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Abstract

We consider a finite section (Galerkin) and a collocation method for Cauchy singular
integral equations on the interval based on weighted Chebyshev polynomials, where the
coefficients of the operator are piecewise continuous. Stability conditions are derived
using Banach algebra techniques, where also the system case i1s mentioned. With the help
of appropriate Sobolev spaces a result on convergence rates is proved. Computational
aspects are discussed in order to develop an effective algorithm. Numerical results, also

for a class of nonlinear singular integral equations, are presented.

1 Introduction

The subject of the present paper is the investigation of a collocation method
based on weighted polynomials for the approximate solution of singular integral
equations on (—1,1) of the type

a(oyu() + ) ./1 "D = pw), we(-1,1), (1.1)

) 11—

where # is the unknown function and a, b, f are given. All functions involved are
assumed to be complex-valued.

A lot of attention has been paid to investigating polynomial collocation and
quadrature methods for this and similar types of equations (see, for example,
Prossdorf & Silbermann [14, Chapter 9] and the literature cited there). These
are essentially based on special mapping properties of the operator Aw/l, where A
denotes the operator on the left-hand side of (1.1), and w is a generalized Jacobi
weight depending on the coefficients a and b, which are required to satisfy a
Holder condition.

We are going to give a somewhat different approach using weighted polynomials
as ansatz functions. The original equation as well as stability and convergence of
a finite section and a collocation method are considered in the weighted L2-space
L2(—1,1) with respect to the Chebyshev weight of first kind o(2) = (1 — .772)715 .
For the non-weighted space L2(—1,1), a finite section (Galerkin) method with
the same type of ansatz functions was investigated in Junghanns, Roch & Weber
[10]. Tn Junghanns & Weber [12] a collocation method is considered in L2 (—1,1),
where o(2) belongs to a class of Jacobi weights, but the coefficient b is restricted

by b(+1)=0.

There are two essential advantages of, in particular, our collocation method in
comparison with the above mentioned polynomial approximation methods using
generalized Jacobi weights.

1. Also in the case of variable coefficients @ and b we will always use the same
(Chebyshev) collocation points independently of the coefficients. This is
very useful if a Newton method for a nonlinear singular integral equation
results in a sequence of linear equations of type (1.1), the coefficients of
which are different in each step. Furthermore, we can admit arbitrary



piecewise continuous coefficients. Such coefficients with jumps occur, for
example, when considering seepage problems for channels or dams with
corners (see Junghanns [9]).

2. The finite section and the collocation method can be easily generalized to
the case of a system of Cauchy singular integral equations.

As a disadvantage of the methods introduced in this paper we will observe that,
in general, the unique solvability of the original equation (1.1) is not sufficient
for the stability.

We will give necessary and sufficient conditions for the stability of the proposed
approximation methods using Banach algebra techniques, which have proved to
be an efficient tool in stability analysis (see, for example, Hagen, Roch & Sil-
bermann [6], Junghanns, Roch & Weber [10], Junghanns & Silbermann [11],
Prossdorf & Silbermann [14], Silbermann [16]). We obtain necessary and suffi-
cient stability conditions in the case of piecewise continuous coefficients.

In Section 2 we give some notations and define the numerical methods we are
going to deal with. Section 3 provides some basic facts on Banach algebra tech-
niques we will need for the stability analysis. In Section 4 we assign to the
sequences of approximating operators on the interval a sequence of operators on
the unit circle, which enables us to use a lot of known results on finite section
and collocation methods for Cauchy singular integral operators on the unit cir-
cle. Tn Sections 5 and 6 we derive the main results concerning the stability of the
finite section and the collocation method, respectively. In Sections 7 we make
some remarks on the generalization to the system case. Finally, Section 8 is de-
voted to the proof of some convergence rates of the methods using appropriate
Sobolev spaces, and in Section 9 we describe the computer implementation and
present some numerical results for the collocation method, where we also consider
nonlinear Cauchy singular integral equations.

2 Notations and preliminaries

Let o(z) = (1 7.772)715 denote the Chebyshev weight of the first kind. We consider
equation (1.1) in the weighted Lebesgue space L2 := L2(—1,1) of all (classes of)
measurable functions u : (—1,1) = € for which

iz = [ oot ds

is finite, equipped with the inner product

(u,0)y 1= ./11 u(z)v(z)o(x) dz,

which turns L2 into a Hilbert space. The Cauchy singular integral operator
S : L2 — L2 defined by

RI0]

(Su)(a) = —

i1t —=x

dt (2.1)



is bounded, i.e. S € L(L2) (Gohberg & Krupnik [5], Theorem 1.4.1). The co-
efficients a, b are assumed to belong to the algebra PC[—1,1] of all piecewise
continuous functions. The latter is defined as the closure (in the space of all
bounded functions, equipped with the supremum norm) of the set of those func-
tions being continuous on [—1,1] with the possible exception of a finite number
of jumps in (—1,1), where the value of the function coincides with the left-sided
limit. For definiteness we agree that a(—1+40) = a(—1) for a € PC[-1,1].
Note that PC-functions possess finite one-sided limits at all points. Under these
assumptions, the operator on the left-hand side of (1.1), which in the following
will be briefly referred to as A := al + bS5, is bounded on L2.

Let ¢(x) = V1 — 22 denote the Chebyshev weight of second kind and let U, be
the orthonormal polynomial of degree n (with positive leading coefficient) with
respect to the inner product (., .),, that is (U,,U.)s = 0mn, where §,,, is the
Kronecker symbol. Remember the trigonometric representation

2sin(n + 1):
U, (coss) = \/;W, n=0,1,2,....

Obviously, the multiplication operator ¢/ is an isometric isomorphism from LZ
onto L2. Thus, the functions

Wy, = olU,, n=0,1,2,..., (2.2)

form an orthonormal basis in L2, because the same is true for U/, in the space LZ.
For the approximation method we want to apply to (1.1), the functions (2.2) will
be used as ansatz functions. That means we look for an approximate solution u,,
of equation (1.1) of the form

(1) = wi: Epnti () = o(2) i EenUr(x) .
k=0 k=0

As a first numerical method we consider a GGalerkin method, which is also referred
to as the finite section method and where u,, is the solution of

(f — Auy i), =0, E=0,1,...,n—1. (2.3)

If we define the sequence {P,}°2, of Fourier projections P, : L2 — L2 by

n—1

P,u= Z(u, Up) ol

k=0
then (2.3) is equivalent to

An,P“n - Pnfv (24)

where A, p := P, AP, . As a further approximation method for equation (1.1) we
will investigate the collocation method

(Aun)(mfn) = f(wa) , J=1,...n, (2.5)



where mfn denote the Chebyshev nodes of second kind,

Jm
¥ = cos

Jmn n4+1"

Define the respective Lagrange interpolation operator
n
Lif =2 JG3I,
j=1

where

(z =25 ) UL (27,)

are the respective fundamental Lagrange polynomials. Then (2.5) is equivalent
to

An,]\//“n - Mn.f7 (26)

where A, r == M,AP, and M, = oL%¢0 'I. In (2.6) we use the modified
interpolation operators M, instead of L¥ | since the image space of M, is the
same as the image space of P, , which is important for our further theoretical
considerations concerning stability and convergence of the described collocation

method.

Let {A,}, A, € L(im P,), be one of the sequences {A, p} or {A, v}. The
sequence { A, } is said to be stable, if there is an ng such that A, :im P, — im P,

is invertible for all n > ng and sup {HA”1 P,

one of the projections P, or M, , and let Au* = [, A,u¥ = R, f. Assume that
{A,} is stable. Because of the estimation

in > no} < 00. Let R, denote
L(LZ) -

1P = willgy < AL P

o || A, Pou™ — RanL?,

and the strong convergence P, — I, we have that u* — w*in L2if A, P, — A
strongly and R, f — f in L2 . Thus, our main concern is the proof of the sta-
bility of the sequence {A,,} . For this end we will use a Banach algebra technique
described in the following section.

3 The Banach algebra technique
Define W,, : L2 — L2 by

n—1

W,u = Z(u, U1 — ) U -

k=0

Then W, = W* converges weakly to 0. Moreover, W, P, = W, and W2 = P, .
By A we denote the unital Banach algebra of all sequences {A,}, A, :im P, —
im P, , for which A, P, , AZP,, %Tn P, with %Tn =W, A, W, ., and %T:VPN converge
strongly, equipped with componentwise algebraic operations and the norm

A = sup {1 APl oz s n = 1.2}

4



(comp., for example, Préssdorf & Silbermann [14, p. 268]). The set,

Cn

T o= {{P K P+ W KW + O} Ky € K(L2), (Ol ez — 0}
where K(L2) denotes the ideal in £(L2) of all compact operators, is a two-sided
closed ideal in A (Silbermann [16, Prop. 2], Prossdorf & Silbermann [14, Prop.
7.6]). Thus, the quotient algebra A/7 is again a Banach algebra. If B is a Banach
algebra then by GB we denote the subset of all invertible elements of 5. Now,
the following theorem is fundamental for our investigations.

Theorem 3.1 ([16], Prop. 3, [14], Theorem 7.7) If the sequence {A,} be-
longs to AL where A, — A and A, — A strongly, then {A,} is stable if and
only if A,A € GL(LE) and {A,}+T € G(A/T).

We will investigate the invertibility of the coset {A,} + 7 with the help of the
following local principle of Gohberg and Krupnik. Tet B be a unital Banach
algebra. A subset M C B is called a localizing class if 0 ¢ M and if for all aq,
a9 € M there exists an element a € M such that

aa; =a;a=a for j=1,2.

In the following lett M be a localizing class. Two elements z, y € B are called

M-equivalent (in symbols: x M y), if
inf ||la(x — = inf |[(z — y)a|| = 0.
Jnf Nlate = y)ll = il @z~ y)all

Further, € B is called M-invertible if there exist ay, ay € M, z1, z9 € B such
that

21xray = aq, (o Zog = (9.

(Note that an invertible element is also M-invertible.) A system {M,},;cq of
localizing classes (€2 is an arbitrary index set) is said to be covering if for each
system {a:}-cq, ar- € M,, there exists a finite subsystem a.,, ..., a,, such that

ar + ---+a,, is invertible in the algebra B.

Theorem 3.2 ([5], Theorem XII.1.1) Let B be a wunital Banach algebra,

{ M} cq a covering system of localizing classes in B, € B and x M x, for all
7 € Q. Further, assume that x commutes with all elements from U M. Then

T€Q
x is invertible in B if and only if x. is M -invertible for all T € €.

4 Associated operator sequences on the unit circle

In this section we introduce two mappings .J : L2 — L*(T) and F : L2 —
L?(T), where L2(T) is the Hilbert space of square integrable (complex-valued)
functions on the unit circle T := {t € € : |{| = 1} with the inner product

gy = — [ Fleyglem ds.

:277.771’



These mappings will help us to associate an appropriate sequence {AT} to our
original sequence {A,} in order to study the properties of {A,} with the help
of partial results concerning finite section and collocation methods for singular

integral equations on the unit circle (see Hagen, Roch & Silbermann [6, Chapt.s
4 and 6], Prossdorf & Silbermann [14, Chapt. 7], and Roch [15]).

Lete,(t)=1t",n=0,+1,4+2,...,t € T. Then, {e,},2° ., forms an orthonormal

Nn=—0o0

basis in L?(T) . The operators .J : L2 — L2(T) and F : L2 — L%(T) are defined
by

o0 ] o0

Ju = (U, UUp)pe, and Fu=— (Yo (€ngt — €p1)

respectively. Tt is easily seen that .J : L2 — H*(T) and F : L2 — L2, (T)
are isometric isomorphisms, where H*(T) := {f € L3(T) : (f,e_,) =0, n =
1,2,...} is the Hardy space and L2,,(T) := closspan{e, —e_, :n = 1,2,...}
the subspace of L2(T) of "odd” functions. Moreover, because of

(Fu) (eﬂs) = +2 Z(u, Up)psin(n+1)s = +/7 Z(u, U)o Uy (COS S)
n=0 n=0
= +/ru(coss),

() < s < mw, the relation

(Fu)(t) = V7 (1) u(R1)

is true, where

1T, St>0,
=4 -1, St<0, (4.1)
0, t=d41.

Of course, at this place we could give y(+1) other values. But, in particular for
the investigation of the collocation method, we need exactly the above definition

of x(1).
Define the Fourier projections Pl : L2(T) — L2(T) by

i

.

PYf= 3 (fiex)en

k=—n—1

and the operators W' : L2(T) — L2(T) by

.

—1
W= (frenwher+ > (fre—nai)er.
k=0 k=—n—1
The Multhopp interpolation operator M can be defined by

.

MYF= " mua(f)en,

k=—n—1



where

! - M MyN—k
m+2 > F) (t5)

j=-—n—1

min (f) =

oy
and t%—exp( J ),j—n],...,n.Notethat
Jn n_|_‘l E

(MIN) = FU3), G=-—n—1,...n. (4.2)

let 7, := exp( 7:]) . Then t% =7F k= —-n—1,....n,and it follows, for
n m
0<|m|<2n+1,

n, n, 2n+1

Yoot = > wr =
k=—n—1 k=—n—1 k=0
1— m\2n+2
— ( 7:)7,)777,71 (Tn ) 0.
’ 1—-7m
This proves
S )" =2(n+1)8gm for m=-2n—1,... 2n+1. (4.3)

k=—n—1

An immediate consequence of (4.3) is the interpolation property (4.2). Moreover,
with the help of (4.3) one can prove that, for each bounded and measurable
function ¢ : T — € (comp. Junghanns & Silbermann [11, Lemma 2.2] or
Prossdorf & Silbermann [14, 7.3(b)]),

H MYap,

T
L2m) < e, ||pn||L2(T) forall p, €im P, | (4.4)
where |la]| ., = sup{|a(t)| : + € T} . Finally, let us remark that

=0

fim HMJ]C*JC‘LQ(T)

n—oo

for all bounded Riemann integrable functions f: T — (.

As usually, together with the singular integral operator St : L*(T) — L*(T)
given by

(Sru) (t) = ]— M dr

mJr T —1 '

1 1
we consider the projections Pr 1= §(T—I— St) and Qr = 5([ — St). Remember
that

[ee] —1

Stu = Z(u, €n)€n — Z (uyen)en ,

n=0 n=-—oo
which implies SZ =T and

[ee] —1

Pru = Z(u, enyen and  Qru = Z (uy€n)ep .

n=0 n=—oo



For a function a : [-1,1] — € we define @ : T — @ by the formula d(e®) =
a(coss) . If u € L2 then

(Fau)(e'*) = /ax(e™)a(cos s)u(cos s) = a(e"™) (Fu)(e™),

which implies that the multiplication operator al : L2 — L2 can be represented
as

a

1 .
(F7'f)(coss) = ﬁ f(e®),0 < s < m. It can be easily checked that

where I~ denotes the inverse mapping of F : L2 — TL2,,(T). Note

B) P,=F'P'Fp,.

Since (for w : [-1,1] — (P) MY Fu € 12,,(T)nim P and, for j = 1,...,n,
(MTF?I)( M) (F )( \/_?1( ¥, it follows F'"M"Fu € im P, and

= n o=
(F"M Fu)(z ;p ) = ?/( ). This 1mphe<
Q) M,=F'"M'F.

Now, let us look for the associated operator to the Cauchy singular integral
operator S € £L(L2). Remember the well-known relation

11U,
;/ '(y)\/]—yzdy:—Tn_H(m), l<e<l, n=0,1,..., (45)

Jay—=x

where T, (x) denotes the normed Chebyshev polynomial of first kind with the
trigonometric representation

Iy = ] T ( )_\/—2 =1,2
_ — nlCOS8SS) = COSs 77/37 n g Ly aan
0 NZS T

Consequently,
Sty =iTh31  and  (FSu,)(e' ) V2i x(e ”) cos(n+1)s
Otherwise, we have
~ 75 1 75 1 i(n s —i(n s
(STFin) (€)=~ (S1(enpr = noa)) (¢7) = = (£07F0 4 704D1),
which equals —v/2i cos(n + 1)s. It follows
(D) S=-F'xSrF

Taking into account

P1W FP,u= —P1 Z (U)o (€1 — €—prr—1) = FW,u



we obtain

(B) W,=FleWIFP,
and, analogously,

(F) W,=F'WJle FP,.

For the proof of the following lemma we refer to Junghanns & Silbermann [11,
Lemma 2.4, Lemma 2.7, and Theorem 2.3] and Prossdorf & Silbermann [14,
Theorem 7.17, Corollary 7.18, and Theorem 7.19]. For a : T — € we define
@ := a(t), and by PC(T) we denote the set of all piecewise continuous functions
a:T — € that are continuous from the left, that is, a(t — 0) = a(¢) for all £ € T.

Lemma 4.1 Assume that a and b are bounded Riemann integrable functions.

(a) Then the strong convergences
M, (aPr +bQr) Py — aPr +bQ,
and
WM, (aPr +bQu)W, — GPr + bQr

hold true. Moreover, the strong limits of the respective sequences of the
adjoint operators exist.

(b) For any continuous function f : T — C there exist compact operators

Ky, Ky € K(L*(T)) such that
MY fPI MY (aPr +bQr)P) — M} (aPr +bQr) P} M} fP}
=P PT+ P RL,PT 4,

Cn

and im,, .,

ey =0

(¢) For a,b € PC(T) the sequence {M (aPr 4+ bQr) P} is stable if and only
if aPr 4+ bQr € GL(L*(T)).

Using the relations (A), (B), (C), and (D) we can write the operators A, as in
the form A, pp = F! AEMF’PN , where AI,M = M ArPY and Ap = al —bySr.

Remark 4.2 We point out that for the validity of this transformation it is es-
sential to define x just the way we did in (4.1). Hence, x is not an element of
PC(T) in the sense of the above definition, and Lemma 4.1(c) does not ap-
ply. Consider for instance A = S € L(L2%), which is not invertible. Then
{A,m}y = {-F"MY\xSrPYFP,} is not stable. If we, however, modified the
function y in +1 to obtain the function o € PC(T),

is 1, 0<s<m,
o(e”) =
-1, ©m<s<2rm,



we would arrive at {M oSy PV} which is stable due to Lemma 4.1(c). (The in-
verses are { Sy MY oPYY.) This shows that one cannot simply reduce the stability
of {An. v} to the conditions of this lemma. The transformation to the unit circle
can merely be employed as an auxiliary tool in the local theory based on Theorem
3.1 and the local principle.

As a consequence of LLemma 4.1(a) the sequence {A, ar} belongs to the algebra
A, where s —lim A, pr = A . Indeed, the following proposition holds true.

Proposition 4.3 et the coefficients a,b be bounded and Riemann integrable.
Then, the strong limit of the operator sequence {W, A, yW.,,} exists and is equal
to Aar, where

Ay =al —bS.

Proof. With the help of (E), (F), and Lemma 4.1(a) we get
WM, (al + bYW, = F ey W MY (a1 — bxSy)Wre 1 FP,
— F ey (al — bYSt)e1F =al —bS

taking into account 0= i, X=—x,and e1Sre 1 F=58¢rF. N

For a € L>°(T), the Toeplitz operator T'(a) : H?(T) — H?(T) and the Hankel
operator H(a) : H*(T) — H?*(T) are defined by

T(a) :== PraPr and H(a):= Prae_WrPr,

respectively, where the operator Wy : L2(T) — L2(T) is given by (Wr f)(1) :=
f(). Note that J = e yPrF and J~' = F~'(I — Wy)Pre; . Since aFu € im F
for all u € L2 we get

Flar = F’71(77WT)PT(AI(PT+QT)F
= F (1~ Wry)Prey(Prae_  Pr+ Prie_1Qr)F
— F71([fWT)PT€1(PTaPT€71 Pr — Prae_WryPr)F

= F YT —Wp)Pre;(PraPr — Prie_ye_WrPr)e_ PrF.
Thus, in view of (A)

(G)  al =J7'[T(a) — H(ae 1)].J.

Analogously, we obtain

Fo'xSvF = F YT —Wyp)Prx(Pr—Qr)F
= F (I — Wy)Pre(Prxe_1 Pr — Prye1Qr)F

= F YT - Wr)Prei(PrxPr+ Prye_i1e_1Wr)e PrF

10



and, taking into account (D),

(M) S=—J"[T(x)+ H(xe)]J .

If we assign to the sequence {A, p} the sequence {AI,P} , where
Anp = PLIAT Pr+Qu)Py

then we can make the following observation.

Lemma 4.4 The sequence { A, p} is stable if and only if the sequence { Al ;1 is
stable.

Proof. ;From BPr 4+ Qr = (I + QrBPr)(PrBPr + Qr), B € L(L*(T)),
it follows that AI,P is invertible in im PT if and only if PTPJJAJ*1 PJPT =

i

J=VP, AP,.J is invertible in (im P") N H2(T) or, which is the same, if A, pis

invertible in im P, . Moreover, it holds (AIP)*1 = JA?P P,J '+ QrP", which
also yields the equivalence of the uniform boundedness of the inverses. W

5 Stability of the finite section method

To get necessary and sufficient conditions for the stability of the finite section
method we will apply a general result on a finite section method for operators
B € L(L2(T)) formulated in the following proposition.

By C we denote the smallest closed subalgebra of the algebra of all bounded
sequences {B,}22,, B, € L(L*(T)), (equipped with component-wise algebraic
operations and the supremum norm) containing the constant sequences {Pr},
{e_1Wr}, and {al} for a € PC(T), as well as the sequences {P!} for every
positive integer k. Furthermore, define the operator W : L?(R) — L*(R) by
(W) (t) = f(—t) and let x, g denote the characteristic function of the (bounded
or unbounded) interval («, 3). For the generating elements of the algebra C we
define the mappings W, , t € T, St >0, and W', 1 =0,1,2,...,in the following
way:

XO,OOI 9 f:i]v

W, {Pr} =
L St>0,

WP} = [

11



ka,k[ , =41,
WA{PL} =
o il 0
[k ] S0,
[ 0 ka,ka
I . 1=0,
[ 7 o]
, 0<l<k,
Lo 7]
WHPLY = or 0
! . =k,
0 Qr
0 0
s >k,
0 0
a(t+0)Qr +a(t — 0) g, t=+1,
W {(][} _ (l,(f + O)QR + (l,(f — 0) FPr 0
o 0 Gt -+ 0)Qr +a(t — )P |
St >0,
al , [ =0,
Whal} = { , 0]
1}
b ]>07
| o ar |
AW =41,
Wt{671WT}: |'0 [

[ —
W{€,1WT}— [ 0 []

12



1 1
Here, Fr and Qr are the projections Pr 1= §(T—I—S’|R,) and Qr = §(I*S|R,) , where
Sk denotes the Cauchy singular integral operator on the real line, (Sgf)(z) :=

oo Y —

Proposition 5.1 ([15] or [6], Chaps. 4,6) The mappings Wy and W' can be
extended to continuous *-homomorphisms W, : C — L(L*(R)) for t = +1,
WO ¢ — LLAT)) and W; : ¢ — L(L*(R) x L%(R)) for St > 0, W' :
C — L(L*(T) x L2(T)) for I = 1,2,... The sequence {B,} of finite sections
B, = P'BPY + QI with B € £L(L2(T)) and {B,} € C, where QV .= T - Pl is
stable if and only if all operators W {B,}, St >0, and WH{B,},1=10,1,2,...,
are invertible.

Taking into account Lemma 4.4 as well as (G) and (H) we can apply the last
proposition to B = JAJ ' Pr + Qr with

JAT " =T(@) = H(ae 1) = [T(h) = H(be )] [T(x) + H(xe 1)]

and a,b € PC[-1,1]. For this end we determine the respective operators W;{ B, }
and WHB,Y}.

At first, for f,g € PC(T), we directly compute

(/) L 1=0,
[ Qe 0]
wHPIT(HPIY =3 | 0 o T

H(f)y , =0,
WHPIH(f)P} =
0 0] [>0
oo "7
and

13



[T(f) = HMIT(9)+ H(g)] , 1=0,
| QrreQr 0| L
= oo
[0 0]
[0 OJ , I>1,
It follows
JAT ' Pr 4+ Qr , =0,

[QT(’?*EX)QT%-PT 0-| I
wiB,} =1 | 0 P (5.1)

I 0
, >,
0 7
Since

Wi {T(@) — H(de_1)} = a(£1)voro !

and

Wioi{T(x)+ H(xe—1)} = FX0,00 SR (T + W)x0,00

we get,
Wi1 {Bw} = Xo,1 [(](i]) + b(i‘l)SR([ + W)] X0,1 I + XR\(OJ)[ . (52)
For St > 0,2 =Rt,and T, ;== a(x — 0)Qr + a(x + 0) Pr , we have
XO,OOTH,XO,OOI 0
0 X*OO,OTH,X7OO,0[ 7

WT (@)} =

~ 0 t71 XO,ooTa,Xfoo,OI
Wt{H((l€,1)} = [
| o0 Taxoe 0

1
J
WA{T ()} = [X”O“ . ] and W {T(a)) = [2 2] :

“X—00,0

Consequently, for St > 0,
T It "XoaTepx—1,07
W,{B,} = [ Xo0,11c_Xo,1 X0 Tey  X—1,0 -I
[ 7tX*1,0T(:7X0,1[ X7‘|70TC+X7170[ J
(5.3)
XR\(0,1) 0 -I
0 XR\(—1,0) J

.
[
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with ¢4 :=a +b. Now, we are able to prove the following theorem.

Theorem 5.2 The finite section method is stable if and only if the following four
conditions are satisfied:

(a) The operator A : L2 — L2 is invertible.
(b) The operator (a — Zx) Pr 4+ Qr : LA(T) — L2(T) is invertible.

(¢) The point 0 lies outside the half-circle, which is formed by the segment
[cr (1), e—(1)] and the half-circle line from c_(1) to ey (1) that lies to the
left of the line from ¢_(1) to cy (1), and outside the the half-circle, which is
formed by the segment [c_(—1), cx(—1)] and the half-circle line from ¢, (—1)
to c_(—1) that lies to the left of the line from ¢y (—1) to c_(—1).

(d) For every z € (—1,1), the point 0 lies outside the triangle, which is formed
0

c (v+ )7(°+(T+)7(md]_

= 0) e 0)

Proof. We apply Proposition 5.1 together with Lemma 4.4. Thus, we have

to show that the invertibility of the operators W'{B,} and W;{B,} from (5.1),
(5.2), and (5.3) is equivalent to the conditions (a)-(d) of the theorem.

by the point@

Obviously, W°{B,} = JAJ 'Pr 4+ Qr is invertible if and only if A is in-
vertible. Also the equivalence of the invertibility of W'{B,} and condition
(b) is easy to see. Now, let ¢g := a(1) and ¢ := b(1). Then, Wi{B,} =
Xo,1 [co + et SR(T 4+ W)l x0T + Xr\(0,1)] is invertible if and only if

X0,1 [C() + SR([ + W)] X0,1 I: ]:12(07 ]) — ]:12(07 ])
is invertible. This operator can be written in the form
CO[ —I— (4] (54(071) — N) s (54)

1 T
where (S nu)(7) = — “y) dy is a Cauchy singular integral operator and

T Jo Yy —

1 T

(Nu)(z) = — / M dy is a singular integral operator with a fixed singularity.
mJo y+x

Following Duduchava [3, Sect. 8] we assign to the operator (5.4) the symbol

o+ (‘ranhﬂ'f—l— ) , —oo<t<oo, {= 00,

Coqh t

a(tv 5) =

co — ¢y tanh w€ , t=oo, —00 <& <00,
which can also be written as

CO+C1(M+7:\/]7M2) ’ 7]§M§]7V:7]7
a(p,v) = (5.5)
co— U , p=1, -1<v<I1.
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The image {a(p, 1) : =1 < p < 1}U{a(l,v) : =1 < v < 1} of the symbol
consists of a half-circle line from ¢g — ¢1 to ¢g + ¢ and the diameter from cq + ¢4
to ¢g — ¢y . Thus, by Duduchava [3, Theor. 8.1] the operator (5.4) is invertible if
and only if the first part of condition (¢) is fulfilled. Analogously, the invertibility
of W_1{B,} is equivalent to the second part of condition (c).

The equivalence of the invertibility of Wi{ B, } from (5.3) for all t € T with St > 0
and of condition (d) was proved in Junghanns, Roch & Weber [10, Lemma 3.6].
[ |

6 The stability of the collocation method

To prove the stability of the collocation method (2.5) we apply Theorem 3.1.
Having shown that the sequence {A, rr} = {M,(al + bS)P,} belongs to the
algebra A described in Section 3 and having computed A=al —bS (cf. Prop.
4.3), we are left, with investigating the invertibility of the coset {A, v }+Z € A/T,
which will be done by the local principle of Gohberg and Krupnik (cf. Theorem
3.2).

For r € [-1,1] let

m, = {feC[-1,1]:0< f(x) <1, f(x) =1 in some neighbourhood of 7}
and define

My = {M,fPY+T: [ €my}.

Lemma 6.1 { M} ¢4 1]is a covering system of localizing classes in A/T. If a
and b are bounded and Riemann integrable functions then the coset {A, v} + T
commutes with all elements of U M, .

T€[-1,1]

Proof. For the proof of the first part of the lemma compare the proof of Jung-
hanns & Silbermann [11, Lemma 2.6]. Let f € m,. With the help of (A)-(F) and
LLemma 4.1(b) we obtain

M, fP, M, (al +bS)P, — M, (al +bS)P,M, [P,
= P MY PRI MY @Gl = bxSe) P — M (@l = byse) PIMI TR PP,
=P, F'T(PY K P W Kk,w ) FP,

with Ky, Ky € K(L2(T)), lim,_ ||C»

L3(T) — LX), (Tg)(t) = 15[(](1‘) — g(1)]. (We insert the projection T to be

able to consider the three summands individually, since it is not guaranteed that

|£(L2(T)) = 0, and the projection T :

each summand inside the parentheses mapsim F intoim F'.) If we use the relations
P.F'TP" = P, F'"T and P,F'"TW = W, F'"T(e1 Pr + Qreq 1) as well as
(B) and (E), we see that

{(P,F'T(PT K PT + W K,WT + € PP}
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=P, F '"TK\FP, + W, I '"T(e1 Pr 4+ Qrea [ Kye 1 FW,, + P, F'TC,FP,},
which is obviously an element of 7. W

Now we are able to give local representatives for {A, v} + 7, where we assume
that the coefficients a and b of A are piecewise continuous.

Lemma 6.2 et 7 € [—1,1] and a,a,,b,b, € PC[—1,1] such that
a.(r+0)=a(r+0) and b (r+0)=0b(r+0).

Then
(M, (a,T+ b8P} + T {M,(al +bS)P,} +T.

Proof. et f e m,. By M, fM,gl = M, fgl, (A)-(D), and (4.4) we have

||{wapw}{Mw[(a - (]’T)[ + (b - bT)S]PW} + IHA/I

.

< sup HFﬁ1 /\/[71F {]?(5 —ar)l + 7?(Z - bAT)XST} Py PP, £(L2)

< fla —an)ll + £ (0= bo)ll

(lgll. = sup{lg(z)| : z € [-1,1]} for a function ¢ : [-1,1] — €), which can
be made arbitrarily small by a suitable choice of f. Thus, taking into account
T.emma 6.1, the assertion is proved. W

Lemma 6.3 Assume that a,b € PC[—1,1] and that A = al + bS and Ay; =
al —bS are invertible in L. Then |a(—1)| > |[b(—1)| and |a(1)] > |b(1)] -

Proof. The invertibility of A in L2 implies a(x £0) 4+ b(z £0) # 0 and a(z +
0) = b(x+0)#£0forall 2 € [-1,1] as well as e(z,u) #0, 2 € [-1,1], p € [0,1],
where

C(.??*O)M—I—C(.T—I—O)(]flu) ’ ME[Ov]]v .7,‘6(*],])7

ez, ) == ([T~ f()]+ fw) . ke[0T, e=1, (6.1)

]7.7[‘(”)_'_(5(7])][(”) ) ME[Ov]]v r=—1,

c(z) = % yand f(u) = sin % exp (W) . Note that z[1— f(p)]+
zof (1), p € [0,1], describes the half-circle line from zy to z3 that lies to the right
of the straight line from z to zo . Thus, the image of e(z, 1) is a closed curve in
the complex plane, which possesses a natural orientation, and by wind ¢(2, u) we
denote the winding number of this curve with respect to the origin 0. Then, the
invertibility of A implies wind ¢(x, 1) = 0 (cf. Gohberg & Krupnik [5, Theorem

17



IX.4.1]). Since Ayr is also assumed to be invertible in L2 | analogous relations

hold for d(x) := 1/c(x) instead of ¢(x) .

a1

We will show now that under the assumptions of the lemma both ¢(1) and ¢(—1)
are located in the right half plane, from which the assertion of the lemma follows
immediately. Evidently, the real parts of ¢(1) and ¢(—1) cannot vanish because of
c(+1,u) # 0, p€10,1]. Consider for instance the case Re(1) < 0, Re(—1) > 0.
By arg we denote a continuous branch of the argument defined on {e(z,p) :
“T <z <1, pel0,1}U{e(=1),e(l)}. Let e(1) = |e(1)|exp(iv), e(—1) =
le(—1)] exp(id), 0 < 4 < 2x. Then the argument increase of the closed curve
described by e(x, u) equals 27 —y+d4arge(1) — arge(—1) , which must be zero.
On the other hand, the argument increase of d (2, p) is y—d—arg ¢(1)4arge(—1) =
27 in contradiction to the invertibility of An . All other cases can be treated
analogously. W

Now we are able to prove the following theorem on the stability of the collocation
method.

Theorem 6.4 For piecewise continuous coefficients a and b, the collocation
method (2.5) is stable in L2 if and only if the operators al +bS are invertible in
12

Proof. Due to Theorem 3.1 and Proposition 4.3, we only have to consider the
invertibility of the coset {A, a»r} + 7 in A/Z. First, let 7 € (—=1,1). We choose
ar,b; € PC[—1,1]such that a,(7+0) = a(r+0) , b, (7+0) = b(7+0) , b, (+1) =

and a,T 4 b.S are invertible in L2 . If ¢, (z,u) is defined via (6.1) with a,, b,
instead of a,b, then (beraqu of by (£1) = 0) e-(£1,u) =1, p € [0,1]. This leads
to the mver‘nblh‘ry of AT .= a;T — by St in L?(T) . Lemma 4.1(c) shows that
the sequence {MJAIPJ} is stable in L?(T), which means that there exists a
sequence BT € [:(im P such that B;F’T MTATPT = PT for all sufficiently large

n and HB < const. Now we put B} := FqTBT F P, . Because
E(LQ(T))
of Lemma 6.2 {A7 M} + 7 with AT M= = M, (a;T 4+ b,9)P, is an M -equivalent,

local repreqen‘rahve of {A,.m}+7Z. Using (A)-(D) we obtain

n,T 7’]

BIAT vy=F 'TB) FP,F 'M)AIPIFP, =P,

< const.
L(L2(T)) —
For 7 = +1, we choose A7 \; = M,[a(£1)] + b(£1)S]P,. In this case, the
stability of { M [a(1)T—b(+1)xSt] P} is easily seen by Tlemma, 6.3 and relation
(4.4). Thus, the local principle of Gohberg and Krupnik (Theorem 3.2) yields
the invertibility of the coset {A, »}+Z. N

for all sufficiently large n. Moreover, || B}, P”'HE(LQ) < H BT pr

n,T .

7 The system case

One of the advantages of our collocation method based on weighted polynomials
is the fact that it can be easily generalized to the system case, that is, to problems
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of the form

k
Z((lm‘[ + bi]‘S)?l,j = fi, 1=1,...,k, (7])

j=1

where a;;, b;; € PC[-1,1] and f; € L% are given functions and the functions
u; (5 =1,...,n) are unknown. The usual polynomial approximation methods
based on certain mapping properties of weighted singular integral operators with
respect to orthogonal polynomials are not suitable for this kind of problems if
the matrices (a;;), (b;;) are not diagonal.

To avoid technical difficulties, we will restrict ourselves to deriving a stability
result for the case of piecewise continuous coefficients under the additional as-
sumption that b;;(+1) = 0 for all 4, 5.

Let k > 1 be an integer. By (L2)* denote the cross product of k copies of the
space L2, equipped with the inner product

where u = (?1,'7')']74“:17 = (7)'7‘)']74“:1 € (L2)*. By PC**[~1,1] we denote the set

of all k x k-matrices with entries from PC[—1,1]. By S we denote the diagonal

have
imP, =span{it;m:j=0,...,n—1;m=1,.... k},
where 1 j, = ((sim,ﬁj)f:1- Thus, we can write (7.1) in the form

(al +0S)u =f

(a,b,c PCF*F, fe (L2)* given, u € (L2)* unknown), and we will consider the
collocation method

Mn(ﬁl +b§)£n“n — Mwi 3 Uy € iman

for its approximate solution.

The algebra A and the ideal 7 as well as the associated operator sequences on
the unit circle are defined analogously to the scalar case using the mapping F :=
(6::F)F : (L2)F = (L2(T))*. Beside the algebra A and the ideal 7 we also

i,j=1
consider the respective algebra A" with the ideal Z" constructed in the same
way with P and W instead of P, and W, respectively. From the proof of

Junghanns & Silbermann [11, Theorem 3.1] one can verify the following result.

Lemma 7.1 let c¢,d € PC]“X]“(T) and Ay = cl +dSr : (L2(T)* —
(L2(T))* be a ®-operator. Then the coset {M T Ar PV + IV s invertible in
A" /TT.
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Now we are in a position to prove the necessary and sufficient stability result.

Theorem 7.2 let a,b € PCHF[—11], b(+1) =0, A =al +bS. Then
the sequence {A,} = {M ,AP,} is stable if and only if the operators A and
A=al —bS are invertible in (L2)* .

Proof. In the same way as in the scalar case one can show that M , AP . and
W, M, AW , converge strongly to A and %T, respectively. Thus, as in the proof
of Theorem 6.4, we only have to show that the two invertibility conditions imply
the invertibility of the coset {A,} + 7. At first we observe that A = F 1 ApF |
where Ap = ¢l +dSy with e =a,d = EX‘ Since ¢ and d are continuous
in +1 (because of b (+1) = 0), the invertibility of 4 and A implies that A is a
d-operator (see Michlin & Prossdorf [13, Theorem 6.1]). By Lemma 7.1 we have
the invertibility of the coset {M T ArPTY 4+ 7T  from which we can conclude the
invertibility of {A,}+7Z. N

8 Weighted Sobolev spaces and convergence rates

The aim of this section is to introduce an appropriate scale of Sobolev spaces
and to study the mapping properties of the Cauchy singular integral operator
involved in equation (1.1) in order to give a convergence rate for the error of
the collocation method. (For the finite section method, the considerations are
analogous.)

How to define these Sobolev spaces is suggested by the orthonormal system {1, }
in L2, which we use as ansatz functions for the considered approximation meth-
ods. Thus, analogously to Berthold, Hoppe & Silbermann [1] we define

1
o~ > 5
B2, ={uell:ul,,. = (Z<1+n>23|<u,m>g|2) < o0

n=0

for all s > 0. Since

(u, ) e = (ou, Uy (R.1)

we have |lu||, . = [[oull, , , where

00 5
LZ’S =<weE LZ Hloll,, = (Z(] + n)* (v, Un>@|2) < 00
n=0

is a special case of the Sobolev spaces studied in Berthold, Hoppe & Silbermann
[1]. This means that the multiplication operator o/ : LZ’S — LZ’S is an isometric
isomorphism. Relation (4.5) shows that

S: f,?” — LZ’S is continuous for all s> 0, (R.2)

where L2 _is defined in the same way as LZ . with the weight o instead of ¢ and

7,8

the polynomials T, instead of U/, . Thus, to find sufficient conditions on a and b
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such that A = al 4+ b5 belongs to [:( 2.s) s we have to study the multiplication
operators al : L s — L2 and bl : L2 — i?, . - At first we remember that, for

a,s5
any integer r > 07 the norm ||u||, . is equivalent to
- b

lull, ) = D ||t u®
k=0

(Rer‘rhold Hoppe & Silbermann [1, pp. 196,197]) and that al € [:(L;S) ,0<s<
Lif pFalk) e L*(=1,1),k=0,...,r (Jungha,nns [8, Lemma 3.5]).

Lemma 8.1 et r > 0 be an integer. ffap a®) e Lo (-1 1) (md O (ho)F) €
L>(—1, ),kf(),...,r,thenalE[ﬁ(LZ’s) andb[Eﬁ(L?ﬂ,, s, 0<s<r.

Proof. From |laul|, . = |lacull,, and [Jul|, . = [[oul|,, one can see that al €

[:(f,?”) if and only if al € [:(L;S) . The second assertion follows from
Wl = Woull,,

~ Z Hcp bm/ H Z HcpkH bm/

< S5 (el ),
k=0 7=0
<mmZZ(NMHWWLMW
k=0 7=0

and the interpolation property of the Sobolev spaces (comp. Junghanns [8, Re-
mark 1.5]). W

Lemma 8.2 Fors> 0 and [ € i?” the following assertions hold:
(a) Timy—oo [If = Puflls =0,
(0) ILf = Pufllin < (0+n0)" " Ifll s 0<E < s
() WPaflls <" | fllsn s £> s,

(d) i |Lf = Mo fll, e = 0 if 5> 5,

(€) If = Muflly o <constn ][, ., 0<t <5, 5> 7.
n—1
Proof. Define, for u € L27 Py = Z(u, Uk),Ur . Then, in view of (8.1),
k=0

P, = ¢P?0 . Since also M, is defined as M,, = ¢L¥0, the assertions (a)-(e) are
immediate consequences of the respective properties of P¥ and LY in the scale

LZ s, $ > 0 (Berthold, Hoppe & Silbermann [1, Lemma 2.2 and Theorem 3.4]).
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Theorem 8.3 Assume that 15 < s < r,r an integer, and that Fa%),

) F) € Too(—1,1), k= 0,...,r. If the collocation method (2.5) is sta-
ble and if the solution u* of equation (1.1) belongs to LZ’S , then

[y — u*||t~ < constn'~* ||"*||s,~ , 0<t<s,

where u> € im P, is the solution of (2.5).

Proof. Since {A, p} is assumed to be stable we have, in view of Lemma

8.2(c),(e),

| Py — ], n | Pou™ — |,

(VAN

(VAN

const n || An v Pou® — M, f||

= constn' |M, A(P,u* — u™)|]

a

< constn’ (||(M, — I A(P,u* — u )|, + | A(Pu™ — ™))

< constn’ (n*”‘ |A(Pu™ — ?1,*)||S’N + ||Pou” — ?1,*||(T) )

By LLemma 8.1 and (8.2) A € [:(f,?”) . Thus, taking into account Lemma 8.2(b),
the assertion follows. W

9 Implementation of the collocation method and
numerical results

A suitable implementation of the collocation method enables us to solve the
resulting system of linear equations with a fast algorithm that requires only O(n?)
operations and O(n) storage due to the special structure of the system matrix.
For this end, we have to choose an even number n of collocation points.

We search for the values of the approximate solution u, of (2.5) in the Chebyshev
2k — 1

nodes of first kind zp, = cos 7, k = 1,...,n, that is, the zeros of T, (2).

n,
Therefore, since n is even, none of these nodes coincides with one of the collocation
points T;p . We now write the weighted polynomial u, in the form

.

() = P) () = () 3. Epnlion (7). 0.1)
k=1

where
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is the k-th fundamental polynomial of Lagrange interpolation with respect to the
nodes zp,. lLet
1— 22
Akn = 7“
in

Then we have (using the Gaussian rule with respect to o(2))

I I

— @) w, (t) dt = — (1—1 )w77 Z Apn Wi (T kn)

T J 1 ™)

if w,, is a polynomial of degree less than 2n — 2.

et us consider now the action of the operator S on a weighted polynomial of the
form (9.1). Let @ # x, forall k=1,...,n. Then

o)) = wn) )+ & [ O g

T t—=x

(9.2)
— wp, ()
— 7”77 + Z Akw s

where &k, = w, (21,). Obviously, this formula still holds if w,, is a polynomial of
degree 2n — 2. Thus, if we put w, = T, and note that T, (2z,) = 0, (9.2) yields

n
A kn,

on(x) = (SeTa)(2) = Tu(2) | (S@) () — D

k=1 Thn — &

Note that Ay, = % Using the latter relation, we obtain that (9.2) equals
2w\ T kn
(Spw,)( Z Aen —I— wy (1) 0n() )
Thn T, (x)

Now we can write down equation (2.5) in the form

a(wl, )o@y, )wn (27,) 4+ (23 ) (Sewn) (27,

agej —bj 1
= gkw f(T 77)
]; Cl — (] T'( ) 4
where
ap = Akan(mkw) = On (Tkw)v
b? = b(Tyw)Q”(Tyw) + (]’(‘7";077)99(7‘777)7—777(7‘777)7
k= Tkp, d;= mfn, e; = b(Tfn)
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Note that
1 7
On — SQOT = 55199((]77 — (]77,,2) = §(T77,+1 — Tn,1).
In the following we will show how to solve efficiently a system of linear equations
with a Lowner-like matrix A,, = ((1,'7'14)777’14217 where

agej — by

(9.3)

aip =
7k cr— (]7

Having solved this system, we only have to multiply its solution by the diagonal
matrix diag (T} (2xn))7—, to obtain the &,. We assume that A, is strongly
regular, that means all sections A, = ((ljk);nkﬂ are invertible for m = 1,...,n.
The fast algorithm is essentially based on the following two lemmata (comp.

Heinig & Rost [7]).

Lemma 9.1 Let A, = ((ljk)?;k:1 be regular, and let "1 = (T}Zq)z;: and
2y = (Tg,:1)z;11 be solutions of

Az = ()52 and Ay qagT! = (a,)72)

Then the solution x, of Anx, = (f;)7= is given by

Ty — ‘7"”’71 + PY_W mgi1 )
0 M \ —1

where

n—1 n—1
n—1 n—1
Tn = fn - Z nkT, Tn = Z UnkTo  — fnn-
k=1 k=1

(Note that the regularity of A, implies 5, # 0.) The special structure of the
matrix (9.3) allows to determine the vectors zg" recursively from the solutions

2", 25" of the fundamental equations
A = (e, and Aol = (<b),.

Lemma 9.2 (cf. [2], Equ. (2.31)) Form=1,....,n— 1 let

m m
41 — G ! 41 — Of !
ﬁml =1 E mqnlm ﬁfn? = Om41 + E mgnlm
E—1 Cm+1 — Ck 1 Cm4+1 — Ck
and
X X
2k 1k
k=1 Cm+1 — Ck 1 Cm4+1 — Ck
Then

m. m.
B2z}, + Bz
pl = TRk mT 2k k=1,...,m.

(8779 (Cm,+1 - Ck)

Now we can alternately apply Lemma 9.1 and Lemma 9.2 to obtain the following
algorithm:
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o Put z] := fi/air, v}y = ara/ary, x), = e1/ar, vy = —by/ay

e FORM:=2TO n—-1DO

1

m m m m— m—1 m—1
— Compute 2, 27", 25" from =z , T and 27" by Lemma 9.1

— Compute 27" from 27" and 27" by Lemma 9.2

e Compute 2, by Lemma 9.1

In the following we present some numerical results for the collocation method. At
first, we consider three examples for the coefficients a(x) and b(x) with various
solutions u* of the original equation (1.1) and of different smoothness in order to
verify the assertion of Theorem 8.3.

(A) a(z) =sgn (), b(x) =ix.

(A1) f(z) == (1 + ;ln L 2‘”2) L ur(x) = ).

r

r 1—=x 2x
(A2) f(z)=(1—2) [Sgn (x) + %ln ] +:] - ?T, w (x)=1—=x.
(B) a(z) = 2, b(z) = i(1 — 2?). The assumptions of Theorem 8.3 are fulfilled
forr =3.
z(1—2%)  1-—2a?
(B1) (o) =2l + LT 10 Lo o) — o
T T
B2) s =200+ [ o) e =
flz) = T - x n1—|-.77 ,u*(z) = T
1 — 22 1—: 2

Remark that u* € i?” for s < % in examples (B1), (B2) and for s < % in
example (B3).

(C) a(z) =2, b(x) =4(1 — TQ)% Here, in Theorem 8.3, the integer r > 0 can
be chosen arbitrarily. If

Jlr) =Tt [zm +0- ) (wﬂ— i 1? - 2?)]

then w*(x) = |z|v1 — 22 and u* € i?” for s < %

Taking into account Lemma 8.2(b) it is sufficient to compute

n—1

enp(ul) = || Pou™ — “:,Ht,fv — \l Z(] + k) s — ag?

k=0

in order to check the convergence rate, where

ap = (W), and  ap, = (Ul i),
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are the Fourier coefficients of the exact and the approximate solution, respectively.

Using the Gaussian rule with respect to the Chebyshev nodes of first kind we find

T — .
Njp = — Z(] - Tzn)gkwnvy(?qkﬂ) 5 ] = 07 ]7 -y — 27

n
k=1

with &g, from (9.1). Furthermore, with the help of the three-term recurrence
relation

Uipr(z) = 22U;(x) = U;_q1 (2), j=1,2,..., (9.4)

and T, 41 (2) [Upt1(2) — U,—1(2)] we obtain

1
T2
(1 — 22U, (2) = %[mUn,Q(m) — U, _3(2)] — %TM (z)

and, consequently,

.

T
Oy 1,0 = % Z[mkn(]an(mkn) - (]77,73 (mkn)]gkn .
k=1

(Note that T,,14 is orthogonal with respect to (-,-), to all polynomials of lower

2
degree.) Thus, again by (9.4) and by Uy(z) = /=, Ui(2) = 22Up(2) , we find
T

the following algorithm to compute the Fourier coefficients of the approximate
solution effectively:

V21

o Put bg= —— (] — mzn)flm, b1 = 20pnbro, k=1,...,n.
n

n n
e Compute ag, = Z bro, 1y = Z by .
k=1 k=1

e FOR j=2 TO n-2 DO

— Put bk]‘ = kanbk7'7‘,1 — bk,j*? Jhk=1,...,n.

— Compute o, =371 by

1 & mknbk,an - bk,nff%
3 2 -

o Compute a,_y, = = 5
k=1 = mkn
As the following tables show, in all examples we can observe a convergence rate
depending from the smoothness of the solution of the original equation (1.1)
although not all examples are covered by Theorem 8.3. We use the notation

en(ur) =eno(uy) .
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Example (A1) Example (A2)
n en(ul) | n0e, (uk) n en(ul) | n%Pe, (uk)
20 | 0.14450 0.646 20 | 0.27786 1.243
40 | 0.10500 0.664 40 | 0.20108 1.272
60 | 0.08654 0.670 60 | 0.16543 1.281
80 | 0.07530 0.673 80 | 0.14381 1.286
100 | 0.06754 0.675 100 | 0.12892 1.289
500 | 0.03049 0.682 500 | 0.05807 1.298
1000 | 0.02158 0.682 1000 | 0.04110 1.300
3000 | 0.01247 0.683 3000 | 0.02374 1.300
5000 | 0.00966 0.683 5000 | 0.01839 1.300
Example (B1) Example (B2)
n en(u) | n0e, (uk) n en(u) | 0%, (uk)
20 | 0.12130 0.542 20 | 0.18066 0.808
40 | 0.09000 0.569 40 | 0.13050 0.825
60 | 0.07476 0.579 60 | 0.10746 0.832
80 | 0.06532 0.584 80 | 0.09349 0.836
100 | 0.05873 0.587 100 | 0.08386 0.839
500 | 0.02674 0.598 500 | 0.03788 0.847
1000 | 0.01895 0.599 1000 | 0.02682 0.848
3000 | 0.01096 0.600 3000 | 0.01550 0.849
5000 | 0.00849 0.600 5000 | 0.01201 0.849
Example (B3) Example (C)
n En(ul) n? e, (ul) n En(ul) n'Pe, (ul)
20 | 0.0004078075 0.730 20 | 0.00658347 0.589
40 | 0.0000813336 0.823 40 | 0.00240712 0.609
60 | 0.0000307953 0.859 60 | 0.00132479 0.616
80 | 0.0000153296 0.878 80 | 0.00086516 0.619
100 | 0.0000088909 0.889 100 | 0.00062106 0.621
500 | 0.0000001660 0.928 500 | 0.00005611 0.627
1000 | 0.0000000295 0.933 1000 | 0.00001986 0.628
3000 | 0.0000000019 0.936 3000 | 0.00000383 0.629
5000 | 0.0000000005 0.941 5000 | 0.00000178 0.629

With the following two examples we show that the condition of the invertibility of
the operator A = al — bS5 is essential for the stability of the collocation method.

D) a(z)=2+V1— 22, b(z) = —ix,
]—I—\Hfr?
(x) |T|\/]*T Q—I—\/]fr —(\/ 21n m 2),
u*(x) = |z|V1 — 22,
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u*(x) =

In both exa,mgles (D1) and (D2) the operator A = al + bS is invertible in L2.
The operator A = al —bS is invertible in L2 in example (D1), but not in example

(D2). The following tables compare the results for both examples and show the

instabilities in example (D2).

Example (D1) Example (D2)

n En(ul) n'Se, (uk) n En(ul) n'Se, (uk)
5000 | 0.00000189 | 0.669111 5000 | 0.00000189 | 0.668841
6000 | 0.00000144 | 0.669199 6000 | 0.00000144 | 0.668974
7000 | 0.00000114 | 0.669262 7000 | 0.00000114 | 0.669077
8000 | 0.00000094 | 0.669310 8000 | 0.00000094 | 0.669147
9000 | 0.00000078 | 0.669346 9000 | 0.00000079 | 0.673460

10000 | 0.00000067 | 0.669376 10000 | 0.00000098 | 0.980731
11000 | 0.00000058 | 0.669400 11000 | 0.00000069 | 0.791523
12000 | 0.00000051 | 0.669420 12000 | 0.00000055 | 0.726934
13000 | 0.00000045 | 0.669437 13000 | 0.00000427 | 6.325547
14000 | 0.00000040 | 0.669452 14000 | 0.00000058 | 0.953810
15000 | 0.00000036 | 0.669464 15000 | 0.00000036 | 0.669447

The following table shows the behaviour of the algorithm for example (1D2) be-
tween n = 12000 and n = 14000 in more detail.

In the following example (
invertible, and one can observe instabilities.

Example (D2)

n En(ul) n'Se, (uk)
12100 | 0.00000050 0.671
12200 | 0.00000200 2.694
12400 | 0.00000183 2.525
12600 | 0.00003123 44175
12800 | 0.00040888 592.127
13000 | 0.00000427 6.326
13200 | 0.00000413 6.270
13400 | 0.00000103 1.596
13600 | 0.00000080 1.268
13800 | 0.00000043 0.702
13900 | 0.00000041 0.670

D3) both operators A = S and A = —iS are not
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(D3) a(z) =0, b(a) =1,

+V1—2?
(=),

T
(2) = —
T

u*(x) = |z|V1 — 22,

Example (D3) Example (D3)
n En(ul) n'Se, (uk) n En(ul) n'Se, (uk)
200 | 0.00074038 2.094 10300 | 0.00000493 5.151
300 | 0.00040362 2.097 10310 | 0.00000199 2.084
400 | 0.00026282 2.103 10320 | 0.00000502 5.267
1000 | 0.00006671 2.110 10330 | 0.00000218 2.292
1500 | 0.00003630 2.109 10340 | 0.00000204 2.147
2000 | 0.00002356 2.107 10350 | 0.00002361 24.864
2500 | 0.00001689 2.111 10360 | 0.00000190 2.001
3000 | 0.00001283 2.108 10370 | 0.00000128 1.350
3500 | 0.00001025 2.123 10380 | 0.00000230 2.427
4000 | 0.00000720 1.821 10390 | 0.00000179 1.894
4500 | 0.00000698 2.106 10400 | 0.00008048 85.360

With our last two examples we want to demonstrate that the approximation
methods investigated in this paper can also be applied in Newton-like methods
for the numerical solution of nonlinear Cauchy singular integral equations. For
this aim we consider an equation of the type

T ?/ —I— / dy =10 9.5
i ) (9:5)
and look for an approximate solution u,(2) of the form (9.1), which satisfies
T ua(y) ,
F(mfnv“n(m;‘pn))_l__./ﬁ1 mdl}:m J=1...,n. (9.6)
(m41)

The solution of (9.6) is approximated by {?1,77 }m o C im P, , where uy, =

?1,7(7?77') + 7)7(7,777') and
F (2% a2 ol (2 1 L [ o (y) d
“(mjnv 2 ('77,7‘77,))”77, (Tm) + =] m Y
1, (m)
:7];7(37@7“7(77)7,)(37@))71/ wdu, i=1,...,n.
gn in Ty — T?”

Remark that the last system of equations is of type (2.5). Let us consider the
examples

(1) Floun) = (-4 )0 = (1= 2) (3 2)(1 — )+ Tl ] 4=

T 1+ T

and
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1— = 2x

(E2) F(x,u)= 3+ .77)?1,2 - (1 - .772) B+a2)(1 - .772) + ]—ln

T 1+ T

with w*(2) =1 — 2 and w*(2) = |z|v/1 — 22 as the solution of (9.5), respectively.

The following tables show the values ?1,7(7,8)(.77@ ) respective ?1,7(7,7)(.77@

T 7,) in comparison

with u* (Tfﬂ) for n = 20, where the iteration with respect to m was started with

u(©)(2) = 0.5 and was stopped, when ||7)7(7,m)||,, <1075,

Nonlinear SIE (9.5), Example (E1)

BT BT
11 0.004738 | 0.011169 11 | 1.074944 | 1.074730
2 | 0.044585 | 0.044427 12 | 1.221685 | 1.222521
31 0.098166 | 0.099031 13 | 1.365625 | 1.365341
41 0.172867 | 0.173761 14 | 1.498809 | 1.500000
51 0.267069 | 0.266948 15 | 1.623959 | 1.623490
6 | 0.375692 | 0.376510 16 | 1.730910 | 1.733052
7 1 0.500191 | 0.500000 17 | 1.827287 | 1.826239

0.633953 | 0.63465H9 18 | 1.895318 | 1.900969
91 0.777670 | 0.777479 19 | 1.959763 | 1.955573
10 | 0.924564 | 0.925270 20 | 1.944654 | 1.988831

Nonlinear SIE (9.5), Example (E2)

BENEAMIERTS BENEAIENGS
1| 0.021202 | 0.022214 11 | 0.994418 | 0.994415
2 1 0.087643 | 0.086881 12 1 0.950509 | 0.950484
31 0.187964 | 0.18825H5 13 | 0.8665H38 | 0.866526
41 0.317469 | 0.317329 14 | 0.750046 | 0.750000
5 1 0.462583 | 0.462635H 15 | 0.611306 | 0.611260
6| 0.611303 | 0.611260 16 | 0.462769 | 0.462635
71 0.749985 | 0.750000 17 1 0.317531 | 0.317329

(0.866549 | 0.866H26 18 | 0.188801 | 0.1882h5H

0.950480 | 0.950484 19 | 0.087618 | 0.086881
10 | 0.994435 | 0.994415 20 | 0.024697 | 0.022214
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