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Abstract

An optimal control problem governed by the heat equation with nonlinear bound-
ary conditions is considered. The objective functional consists of a quadratic ter-
minal part and a quadratic regularization term. It is known, that an SQP method
converges quadratically to the optimal solution of the problem. To handle the
quadratic optimal control subproblems with high precision, very large scale math-
ematical programming problems have to be treated. The constrained problem is
reduced to an unconstrained one by a method due to Bertsekas. A multigrid ap-
proach developed by Hackbusch is applied to solve the unconstrained problems.
Some numerical examples illustrate the behaviour of the method.
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1 Introduction

The behaviour of Lagrange Newton SQP methods for solving nonlinear optimal control
problems has been the subject of several recent publications. For instance, their appli-
cation to the control of ordinary differential equations was discussed by Alt [1], [2], [3],
Alt and Malanowski [5], Machielsen [25]. The case of weakly singular integral equations
was considered by Alt, Sontag and Troltzsch [6]. Control problems for nonlinear partial
differential equations were studied by Heinkenschloss [17], Heinkenschloss and Sachs [18],
Heinkenschloss and Troltzsch [19], Kelley and Sachs [20], [21], Kupfer and Sachs [23],
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Goldberg and Troltzsch [13], and Troltzsch [30], [31]. We refer also to a recent paper by
Gill and others [10]. Tt is meanwhile shown in most of the cases mentioned above that
the (continuous) SQP method exhibits the expected local q quadratic convergence in
spaces of type L. We refer to [6], [19], [30], [31] for the proof under strong second order
sufficient optimality conditions. A detailed convergence analysis assuming weaker second
order conditions is contained for a simplified model in [13] and for a general class of control
problems governed by semilinear parabolic equations in [32]. Owing to their quadratic
convergence, these methods appear to be promising for a high precision numerical solution
of control problems.

In the applications to function spaces, the method has to be linked with a discretization. It
may appear on a different level. The simplest way is that of discretizing the optimal control
problem as a whole, to obtain a large scale finite dimensional optimization problem. Then
the finite dimensional SQP method is applied. This direct approach was succesfully
tested for many control problems governed by ordinary differential equations and for
some parabolic control problems with moderate discretization.

Direct methods may have some drawbacks in the case of partial differential equations.
There are several reasons for: First of all, even a moderate accuracy for solving the state
equation may lead to huge dimensions. For instance, discretizing a parabolic equation in
a rectangular 2) domain with uniform meshes of 100 node points for the time and the
two space variables leads to 10° state variables. Note that this large number is already
needed to solve the state equation with a moderate precision of order 1072,

A second problem is connected with solving the state equation itself. An explicit dis-
cretization is, as a rule, useful only for domains of simple geometry. If domains with
curved boundaries have to be used, professional software should be applied. The solver
for the equation may work with with irregular and moving grids, so that the discretization
of the problem is not known in advance. Tt is defined by the solver during the process
of computation. Therefore, we are particularly interested in methods, which are able to
incorporate the hest available solvers for the state equation (more or less as a black box).

In this paper, we continue the numerical analysis of [13], where the convergence was
shown for a simplified n-dimensional model under weak second order assumptions. Nu-
merical examples were presented there for the one dimensional heat equation with non-
linear boundary condition. Here, we concentrate on the computational aspects, which are
worked out in more detail. Moreover, we regard examples in a domain Q C IR?, where
the dimension of the discretized problems is already very large.

We pursue the following strategy: The discretization is applied to the (continuous) linear-
quadratic control sub-problems. They are solved through a number of unconstrained
problems. This leads to solving a sequence of fixed-point equations by a multigrid tech-

nique owing to Hackbusch [14]. We refer also to Hackbusch and Will [16]. Similar fixed
point techniques were used also by Kelley and Sachs [20], [21].

Certainly, thereis a lot of freedom in choosing the different steps of the method. Moreover,



our method is not very effective (cf. the final comments of our paper).

Our main aim is to verify the fast convergence of the standard (infinite-dimensional)
SQP method for a simplified class of nonlinear parabolic problems in 2I) domains by a
technique close to former theoretical investigations.

The way of discretizing the problem and herafter applying the SQP method is not suitable
for this purpose. It would confirm the (known) quadratic convergence of the method in
finite dimensions, tending to an approximate solution. The distance between approximate
and exact solution will have the order of the discretization error.

It is evident that the precision of computed optimal controls cannot be better than that for
solving the state equation. Our remarks to this situation in [13] reveal that the (infinite-
dimensional) SQP method converges quadratically as long as the precision for solving the
linear-quadratic subproblems is compatible with the distance of the current iterate to the
exact one. Hence the discretization level has to be increased from step to step. This is
the point where the dimension becomes soon astronomical.

Due to this reason, we are not able to report on a sequence of accuracy 10~", 1072, 107*,
1078, as the reader might expect. We focused our attention to a satisfactory accuracy of
the computations and terminated the process at the level of "graphical exactness” (related
to a precision of order 1072). Tn 2D-domains, this moderate precision leads already to more
than 4 - 10° state variables. Qur method has to deal with this dimension. Undoubtedly,
such high accuracy will not be needed in many practical applications. On the other hand,
3D domains will lead to the same large dimensions for a much lower precision.

For testing the SQP method we consider the optimal boundary control problem to mini-
mize

elym) = Sl ) wrlogay + 5l (1)
subject to
yi(e, 1) = Ayy(x,t) in
y(x,0) = yr(x) in (1.2)
Ay(e,t) = bly(x,t))+u(x,t) on X

and
Uy < u(x,t) < uy a.e. on M. (1.3)

We assume that Q@ C IR” is a bounded domain with boundary T" of class C%, (0 < o < 1)
such that € is locally at one side of I'. We put @ = Q x (0,7), ¥ =1 x (0,7); T > 0,
A > 0, u, < uy are fixed real numbers, and y;, yr € C(Q) are given functions. By
d, the (outward) normal derivative on T' is denoted. We assume that b = b(y) belongs
to C*'(IR) and is monotone non increasing. The control function v = u(x,t) is looked
upon in L°(X), while the state y = y(x,t) is defined as weak solution of (1.2) in V =
W0, TYNC(Q), where W(0,T) = {y € L*(0,T; H'(Q))|y: € L*(0,T; H'(Q)")} (cf. Lions
and Magenes [24]).



A weak solution y of (1.2) is defined by y(2:,0) = yo and

(yt(t),q))(g1)/ﬂ1—I—/Vy(t)Vvdm:./(b(y(-,t))—|—u(-,t))vd§ ae. 1€ (0,7) (1.4)

r

for all v € H'(Q) (dS: surface measure on T').
Let Uyg = {u € L)t vy, <u(x,t) < uya. e on X} be the admissible set.

2 Necessary and sufficient optimality conditions

First of all we should mention the following result on existence and uniqueness for the
state equation (1.2). It is due to Raymond and Zidani [28]:

Theorem 2.1 For each control w € L>(X) the equation (1.2) has a unique solution
y € C(Q)NnWw(o,T).

(cf. [28], Theorem 3.1 and Proposition 3.1).

As an immediate conclusion we obtain by standard methods the existence of at least one
optimal control, as u is appearing linearly, ¢ is convex and continuous and U, is weakly
star compact. However, we do not focus our method on (globally) optimal controls only.
The SQP method will converge in a neighbourhood of any locally optimal control, provided
that some natural assumptions are satisfied. To make them precise we state at first a set
of standard first and second order optimality conditions.

The first order necessary optimality conditions for a pair (y,u) consists of the state equa-
tion (1.2), the constraint u € U,4, the adjoint equation

—pi(x,t) = Aup(x,t in @
prT) = (e T)yr(e) 0 2.1)
Oop(x,t) = U(y)p(e,1) on ¥
and of the variational inequality
/(p(.?:?t) + Au(x, t)) (u(a, t) — u(x, 1)) dSdt > 0. (2.2)

b

Moreover, we shall assume that (y,u) satisfies second order sufficient optimality condi-
tions. To formulate them, we introduce for arbitrary small (but fixed) o > 0 the set

I, ={(x,1) €| Au(z,t) 4+ p(x,t)| > o} (2.3)

of sufficiently strong active inequalities.



To formulate associated second order sufficient optimality conditions, we introduce the
Lagrange function L,

L(y,u,p) = o(y,u)— '[Q{yt p+ < Vy, Vp >}dadt
+ s p(b(y) + u)dSdt.

L is defined on Y x L>®(¥) x Y. It is twice continuously differentiable w.r. to (y,u) in
Y x L*(¥). Note that this is not true in W(0,7T) x L>(%). The product [, y: pdxdt
in the definition of L is defined in the sense of the pairing between L2(0,7; H'(Q2)")
and L2(0,7T; H'(Q)). However, this will not be needed in this paper. The second order
derivative of £ w.r. to (y,u) is

L7y )y ), (y2,u2)l = Jo yn (T)ya(T) dr+
+ [s.(Auqug + p b (y)yry2) dSdt.

The second order sufficient optimality conditions for (y,u,p) are as follows:

There exist § > 0 and & > 0 such that

‘C”(yvuvp)[(yvu)v (yvu)] > 6”“’”%2(2) (24)
for all (y,u) € W(0,T) x L?(2) such that w = 0 on I, and
(55C) v = Ay
y(0) = 0 (2.5)
dy = V(y)y+ u.

Now we assume once and for all that a reference pair (y,u) is given, which satisfies together
with an associated adjoint state p the optimality system and the second order sufficient
optimality condition.

It can be shown that u is under these assumptions locally optimal in the sense of L™(3)
(this can be even proved in LP(¥) for p > N 4 1): For a weaker version of second order
sufficient conditions we refer to Goldberg and Troltzsch [12]. In the case of an elliptic
equation of state this is shown in Casas, Troltzsch and Unger [8]. Their technique can
easily be transferred to the parabolic case considered here.

3 The Sequential Quadratic Programming method

In this section we recall the (continuous) SQP method. Let wq = (yo, po, 1o) be a starting
triplet (we shall assume that wq is close to the reference triplet w = (y,u, p)). Then the Se-
quential Quadratic Programming (SQP) method determines a sequence wy, = (Y, pr, Ug)



as follows. Let ¢ > 0 be given. Initiating from wy, the next iterate wyy1 1s obtained from
solving the linear quadratic control problem:

Minimize
1
@I(ylm W)(?/ — Ye, U — Uk) + §£ll(yk7 Uk, Pk)[(?/ — Yr, U — W)]Q (3.])
subject to
ye = Ay n @
y(0) = yr in 0 (3.2)
Ay = blys) +¥(y)(y —yx) +u on X, '
uw € Uyy.

The solution is (yg41, ukt1), while the next iterate pryq of the adjoint state is obtained
from the adjoint equation

—pr = Ap in @
p(T) = yenr(T) —yr in 0 (3-3)
dp = V(y)p 4 peb”(ye)(Yeer —yx)  on %
For convenience we indicate the explicit expressions of ¢’ and L":
O (ko )y — yeou — ) = foyr(T)y(T) — yu(T)) dr+
+ fs Aug (u — ug) dSdt
L7 (yiy i, pie)[(y =y —wi)* = Jo(y(T) — yu(T))* da+

T oM — ) + e B (i) (y — y)?) S,

Unfortunately, the linear-quadratic optimal control problem above is not necessarily con-
vex. Our second order sufficient optimality condition imposed on w is too weak to guaran-
tee convexity. Therefore, we cannot expect that the SQP method converges locally to w,
unless w belongs to a unique global minimum. Note that our method determines global
minima of the quadratic sub-problems.

This is the reason to restrict the optimization in (3.1) (3.2) to a neighborhood U’ of the
starting element w, (containing (w) in its interior), where

Ury={u e Ugl||u—up|r~ <r}.

The following convergence result can be shown, cf. Goldberg and Troltzsch [13] for the
simplified problem discussed here and to Troltzsch [32] for a detailed analysis in the case

of a general class of nonlinear parabolic control problems. Let B,(w) denote the open
ball around w in the natural norm of C(Q)? x L>(%).



Theorem 3.1 Let p > 0 be sufficiently small and r := 2p. If the search in (3.1)-(3.2) is
restricted to U7, then the SQP-method generates for any starting point wo = (Yo, po, to) €
B,(w) a unique sequence {(yg, pr,ur)} such that

[(rtrs Prars i) — (o 2y ) L@y xroo 2y < ol (ks Prs k) — (v, p, “)||20(Q)2xrloo(2)a (3.4)

(k=0,1,...)., holds with is a certain positive constant c,,.

Remark: In [13], r corresponds to 2/3varepsilon, p to /3. If the second order sufficient
optimality condition is required for all (2:,¢) € ¥, then the quadratic sub-problems are
convex and the restriction to U7, is not necessary. In our test examples, we did not use

ur,.

A different method of Newton type, presented by Kelley and Sachs [22] for the control
of ordinary differential equations, is able to avoid this restriction to a neighborhood.
However, the authors have to impose some structural assumptions on the active set and
conditions on the slope of the switching function at the junction points.

This convergence result remains true for a very general class of parabolic control problems.
We refer to [32]. However, it is more or less only of theoretical value. Our convergence
analysis s based on an exact solution of the quadratic subproblems. Without aiming to
give a rigorous error analysis for an inexact solution of these problems, we briefly sketch
a simple estimate.

Let us denote by a(h) the distance between w” and the exact solution w, of (QP, ). Tt
is known that a(h) = O(h) can be expected. Denote by h™ the mesh size for discretizing
(QP,). An easy estimate shows that quadratic convergence is preserved, if At is defined
according to the rule

o(h*) < cllul — wly

(cf. [13]). Then
s, wll < et wliy

is obtained for all steps of the SQP method with the same constant ¢. This gives a rule
to adapt the precision for the solution of the quadratic subproblems: Roughly speaking,
the mesh size has to be proportional to the current accuracy of the SQP step.

Clearly, this strategy can rarely be used in practice, as the size of the problems would
grow rapidly. The bottleneck is here the precision to solve the forward-backward system
(3.2) (3.3). The requirement to adapt the accuracy for solving these equations will lead
in a few steps to an enormous number of state variables. We shall not try to do this.
Our aim is to solve the quadratic subproblems with a quite high precision (whatever this
means). In this case, the speed of convergence will mainly be limited by a(h,) after some
steps.



4 Approximation of the quadratic subproblems by a
direct method

The following direct method works very well for the solution of the quadratic sub
problems, if the requirement of precision is quite low: Let A > 0 denote a certain mesh
size characterizing the discretization of the parabolic PDE and the discretization of the
control u.

Let the boundary domain ¥ be subdivided into m parts ¥;, j = 1,...,m, where m € IN.
We are looking for the control u as a piecewise constant function

Up = Z Us€y, (4])
7=1

where u; € IR and ¢; is the characteristic function of ;. Let (yx, ug, pr) be given fixed.

In order to solve the linear state equation (3.2) for a given u = u;, we have to solve it first
for y;r = 0 and every basis function e;. Let y; denote the state function associated to the
basis control u = e; and to the initial state y; = 0. Then the state y, corresponding to
uy, is given by the superposition principle as a linear combination of basis states y; and
the solution of (3.2) for u =0 .

Denote by u the vector (uy,...,u,)". After discretizing the objective functional (3.1) we
arrive at a quadratic programming problem for wu:

W Cu+1"y = min! (4.2)

e <wu, < wup, 1=1 m, (4.3)

PURERRT

where ' € R™ x IR™, [ € IR™. 1If the resulting dimension m is not too large (say
some hundred), this problem can be solved efficiently by standard software packages. For
instance we made good experiences with EO4NAF (NAG library) developed by Gill and
Murray [11]. We refer also to Alt and Mackenroth [4] or Mackenroth [26], who reported on
the same positive experience with this technique. For large m, the storage capacity of the
computer may soon be exceeded, as (' is very large. Moreover, (' has to be computed (e.g.
the state equation has to be solved for all basic functions e;, the occuring basic states y;
have to be inserted into the objective functional and the coefficients corresponding to the
quadratic parts of u are finally the entries of (V) and stored in each SQP step. For that
reason, we have decided to choose another approach to solve the quadratic subproblems.

5 A multigrid approach

The essential difficulty for solving the linear-quadratic subproblems is not connected with
the presence of the control-constraint u € U,4. It appears also in the unconstrained case,



where a large-scale backward-forward system of two coupled parabolic equations has to
be solved. A way to solve unconstrained optimal control problems was presented by
Hackbusch [14]. Let us give a brief sketch of this idea. We consider for simplicity the
unconstrained quadratic optimal control problem to minimize

1 A
ST ) = yrllie) + Sl (5.1)
subject to
Uf(T7f> = AU(va) in Q
y(0.7) = yil) n 0 (52)
Opy(x,t) = wu(x,t)—y(x, 1) on ¥.

Suppose that u is the optimal solution of problem (5.1) (5.2). Then the optimal triplet
(u,y,p) must fulfil the state equation (5.2) and the first order necessary optimality con-
ditions including the adjoint equation

*pt(mvt) = Ap(.??jt) in Q
plz,T) = y(z,T) —yr(x) in Q (5.3)
Opp(x,t) = —p(x,1) on %
and
p(z.1)
u(x,t) = — ;) on M. (5.4)

Introduce now an operator T mapping the control space U/ = L*(X) into itself by

plr.t)

(Tu)(x,t) = — ;

Please note that the chain v +— y — p — Tu defined by (5.2), (5.3), and (5.4) is behind

this construction.

The operator T'is well defined because the state and adjoint equations have unique weak
solutions. An optimal solution u has to be a fixed point of T.

u = Tu. (5.5)

It is obvious that T is affine linear

Tu=Ku+ f,

with a compact operator K in L*(¥) and a fixed f € L*(X). K is of Fredholm type
with nonnegative kernel. This can be illustrated most easily with the Green’s function



G = G(x,&,t) for (5.2): Then GG > 0 and

yt) =[Gty e+ [ [ Gl &t — s)ule,s)dSeds
0orn

plot) = [ Glan& T =D& ) yr(€) e
/ / Gl 6,7 — DC(En, T — s)u(y, s) dS,deds

O
= —MKu+f). (5.6)

This property can be shown also in the framework of weak solutions without relying
on Green’s functions. However, the representation (5.6) shows best the nature of K as
integral operator. It stands behind the multigrid strategy to determine u(x, ). Although
this cannot be realized in real computations we tacitly assume that G(x,£,1) is exactly
known. In other words, we assume to solve the PDE’s (5.2) (5.3) exactly. The multigrid
strategy refers to a discretization of u and to an associated collocation method applied
to the equation v = Ku + f. This means for a fixed grid that ¥ is subdivided into
Y =31U¥U...UX,,, uy is taken constant u; on ¥, and y(x,t), p(x,1) are evaluated at
prescribed points (1;,2;) € ¥,;, 7 = 1,...,m (for instance, at certain "midpoints” of ¥;)
by solving their PDFE’s exactly (in practice this means solving the PDE by a sufficiently

high precision).

The main steps of such a multigrid algorithm, described here for two grids, are well known.
We refer, for instance, to Hackbusch [15].

let U =%IU...U Efﬁ,(h,) denote the partition of ¥ associated to the mesh size paramter
h. Then one multigrid step (MG) is performed as follows.

1. Tet an iterate uf be given on the fine grid associated to parameter h .
2. Determine the residual r, = uf — Tuk.

3. Reduce the residual to the coarse grid associated to I: r; = Rry,.

4. Compute a correction by solving (I — K)d; = r;, where [ is the identity.
5. Prolongate the correction to the fine grid, d;, = Pd,.

6. Determine the new iterate uf ™' = u¥ 4 dj,.

7. TF ||k —uy™' || is not small enough, then set uf := wf ™' k:= k41, go to 2. Otherwise

stop the algorithm.

10



Here, P and R are some prolongation and restriction operators respectively. |[uf — uj+!||

is considered in an appropriate norm, [ denotes the mesh size of the coarse grid.

At step 2 we have to apply the operator T'. In theory, we get Tu by (exactly) solving the
parabolic equation for y, inserting y into the adjoint equation, determining p and using
finally the representation (5.4). In real computations, the parabolic equations have to be
somehow discretized. Any sufficiently accurate solver can be used for this purpose. We
do not consider the difficult error analysis connected with the approximate solution of
the partial differential equations. In our further presentation we continue to regard the
mapping u — Tu as given exactly.

The bottleneck of the multigrid method is hidden in establishing the coarse grid system
(I — [()d] =T

or its discretized version
(7 - Kz)dz =1

in step 4. The vectors d;, r; representing d;, r; belong to the finite dimensional space
IR™. We need the associated matrix representation K; of K. Let {eq,...,¢e,,} be a basis
for this space. This can be done by m; times applying the operator T'

[(67;:7167;*.]67 7::]7...7777/1

on the coarse grid. This is computationally expensive, as the coarse grid system has to
be solved very often during an SQP method.

An iterative method for solving systems of linear equations does not require the com-
putation of K;. Here, we need only Ku; for certain vectors u; occuring in the iteration
process. If the iteration stops after a number of steps less than the dimenson of w;, then
the effort occuring in step 4 of the multigrid algorithm decreases.

Another promising approach for handling the optimality system (5.2) (5.3) is to solve
directly the occuring coupled forward backward system. However, this leads to a system
of much higher dimension than in the multigrid method proposed bhefore. Moreover,
an effective numerical technique for parabolic backward forward systems has still to be
developed. Therefore, we decided to use the multigrid approach, where the state and
adjoint state equations are decoupled.

Remark: In principle, the multigrid strategy is able to handle any mesh-size, which is
useful to solve the partial differential equations on the available computer. In this way,
our aim of high-precision computations can be achieved. However, the method is quite
slow.

6 Control constraints

If the pointwise constraints u € U,, are not imposed on w in (3.2), then the SQP method is
nothing else than the known Newton method for solving the equations of the optimality

11



system (consisting of (1.2), (2.1), and u = —X"'p). One step of the method can be
performed by the technique described in the preceding section.

Let us now take into account the restrictions (1.3) on the control u. Once again we
explain the technique for the simplified linear quadratic problem (5.1) (5.2), now with
the additional constraint (1.3). We use an active set strategy due to Bertsekas [7] which
was already succesfully applied by other authors, for instance by Heinkenschloss and Sachs
[18]. Let us first formulate this algorithm (B) and then discuss its steps.

1. Denote by u* = (uf, ..., u* )7 be the vector representing the iterate uf (h fixed), fix

positive numbers ¢ and o and let I = {1,...,m} be the index set associated to u}.

2. Solve (5.2), (5.3) and get pf with the same discretization as uj. TLet pF =

(p¥,....p" )7 be the representation of p}.

3. Define the sets of strongly active inequalities by 15 = {1 € T : uf = u, and Auf+pF >
ehand I7 = {i € T :uf = uy and duf +pf < —¢l.

4. Set @; = uf forall s € 15U I7.

5. Solve the unconstrained problem (5.1) (5.2) for uf, 7 € '\ (I U If), while the
remaining components of u* are fixed due to 4, denote the solution by »} with
vector representation p”.

6. Set uyt' = TIvF, where 1T is the projection onto [u,, 1s]™.

7.0 |Jub ™ — uf|| > o then put uf := uj™' k= k+1 and go to 2. Otherwise stop the
iteration.

To illustrate the idea of this technique we consider the first order necessary optimality
conditions for problem (5.1), (5.2), (1.3). The optimal triplet (u,y,p) has to satisfy the
adjoint equation (5.3) together with the variational inequality

/(u + Ap)(u—u)dSdt >0 Yue U,y. (6.1)
>

A standard discussion of this inequality shows that

Uy , ifu+Ap>0
u—2J uw ifutip<0 (6.2)
p .
B ifu+Ap=0

(see, for instance, [9]) . These three possible cases for u are reflected by step 3 and 4 of
the algorithm. If |uf 4+ ApF| > &, then we can expect that this index 7 helongs to an active
inequality. Therefore, we keep this value u? fixed at the boundary in the next step.

12



7 Numerical tests

7.1 The onedimensional case

We have reported on our 1D computational experience for € = (0,1) in the paper [13].
Let us recall the results for comparison. In our test examples, the control uv = wu(t) is
acting on the right end of 2 = (0,1). ¥ = {0,1} x (0,7 splits into 2 parts and b = 0,
u = 0 is kept fixed on the left part # = 0. However, we do not need this formal expression
of the setting to make the problem comparable to the general problem of section 2. We
just formulate the state equation as

?/t((%t; = Um(n(;’jf) in @

y(0,2) = yp(= in Q

,;/m(t70) = g on (0,7 (7.1)
y-(t, 1) = bly(t, 1))+ u(t) on (0,7].

Let the interval [0, 7] be divided by the equidistant grid
0 = to<th<...<t,, =T,

where n; 1s a given integer. Thus, the subdomains ¥, are given here by the intervals
(tg—1,1k), k = 1,...,ns.. The discretization of u is performed as described in (4.1). We
considered the following test example (going back to Schittkowski [29]).

Example 1 This example is a linear quadratic control problem of the type discussed in
section 6. It is included here to stress that a very fine discretization of the control u and
the PDE is needed to compute a sufficiently precise optimal control. ”Sufficiently precise”
means in this test example that a further refinement of the underlying grid did not change
the graphical plot of the control.

We took T = 1.58, A = 0.001, yr = 0.5(1 —2?), yy =0, u, = —1, u, = 1 and b(y) =
—1y. The state and adjoint equations are solved on @ = (0,7) x (0,1) by a Crank

Nicholson type finite difference method. Denote by n; the discretization parameter of
u and by ny,, n, the parameters of y (i.e., the discretization with respect to time and
space used in the PDE). We determined optimal controls for the following triplets of
(g, ny,,ny, ) (50, 100,100), (200,400,400), (400,800,800). The results showed that the
mesh-size (400, 800,800) was necessary to obtain graphically exact controls. A further
refinement did not change the computer plot of the optimal control.

5 iterations (B) were needed to get the result for the finest discretization. These steps
required 56, 34, 30, 14 and 1 multigrid iterations (MG), respectively.

Example 2

This is a nonlinear problem with almost the same data as above, but with the nonlinear
boundary condition

v (1, 1) = u(t) — y(t, ])2
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Figure 1: SQP iteration for the nonlinear problem

solved by the SQP method. The iteration was started at (yo, 4o, po) = (0,0,0), as mesh
size we took (ng,ny,,,n,. ) = (400,800,800), still quite moderate in view of the experience
with example 1. We avoid any table of numbers for the progress of computation. It would
pretend a high accuracy, which cannot be backed by the precision of the discretization.
Once the SQP method is in the region of quadratic convergence, after a few iterations
the reached precision is not compatible with the solution of the PDE. Please note that
the mesh size 400 for the control will at most ensure a precision of the order 1072 for
the linear quadratic sub problems. This is just "graphical precision”. In Figure 1 some
iterates are represented.

7.2 The two -dimensional case

Next, we consider our problem (5.1) (5.2) in @ = (0,1) x (0,1) C IR*>. The control is
acting on I'y = {(21,22) € Q : 29 = 1}, define I'y, = I'\ T';. The boundary condition is
slightly changed,

Ay = bly)+u on Ty

dy = —y on TI'y. (7.2)

As before, the invervals [0, 7] and [0, 1] are splitted into equidistant subintervals,

o<t <...<t,, =T

0
0 = o<y <. ... <2y, =1,

where n; and n, are positive integers.
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Figure 2: Domain of up

We split the control domain ¥y = T’y x (0,7) for the control u into subdomains %¥ =

(tg—1, 1) X (2i9,2:), K =0,....n4, 7 =0,....n,. The partition of ¥ is shown in Figure
2.

To solve the underlying parabolic differential equations, the domain  was divided into

equidistant subdomains Q;; = {(#;_y,2]) x (22_4,23) i = 0,...,n,0,7 = 0,...,n,2},
where n,: is the number of equidistant subintervals of [0, 1] in direction ;, 2 = 1,2. The
time interval [0, 7] is splitted into n, equidistant subparts. We put h, = }7 ho = n11

x

and h,. =

T2

Remark 7.1 The number of subintervals of [0,1] in x; direction was related to the num-
ber of subintervals of [0,1] in x direction for uy: ny = Mn,, 1 = 1,2, where M € IN.

Owing to the simple geometry of €1, a finite difference splitting-up method was selected,
since it was faster than available finite element codes.

The examples below are computed with the Bertsekas active set strategy and the multigrid
method for the unconstrained quadratic subproblems. In the multigrid algorithm, the
coarse grid systems of linear equations were solved by a conjugate gradient method.

Example 3

This is a convex linear quadratic control problem, used to compare the precision of our
computations with known results. We take T"'=1, A = 0.001, y; = 0, yr = 0.52725+0.25,
b(y) = —y, u, = 0, up, = 1. This problem was considered by Mackenroth [26] with A = 0.
Therefore, the result was a control of bang bang type. Our control is close to that of
Mackenroth, but continuous, as A > (. Further parameters are n, = 10, n,, = 10, M =2
and n, = n,1, thus we have
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Figure 3: Optimal control of example 3

mesh size (n,,n;) for the control on the coarsest grid:  (5,5),

mesh size (n,,n;) on the finest grid: (10,10),
mesh size (n,1,n,2,n;) for the state: (20,20, 20),
maximal number of state variables: 8000.

The result is shown in Figure 3. The approach considered here allows to solve the problem
with a finer discretization.

Example 4

We regard the same problem as above with fine discretization: T'=1, A = 0.001, y; = 0,
yr = 0.52q929 + 0.25, b(y) = ~y, uy, = 0, up = 1, n, = 80, n, = 80, M = 2 and

n,y2 = n, = 160. Thus we have

mesh size (n,,n;) for the control on the coarsest grid:  (5,5),

mesh size (n,,n;) on the finest grid: (80,80),
mesh size (n,1,n,2,n;) for the state: (160,160, 160),
maximal number of state variables: 4.096.000.

7 iterations (B) were needed to get the result for the finest discretization. These iterations
required 125, 67, 45, 32, 23, 13, and 1 multigrid steps (MG), respectively. The result is

shown in Figure 4.

Finally, we discuss a nonlinear test example solved by the SQP method.
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Figure 4: Optimal control of example 4

Example 5

Here, the boundary condition is replaced by a non linear one. We put 7'=1, A = 0.001,
yr =0, yr = 052122 + 0.25, b(y) = —y%, v, =0, upy = 0.2, ny = 80, n, = 80, M = 2, and
ny2 = n, = 160. The initial iterate of the SQP algorithm was the triplet (0,0,0).

The progress of iteration is shown in Figures 5 9. Our initial iterate was outside the

convergence region of the SQP method. This region was hit by chance in the third step
by usz. A usual globalization technique would avoid this behaviour.

uw— ur—
- W

Figure 5: Fxample 5, ug and uy Figure 6: Fxample 5, uq and u,
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Figure 7: Example 5, uy and us Figure 8: Fxample 5, us and w4
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Figure 9: Example 5, ur and ug

8 Final Comment

The method presented in this paper is not yet effective. SQP method, Bertsekas active
set strategy and multigrid technique form a chain of 3 nested iteration schemes. Although
the SQP method itself exhibits the expected fast convergence, the other inherent iteration
procedures are slower and lead to long running times. Certainly, this long time is mainly
connected with the high precision of the computation. The same effect was mentioned
by Gill and others [10] who applied the software system DASOPT to solving a parabolic
optimal control problem for a quasilinear heat equation in a two-dimensional rectangular
domain Q with a moderate discretization. We confirmed their estimate (n,, - n,,)? for the
order of the computational time in our own tests.

Nevertheless, it is obvious that our procedure is not optimal and can be improved in
several ways. This was not our primary intention. We aimed to complete the theory
of the standard (continuous) SQP method for parabolic control problems by associated
numerical test examples. The method presented here is very close to the one discussed
in our convergence analysis. Owing to its fast convergence, there was a need to solve
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the quadratic subproblems with comparably high precision. This paper shows one way

leading to acceptable results.

References

1]

[10]

[11]

W. Alt. The Lagrange Newton method for infinite dimensional optimization prob-
lems. Numer. Funct. Anal. and Optimiz., 11:201 224, 1990.

W. Alt. The Lagrange Newton method for infinite-dimensional optimization prob-
lems. Control and Cybernetics, 23:87 106, 1994.

W. Alt. Discretization and mesh independence of Newton’s method for generalized
equations. To appear.

W. Alt and U. Mackenroth. On the numerical solution of state-constrained coer-
cive parabolic optimal control problems. In Optimal Control of Partial Differential
Fquations, volume 68 of Lecture Notes ISNM, pages 44 62, Birkhauser Verlag, 1992.
Hoffmann, K.H. and Krabs, W (eds.).

W. Alt and K. Malanowski. The Lagrange Newton method for nonlinear optimal
control problems. Comp. Opt. and Applic., 2:77 100, 1993.

W. Alt, R. Sontag, and F. Troltzsch. An SQP Method for Optimal Control of a
Weakly Singular Hammerstein Integral Equation. Appl. Math. Opt., 33:227 252,
1996.

D. B. Bertsekas. Projected Newton methods for optimization problems with simple

constraints. STAM J. Control and Optimization, 20:221 246, 1982.

E. Casas, F. Troltzsch and A. Unger. Second order sufficient optimality conditions for
a nonlinear elliptic control problem. .J. of Analysis and Applications (ZAA), 15:687
- 707, 1996.

K. Eppler and F. Troltzsch. On switching points of optimal controls for coercive
parabolic boundary control problems. Optimization, 17:93 101, 1986.

P. E. Gill, K. Park, I.. Petzold, J. B. Rosen, I.. O. Jay. Numerical optimal control
of parabolic PDEs using DASOPT. Report NA 96-1, Dep. of Math., University of

California, San Diego.

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Users’s guide for
SOL/QPSOIL: A Fortran package for quadratic programming. Technical Report No.
82 7, Department of Operations Research, Stanford University, Stanford, CA 94305,
1982.

19



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

H. Goldberg and F. Troltzsch. Second order sufficient optimality conditions for a
class of nonlinear parabolic boundary control problems. STAM .J. Control and Opti-
mization, 31, 1007 1025, 1993.

H. Goldberg and F. Troltzsch. On a lLagrange Newton method for a nonlinear
parabolic boundary control problem. Preprint TU-Chemnitz, Fak. f. Mathematik,
Report 96 8, to appear.

W. Hackbusch. On the fast solving of parabolic boundary control problems. STAM
J. Control and Optimization, 17, No. 2:231 244, 1979.

W. Hackbusch. Integralgleichungen. B. G. Teubner, Stuttgart, 1989.

W. Hackbusch and Th. Will. A numerical method for a parabolic bang bang problem.
Control and Cybernetics, 12, No. 3 4:100 116, 1983.

M. Heinkenschloss. The numerical solution of a control problem governed by a phase
field model. Optimization Methods and Software, 7, 1997. To appear.

M. Heinkenschloss and E. W. Sachs. Numerical solution of a constrained control
problem for a phase field model. Control and Fstimation of Distributed Parameter

Systems, Int. Ser. Num. Math., 118:171 188, 1994.

M. Heinkenschloss and F. Troltzsch. Analysis of the Lagrange-SQP-Newton method
for the control of a Phase field equation. Virginia Polytechnic Institute and State
Unwersity, ICAM Report 95-03-01.

C.T. Kelley and E.W. Sachs. Fast algorithms for compact fixed point problems with
inexact function evaluations. STAM J. Scientific and Stat. Computing 12:725 742,
1991.

C.T. Kelley and E.W. Sachs. Multilevel algorithms for constrained compact fixed
point problems. STAM J. Scientific and Stat. Computing 15:645 667, 1994.

C.T. Kelley and E.W. Sachs. Solution of optimal control problems by a pointwise
projected Newton method. STAM .J. Contr. Optimization 33:1731 1757, 1995.

S.F. Kupfer and E.W. Sachs. Numerical solution of a nonlinear parabolic control
problem by a reduced SQP method. Computational Optimization and Applications
1:113 135, 1992.

J.I.. Tions and E. Magenes. Problemes aux limites non homogeénes et applications,

volume 1 3. Dunod, Paris, 1968.

K. Machielsen. Numerical solution of optimal control problems with state constraints
by sequential quadratic programming in function space. CWI Tract, 53, Amsterdam,

1987.

20



[26]

[27]

[28]

[29]

[30]

[31]

[32]

U. Mackenroth. Numerical solution of some parbolic boundary control problems by
finite elements. In Control Problems for Systems Described by Partial Differential
Fquations and Applications, volume 97 of Lecture Notes Contr. Inf. Sci., pages 325
335, Berlin, 1987. Springer Verlag.

H. Maurer. First and second order sufficient optimality conditions in mathematical
programming and optimal control. Math. Programming Study, 14:163 177, 1981.

J.P. Raymond and H. Zidani. Hamiltonian Pontryagin’s principles for control prob-
lems governed by semilinear parabolic equations. Preprint 1995, to appear.

K. Schittkowski. Numerical solution of a time optimal parabolic boundary-value

control problem. JOTA, 27:271 290, 1979.

F. Troltzsch. Convergence of an SQP Method for a class of nonlinear parabolic
boundary control problems. In W. Desch, F. Kappel, K. Kunisch, eds., Control and
Estimation of Distributed Parameter Systems. Nonlinear Phenomena. Int. Series of

Num. Mathematics, Vol. 118, Birkhauser Verlag, Basel 1994, pp. 343 358.

F. Troltzsch. An SQP method for the optimal control of a nonlinear heat equation.
Control and Cybernetics, 23(1/2):267 288, 1994.

F. Troltzsch. On the Lagrange Newton method for the optimal control of semilinear
parabolic equations, 1997, to appear.

21



