm(f~r(i)k g) = \i nPm+t(i) � ~r(i)? o (2.97)
where Pm = ; if m 62 f0; 1; 2; 3; 4; 5g. The oordinates ~r(i)k 2 Ek and ~r(i)? 2 E? have the form

~r(i)k = 5Xj=1 n(i)j ~V (j)k ~r(i)? = 5Xj=1 n(i)j ~V (j)? (2.98)
with integer oeÆients n(i)j whih orrespond to the oordinates of the lattie point in Z5 thatprojets to ~r(i)k . The vetors ~V (j)k and ~V (j)? are de�ned in (2.11). The third omponent of ~r(i)? isproportional to the so-alled translation lass t(i) = P5j=1 n(i)j of the point ~r(i)k , whih just labelsthe part of the aeptane domain Pt(i) where the orresponding perpendiular projetion lies. In�gures 2.12, 2.13 and 2.14, we show examples where the motives are the thik and the thin rhomband the \fattest" loops, in terms of the enlosed area, of length 8 and 10 in the Penrose tiling thatontribute to the high-temperature expansion.For the eight-fold Amman-Beenker ase there is only one aeptane domain O, heneA(f~r(i)k g) = \i nO � ~r(i)? o (2.99)
where the projetions to Ek and E? are given by

~r(i)k = 4Xj=1 n(i)j ~V (j)k ~r(i)? = 3Xj=0 n(i)j ~V (j)? (2.100)
with the vetors ~V (j)k and ~V (j)? de�ned in (2.12) and n(i)j 2 Z denoting the oordinates of the lattiepoint in Z4 that projets to ~r(i)k .Similarly as in the Penrose ase we show some exemplary motives and their aeptane domains.In �gures 2.15 and 2.16, we present the thik and the thin tiles (a square and a rhombus respetively)and the \fattest" loops, of length 8 and 10 in the otagonal tiling together with their aeptanedomains.
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Figure 2.12: The thik and the thin rhombus in the Penrose tiling and their aeptane domains(blak polygons) with respet to the referene point marked by the irle (Æ). The frequenies are1=� and 1=�2 respetively.

Figure 2.13: The same as (2.12), for the \fattest" loop of length 8. Here, the area fration is� � 8=5 � 0:0180, and the symmetry fators read R = 5 and S = 1, thus the ourrene frequenyof this loop in the Penrose tiling, in an arbitrary orientation, is 5� � 8 � 0:0902.

Figure 2.14: The same as (2.12), for the \fattest" loop of length 10. Here, the area fration is(14� � 22)=5 � 0:1305, and the symmetry fators read R = S = 1.
The aeptane domains of a motive s are intersetions of onvex polygons and hene themselvespolygonal, see �gures 2.12, 2.13, 2.14 and 2.15, 2.16. It is readily seen that the oordinates of theverties of the aeptane domains belong to ertain extensions of the �eld of rational numbers Q .For the Penrose tiling, one has to perform the alulation in the �eldQ (�;p2 + �) = �a + bp2 + � + � + d�p2 + � �� a; b; ; d 2 Q 	 (2.101)where � = (1 + p5)=2 is the golden ratio, satisfying the quadrati equation �2 = � + 1. For theAmman-Beenker ase, the orresponding number �eld isQ (�) = fa + b� j a; b 2 Q g (2.102)where � = 1 + p2 is the \silver mean" that is a solution of the quadrati equation �2 = 2� + 1.Therefore, in order to ompute the ourrene frequeny of a given motive s in the tiling G, wehave to determine the area of the aeptane domain arrying out the alulation in the appropriatenumber �eld. The averaged lattie onstant hs ;Gi is the ourrene frequeny of s summed overall possible orientations of the motive. In these quasiperiodi tilings, the frequenies of motives areindependent of their orientation, hene we do not need to alulate them separately, but just haveto ount how many orientations of the motive our in the tiling.
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Figure 2.15: The thik and the thin tile in the otagonal tiling and their aeptane domains (blakpolygons) with respet to the referene point marked by the irle (Æ). The frequenies are 3 � �and �� 2 respetively.

Figure 2.16: The same as (2.15), for the \fattest" loops of length 8 and 10. The area frations andthe symmetry fators are 10� 4� and R = S = 1 and 22=4� 9=4� and R = 4; S = 1 respetively.
Let us fous on the Penrose tiling as an example. Rotating the motive s by an angle �k=5 (k 2 Z)essentially orresponds to a rotation of the aeptane domain by 2�k=5. Furthermore, also themirror image �s of the motive s ours with the same frequeny, sine the orresponding aeptanedomains Am(�s) are just �A5�m(s). Therefore, in our expansion (2.87), it is advantageous to jointlyonsider graphs whih are mirror images of eah other beause they give the same ontribution.For this reason, we assign two symmetry fators R 2 f1; 2; 5; 10g and S 2 f1; 2g to eah of thesegraphs, R ounting the number of rotations by angles �k=5 whih do not map the graph onto itself,and S = 2 if reetion does not map the graph onto itself or onto a rotated opy of itself, ompare�gures 2.13 and 2.14. The averaged lattie onstant hs ;Gi, as de�ned above, is thus R times thearea fration obtained for a �xed orientation of the graph s. Multiplying hs ;Gi by the fator S, wean restrit the sum in (2.87) to graphs that are non-equivalent under reetion.Eventually, we have to onsider all star subgraphs of the quasiperiodi tiling, orresponding toall possible �llings of loops. In ontrast to the ase of simple planar (periodi) latties, a loop inquasiperiodi tilings an have several �llings, whih may our with di�erent frequenies. In �gures2.17 and 2.18, the possible �llings, together with the orresponding frequenies, of two exemplaryloops in the Amman-Beenker tiling are shown. Similarly, in �gures 2.19 and 2.20 we show thepossible �llings and their aeptane domains of other two loops, this time in the Penrose tiling. Inorthogonal spae, the di�erent �llings orrespond to a dissetion of the aeptane domain of theloop into non-overlapping parts, see �gures 2.17, 2.18, 2.19 and 2.20. Taking a more areful look atthese pitures we realize that the pathes exhibit ertain symmetries, whih are also visible in theiraeptane domains in perpendiular spae.In order to avoid onfusion, we would like to point out one more how our frequenies arenormalised, i.e., what the numbers given in �gures 2.17 and 2.18 really mean. We emphasise thatthe frequeny we ompute is not the frequeny of a partiular loop of length n among all loops ofthe same length. Instead, it gives the probability that a randomly hosen vertex belongs to thepartiular loop, in an arbitrary orientation.
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Figure 2.17: A loop of length 10 in the Amman-Beenker tiling that an be �lled in three di�erentways. The orresponding ourrene frequenies of the �lled pathes, obtained from the area frationof the aeptane domains shown on the right, are given below the pathes. They add up to4 � 13�=8 ' 0:0769 whih is the frequeny of the (empty) loop in the Amman-Beenker tiling. Theenirled node denotes the referene point.
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Figure 2.18: Same as 2.17 for another, reetion-symmetri loop of length 10 whih an be �lled in�ve ways obtaining three reetion-symmetri pathes and one pair of pathes that map onto eahother under reetion. Here, the frequeny of the (empty) loop is 1� 3�=8 ' 0:0947.
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Figure 2.19: A loop of length 10 in the Penrose tiling that an be �lled in four di�erent ways. Theorresponding ourrene frequenies are given below the pathes. Their sum equals 7 � 4� whihis the frequeny of the (empty) loop in the Penrose tiling. The enirled node denotes the referenepoint.
2.4.4 Free-energy expansion for the Penrose and the Amman-Beenker tiling
The Penrose and the Amman-Beenker tiling are both bipartite graphs, whih means that all losedloops have an even number of edges, and at least four. Therefore, for zero magneti �eld, only even
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Figure 2.20: Same as 2.19 for a loop of length 12 whih an be �lled in six ways. Note that �veof these pathes an be obtained from eah other by rotating their subset (a regular deagon) by2k�=5 where 1 � k � 5. The frequeny of the (empty) loop is (�35 + 22�)=10.
powers of w our in the expansion (2.87) that takes the form

F (w) = limN!1 1N ln ~Z(GN ) = 1Xn=2 g2nw2n (2.103)
where GN denotes a �nite path of the quasiperiodi graph G ontaining N verties, and F (w) is,apart from a fator �1=�, the free energy per vertex. We alulated the expansion oeÆients g2nup to 18th order in w for both the Penrose and the Amman-Beenker tiling. The results are presentedin table 2.3.Table 2.3: The expansion oeÆients g2n of the free energy of the zero-�eld Ising model on the Pen-rose and the Amman-Beenker tiling. The values for the square lattie are inluded for omparison.2n Penrose tiling Amman-Beenker tiling Square lattie4 1 = 1:00 1 = 1:00 16 9� 4 � ' 2:53 � ' 2:41 28 12 12 � 4 � ' 6:03 47 12 � 17� ' 6:46 4 1210 251 35 � 144 15 � ' 18:28 138� 50� ' 17:29 1212 731 56 � 416 � ' 58:73 803 13 � 310 12 � ' 53:72 37 1314 1784� 969 � ' 216:13 �1220 + 586� ' 194:73 13016 �27821 34 + 17750 � ' 898:35 96 34 + 295 12 � ' 810:15 490 1418 �124027 + 79078 23 � ' 3924:97 �108706 + 46566 13 � ' 3715:07 1958 23

As a by-produt, we obtain information on another interesting model, namely the problem ofself-avoiding polygons, or losed self-avoiding walks, on the quasiperiodi tiling. Self-avoiding walksand polygons have been studied extensively as simple lattie models of polymers or planar vesiles,see for instane [49, 50, 51℄. Most investigations in the literature are restrited to periodi latties[49℄, only few results are known for hierarhial [50℄ and quasiperiodi [52℄ graphs. It is probablyhard to justify why a quasiperiodi disretisation should be of physial interest; however, one wouldexpet that the physial properties will be very similar as those for periodi planar latties, and that
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Table 2.4: The mean number (per vertex) of self-avoiding 2n-step polygons S2n on the Penrose andthe Amman-Beenker tiling, and on the square lattie.2n Penrose tiling Amman-Beenker tiling Square lattie4 1 = 1:00 1 = 1:00 16 9� 4 � ' 2:53 � ' 2:41 28 15� 4 � ' 8:53 50� 17� ' 8:96 710 309 35 � 168 15 � ' 37:45 142� 44� ' 35:77 2812 1066� 552 � ' 172:85 1173� 416� ' 168:69 12414 6400� 3405 � ' 890:59 1704� 353� ' 851:78 58816 5093� 170 � ' 4817:93 27175� 9356� ' 4587:62 293818 75115� 29655 � ' 27132:20 5992 + 8178� ' 25735:44 15268
Table 2.5: The number of symmetry-inequivalent losed loops of order 2n ontributing to the high-temperature expansion and the number of pathes obtained by �lling the loops.Penrose Amman-Beenker Square lattie2n empty �lled empty �lled empty/�lled4 2 2 2 2 16 6 6 4 4 18 24 28 17 20 310 143 174 77 112 612 839 1034 479 743 2514 5634 6957 3007 4981 8616 37677 46712 20175 35063 41418 255658 317028 139146 244638 1975
ritial point properties are universal. From a mathematial point of view, the problem is interestingin the sense that one now has to average over all possible loal on�gurations, and onsequently theoeÆients of the orresponding generating funtions take values in ertain quadrati number �elds.The quantities of interest are the sums S2n of the ourrene frequenies of all order-2n loopswhih are presented in table 2.4. Here, S2n is nothing but the mean number per vertex of losed self-avoiding walks with 2n steps, i.e., random walks with 2n steps that never return to a vertex visitedbefore, exept for the end point whih equals their starting point. For regular and reently also for\semi-regular" latties, there exist data for rather large values of n in the literature [51℄; the squarelattie numbers are series M1780 in [53℄. A related problem, the enumeration of self-avoiding walkson quasiperiodi tilings, was already investigated by Briggs [52℄. However, his results are based onounting walks emanating from a �xed starting point, whereas we ompute the exat average over allpossible starting points for the self-avoiding polygons. Note that the number of walks does dependon the initial vertex; however, the asymptoti behaviour should be independent of this hoie.The oeÆients g2n and S2n listed in tables 2.3 and 2.4 belong to degree-2 extensions of the �eld ofrational numbers, namely Q (�) for the Penrose and Q (�) for the Amman-Beenker tiling, respetively.We note that for the Penrose ase the frequenies of subgraphs, and thus the oeÆients g2n andS2n, belong to the �eld Q (�), whereas the areas of their aeptane domains in general are elementsof Q (�;p2 + �).The limitation of our alulations was aused by a strong, exponential growth of the number
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of graphs whih have to be taken into aount. For the Penrose tiling, we have | even afteridentifying graphs that are equivalent by rotation or reetion | to deal with more than 300 000di�erent graphs ontributing to the 18th order, see table 2.5, and their quantity grows approximatelyby a fator between 6 and 7 when inreasing the order by 2. The orresponding numbers of graphsfor the square lattie, inluded in table 2.5, are muh smaller; by the way the sequene of thesenumbers is not ontained in [53℄. We generated the order-2n loops as boundaries of pathes thatare onstruted iteratively by suessively attahing rhombi to their surfae, terminating the proesswhen attahing further rhombi does not lead to new order-2n loops. By this proedure, we makesure that all graphs are found. However, we have to pay the prie that topologially idential graphsare obtained repeatedly and have to be rejeted, thus slowing down the proedure substantially.2.4.5 Critial behaviour of the free energyIn many ases, high-temperature expansions yield good estimates of the ritial temperature andthe ritial exponent of the free energy. The simplest approah, whih is ommonly used for thispurpose, uses the ratio of two suessive oeÆients g2n=g2n�2 in the expansion, see [42℄. Assumingthat the free energy F (w) behaves in the viinity of the ritial point w asF (w) � �1� w2=w2�� ; (2.104)one an easily see from (2.103) thatg2ng2n�2 = 1w2 �1� � + 1n �+ O(n�2) : (2.105)
In other words, for suÆiently large values of n, the ratios g2n=g2n�2 should lie on a straight line whenplotted as a funtion of n�1. The slope of this line and its displaement from the origin determinethe ritial point w and the exponent �. Here, � is related to the usual orrelation exponent � by� = �d, where d = 2 is the spatial dimension.We may estimate the ritial temperature from the sequene

%(2n) = �n g2ng2n�2 � (n� 1)g2n�2g2n�4��1 (2.106)
that approahes w2 in the limit n ! 1. In table (2.6), we show the results for %(2n) for the twoquasiperiodi tilings under onsideration and ompare these with the estimates of the ritial pointfrom Monte-Carlo simulations [54, 55, 56, 57℄. The orresponding values for the square lattie areinluded for omparison.As one an see, the onvergene of %(2n) is rather poor for the quasiperiodi tilings. In general,the rate of onvergene is determined by additional singularities w0 2 C of F (w) lying lose to win the omplex plane. These give a orretion to g2n=g2n�2 whih behaves [58℄ like O[(w0=w)2n℄.The inuene of these orretions must be substantial in our ase rendering the method ratherinappliable for us. We will ome bak to this point in the next setion when we disuss theorresponding quantities for periodi approximants, ompare also �gure 2.24 that ontains a plot ofthe ratios g2n=g2n�2 for the ase of the Penrose tiling.There is, however, another method whih is more suitable for us to examine the ritial behaviour.Let us onsider a sequene of partial sums Fm of the expansion (2.103) at the ritial point w

Fm = mXn=2 g2nw2n : (2.107)
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Table 2.6: Estimates of the ritial point of the Ising model on the Penrose tiling and the Amman-Beenker tiling, and on the square lattie. %(2n)Penrose Amman-Beenker Square2n tiling tiling lattie8 0:5116 0:2892 0:333310 0:1778 0:3725 0:230812 0:2430 0:1902 0:187514 0:1543 0:1486 0:175216 0:1334 0:1264 0:172618 0:1648 0:1252 0:1728w2 0:1563(5)a 0:1566(5) 0:1716e0:1552(6)b0:1555(5)d 0:1569(5)d 0:1714(3)da After referene [54℄.b After referene [55℄. After referene [56℄.d After referene [57℄.e This orresponds to the exat value w = p2� 1 [31℄.
If the funtion F (w) behaves like (2.104), then the asymptoti behaviour of the oeÆient ~g2n =w2n g2n of its expansion in the variable w2=w2 is given by ~g2n � n���1 for n!1 [59, 60℄. Therefore,for large m, we have Fm = F1 � 1Xn=m+1 g2nw2n = F1 � 1Xn=m+1 ~g2n

' F1 � ~b 1Xn=m+1n�(�+1) ' F1 � bm�� (2.108)
where b is a parameter and the last relation is obtained by approximating the sum by an integral.Therefore, for suÆiently large m, the values Fm should lie on a straight line when plotted versusm��. In �gure 2.21, we plot the partial sums Fm for the Penrose and the Amman-Beenker tiling,taking � = 2� = 2, and w equal to the Monte-Carlo estimates of [55, 56℄, see also table 2.6. Foromparison, we also inluded orresponding data for the square lattie where the exat solution isknown. Apparently, the data points lie lose to a straight line for all three ases, and the utuationsin the data for the quasiperiodi tilings are not visibly larger than those for the square lattie. Thus,we onlude that our data are ompatible with the Onsager universality lass.One ould also proeed in a di�erent way namely determine the w2 value so that the sum ofsquared deviations of Fm from the F1�bm�� is as small as possible. Sine, however, the parametersF1 and b are diÆult to alulate we performed a least-square �t to the data (m��; Fm) and referredthe squared deviations to this �t rather than to the expression at the right-hand side of (2.108).Th optimal w2 value obtained in this way equals 0:1562 and onforms to the Monte-Carlo estimatesfrom table 2.6.From (2.108), we may also try to derive estimates of the ritial exponents � = �=2 by solvingFm+2 � FmFm � Fm�2 = 1� � mm+2�2�m� mm�2�2�m � 1 (2.109)
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Figure 2.21: The dependene of the partial sums Fm of equation (2.107) on m�2 for the Penrosetiling (irles), the Amman-Beenker tiling (diamonds), and the square lattie (squares), respetively.The straight lines are least-square �ts to the data, disregarding the three points with smallest mvalues.
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Figure 2.22: Ratios of the numbers of self-avoiding polygons (per vertex) on the Penrose tiling(irle), the Amman-Beenker tiling (diamonds), and the square lattie (squares), respetively. Thestraight lines are obtained from (2.111), in analogy to (2.105), using the ritial exponent � = 1=2and the approximate values of the ritial point x.
for the value of �m. Clearly, these are biased estimates sine the ritial temperatures have beenused as an input in (2.107). In table 2.7, we show the values of �m obtained in this way. Not toosurprisingly, we also reover rather strong utuations in these data, and no lear onvergene is
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visible, at least for the quasiperiodi ases. Therefore, we estimate the value of � by taking thearithmeti mean of the �m. The error estimates are just the standard deviation whih is partiularlylarge for the Amman-Beenker tiling, and nowhere near the auray that has been reahed by Monte-Carlo simulations [56℄. However, this proedure should be taken with a grain of salt, sine the �mshould eventually approah the orret value of � for large m, and we did not justify why taking amean makes sense in this ase. We have also tried to use Pad�e approximants to extrat informationabout the ritial point and ritial exponent, but this did not improve the situation | apparentlyour series is just too short.Conerning the numbers of self-avoiding polygons S2n shown in table 2.4, one onsiders theirgenerating funtion G(x) = 1Xn=2S2nx2n (2.110)
whih has a ritial point x that is haraterised by a usp-like singularity; i.e., in the viinity ofx one has G(x) � A(x) + B(x) �1� x2=x2�2�� (2.111)with a ritial exponent �, and A(x) and B(x) are non-singular at x = x. We note that theonly exat result for the related problem of self-avoiding walks in two dimensions is obtained by theCoulomb gas approah [61℄ and gives a ritial point x2 = 1=(2+p2) and ritial exponents � = 1=2, = 43=32 = 1:34375 and � = 3=4 for the hexagonal lattie. Frequently, the so-alled onnetiveonstant � = 1=x is given instead of x. In [52℄, estimates of the ritial point x for self-avoidingwalks, whih oinides with the value for self-avoiding polygons, are given based on enumerationsof walks of at most 20 and 16 steps for the Penrose and the Amman-Beenker tiling, respetively.The orresponding ritial exponent in this ase is , and all results support the onjeture that theself-avoiding walk problems on 2D latties and quasiperiodi tilings belong to the same universalitylass.
Table 2.7: Estimates �m (2.109) of the ritial exponent � of the Ising model on the Penrose tiling,the Amman-Beenker tiling, and on the square lattie.�mPenrose Amman-Beenker Squarem tiling tiling lattie6 0:922 0:749 0:8648 0:968 1:189 1:02210 1:208 1:267 1:04312 1:160 1:178 1:02714 1:021 0:987 1:01116 1:044 0:816 1:001� 1:05� 0:11 1:03� 0:21 0:99� 0:07

In �gure 2.22, we show the ratios of suessive numbers S2n=S2n�2 as a funtion of 1=n, whih, bythe same arguments that led to (2.105), should lie on a straight line for large n. Clearly, this is true forthe square lattie, whereas the data for the Penrose and the Amman-Beenker tiling still show sizableutuations. The straight lines in �gure 2.22 are the funtions [1 � 5=(2n)℄=x2 , ompare (2.105),where we used the ritial exponent � = 1=2 and the value � = 2:618 158 53 ited in [51℄ for the
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square lattie onnetive onstant, and the estimates x = 0:363 and x = 0:361 [52℄ for the ritialpoints on the Penrose and the Amman-Beenker tiling, respetively. Given the rather short sequeneat our disposal, and the unertainty in the estimates [52℄, the agreement for the quasiperiodi asesis reasonable, thus supporting the onjeture that the ritial point of self-avoiding polygons on suhquasiperiodi tilings is desribed by the same ritial exponents as for the hexagonal lattie [61℄.
2.5 Partition funtions of periodi approximantsOne may pose the question whether one an alulate the expansion oeÆients g2n in (2.103)by a di�erent method, thus verifying our results. Perhaps it might even be possible to alulatethe partition funtion Z(G) on ertain quasiperiodi tilings G exatly. Indeed, using the Ka-Wardformalism, see setion 2.3.4, we are at least able to ompute the partition funtion of general periodilatties expliitly, thus also for periodi approximants of the quasiperiodi tilings.Let us now briey desribe how to generate periodi approximants of quasiperiodi tilings in theframework of the ut-and-projet method disussed in setion 2.2.4. The aeptane domain A andthe projetion onto perpendiular spae E? are altered in a way that orresponds to replaing theirrational numbers � and � by rational approximants �m and �m. Here, for the Penrose tiling weuse �m = fm+1=fm where fm+1 = fm + fm�1, and f0 = 0, f1 = 1 are the Fibonai numbers, andlimm!1 �m = � . Analogously, one de�nes rational approximants �m = gm+1=gm with the \otonainumbers" gm+1 = 2gm + gm�1 and g0 = 0, g1 = 1, and limm!1 �m = � for the Amman-Beenkertiling. There exists a generi proedure, based on ontinued frations, for onstruting a sequeneof rational numbers pn=qn onverging to a given irrational number x, suh that the numerators anddenominators pn, qn are, in a ertain sense, as small as possible. The ontinued-fration expansionof a real number x is a unique representation of the formx = a0 + 1a1 + 1a2+:::where the integers ai are alled the partial quotients. Rational numbers have a �nite number of par-tial quotients, while irrational numbers have an in�nite ontinued-fration expansion. The rationalnumbers pn=qn formed by onsidering the �rst n partial quotients are our rational approximants ofthe irrational number x.The D-dimensional indies �j = (�(k)j )k=1;:::;D of the unit ell vetors ~W (m)j ; j = 1; 2 of the m-thperiodi approximant (de�ned by ~W (m)j = �(m)k (�j) are solutions of a Diophantine equation:

�(m)? (�j) = DXj=1 �(k)j �(m)? ( ~Ej) = ~0
where ~Ej denotes the jth vetor of the anonial base in D dimensions. The D �D matries �(m)kand �(m)? , de�ned similarly as in (2.13), are the respetive projetors onto Ek and E? where therational numbers � or � have been replaed by their rational approximants �m or �m.In this way, one obtains periodi approximants of the Penrose tiling with unit ells ontainingN = 11; 29; 76; 199 verties for m = 1; 2; 3; 4, respetively. The unit ells of the periodi approximantsof the Amman-Beenker tiling with m = 1; 2; 3; 4 ontain N = 7; 41; 239; 1393 verties. For bothtilings, the number of oriented edges is 2M = 4N , beause eah tile has exatly four neighbours.We note that the approximant m + 1 ontains about �2 = � + 1 ' 2:618 and �2 = 2� + 1 ' 5:828as many verties and bonds as the approximant m for the Penrose and the Amman-Beenker ase,respetively.
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Let us now make use of the formula (2.42) expressing the free energy ln ~Z per site by theFourier transform of the Ka-Ward matrix ~A(exp i!; exp i�) for a periodi lattie. We rewrite thisformula here in a slightly hanged notation (the lattie symbol G has been skipped and ~A1(!; �) :=~A(exp i!; exp i�) ). ln ~Z = 18�2 2�Z

0
2�Z
0 ln det ~A1(!; �)d!d� (2.112)

Now we expand this equation into a series with respet to the oupling onstant w and ompareit with the high-temperature expansion (2.103). For this purpose, we exploit the fat (2.37) thatthe (�nite-dimensional) matrix ~A1(!; �) has a form ~A1(!; �) = 1 +w~L(!; �) where ~L(!; �) has zerotrae. Therefore, using det [1 + w~L(!; �)℄ = det exp ln [1 + w~L(!; �)℄= exp tr ln [1 + w~L(!; �)℄ (2.113)one obtains, expanding the logarithm in powers of w~L(!; �),ln det ~A1(!; �) = tr ln [1 + w~L(!; �)℄= 1Xp=1 (�1)p+1p tr[~Lp(!; �)℄wp ; (2.114)
where, again, only even values of p yield non-vanishing ontributions to the sum. Comparing thisresult with (2.112), we derive an expression for the oeÆient g2n in the expansion (2.103)

g2n = � 116�2n 2�Z
0

2�Z
0 tr[~L2n(!; �)℄ d!d� (2.115)

for the periodi approximants. For large approximants the alulations were simpli�ed by the fatthat the trae of the nth power of L(!; �) is independent of ! and � if n is small enough. Indeed, itfollows from the de�nition of the Ka-Ward matrix (2.37) and from the identitytr[~Ln(!; �)℄ = Xi1;:::;in ~Li1;i2(!; �)~Li2;i3(!; �) : : : ~Lin;i1(!; �) (2.116)
that tr[~Ln(!; �)℄ is a sum over all losed, oriented lines onsisting of n lattie bonds on the unit ellof the lattie with periodi boundary onditions imposed in both diretions. The ontribution isdi�erent from 1 only for suh lines whih are not homologial to zero, i.e., annot be ontinuouslydeformed to a point, that is for losed lines whih an be transformed without utting or tearinginto the two base yles, base elements of the homology group, of the torus on whih the lattie isspanned. Therefore, the integrand in (2.115) depends on ! and � only if 2n > l(m) where l(m) isthe length of the shorter base yle of the torus whih the mth approximant is spanned on. As l(m)roughly equals the square root of the number of edges in the unit ell M , we see that for our largestapproximants, 2M = 97904 and 2M = 32476 for the Penrose- and Amman-Beenker tiling (see tables2.8 and 2.9) respetively, l(m) > p16238 ' 127, whih means that if 2n < 127 we an ompute theoeÆients g2n from formula (2.115) with the integrand alulated for �xed values of !; �. In otherwords, for 2n < l(m) the expression for g2n simpli�es onsiderably to g2n = �1=(4n)tr[~L2n(0; 0)℄.We have alulated the oeÆients from (2.115) for the leading orders in w for both the Penroseand the Amman-Beenker tiling. The limitation of the alulation was due to a rapidly growing
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dimension of the omplex matrix ~L(!; �), whih was equal to 97904 and 32476 for our largestapproximants of the Penrose and Amman-Beenker tiling, respetively. The results are presented intables 2.8 and 2.9. Clearly, with inreasing size of the approximant, the oeÆients approah thoseof the quasiperiodi system, and the oeÆients of the largest approximant are already quite loseto those of the quasiperiodi ase.m 4N g4 g6 g8 g101 44 1 25=11 ' 2:2727 127=22 ' 5:7727 175=11 ' 15:90912 116 1 73=29 ' 2:5172 349=58 ' 6:0172 504=29 ' 17:37933 304 1 5=2 ' 2:5000 227=38 ' 5:9737 679=38 ' 17:86844 796 1 503=199 ' 2:5276 2399=398 ' 6:0276 3624=199 ' 18:21115 2084 1 1315=521 ' 2:5240 6273=1042 ' 6:0202 9496=521 ' 18:22656 5456 1 862=341 ' 2:5279 4111=682 ' 6:0279 24921=1364 ' 18:27057 14284 1 9025=3571 ' 2:5273 43043=7142 ' 6:0267 65249=3571 ' 18:27198 37396 1 23633=9349 ' 2:5279 112709=18698 ' 6:0279 170887=9349 ' 18:27869 97904 1 15468=6119 ' 2:5279 73769=12238 ' 6:0279 447401=24476 ' 18:27921 1 1 9� 4� ' 2:5279 12 12 � 4� ' 6:0279 251 35 � 144 15� ' 18:2795m g12 g14 g161 3145=66 ' 47:6515 1812=11 ' 164:7273 294=44 ' 669:072 341=6 ' 56:8333 6011=29 ' 207:2759 100769=116 ' 868:703 6629=114 ' 58:1491 16123=76 ' 212:1447 33325=38 ' 876:974 69833=1194 ' 58:4866 42552=199 ' 213:8291 709087=796 ' 890:815 183235=3126 ' 58:6164 112451=521 ' 215:8369 1867989=2084 ' 896:356 120097=2046 ' 58:6984 294347=1364 ' 215:7969 1223683=1364 ' 897:137 1258025=21426 ' 58:7149 771636=3571 ' 216:0840 12827639=14284 ' 898:048 3293987=56094 ' 58:7226 2020105=9349 ' 216:0771 33589237=37396 ' 898:209 2156137=36714 ' 58:7279 5289429=24476 ' 216:1068 21986697=24476 ' 898:301 731 56 � 416� ' 58:7312 1784� 969� ' 216:1251 �27821 34 + 17750� ' 898:35m g18 g20 g221 95119=33 ' 2882:39 1449817=110 ' 13180:15 66520 ' 66520:002 342484=87 ' 3936:60 2605924=145 ' 17971:89 2421694=29 ' 83506:693 222817=57 ' 3909:07 3403623=190 ' 17913:81 6358269=76 ' 83661:434 2345981=597 ' 3929:62 17910769=995 ' 18000:77 17121156=199 ' 86035:965 6128605=1563 ' 3921:05 46628141=2605 ' 17899:48 44587734=521 ' 85581:066 4015369=1023 ' 3925:09 22228463=1240 ' 17926:18 117240351=1364 ' 85953:347 42041215=10713 ' 3924:32 639575807=35710 ' 17910:27 306633499=3571 ' 85867:688 110077367=28047 ' 3924:75 1674625633=93490 ' 17912:35 803211153=9349 ' 85914:129 24016368=6119 ' 3924:88 4384157457=244760 ' 17912:07 2102812441=24476 ' 85913:241 �124027 + 79078 23� ' 3924:97Table 2.8: Expansion oeÆients gn of the free energy for the Ising model on the Penrose tiling andits mth periodi approximants with N sites in the unit ell.
2.5.1 Partition funtion zerosThe Ka-Ward formalism is not only useful for the veri�ation of our high-temperature expansionoeÆients. For eah periodi approximant we have an exat expression for the free energy ln ~Z(G)(2.112) whih is, however, too ompliated for larger approximants. We an, however, easily alulatethe zeros of ~Z(G) in the omplex variable z= (1+w)=(1�w) =exp(2�J).A generi approah for determining properties of phase transitions of statistial systems fromthe distribution of zeros of the partition funtion on the omplex plane has been proposed by Lee
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m 4N g4 g6 g8 g101 28 1 17=7 ' 2:42857 87=14 ' 6:2143 115=7 ' 16:42862 164 1 99=41 ' 2:41463 529=82 ' 6:4512 708=41 ' 17:26833 956 1 577=239 ' 2:41423 3087=478 ' 6:4582 4132=239 ' 17:28874 5572 1 3363=1393 ' 2:41421 17993=2786 ' 6:4584 24084=1393 ' 17:28935 32476 1 19601=8119 ' 2:41421 104871=16238 ' 6:4584 140372=8119 ' 17:28931 1 1 � ' 2:41421 47 12 � 17� ' 6:4584 138� 50� ' 17:2893m g12 g14 g161 2189=42 ' 52:1190 1395=7 ' 199:2857 22815=28 ' 814:82142 13183=246 ' 53:5894 7994=41 ' 194:97563 77029=1434 ' 53:7162 46542=239 ' 194:7364 774507=956 ' 810:15384 448991=8358 ' 53:7199 271258=1393 ' 194:7294 4514157=5572 ' 810:15025 113779=2118 ' 53:7200 1581006=8119 ' 194:7292 26310435=32476 ' 810:15011 803 13 � 310 12� ' 53:7200 �1220 + 586� ' 194:7129 96 34 + 295 12� ' 810:1501m g18 g20 g221 78479=21 ' 3737:0952 1247129=70 ' 17816:129 79499=1 ' 79499:00023 2664121=717 ' 3715:6499 21267684=1195 ' 17797:225 19964432=239 ' 83533:1884 739303=199 ' 3715:0905 123941688=6965 ' 17794:930 116368936=1393 ' 83538:3605 90488057=24357 ' 3715:0740 722382444=40595 ' 17794:863 678249184=8119 ' 83538:5131 �108706 + 46566 13� ' 3715:0654Table 2.9: As table 2.8 but for approximants m = 1; 2; 3; 4; 5 of the Amman-Beenker tiling.

and Yang in 1952 [62℄. Let us now shortly present the lue of their ideas.As we see from (2.19) and (2.20), the partition funtion of an Ising model on a �nite lattie Gis a �nite sum of Boltzmann fators and thus a polynomial in variables z and b = exp�B. Beauseof the relationship F = �1=� ln ~Z(G) and the fat that �nite systems do not exhibit any phasetransition, this polynomial does not have zeros on the positive real axis. This is, however, not thease for an in�nite lattie G where the distribution of zeros an approah the positive real axis andthe aumulation points of the set of zeros, lying on the real axis, determine the phase transitionwhih arises in the thermodynami limit. The harateristi properties of the transition follow fromthe distribution of zeros in the viinity of the aumulation points. Lee and Yang restrited theirinvestigations to zeros in the magneti-�eld variable b for the Ising model or in the fugaity for thelattie gas, respetively. In 1965 Fisher [63℄ proposed to inspet the partition funtion zeros in thetemperature variable z, wherefore these zeros are also alled Fisher zeros.From (2.112), it is obvious that the Fisher zeros zi on periodi approximants are parameterisedby two angles !; � 2 [0; 2�), and equal to zi = (�i(!; �) � 1)=(�i(!; �) + 1), where �i(!; �) is aneigenvalue of the matrix ~L(!; �). Therefore, we expet that they generially �ll areas in the omplexplane. In the square lattie ase, however, the zeros fall on two irles with radius p2, entred atz = �1. This fat is related to a rather spei� property of the square lattie, namely that it isself-dual (i.e., G = GD). Indeed, there is a duality relation onneting the partition funtion ~Z(G; z)on the lattie G in the variable z with the partition funtion ~Z(GD; (1� z)=(1 + z)) on the dual GDin the variable (1� z)=(1 + z):~Z(G; z) = 2�N (1 + z)M ~Z(GD; (1� z)=(1 + z)) (2.117)For the self-dual ase G = GD and thus ~Z(GD; z) = ~Z(G; z). It follows from this relation that thedistribution of zeros in the variable z is invariant under a transformation z �! f(z) := (1�z)=(1+z).We easily hek that a pair of irles with radius p2, entred at z=�1, is mapped onto itself under
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this transformation. The requirement of invariane under the mapping f(z) ertainly does notdetermine the zeros in a unique way, it only imposes a ertain symmetry onto the zero pattern.The dual of a periodi approximant is not diretly onneted with the approximant itself, thus ananalogous relation for the partition funtion is laking. In suh ases, we expet that the zeros liein rather ompliated areas.We have alulated the zero patterns for the smallest four and smallest two approximants of thePenrose and the Amman-Beenker tiling, respetively. In �gure 2.23, we show the zero patterns for thefourth Penrose and seond Amman-Beenker approximant, respetively. Here the zeros are omputedfrom the eigenvalues �i(!; �) of the matrix ~L(!; �) for angles !; � 2 fm�=20 j m = 0; 1; :::; 39g. Aomparison of the patterns between the third and the fourth Penrose approximant does not showpronouned di�erenes, therefore we an expet that the zero pattern for the Penrose tiling will looksimilarly. In the Amman-Beenker ase, where the dimension of the Ka-Ward matrix grows fasterwith the order of approximant than for the Penrose tiling, it is rather diÆult to draw a onlusionwhether the onvergene is reahed or not.Clearly, the patterns are more ompliated than the two irles found for the square lattie, inpartiular further away from the positive real axis. We �nd two zeros on the positive real axis, onefor !=�=0 and the other for !=�=�, orresponding to the ferromagneti and antiferromagnetiritial points, respetively. These have the same properties, i.e., the respetive ritial exponentsare equal, due to the bipartiteness of the tilings. In the viinity of the ritial points, the zeropatterns are very well desribed by segments of irles that orthogonally interset the real axis. Onestriking feature, whih is not yet understood, is that some zeros for Penrose approximants seem tolie on a irle with radius 1 entred at the origin and they seem to �ll this irle more and more withthe growing order m of the approximant. This means that there are in�nitely many pure imaginaryvalues of temperature where the partition funtion vanishes. Note that this phenomenon does notour for the square lattie.A deeper analysis of the onnetion between the distribution of zeros in the viinity of the ritialpoint z = exp(2J=(kT)) and the ritial exponents, like the one in appendix A of [19℄, leads to theonlusion that for a ritial exponent �, orresponding to the logarithmi singularity of the spei�heat, whih has the same value as for the square lattie, i.e., � = 0, the zeros must lie in the viinityof z on a straight line perpendiular to the real axis and their density g(r) at distane r from z hasto grow linearly g(r) � r. This is indeed the ase for all periodi approximants under inspetion.Another thing whih we an learn from the zero patterns of the partition funtion is a ratherpreise determination of the ritial temperatures T on the quasiperiodi tilings. We have alulatedthe real zeros w for the �rst ten Penrose and the �rst �ve Amman-Beenker approximants andestimated w for the quasiperiodi tilings by extrapolating the sequenes to m = 1. The resultsare shown in table 2.10. The values are in agreement with results of reent Monte-Carlo simulationsusing the invaded luster algorithm [57℄.The determination of the ritial point does not require the whole zero pattern. We only have to�nd one real eigenvalue �(0; 0) lying lose to the point �(s) where (�(s)�1)=(�(s)+1) = w(s) = p2�1,whih orresponds to the ritial temperature on the square lattie w(s) . Therefore we an useiterative algorithms to ompute the eigenvalue �(0; 0) and the orresponding eigenvetor ~v(0; 0)of ~L(0; 0). We used a proedure from the SuperLU LAPACK pakage (the soure ode and anexhaustive desription an be found at http://www.netlib.org/) whih performs a LU deompositionof a sparse omplex matrix (~L(0; 0)��(s)I) and then solves the linear equation (~L(0; 0)��(s)I)~vn+1 =~vn for ~vn+1 and substitutes the right-hand side of this equation ~vn by the solution normalised toone, until onvergene is reahed, i.e. jj~vn+1 � ~vnjj < �. The desired eigenvalue �(0; 0) is then equalto jj~vnjj=jj~vn+1jj+ �(s).Interestingly, the values for the Amman-Beenker approximants appear to onverge muh faster
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than those for the Penrose ase, see table 2.10. This might be related to the observation that themean oordination numbers [64℄, in partiular the number of next-nearest neighbours, also onvergefaster for the Amman-Beenker ase, thus the periodi approximants of the Amman-Beenker tilingare, in this sense, \loser" to the in�nite quasiperiodi ase than those of the Penrose tiling.
Table 2.10: Critial temperatures w=tanh (J=kBT) for periodi approximants of the Penrose andthe Amman-Beenker tiling, extrapolated to the quasiperiodi ase with an estimated error. Here, mlabels the approximants with N spins and 2M oriented edges per unit ell.Penrose Ammann-Beenkerm N 2M w N 2M w1 11 44 0:401 440 380 7 28 0:396 850 5702 29 116 0:395 411 099 41 164 0:396 003 5243 76 304 0:395 082 894 239 956 0:395 985 3464 199 796 0:394 554 945 1393 5572 0:395 984 8115 521 2084 0:394 523 576 8119 32476 0:395 984 7956 1364 5456 0:394 454 8807 3571 14284 0:394 451 0358 9349 37396 0:394 441 4509 24476 97904 0:394 439 82610 64079 256316 0:394 439 3191 1 1 0:394 439(1) 1 1 0:395 984 79(2)
2.5.2 Asymptoti analysis of series expansionsLet us now try to estimate the value and the error of the spei� heat exponent � from the seriesexpansions of the free energy on the approximants. First of all we notie that this task is not easy.Even if we alulated for eah mth approximant the exat, or very preise value of the exponent �mit does not mean that the sequene f�mgm=1;:::;1 will tend to the value in the quasiperiodi system� = �1. The onvergene an be very slow, or even worse, the sequene may not onverge to thevalue � at all. Indeed, for any periodi system, the free energy F is given by (2.112) whih has thesame struture as the square lattie formula. The deliberations in setion 2.3.4 leading to formulas(2.51) and (2.52), whih are based on the textbook [39℄ onvine us that it is indeed possible that �mis equal to the Onsager value �m = 0 for all m, but the exponent in the quasiperiodi system maynevertheless be � 6= 0. Fortunately, for quasiperiodi tilings under inspetion, this should not be thease beause the Harris-Luk riterion [16℄ points out that � should be equal to zero. Moreover, ifwe are in possession of a larger number of expansion terms for several approximants we should, atleast, be able to observe a tendeny to a di�erent ritial behaviour in the limiting ase m �!1.We onsider the ratios (2.105) for the periodi approximants of the Penrose tiling. The result isshown in �gure 2.24 where we plot the di�erenesr2n = n� 3nw2 � g2ng2n�2 (2.118)between the ratios of the expansion oeÆients, up to order 2n=128 and 2n=56 for m = 1; 2; 3 andfor m = 4; : : : ; 9 respetively, and their expeted asymptoti behaviour (2.105), with � = 2� � = 2.Here, we use the ritial temperatures w given in table 2.10. Apparently, the ratios r2n for thesmallest approximant with N =11 spins per unit ell utuate strongly for 20 � 2n � 60. For larger
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Figure 2.23: Part of the partition funtion zeros in the omplex plane z = (1+w)=(1�w) = exp 2�Jfor the 4th Penrose- (top) and 2nd Amman approximant (bottom).
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values of 2n, the deviations from the asymptoti behaviour are small, similar to the square lattiease. The seond approximant with N =29 shows a strikingly similar region with strong utuations,but at larger orders, starting around 2n � 50 and waning just around the maximal order 2n=128 in�gure 2.24. For the third approximant, no omparable region of partiularly strong utuations isobserved, but we might speulate that the order where these utuations our grows roughly withthe number of spins in the unit ell. In this ase one has to go to higher orders to observe the e�et.One might expet that for orders learly beyond the number of oriented edges in the unit ell, i.e.,for n�4N , the deviations from the asymptoti behaviour (2.105) are small.For approximants m � 4, the expansion oeÆients g2n rapidly approah those of the quasiperi-odi tilings. Thus, we may draw the onlusion that the data for the periodi approximants showross-over phenomena between the harateristi behaviour for the quasiperiodi model and thesimple square-lattie ase, although for the ases onsidered here the asymptoti behaviours shouldoinide. It seems reasonable that the ross-over ours approximately at the size of the unit ell.
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Figure 2.24: The di�erenes r2n (2.118) between the ratios of expansion oeÆients and their ex-peted asymptoti behaviour (2.105) for the �rst nine Penrose approximants. The three lowest plotsorrespond to the �rst, seond and third approximants and the uppest plot orresponds to approxi-mants whih order 4 � m � 9. Approximants with m � 4 are lose enough to the Penrose tiling sothat the utuations r2n are almost the same.Let us now analyse the series expansions by standard methods like Pad�e- or di�erential approx-imants. Both methods are desribed in details in [58℄, here we want to give only a brief aount ofthem.
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The [N=M ℄ Pad�e approximant to a funtion F (w) = Pn�0 anwn is a quotient of two polynomialsPN and QM of degree N and M , respetively,[N=M ℄ := PN (w)QM(w) = p0 + p1w + : : : + pNwNq0 + q1w + : : :+ qMwM (2.119)suh that the series expansion of the di�erene F (w) � PN (w)=QM(w) ontains only powers of wnot smaller than N +M + 1, where, without loss of generality, we take q0 = 1. If F (w) is a rationalfuntion, then Pad�e approximants of suÆiently high order will represent the funtion exatly. Moregenerally, one expets that Pad�e approximants will give a good approximation to meromorphifuntions. One uses often so-alled diagonal Pad�e approximants [N=N ℄ beause there is a powerfulstatement about their onvergene: Let F (w) be a meromorphi funtion within a unit dis jwj < 1,with n poles inside the irle. Then at least a subsequene of diagonal Pad�e approximants onvergesuniformly to F (w) inside the unit dis exept in small irles around the poles.Let us now onsider a funtionF (w) = 1Xn=0 anwn � A(w)(1� ww )�� + B(w) (2.120)

where both A(w) and B(w) are di�erentiable at w = w but in general an have singularities insidethe dis jwj < jwj. F (w) is not a meromorphi funtion in the general ase, if � is not an integer.However, if B(w) = 0 it an be transformed for a meromorphi funtion by taking the derivative ofthe logarithm: ddw logF (w) = � �w �w + A0(w)A(w) = � �w � w [1 + O(w � w)℄ (2.121)and a sequene of diagonal [N=N ℄ or subdiagonal [N � 1=N ℄, [N + 1=N ℄ Pad�e approximants shouldonverge to the derivative of the logarithm. If one knows the ritial point w one an onstrutbiased estimates by forming approximants to(w � w) ddwF (w) = � + (w � w)A0(w)A(w) = � + O(w � w) (2.122)
On the other hand, if � is known, [F (w)℄1=� an be assumed to be meromorphi and one an forma sequene of Pad�e approximants to this funtion.We will not desribe the properties of Pad�e approximants further beause it appears that for thefree energy series their onvergene is rather slow. This ould be due to the fat that the term B(w)does not vanish in our ase. Moreover, the free energy ontains, at least on the square lattie wherethe exat solution is known, a logarithmi term singular at w (see formula 2.52) and is thereforenot meromorphi.One an, however, obtain fairly good estimates of the ritial values by using so-alled di�erentialapproximants. The di�erential approximants an be viewed as a natural generalisation of Pad�eapproximants to the derivative of a funtion logF (w). In the ase of Pad�e approximants one searhedfor two polynomials PN (w) and QM (w) suh thatddw logF (w) = F 0(w)F (w) = PN (w)QM (w) + O(wN+M+1) (2.123)After ignoring the error term and rewriting the above as a homogeneous, linear di�erential equationone obtains: QM (w)F 0(w)� PN (w)F (w) = 0 (2.124)
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A natural generalisation of this equation is obtained by adding one or more higher derivatives tothe left-hand side or an inhomogeneous term to the right-hand side. For the �rst order di�erentialapproximants, the problem is to �nd suh polynomials QM (w), PN (w) and SK(w) with orders M ,Nand K suh that: QM (w)F 0(w)� PN (w)F (w)� SK(w) = 0 (2.125)up to the terms of order wN+M+K+2. In order to understand why this formulation is more usefulthan the Pad�e approximants method, we have to look at the general solutions of both equations(2.124) and (2.125). The general solution of (2.124) is

F (w) = PYi=1Ai(1� �iw)��i (2.126)
with P depending on N and M . Thus if N and M are large enough, (2.126) an approximate (2.120)rather well provided that the term B(w) = 0. If, however, the additive term B(w) is present, what isapparently the ase for the free energy funtion, the approximation will be rather bad and thus theonvergene rate of Pad�e approximants slow. The inhomogeneous realization (2.125) has solutionsof the form: F (w) = g(w) + PYi=1Ai(1� �iw)��i (2.127)and therefore an provide fairly good approximations to (2.120) even if the additive term B(w) 6= 0.The most general ase, an inhomogeneous di�erential equation like (2.125) but with arbitrarilyhigh derivatives, is appropriate if the funtion F (w) being approximated ontains both additive andonuent terms: F (w) � A1(w)(1� ww )��[1 + A2(w)(1� ww )Æ + : : :℄ + B(w) (2.128)The order of the di�erential equation should be equal to the number of funtions Ai(w) on the right-hand side of (2.128). Using higher-order di�erential equations we an aurately approximate moregeneral funtions F (w) but we pay the prie that we have to dispose of more and more expansionoeÆients of F (w) if we want to onstrut an approximant with a given order.In summary, the method of di�erential approximants an be implemented in the following way.We are looking for K + 2 polynomials Qi(w), i = 0; : : : ;K, and S(w) with orders Ni and L,respetively, suh that the inhomogeneous, ordinary di�erential equationKXi=0 Qi(w)DiF (w)� S(w) = 0 with D = w ddw (2.129)
is satis�ed to a suÆiently large order in w where F (w) is the funtion that we wish to approximate.We denote this approximant by [L=N0;N1;N2 : : : ;NK ℄.Let us onsider, for simpliity, the ase when the zeros wi of QK(w), i = 1; : : : ; NK , are distintand where the polynomials Qi(w)(i = 0; : : : ;K) does not have ommon fators. Then the solutionof (2.129) is a sum of terms:fi(w) = Ai(w)jw � wj�i + B(w) �i = K � 1� QK�1(wi)wiQ0K(wi) (2.130)
where the exponents �i an be identi�ed with the ritial exponents of the funtion F (w) at w = wi.In pratie, we onstrut the di�erential approximant, ompute the zeros wi and the exponents �i
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of QK(w) and hoose only those pairs (wi; �i) whih orrespond to the \physial" singularity, forinstane where wi is real.We applied this method to the free energy series of the �rst Penrose approximant and onstruteda sequene of [2=N0;N1℄ �rst-order and [2=N0;N1;N2℄ seond-order di�erential approximants forN0 = 19; 20 and N0 = 24; 25; 26; 27, respetively. In both ases we take jNi�Nj j � 1 for i; j = 0; 1; 2.The results are listed in table 2.11 where we show the \physial" singularities wi and the respetiveritial exponents �i.First of all we notie that seond-order approximants provide muh better estimates of the ritialvalues than �rst-order approximants, even for smaller values of N0; N1. This leads to the onlusionthat the singular part of the free energy really onsists of several onuent terms, like in (2.120). If weapply the same mahinery to the free-energy series of the seond or the third Penrose approximant,then, despite of the relatively large number of terms at our disposal 2n � 128, the estimates ofthe ritial values are muh worse as shown in table 2.12. Indeed, as we an see in �gure 2.24, thedi�erenes r2n for the �rst approximant have already reahed onvergene to zero for the largestvalues of n (60 < n < 128), beause in this ase n exeeds the dimension of the Ka-Ward matrix2M = 44. For the seond approximant, however, 2M = 112 is of the same order as the numberof terms available and, apparently, the deviations of r2n are, even for the largest values of n, quitelarge. Therefore, it is not a surprise that even suh sophistiated methods of asymptoti analysislike di�erential approximants of higher order do not provide reliable estimates of ritial values.Let us now shortly summarise the results we have obtained. By virtue of the Ka-Ward methodapplied to the periodi approximants we were able to obtain very preise estimates of ritial tem-peratures on quasiperiodi tilings w. As far as the ritial exponent � is onerned, the analysis,even on the periodi approximants, is harder, due to a very slow onvergene of the di�erenes r2n(2.118). The zero patterns of the partition funtions, however, are not in ontradition with the as-sumption that � = 0. Indeed, as we have mentioned in the previous setion, the neessary onditionfor the exponent � being equal to zero is that the zeros in the viinity of the ritial point lie onstraight line segments perpendiular to the real axis with a density g(r) proportional to the distaner from the ritial point g(r) � r. This is the ase for the lowest three approximants and there areno qualitative di�erenes in the zero patterns for higher approximants, at least in the viinity of theritial point. Thus we an onlude that the ritial behaviour is the same as for the square lattie.2.5.3 The spin-spin orrelation funtion on periodi approximantsIn previous setions, we dealt with the alulation of the ritial point w and the spei� heatexponent � for the Ising model on quasiperiodi tilings. There are, however, other ritial exponents(see table 2.13) whih determine the universality lass of the model. These exponents are notindependent. There is a saling hypothesis [66℄ whih states that the free energy f(t; h) in a non-zero magneti �eld h and at a redued temperature t = jT � Tj=T sales as followsf(t; h) � jtj1=atQ�(h=jtjah=at) (2.131)where at and ah are real numbers and the funtions Q� orrespond to high (t > 0) and low (t < 0)temperatures, respetively. This hypothesis, whih an be justi�ed on the basis of renormalisation-group theory, leads to two saling laws [67, 68℄ whih inlude the �rst four exponents of table 2.13:2� +  = 2� � Rushbrooke saling law2�Æ �  = 2� � GriÆths saling law (2.132)For the last two exponents � and �, one an also work out two saling relations [69℄�d = 2� � Josephson saling law
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First order Seond orderN0 N1 w2 � = 2� � N0 N1 N2 w2 � = 2� �24 23 0:16113928 2:0155 19 18 18 0:1611543796 1:9999981524 24 0:16113836 2:0163 19 18 19 0:1611543777 2:0000010224 25 0:16111175 2:0450 19 19 18 0:1611543761 2:0000036525 24 0:16109289 2:0650 19 19 19 0:1611543751 2:0000054425 25 0:16114887 2:0063 19 19 20 0:1611543748 2:0000058925 26 0:16115446 2:0004 19 20 19 0:1611543761 2:0000037126 25 0:16115398 2:0010 19 20 20 0:1611543788 1:9999989126 26 0:16114895 2:0067 20 19 19 0:1611543761 2:0000036926 27 0:16114589 2:0105 20 19 20 0:1611543788 1:9999988927 26 0:16114591 2:0104 20 20 19 0:1611543795 1:9999967727 27 0:16114568 2:0111 20 20 20 0:1611543790 1:9999984427 28 0:16112438 2:0401 20 20 21 0:1611543791 1:9999984120 21 20 0:1611543790 1:9999986020 21 21 0:1611543768 2:00000278Table 2.11: Estimates of the ritial point w2 and the ritial exponent � = 2 � � of the freeenergy for the �rst Penrose approximant, derived from �rst-order and seond-order di�erential ap-proximants [2=N0;N1℄ and [2=N0;N1;N2℄ respetively. The exat value of w2 , see table 2.10, isw2 = 0:161154378308. First order Seond orderN0 N1 w2 � = 2� � N0 N1 N2 w2 � = 2� �24 23 - - 19 18 18 0:15635301 1:996424 24 0:15474759 3:1046 19 18 19 0:15635167 1:998024 25 0:15569276 2:2698 19 19 18 0:15635390 1:995325 24 0:15612882 2:1131 19 19 19 0:15633479 2:017825 25 0:15621292 2:0819 19 19 20 0:15635300 1:996925 26 0:15621340 2:0772 19 20 19 0:15635257 1:997526 25 0:15627508 2:0253 19 20 20 0:15634825 2:002826 26 0:15611599 2:1613 20 19 19 0:15634589 2:005126 27 0:16016213 - 20 19 20 0:15634933 2:001227 26 0:15607032 2:2803 20 20 19 0:15634928 2:001227 27 0:15864299 0:6085 20 20 20 0:15636275 1:984327 28 0:16047950 - 20 20 21 0:15634713 2:003920 21 20 0:15634701 2:004120 21 21 0:15634199 2:0099Table 2.12: The same as in table 2.11 but for the seond Penrose approximant. The hyphens denotea ase of a \defetive" approximant whih does not have any singularity lose to the \physial"singularity or for whih the exponent � is wrong. The exat value is w2 = 0:156349936421.

 = �(2� �) Fisher saling law (2.133)under additional assumptions: Firstly, the spin-spin orrelation funtionh�i�ji � h�iih�ji = G(t; ~ri; ~rj) � exp(�j~ri � ~rj j=�(t)) at a �xed temperature t deays exponentiallywith distane j~ri � ~rj j at very large distanes. Seondly, the spatial dependene of G(0; r) at theritial temperature t = 0 satis�es a power law.
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Name De�nition 2D Ising� h � �2f(t; h)=�t2 � t�� T �! T H = 0 0� m � �f(t; h)=�hjh=0 � t� T �! T� H = 0 1=8 � � �2f(t; h)=�h2��h=0 � t� T �! T H = 0 7=4Æ m � H1=Æ T = T H �! 0 15� � � t�� T �! T H = 0 1� G(t; ~ri; ~rj) = h�i�ji � h�iih�ji � 1=j~ri � ~rj jd�2+� T = T H = 0 1=4Table 2.13: De�nitions of the ritial exponents for a d-dimensional magneti system with a reduedtemperature t = jT � Tj=T and a magneti �eld h. The quantity f(t; h) denotes the free energy.

The Ka-Ward formalism, however, does not work in the ase h 6= 0. Therefore, an exatalulation of the magnetisation m or the suseptibility � from their de�nitions in table 2.13 is notpossible. One an, however, express the quantities of interest by the zero-�eld spin-spin orrelationfuntion, whih an in priniple be alulated exatly, or, at least, expanded in a series in an easyand eÆient way in a similar fashion as we obtained series expansions of the free energy on periodiapproximants, within the framework of the Ka-Ward formalism. Indeed, the quantities m and �obey the following relations:m2 = lim(~ri�~rj)�!1h�i�ji (2.134)� = �Xi;j h�i�ji � h�iih�ji = �Xi;j G(t; ~ri; ~rj) (2.135)
We see that, alulating G(t; ~ri; ~rj) for arbitrary sites ~ri; ~rj (not only for nearest neighbours) issuÆient to determine the magnetisation and suseptibility and their ritial exponents �; . Let usnow show that this alulation an be arried out exatly, provided that the lattie G is periodi.We want to alulate the zero-�eld two-point funtion h�i�ji on the lattie Gh�i�ji = 1Z(G) Xf�g �i�j exp [��E(�)℄ (2.136)
where E(�) = �Php;li Jp;l �p �l and Z(G) is the zero-�eld partition funtion on lattie G. Let usonnet the sites i and j with a sequene of bonds whih start at sites i1,i2,: : :,ik.Now, beause eah spin obeys �2 = 1, the produt of �i and �j an be written as �i�j =�i�i2 � �i2�i3 : : : �ik�1�ik � �ik�j and the Boltzmann fator is deomposed as followsexp [��E(�)℄ = Yhp;li osh�Jp;lYhp;li(1 + �p�lwp;l) (2.137)
Inserting (2.137) into (2.136) we express the orrelation funtion in terms of the zero-�eld reduedpartition funtion ~Z(G;w)h�i�ji = 1~Z(G;w) Xf�g �i1�i2 � : : : �ik�j Yhp;li(1 + �p�lwp;l) (2.138)
The zero-�eld redued partition funtion, for arbitrary (site-dependent) ouplings wp;l is de�ned ina similar fashion as (2.26): ~Z(G;w) := Xg2G(g;G) w(g) (2.139)
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where (g;G) is the lattie onstant of the graph g in G and w(g) is a produt of oupling onstantswp;l over all edges (p; l) of the graph g. The sum runs over even, in general disonneted, graphs g.Exploiting one more the equality �2 = 1, we obtain an identity�p�l(1 + �p�lwp;l) = wp;l(1 + �p�lw�1p;l )whih an be used to transform (2.138) to

h�i�ji = ~Z1(G;w)~Z(G;w) kYp=1wip;ip+1 (2.140)
where ~Z1(G;w) is de�ned in the same way as ~Z(G) (see (2.139)) exept that the oupling onstantswi1;i2 , wi2;i3 , : : :, wik;j are replaed by their inverse values.We know that the Ka-Ward formula (2.38) is valid for an arbitrary set of oupling onstants,therefore we an express h�i�ji by determinants of two matries, the Ka-Ward matrix A and amatrix A + D whih is only slightly hanged with respet to A:

h�i�ji = �det(A + D)det(A) �1=2 kYp=1wip;ip+1 (2.141)
The matrix D is de�ned in a similar fashion as the Ka-Ward matrix A (see (2.37)) exept thatthe matrix elements D(~ej; ~ek) are di�erent from zero only if ~ej = (ip; ip+1) or ~ej = (ip+1; ip) forp = 1; : : : ; k, and that the oupling onstant wj is replaed by 1=wj �wj . The matrix D has only 2krows ontaining elements di�erent from zero. Therefore, the result an be expressed as a determinantof a 2k x 2k matrix M

h�i�ji = (det(M))1=2 kYp=1wip;ip+1 (2.142)Mp;l := Æp;l + (DA�1)jp;jl j 1 � p; l � 2k (2.143)where jp, p = 1; : : : ; 2k, are labels of oriented edges belonging to the path onneting sites i andj. We see that all what we need for alulating h�i�ji are elements of the inverse of the Ka-Wardmatrix from olumns i1; : : : ; ik. If the lattie G is periodi, the Ka-Ward matrix is yli, i.e.,adding arbitrary lattie vetors to ~ej and ~ek does not hange A(~ej ; ~ek), and we an, at least inpriniple, alulate the inverse matrix A�1 exatly. The omputational e�ort of ourse dependsstrongly on the number of edges in the unit ell 2M , and for the largest quasiperiodi approximants(2M ' 250000) it is pratially impossible to perform suh a alulation. We will therefore omputeseries expansions of the spin-spin orrelation funtion by expanding the respetive inverse matrixelements A�1(j; k) in a series with respet to w and substituting them into (2.143). The inversematrix elements read:
A�1(j; k) = (1 + wL)�1(j; k) = Æj;k + 1Xn=1(�1)nwnLn(j; k) (2.144)

where we take into aount that the w dependene of A is A = 1+wL and that the matrix L ontainsonly omplex numbers (no parameters). The matrix A�1(j; k) is given in the \site representation",i.e. the indies j and k label oriented edges in the periodi lattie and are atually triples of integersj = (�; n1; n2) and k = (�;m1;m2) were �; � denote the positions of edges in the unit ell and n1; n2,
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m1;m2 label the unit ells where the edges lie. The matries A�1 and L are yli in n1;m1 andn2;m2 and an be expressed by the Fourier transforms, whih are �nite matries in ontrary to thein�nite dimensional matries in \site representation". For the matrix L we have:L(j; k) = L(�; �;n1 �m1;n2 �m2)= 14�2 2�Z

0
2�Z
0 exp(i[(n1 �m1)!1 + (n2 �m2)!2℄)~L�;�(exp(i!1); exp(i!2)) (2.145)

Combining (2.145) and (2.144) we get a presription for alulating the element of the inverse Ka-Ward matrix in \site representation" from the Fourier transform ~L.We alulated the high-temperature expansion of the two-point funtion h�i�ji
h�i�ji = 1Xn=0h2n+1w2n+1 (2.146)

between nearest neighbours i; j on the 5th, 6th and 7th Penrose approximant up to the order2n + 1 = 60. The sites i; j have been hosen roughly at the entre of the elementary ell and insuh a way that their nearest-neighbour environment, whih is shown in �gure 2.25, is the same onall three approximants. The expansion ontains only odd oeÆients h2n�1 starting from h1 = 1,whih have a very nie graphial interpretation. The oeÆient h2n�1 is equal to the number ofself-avoiding paths of length 2n � 1 starting at site i and ending at site j. It follows from thisinterpretation that suÆiently low expansion terms of h�i�ji for the 5th, 6th and 7th approximantshould oinide beause the neighbourhood of sites i and j is the same. Indeed, the �rst �veoeÆients h2n�1 = f1; 2; 5; 13; 45g are idential in the three ases. The �rst di�erene ours for2n�1 = 11 where the expansion oeÆient h11 = 210; 194; 226 for the 5th, 6th and 7th approximant,respetively.In �gure 2.26, whih is analogous to �gure 2.24 for the free energy, we show the di�erenesr2n = h2n�1=h2n�3� (n� 2)=(nw2 ) between the ratio of two suessive oeÆients of the expansionof h�i�ji and their expeted asymptoti behaviour with the exponent equal to the square-lattievalue 1�� = 1. As we an see, the behaviour of the di�erenes r2n is even more wild and osillatorythan for the free-energy expansion. The respetive values for the square lattie, alulated from theOnsager solution [65℄, onverge rapidly to zero. The data for periodi approximants are, however, inaordane with the assumption that � = 0. We suspet that the osillations would diminish if weonsidered a site-averaged two-point funtion or the suseptibility, whih is an average of G(t; ~ri; ~rj)over all pairs of sites i and j whih are not neessarily nearest neighbours. The alulation ofthe suseptibility is, unfortunately, muh more laborious beause it requires the knowledge of all2M � 2M elements of the inverse matrix A�1, or respetively their series expansions in w, what ispratially impossible for the largest approximants (2M ' 250000).Up to now, the alulation of the spin-spin orrelation funtion did not provide us with newinformation about the ritial behaviour of the Ising model on quasiperiodi graphs. Indeed, it iseasy to see that h�i�ji for nearest neighbours i,j an be expressed as a partial derivative of the freeenergy for general, site-dependent ouplings, with respet to the oupling among sites i and j:h�i�ji � � logZ(G)�wij ����wij=w (2.147)
where we set all ouplings wij equal to w after taking the derivative. Inserting the asymptotibehaviour (2.104) of the free energy into (2.147) one �nds, that, at least on regular latties, the
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Figure 2.25: The neighbourhood of the sites i and j in h�i�ji on the Penrose approximants (on theleft) and an exemplary path onneting these sites (on the right). The sites belonging to the pathare labelled by ip for p � 6, and the orresponding edges in the dual lattie (dashed) are labelled byjp for p � 10.
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Figure 2.26: The same as in �gure 2.24 for the series expansion of the nearest-neighbor spin-spinorrelation funtion for the 5th, 6th and 7th Penrose approximant and for the square lattie. Theexpeted asymptoti behaviour is (n � 2)=(nw2 ). The loal on�guration of sites i and j is shownin �gure 2.25.
exponent whih determines the asymptoti behaviour of our series is equal to � � 1 = 1 � � = 1and does not depend on �,  or Æ. We an, however, try to alulate the magnetisation from (2.134)by moving the sites i and j away from eah other as far as possible and trying to approah the
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limiting ase (~ri�~rj) �!1. We know that the spontaneous magnetisation m is di�erent from zerofor T < T and, therefore, the high-temperature expansions (2.141) (valid for T > T) annot beapplied for alulating m. We will, therefore, work out a low-temperature expansion of h�i�ji usingthe duality relation and omputing the quantities of interest on the dual lattie.There is a duality relation whih expresses the redued partition funtion ~Z(G;w) in the variablew for arbitrary, site-dependent ouplings on the lattie G via the partition funtion ~Z(GD;x) in thevariable x = (1�w)=(1 +w) on the dual lattie GD (ompare 2.117). It follows from omparing thehigh-temperature expansion of Z(G) with its low-temperature expansion:

~Z(G;w) = 2�N 0�Yhp;ki(1 + wp;k)1A ~Z(GD;x) (2.148)
Substituting (2.148) into (2.140) we get

h�i�ji = ~Z1(GD;x)Qkp=1(1 +w�1ip;ip+1)~Z(GD;x)Qkp=1(1 + wip;ip+1) kYp=1wip;ip+1 = ~Z1(GD;x)~Z(GD;x) (2.149)
where we took into aount that the oupling onstants in ~Z1(G;w) di�er from those in ~Z(G;w)only for bonds (ip; ip+1); p = 1; : : : ; k, and are equal to w�1ip;ip+1 . Now, we an apply the Ka-Wardequality to the redued partition funtions in (2.149) and express, similarly as in (2.143), the spin-spin orrelation funtion as a determinant of a 2k � 2k matrix that depends only on one parameterx and on matries de�ned on the dual lattieh�i�ji = �det(M(D))�1=2 (2.150)M(D)p;l := Æp;l + �D(D)(A(D))�1�jp;jl 1 � p; l � 2k (2.151)
where the matrix (A(D))�1 is the inverse of the Ka-Ward matrix de�ned on the dual lattie. Thematrix D(D), whose elements di�er from zero only in the 2k rows orresponding to oriented bondswhih are dual to bonds (ip; ip+1); p = 1; : : : ; k, forming the path that onnets the sites i and j (see�gure 2.25), is de�ned in a similar fashion as the Ka-Ward matrix A(D) exept that the ouplingonstant x is replaed by �2x.We omputed the low-temperature expansion of h�i�ji on periodi approximants of the Penrosetiling. For this purpose we hose a site i roughly in the entre of the unit ell with a given vertextype and the site j shifted by one lattie vetor, i.e., loated in the neighbouring unit ell. Then weonstruted the shortest possible path, onsisting of edges of the lattie, onneting the sites i andj. Aording to formula (2.151), the orrelation funtion is a determinant of a 2k�2k matrix whoseelements are polynomials in x with oeÆients that are twentieth roots of �1. This is beause anglesbetween edges on the dual Penrose tiling, or on its periodi approximants, are integer multiples of�=10, thus the appropriate Ka-Ward matrix elements are powers of exp(i�=20). We need in (2.151)the inverse matrix elements (A(D))�1 in olumn jp, where jp; p = 1; : : : ; 2k, labels the edges in thedual tiling whih are assoiated with the edges onstituting the path. Estimating the mean numberof non-zero elements in a row of the Ka-Ward matrix to be 4, we see that we have to omputeroughly 2k�4 elements of the matrix (A(D))�1. If we want to ompute the expansion in the variablex to the order M, we need 2k � 4 �M elements of Ln where n � M, see (2.144), de�ned on thedual lattie. The dimension 2k of the determinant in (2.151) is equal 20, 32, 52, 84, 136 for the mth,m = 3; 4; 5; 6; 7, Penrose approximants, respetively. In all ases, we hose the site i to have a vertextype 1 in the list shown in �gure 2.4.
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After expressing h�i�ji as a 2k � 2k determinant of a matrix whose elements are polynomialsof order M, we enounter another problem. How to avoid the neessity of omputing the wholedeterminant, whih is a polynomial in x of the order 2k �M in order to alulate only the �rstM+1 terms of this polynomial? Indeed, only terms of order �M are orret, beause the elements of(A(D))�1 were determined only with a O(xM) preision. We alulated the determinant numeriallyfor 2k�M+1 values of x in the interval [0; 0:5℄ and interpolated these points by a polynomial. Sinethe determinant is a polynomial of order 2k �M, its interpolating polynomial of the same orderis equal to the determinant. Polynomial interpolation is numerially an ill-onditioned problem,thus we had to perform omputations with a very high preision, up to 300 digits for the largestapproximant, in order to obtain orret results. This was done by using a FORTRAN multiplepreision pakage MPFUN available on the World Wide Web (http://www.netlib.org/mpfun/) aspubli domain software. In pratie, it turned out that the �rst M + 1 terms of interest wereomputed orretly even if we took less than 2k �M + 1 points for the interpolating proedure.For 2k = 136 already 400 points suÆed to obtain the expansion of the orrelation funtion with apreision O(x30). Taking more points or hanging the values of points did not alter the result. Theexpansion of the orrelation funtion to the order M = 30 is shown in table (2.14).Let us now shortly disuss the results. First of all notie that the shape of the urve h�i�ji(x) =1 +P1n=1 lnxn, omputed from the expansion in table (2.14), seems to be orret. The urve startsat 1 for zero temperature (x = 0) and falls of ontinuously with inreasing x, reahing zero at atemperature slightly larger than the ritial point. The zeros of h�i�ji(x), see table (2.14), are loseto the ritial points for the approximants of the dual Penrose tiling. In the limit ase k �! 1 weexpet that the zero oinides with the ritial point. In our ase, due to �nite values of k (k < 68),and due to trunating the expansion at the order M = 30, the zeros are slightly larger than theritial points, the di�erene, however, does not exeed 3 perent. There is another interestingfeature of the expansions under onsideration. The oeÆients of terms of a suÆiently low orderare independent of the number of approximant. Moreover, the maximal order up to whih theoeÆients do not hange with the approximant grows with the size of the approximant. Atually,the expansion to the seventh order is the same for all approximants, and the expansions on the sixthand the seventh approximant di�er only at orders larger than 14. All this points to the fat that thealulated expansion of the orrelation funtion h�i�ji(x) approahes the expansion of the squaredspontaneous magnetisation m2(x) when inreasing the distane k between sites i and j.It is, however, diÆult to estimate the magnetisation ritial exponent � from our data. Firstly,the slope of the spontaneous magnetisation urve, as funtion of temperature, at the ritial pointis expeted to be in�nite. Indeed, in the Onsager universality lass we have � = 1=8 (2.13) or-responding to an in�nite value of the derivative at T = T. Our polynomials of ourse have �niteslopes at their zeros, beause a derivative of a polynomial at �nite x is always �nite. We an tryto make an asymptoti analysis of our expansions, using the quotient method, Pad�e- or di�erentialapproximants to estimate �. This, however, does not give reliable results beause the number ofterms in the expansion is too small.

2.6 A 2D Ising model with non-Onsager ritial behaviourIt follows from the Harris-Luk riterion, see setion 2.2.3, that Ising models on quasiperiodi graphsonsidered in previous setions have the same ritial behaviour as on the square lattie. Indeed,the wandering exponents ! desribing the utuations in the oupling onstants are smaller than1=2, see equation (2.18). Now, we aim at onstruting a 2D Ising model with relevant utuations,i.e. ! > 1=2, for whih the assumption � = 1 is not onsistent with the onsiderations from setion2.2.3. Sine both quasiperiodi graphs, the Penrose and Amman-Beenker tiling, were onstruted by



68 CHAPTER 2. QUASIPERIODIC ISING MODELS
Order ofapproximant third fourth �fth sixth seventhDistanebetween i and j 10 16 26 42 68Order n CoeÆient ln1 0 0 0 0 02 0 0 0 0 03 0 0 0 0 04 -8 -8 -8 -8 -85 -16 -16 -16 -16 -166 -8 -8 -8 -8 -87 -8 -8 -8 -8 -88 -40 -48 -32 -40 -409 -32 -64 0 -32 -3210 56 32 88 56 5611 40 120 -24 40 4012 -256 -64 -472 -256 -25613 -832 -496 -1208 -832 -83214 -2024 -832 -3032 -2024 -202415 -4280 -1464 -6768 -4296 -430416 -7032 -4856 -9576 -7088 -715217 -11368 -15888 -7472 -11064 -1135218 -24552 -41784 -5032 -21840 -2287219 -49568 -86416 -10688 -40408 -4351220 -68616 -129688 -32312 -50872 -5750421 -91832 -139120 -148000 -72952 -7820822 -300800 -219160 -604376 -301376 -27786423 -1161768 -786712 -1716336 -1183944 -106633624 -3471448 -2397600 -3659872 -3332192 -303866425 -8650840 -5766144 -6773776 -7586112 -713154026 -19341744 -14144720 -12648104 -15725816 -1542459227 -39476328 -37696280 -26182536 -31918344 -3247564028 -73756560 -92120736 -60963656 -65603600 -6800459229 -129893432 -188290040 -150362912 -139409072 -14602127230 -230530256 -338073368 -356958088 -307293208 -327519544Root of h�i�ji 0:44593 0:446169 0:446003 0:44655 0:446519Critial point x 0:433607 0:434149 0:434182 0:434252 0:434256Table 2.14: The low-temperature expansion oeÆients of the spin-spin orrelation funtion h�i�ji =1 +P1n=1 lnxn of the zero-�eld Ising model on periodi approximants of the Penrose lattie.

the ut-and-projet formalism it would be purposive to �nd another ut-and-projet quasiperioditiling, with N -fold symmetry, exhibiting a non-Onsager ritial behaviour. Intuitively we expetthat one should enounter relevant utuations for values of N whih are large enough, N � 5. Itis due to the fat that the larger the N the wider the range of the number of neighbours of sites i inthe tiling. Indeed, projeting a strip of an N -dimensional hyperubi lattie onto a plane, aordingto the rules of the ut-and-projet method, we obtain a tiling onsisting of (N � 1)=2 rhombi tileshaving angles 2� � j=N , j = 1; : : : ; (N � 1)=2. The smallest aute angle is �=N , thus the tiling anpossess a site i with 2N neighbours, where 2N rhombi with the smallest aute angle abut at i. Inorder to determine ! for a quasiperiodi tiling we have to make the following:� �nd the ination rules for the tiling,
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� �nd all vertex types, and determine the substitution matrix M� for the orresponding Voronoiells,� ompute ! from the leading eigenvalues of M�, see (2.18).Although these points are feasible for a generi N -fold tiling they are rather ompliated in pratie.In partiular, the number of di�erent vertex types, whih determines the dimension of M�, an bequite large. We have generated the vertex types of the sevenfold tiling N = 7 and found more thanone hundred of them, ompared with eight and six vertex types in the Penrose and Amman-Beenkertiling respetively.It is, on the other hand, not diÆult to onstrut relevant utuations on a square lattiedistributing at least two di�erent oupling onstants on its bonds in an aperiodi way. The followingexample stems from [22℄. Let us onsider the following substitution rule for a set of four di�erentletters a; b;  and d � : a �! b aa b b �! a  a  �! d bb d d �!  dd  (2.152)By iterating this substitution rule we generate a square lattie with a ertain distribution of letterson its sites. Now, if we introdue 10 di�erent ouplings, depending on the letters marking the sitesof the bond (a; a); (b; b); (; ); (d; d); (a; b); (a; ); (a; d); (b; ); (b; d); (; d) (2.153)but not on the order of letters in the bond, we obtain a model with relevant utuations of ou-plings. Indeed, the substitution rule (2.152) indues a substitution rule for the ten ouplings. Thesubstitution matrix for the ouplings is de�ned like in (2.4) and reads

M� =
0BBBBBBBBBBBBBB�

0 0 0 0 1 0 0 0 0 00 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 110 0 0 0 4 4 4 1 0 00 10 0 0 4 0 1 4 4 00 0 0 0 0 1 0 0 1 00 0 0 0 1 0 0 0 0 10 0 10 0 0 4 1 4 0 40 0 0 10 0 0 4 1 4 4

1CCCCCCCCCCCCCCA
(2.154)

Its eigenvalues, sorted in desending order of their moduli, are f10;�5p2;�2;�2; 2;�p2; 0; 0g.Therefore the wandering exponent whih depends on the eigenvalues with largest moduli reads! = logj5p2jlogj10j ' 0:8495 > 12 (2.155)The ourrene frequenies fpigi=1;:::;10 of the subsequent bonds (2.153) are equal to the entries ofthe Perron-Frobenius eigenvetor of M� and read 48fpig = f1; 1; 1; 1; 10; 10; 2; 2; 10; 10g. In thefollowing, we assume that the bonds (a; a); (a; b); (a; ) and (a; d) are removed from the lattie, i.e.,the respetive oupling onstants are equal zero, and the remaining bonds have equal ouplings, see�gure 2.27. In this way we obtain an Ising model with one oupling on a diluted lattie where theoordination numbers of sites utuate relevantly.The average oupling �� and the vetor of utuations ~g, see setion 2.2.2, reads�� = (0 � 1 + 1 � 1 + 1 � 1 + 1 � 1 + 0 � 10 + 0 � 10 + 0 � 2 + 1 � 2 + 1 � 10 + 1 � 10)=48 = 25=4848~g = f�25; 23; 23; 23;�25;�25;�25; 23; 23; 23g (2.156)
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b c b d b c d c b c b d b d c b d b c b d bFigure 2.27: The 5th periodi approximant of the lattie with relevant utuations produed bysubstitution rules (2.152). Here, the sites a have been removed.
Finally, the utuations G(w), see (2.7), readG(w) = jwj0:8495(�0:9167 + 0:7292 � jwj�0:5485 + 0:4167 � jwj�0:6990 + O(jwj�1)) (2.157)Now, we investigated this Ising model by means of the Ka-Ward method. We onstruted annth periodi approximant of the lattie with relevant utuations by iterating the substitution rule� (2.152) n times and then ontinuing the obtained portion of the lattie periodially. The nthapproximant has 22n sites, thus the Ka-Ward matrix has dimension 4�22n = 22n+2. We alulatedthe series expansion of the free energy for approximants with n � 4 to the order 160, note thatonly even powers our in the expansion and plotted the ratios of suessive oeÆients g2n=g2n�2 in�gure 2.28. Taking a glimpse of this �gure we realize that the ratios behave in a way quite di�erentfrom the ase of all Ising models onsidered before. The osillations of the ratios, whih also ourredon the Penrose tiling, see �gure 2.24, are quite large and they seem not to vanish with growing valuesof n. On the ontrary, the amplitude of osillations inreases and the sequene of ratios diverges.This behaviour is due to the fat that the free energy possesses other singularities w1 lying loserto the origin of the omplex plane than the \physial" singularity w. It an be shown, [42℄, thatomplex \nonphysial" singularities modify the asymptoti behaviour of the ratios g2n=g2n�2 (2.105)by a multipliative fator �1 + O((w=w1)2n)�. If jwj=jw1 j > 1 then the osillations diverge. Inother words, sine the onvergene irle extends only to the singularity whih is losest to theorigin, in this ase to w1 , we annot apply (2.105) to assess w from the expansion oeÆients g2nif jw1 j < jwj. If there was only one \nonphysial" singularity w1 with jw1 j < jwj we ould tryto subtrat its ontribution from the ratios g2n=g2n�2 and estimate the ritial values assoiatedwith w. It turns out, however, that in our ase we have many singularities w1 lying loser to theorigin than w whih makes the behaviour of the ratios g2n=g2n�2 irregular and the analysis of the\physial" singularity diÆult. We alulated the partition funtion zeros, whih are singularities of
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the free energy, from the eigenvalues of the Ka-Ward matrix in the same way as in setion 2.5.1.In �gure 2.29 and 2.30 we show the zero patterns in the variable z = (1 +w)=(1�w) for the seondand third periodi approximant. After an attentive look at this �gure we realize that in both asesthere are zeros lying loser to z = 1, orresponding to w = 0, than the real, \physial" zero. Indeed,the region jwj � w on the w plane orresponds to a region jz� 1j � wjz+ 1j on the z plane, whihis the interior of the ellipses in �gure 2.29. The irles are entred at (1 + w2 )=(1 � w2 ) and haveradius 2w=(1�w2 ). For both approximants there are several zeros belonging to the interior of theseirles. One possible solution of this problem would be to expand the free energy around a non-zerovalue w0, i.e. take the expansion variable w � w0 instead of w, hosen in suh a way that the zerolosest to w0 is equal to w. Beause of the identitydet [ ~A1(!; �)℄ =det [1 + w~L(!; �)℄ = det [1� w0 ~L(!; �)℄ det [1 + (w � w0)(1� w0 ~L(!; �))�1 ~L(!; �)℄(2.158)we see that we need to invert the matrix ~A1(!; �) for w = w0 and arbitrary values of ! and �. Thisis, however, onneted with muh omputational e�ort, thus we did not arry out suh alulations.At the end of this setion let us make some speulations about what kind of ritial behaviouris expeted in the limiting ase of very large approximants. From �gure 2.29 we see that there isa tendeny for ertain zeros with jwj < w to ome loser and loser to the ritial point w withgrowing order of the approximant. On the other hand, we see that the ar whih is formed by zerosfrom the neighbourhood of w beomes shorter when the order of the approximant inreases. Sinewe know that the ritial behaviour is determined by the angle at whih the ar intersets the realaxis and by the density of zeros in the intersetion point we ould imagine the following senarioleading to a hange in the ritial behaviour. In the limiting ase the ar ompletely disappears andis replaed by a ompliated urve formed by zeros, whih were approahing w with growing orderof the approximant. A di�erent possibility would be that the ar does not vanish, it still intersetsthe real axis at a right angle, what enfores the spei� heat exponent � = 0, but the density of zerosis hanged what leads to a di�erent singular part of the free energy, i.e. instead of a logarithmiterm we get a double logarithmi term or something else. In order to hek this hypothesis verypreise investigations of the zeros distribution in the neighbourhood of w for high approximants areneessary. Here we an only asertain that the free energy is indeed qualitatively di�erent omparedto other quasiperiodi Ising models onsidered in this work.
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Figure 2.28: The ratios g2n=g2n�2 (2.104) of the expansion oeÆients of an Ising model on the se-ond/third/fourth (bottom/middle/top) periodi approximant of a lattie with relevant utuations.In all ases 16 � 2n � 160.
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Figure 2.29: Part of the partition funtion zeros in the omplex plane z = (1+w)=(1�w) = exp 2�Jfor the seond (top) and third (bottom) periodi approximant of a lattie with relevant utuationswith 64 and 256 sites in the unit ell, respetively. The regions bounded by ellipses in both �guresare jwj = jz � 1j=jz + 1j � w, where the ritial points w are w ' 0:588229; 0:630589 for thethird and the fourth approximant, respetively. Zeros belonging to these regions are responsible fordiverging osillations in the quotient plot, see �gure 2.28.
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Figure 2.30: The same as in �gure 2.29 for the �fth approximant with 1024 sites in the unit ell.Here the ritial temperature w ' 0:674173.



Chapter 3
Quasiperiodi tight-binding models
3.1 IntrodutionThe disovery of quasirystals by Shehtman et al. stimulated a wide interest in eletroni and me-hani properties of these materials. As already mentioned in the main introdution quasirystalshave unusual transport properties like high values of eletri resistivity and a low eletroni ontribu-tion to the spei� heat whih points to a small density of states at the Fermi energy. It is diÆult toexplain these striking features, beause a rigorous theory of the eletroni struture of quasiperiodimaterials does not exist. Waiting for the disovery of a \Bloh theory for quasirystals", one eitherarries out numerial alulations for as large lusters as possible or tries to make exat statementsabout the eletroni wavefuntions in simple models.A lot of work has been done alulating the band struture and the density of states of largeperiodi approximants of realisti models of quasirystals, for example by ab initio LMTO (LinearMuÆn Tin Orbitals) methods [70℄. Even though the omputations were time and memory onsum-ing and realisti models of quasirystals were used, there is a remarkable disrepany between thetheoretial and experimental results whih, aording to our knowledge, has not been explained sofar. For instane, the omputed density of states (DOS) exhibits a very spiky struture, onsisting ofnumerous peaks whih are lose to eah other, whereas in experimental measurements one observesa smooth behaviour of the DOS (no spiky struture). Some people believe that the spikes are anumerial artifat, i.e., they are due to the small size of the unit ell of the periodi approximantsused in the omputations. In other words, the spikes should vanish if one onsidered larger unit ells,whih, however, is very diÆult to hek beause of large memory or omputation time requirements.Another approah to desribe the transport properties (TP) of quasirystals is based on arelaxation-time approximation in the framework of the theory of disordered metals [71, 72℄. Thetheory has been developed already at the end of the 1970es and it is a rather phenomenologialtreatment where the atomi struture of the partiular material does not enter into the model. Thefree eletron gas in the material is subjeted to a weak \disorder" potential generated by a set ofimpurity atoms with a small onentration. This kind of disorder leads to a weak loalisation (WL)[73℄ of wave funtions and diminishes, therefore, the di�usivity onstant D = vF �=2, where vF is theFermi veloity and � the relaxation time. As the disorder potential is regarded as a small perturba-tion, the result is only valid if the eletron mean free path l is muh larger than the Fermi wavelength�F . In addition, a orretion for eletron-eletron interations (EEI) was taken into aount [74, 75℄.This e�et aused a modi�ation of the eletroni density of states (DOS) N(EF ) at the Fermi level.Sine the EEI was onsidered as a sreened Coulomb interation, in the lowest order of perturbationtheory the result an only be valid for small eletron onentrations. The total orretion to theDrude model ondutivity � = e2N(EF )D is omposed of both e�ets desribed above and has been75
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alulated in the following way: Æ�� = ÆDWLD + ÆN(EF )EEIN(EF ) (3.1)
where ÆDWL and ÆN(EF )EEI are orretions for the di�usivity onstant and the DOS at the Fermilevel due to WL and EEI respetively. The �nal result ontains several free parameters suh as therelaxation times � and a quantity F� desribes the sreened Coulomb interation. For ertain qua-sirystalline alloys like AlCuFe this simpli�ed theory desribed the measurements of the eletrialondutivity quite well, and the parameters � and F�, �tted from experimental data, appear to bequite realisti [76℄. There are, however, highly resistive iosahedral AlPdRe phases, for whih thistheory is not onsistent with experiments. Measurements of the ondutivity, magnetoondutiv-ity, and of the thermopower show onsiderable deviations from the theory [77℄ and a satisfatoryexplanation of this fat has not yet been found.There is another very promising theoretial approah to the TP of quasirystals pursued byMayou et al. [78℄. One has alulated the Kubo-Greenwood ondutivity in the framework of linearresponse theory. The essential di�erene is that this model presumes a quasiperiodi atomi struturein ontrary to the former model where the arrangement of atoms, exept for the impurities, did notplay any role. In the framework of this model, the anomalous eletron di�usion, i.e., the fat thatthe temporal extension of the eletron wave paket L(t) has the form L(t) � t� with � 6= 1=2, wasautomatially taken into aount, what was not the ase in the approah desribed in the previousparagraph. Moreover, this model does not require any assumption about the relation between l and�F . The prie whih has to be paid for the possibility of onsidering a more realisti model is thattaking into aount orretions due to EEI is muh more diÆult and has not been done. Moreover,Mayou onsidered only a tight-binding (TB) model on a ubi lattie with a quasiperiodi modulationof oupling strengths in eah spatial diretion and some amount of disorder, instead of using aniosahedral tiling. Nevertheless, he sueeded to explain qualitatively experimental observations likethe inrease of the ondutivity with disorder or with temperature. In our opinion, applying theapproah by Mayou to iosahedral tilings and inluding orretions for EEI aording to the linesfrom [74, 75℄ would result in a progress in the theoretial desription of TP of quasirystals.All this shows, that investigations of simple TB models (toy models), whih are the subjet of thishapter, are useful and an ontribute to a deeper understanding of the unusual eletroni propertiesof quasirystals. Here, we refrain from dealing with the omplex problem of TP of quasirystals andrestrit ourselves to the investigation of eletron eigenstates in a quasiperiodi potential.We onsider a tight-binding model on a 2D quasiperiodi tiling. In the following, we onentrateon the rhombi Penrose tiling beause, in this ase, we obtained some onrete, nontrivial results.Nevertheless, possible extensions of this method to other tilings, in partiular to the otagonalAmman-Beenker tiling or a 3D iosahedral tiling will also be disussed. Our model is a so-alledvertex model beause we plae the atoms in the verties of the tiling. Interations are taken intoaount only between neighbouring verties onneted by edges or by diagonals of the rhombi. Inour alulations, we restrit ourselves to a single s-type atomi orbital per vertex. This makes thetransfer integrals tij independent of the angular orientation and leads to the following HamiltonianH = Xi jii "i hij + Xi;j jii tij hjj (3.2)
where jii denotes a Wannier state loalised at vertex i, and "i are on-site energies. For the hoppingintegrals tij , we hoose �ve di�erent values 1, d1, d2, d3, d4, depending on the distane of the vertiesi and j, see �gure 3.1. Here, tij = 1 for verties onneted by an edge of the tiling, tij = d1 (d2) for
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the long (short) diagonal of the `fat' rhombus, and tij = d3 (d4) for the long (short) diagonal of the`thin' rhombus, respetively. On the Amman-Beenker tiling we have four di�erent hopping integrals1, d1, d2, d3, where tij = d1 for the diagonal of the square, and tij = d3 (d4) for the long (short)diagonal of the rhombus, respetively.As the Penrose tiling is arguably the most popular among the quasiperiodi tilings, it is notsurprising that TB models de�ned on the Penrose tiling have been investigated rather thoroughly.Besides the vertex model [79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91℄, the so-alled entremodel was onsidered [92, 93, 94, 95℄, where atoms are loated in the entre of the rhombi, andhopping may our between adjaent tiles | this is nothing but a vertex model on the dual graphof the Penrose tiling. However, most results rely on numerial approahes whih are in many asesunsatisfatory due to �nite-size e�ets. We will not disuss the numerial methods used to solve theTB eigen-problems beause in this hapter we try to treat the problem analytially. A good reviewon numerial solutions of TB models on quasiperiodi graphs an be found in [96℄. Only few exatresults on the spetrum of the TB Hamiltonian are known. In partiular, so-alled `on�ned states'have been investigated in detail, both for the vertex [81, 86℄ and the entre model [94℄. These arein�nitely degenerate, stritly loalised eigenstates orresponding to a partiular value of the energy,whih our as a onsequene of the loal topology of the tiling, see also [90℄. Furthermore, fora Hamiltonian (3.2) with partiular on-site energies "i hosen aording to the vertex type at sitei, the exat self-similar ground state ould be onstruted [82℄. Based on the same idea, severalnon-normalisable eigenstates of the entre model and their multifratal properties were obtainedexatly [95℄. These solutions, restrited to speial values of the hopping integrals, were derivedfrom a suitable ansatz for the eigenfuntions. Aording to this ansatz, the wave funtion at a sitedepends only on its neighbourhood and on a ertain integer number, a \potential", assoiated tothe site, whih is derived from the mathing rules of the Penrose tiling [82℄.In this work, we apply the same ansatz to the vertex model on the Penrose and Amman-Beenkertiling. The solution is more ompliated than for the entre model, where the oordination number(i.e., the number of neighbours) is always equal to four, whereas it varies between three and eightfor the vertex models. For suitably hosen hopping integrals, we derive exat eigenstates of theHamiltonian (3.2) and analyse their multifratal behaviour. For the Penrose tiling, as observedfor the entre model [95℄, we �nd that these states are in�nitely degenerate, i.e., for �xed value ofthe energy the eigenfuntions still involve one free parameter. In order to show this, we need togeneralise the ansatz exploiting the ination symmetry of the Penrose tiling.It may seem a little bit strange that we ompliate our model by introduing hopping integralsorresponding to interations between sites onneted by diagonals of tiles, whereas in previous workson the vertex model one usually took only one hopping integral, equal to 1, when the sites wereonneted by an edge of a tile. By virtue of introduing new parameters to the Hamiltonian we anobtain exat eigenstates. As we will see in the following, all eigenstates we have found orrespondto the ase where at least one of the diagonal ouplings does not vanish. If we therefore onsideredthe usual vertex model we would not be able, by our method, to �nd any new exat eigenstates.The hapter is organised as follows. In the subsequent setion, we disuss the labelling of therhombi with two kind of arrows on the Penrose and with one kind of arrow on the Amman-Beenkertiling and the assoiated potentials. In the third setion, we introdue the ansatz for the wavefuntionand solve the tight-binding equations for two ases, the �rst with "i = 0 and di 6= 0, and the seondwith di = 0 but various on-site energies. It appears that only in the Penrose ase we obtaininteresting \ritial" states. Nevertheless, some non-trivial results are also obtained and disussedon the otagonal tiling. A generalised ansatz, based on the ination symmetry of the tiling, isonsidered for the Penrose tiling in setion 3.4. In setion 3.5, we perform a fratal analysis of thewavefuntions, i.e., we alulate the generalised dimensions. Finally, in setion 3.6 we make some
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remarks about edge deorations in quasiperiodi tilings and onstrutions of exat tight-bindingstates.
3.2 Edge labelling and potentialsFollowing de Bruijn [97℄, we mark the rhombi of the Penrose tiling with single and double arrowsas shown in �gure 3.2. A similar deoration of the otagonal tiling, with only one kind of arrowsis shown in �gure 3.2. The mathing rules require that arrows on adjaent edges math. Fixinga ertain site O as the origin, we assign to a site i two integers n(i) and m(i) whih ount thenumber of single and double arrows, respetively, along an arbitrary path onneting the origin Oand site i. On the Amman-Beenker tiling the same onstrution yields only one integer n(i). Thisis well-de�ned beause, along any losed path, the total number of arrows vanishes (in both Penroseand Amman-Beenker ases). Indeed, a losed-path-irulation of single or double arrow �elds (sumof respetive arrows over the edges of the path) an always be expressed as a sum of irulationsover tiles being inside the region omprised by the path. The irulations over tiles however are zeroas an be seen from �gure 3.2. We refer to these integers n(i) and m(i) as \potentials" at site ibeause they are integrals of the two vetor �elds de�ned by the arrows. The distributions of thepotentials are rather irregular and show the following properties:� On the Penrose tiling, the single-arrow potential n(i) is diretly related to the sum t(i) 2f1; 2; 3; 4g of the �ve-dimensional indies denoting the translation lass of the site i. It takesonly two values: n(i) = 0 if t(i) 2 f1; 4g and n(i) = �1 if t(i) 2 f2; 3g (provided the origin hastranslation lass t(O) 2 f1; 4g).� The double-arrow potential (Penrose tiling) m(i) is unbounded. Its distribution on a �nitelattie luster is shown in �gure 3.3. For a detailed disussion of the distribution, see [82℄.Here, we only remark that one an alulate the hanges in the arrows �elds under a two-foldination of the luster. One realizes that for ertain sites m(i) grows systematially, whereasn(i) takes always the same values.� The single-arrow n(i) potential on the otagonal tiling an only take a �nite number of di�erentvalues. We have notied this fat, but did not prove it rigorously, by looking at the distributionof n(i) on �nite portions of the tiling, see �gure 3.3.The potential m(i) is the key ingredient used to onstrut exat eigenfuntions of tight-bindingHamiltonians on the Penrose tiling. Using the potential n(i) on the Amman-Beenker tiling will alsoprovide us with a result whih, however, turns out to be less interesting than for the Penrose tiling.The suess of the method is tied to the fat that the potential m(i) is unbounded.

1

d1
d2

1

d4d3

Figure 3.1: The two types of rhombi in the Penrose tiling and the assignment of hopping integralsd1, d2, d3, and d4 to their diagonals. The hopping integral along the edges is hosen as 1.
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Figure 3.2: Deorations of the both types of tiles on the Penrose (left) and the Amman-Beenkertiling (right) respetively.
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Figure 3.3: The potential of double arrows m(i) on the Penrose tiling and of the single arrows n(i)on the otagonal tiling.
3.3 Solutions of the tight-binding equationsWe want to onstrut solutions of the tight-binding equationsXj tij�j = (E � "i) �i ; (3.3)
where we sum over all neighbors j of the site i. We onsider the following ansatz for the eigenfuntion�i �i = A�(i) �m(i) (3.4)where �(i) 2 f1; 2; : : : ; 8g (Penrose) and �(i) 2 f1; 2; : : : ; 7g (Amman-Beenker) labels the vertextype at site i, ompare �gures 2.4 and 2.5 in whih the eight (seven) vertex types of the Penrose(Amman-Beenker) tiling are shown. Here, the amplitudes A� and � are parameters.3.3.1 The ase "i = 0For simpliity, we �rst onentrate on the ase with on-site energies "i = 0. With the ansatz (3.4),the in�nite set of equations (3.3) redues to a �nite set omprising as many equations as there are



80 CHAPTER 3. QUASIPERIODIC TIGHT-BINDING MODELS
seond-order vertex types in the tiling. By a seond-order vertex type we mean the neighbourhoodof a site up to its seond oordination zone. There are 31 (35) di�erent seond-order vertex typesin the Penrose (Amman-Beenker) tiling, these are shown in �gures 3.4 and 3.5, grouped togetheraording to the �rst-order vertex type of the entral site. Thus, we have 31 (35) linear equationsin the 14 (11) variables A� (� = 1; : : : ; 8(6)), �, E and di (i = 1; : : : ; 4(3)). As it is straightforwardto derive the equations from the seond-order vertex types of �gures 3.4 and 3.5, we refrain fromlisting them here. Instead, we onsider as an example only the �rst olumn of �gure 3.4, whih weshow again in �gure 3.6 together with the orresponding values of the potential m(i). This yieldsthe following four equationsEA1 = d4A3� + 2(A2 + A3) + d1(A2 + A5 + A7)��1= d4A3� + 2(A2 + A3) + d1(A2 + A5 + A5)��1= d4A3� + 2(A2 + A3) + d1(A2 + A7 + A5)��1= d4A3� + 2(A2 + A3) + d1(A2 + A7 + A7)��1 (3.5)two of whih (the �rst and the third) are idential beause the orresponding patterns are mirrorimages of eah other.In the following we disuss the Penrose ase. At �rst sight, as the number of variables, 14, is muhsmaller than the number of equations, 31, one might expet that only the trivial solution (�i � 0)exists. However, this is not the ase, for suitably hosen values of the hopping parameters di (i =1; : : : ; 4) and the energy E, non-trivial solutions exist, beause the equations are not independent.To see this, note that the seond-order vertex types within one olumn of �gure 3.4 di�er onlyslightly from eah other, whih means that the orresponding equations are also very similar as anbe seen in the example (3.5). Thus, they an be substantially simpli�ed by subtration, for example,the di�erenes between the equations in (3.5) result in the single equationd1(A5 �A7) = 0 (3.6)whih implies A5 = A7 (unless d1 vanishes). From the analogous equations for the other vertextypes, it turns out that the amplitudes A�(i) depend only on the translation lass t(i) of the site i,rather than on its partiular vertex type �(i). This meansA1 = A4 = A6 (t 2 f1; 4g)A2 = A3 = A5 = A7 = A8 (t 2 f2; 3g) : (3.7)With this, all equations orresponding to seond-order vertex types with the same entral vertexredue to a single equation, and one is left with the following eight equationsEA1 = d4A2� + 4A2 + 3d1A2��1= 5A2 + 5d1A2��1= 2d4A2� + 3A2 + d1A2��1EA2 = (d1A1 + 2A2)� + 2A1 + 2(d2 + d3)A2 + A2��1= A1 + 2d2A2 + (2A2 + d4A1)��1= (3d1A1 + 5A2)� + 2A1 + 4d3A2= (4d1A1 + 5A2)� +A1 + 2d3A2= (5d1A1 + 5A2)� (3.8)
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for entral verties of type 1, 4, 6, and 2, 3, 5, 7, 8, respetively.For this system of equations, we obtain three sets of non-trivial solutions:Solution (1): The wave funtion has the form

�i = � (1� 2�2)�m(i) for t(i) 2 f1; 4g�m(i)+1 for t(i) 2 f2; 3g (3.9)
for transfer integrals and energy given by

d1 = 12(� � ��1) d2 = 4�2 � 11 + 4��24(� � ��1)d3 = 2�2 � 5 + 2��24(� � ��1) d4 = 1� � ��1E = � 52(� � ��1) (3.10)
Solution (2): Here, �i = � �m(i)+1 for t(i) 2 f1; 4g�m(i) for t(i) 2 f2; 3g (3.11)with d1 = � 1� + ��1 d2 = ��2 � 1 + ��22(� + ��1)d3 = � 2�2 + 12(� + ��1) d4 = � 1� ��2� + ��1E = 5� + ��1 (3.12)
Solution (3): Finally, �i = � �m(i) for t(i) 2 f1; 4g�m(i)+1 for t(i) 2 f2; 3g (3.13)where d1 = � 2�2 + 12(� + ��1) d2 = � 1 + 4��24(� + ��1)d3 = �2�2 + 3 + 2��24(� + ��1) d4 = � 1� + ��1E = 52(� + ��1) (3.14)

For eah of these solutions, there exists an additional solution for a slightly generalised ansatz~�i = ~A�(i);t(i) ~�m(i) (3.15)that involves the translation lass t(i) at site i. The wave funtions di�er from the solutions givenin equations (3.9), (3.11), and (3.13) only by an alternating sign of the wave funtion whih dependson the translation lass ~�i = (�1)5�t(i)�i (3.16)
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and by a sign hange in the parameters, i.e., ~d1 = �d1, ~d2 = �d2, ~d3 = �d3, ~d4 = �d4, and ~E = �E.Note that the two models di�ering by this sign hange are not trivially related, beause the hoppingparameter along the edges of the tiles does not hange its sign { it is always equal to 1. These sixsolutions exhaust all non-trivial solutions in terms of the slight generalisation of the ansatz (3.4).Some examples of these wave funtions for di�erent values of � are presented in �gure 3.7.Now, let us disuss the Amman-Beenker tiling ase. We have a system of 35 equations with 6amplitudes A�(i) and 4 parameters d1; d2; d3 and E. In �gure 2.5 we have in fat seven �rst-ordervertex types but the third and fourth have the same shape and di�er only by arrow deoration andtherefore we set the respetive amplitudes equal. Similarly to the Penrose ase one an �nd groupsof equations, whih are very similar to eah other beause the assoiated seond-order vertex typesdi�er only slightly. After eliminating the linearly dependent equations, in the same way as in theformer ase, we �nd that a non-trivial solution an only exist if all amplitudes A�(i) are equal. Thisis di�erent to the Penrose ase where we found two distint amplitudes (see 3.7) orresponding tosites with di�erent translation lasses, or, in other words, to those sites the perpendiular partners ofwhih belong to distint pentagons (see �gure 2.1). The aeptane domain of the Amman-Beenkertiling onsists of one part, an otagon, thus all sites in this tiling have the same translation lass.We onlude that the fat that all amplitudes appear to be equal is onneted with the strutureof the aeptane domain or, more preisely, with the number of distint piees it onsists of. Ifsuh a onnetion exists, it would be promising to hek the ansatz (3.4) on the sevenfold or eleven-fold tiling, obtained in the usual way as a projetion from the 7 and the 11 dimensional hyperubilattie, beause their aeptane domains disset into six four-dimensional and ten eight-dimensionaldistint parts respetively. Maybe in these ases we would obtain a non-trivial solution with 6 and 8distint amplitudes, respetively. However, the number of �rst-order vertex types in these tilings ismuh larger and, what is a more severe problem, it is not lear whether an arrow deoration existssuh that every vertex type is deorated in a unique way.After this digression let us ome bak to the disussion of the solutions. We obtain only twotrivial solutions �i = �n(i) where � = �1 (3.17)where the transfer integrals and energy are given byd2 = �� + d12 d3 = � + 3d12 E = 4(� + d1) (3.18)Both wavefuntions are extended, therefore less interesting, but they are eigenstates of an in�nitefamily of Hamilton operators (labelled by d1). One an wonder whether we did not lose a solution byaepting equal amplitudes at sites whih have the same vertex type but atually di�er by a ertaindeoration. Indeed, if we took equal amplitudes on vertex types 4 and 8 (see �gure 2.4), whih havea di�erent deoration but the same shape, on the Penrose tiling we would not obtain the solutions(3.9),(3.11) and (3.13). There exists a deoration of the otagonal tiling, having onnetion withthe mathing rules, suh that in addition to arrows on edges the sites are deorated with �gures(having a shape of a small house). However, if we generalise the ansatz (3.4) by distinguishing sitesaording to their vertex type and site deoration, we do not get anything new, the only non-trivialsolution is the one given in (3.17) and (3.18).3.3.2 The ase "i 6= 0The way in whih we proeeded in order to get the exat wave funtions is based on introduing someparameters in the Hamiltonian (3.2) and hoosing them suh that the ansatz (3.4) ful�ls the tight-binding equations (3.3). In (3.2), we already inluded the possibility of onsidering site-dependent
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1 2 3 4 5 6 7 8

Figure 3.4: The eight vertex types of the Penrose tiling (top row) with the orresponding Voronoiells (shaded), and the orresponding seond order vertex types (below).
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Figure 3.5: Seond-order vertex types of the otagonal tiling.
on-site energies "i whih we hose to vanish in the above disussion. In the present ase, where weonsider the Penrose tiling, it is natural to hoose the on-site energies "i aording to the vertex typeof site i. That is, "i = ��(i) with eight parameters �1; : : : ; �8 aording to the eight vertex types ofthe Penrose tiling, see �gure 2.4.Of ourse, we an perform the same analysis as above for the more general problem { it justamounts to replaing E by E ��� on the left side of equations (3.8), with the appropriate hoie of�. We do not show the expliit solution of the full problem beause it is rather lengthy. Althoughthe general solution ontains a few free parameters, it is still the ase that for a given Hamiltonianwe �nd at most one exat eigenstate.However, to make ontat to the result of Sutherland [82℄, we onsider the ase with non-zeroon-site energies, but without hopping along the diagonals of the rhombi, i.e., d1 = d2 = d3 = d4 = 0.We express the solutions in terms of three parameters: the energy E, � (3.4) and the quotient = A2=A1 of the amplitudes A2 and A1 on sites with translation lass 2 and 1, respetively. Theyhave the form
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Figure 3.6: Seond-order vertex types orresponding to a entral vertex of type 1. Here, the enirlednumbers denote the vertex types, not the potential.
�1 = E � 4 �2 = E � 2� � ��1 � 2�1�3 = E � 2��1 � �1 �4 = E � 5�5 = E � 5� � 2�1 �6 = E � 3�7 = E � 5� � �1 �8 = E � 5� (3.19)Setting  = 1 one obtains the solution of Sutherland [82℄.Taking into aount that we have introdued eight parameters �� in our Hamiltonian, it wasalmost obvious that solutions exist. It would be, however, more interesting to introdue additionalparameters in the ansatz for the wave funtion. In this way, one might perhaps be able to obtainseveral eigenstates of a given Hamiltonian and thus ome loser to the general solution of our problem.This is the subjet of the following setion.

3.4 Searh for other solutions of the tight-binding equationsEnouraged by the suess we ahieved by applying the ansatz (3.4) to the tight-binding problem wetry to generalise (3.4) in order to obtain more exat eigenstates whih will omprise the ones foundbefore as a speial ase. We want therefore to introdue more parameters to the ansatz hoping thatwe will obtain new solutions of tight-binding equations by hoosing the parameters in a smart way.All the onsiderations below will refer to the Penrose tiling.
3.4.1 Higher order vertex types and shelling numbersThe easiest possibility would be to distinguish the amplitudes A�(i) aording to the higher-ordervertex types of the site i rather than to the �rst-order vertex type as we did before. The order-nvertex type of the site i is de�ned as a on�guration of all nearest neighbours of i up to the order n.A nearest neighbour of the order n of a site i an be reahed from i by overing a distane of not lessthan n edges. One an also de�ne the order-n oordination number of site i as the number of order-nnearest neighbours of i. In partiular, the averaged order-n oordination numbers C(n) (averaged



86 CHAPTER 3. QUASIPERIODIC TIGHT-BINDING MODELS
over the tiling sites) are of interest, beause one an derive a heuristi formula for the ritial pointsof the Ising model on the tiling [98℄. Moreover, C(n) an give insight to a deeper understanding of thelong-range order in quasirystals and its onnetion to the eletroni properties of these materials.The problem of lassifying all nth order vertex types on a quasiperiodi tiling is interesting assuh. Unlike the periodi ase, where the number of nth order vertex types #�(n) does not dependon n (for n large enough), in quasiperiodi strutures we have to do with a monotoni, inreasingdependeny #�(n) � n� where � is of the order of the dimension of the aeptane domain inperpendiular spae (� = 2 for the Penrose tiling). We have alulated the sequenes #�(n) andC(n) on the Penrose tiling and show them in table (3.1). One an see that C(n) is an integer linearombination of 1 and the golden mean � , similarly as the expansion oeÆients of the Ising modelfree energy in table (2.3) or the mean numbers of self-avoiding polygons in table (2.4).n C(n) Num. value #�(n)1 4 + 0� = 4 72 58� 30� � 9:45898 313 �128 + 88� � 14:3870 704 288� 166� � 19:4064 1255 �374 + 246� � 24:0364 1856 980� 588� � 28:5960 2747 �1614 + 1018� � 33:1586 3808 2688� 1638� � 37:6603 5009 �3840 + 2400� � 43:2816 63610 4246� 2594� � 48:8198 804Table 3.1: The order-n mean oordination numbers C(n) and the numbers of order-n vertex types#�(n) on the Penrose tiling.Classifying the higher-order vertex types on the Penrose tiling brought us to investigate anotherquantity haraterising the geometry of the tiling namely the average shelling numbers. Thesenumbers have no diret onnetion to the onstrution of exat eigenstates but it is neverthelessworthwhile to mention them when disussing long-range order in quasiperiodi strutures. Theaverage shelling number �(r) is de�ned as a number of lattie sites on spheres of radius r around a�xed entre site i, averaged over the site i. On a square lattie, for example, the only squared radii arer2 = n2 +m2 with m;n 2 Z and therefore alulating �(r) amounts to ounting the number of waysthat r2 an be written as the sum of two integer squares. Note that in this ase we do not have toaverage over the entre sites i beause the lattie is regular. The result for �(r), derived from numbertheory, an be niely written in a losed form [99℄. On an aperiodi tiling there is a ompliation dueto the neessity of averaging over the entre site. Let us onsider a tiling � = �(A) obtained by theut-and-projet method with an aeptane domain (window) A. The possible distanes betweenpoints are all of the form r = jyj with y 2 ��� where ��� = fx1 � x2 j x1; x2 2 �g. Then, �(r)an, in general, be written as follows: �(r) = Xy2���jyj=r &(y) : (3.20)
where &(y) is the autoorrelation oeÆient de�ned as&(y) = lims!1 1j�sj Xx2�sx+y2� 1 = lims!1 1j(�s)�j Xx�2(�s)�(x+y)�2A 1 = 1vol(A) Z �A(x�)�A(x� + y�) dx� (3.21)
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r2 �(r) r2 �(r) r2 �(r) r2 �(r)2� � 4� 2� 3 + 4� 58� 32� 10 + 5� 52� 32� 13 + 9� 52� 32�1 4 5 + 3� 40� 24� 11 + 5� �84 + 52� 11 + 11� 156� 96�3� � 8� 4� 4 + 4� 2� 8 + 7� 20� 12� 12 + 11� 92� 56�4� � �12 + 8� 7 + 3� �64 + 40� 7 + 8� �144 + 92� 13 + 11� �32 + 20�1 + � 10� 4� 4 + 5� 44� 24� 10 + 7� �106 + 66� 10 + 13� 48� 28�2 + � 30� 16� 5 + 5� 42� 24� 7 + 9� 88� 52� 9 + 14� �80 + 56�4 10� 6� 7 + 4� 52� 32� 8 + 9� 128� 76� 12 + 13� �380 + 236�3 + � �28 + 20� 6 + 5� �68 + 44� 9 + 9� �138 + 86� 10 + 15� 122� 72�5 4� 2� 8 + 4� 20� 12� 7 + 11� 150� 88� 11 + 15� �156 + 100�3 + 2� 16� 8� 9 + 4� �32 + 20� 9 + 10� 92� 65� 13 + 14� 164� 100�2 + 3� �4 + 6� 5 + 7� �36 + 28� 8 + 11� �12 + 12� 11 + 16� 108� 64�5 + 2� �56 + 36� 7 + 6� 120� 72� 11 + 10� �180 + 112�7 + � 20� 12� 5 + 8� �22 + 16� 8 + 12� 126� 76�Table 3.2: Exat results for the �rst 50 averaged shelling numbers �(r) of the rhombi Penrose tiling.

where �s = � \ Bs(0), j�sj is the number of sites in a ball Bs(0) entred at 0 with radius s andthe variables designated by asterix � are the respetive partners in perpendiular spae. Here,�A denotes the harateristi funtion of the window, i.e, �A(x�) = 1 if x� 2 A otherwise it iszero. Note that the last step of (3.21) is orret beause the sites �ll A with uniform density. Theautoorrelation oeÆient &(y) an be easily alulated analytially. It simply equals the volumefration vol(A \ (A � y�))=vol(A) of the intersetion of two opies of the window entred at 0 andat y�, respetively. Taking the average over sites, i.e. performing the sum on the right-hand side of(3.20), provides some diÆulties. We therefore proeeded in a di�erent way. We took all order-nvertex types �(n) (for suÆiently large n), alulated the shelling numbers on a given �(n), weightedthem with the ourrene frequeny of the vertex type in the tiling (omputed as the area frationof the aeptane domain of �(n)) and summed over all �(n). In this way, taking n = 10 we wereable to determine the averaged shelling numbers up to r ' 46. The exat results for the �rst 50shelling numbers are shown in table 3.2, whereas the plot of �(r) as a funtion of r < 17 is shownin �gure 3.8. A detailed disussion of the properties of �(r) and its appliability in the physisof quasirystals an be found in [99℄. Here, we only mention that the averaged shelling numbersgive one possibility to distinguish perfet from random order, beause the funtion �(r) hangesessentially when introduing some disorder to the tiling.3.4.2 Generalised ansatz for the eigenfuntionsAfter this disussion let us return to the main topi, namely to the generalisation of the ansatz(3.4). We have formulated a generalised ansatz by replaing the amplitudes by A�(n;i), where �(n; i)denotes the order-n vertex type of the site i. In this way we get a system of #�(n+1) homogeneous,linear equations with #�(n) + 6 variables, namely the amplitudes, E, � and four oupling onstantsdi. Unfortunately, for n � 4, the only non-trivial solutions are those obtained before (3.9{3.13)beause due to the similarity of the vertex types many equations are linearly dependent and ompelthe respetive amplitudes to be equal. Apparently, the ansatz has to be generalised in a di�erentway, for instane by introduing more parameters instead of � or by introduing new potentials.As we already learned in setion 2.2.4, the Penrose tiling possesses a so-alled ination/deationsymmetry. Here, we refer to the inated tiling as a tiling onsisting of rhombi disseted into smallerpiees (as in �gure 2.2). The proedure of ombining tiles into larger (with the edge length saledby �) tiles is alled deation.
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Figure 3.7: Wave funtions (3.9) for � = 0:1, 0:2, 0:6, and 0:9. On a �nite path of N = 16 757verties obtained by sevenfold ination of a vertex of type 4, the wave funtion has been normalisedto Pi j�ij2 = 1. The radius of irles depends on the squared modulus j�ij2 of the wave funtionand reads: 0 if j�j2 � 116N , 1 if 116N � j�j2 � 18N , 2 if 18N � j�j2 � 14N , 3 if 14N � j�j2 � 12N , 4 if12N � j�j2 � 1N , 5 if 1N � j�j2 � 2N , 6 if 2N � j�j2 � 4N , 7 if 4N � j�j2 � 8N , 8 if 8N � j�j2 � 16N , 9 if16N � j�j2
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Figure 3.9: Voronoi ells of a path of the Penrose tiling (thin lines) and of its twofold deation(thik lines). Shading ells orresponding to vertex type 1 annot be uniquely assigned to a ell ofthe deated tiling.
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The idea now is to generalise the ansatz (3.4) for the wave funtion by using the vertex typesand potentials of the deated tiling in addition to those of the original tiling. Even more general,one may onsider a sequene of n tilings obtained by suessive deation steps, probing the originaltiling at larger and larger length sales. In this way, we assign to eah vertex i of the original tilinga sequene of integers f�k(i)g, k = 0; 1; : : : ; n, where �k(i) spei�es the orresponding vertex typein the k-fold deated tiling, with k = 0 referring to the original tiling. This leads to the followinggeneralised ansatz for the wave funtion�[n℄i = Af�k(i)g nYk=0�mk(i)k (3.22)

where mk denotes the double-arrow potential in the k-fold deated tiling, and where �k are n + 1free parameters.It is not ompletely obvious how to assign the vertex type �k(i) of a site i in the k-fold deatedtiling. Here, we deided to use the onept of the Voronoi ell. We are looking for a Voronoi ellof the deated tiling that overs the Voronoi ell of our site i in the original tiling ompletely, or atleast its largest part. In �gure 2.6, we show how the Voronoi ells of the original and the two-folddeated tiling relate to eah other. If a ell of the original tiling is overed by several larger ells, weassign the vertex to the ell with the maximum overlap. However, there are still ambiguities whereoverlaps of equal area our. For instane, in the example shown in �gure 3.9, one reognises thatthe ell orresponding to vertex type 1 (ompare �gure 2.4) may be disseted equally between theells orresponding to vertex types 2 or 3 of the two-fold deated tiling. In this ase, we annotassign the two-fold deated vertex type unequivoally. Therefore, we demand that the orrespondingterms in the ansatz (3.22) are equal. In our example, this yields the equation A221 = A321 for theamplitudes Af�2;�1;�0g in the ansatz (3.22) with n = 2, labelled by three digits aording to the threevertex types. Considering also the �rst deation step, not shown in �gure 2.6, one �nds anotherondition A222 = A232.We now use the ansatz (3.22) to �nd solutions of the tight-binding equations. Here, we restritourselves to the ase n = 2. In this ase, we need to onsider two-fold inations of the 31 seond-order vertex types, see �gure 3.4. We then have to deal with a system of 97 equations in manyvariables, namely 24 amplitudes A�2;�1;�0 , three variables �2, �1, �0, and the energy E. We usedMathematia[100℄ to solve this system. As above, we �nd three sets of solutions, whih we expressin terms of x := �2�0 and y := �1. They have the following form.Solution (1'): The 24 amplitudes, in an arbitrary normalisation, areA221 = A321 = x(�2x2 + y2)�0A222 = A322 = A232 = A532 = A732 = A832 = x2y�0A233 = A333 = x2�0A123 = A423 = A623 = A133 = A633 = x3A654 = A174 = A484 = x2(�2x2 + y2)A365 = A217 = A548 = A748 = A848 = xy2�20A336 = (�2x2 + y2)�20 (3.23)and the transfer integrals and the energy readd1 = xy2x2 � 2y2 d2 = 4x4 � 11x2y2 + 4y44xy(x2 � y2)d3 = 2x4 � 5x2y2 + 2y44xy(x2 � y2) d4 = xyx2 � y2
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E = � 5xy2x2 � 2y2 (3.24)Note that the latter, in ontrast to the amplitudes, are expressed exlusively in terms of x and y,that is, they depend on �2 and �0 only through their produt x.Solution (2'): Here, the amplitudes readA321 = A221 = x2�0A222 = A322 = A232 = A532 = A732 = A832 = xy�0A233 = A333 = x�0A123 = A423 = A623 = A133 = A633 = x2A654 = A174 = A484 = x3A365 = A217 = A548 = A748 = A848 = y2�20A336 = x�20 (3.25)and d1 = � xyx2 + y2 d2 = �x4 � x2y2 + y42xy(x2 + y2)d3 = �x(2x2 + y2)2y(x2 + y2) d4 = y(x2 � y2)x(x2 + y2)E = 5xyx2 + y2 (3.26)

Solution (3'): Finally, A321 = A221 = xy2�0A222 = A322 = A232 = A532 = A732 = A832 = x2y�0A233 = A333 = x2�0A123 = A423 = A623 = A133 = A633 = x3A654 = A174 = A484 = x2y2A365 = A217 = A548 = A748 = A848 = xy2�20A336 = y2�20 (3.27)with the following values of the parameters
d1 = �x(2x2 + y2)2y(x2 + y2) d2 = �y(x2 + 4y2)4x(x2 + y2)d3 = �2x4 + 3x2y2 + 2y44xy(x2 + y2) d4 = � xyx2 + y2E = 5xy2(x2 + y2) (3.28)

These solutions omprise those found in the previous setion. Indeed, setting �2 = �1 = 1 (x = �0,y = 1), we reover the solutions (3.9){(3.14), apart from a ommon normalisation fator �20 in theamplitudes. In addition, equations (3.23){(3.28) show that the orresponding energy eigenvalues arein�nitely degenerate. For given values of x and y, the Hamiltonian and the energy E are �xed, but
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the eigenfuntions still involve the free parameter �0. In other words, eah hoie of �2 and �0 withthe same produt yields an eigenstate to the same eigenvalue.We note that in�nite degeneraies in the spetrum were already observed in tight-binding modelson the Penrose tilings before. One example are the on�ned degenerate states loated at the energyE = 0 in the vertex model with d1 =d2 =d3 =d4 = 0 [86, 90℄. Also some of the ritial, self-similareigenstates found in the entre model appear to be in�nitely degenerate [95℄.It is a question whether a larger number of deation steps, i.e., a larger value of n in the ansatz(3.22), leads to further solutions of the tight-binding equations. The larger n, the larger is the numberof sequenes f�kg0�k�n that our, and hene the number of independent amplitudes. Indeed, forn = 2 we had 24 sequenes, for n = 3 and n = 4 there are 49 and 104, respetively. One might expetthat in the limit n ! 1, when the quantity of sequenes tends to in�nity, every site is uniquelydetermined by its sequene, and hene one should arrive at the omplete solution in the limit ase.However, this is not the ase, as an readily be seen. Looking at it in the opposite way, i.e., inatinga single tile a number of times, one realizes that for eah number of ination steps n, there are, ingeneral, several verties having the same sequene f�kg0�k�n, ompare �gure 3.4. Therefore, it isdoubtful whether larger values of n will lead to new wave funtions. For n � 4, no solutions beyond(3.23){(3.28) were found. Nevertheless, this does not prove that further generalisations, for instanedistinguishing the amplitudes aording to vertex types of higher order of sites in deated tilings,might not be more rewarding.
3.5 Multifratal analysisAlready a glimpse at �gure 3.7 gives the impression that the wave funtions are self-similar. Let ustherefore investigate this property more thoroughly. To do this, we have to understand the distri-bution of the double-arrow potential m on the tiling. Sutherland [82℄ onsidered the transformationof single and double arrows under two-fold ination, and proved that the value of the double-arrowpotential hanges at most by 2l under a 2l-fold ination.For de�niteness, let us onsider a vertex of type 8 whih has double arrows pointing outwardsin all �ve diretions. In �gure 3.10, we show this path together with its two-fold ination. Forthe original path, the values of the double-arrow potential are 0 at the entre by our hoie ofnormalisation, and 1 elsewhere. In the inated version, the potential takes values between 0 and 3.In what follows, we use 2l-fold inations of this partiular path for the multifratal analysis. Inthis ase, the values of the double-arrow potential grow linearly with the number of ination steps.This may be di�erent if one starts from other initial pathes, for example, starting from vertex type4 results in a dereasing double-arrow potential orresponding to a di�erent hoie of the referenepoint for the potential in the in�nite tiling. We note that referenes [82℄ and [95℄ used vertex type4, together with the opposite diretion of the arrows, whih then also gives an inreasing potential.Following referenes [101℄ and [95℄, we de�ne a partition funtion for the 2l-fold inated system�(q; !; l) := 1N2q Xi j�ij2qSi!=2 (3.29)where i labels the sites of our path, j�ij is the modulus of the wave funtion on site i, and N is thenorm of the wave funtion on the �nite path, i.e., N2 = Pi j�ij2. Here, Si denotes the area of theVoronoi ell of vertex i, and q and ! are some real numbers. For a given q, there exists a ertainnumber !(q) suh that the partition funtion (3.29) is bounded (from above and below) in the limitl !1, i.e., it neither onverges to zero nor diverges to in�nity. The generalised dimensionDq := !(q)q � 1 (3.30)
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as a funtion of q gives the full desription of the fratal properties of the wave funtion �.In an ination step, the edge lengths of the rhombi are saled by a fator ��1. Therefore, thearea S(2l)� of a Voronoi ell orresponding to vertex type � of the 2l-fold inated tiling is given byS(2l)� = ��4lS(0)� � = 1; : : : ; 8 (3.31)where S(0)� denotes the area of the Voronoi ells of the initial path. Substituting this and the ansatzfor the wave funtion (3.4) into (3.29) yields

�(q; !; l) = 1N2q Xi jA�(i)�m(i)j2q��2l!(S(0)�(i))!2 = 8X�=1� jA� j2q �2l!(S(0)� )!2N2q 2lXm=0 j�j2qm V�(mj2l)� (3.32)
where V�(mj2l) denotes the number of verties of type �, or, more preisely, the total area of theorresponding Voronoi ells, with potential m after 2l ination steps.In order to alulate V�(mj2l), we onsider the transformation of the Voronoi ells of the eightvertex types under a two-fold ination, ompare �gures 2.4 and 2.6. From this, one derives reursionrelations for the distributions V�(mj2l) by ounting the number of inated ells (in terms of theirarea) that are overed by the original ell. For example, as shown in the lower right orner of �gure2.6, the Voronoi ell orresponding to the vertex type 8 with a potential m passes into: (i) one ellof type 8 with potential m; (ii) �ve ells of type 2 with potential m + 1; and (iii) �ve frationalparts (eah with an area fration of (4 � �)=11 � 0:216542) of type-6 ells with potential m + 1.Conversely, a ell of type 8 in the inated path may stem from a vertex of type 5, 7, or 8, eah ofthose resulting in preisely one omplete ell of type 8. Considering all vertex types, and omputingthe frational areas involved, one arrives at the reursionsV1(mj2l+2) = [(21+6�)V1(m�1j2l) + (52�2�)V2(m+1j2l) +(52�2�)V3(m+1j2l) + (35+10�)V4(m�1j2l) +(7+2�)V6(m�1j2l)℄=59V2(mj2l+2) = [�(16+20�)V1(m�1j2l) + (95�10�)V2(m+1j2l) +(33�5�)V3(m+1j2l)� (20+25�)V4(m�1j2l) +(153�10�)V5(m+1j2l)� (12+15�)V6(m�1j2l) +(149�5�)V7(m+1j2l) + 145V8(m+1j2l)℄=29V3(mj2l+2) = [(140�6�)V1(mj2l) + 62V2(m+1j2l) +(77+6�)V3(m+1j2l) + 155V4(mj2l) +(125�12�)V6(mj2l)℄=31V4(mj2l+2) = V1(mj2l) + V4(mj2l) + V6(mj2l)V5(mj2l+2) = V3(mj2l)V6(mj2l+2) = [(7+�)V2(mj2l) + (8�2�)V2(m+1j2l) +(14+2�)V3(mj2l) + (20�5�)V5(m+1j2l) +(20�5�)V7(m+1j2l) + (20�5�)V8(m+1j2l)℄=11V7(mj2l+2) = V2(mj2l)V8(mj2l+2) = V5(mj2l) + V7(mj2l) + V8(mj2l) (3.33)ompare [82℄. The quantities we need are ertain transforms ~V�(mj2l) of these, de�ned as~V�(�j2l) := 2lXm=0�mV�(mj2l) (3.34)
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see (3.32). From the reursion relations (3.33), one �nds that the transforms ~V�(mj2l) for twosuessive ination steps are related by

~V�(�j2l + 2) = 8X�=1M�;�(�) ~V�(�j2l) (3.35)
where the matrix M(�) reads as follows

M(�) =

0BBBBBBBBBBBBBBBBBBB�

21+6�59 � 52�2�59 1� 52�2�59 1� 35+10�59 � 0 7+2�59 � 0 0�16+20�29 � 95�10�29 1� 33�5�29 1� �20+25�29 � 153�10�29 1� �12+15�29 � 149�5�29 1� 5�140�6�31 2� 77+6�31 1� 5 0 125�12�31 0 01 0 0 1 0 1 0 00 0 1 0 0 0 0 00 7��8+(��2)�11 1� 14+2�11 0 20�5�11 1� 0 20�5�11 1� 20�5�11 1�0 1 0 0 0 0 0 00 0 0 0 1 0 1 1

1CCCCCCCCCCCCCCCCCCCA(3.36)The asymptoti behaviour (for l!1) of ~V (�j2l) is governed by the eigenvalue 
max(�) of M(�)with largest modulus ~V�(�j2l) � 
max(�)l (fmax(�))� (3.37)where fmax(�) is the orresponding eigenvetor. We heked numerially that the largest eigenvalue(in absolute value) is non-degenerate. Calulating the norm
N2 = Xi j�ij2 = 8X�=1 jA� j2 ~V�(j�j2j2l) � 
max(j�j2)l (3.38)

and substituting the asymptoti behaviour of ~V�(�jl) into (3.32)
�(q; !; l) = 8X�=1 jA� j2q �2l!(S(0)� )!=2N2q ~V�(j�j2qj2l) � ��2!
max(j�j2q)
max(j�j2)q �l (3.39)

leads us to the onlusion that the partition funtion �(q; !; l) an be bounded only for
!(q) = 12 log � log �(
max(j�j2))q
max(j�j2q) � (3.40)

In �gure 3.11, we present the fratal exponent Dq (3.30) for several values of �. For � = 1, thewave funtion does not depend on the potential m, see (3.9), and aepts only few di�erent valuesaording to the translation lass of the site. In this ase, the funtion Dq is onstant. The smallerj�j, the faster the wave funtion deays, leading to a steeper urve Dq as a funtion of q.Conerning the matrix M(�) (3.36), we remark that its eigenvalues and eigenvetors are on-neted to the frequenies of the vertex types in the Penrose tiling. Indeed, if we set � = 1, weobtain a substitution matrix for the ination rules in the Penrose tiling, i.e., the matrix MP� , see
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(2.16). Therefore, aording to the Perron-Frobenius theorem, the eigenvetor fmax(1) orrespond-ing to the eigenvalue with largest modulus 
max(1) should reprodue the relative frequenies of thevertex types in the tiling. We alulated numerially fmax(1) and found perfet agreement with theknown frequenies [102℄.We note that the multifratal analysis an be arried out for the generalised eigenstates (3.23){(3.28) analogously. However, it beomes more ompliated beause we have to onsider the substi-tution matrix of verties labelled by the inated vertex types, whih results in a 24�24 substitutionmatrix.

Figure 3.10: A vertex of type 8 (grey) together with its two-fold ination (blak).
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3.6 Edge deorations of ut-and-projet tilingsThe onstrution of exat eigenstates is a proedure onsisting of two steps:1. Deorate the edges of the tilings with several kinds of arrows so that the sum of arrows alongevery losed loop equals zero (the arrow �eld is integrable),2. Formulate an ansatz for the wavefuntion at site i. The ansatz depends on the loal environ-ment of i and the potentials whih are related to the arrow deorations.The purpose of this subsetion is to demonstrate a systemati way of performing an arrow deorationof edges, so that the arrow �eld is integrable, of a ut-and-projet quasiperiodi tiling with anaeptane domain (window) A. Having suh a proedure of deoration we an try to onstrut exateigenstates on other quasiperiodi tilings, in partiular on the 3D iosahedral (Amman-Kramer-Neri)tiling [5℄.An oriented edge ~e (edge with hosen start and end point) has a ertain aeptane domainA(~e) whih is a set of perpendiular ~r? omponents of all translates ~rk of ~e in the tiling (ompare(2.97,2.99)).The deoration of edges an be viewed, in the framework of the ut-and-projet formalism, asa dissetion of A(~e) into several parts orresponding to the respetively deorated edges. We an,therefore, deorate the tiling by partitioning A(~e) and requiring that a given part orresponds totranslates of oriented edges deorated in a given way.In order to hek whether the arrow �elds are integrable we have to generate all possible deora-tions of tiles, indued by the given edge deoration, and hek whether the sum of respetive arrowsalways vanishes. Let us assume that the aeptane domain of the edge onsists of p parts Pj wherej = 1; : : : ; p, i.e. A(~e) = pSj=1Pj . Then, the aeptane domain A(t) of an undeorated tile t = f~r(i)k gequals: A(t) = \i nA(~e)� ~r(i)? o (3.41)
where ~r(i)? are perpendiular omponents of the sites ~r(i)k of t. The aeptane domains of deoratedtiles Ad(t) are obtained by replaing A(~e) in the ith term on the right-hand side of (3.41) by allpossible parts Pj . In parallel spae, this proedure orresponds to deorating the ith edge of thetile (the edge �xed at ~r(i)k ) in a way whih orresponds to Pj . Of ourse, only suh deorations areaeptable, i.e. our in the tiling, the aeptane domains of whih di�er from a zero set. Thevolume (area) of Ad(t) divided by the volume of A(~e) gives the frequeny of the deorated tile inthe quasiperiodi tiling.The edge deoration, or respetively the dissetion of the aeptane domain A(~e) is stronglyonstrained by the requirement that the arrow �eld is integrable. In pratie, we take a ertain\symmetri" division of A(~e), i.e. suh whih orresponds somewhat to symmetry planes or axesof A(~e), generate the tile deorations and then hek whether the aeptable ones have a vanishingsum of arrows. We will expliate this proedure in examples.3.6.1 The otagonal tilingThe aeptane domain of the otagonal tiling is a regular otagon O and that of an edge ~e isa hexagon, as shown in �gure 3.12. The orientation of the hexagon inside O orresponds to theorientation of ~e in the tiling and it hanges by an angle 3� if the edge is rotated by �. Now wedeorate the tiling with two kinds of arrows. The dissetion of A(~e), the respetive edge deorations
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and the aeptable tile deorations with the aeptane domains of the deorated tiles Ad(t) areshown in �gure 3.12. As we an see, the arrow �elds are integrable. This deoration is also anatural generalisation of the standard arrow deoration of the Amman-Beenker tiling presented in�gure 3.2. Indeed, if we replae the double arrow by the single arrow we obtain the old deoration.Let us notie that the position of the horizontal division lines in the upper and lower part of thehexagon, see �gure 3.12, is not arbitrary. If we shifted both lines a little bit, not altering the mid-line orresponding to the symmetry axis of the hexagon we would obtain additional tile deorationswhih are \forbidden", i.e. the sum of the arrows does not equal zero. Now, we an generate allpossible deorations of vertex types ourring in the tiling in a similar way as we proeeded whengenerating the tile deorations. The aeptane domains of these deorated vertex-types are shownin �gure 3.13. Finally, we deorate a �nite portion of the tiling and alulate the potentials ofthe double-arrow �eld, see �gure 3.14. Let us now try to generalise the ansatz (3.4) replaing thevertex type �(i) by the deorated vertex type �d(i). As we an see in �gure 3.13 the number ofdeorated vertex types is 59 whih is equal to the number of amplitudes in (3.4) or respetively tothe number of all possible values of �d(i). We solve now the homogeneous linear system of equationsbut unfortunately we still do not �nd any new solutions exept the old ones (3.17,3.18).
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Figure 3.13: The aeptane domains of deorated �rst-order vertex types. The di�erent domainsare shaded in a di�erent way.
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Figure 3.14: A portion of the otagonal tiling with edge deorations and site potentials.
3.6.2 The iosahedral tilingThis 3D tiling, also alled the 3D Penrose- or the Amman-Kramer-Neri tiling is a �lling of spaeby two kinds of polyhedrons, the prolate and oblate rhombohedra, the faets of whih have thesame rhombi shape. The tiling an be generated by a projetion from a six-dimensional hyperubi
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lattie Z6 in a way desribed beneath. Let f ~Vk(1); : : : ; ~Vk(6)g be a set of unit vetors in 3D spae Ekpointing in \iosahedral" diretions, i.e.~Vk(i) = 1=p5 (2 os(2�i=5); 2 sin(2�i=5); 1) where i = 1; : : : ; 5~Vk(6) = (0; 0; 1) (3.42)
The respetive perpendiular partners f ~V?(1); : : : ; ~V?(6)g are de�ned as:~V?(i) = 1=p5 (2 os(4�i=5); 2 sin(4�i=5); 1) where i = 1; : : : ; 5~V?(6) = (0; 0;�1) (3.43)and they ful�ll relations ~V?(i) � ~V?(j) = � ~Vk(i) � ~Vk(j) for i; j = 1; : : : ; 6. Aording to the usualut-and-projet formalism the tiling onsists of parallel projetions ~rk = P6i=1 ni ~Vk(i) of sites of Z6if the perpendiular projetions ~r? = P6i=1 ni ~V?(i) belong to the window A, whih is a projetionof the unit hyperube onto E?:

A = f 6Xi=1 �i ~V?(i) j �i 2 [0; 1℄g (3.44)
The aeptane domain A is a rhombi triaontahedron, i.e. a polyhedron having 30 identialrhombi faets, 32 verties and 60 edges, depited in �gure 3.15. We now have twelve kinds of edges� ~Vk(i), the aeptane domains of whih are iosahedra A(� ~Vk(i)) with 20 rhombi faets, 22 vertiesand 40 edges oriented spatially aording to the orientation of the edge. The aeptane domains areshown in �gure 3.16. Let us notie that the edges are not \equivalent", as they were on the Penroseor otagonal tiling, but they fall into two lasses � ~Vk(6) and � ~Vk(i) where i = 1; : : : ; 5. It appears,for instane, that we have to disset A( ~Vk(6)) in a di�erent way than A( ~Vk(1)) if we want to obtain anarrow deoration of edges whih leads to the smallest possible number of deorated faets. Using aprogram for visualising 3D graphial objets (Geomview) we heked di�erent edge deorations, or,respetively, dissetions of the edge aeptane domains, and analysed the faet deorations whihwere indued by them. We asertained in this way that a division of A( ~Vk(1)) in two parts withequal shape and a division of A( ~Vk(6)) in three parts leads to simplest possible faet deorations, see�gure 3.16. We deorate eah � ~Vk(i) where i � 5 by an arrow pointing either outwards or inwards,whereas not all edges � ~Vk(6) are deorated. The edge is deorated with an arrow if its origin fallsinto the shaded solids in the right piture in �gure 3.16 and it is left undeorated otherwise.Now, we pay attention to a rhombi faet fi;j = ( ~Vk(i); ~Vk(j)) spanned by vetors ~Vk(i) and~Vk(j). The aeptane domain of all these faets A(fi;j) is a dodeahedron with 12 rhombi faets,14 verties and 24 edges depited in �gure 3.17 in di�erent spatial orientations. We onsider twokinds of faets fi;(i+1)mod 5 and fi;6, i = 1; : : : ; 5, whih have di�erent deorations, see �gure 3.18,or di�erent dissetions of the dodeahedral aeptane domain, see �gure 3.17. Finally, let usonsider the edge deorations of both types of rhombohedra. We have now a prolate rhombohedronri;(i+1)mod 5;6 and an oblate rhombohedron ri;(i+2)mod 5;6 spanned by vetors ( ~Vk(i); ~Vk(i+1); ~Vk(6)) and( ~Vk(i); ~Vk(i+2); ~Vk(6)) respetively. Their aeptane domains are also rhombohedra, shown in �gure
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3.19. It appears that eah of these polyhedra is divided into exatly three parts orresponding tothree di�erent deorations of the rhombohedra in physial spae Ek, see �gure 3.20.This deoration of the iosahedral tiling is, at �rst sight, very promising with respet to ourpurpose, namely to the onstrution of exat eigenstates of tight-binding Hamiltonians. Indeed,eah tile is deorated in only three distint ways, and therefore the number of respetive equations,if we formulated the ansatz in a smart way, would not be extremely large and the problem ouldstill be possible to solve. However, taking a more attentive glimpse at �gure 3.18 we see that thearrow �elds are not integrable, beause there exist two faets, the fourth and �fth from the left,suh that the sum of arrows does not vanish. Unfortunately, this arrow deorations are not goodfor the de�nitions of potentials. As we an see the things get ompliated in the 3D ase. Weenounter a new problem: Is it possible to de�ne an integrable arrow �eld on the edges of theAmman-Kramer-Neri tiling?Let us �nish this setion by noting a onnetion between our edge deorations and the mathingrules in the iosahedral tiling formulated by Katz [103℄. The mathing rules onsist of ertaindeorations of rhombi faets of the tiles and of a requirement that two neighbouring tiles an beadjaent at a faet only if the faet deorations math. The faet deorations onsidered by Katzorrespond to a dissetion of the dodeahedral aeptane domain of a faet into eight parts along thethree, mutually perpendiular mirror planes of the dodeahedron, see �gure 3.21. This deorationresults in four prolate and four oblate deorated tiles, or in a division of aeptane domains ofboth tiles in four parts. We annot, however, use this deoration for de�ning potentials beauseit is formulated in terms of faets and not edges. One ould perhaps onsider vetors pointingperpendiularly to deorated faets and investigate whether suh a vetor �eld is integrable. If itwas the ase one ould exploit the respetive potentials for formulating a wave-funtion ansatz onthe dual tiling, i.e. onsisting of sites lying at entres of tiles of the iosahedral tiling.
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Figure 3.15: The rhombi triaontahedron - the aeptane domain of the iosahedral lattie. Fororientation we draw the \base vetors" bi = ~V?(i) and ai = ~Vk(i) from the perpendiular and parallelspae respetively. Note that the pitures orrespond to di�erent spaes, i.e. to E? (left) and to Ek(right). Moreover, the angular orientation with respet to axis a6 is not onserved.

Figure 3.16: The aeptane domains of edges ~Vk(1) (left) and ~Vk(6) (right) and their dissetionsorresponding to arrow deorations of edges. Aeptane domains of other edges � ~Vk(i) i = 1; : : : ; 6di�er only by spatial orientation.
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Figure 3.17: The aeptane domains of faets f1;2 and f1;6 and their dissetions orresponding toarrow deorations of the faets.

Figure 3.18: All possible arrow deorations of �ve faets fi;(i+1)mod 5 (three from the left) and of the�ve faets fi;6 (three from the right) where i = 1; : : : ; 5.
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Figure 3.19: The aeptane domains of the prolate r1;2;6 and the oblate r1;3;6 rhombohedron andtheir dissetions orresponding to arrow deorations of the rhombohedra.

Figure 3.20: All possible deorations of the �ve prolate rhombohedra ri;i+1mod 5;6 (three from theleft) and of the �ve oblate rhombohedra ri;i+2mod 5;6 (three from the right), respetively. Herei = 1; : : : ; 5.

Figure 3.21: The eight setors of the dodeahedron in E? and the orresponding deorations of thefaets in Ek.



104 CHAPTER 3. QUASIPERIODIC TIGHT-BINDING MODELS



Chapter 4
Conlusions
This thesis is a summary of three-year long work on quasiperiodi Ising and tight-binding models.It was purposive to plae these two, apparently not related subjets, together beause the entraltheme of this thesis was to searh for analytial tools for solving various problems of mathematialphysis on quasiperiodi tilings. In the following we want to disuss to what extent we sueeded torealize our plan.
Ising modelsThe majority of works devoted to lattie models on two- or 3D QT, i.e. lassial or quantum Isingor Potts models, ounting of self-avoiding walks or perolation, used methods like Monte-Carlo sim-ulations or approximative renormalisation-group proedures. In our work we aimed to demonstratethat it is possible to develop a systemati method for alulating temperature series expansions ofthermodynami funtions on quasiperiodi tilings. Developing this approah was not trivial beauseone enounters various problems due to the lak of the periodiity of the lattie or the fat thatthe sites are not equivalent. Our series did not yield better estimates of ritial parameters whenompared to other methods but they shed a new light to the models under onsideration. Theyshowed, for instane, new problems in the asymptoti analysis of temperature series like a strongosillatory dependene of quotients of oeÆients gn=gn�1 as a funtion of 1=n or even the impossi-bility of estimating the ritial temperature from the series in the ase when the expanded funtionhas a omplex singularity with modulus smaller than the ritial point. Sine we dealt mostly withfree energy expansions it still remains an interesting hallenge to ompute series expansions of otherfuntions whih annot be obtained from the zero-�eld free energy by di�erentiation, for examplethe zero-�eld suseptibility. The suseptibility seems also to be a better suited quantity to assessthe ritial exponent beause the oeÆients of its series expansion behave more smoothly and tendfaster to the asymptoti behaviour. It would be advantageous to formulate these expansions in termsof star graphs, instead of quite general onneted graphs with \open ends", beause star graphs onquasiperiodi tilings have been lassi�ed by us and used for expansions of the free energy. Indeed,there are in�nitely many independent quantities in zero �eld H = 0 whih have star graph expan-sions dH=dM = 1=�; d3H=dM3 = (d2�=dM2)=�4; d5H=dM5; : : : where M ,� are the magnetisationand suseptibility [104℄. This statement follows from the fat that the partition funtion of a graphwith an artiulation point fatorises into a produt of partition funtions on star graph omponents,provided that the magnetisation at the artiulation point is �xed. If all sites are idential, then loalmagnetisations at these sites are equal to M and the derivatives dnH=dMn, n = 1; 3; 5 : : :, have anadditive property, i.e. they are a sum over star graph omponents of the underlying graph, and105
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they have a star graph expansion. Sine sites on quasiperiodi tilings are not equivalent one has toonsider how to modify this statement for this ase.It would be interesting to apply the series expansions method to ertain generalisations of theIsing model, for instane the q-state Potts model. On regular 2D latties this model is known toexhibit a �rst-order phase transition when the number of states q is larger than 4 [41℄. Quenhedbond disorder an, however, soften the transition to a seond-order phase transition as was �rstshown by Monte-Carlo simulations in [105℄. There is also a heuristi riterion, formulated aordingto the lines of the Harris riterion [17℄, stating that quenhed disorder should soften the transition[106℄. Now, a question arises whether \topologial disorder" whih is present in quasiperiodi tilingsa�ets the phase transition in the same way. This question has been investigated by Monte Carlosimulations for the eight-state Potts model on the otagonal tiling [107℄ as well as on the squarelattie with a quasiperiodi modulation of ouplings [108℄. It was shown that in the �rst ase thephase transition remains �rst-order while a �nite-size saling study using Monte Carlo simulationshas shown strong evidenes in favour of a seond-order phase transition in the latter ase. Seriesexpansions methods would be a new, alternative approah to investigate these problems beause,aording to our knowledge, most works on this subjet used Monte Carlo simulations. Moreover, itshould not be extremely ompliated to ompute the respetive series expansions beause they anbe formulated in terms of star graphs whih have already been lassi�ed on quasiperiodi tilings byinvestigating Ising models [109℄.
Tight-binding modelsWe onstruted exat non-normalisable eigenfuntions for ertain vertex-type tight-binding modelson the rhombi Penrose and the Amman-Beenker tilings. In a way, our model is somewhat morerealisti than the vertex model onsidered usually, beause we also allow hopping along diagonalsof the rhombi and hene for all short distanes between verties. Still, the hopping parameters andthe energy of the states are determined by the requirement that our partiular ansatz holds, thus weannot make diret ontat to the experimental situation. The onstrution of eigenstates is basedon a potential derived from the mathing rules of the Penrose tiling that has been introdued ina similar ontext previously [82℄. Sine there are di�erent quasiperiodi tilings for whih mathingrules formulated in a similar fashion as for the Penrose tiling exist, as for example the Amman-Beenker tiling or tilings like T (8)D4 and T (12)D4 [110℄ obtained as projetions of the root lattie D4, oneould expet that it should be easy to �nd exat eigenstates of tight-binding Hamiltonians on thesetilings. It turns out, however, that it is either diÆult to de�ne the potentials onneted with themathing rules or, if the potentials an be de�ned as integrals of arrow �elds de�ned on the bondsof the tiling, the distribution of the potentials on the lattie sites is \trivial" in the sense that thetight-binding equations have only trivial (zero) solutions. In this ontext it would be interestingto larify the following points. What are the onditions whih have to be imposed onto the arrowdeoration of bonds of a quasiperiodi tiling so that the tight-binding equations following from anansatz exploiting the arrow �eld have non-trivial solutions? Is it always possible to �nd suh anarrow deoration of bonds whih is integrable, i.e. the sum of arrows along every losed path equalszero? If it would be possible to larify these points this ould be a �rst step towards formulatingof a \Bloh theory for quasirystals", i.e. a quantitative desription of spetra of quasiperiodiHamiltonians.
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Thesen zur Dissertation
� Der das Skalen-Verhalten der Fluktuationen in den Kopplungskonstanten beshreibende Ex-ponent ! liegt im Fall des Penrose- (PM) und Amman-Beenker-Musters (ABM) unter demGrenzwert 1=2, was bedeutet, da� nah dem heuristishen Harris-L�uk Kriterium das Ising-Modell auf diesen Mustern zur Onsager-Universalit�ats-Klasse geh�ort.� Die Zahl der niht-selbst-�ubershneidenden Polygone w�ahst auf den untersuhten planarenquasiperiodishen Mustern viel st�arker als auf dem Quadrat-Gitter (QG), was u.a. die Bereh-nung der Hohtemperaturentwiklung der freien Energie eines Ising-Modells ershwert.� Die graphishe Entwiklung der freien Energie des Ising-Modells konvergiert auf den Penrose-und Amman-Beenker-Mustern viel langsamer als auf dem QG. Das hat zur Folge, da� einedirekte Absh�atzung kritisher Parameter aus der Entwiklung bis zur Ordnung 18 ziemlihshwer ist, im Gegensatz zum QG wo eher verl�a�lihe Absh�atzungen bei der selben Ordnunggewonnen werden k�onnen.� Die kritishen Temperaturen des Ising-Modells auf dem PM und ABM weihen niht mehr alsum 5% von der des Ising-Modells auf dem QG ab.� Die Annahme, da� der Exponent � der spezi�shen W�arme, siehe Tabelle 2.13, dem Wert aufdem QG gleiht ist vereinbar mit den Ergebnissen dieser Arbeit.� Die langsame Konvergenz der freien-Energie-Entwiklung f�ur das PM und ABM, im Vergleihzu der f�ur das QG, kann durh eine kompliziertere, als auf dem QG, Verteilung der komplexenNullstellen der Zustandssumme verursaht werden.� Durh die Berehnung der Spin-Spin-Korrelationsfunktion h�i�ji auf den periodishen Ap-proximanden f�ur m�oglihst gro�e Abst�ande ji � jj wurden die niedrigsten Terme der Klein-Temperatur-Entwiklung der spontanen Magnetisierung gewonnen. Die Anzahl der Termereihte aber noh niht aus um den Exponenten Æ, siehe Tabelle 2.13, abzush�atzen.� Die graphishe Entwiklung der freien Energie eines Ising-Modells auf einem verd�unnten QGmit relevanten Fluktuationen weist, um die Temperatur Null, keine Konvergenz auf und vondaher eignet sih direkt niht zur Bestimmung des Exponenten �. Der Grund daf�ur sindkomplexe Nullstellen der Zustandssumme die n�aher am Ursprung der komplexen Ebene liegenals die kritishe Temperatur.� Mit Hilfe eines durh die Doppel-Pfeilen-Dekorierung der Rauten des Penrose Musters de�niertenPotentials l�a�t sih ein Ansatz formulieren der zu exakten, niht-lokalisierten, kritishen Zust�andeneines Tight-Binding-Modells auf dem PM f�uhrt.115
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� Bei Benutzung der Inations/Deations-Symmetrie des Penrose Musters und der auf den de-ationierten Mustern de�nierten Potentialle, l�a�t sih der Ansatz verallgemeinern und liefertandere, kritishe Eigenzust�ande.� Die konstruierten exakten Eigenzust�ande haben multifraktale Eigenshaften die durh eineglatte, di�erenzierbare verallgemeinerte Dimension Dq harakterisiert sind. W�are die Funktion�(~ri) nah einem Potenz-Gesetz lokalisiert, wie �(~ri) � j~rij�2Æ, dann w�urde die Dimension Dqeinen Knik bei q = 1=Æ aufweisen [95℄, was aber niht der Fall ist.� Ein analoger, an der Pfeilen-Dekorierung der Rauten des Amman-Beenker Musters angelehnterAnsatz f�uhrt beim ABM nur zu trivialen, ausgedehnten Eigenzust�anden.� Die Versuhe exakte Tight-Binding-Zust�ande auf dem dreidimensionalen ikosaedrishen Musterzu konstruieren bleiben bis jetzt wegen der Shwierigkeit eine integrable Pfeilen-Dekorierungdieses Musters zu �nden erfolglos.



Curriulum vitae
Name and Surname: Przemys law RepetowizBorn: on the 6th of June 1972 in Zabrze, PolandCitizenship: polishMarital Status: single
EduationSep. 1987 - Jun. 1991 Seondary shool providing extended eduation in mathematisand physis,May 1989 and May 1990 Partiipation in all-Polish ontests in physis and astronomy,frequent prize winner in the �nals,May 1989 Sholarship of the \State foundation for hildren" for speiallytalented hildren in the �eld of nature sienes,May 31 1991 Seondary examination with distintion in Katowie (Poland),Ot. 1 1991 - Jul. 1996 Five-year study at the Faulty of Physis and NulearTehniques of the University of Mining and Metallurgy (UMM)in Craow (Poland) in the ourse of tehnial physis,Aug. 1 1994 - Sep. 15 1994 A six-week trainee program at DESY (Deutshes ElektronenSynhrotron) in Hamburg (Germany), work on the alibrationof submodules of the SPAGHETTI high-energy physis alorimeter,Ot. 1994 - Ot. 1995 TEMPUS sholarship for a one year study at the TehnisheUniversit�at (TU) Chemnitz in Germany,Aug. 1995 Final examinations in the diploma-ourse of physis-studiesat the TU Chemnitz,Jul. 1996 Diploma-thesis \High-dimensional analysis of di�rationpatterns of quasirystalline strutures with arbitrary symmetry"and graduating from the UMM in Craow,Ot. 1 1996 - 2000 PhD study in the institute of physis of the TU Chemnitz onthe subjet: \Theoretial investigations of eletroni and magnetiproperties of quasirystalline materials ",1997 - 1999 Partiipation in researh projets of the SPQK(Shwerpunktsprogramm Quasikristalle of the German ResearhOrganization DFG) and the SFB (Sonderforshungsbereih -speial sienti� projet of the DFG) \Numerial simulations onmassive parallel omputers",Aug. 2000 Expeted aquiring of the PhD degree from the institute of physisof the TU Chemnitz.

117



118 BIBLIOGRAPHY



Sienti� publiations
1. M. Baake, U. Grimm, P. Repetowiz, D. Joseph, Coordination sequenes and ritial points,in: Pro. of the 6th Int. Conf. on Quasirystals Tokyo (1997) ed. S.Takeuhi, T.Fujiwara(Singapore: World Sienti�), p. 124{1272. P. Repetowiz, J. Wolny, Di�ration pattern alulations for a ertain lass of N-fold quasilat-ties, J. Phys. A: Math. Gen. 31, 6873-6886 (1998)3. P. Repetowiz, U. Grimm, M. Shreiber, Exat Eigenstates of Tight-Binding Hamiltonians onthe Penrose Tiling, Phys. Rev. B 58, 13482{13490 (1998)4. P. Repetowiz, U. Grimm, M. Shreiber, High-temperature expansion of quasiperiodi Isingmodels, J. Phys. A: Math. Gen. 32, 4397{4418 (1999)5. M. Baake, U. Grimm, D. Joseph, P. Repetowiz, Averaged shelling for quasirystals, preprintmath.MG/9907156, (to appear in the Pro. of 7th Int. Conf. on Quasirystals (ICQ7))6. P. Repetowiz, U. Grimm, M. Shreiber, Planar quasiperiodi Ising models, preprint ond-mat/9908088, (to appear in the Pro. of ICQ7)7. H. Yuan, U. Grimm, P. Repetowiz, M. Shreiber, Energy spetra, wavefuntions and quantumdi�usion for quasiperiodi systems, preprint ond-mat/9912176, (submitted to Phys. Rev. B)

119


