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AbstractRank-revealing ULV and URV factorizations are useful tools todetermine the rank and to compute bases for null-spaces of a ma-trix. However, in the practical ULV (resp. URV ) factorization eachleft (resp. right) null vector is recomputed from its correspondingright (resp. left) null vector via triangular solves. Triangular solvesare required at initial factorization, re�nement and updating. As aresult, algorithms based on these factorizations may be expensive, es-pecially on parallel computers where triangular solves are expensive.In this paper we propose an alternative approach. Our new rank-revealing ULV factorization, which we call "top-down" ULV factor-ization (TDULV -factorization) is based on right null vectors of lowertriangular matrices and therefore no triangular solves are required.Right null vectors are easy to estimate accurately using condition esti-mators such as incremental condition estimator (ICE). The TDULVfactorization is shown to be equivalent to the URV factorization withthe advantage of circumventing triangular solves.1. Introduction. Recent numerical integration methods for di�erential-algebraic equations (DAEs) [17, 18, 19] require at each time integrationstep the computation of the numerical rank and bases for null-spaces of verylarge matrices. These matrices are obtained by a recursive di�erentiationalgorithm which appends new rows to the previous matrices. The processof incorporating a new row or column in a matrix is called updating. Otherapplications are the solution of underdetermined rank-de�cient least squaresproblems [12, 14, 20], subset selection problems [13, 14] and information re-trieval [2].The singular value factorization (SV D) [14, p. 246] is known to be anextremely reliable tool for computing the numerical rank and bases for thenull-spaces of a matrix. However, the SV D is "too expensive" when it comesto recursive algorithms or real-time applications, since its computation re-quires O(n3) ops1 and the SV D is di�cult to update [1, 6]. Thereforealternative algorithms that are nearly as accurate as the SV D, cheaper andeasier to update are desired.Recently, Stewart [25, 26, 27, 29] proposed two rank-revealing factoriza-tions, called ULV and URV factorizations. These two factorizations are1Here, a op is either an addition or a multiplication1



e�ective in exhibiting the numerical rank and bases for the null-spaces. TheULV and the URV factorizations can be updated inO(n2) ops, sequentiallyand in O(n) ops on an array of n processors [26, 27]. Recent work relatedto the URV and ULV factorization both in theory and implementation maybe found in [8, 9, 10, 11, 22, 23]. The rank-revealing ULV and the URV al-gorithms are iterative and require estimates of the condition number of sometriangular submatrices at every iteration step of initial factorization, re�ne-ment and updating. In the URV and the ULV factorizations small singularvalues and associated null vectors are estimated by means of conditions es-timators [3, 4, 5, 15, 24, 30]. A survey of condition estimators is given in [16].In the practical ULV (resp. URV ) factorization, however, each left (resp.right) null vector is recomputed from its corresponding right (resp. left) nullvector via triangular solves. Triangular solves are required for the initialfactorization, the re�nement and updating. For some applications triangularsolves have to be performed many times in order to achieve a required accu-racy. Therefore algorithms based on the usual ULV and URV factorizationsmay be very expensive on parallel computers, where triangular solves areexpensive.For this reason we introduce an alternative rank-revealing ULV factor-ization, called "top-down" ULV factorization (TDULV -factorization). Thisnew factorization relies on right null vectors of lower triangular matriceswhich are accurately estimated using condition estimators. This results incircumventing triangular solves required in the usual rank-revealing ULVand URV factorizations. Our TDULV factorization is essentially equivalentto the URV with the advantage of avoiding triangular solves, thus it is moresuitable for parallel implementations. Furthermore the TDULV uses thenull vectors obtained from condition estimators in a straithforward way.In this paper we describe the TDULV factorization, give an algorithmto compute it and show how this algorithm can be implemented, re�ned andupdated e�ciently. The remainder of this paper is organised as follows. Insection 2, we briey review the usual rank-revealing ULV and URV factor-izations. Our new TDULV factorization method is proposed in section 3.In section 4 we give details of the TDULV factorization algorithm. The newalgorithm is presented in section 5. Finally, we draw a conclusion in section 6.2



2. ULV and URV factorizations. In this section we review the rank-revealing ULV and URV factorizations introduced by Stewart [25, 26, 27,29]. We �rst introduce the concept of numerical rank of a matrix. Given amatrix A 2 Rm�n (m � n) a singular value factorization (SV D) (see [14, x2.5]) of A has the form A = U�V T ; (1)where U = [u1; � � � ; um] and V = [v1; � � � ; vm] are orthogonal matrices and� = diag(�1; � � � ; �n) is an m�n diagonal matrix whose entries, the singularvalues of A, are ordered such that �1 � �2 � � � � � �n � 0. Then thenumerical rank of A with respect to a threshold � > 0 is de�ned as thenumber of singular values of A strictly larger than �, i:e:,�1 � � � � � �k > � � �k+1 � � � � � �n: (2)� is a threshold below which a singular value of the matrix A is declared tobe numerically null or negligeable. The ratio �r+1=�k estimates the "gap"between "large" and "small" singular values of A. The numerical rank iswell de�ned whenever the gap is su�ciently large. Ways for choosing thethreshold � may be found in [28].For i = k + 1; � � � ; n the columns vi of V satisfy kAvik � � and thereforeare called numerical right null vectors (k � k denotes the matrix 2-norm). Inthe same way columns uk+1; � � � ; un of U are called numerical left null vectors,since they satisfy kuTi Ak � � for i = k + 1; � � � ; n.The numerical right null-space of A is de�ned byN rk := spanfvk+1; : : : ; vng: (3)in the same way we de�ne the numerical left null-space of A byN lk := spanfuk+1; : : : ; ung: (4)Given a matrix A 2 Rm�n, a ULV [29] factorization of A has the formA = U  Lk 0H E !V T ; (5)with orthogonal matrices U 2 Rm�m, V 2 Rn�n and Lk 2 Rk�k , E 2R(m�k)�(m�k) lower triangular matrices, H 2 R(m�k)�k .3



Such a factorization is said to be rank-revealing if k[H E]k = O (�k+1) andLk is well-conditioned, i:e:, �k(Lk)=�1(Lk) � c, where c > 0 is some giventolerance.Similarly, a URV factorization [25, 29] of A has the formA = U  Rk F0 G ! V T ; (6)where Rk 2 Rk�k , G 2 R(m�k)�(n�k) are upper triangular matrices and whereF 2 Rk�(n�k).Such a factorization is said to be a rank-revealing if Rk is well-conditionedand k[F T GT ]Tk = O (�k+1).In factorizations (5) and (6) the numerical rank of A is revealed by thedimension of the submatrices Lk and Rk, respectively. Orthonormal left andright bases for the null-spaces of A are revealed by the matrix U and V ,respectively. More precisely, columns k + 1 through n of U and V span theleft and right null-spaces of A, respectively.Factorization (5) and (6) are based on estimating small singular valuesof the middle factors L and R and the associated left and right null vectors,respectively. Then deating small singular values from the bottom of ma-trices L and R, factorizations (5) and (6) are obtained. Adaptive versionsof the ULV and URV algorithms and results concerning the e�ect of esti-mated null vectors on the size of o�-diagonal blocks H and F are discussedin [10]. There, it is shown that the sizes of H and F depend strongly onapproximations of the null vectors. The norms of H and F in turn a�ectthe accuracy of the approximated null-spaces. A re�nement method for theURV factorization was presented and analysed in Stewart [25].The usual way to compute a ULV factorization (5) of a matrix A is �rstto compute an ordinary QL factorization of A [31, p. 140] and then to "peel-o�" small singular values one by one from the bottom of the matrix L [10,27]. This requires approximations of left null vectors of the triangular ma-trix L at each iteration step of factorization, re�nement and updating. Inthe practical rank-revealing ULV factorizations, left null vectors are usuallyobtained from the corresponding right null vectors via triangular solves. Forvery large problems, however, this results in an extra cost and may lead to4



loss of accuracy in the subspaces. In the next section we present a more e�-cient ULV factorization that avoids triangular solves by working with rightnull vectors of lower triangular matrices. This reduces the computationalwork needed for the triangular solves.3. TDULV factorization. In this section we present the rank-revealingTDULV factorization. The idea of our factorization is to compute �rst anyQL factorization of A (for example by using the LAPACK routine xGE-QLF2) then to "peel-o�" small singular values of L one after the other fromthe top of the matrix L in a sequence of deation steps until a large singularvalue is detected. This is achieved by estimating small singular values of Land associated right null vectors using condition estimators (for example byusing the incremental condition estimator (ICE)[5] implemeted in LAPACKroutine xLAIC1). This process leads to the so called "top-down" ULV fac-torization TDULV . A = U� E 0H Lk �V T ; (7)where Lk 2 Rk�k, E 2 R(m�k)�(n�k) are lower triangular matrices and whereH 2 Rk�(n�k).We call such a factorization rank-revealing TDULV factorization if Lk iswell-conditioned and k[ET HT ]Tk = O (�k+1).In the TDULV factorization the rank of the matrix A is revealed by thedimension of the right bottom submatrix Lk. The �rst n� k columns of theorthogonal matrices U and V furnish orthonormal left and right bases fornull-spaces of A, respectively.We show in the appendix that the rank-revealing TDULV factorization(7) and the rank-revealing URV factorization (6) are mathematically equiv-alent. The advantage of the TDULV over the URV is that the TDULVworks with singular vectors computed by condition estimators in a straith-foward way.4. Outline of the rank-revealing TDULV Algorithm. In this section,we discuss the implementation of the TDULV algorithm. We show how tore�ne the factorization to make it rank-revealing. We then discuss the updat-ing of the factorization. The rank-revealing TDULV factorization process2Here, the pre�x x is S or D 5



begins with any QL factorization of A followed by an iteration with makesthe factor L rank-revealing. The matrix L is declared to be numerically rankde�cient with respect to a threshold � if L has at least one singular value� � �. Small singular values � of L and associated null vectors v of normone are estimated e�ciently using condition estimators. If the matrix L isrank de�cient then we transform it to an equivalent lower triangular matrixP TLQ by means of Givens rotations. The orthogonal matrix Q is formed asthe product of Givens rotations such that components of v are annihilatedone at a time to obtain the canonical unit vector e1, i:e: we have QTv = e1.We postmultiply L by the orthogonal matrix Q. Then we triangularize LQby premultiplying it by an orhogonal matrix P T where P is again formed asproduct of Givens rotations. It follows that� � � = kLvk = kP TLQQTvk = kP TLQe1k; (8)and hence the �rst column of the triangular matrix P TLQ is small. This wayof proceeding is called deation and applying it repeatedly, the TDULV iscomputed. However, to obtain accurate null-spaces one may have to delay thedeation and re�ne the factorization until the required accuray is achieved.4.1 Re�nement. Factorization (7) reveals the numerical rank of A by thedimension of the matrix Lk. Bases for approximate left and right null-spacesof A are given by the �rst n�k columns of U and V respectively. To obtain anaccurate basis for the left null-space one may need to re�ne the factorizationby bringing the matrix E to near diagonal form. This is achieved by Givensrotations. Suppose we have obtained the partial factorizationA = U  e 0h Ln�1 !V T ; (9)where the matrix in the middle is assumed to be rank de�cient.The aim of the re�nement is to make the norm khk � � , where � is somedeation parameter. This leads to accurate bases for null-spaces of A andAT . The �rst step in the re�nement is to compute an orthogonal matrix Qsuch that o�-diagonal elements of the �rst column of LQ vanish, i:e:,LQ =  e0 h0T0 L0n�1 ! : (10)This is achieved by zeroing successively elements of h by means of Givensrotations. The matrix Q is the product of these Givens rotations applied to6



L from the right. Nonzero elements then appear in the �rst row of LQ. Thesecond step in the re�nement is to determine an orthogonal matrix P suchthat element of h0T are annihilated by premultiplying LQ by P T . This is doneby zeroing successively the elements of h0T by means of Givens rotations. Wethen obtain the following lower triangular matrixP TLQ =  e00 0h00 L00n�1 ! : (11)After these two steps of re�nement, elements of h00 have become smaller. Ifkh00k < � , then we deate the �rst row and column in (11). To maintainnull-spaces, transformations P and Q in these two steps of re�nement arealso applied to U and V . At this point, the factorization of A is given byA = (UP ) e00 0h00 L00n�1 ! (V Q)T : (12)In this fashion the matrix E in (7) is made "closer" to a diagonal matrix.4.2 TDULV-Updating. The TDULV factorization can be updated whena new row is incorporated at the bottom of the matrix A. Assume that afterhaving computed a rank-revealing factorization (7) of A, we wish to includea new row in A. The aim of the updating is to compute a rank-revealingfactorization of the updated matrix from that of A at a low computationalcost namely O(n2) or less. This should be done without destroying smallelements of E and F . The row-updating of the rank-revealing TDULV isdescribed as follows AaT ! =  U 00 1 !0B@ E 0H LkxT yT 1CA V T ; (13)where aT is the appended row and where (xT yT ) = aTV .In the �rst phase of updating we annihilate the �rst n�k�1 componentsof xT , while maintaining the triangular form of E. This is performed byapplying a sequence of interleaved right and left Givens rotations. In theprocess each right rotation introduces above the diagonal of E a nonzeroelement which is zeroed out by left rotation. In this annihilation process7



of xT only rows of E and the �rst n � k columns of the middle matrixin (13) are involved. In this fashion "smallness" of matrices E and H ispreserved. The reduction procedure, where only E and xT are shown, isillustrated in Fig: 1 (In all �gures, vertical arrows point out the columnsinvolved in a postmultiplication by a rotation. Horizontal arrows point outthe rows involved in a premultiplication by a rotation. A check over anelement indicates the element to be eliminated.).# #ee ee e ee e e e�x x x x =) ! e �e! e ee e ee e e e0 x x x =) # #ee ee e ee e e e0 �x x x =)e! e e �e! e e ee e e e0 0 x x =) # #ee ee e ee e e e0 0 �x x =) ee e! e e �e! e e e e0 0 0 x =) ee ee e ee e e e0 0 0 xFig. 1 Annihilation of components of xTThe second phase is to triangularize the following trapezoidal matrix byannihilating the last row eh lh l lh l l lh l l l lx y y y y8



This is performed by means of Givens rotations as follows# #eh lh l lh l l lh l l l lx y y y �y =) eh lh l l! h l l l �l! h l l l lx y y y 0 =) # #eh lh l lh l l lh l l l lx y y �y 0 =)eh l! h l l �l! h l l lh l l l lx y y 0 0 =) # #eh lh l lh l l lh l l l lx y �y 0 0 =) e! h l �l! h l lh l l lh l l l lx y 0 0 0 =)e! h lh l lh l l lh l l l l! x �y 0 0 0 =) ! ex lh l lh l l lh l l l l! �x 0 0 0 0 =) xx lh l lh l l lh l l l l0 0 0 0 0Fig. 2 TriangularizationThe triangularization process replaces the zeros in the last matrix of Fig:1 bysome small elements h. These small elements can be eliminated or neglected.5. TDULV-Algorithm.The rank-revealing TDULV factorization is summarized in the followingalgorithm:Input:� Matrix A 2 Rm�n (m � n) to be decomposed.� Threshold � for singular values of A.� Deation tolerance � for kHk. 9



� Maximum number of iterations N� for the re�nement.Output:� Numerical rank k.� Orthogonal matrices U 2 Rm�m, V 2 Rn�n and a lower triangularmatrix L 2 Rn�n.1. Compute a QL factorization of A: A = Q�0L�, where Q is orthogonaland L 2 Rn�n is lower triangular ( e:g:, using the LAPACK routinexGEQLF).2. Initialization: U  Q, V  In, k  n and itstep 0.3. Compute the smallest singular value �n of L and the associated rightnull vector vn 2 Rn of norm one (e:g:, by using the incremental condi-tion estimator (ICE)[5] implemented in LAPACK routines xLAIC1).4. While (�k < � and k � 2) doWhile (itstep � N�) doFor j = n� 1; � � � ; n� k + 1 doDetermine a Givens rotation Qj; j+1 2 Rk�k, so thatpremultiplication of vk by QTj; j+1 zeroes componentvkj+1 of vk using vkj . Update L and VL L In�k 00 Qj; j+1 ! and V  V  In�k 00 Qj; j+1 ! :Determine a Givens rotation Pj; j+1 2 Rk�k , so that pre-multiplication of Lk := L(n � k + 1 : n; n� k + 1 : n)by P Tj; j+1 zeroes lj; j+1 using lj+1; j+1. Update L and UL  In�k 00 P Tj; j+1 !L and U  U  Im�k 00 Pj; j+1 ! :EnddoIf (kL(n� k + 2 : n; n� k + 1)k < � or itstep > N� ) thenDeation: Set k  k � 1 and itstep 0.ElseRe�nement: Set itstep itstep+ 1.Determine a sequence of Givens rotations�Qn+1�k; n+2�k ; : : : ; �Qn+1�k; n so that postmultiplicationof Lk by �Qk := �Qn+1�k; n+2�k � � � �Qn+1�k; n zeroes the10



elements L(n� k + 2 : n; n � k + 1). Update L and VL L In�k 00 �Qk ! and V  V  In�k 00 �Qk ! :Determine a sequence of Givens rotations�Pn+1�k; n; : : : ; �Pn+1�k; n+2�k so that premultiplication of Lkby �P Tk , where �Pk := �Pn+1�k; n � � � �Pn+1�k; n+2�k, zeroes theelements L(n� k + 1; n� k + 2 : n). Update L and UL  In�k 00 �P Tk !L and U  U  Im�k 00 �Pk ! :EndifCompute the smallest singular value �k of Lk and theassociated right null vector vk 2 Rk of norm one.EndwhileEndwhileEnd of TDULV �AlgorithmThe algorithm terminates if a lower bound �k > � is computed. The dimen-sion k of the bottom right matrix Lk is equal to the numerical rank. Basesfor left and right null-spaces are given by the �rst n + 1 � k columns of Uand V , respectively.Example 1We now describe the steps for the (n + 1 � k)th stage of the algorithm andillustrate it for the case k = 4. At this stage already (n � 4) deations havebeen performed and the matrix L has the form (7) where the right bottomsubmatrix L4 has dimension k = 4. According to the above algorithm, onlythe matrix L4 is involved in the coming steps, we therefore sketch only thismatrix. The next step in our algorithm is to compute � and v 2 R4, approx-imations of the smallest singular value of L4 and the associated right nullvector. Then we annihilate successively the 4th; 3rd and the 2nd componentof v using Givens rotations QT12, QT23, QT34 so thatQT12QT23QT34v = (1; 0; 0; 0)T :The sketch below clari�es the e�ect of carring out successive transformations11



Qi; i+1 on v.!! 0BBB@ vvvv 1CCCA QT347�! !! 0BBB@ vvv0 1CCCA QT237�! !! 0BBB@ vv00 1CCCA QT127�! 0BBB@ 1000 1CCCA :Fig. 3 Reduction of vWe must then postmultiply L4 by these rotations. This multiplication byQi; i+1 produces a nonzero (i; i + 1) entry in L4. To restore the triangularform to L4, we premultiply it by some appropriate plane rotation P Ti; i+1. Fori = 3; 2; 1 we then haveL4 ! L4Q34 ! P T34L4Q34 ! P T34L4Q34Q23! P T12P T23P T34L4Q34Q23Q12:The triangular form changes as follows# #ll ll l ll l l l =) ll l! l l l �l! l l l l =) # #ll ll l ll l l l =) l! l l �l! l l ll l l l =)# #ll ll l ll l l l =) ! l �l! l ll l ll l l l =) eh lh l lh l l lFig. 4 Deation procedureThe elements h and e in the �rst column of L4 indicate that small elementshave been generated in this column. To see this, consider the norm of L4v,� � �4 = kL4vk = kP TL4QQTvk = kP TL4Qe1k;where P = P34P23P12 and Q = Q34Q23Q12. Thus the �rst column of thetriangular matrix P TL4Q is small. One can stop at this point and take thecomputed factorization as rank-revealing factorization. However, to obtainthe correct numerical rank and accurate null-spaces, one has to bring the12



matrix E to near diagonal form by reducing the norm of H. This is acom-plished by reducing the size of elements h in the �rst column of P TL4Q ineach deation step as follows# #e�h lh l lh l l l =) # #e h0 l�h l lh l l l =)# #e h h0 l0 l l�h l l l =) e h h h0 l0 l l0 l l lFig. 5 Zeroing o�-diagonal elements of the �rst columnWe reduce now the �rst row of the matrix L using left rotations as follows! e h h �h0 l0 l l! 0 l l l =) ! e h �h0 l! 0 l lh l l l =)! e �h! 0 lh l lh l l l =) eh lh l lh l l lFig. 6 Zeroing o�-diagonal elements of the �rst rowExample 2Let A be the lower triangular matrix with 1 on the diagonal and �1 as o�-diagonal elements. For m = n = 3 and � = 1:5 the rank is 2 and the middlematrix L is0B@ :3472963553338607 0 09:302245467261437e � 14 1:53607859485413 04:855638724371323e � 14 7:799425873704058e � 2 �1:87450385105148 1CA :13



Tables 1 and 2 show that the null-spaces computed from the TDULV closelyapproximate the null-spaces computed from the SV D.UTDULV USV D.8440296287459917 .8440296287459852.4490987851112734 .4490987851112867.2931284138572732 .2931284138572721Table 1: Bases for the left null-spaceVTDULV VSV D.2931284138573261 .2931284138572723.4490987851112454 .4490987851112868.8440296287459887 .8440296287459852Table 2: Bases for the right null-space6. Conclusion. In this paper we have proposed a new ULV factorizationcalled TDULV factorization and an algorithm to compute it. This factoriza-tion is based on right null vectors of lower triangular matrices rather than leftnull vectors as in the ULV factorizations. First, this has resulted in avoidingtriangular solves, which may be expensive on parallel computers and reduc-ing the cost related to these solves especially if they have to be performedmany times with very large matrices. Second, this avoids including parame-ters related to triangular solves. Furthermore our method uses null vectorscomputed by condition estimators in a straightforward way. Therefore it maybe more accurate than the URV in exhibing the numerical rank and basesfor null-spaces.Appendix.LEMMA 1Rank-revealing URV factorizations and TDULV factorizations of a matrixA are equivalent.PROOFLet A have the rank-revealing TDULV factorizationA = U� E 0H Lk �V T :14



Then we can write A = (UJm)Jm� E 0H Lk �Jn (V Jn)T ;where Jm =  0 JkJm�k 0 ! ; Jn = � 0 Jn�kJk 0 �and where Jk denotes the k � k ip matrix. ThereforeA = (UJm) JkLkJk JkHJn�k0 Jm�kEJn�k ! (V Jn)T ;which is of the form A = Û� R F0 G �V̂ TwithG = Jm�kEJn�k; F = JkHJn�k; R = JkLkJk; Û = UJm; V̂ = V Jn:Note that the matrices G and R are upper triangular and Û and V̂ are or-thogonal. Furthermore we havekGk = kEk; kFk = kHk; kR�1k k = kL�1k k;therefore the TDURV factorization is rank revealing if and only if the URVis rank-revealing. The bases obtained from the TDULV are given by the�rst columns of the orthogonal matrices UJm and V Jn.References[1] M.W. Berry, S. Dumais And G. O'Brien, The computational com-plexity of alternative updating approaches for an SVD-encoded indexingscheme, In Proceedings of the Seventh SIAM Conference of Parallel Pro-cessing for Sci. Comput., SIAM, Philadelphia, 1995.[2] M. W. Berry And R. D. Fierro, Low-rank orthogonal decompositionfor retrieval applications, Num. Linear Alg. Appl. 3, (1996), 301-327.15
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