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Goldberg and Tr�oltzsch [13], and Tr�oltzsch [30], [31]. We refer also to a recent paper byGill and others [10]. It is meanwhile shown in most of the cases mentioned above thatthe (continuous) SQP method exhibits the expected local q{quadratic convergence inspaces of type L1. We refer to [6], [19], [30], [31] for the proof under strong second ordersu�cient optimality conditions. A detailed convergence analysis assuming weaker secondorder conditions is contained for a simpli�ed model in [13] and for a general class of controlproblems governed by semilinear parabolic equations in [32]. Owing to their quadraticconvergence, these methods appear to be promising for a high precision numerical solutionof control problems.In the applications to function spaces, the method has to be linked with a discretization. Itmay appear on a di�erent level. The simplest way is that of discretizing the optimal controlproblem as a whole, to obtain a large scale �nite{dimensional optimization problem. Thenthe �nite{dimensional SQP method is applied. This direct approach was succesfullytested for many control problems governed by ordinary di�erential equations and forsome parabolic control problems with moderate discretization.Direct methods may have some drawbacks in the case of partial di�erential equations.There are several reasons for: First of all, even a moderate accuracy for solving the stateequation may lead to huge dimensions. For instance, discretizing a parabolic equation ina rectangular 2D{domain with uniform meshes of 100 node points for the time and thetwo space variables leads to 106 state variables. Note that this large number is alreadyneeded to solve the state equation with a moderate precision of order 10�2.A second problem is connected with solving the state equation itself. An explicit dis-cretization is, as a rule, useful only for domains of simple geometry. If domains withcurved boundaries have to be used, professional software should be applied. The solverfor the equation may work with with irregular and moving grids, so that the discretizationof the problem is not known in advance. It is de�ned by the solver during the processof computation. Therefore, we are particularly interested in methods, which are able toincorporate the best available solvers for the state equation (more or less as a black box).In this paper, we continue the numerical analysis of [13], where the convergence wasshown for a simpli�ed n-dimensional model under weak second order assumptions. Nu-merical examples were presented there for the one{dimensional heat equation with non-linear boundary condition. Here, we concentrate on the computational aspects, which areworked out in more detail. Moreover, we regard examples in a domain 
 � IR2, wherethe dimension of the discretized problems is already very large.We pursue the following strategy: The discretization is applied to the (continuous) linear-quadratic control sub-problems. They are solved through a number of unconstrainedproblems. This leads to solving a sequence of �xed-point equations by a multigrid tech-nique owing to Hackbusch [14]. We refer also to Hackbusch and Will [16]. Similar �xedpoint techniques were used also by Kelley and Sachs [20], [21].Certainly, there is a lot of freedom in choosing the di�erent steps of the method. Moreover,2



our method is not very e�ective (cf. the �nal comments of our paper).Our main aim is to verify the fast convergence of the standard (in�nite-dimensional)SQP method for a simpli�ed class of nonlinear parabolic problems in 2D{domains by atechnique close to former theoretical investigations.The way of discretizing the problem and herafter applying the SQP method is not suitablefor this purpose. It would con�rm the (known) quadratic convergence of the method in�nite dimensions, tending to an approximate solution. The distance between approximateand exact solution will have the order of the discretization error.It is evident that the precision of computed optimal controls cannot be better than that forsolving the state equation. Our remarks to this situation in [13] reveal that the (in�nite-dimensional) SQP method converges quadratically as long as the precision for solving thelinear-quadratic subproblems is compatible with the distance of the current iterate to theexact one. Hence the discretization level has to be increased from step to step. This isthe point where the dimension becomes soon astronomical.Due to this reason, we are not able to report on a sequence of accuracy 10�1, 10�2, 10�4,10�8, as the reader might expect. We focused our attention to a satisfactory accuracy ofthe computations and terminated the process at the level of "graphical exactness" (relatedto a precision of order 10�2). In 2D-domains, this moderate precision leads already to morethan 4 � 106 state variables. Our method has to deal with this dimension. Undoubtedly,such high accuracy will not be needed in many practical applications. On the other hand,3D domains will lead to the same large dimensions for a much lower precision.For testing the SQP method we consider the optimal boundary control problem to mini-mize '(y; u) = 12ky(�; T )� yTk2L2(
) + �2kuk2L2(�) (1.1)subject to yt(x; t) = �xy(x; t) in Qy(x; 0) = yI(x) in 
@�y(x; t) = b(y(x; t)) + u(x; t) on � (1.2)and ua � u(x; t) � ub a.e. on �: (1.3)We assume that 
 � IRn is a bounded domain with boundary � of class C2;�, (0 < � < 1)such that 
 is locally at one side of �. We put Q = 
 � (0; T ), � = � � (0; T ); T > 0,� > 0, ua � ub are �xed real numbers, and yI , yT 2 C(
) are given functions. By@� the (outward) normal derivative on � is denoted. We assume that b = b(y) belongsto C2;1(IR) and is monotone non{increasing. The control function u = u(x; t) is lookedupon in L1(�), while the state y = y(x; t) is de�ned as weak solution of (1.2) in Y =W (0; T )\C(Q), where W (0; T ) = fy 2 L2(0; T ;H1(
))j yt 2 L2(0; T ;H1(
)0)g (cf. Lionsand Magenes [24]). 3



A weak solution y of (1.2) is de�ned by y(x; 0) = y0 and(yt(t); v)(H1)0;H1 + Z
 ry(t)rv dx = Z� (b(y(�; t)) + u(�; t))v dS a.e. t 2 (0; T ) (1.4)for all v 2 H1(
) (dS: surface measure on �).Let Uad = fu 2 L1(�) : ua � u(x; t) � ub a. e. on �g be the admissible set.2 Necessary and su�cient optimality conditionsFirst of all we should mention the following result on existence and uniqueness for thestate equation (1.2). It is due to Raymond and Zidani [28]:Theorem 2.1 For each control u 2 L1(�) the equation (1.2) has a unique solutiony 2 C( �Q) \W (0; T ).(cf. [28], Theorem 3.1 and Proposition 3.1).As an immediate conclusion we obtain by standard methods the existence of at least oneoptimal control, as u is appearing linearly, ' is convex and continuous and Uad is weakly{star compact. However, we do not focus our method on (globally) optimal controls only.The SQPmethod will converge in a neighbourhood of any locally optimal control, providedthat some natural assumptions are satis�ed. To make them precise we state at �rst a setof standard �rst and second order optimality conditions.The �rst order necessary optimality conditions for a pair (�y; �u) consists of the state equa-tion (1.2), the constraint u 2 Uad, the adjoint equation�pt(x; t) = �xp(x; t) in Qp(x; T ) = �y(x; T )� yT (x) in 
@np(x; t) = b0(�y)p(x; t) on � (2.1)and of the variational inequalityZ� (�p(x; t) + ��u(x; t))(u(x; t)� �u(x; t)) dSdt � 0: (2.2)Moreover, we shall assume that (�y; �u) satis�es second order su�cient optimality condi-tions. To formulate them, we introduce for arbitrary small (but �xed) � > 0 the setI� = f(x; t) 2 � j j��u(x; t) + �p(x; t)j � �g (2.3)of su�ciently strong active inequalities. 4



To formulate associated second order su�cient optimality conditions, we introduce theLagrange function L,L(y; u; p) = �(y; u)� RQfyt p+ < ry ; rp >gdxdt+ R� p (b(y) + u) dSdt:L is de�ned on Y � L1(�) � Y . It is twice continuously di�erentiable w.r. to (y; u) inY � L1(�). Note that this is not true in W (0; T ) � L1(�). The product RQ yt p dxdtin the de�nition of L is de�ned in the sense of the pairing between L2(0; T ;H1(
)0)and L2(0; T ;H1(
)). However, this will not be needed in this paper. The second orderderivative of L w.r. to (y; u) isL00(y; u; p)[(y1; u1); (y2; u2)] = R
 y1(T )y2(T ) dx++ R�(�u1u2 + p b00(y)y1y2) dSdt:The second order su�cient optimality conditions for (�y; �u; �p) are as follows:There exist � > 0 and � > 0 such that(SSC) 8>>>>>>>>>>>><>>>>>>>>>>>>: L00(�y; �u; �p)[(y; u); (y; u)]� �kuk2L2(�) (2.4)for all (y; u) 2 W (0; T )� L2(�) such that u = 0 on I� andyt = �xyy(0) = 0 (2.5)@�y = b0(�y)y + u:Now we assume once and for all that a reference pair (�y; �u) is given, which satis�es togetherwith an associated adjoint state �p the optimality system and the second order su�cientoptimality condition.It can be shown that �u is under these assumptions locally optimal in the sense of L1(�)(this can be even proved in Lp(�) for p > N + 1): For a weaker version of second ordersu�cient conditions we refer to Goldberg and Tr�oltzsch [12]. In the case of an ellipticequation of state this is shown in Casas, Tr�oltzsch and Unger [8]. Their technique caneasily be transferred to the parabolic case considered here.3 The Sequential Quadratic Programming methodIn this section we recall the (continuous) SQP method. Let w0 = (y0; p0; u0) be a startingtriplet (we shall assume that w0 is close to the reference triplet �w = (�y; �u; �p)). Then the Se-quential Quadratic Programming (SQP) method determines a sequence wk = (yk; pk; uk)5



as follows. Let " > 0 be given. Initiating from wk, the next iterate wk+1 is obtained fromsolving the linear{quadratic control problem:Minimize '0(yk; uk)(y � yk; u� uk) + 12L00(yk; uk; pk)[(y � yk; u� uk)]2 (3.1)subject to yt = �y in Qy(0) = yI in 
@�y = b(yk) + b0(yk)(y � yk) + u on �;u 2 Uad: (3.2)The solution is (yk+1; uk+1), while the next iterate pk+1 of the adjoint state is obtainedfrom the adjoint equation�pt = �p in Qp(T ) = yk+1(T )� yT in 
@�p = b0(yk)p + pkb00(yk)(yk+1 � yk) on �: (3.3)For convenience we indicate the explicit expressions of '0 and L00:'0(yk; uk)(y � yk; u� uk) = R
 yk(T )(y(T )� yk(T )) dx++ R� �uk (u� uk) dSdtL00(yk; uk; pk)[(y � yk; u� uk)]2 = R
(y(T )� yk(T ))2 dx++ R�(�(u� uk)2 + pk b00(yk)(y � yk)2) dSdt:Unfortunately, the linear-quadratic optimal control problem above is not necessarily con-vex. Our second order su�cient optimality condition imposed on �w is too weak to guaran-tee convexity. Therefore, we cannot expect that the SQP method converges locally to �w,unless �w belongs to a unique global minimum. Note that our method determines globalminima of the quadratic sub-problems.This is the reason to restrict the optimization in (3.1){(3.2) to a neighborhood U rad of thestarting element uo (containing �(w) in its interior), whereU rad = fu 2 Uad j ku� uokL1 � rg:The following convergence result can be shown, cf. Goldberg and Tr�oltzsch [13] for thesimpli�ed problem discussed here and to Tr�oltzsch [32] for a detailed analysis in the caseof a general class of nonlinear parabolic control problems. Let B�( �w) denote the openball around �w in the natural norm of C( �Q)2 � L1(�).6



Theorem 3.1 Let � > 0 be su�ciently small and r := 2�. If the search in (3.1)-(3.2) isrestricted to U rad, then the SQP-method generates for any starting point w0 = (y0; p0; u0) 2B�( �w) a unique sequence f(yk; pk; uk)g such thatk(yk+1; pk+1; uk+1)� (�y; �p; �u)kC( �Q)2�L1(�) � c�k(yk; pk; uk)� (�y; �p; �u)k2C( �Q)2�L1(�); (3.4)(k = 0; 1; :::):, holds with is a certain positive constant c�.Remark: In [13], r corresponds to 2=3varepsilon, � to "=3. If the second order su�cientoptimality condition is required for all (x; t) 2 �, then the quadratic sub-problems areconvex and the restriction to U rad is not necessary. In our test examples, we did not useU rad.A di�erent method of Newton type, presented by Kelley and Sachs [22] for the controlof ordinary di�erential equations, is able to avoid this restriction to a neighborhood.However, the authors have to impose some structural assumptions on the active set andconditions on the slope of the switching function at the junction points.This convergence result remains true for a very general class of parabolic control problems.We refer to [32]. However, it is more or less only of theoretical value. Our convergenceanalysis is based on an exact solution of the quadratic subproblems. Without aiming togive a rigorous error analysis for an inexact solution of these problems, we brie
y sketcha simple estimate.Let us denote by �(h) the distance between whn and the exact solution wn of (QPn�1). Itis known that �(h) = O(h) can be expected. Denote by h+ the mesh size for discretizing(QPn). An easy estimate shows that quadratic convergence is preserved, if h+ is de�nedaccording to the rule �(h+) � c kwhn � �wk2W(cf. [13]). Then kwh+n+1 � �wkW � 2 c kwhn � �wk2Wis obtained for all steps of the SQP method with the same constant c. This gives a ruleto adapt the precision for the solution of the quadratic subproblems: Roughly speaking,the mesh size has to be proportional to the current accuracy of the SQP step.Clearly, this strategy can rarely be used in practice, as the size of the problems wouldgrow rapidly. The bottleneck is here the precision to solve the forward-backward system(3.2){(3.3). The requirement to adapt the accuracy for solving these equations will leadin a few steps to an enormous number of state variables. We shall not try to do this.Our aim is to solve the quadratic subproblems with a quite high precision (whatever thismeans). In this case, the speed of convergence will mainly be limited by �(hn) after somesteps. 7



4 Approximation of the quadratic subproblems by adirect methodThe following direct method works very well for the solution of the quadratic sub{problems, if the requirement of precision is quite low: Let h > 0 denote a certain meshsize characterizing the discretization of the parabolic PDE and the discretization of thecontrol u.Let the boundary domain � be subdivided into m parts �j , j = 1; : : : ;m, where m 2 IN .We are looking for the control u as a piecewise constant functionuh = mXj=1ujej; (4.1)where uj 2 IR and ej is the characteristic function of �j . Let (yk; uk; pk) be given �xed.In order to solve the linear state equation (3.2) for a given u = uh we have to solve it �rstfor yI = 0 and every basis function ej. Let yj denote the state function associated to thebasis control u = ej and to the initial state yI = 0. Then the state yh corresponding touh is given by the superposition principle as a linear combination of basis states yj andthe solution of (3.2) for u = 0 .Denote by u the vector (u1; : : : ; um)T . After discretizing the objective functional (3.1) wearrive at a quadratic programming problem for u:uTCu+ lTu = min! (4.2)ua � ui � ub; i = 1; : : : ;m; (4.3)where C 2 IRm � IRm, l 2 IRm. If the resulting dimension m is not too large (saysome hundred), this problem can be solved e�ciently by standard software packages. Forinstance we made good experiences with E04NAF (NAG library) developed by Gill andMurray [11]. We refer also to Alt and Mackenroth [4] or Mackenroth [26], who reported onthe same positive experience with this technique. For large m, the storage capacity of thecomputer may soon be exceeded, as C is very large. Moreover, C has to be computed (e.g.the state equation has to be solved for all basic functions ej, the occuring basic states yjhave to be inserted into the objective functional and the coe�cients corresponding to thequadratic parts of �u are �nally the entries of C) and stored in each SQP{step. For thatreason, we have decided to choose another approach to solve the quadratic subproblems.5 A multigrid approachThe essential di�culty for solving the linear-quadratic subproblems is not connected withthe presence of the control-constraint u 2 Uad. It appears also in the unconstrained case,8



where a large-scale backward-forward system of two coupled parabolic equations has tobe solved. A way to solve unconstrained optimal control problems was presented byHackbusch [14]. Let us give a brief sketch of this idea. We consider for simplicity theunconstrained quadratic optimal control problem to minimize12ky(T; �)� yTk2L2(
) + �2kuk2L2(�) (5.1)subject to yt(x; t) = �y(x; t) in Qy(0; x) = yI(x) in 
@ny(x; t) = u(x; t)� y(x; t) on �: (5.2)Suppose that �u is the optimal solution of problem (5.1){(5.2). Then the optimal triplet(�u; �y; �p) must ful�l the state equation (5.2) and the �rst order necessary optimality con-ditions including the adjoint equation�pt(x; t) = �p(x; t) in Qp(x; T ) = y(x; T )� yT (x) in 
@np(x; t) = �p(x; t) on � (5.3)and u(x; t) = �p(x; t)� on �: (5.4)Introduce now an operator T mapping the control space U = L2(�) into itself by(Tu)(x; t) = �p(x; t)� :Please note that the chain u 7! y 7! p 7! Tu de�ned by (5.2), (5.3), and (5.4) is behindthis construction.The operator T is well de�ned because the state and adjoint equations have unique weaksolutions. An optimal solution �u has to be a �xed point of T .�u = T �u: (5.5)It is obvious that T is a�ne linear Tu = Ku+ f;with a compact operator K in L2(�) and a �xed f 2 L2(�). K is of Fredholm typewith nonnegative kernel. This can be illustrated most easily with the Green's function9



G = G(x; �; t) for (5.2): Then G � 0 andy(x; t) = Z
 G(x; �; t)yI(�) d� + tZ0 Z� G(x; �; t� s)u(�; s) dS�dsp(x; t) = Z
 G(x; �; T � t)(y(�; T )� yT (�)) d�= TZ0 Z
 Z� G(x; �; T � t)G(�; �; T � s)u(�; s) dS�d�ds+ 8<:Z
 Z
 G(x; �; T � t)G(�; �; T )yI(�) d�d� � Z
 G(x; �; T � t)yT (�) d�9=;=: ��(Ku+ f): (5.6)This property can be shown also in the framework of weak solutions without relyingon Green's functions. However, the representation (5.6) shows best the nature of K asintegral operator. It stands behind the multigrid strategy to determine u(x; t). Althoughthis cannot be realized in real computations we tacitly assume that G(x; �; t) is exactlyknown. In other words, we assume to solve the PDE's (5.2){(5.3) exactly. The multigridstrategy refers to a discretization of u and to an associated collocation method appliedto the equation u = Ku + f . This means for a �xed grid that � is subdivided into�� = ��1[ ��2 [ : : :[ ��m, uh is taken constant uj on �j, and y(x; t), p(x; t) are evaluated atprescribed points (tj; xj) 2 �j , j = 1; : : : ;m (for instance, at certain "midpoints" of �j)by solving their PDE's exactly (in practice this means solving the PDE by a su�cientlyhigh precision).The main steps of such a multigrid algorithm, described here for two grids, are well known.We refer, for instance, to Hackbusch [15].Let �� = ��h1 [ : : : [ ��hm(h) denote the partition of � associated to the mesh size paramterh. Then one multigrid{step (MG) is performed as follows.1. Let an iterate ukh be given on the �ne grid associated to parameter h .2. Determine the residual rh = ukh � Tukh.3. Reduce the residual to the coarse grid associated to l: rl = Rrh.4. Compute a correction by solving (I �K)dl = rl, where I is the identity.5. Prolongate the correction to the �ne grid, dh = Pdl.6. Determine the new iterate uk+1h = ukh + dh.7. If kukh�uk+1h k is not small enough, then set ukh := uk+1h , k := k+1, go to 2. Otherwisestop the algorithm. 10



Here, P and R are some prolongation and restriction operators respectively. kukh � uk+1h kis considered in an appropriate norm, l denotes the mesh size of the coarse grid.At step 2 we have to apply the operator T . In theory, we get Tu by (exactly) solving theparabolic equation for y, inserting y into the adjoint equation, determining p and using�nally the representation (5.4). In real computations, the parabolic equations have to besomehow discretized. Any su�ciently accurate solver can be used for this purpose. Wedo not consider the di�cult error analysis connected with the approximate solution ofthe partial di�erential equations. In our further presentation we continue to regard themapping u 7! Tu as given exactly.The bottleneck of the multigrid method is hidden in establishing the coarse{grid system(I �K)dl = rlor its discretized version (I �Kl)dl = rlin step 4. The vectors dl, rl representing dl, rl belong to the �nite{dimensional spaceIRml. We need the associated matrix representation Kl of K. Let fe1; : : : ; emlg be a basisfor this space. This can be done by ml{times applying the operator TKei = Tei � f; i = 1; : : : ;mlon the coarse grid. This is computationally expensive, as the coarse grid system has tobe solved very often during an SQP method.An iterative method for solving systems of linear equations does not require the com-putation of Kl. Here, we need only Klul for certain vectors ul occuring in the iterationprocess. If the iteration stops after a number of steps less than the dimenson of ul, thenthe e�ort occuring in step 4 of the multigrid algorithm decreases.Another promising approach for handling the optimality system (5.2){(5.3) is to solvedirectly the occuring coupled forward{backward system. However, this leads to a systemof much higher dimension than in the multigrid method proposed before. Moreover,an e�ective numerical technique for parabolic backward{forward systems has still to bedeveloped. Therefore, we decided to use the multigrid approach, where the state andadjoint state equations are decoupled.Remark: In principle, the multigrid strategy is able to handle any mesh-size, which isuseful to solve the partial di�erential equations on the available computer. In this way,our aim of high-precision computations can be achieved. However, the method is quiteslow.6 Control constraintsIf the pointwise constraints u 2 Uad are not imposed on u in (3.2), then the SQP method isnothing else than the known Newton method for solving the equations of the optimality11



system (consisting of (1.2), (2.1), and �u = ���1�p). One step of the method can beperformed by the technique described in the preceding section.Let us now take into account the restrictions (1.3) on the control u. Once again weexplain the technique for the simpli�ed linear{quadratic problem (5.1){(5.2), now withthe additional constraint (1.3). We use an active set strategy due to Bertsekas [7] whichwas already succesfully applied by other authors, for instance by Heinkenschloss and Sachs[18]. Let us �rst formulate this algorithm (B) and then discuss its steps.1. Denote by uk = (uk1; : : : ; ukm)T be the vector representing the iterate ukh (h �xed), �xpositive numbers " and � and let I = f1; : : : ;mg be the index set associated to ukh.2. Solve (5.2), (5.3) and get pkh with the same discretization as ukh. Let pk =(pk1; : : : ; pkm)T be the representation of pkh.3. De�ne the sets of strongly active inequalities by I"a = fi 2 I : uki = ua and �uki +pki >"g and I"b = fi 2 I : uki = ub and �uki + pki < �"g.4. Set ûi = uki for all i 2 I"a [ I"b .5. Solve the unconstrained problem (5.1){(5.2) for uki , i 2 I n (I"a [ I"b ), while theremaining components of uk are �xed due to 4, denote the solution by vkh withvector representation vk.6. Set uk+1h = �vkh, where � is the projection onto [ua; ub]m.7. If kuk+1h � ukhk � � then put ukh := uk+1h , k := k+1 and go to 2. Otherwise stop theiteration.To illustrate the idea of this technique we consider the �rst order necessary optimalityconditions for problem (5.1), (5.2), (1.3). The optimal triplet (�u; �y; �p) has to satisfy theadjoint equation (5.3) together with the variational inequalityZ� (�u+ ��p)(u� �u) dSdt � 0 8u 2 Uad: (6.1)A standard discussion of this inequality shows that�u = 8>><>>: ua ; if �u+ ��p > 0ub ; if �u+ ��p < 0� �p� ; if �u+ ��p = 0 (6.2)(see, for instance, [9]) . These three possible cases for �u are re
ected by step 3 and 4 ofthe algorithm. If juki +�pki j > ", then we can expect that this index i belongs to an activeinequality. Therefore, we keep this value uki �xed at the boundary in the next step.12



7 Numerical tests7.1 The one{dimensional caseWe have reported on our 1D{computational experience for 
 = (0; 1) in the paper [13].Let us recall the results for comparison. In our test examples, the control u = u(t) isacting on the right end of 
 = (0; 1). � = f0; 1g � (0; T ) splits into 2 parts and b = 0,u = 0 is kept �xed on the left part x = 0. However, we do not need this formal expressionof the setting to make the problem comparable to the general problem of section 2. Wejust formulate the state equation asyt(x; t) = yxx(x; t) in Qy(0; x) = yI(x) in 
yx(t; 0) = 0 on (0; T ]yx(t; 1) = b(y(t; 1)) + u(t) on (0; T ]: (7.1)Let the interval [0; T ] be divided by the equidistant grid0 = t0 < t1 < : : : < tnt = T;where nt is a given integer. Thus, the subdomains �k are given here by the intervals(tk�1; tk), k = 1; : : : ; nt. The discretization of u is performed as described in (4.1). Weconsidered the following test example (going back to Schittkowski [29]).Example 1 This example is a linear{quadratic control problem of the type discussed insection 6. It is included here to stress that a very �ne discretization of the control u andthe PDE is needed to compute a su�ciently precise optimal control. "Su�ciently precise"means in this test example that a further re�nement of the underlying grid did not changethe graphical plot of the control.We took T = 1:58, � = 0:001, yT = 0:5(1 � x2), yI � 0, ua = �1, ub = 1 and b(y) =�y. The state and adjoint equations are solved on Q = (0; T ) � (0; 1) by a Crank{Nicholson type �nite di�erence method. Denote by nt the discretization parameter ofu and by nyt, nyx the parameters of y (i.e., the discretization with respect to time andspace used in the PDE). We determined optimal controls for the following triplets of(nt; nyt; nyx): (50; 100; 100), (200; 400; 400), (400; 800; 800). The results showed that themesh-size (400; 800; 800) was necessary to obtain graphically exact controls. A furtherre�nement did not change the computer plot of the optimal control.5 iterations (B) were needed to get the result for the �nest discretization. These stepsrequired 56, 34, 30, 14 and 1 multigrid iterations (MG), respectively.Example 2This is a nonlinear problem with almost the same data as above, but with the nonlinearboundary condition yx(t; 1) = u(t)� y(t; 1)213
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Figure 1: SQP iteration for the nonlinear problemsolved by the SQP method. The iteration was started at (y0; u0; p0) = (0; 0; 0), as meshsize we took (nt; nyt ; nyx) = (400; 800; 800), still quite moderate in view of the experiencewith example 1. We avoid any table of numbers for the progress of computation. It wouldpretend a high accuracy, which cannot be backed by the precision of the discretization.Once the SQP method is in the region of quadratic convergence, after a few iterationsthe reached precision is not compatible with the solution of the PDE. Please note thatthe mesh size 400 for the control will at most ensure a precision of the order 10�2 forthe linear{quadratic sub{problems. This is just "graphical precision". In Figure 1 someiterates are represented.7.2 The two{dimensional caseNext, we consider our problem (5.1){(5.2) in 
 = (0; 1) � (0; 1) � IR2. The control isacting on �1 = f(x1; x2) 2 �
 : x2 = 1g, de�ne �2 = � n �1. The boundary condition isslightly changed, @�y = b(y) + u on �1@�y = �y on �2: (7.2)As before, the invervals [0; T ] and [0; 1] are splitted into equidistant subintervals,0 = t0 < t1 < : : : < tnt = T0 = x0 < x1 < : : : < xnx = 1;where nt and nx are positive integers. 14
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Figure 2: Domain of uhWe split the control domain �1 = �1 � (0; T ) for the control u into subdomains �ki1 =(tk�1; tk) � (xi�1; xi), k = 0; : : : ; nt, i = 0; : : : ; nx. The partition of � is shown in Figure2.To solve the underlying parabolic di�erential equations, the domain 
 was divided intoequidistant subdomains 
ij = f(x1i�1; x1i ) � (x2j�1; x2j ) : i = 0; : : : ; nx1; j = 0; : : : ; nx2g,where nxi is the number of equidistant subintervals of [0; 1] in direction xi, i = 1; 2. Thetime interval [0; T ] is splitted into n� equidistant subparts. We put h� = Tn� , hx1 = 1nx1and hx2 = 1nx2 .Remark 7.1 The number of subintervals of [0; 1] in xi{direction was related to the num-ber of subintervals of [0; 1] in x{direction for uh: nxi = Mnx, i = 1; 2, where M 2 IN .Analogously, n� =Mnt. We used M = 2 in the computations.Owing to the simple geometry of 
, a �nite di�erence splitting-up method was selected,since it was faster than available �nite element codes.The examples below are computed with the Bertsekas active set strategy and the multigridmethod for the unconstrained quadratic subproblems. In the multigrid algorithm, thecoarse{grid systems of linear equations were solved by a conjugate gradient method.Example 3This is a convex linear{quadratic control problem, used to compare the precision of ourcomputations with known results. We take T = 1, � = 0:001, yI � 0, yT = 0:5x1x2+0:25,b(y) = �y, ua = 0, ub = 1. This problem was considered by Mackenroth [26] with � = 0.Therefore, the result was a control of bang{bang type. Our control is close to that ofMackenroth, but continuous, as � > 0. Further parameters are nt = 10, nx = 10, M = 2and nx2 = nx1, thus we have 15
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Figure 3: Optimal control of example 3mesh size (nx; nt) for the control on the coarsest grid: (5; 5),mesh size (nx; nt) on the �nest grid: (10; 10),mesh size (nx1 ; nx2; nt) for the state: (20; 20; 20),maximal number of state variables: 8000.The result is shown in Figure 3. The approach considered here allows to solve the problemwith a �ner discretization.Example 4We regard the same problem as above with �ne discretization: T = 1, � = 0:001, yI � 0,yT = 0:5x1x2 + 0:25, b(y) = �y, ua = 0, ub = 1, nt = 80, nx = 80, M = 2 andnx2 = nx1 = 160. Thus we havemesh size (nx; nt) for the control on the coarsest grid: (5; 5),mesh size (nx; nt) on the �nest grid: (80; 80),mesh size (nx1 ; nx2; nt) for the state: (160; 160; 160),maximal number of state variables: 4:096:000.7 iterations (B) were needed to get the result for the �nest discretization. These iterationsrequired 125, 67, 45, 32, 23, 13, and 1 multigrid steps (MG), respectively. The result isshown in Figure 4.Finally, we discuss a nonlinear test example solved by the SQP{method.16
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Figure 4: Optimal control of example 4Example 5Here, the boundary condition is replaced by a non{linear one. We put T = 1, � = 0:001,yI � 0, yT = 0:5x1x2 + 0:25, b(y) = �y2, ua = 0, ub = 0:2, nt = 80, nx = 80, M = 2, andnx2 = nx1 = 160. The initial iterate of the SQP algorithm was the triplet (0; 0; 0).The progress of iteration is shown in Figures 5{9. Our initial iterate was outside theconvergence region of the SQP method. This region was hit by chance in the third stepby u3. A usual globalization technique would avoid this behaviour.
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Figure 5: Example 5, u0 and u1
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Figure 6: Example 5, u1 and u217
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Figure 7: Example 5, u2 and u3
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Figure 8: Example 5, u3 and u4
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Figure 9: Example 5, u7 and u88 Final CommentThe method presented in this paper is not yet e�ective. SQP{method, Bertsekas activeset strategy and multigrid technique form a chain of 3 nested iteration schemes. Althoughthe SQP method itself exhibits the expected fast convergence, the other inherent iterationprocedures are slower and lead to long running times. Certainly, this long time is mainlyconnected with the high precision of the computation. The same e�ect was mentionedby Gill and others [10] who applied the software system DASOPT to solving a parabolicoptimal control problem for a quasilinear heat equation in a two-dimensional rectangulardomain 
 with a moderate discretization. We con�rmed their estimate (nx1 �nx2)2 for theorder of the computational time in our own tests.Nevertheless, it is obvious that our procedure is not optimal and can be improved inseveral ways. This was not our primary intention. We aimed to complete the theoryof the standard (continuous) SQP method for parabolic control problems by associatednumerical test examples. The method presented here is very close to the one discussedin our convergence analysis. Owing to its fast convergence, there was a need to solve18
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