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Abstract
We consider a collocation method for Cauchy singular integral equations on the interval
based on weighted Chebyshev polynomials, where the coefficients of the operator are
piecewise continuous. Stability conditions are derived using Banach algebra methods,
and numerical results are given.

1 Introduction

The subject of the present paper is the investigation of a collocation method based on
weighted polynomials for the approximate solution of singular integral equations on (—1,1)
of the type

a(x)u(x) + @ /1 u(t) dt = f(z), re(—1,1), (1.1)

m o Ja1t—ux
where u is the unknown function and a, b, f are given. All functions involved are assumed
to be complex-valued, and we require that b(£1) = 0.

A lot of attention has been paid to investigating polynomial collocation and quadrature
methods for this and similar types of equations (see [PS, Chapter 9]). These are essentially
based on special mapping properties of the operator Aul, where A denotes the operator on
the left-hand side of (1.1), and p is a generalized Jacobi weight depending on the coefficients
a and b, which are required to satisfy a Holder condition.

We are going to give a somewhat different approach using weighted polynomials as ansatz
functions (a finite section (Galerkin) method with the same type of ansatz functions was
investigated in [JRW]). Also in the case of variable coefficients a and b there will always
occur pure Jacobi weights, which are easier to cope with than generalized Jacobi weights
(for instance, the recurrence coefficients of the corresponding orthogonal polynomials, which
are needed in the computer implementation of our method, are explicitly known), and we
will always use the same (Chebyshev) collocation points independently of the coefficients.
This is an advantage if a Newton method for a nonlinear singular integral equation results
in a sequence of linear equations of type (1.1), the coefficients of which are different in
each step. Furthermore, we can (apart from the additional assumption b(£1) = 0) admit
arbitrary piecewise continuous coefficients. Coefficients with jumps can occur, for example,
when considering seepage problems for channels or dams with corners ([Ju2]). Finally we
mention that one can introduce a scale of Sobolev-like spaces with respect to a system of
weighted orthogonal polynomials analogous to [BHS] and can under suitable smoothness
conditions on the coefficients obtain error estimates for the collocation method in the norms
of these Sobolev-like spaces, which are continuously embedded in certain spaces of weighted
continuous functions. The results we achieved here, however, still need to be improved.

We will prove the strong convergence of the approximation operators associated with our
collocation method, and will investigate the stability of this method using Banach algebra
techniques, which have proved to be an efficient tool in stability analysis (see for example
[Si], [JS], [HRS], [JRW]). We obtain necessary and sufficient stability conditions in the
case of continuous coefficients and a sufficient condition if the coefficients are piecewise
continuous.

In Section 2 we give some notations and define the numerical method we are going to
deal with, Section 3 provides some basic facts on Banach algebra techniques we will need for
the stability analysis, Section 4 is concerned with the strong convergence of some operator
sequences, and in Section 5 we will use Banach algebra techniques to derive the main
result concerning the stability. Finally, we make some remarks concerning the computer
implementation and present numerical results in Section 6.



2 Some notations and preliminaries

We consider equation (1.1) in the weighted Lebesgue space L2 := L%(—1,1) of all (classes
of) measurable functions u : (—1,1) — C for which

ul} = [ fuw)Pot) ds

is finite, equipped with the inner product

(u,v), 1= /1 u(z)v(z)o(x) de,

-1

which turns L2 into a Hilbert space. Here o is a Jacobi weight defined by o(x) = v*#(z) :=
(1 — 2)%(1 + 2)” satisfying the conditions

—-l<a,f8<1 (2.2)

These conditions guarantee the boundedness of the Cauchy singular integral operator S
defined by

1 u(t)
(Su)(@) = — /_1 ==t (2.3)
on L2 (|[GK], Theorem 1.4.1). The coefficients a, b are assumed to belong to the algebra PC
of all piecewise continuous functions. The latter is defined as the closure (in the space of all
bounded functions, equipped with the supremum norm) of the set of those functions being
continuous on [—1, 1] with the possible exception of a finite number of jumps in (—1,1),
where the value of the function coincides with the left-sided limit. Note that PC-functions
possess finite one-sided limits at all points. Under these assumptions, the operator on the
left-hand side of (1.1), which in the following will be briefly referred to as al+bS, is bounded
on L2.
Let ¢ denote the Chebyshev weight of second kind,

p(r) = V1 -2

and let U, be the orthonormal polynomial of degree n (with positive leading coefficient)
with respect to the inner product (.,.),. For these polynomials we have the well-known
trigonometric representation

Un(coss) = \/gw
If o is a Jacobi weight satisfying (2.2), we define the function
Wy 1= +/0p.
Obviously, w,-11 is an isometric isomorphism from L?D onto L2. Thus, the functions
Up = We—1U,, n=0,1,2,..., (2.4)

form an orthonormal basis in L2, because the same is true for U,, in the space L?O. For the
approximation method we want to apply to (1.1), the functions (2.4) will be used as ansatz
functions. We need two sequences of projections with respect to the system {,}5°,. The
first are the Fourier projections P?J given by

[e'e) n—1
P> &Gt =Y &ty
k=0 k=0



Evidently, P7 converges strongly to the identity operator I as n — oo. The second is
the weighted interpolation operator L? assigning to a Riemann integrable function f the

uniquely determined weighted polynomial of degree less than n (that is, the element of

X, = span {@;}7Z}) that coincides with f in the collocation points x§ = cos % (k =

n+1
1,...,n), which are the zeros of U,,. Thus we can write

E/g = woflLZ(wofl)_ll,

where L¥ is the usual (polynomial) Lagrangian interpolation operator with respect to these
nodes. A class of functions f for which ||Lgf — f||, — 0 will be described in Corollary 4.6.

We now consider a collocation method which replaces equation (1.1) by the discrete
approximate equations

Lg(al +bS)v, = L7 f, (2.5)

where v,, € span {ﬂk}z;é is sought. Our main concern is the applicability of this method to
the original equation. In the following, we are going to define in a somewhat more general
situation what we understand by this concept: Let X be a Banach space, let {P,} C L(X)
(where £(X,Y) means the set of all linear bounded operators between two Banach spaces
X and Y, and L£(X) := L(X, X)) be a sequence of projections with P, — I (strongly),
X,=1m P,, A€ L(X) and A, € L(X,), where we require that A, P, converges strongly
to A.

Definition 2.1 The projection method

Ayu, = P, f (2.6)
18 said to be applicable to the equation

Au=f (2.7)
if the following conditions are fulfilled:

(i) The equations (2.6) have a unique solution for all sufficiently large n.
(11) Their solutions u, converge to a solution of (2.7) for n — oc.

Definition 2.2 The sequence {A,} is said to be stable if there is an ny such that A, is

invertible for all n > ng and sup ||A;'P,|| < oo.
n>ng

The problem of the applicability of (2.6) to (2.7) can be reduced to the stability of {A,} by
the following lemma.

Lemma 2.1 ([HRS], Prop. 1.1) Let A,P, — A strongly. Then (2.6) is applicable to
(2.7) if and only if A is invertible and the sequence {A,} is stable.

In our concrete situation we have X = L2, P, = P°, A = al +bS and A, = L A|x,. The
strong convergence of these operators will be dealt with in section 4.

Remark 2.2 Note that in the following we consider the projection method (2.6) rather
than (2.5). If, however, (2.6) is applicable to (1.1) and the right-hand side f satisfies
lf—Lofll, =0 (n— o0), the solutions v, of (2.5) converge to the solution u of (1.1).

Proof. We have
lvn —ull < A Lg f — At AnPoull + || Pu —

< 14PN (ILg f = fIl + [ Au = AuPZull) + | PJu —ul| — 0



3 Banach algebra techniques

3.1 Basic facts

In this subsection we compile some basic facts that will be used later on to investigate the
stability problem for our approximation method by Banach algebra techniques.

Definition 3.1 Let B, C be unital Banach algebras, J C B a closed two-sided ideal. A
unital homomorphism W : B — C is called J-lifting, if W(J) is a closed two-sided ideal in
C and W\ is an isomorphism between J and W(J).

The following theorem is usually called ‘lifting theorem’, its first version appears in [Si].

Theorem 3.1 (see [HRS], Theorem 1.8) Let B, C; be unital Banach algebras, where t
belongs to an arbitrary index set T, let J; be closed two-sided ideals in B and let W; : B — C;
be J;-lifting homomorphisms. By J we denote the smallest closed two-sided ideal in B that
contains all Jy, t € T. Then an element b € B is invertible in B if and only if W;(b) is
invertible in C; for allt € T and the coset b+ J is invertible in the quotient algebra B/J .

The invertibility of the coset b+ J is usually investigated by the help of local principles.

Definition 3.2 Let B be a unital Banach algebra. A subset M C B is called a localizing
class if 0 ¢ M and if for all a1, as € M there exists an element a € M such that

aa; = a;a = a (j=1,2).
In the following let M be a localizing class. Two elements x, y € B are called M -equivalent
(in symbols: x d y), if

inf [la(z — )] = inf || (z — y)al| = 0
Further, x € B is called M-invertible if there exist ay, ay € M, z1, z9 € B such that

z1xa; = aq, A9T2Zy = ag.

A system { M, }ier of localizing classes (T is an arbitrary indez set) is said to be covering,
if for each system {a;}ier, ay € My, there exists a finite subsystem ay,,...,a,, such that
ag, + -+ -+ ay, s invertible in B.

Now we can formulate the local principle of Gohberg and Krupnik:

Theorem 3.2 (|[GK], Theorem XII1.1.1) Let B be a unital Banach algebra, {M;}ier a

covering system of localizing classes in B, x € B and x i xy for allt € T. Further, assume

that x commutes with all elements from U M. Then x is invertible in B if and only if x,

teT
is Mi-invertible for allt € T'.

Another local principle is due to Allan and Douglas:

Theorem 3.3 ([BS], Theorem 1.34) Let B be a unital Banach algebra and C C B a
closed central subalgebra (that is, all elements of C commute with all elements of B) that
contains the unit element. For every mazximal ideal t of C we introduce the local ideal J; as
the smallest closed two-sided ideal of B that contains t. Then

(i) An element x € B is invertible in B if and only if the cosets x + J; are invertible in

B/J; for allt.



(1) N Ty is contained in the radical of B.
t

Remark 3.1 (see [PS], proof of Theorem 1.21) If B, C are C*-algebras, there is a
close relation between the two local principles. Let M(C) denote the mazimal ideal space
of C. Forte M(C) we define My :={a €C:0<(Ga)(s) <1, (Ga)(s) =1 in some neigh-
bourhood of t}, where G : C — C(M(C)) denotes the Gelfand map. Then {M;}iericy forms
a covering system of localizing classes in B, and the local ideals occurring in the principle

of Allan and Douglas can be described by J; = {z € B : RN 0}

3.2 Application to stability analysis

We want to investigate the applicability of the approximation method (2.6) to equation
(2.7). In all what follows we assume that A, P, converges strongly to A, which allows us to
reduce the problem to the question if {A,} is stable. Furthermore, we specify X to be a
Hilbert space.

By £ we denote the set of all operator sequences {A,P,}, where A, € L(X,) and
sup |4, P,|| < oo. Endowed with componentwise algebraic operations and the norm

I{B.}|le = sup||B.l||, €& becomes a C*-algebra. The set N := {{C,} € € : ||C,|| — 0}

is a closed idegl in £. In the sequel we will use the notation GB for the set of all invertible
elements of a Banach algebra B. The following well-known result identifies the question of
stability with an invertibility problem.

Lemma 3.2 ([HRS], Proposition 1.2) A sequence {A,} € & is stable if and only if
{A} + N eG(E/N).
We introduce a further family of operators W,, € L(X), where we assume that W, = W}

converges weakly to 0, W, P, = W, and W2 = P,. Let A denote the set of all sequences
{A,} € € for which A,,, A%, A, := W, A, W, and A} are strongly convergent.

Lemma 3.3 The set A is a C*-algebra.

Proof. Evidently, Ais alinear space. If {A,} € A, thensois {A’} (note that {W, A*W,,} =
{(W, A W,)*}). Let {A™} be a fundamental sequence in A, where AM™ = {A;"’}zgl. If
e > 0 is given, we have

|4 — A < e

for all k£ if m, n are large enough. Hence, there is a sequence {Ax} € L(X) such that

||A,E;") — Aill = 0 (n — o0) uniformly with respect to k. If we choose x € X, we can
estimate

Ak = Al < 11Ae = A7 | 2l + A4 = AP ] + 1AL = A7)l
The first two terms can be made arbitrarily small by the choice of n, and the third one goes
to zero if n is fixed and k, | — oo, since {A,E:n)},;“;l € A. Hence, A is strongly convergent.

The sequences A%, Aj, and A% are treated in the same way (note that ||ﬁ,(€n) - Zl,gm)H <
const ||A(") - (m) || because of the weak convergence of W,,). N

In the following, the coset {A,} + N of a sequence {A,} € £ will be denoted by {A }. The
ideal AV is contained in A, and thus A A/N is a C*-subalgebra of £ := &/N and is
therefore inverse-closed (that means AN GE = GA). Hence, the stability of {A,} € A is
equivalent to {Z;} cGA.

In all what follows, K(X,Y") denotes the space of all compact linear operators between
two Banach spaces X and Y. If X =Y, we briefly write K(X) instead of (X, X).
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Lemma 3.4 ([PS], 1.1.h) Let X,Y,Z,V be Banach spaces, {A,} C L(Z,V), {B,} C
L(X,Y) such that A, — A € L(Z,V), BX — B* € L(Y*, X*) strongly. If K € K(Y,Z),
If K e K(Y,Z) and B, — B € L(X,Y) (weakly), then KB, — KB strongly.

Let Jo = {{P.K P} : K € K(X)}, 1 := {{W,KW,} : K € K(X)}. By Lemma 3.4,
Jo, Ji are subsets of A.

Lemma 3.5 ([Si], Satz 2) J,, Ji are closed ideals in A, and the smallest closed ideal
containing Jo and J, equals

j = {{PnKlpn + WnKQWn} +N2 Kl, K2 - ]C(X)}

Proof. We show that Zp := {{ P, K P, +C,} : K € K(X), ||Cy|| — 0} is a closed ideal in A,
whence the corresponding property of Jj in A follows immediately. Obviously, Z is a linear
space. Let {B,} C T, be a fundamental sequence, B, = {4} =A™ = pr™mp, 4+ C™),
where T™ € K(X), |C|| = 0 (k — o0). We have A™ — T(™ (strongly), and hence
for ¢ > 0 the relation ||T™ — T(m)|| < sup 1AM — AU < & holds for n, m large enough.

Therefore, T™ converges uniformly to some 7' € K(X). Besides, we can estimate
[C = G < IPT™) = TO) Pyl + (| AL = AL < e

for sufficiently large m, n independently of k. Thus, there exists a sequence {C}} with
||C'kn) —Cil = 0 (n — ), and since ||Cy|| < ||C'kn) — Ckll + HC’,SH)H, we have {Cy} € V.
If we put B := {P, TP, + C}, we have

| B, — Bl|4 < const |[T™ —T| + sup ||C,§,") —Ci|| — 0 (n — 00),
k

which proves the closedness of Zy. To show (for instance) that Zy is a left ideal, let { A} € A,
A — A, {Bk} = {PkTPk + Ck} € 7. Then

eN

(cf. Lemma 3.4). The proof for J;, J is analogous. Obviously, J is contained in every ideal
that contains J, and J;, which completes the proof. N

For {;1:} e A we define
WO{Z;} = s5— nh_)nolo A, Wl{Z;} = s— nh—>nolo W, A, W,,.

Note that Wy, W; are correctly defined. Evidently, W, (i = 0,1) are continuous
*-homomorphisms from A into £(X) (remember that ||s—lim A,| < liminf||A,]|). Fur-
ther, it is easy to see that W;|z is an isomorphism between J; and the ideal K(X) of all
compact linear operators on X, in other words, W; is J;-lifting. If we apply Theorem 3.1
with 7"= {0, 1} to this situation, we obtain the original version of the lifting theorem:

Theorem 3.4 ([Si], Satz 3) Let {A,} € A, A, — A, A, — A strongly. Then {A,} is
stable if and only if A, A € GL(X) and {A} + T € G(A)T).
Remark 3.6 The third condition of the preceding theorem can be written in the equivalent

form {A,} + I € G(A/I), with the ideal T = {{P, K 1P, + W, KoW,, + C,} : Ky, Ky €
K(X), [[Call — 0}



In the following two sections we are going to apply the tools from this section to the stability

analysis of the collocation method. There we choose P,, = P? and introduce the operators
W, = W7 defined by

o) n—1
wy Z AUy = Z Ap—1— kU,
k=0 k=0

which obviously possess the properties required above. The approximation operators under
consideration here are A, = L(al + bS)P?, a,b € PC, in the space X = L2. We will

n?

show that, under the additional condition b(+1) = 0, we have {4,} € A, compute A and
apply Theorem 3.4 (with Remark 3.6) to the stability problem. The invertibility of the coset
{A,} +Z will be investigated by the local principle of Gohberg and Krupnik.

4 Strong convergence of the operator sequences

The strong convergence of A, = L7(al + bS)P? and of A* will be shown for Riemann inte-
grable coefficients. Unfortunately, the authors did not succeed in proving the convergence
of A, and A,, without the additional condition b € PC" and b(+1) = 0.

4.1 Strong convergence of A,

First we give sufficient conditions for the weighted interpolation polynomial IAL;/{ f to converge
in the L2-norm. For this end, we provide some material from [Fr] concerning the convergence
of Gaussian quadrature rules and Lagrangian interpolation operators.

Consider a Jacobi weight v. Let z, (k = 1,...,n) be the zeros of the orthogonal
polynomial of degree n related to v, and L} the Lagrangian interpolation operator with
respect to zj,,. By @}, we denote the Gaussian quadrature rule

Quf = [ @D ds = 3 AL Sk,

Lemma 4.1 ([Fr], Hilfssatz I11.1.5) Let g: (—1,1) — [0,00), ¢®)(z) >0 for all
z e (=1,1) and v =0,1,2,..., and let [*, g(z)v(z) dr < co. Then

1
b9 < [ gl@y(a)da.
—1
Lemma 4.2 ([Fr], Satz I11.1.4) Let f be bounded on (—1,1). Then

1
Quf = [ J@pw@ydr  (n—o0)
-1
provided that this integral exists in the Riemann sense.

Lemma 4.3 (cf. [Fr], Satz II1.1.6b) Assume that f is bounded on every compact subin-
terval of (—1,1) and the (improper) Riemann integral [*, f(x)v(x) dx ewists. Suppose that
there exist functions g_1, g, satisfying the conditions of Lemma 4.1 and the relations

. f(z) i f(z)
e—-140 g_y(x)  2—1-0 gy(x)

Then Qif — ') f(a)o(a)dr  (n — o).

= 0. (4.1)



Proof. Splitting the interval, we can restrict ourselves to the case f(z) = 0 in some
neighbourhood of 1, g := g_;. Let € > 0 be arbitrary and § > 0 such that |f(x)| < eg(x)
for -1 < x < —1+6. Lemma 4.2 yields

1

lim Ay f(x,) = f(z)v(z) dx.
n—00 xgnzz—:H& k k /;l—l-é

Furthermore,

1

<ed Apgat) <e [ gola)de

k=1 -1

z} <—1+6

by Lemma 4.1, and

‘/_1;5 f(x)v(z) dx Sg/_ll g(z)v(z)dz. N

Remark 4.4 If v = v with ~y,d satisfying (2.2) we can choose g_1 = (1 + x)7179%,
g1(x) = (1 —2)~177" with some e > 0. Hence, the Gaussian quadrature rule converges if f
1s locally Riemann integrable and satisfies

|f(x)| < COnSt(l — x)_l_’H‘E(l + x>—1—5+5.
Lemma 4.5 ([Fr], Satz I11.2.1) Assume the hypotheses of Lemma 4.3 are fulfilled with

|f|? instead of f and xli_r{1+0g_1(x) = xl_i)rlriogl(:z) =o00. Then lim |Lyf — fllrz = 0.

Proof. According to [Fr], Satz I11.4.3, the polynomials are dense in L?. (This remains true
in the complex case, since real and imaginary part can be approximated separately.) Let
e > 0, and let p be a polynomial with ||p — f||,2 <. For n > deg p we have

If = Lo fIP < 2(1Lf = plP* + I1L5(p = HI?)
< 22+ Qu(lp— f1%)

(note that the Gaussian quadrature rule with n nodes is exact for polynomials of degree less
than 2n). Given r > 0, in a suitable neighbourhood of — 1 the relation

p(z) = f(@)I* < 2(lp(@)]* + 1 f(2)[) < rg-1(2)

holds (as well as the analogous relation in a neighbourhood of 1). Thus, (4.1) is satisfied
with |[p — f|? instead of f. We further have

[ vt~ f@Peaydr <2 [ (@) + 15 Pyole) d < oo.

Lemma 4.3 now yields Q%(|p — f>) — [, |p(z) — f(2)]?v(z) dz < 2. W

Corollary 4.6 Let o = v®P. If f is locally Riemann integrable on (—1,1) and
|f(2)] < const(1 — x) 71/ (1 4 g)(F1=A)/24=
with some € > 0, then

ILsf — flle =0 (n— o0).



Proof. Using the isometric isomorphism w,-11 : L2, — L2, we have

1Lgf = fllo = I1LZwt f = wy i flp.
Now the assertion follows from Lemma 4.5 and Remark 4.4. N
In the sequel we will investigate the behaviour of the operators A,,. First we do this for the

multiplication operator A = al separately.

Proposition 4.1 Let a be Riemann integrable. Then LV;;CLP,‘{ — al strongly on L2. Fur-
thermore, we have the estimation || L5aP7| zr2) < ||al/so-

Proof. First we show the convergence on the dense subset span {a,,}5°_,. Clearly, the
functions aty, satisfy the conditions of Corollary 4.6. Thus, for n > m we have ||A,a,, —
At = || L aty, —atiy,||, — 0. For showing the uniform boundedness, let u € L2 and write
P°u = w,-1q, with a polynomial g, of degree less than n. If we again note the exactness of
the Gaussian quadrature rule, we have
ILgaPlully = ||Lfag. |3 = QF(lag.|?)
< lall3%@% (1) = lallZllgnll? = llallZ Brulls < llalllull3-

Now the assertion follows from the Banach-Steinhaus theorem. N

Let o be a Jacobi weight and u € (0,1). By H{(0) we denote the Banach space of all
functions f for which of € C%*[—1,1] and (¢f)(#1) = 0. The norm in this space is defined

g\x)—gly
by 1 g = lefllns, where, as wsualy, lglcon = gl + sup 1222 =501
TFY

Lemma 4.7 ([GK], Theorem 1.6.2) Let o =v"°, p € (0,1) and p < v,5 < p+1. Then
the Cauchy singular integral operator S defined by (2.3) is bounded on HY (o).

Proposition 4.2 The operators LISP? converge to S on span {iim, }2_,.

Proof. Let o = v, where we choose 7, J such that

a 1 14+« G 1 1+ 0
max{0,5—1}<7<T, max{0,5—1}<5<T,

and let

. 1 « 1 p
0<u<mln{7,5,7+1—§,5+1—§}.

Then we have < 7,6 < p+ 1 and 4, € Hy(p). The latter relation follows from
0l (7) = Uy (2)(1 — :E)w+1/4—a/2(1 i :17)6“/4_6/2,

the exponents being greater than . By Lemma 4.7, we also have Su,, € H}'(p), which
means that h := 0S4, € C%*. Thus, we can estimate

|(Sim) (@) = (e h)(@)] = [h(z)(1 = 2) (1 + )|
< const (1 —z)~WF)/24e (] 4 )= (145)/24=

if € > 0 is small enough. Corollary 4.6 now gives the assertion. MW

In all what follows we exclude the cases a = % and § = % since they bring about some

technical difficulties in the proofs that we could only partially overcome. Some remarks
concerning these cases will be given in a separate subsection.
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Lemma 4.8 (comp. [PS], 9.7 and 9.9) Assume that (2.2) is satisfied. Let g,b €
CO1—1,1] (n € (0,1)) be real-valued functions for which g(z) — ib(z) # 0 for all
x € [-1,1]. Let A\, v be integers such that ag == XA+ g(1),5p := v — g(—1) € (—1,1),
where g(x) —ib(z) = \/b?(z) + ¢2(2)e"™@) with a continuous function §. Then there exists a
positive function ¢ € C%"—1,1] such that the operator (gI +iSbI)v®PcI transforms every
polynomial of degree n into a polynomial of degree n — k, where k = —(A+v). (If n < k,
this is to be understood in the sense that a polynomial of negative degree is identically zero.)

If, as we assumed, o # % and B # 1 3, we can choose b =1 and g € C' such that \ :=

i -5 - g(1) and v := l Sy 5 + g(—1) are integers, whence we get the mapping properties
described in Lemma 4. 8 for the operator (gI + iS)w,-1cI with some positive function c,
c € C% for all n € (0,1). Furthermore, we can always achieve k > —1 (we need the latter
relation to guarantee the exactness of the Gaussian quadrature rule): Evidently, we always

have g(z) € (—1,0).

e In case o :=
k=1.

o If ag, B0 >0, let g(1) =g — 1, g(—1) = —fp.

e Finally, take g(1) = ap, g(—1) = —Fp if ap < 0 < [y, and §(1) = ap — 1, §(—1) =
—1—60 ifﬁo<0<0&0.

— 2, By =1 -8 <0 we choose §(1) = ap, §(—1) = —1 — , and have

ST
=

Our proof of the uniform boundedness of LS P? will be based on the following decomposi-
tion of the operator S:

S =igl —ic (gl +iS)cl 4 ¢ (S — Scl). (4.2)

Here g € C' and c are the same as in Lemma 4.8. In particular, ¢ € C*" for all € (0,1).
Now we are going to estimate the three summands of L3SP; separately.

By virtue of Proposition 4.1 we have ||[LZgP7|| < ||g|lco, S0 we are done with the first
term.

Lemma 4.9 ([Ne], Theorem 9.25) Let v,v* be Jacobi weights with vv* € L'. Let | € N
be fized and q a polynomial with degq < In. Then

ZA Jata o) < const [ Ja(o)lo(r)o’ @) da,

the constant being independent of n and q.

Proposition 4.3 We have the estimation
ILge™ (9T + iS)eP || czzy < const ||¢ Moo lge +iScl || r2).

Proof. According to Lemma 4.8, g, := (g +iS)cPu is a polynomial of degree less than
n — k for all u € L. Now we have

L™ (9] +iS)ePoull2 = | LEc™ (wo-1) " quosl?

n
Z kn‘c xkn 2(w071(xfn))_z‘qn—ﬁ(xfn)P

10



< e I% ZAzm Wo1(2£,)) " dn—r(f, )|

52constHc‘IHin/gﬂqn_n(x>F<ub~i(x))‘zw(x)dx

—1H2

= const |2 gn—xll?

< const || [3 llgel +iSell|Z gz llullz,

where we used Lemma 4.9 with v = ¢, v* = w;,zl for the estimation in the fourth line. W

The following lemma is a generalization of [Jul, Lemma 2.3].

2

Lemma 4.10 Let 0 = v and 0 < y < m := =max{o80} - ppep
1 1
“Yt)dt < const |z — y|*

2
1
/—1 t—ap  Ji—yP

for all A € (0,1) with A+~ < m.
Proof. Let A\g:= A+ ~. We have
i B O B i i

[RE =yl
=y — |t — ao

£ = aPolt — g

t—al 7=ty =

+

Hence, we can estimate

[t — | — [t =y

DY e S I M—’Yz 1 1
§3(|t x| [t — y| ™ )<|t—x|2)‘0+|t—y|2)‘°>

2
N (7 e et i)
£ = Pt =y

1 1 |x_ |4)\0 2’*{
— 2(0=)
gamﬁhx y 0”(H_IWO+u—m%J*Wt—ﬂ%w—yW°

2A0]

Then for the adjoint exponent ¢ the relation

—a T ey

1 1 1 1
= const |z — y|** -
|t t—x t—y

. m( 1 1
< const |x — y| T + T )

Obviously, we have a‘l LP for p <

1
q=> 1- max{aﬁO}

inequality gives

1
Lo 4t) . 1 dt a
[ 1o ([ =) <o

independently of z, and the lemma is proved. BN

1
max{a,3,0}"
5~ holds. Since A\g < m, we can guarantee 2Aoq < 1. Hence, the Holder

11



Lemma 4.11 Let 0 = v*? and ¢ € C%" with n > Hm#{aﬁo} Then K := ¢S — Scl €
K(L2,C%*) for some X > 0.

Proof. Choose 1 —n < v < %‘W’ and put k(t,z) := W\t—xﬂ fA<n—(1-7v),
we have k € C%* in both variables, uniformly with respect to the other ([Mu], §5). Moreover,
we require v + A < 1—ma+{a,60} Let now u € L2. We can write

k(tx) k()

t—axfr ft—yp

lu(t)] dt

(Ku)(@) - (K] < [

/.

and, using Lemma 4.10, the following estimation holds:

/1 ktx) Kty |

[t —y|

—/(‘ = |(ty)‘+"”y'!\t I

(B e

—ap Jt—yP

k(t.o)  k(ty) [
it —y|

() dt) l[ulls,

L) dt <

)2 o l(t)dt

“L(t)dt
< const |r — |2’\/ % + const | — y|*

< const |z — y|*.

Hence, all functions in {Ku : ||u|l, < 1} uniformly satisfy a Holder condition with the
exponent A. It remains to show the uniform boundedness of these functions. Using Lemma
2.4 from [CJLM], we get

(Ku@) < - [

m™J-1

1
- . Lo Ht)dt 2
< const ([ ) Ml
< const (1—z)"* 21 +2)7"2||ul,,
where at := max{0,a}, 57 := max{0,5}. In particular, ||ull, < 1 implies |(Ku)(0)| <
const, which together with the uniform Holder condition results in || Kul|o < const. Thus,

we have K € L(L%,C%) for some A > 0, and the assertion follows if we note that the
embedding C%* ¢ C%" is compact for A > X. W

A= )

t—

Using Lemma 4.11 and Corollary 4.6, we can now estimate the third summand:
1Lg e K P |l o2y < LGl ccon zz) lle™ oo 1K | cqzz,cony < const.

Thus, we have proved the uniform boundedness of [ES P?. If we note the obvious identity
LebSP? = LebP? Lo SP?, we can summarize the results of this subsection as follows:

Theorem 4.1 Let a,b be Riemann integrable on [—~1,1]. Then the operators
A, = Le(al +bS)P° converge strongly to al +bS on L?.

12



4.2 The cases a = ﬁ:%

—5,080:=7— 5 is zero, the decomposition (4.2), on which our

|»—A [\.’JI)—l

If one of the numbers aq := ;
proof of the uniform boundedness of L;;S Pf[ was based, is not possible. We cannot choose
b =1 in Lemma 4.8 since in this case oy — (1) (or fy + §(—1), respectively) cannot be an
integer. We can, however, to some extent overcome the difficulties connected with this fact
if we estimate the whole term LZbSP? instead of considering LgSP? separately.

Assume for instance ag = 0, By # 0. In this case we can proceed as follows. Let b be a
function satisfying the following conditions:

b € C° for some 1 > 1+max72{a,ﬁ,0}

b(1) =0 (4.3)

b(—1) # 0.
(If By = 0, we would also require b(—1) = 0). For the following argument we can assume
without loss of generality that b is real-valued and b(—1) < 0. Now we choose some g € C*,
g(1) =1 (that is, g(1) = 0) such that the operator (g +Sbl)w,-1cI possesses the mapping
properties described in Lemma 4.8 with x > —1. If 3y > 0, we can choose g such that
g(—1) =1 — [y, whence k = —1, if fy < 0 we choose g(—1) = —y and have k = 0. (If we
had By = 0, we would simply take g = 1, which means x = 0.)

Instead of (4.2) we now use the decomposition
bS = SbI + K =igl —ic™ (g +iSbI)cl + ¢ *(cS — Sel)bl + K,

where K = bS — SbI € K(L2, C%*) for some 1 > 0 (compare Lemma 4.11). This enables us
to show in the same way as before that A,, = LgbSP? and A} converge strongly if b satisfies
(4.3). In particular, we have ||Lg(1 — x)"SP?|| < const if n > %{“60}

Proposition 4.4 Let ag =0, By # 0. Let b € PC and b(z) = o((1 — x)") for x — 1 with
some n > M. Then ||LgbSP?|| < const.

Proof. Let y be Riemann mtegrable and let b € Py, which denotes the set of all polynomials
vanishing in 1. Then LabeP" = Lox(1+ k)kpP? LC’blSP" with some nonnegative integer
k, where by satisfies (4.3). Hence, the uniform boundedness of LZbSP? continues to hold if
b is the product of a polynomial from P; with a Riemann integrable function.

Now let b be as in the hypothesis with a finite number of jumps. Then (1 — z)™7b is
piecewise continuous and can therefore be approximated uniformly by a piecewise poly-
nomial b = Y7, x;b;, where b; € Py, x; is the characteristic function of [z;,2;,1] and
—1 =21 <2y <...<Zpy1 = 1. (Note that P, is dense in C[z;,x;41] for all j =1,...m
due to the Stone-Weierstral theorem.) Then we have

[ (- ari-n)sez] < [ G- -]

< const HB —(1- :B)_"bHOO :

Ly (1 —a)'sPy|

which can be made as small as desired by the choice of b. If we note the fact that the set of
all sequences from & which, together with their adjoint operators, are strongly convergent
is a closed subalgebra of £ (compare the proof of Lemma 3.3), we get the assertion for b
with a finite number of jumps. If b € PC' is arbitrary, b(z) = o((1 — x)"), we approximate
(1 — 2)~"b uniformly by a function b with the same properties and only finitely many jumps
and repeat the same arguments as above to get the assertion for b. W

Remark 4.12 If ay = 3y = 0, we would have to require b = o((1 — x*)") for x — +1 in the
preceding proposition.
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4.3 Strong convergence of A}

In all what follows we identify the dual space of L? with L2 itself and consider A* as an
element of £(L2). As an auxiliary relation, we deduce a formula for the Fourier coefficients
of Lof: We have Lof = Y775 auily, where, because of the exactness of the Gaussian
quadrature rule,

where Ajn = w, % (z5,) A%, and §;, denotes the Kronecker symbol.
Now we compute (LZaP?)* with Riemann integrable a. For u = Y00, upiiy, v =
> ore Ukl we have due to (4.4)

(LgaPJu,v), =

that means
(LgaPy)* = LgaPy,

which is strongly convergent due to Proposition 4.1.

Since we have (LgbSP7)* = (L5 SP7)* (LgbP7)*, we can now restrict ourselves to investi-
gating (LgSP7)*. This will be done again by using a three-term decomposition according to
(4.2). The multiplication operator was already considered. To deal with (g +4iS)cl (we can
obviously neglect the factor ¢7!), we note that in Lemma 4.8 there is always x € {—1,0, 1},
which implies that

Gn—w = (9] +1S)cPJu
is always a polynomial of degree at most n. If u,v € L2 and A;’n are as above, we can write
(Lo (gI +iS)cPlu,v), =
= 3 A tns(a,)BF0) F,)
j=1
= (Wo1Gn—s, Lgw, 1 PI0),

o—
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= (wy1 (g1 4+ iS)cPIu, Lgw Y Pv),
= (u, PZc(gl +iS) w,—1 Low>t, P7v),.
(Note that gI +iS € £L(L2) and w,—1 L2 f € L2.) Hence, we have
(Lg(gI +iS)ePg)* = Plc(gl +iS) w1 Low, Y.

Lemma 4.13 (Cf. [MR], Cor. 3.2 and the following remark; [DT], Th. 6.2.1)
Let u,w be Jacobi weights satisfying

- VI e 2
JUP' u '

If f is a function with f'ou € L?, then the following estimation holds:

const

lu(Ly f = P> < 1 pull 2.

n
Lemma 4.14 The operators P2c(gl + iS)* w,-1 Lj‘gw;}ng converge strongly in L.

Proof. Since the uniform boundedness is trivial in view of Lemma 4.3, we only have to show
the convergence on span {,,}5°_,. First we consider the term wofngw;}J . Let m > n.
We can write
Low Y tty, — Gillo = | LGUn = Unllp = 0" *womr (LEw, 2, Up — w2, U,
[wo—r Lgw, =yt — timle = | LGUm — Unllp = [l@™ " wor (Lwg - U — wy =y Un) [ 2

We now apply Lemma 4.13 with f = w1 U,,, u = ¢!/

estimate the last expression by

wy-1 and w = ¢, which allows us to

const const

(w21 Unn) ' P o]l 12 < — 0  (n—o00)

n

Since P7 — I and (gl +1S)* € L(L?), the assertion follows. N

Due to Lemma 4.11, we have K := ¢S—Scl € K(LZ, C*") for some A > 0. Furthermore,
(P9)* = P° — I 'in L? and L? — E (cf. Corollary 4.6), where E denotes the continuous
embedding of C%* into L2. Thus, if we write again K instead of EK, Lemma 3.4 gives

|BKPS = Klcuzy — 0 (n— o),
and hence

(LK P = K™ |lewz)y — 0 (n— o).
Thus, we have proved the following theorem:

Theorem 4.2 Ifa,b are Riemann integrable, then (L2 (al +bS)P°)* is strongly convergent.
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4.4 Strong convergence of A,

First we consider the case of a multiplication operator A = al with a Riemann integrable
function a. The following lemma together with Proposition 4.1 shows the convergence of
A, in this case.

Lemma 4.15 We have WILZaW? = LoaP?.

Proof. It is sufficient to show the identity on span {u,,}. For n > m we have (compare
relation (4.4))

WO L2 aW i, = WO LS aitn—1—m

k=0 \j=1
. (2P )2
If we remember that zf, = cos 25 (j=1,...,n) and A;»On:ﬂ'l ijf) , we get
2 K. (n—k)jr . (n—m)jr
ﬁ’“m_nH;m nr1 Sm gyl
2 & (k+Djm . (m+1)jm
=Sy s )

=1
= 6n—1—k,n—1—m7
which means W7 LeaW7u,, = LZaPu,, 1

Let V := xl — iw,—1Sw,1, that is, (Vu)(z) = zu(z) — iws—1 (z)(Sweu)(z) for u € L. The
following lemma is a generalization of a result from [RR] (cf. also [PS, Th. 4.123]), which is
formulated there for the case a = 3 = 0.

Lemma 4.16 ([RR], see also [PS], Theorem 4.123) V is a shift operator with respect
to the system {0,}>,, more precisely, the relation

VY ot = oklips
k=0 k=0
holds. The adjoint operator, which satisfies
VS oglly = Y o iy,
k=0 k=0
s given by

V*=al +iw,-1Sw, 1.

Proof. For the shift property of V' compare the proof of [PS, Theorem 4.123]. To verify the
representation of V*, note that ¢'/2I : L2 — L? is an isometric isomorphism and S* = S in
L. 1
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Lemma 4.17 ([Lu], Lemma 3.10, cf. also [Mu], §5) Assume that
beCP-1,1] (0<n<1) and b9 (£1)=0 (5=0,...,p).
Let further v =v"""% and X\ := n — max{v, 4,0} > 0. Then
bweCPMN-1,1]  and  (0)I(£1)=0 (j=0,...,p).
We introduce the notations
PCy = {be PC[~1,1] : b(1) = 0},
Co:={be C[—1,1] : b(£1) =0}
and

Cof = {be CY[=1,1] : b(#1) = V(1) = 0} .
Proposition 4.5 Let b € PCy. Then WSLIbSW? converges strongly to —bw; Sw,1.

Proof. First let b € C'é,’g, where 7 > max{$ + %,1 + g, 0}. We use the following decompo-
sition of bS (cf. Lemma 4.16):

bS = bw; Sw,I +bS — SbI + (Sbw; I — bw; ' S)w,1
=K (45)

= bt (xl - V") + K.
Using Lemma 4.15, we can manage the first two summands (note that bp~! is continuous):
z'W,ffgbgo_leg = zf:(;bgp_lerf — ibptal
and
—iWLgbp ' VWY = —iWZLgbe Wy - WV Wy
— —iLobp 'P? . P7V — —ibp'V.

The multiplication operator w,/ is an isometric isomorphism from L2 onto pr,l. Since

b€ Cyy, we get bp~! € C! from Lemma 4.17, and Lemma 4.11 gives us Sbw; 'l — bw;'S €
K(LZ-1,C%) as well as bS — SbI € (L2, C*) with some A > 0. Hence, K € K(L2,C%%).
Since W converges weakly to 0, we have KW7 — 0 strongly in £(L2, C%*) by virtue of
Lemma 3.4. Moreover, we have [|[W7Lg| < [[W7|[|[Lg]lzcor,r2) < const, which results in

WeLsKW? — 0 (strongly). Thus, we can conclude
WILebSWS — ibp ™ (al — V) = —bw; 'Sw,I (b€ Cy).

If x is an arbitrary Riemann integrable function and b € C’év’g, we get (using Lemma 4.15)
W LIbSW? = WILoxW? - WILIbSW — —xbw;  Sw,1. (4.6)

Now we consider the general case b € PCy. Without loss of generality we can restrict
ourselves to investigating functions with a finite number of jumps, that is, we can write
b= > x;b;, where b; € Co, Xj = X[z, ,2,4,) 18 the characteristic function of the subinterval
[, 241], and —1 = 21 < 29 < ... < &y, < Tpy1 = 1 is an arbitrary partition of [—1,1].
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Now we approximate b by piecewise Cé,’g—functions: Let € > 0 and choose numbers y; €
(=1,72), Yms1 € (Tm, 1) such that

b1 ()| < % for x <y, |bm ()] < % for >yt
Let (for instance) by(x) = by (2) := S(1—x)*(1+ ) Then Do, bng1 € Cold,
by () — bo(x)| < € for = € [—1, 1], by () — b1 ()| < € for z € [Ypmy1, 1].
Put y; :==2; (j=2,...,m), yo := —1, Yy := 1. For j = 1,...,m we choose functions

b; € Cy such that

|bj($) - gj(fC)| <g, HS [yjayj+1]'

If we define X; == X[y, .y,41]5 b= Z;”:JBI )Zjl;j, we obviously have ||b— b||s < . Since

{Lg (b = )SPIY e < IL5 (b = D) PII | L5 SPY | < const [|b —bllos < &

and since A is a closed subalgebra of £, we can conclude from (4.6) and Proposition 4.6
from the following subsection that W, LZbSW is strongly convergent. The continuity of
the homomorphism W), and the relation

(b — b)w; ' Sw,I|| < const ||b— b

imply that W, {Z%bSP;[ } = —bw;'Sw,I for b € PCy with finitely many jumps. An arbi-
trary PCy-function can be approximated uniformly by such functions, and we can repeat
the same arguments as above to get the assertion. W

Remark 4.18 If we have one of the special cases from subsection 4.2, say a = %, we

require b(z) = o((1 — z)%), & > 1+ma+m,ﬁ,0} and choose b in the preceding proof such that
II(b —E)(l — x)"%|| becomes small. Thus we can estimate I{Le (b — b)SP7}|e <
16 = 0)(1 = 2)~¢ |l | L5 (1 — 2)*SP7|| < e.

Remark 4.19 (cf. [GK], Theorem 1X.4.1) If a € PC, b € PCy, the operator A =
al — bw; Sw,1 is invertible in L2 if and only if A = al + bS is so.

4.5 Strong convergence of A,

Proposition 4.6 Ifa is Riemann integrable and b € PCy, then A, = (W9 L2 (aI+bS)W?)*
15 strongly convergent.

Proof. For the multiplication operator we have
(Wi LyaWy)" = (LgaP))" = LiaP] — al

by Lemma 4.15.
The investigation of bS will again be based on (4.5), where we first assume b € C'é,’g .
The expression by~ 'z is already covered by the preceding arguments. Further we have

(Wi Lebe™ VW) = (W Lgbp™ W - WV W)
= WIVWILobp ' P7 = V*PILobp ' PY — V*bp 1.
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Since K € K(L2,C%") and hence ||L7K — K||z(z2y — 0, we also have (Lo K)* — K*|| — 0.

Thus, we can write
(W LgKW2)" = We ((LgK)* — K*) We + WKWy,

the first summand uniformly and the second strongly converging to 0 (compare Lemma
3.4). If x is Riemann integrable (in particular a characteristic function of a subinterval) and
be C’év’g , we have

(W LaxbSWo)* = (W2 LgbSW ) (W LaxWe)*,

which allows us to apply the preceding reflections. By approximation we can finally get the
assertion for arbitrary b € PCy (compare the proof of Proposition 4.5). B

5 Application of the local principle and main result

Having shown {A,} = {L(al + bS)P?} € A and having computed A, we are left with
investigating the invertibility of the coset {A,,} +Z € A/Z (comp. Theorem 3.4), which will
be done by the local principle of Gohberg and Krupnik.

For t € [—1,1] let

my :={f € C[-1,1]: 0 < f(z) <1, f(x) =1 in some neighbourhood of ¢}
and define
M, = {{LgfPY+T: f €my}.

Lemma 5.1 (comp. [JS], Lemma 2.6) {M;}ic—1,1) is a covering system of localizing
classes in AJT.

Now we have to show that {4,} + Z commutes with all elements of [ J M,. For this
te[—1,1]

end, we consider an analogous problem in the space L?*(T), where T is the unit circle

{teC:|t|=1}. If fe LA(T), f(t) =2 fut®, we introduce the operators

PTHE = S fl

k=—n—1
(WEF) ) o= fort ™™ o fopaat o fo+ o+ fot”

and consider the algebra A" and the ideal (in A") ZT related to these operator sequences
and defined analogously to A and Z.

Let M,, be the Multhopp interpolation operator that assigns to every Riemann integrable
function f on T the polynomial (M, f)(t) = S7__, _, axt® coinciding with f in the nodes
ekm/(n+1) (k= —n — 1,...,n). We remind that ||M,f — f||r2ar) — 0 for all Riemann
integrable f. We further introduce the projections (Pf)(t) = 352, fit", @ = I — P and
(Tf)(t) = L(f(¢) — f(t7")). Note that T is the orthogonal projection onto the subspace
of all odd functions (that means, the space of all f € L*(T) for which f(t) = —f(t) for
all t € T). If a is a complex-valued function on [—1,1], we define a function a on T by

a(e") := a(cos ).
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Finally, we use the following mapping F from L? onto the subspace of all odd functions:
VruRt)w, (Rt), St >0

(Fu)(t) == —(Fu)(?), St <0
0, f=+1,

where Rt and 3t denote the real and the imaginary part of a complex number ¢, respectively.
Using the formula

(2 + V1 — 22)" — (z —iy/1 — &%)

Un == )
(z) ViVl — 22
we obtain
~ tn+1 _ t—n—l
(Fin)(t) = ——=—0),

V2i

which shows that F' is an isometric isomorphism between L2 and the space of all odd
functions in L?(T). The following lemma summarizes the transformation of some operators
we are interested in.

Lemma 5.2 The following identities hold:
Le = F~'M,F,
bl = F~1bF,
P? = F'PYFP?,
V*=F"1(t7'P+tQ)F,
POF-ITPT = prp-1T,
PY'FP? = FPY,
PP TWY = WeFIT(tP + QtI),
WEFP] ="\ FWg.

Lemma 5.3 ([JS], Lemma 2.5) If f € C(T), then the sequences {QM,fPPY} and
{PM, fQPT} belong to I".

Lemma 5.4 Let f € C[—1,1]. Then the sequence {L2 fV*P? — V*L7 fP°} belongs to I.
Proof. Using Lemma 5.2, we can transform the sequence under consideration as follows:
{LofV P = V' Le fPT} (57)
= {F7 M, f(t7'P+1Q)P) — (t7'P + tQ)M, fP}| FPJ}

We will show that the term in brackets belongs to Z". Note that we can insert the operator
M,, before the expression (t7'P + tQ)M, fPF since the space im M,, is left invariant by
t=1P +tQ. We have

{M, ftQPY — MtQM, fPr}
= {MtPY (M, fQPF — QM,fPY)}

= {MtPTYPIM, fQPY — QM,fPPr} € I"
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according to Lemma 5.3. (Note that {M,tPY} € A" ([JS]).) Analogously,
{M,t7*PM, fPT — M, ft *PPY} = {M,t"*PYH{PM,fQPT — QM,fPP*} e I".

Hence, there are operators K, K, € K(L?(T)) such that (5.7) equals
{PCF'T(PY K\ Py + WY K. W,E + C,)FPJ},

where ||C,|| — 0. (We insert the projection 7" to be able to consider the three summands
individually, since it is not guaranteed that each of them maps into im F.) If we use the
relations given in Lemma 5.2, we see that the latter expression equals

{PCF'TK\FP? + WIF 'T(tP + QtI) Kot ' FWZ + PCF~'TC,FP?},

which is obviously an element of Z. W

Proposition 5.1 Let a € PC, b € PCy. The coset {L%(al + bS)P?} + I commutes with
all elements of U M.

te[—-1,1]
Proof. In the case of the multiplication operator A = al, the assertion is a consequence of
LgaP7 L3 f Py = L3 f P LaPy = Liaf Py

As for the singular integral operator, we start with considering coefficients of the form xb
with a Riemann integrable function x and b € C'é,’g , where 7 > max{} + %,1 + g,O}.
Equation (4.5) and Lemma 4.11 give

xbS = YK +ixbp ' (x] — V™)

with YK € K(L?,R), where R denotes the Banach space of all Riemann integrable

functions on -1, 1],Nendowedwwith the supremum norm. Consequently, the commutator
Lo fP° LoxKP? — LexKP° L2 f P? converges uniformly to fxK — YK fI € K(L?) and is
therefore of the form

Pg(fXK_XKf]>Pg+Cm ||CnH_>Ov

which is contained in Z.
If we abbreviate ¢ := ixbp~!, it remains to consider
L feV* P} = LieV* Ly f P = LgePl (L fV* P = V' Ly fFY),

and Lemma 5.4 shows that this expression is in Z. Hence, the assertion is true for coefficients
of the form b, where b € C&’g , and y is a characteristic function of a subinterval. Arbitrary
PCy-coefficients can be approximated in the supremum norm by sums of such functions
(compare the proof of Lemma 4.5). Finally, we take into account that |[{LZbSP?} + Z|| <
const ||b|| and that the ideal Z is closed, which completes the proof of the proposition. N

Now we are able to give local representatives for {A,} + Z.
Lemma 5.5 Let 7 € [-1,1], a,a, € PC, b,b, € PCy such that
a.(1£0)=a(r £0), b-(£0) = b(T £ 0). (5.8)

Then {LZ(al + bS)PSY + T and {L7(a.I +b.S)P} + T are M,-equivalent. N
If further by = X|—1,71b1 + X[r,1)b2 with by, by € C’é”g, n > max{i +3, i+ g, 0}, then {L2((a, +
ibyo ) — b, 'V*)P7} + T is M, - equivalent to both cosets.
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Proof. Let f € m,. We have

Lz P L (0 = an) + (0= b)S)PTY,

<15 f(a— ar)P7 + L f (b= be) PY LES P | s
< (@ = ar)llo + const[| f(b = br) e,

which can be made arbitrarily small by a suitable choice of f. Thus, we have proved the
first assertion (note Proposition 5.1). For the second, formula (4.5) shows

bS = ibypt(xl — V*) + X(=1,051 + X1 K2

with Ky, Ky € K(L2,C%) and therefore Lg (x| 14Ky + xpKo)P? € Z. W

Remark 5.6 If we have one of the special cases with respect to the exponents of the weight
o considered in Subsection 4.2, we slightly modify the preceding lemma and its proof. If

for instance o =, we require that b(z) = o((1 — 2)*) for xz — 1, £ > 1+ma+m,ﬁ,o}’ which

ensures || L (1 —x)8SPY|| < const. Then we estimate as follows: Lo f(b—b,)P? L2SP?| <
1F(1=2)75(b = br)lloc |1 L5 (1 — 2)SPY .

In the following we are going to give stability conditions. If the coefficients of the singular
integral operator are continuous, we can obtain a very general result.

Theorem 5.1 Let a,b € C[—1,1] with b(£1) =0, and let A = al +bS. Then the sequence
{A,} = {LgAP?} is stable if and only if A is invertible in L.

Proof. Due to Theorem 3.4 and Remark 4.19, we only have to consider the invertibility of
the coset {A,}+Z. Let 7 € [—1,1]. Note that the invertibility of A implies a®(7)—b*(1) # 0
( [GK, Th. IX.4.1]). We choose a, € C, b, € C’&’g such that (5.8) is fulfilled, and additionally
a?(x) — b2(z) # 0 for all z € [—1,1]. Then, because of Lemma 5.5, an M, -equivalent local
representative of {A4,} + Z is given by {A!} + Z, where (cf. Lemma 5.2)

A7 = L7 ((ar + by~ )T — ibyp~'V*) P2
= F'M, ((a- + ib,¢™"'3)I — ib, o™ (t 7' P + Q) PYF Py
= F' [My(c;P + Q)P FPY

with ¢,(s) = d, 4+ ib,¢~ (2 — s7') and ¢ (s) = ¢,(s7!), and hence

ar(x) —b.(z), y>0
ar(x) +b.(z), y<O0.

cr(z +1y) = {

Let

T To ar . by -1 . br —1y/ = o
B = L"<<a2—b2_za2—b2¢ x>l+za2 b2<p V)Pn

= F! [Mn(c;1P+5;1Q)Pﬂ FP?. '
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Evidently, B] € A. The proof of [JS, Theorem 2.1] now yields
ATB = F7' [My(c.P + GQ)PY | [Mo(c;' P+ 6,7 Q)PY| F P
= FPr+ Cr|FP? = P74 C,,

where {CT} € ZT, {C,} € T (cf. the proof of Lemma 5.4). Analogously, BTAT = P? + C’,
{C!'} € Z, and Theorem 3.2 yields the assertion. N

As for arbitrary piecewise continuous coefficients, we restrict ourselves to giving a sufficient
stability condition in a special case.

Proposition 5.2 Let a € PC,b € PCy such that A = al + bS is invertible in L% and that
moreover for the one-sided limits

la(r £ 0) + ib(r £ 0)te™'(7)| > [b(r £ 0)¢~"(7)|
holds for all T € [—1,1]. Then {A,} = {LZAP} is stable.

Proof. Again we only have to show the invertibility of the coset {4, } +Z. For t € [—1,1]
choose a, € PC, by, by € C&:g (n > max{i + 3, i + g, 0}) such that a, and b, := x[_1,9b1 +
Xp,11b2 satisfy (5.8) and

a.(s+0)+ib (s £ O)sgp‘l(s)’ >

be(s % 0)p ™' (5)] (5.9)

for all s € [—-1,1]. Then {A]} 4+ Z, where A7 is defined as in the proof of Theorem 5.1, is
an M, -equivalent local representative of {A,,}. We have

A7 = (Lg(ar +ibyo ') PY) (P = iLg by (a, +ibyo~'2) ™ PIV'PY)

=:cr

(for the invertibility of a, + ib;¢ ™'z in L* note (5.9)). Since I{Loc, PO a < llerlloe < 1
and ||V*P?|| = 1, the sequence {PJ — iL%¢c,P? V*P7} is invertible in A, which of course
also implies the invertibility of {A7} +Z in A/Z. W

6 Implementation and numerical results

6.1 Some remarks on the implementation

For practical computations, we write the weighted polynomial v, that solves (2.5) in the
form

%@zwwwg@ww»

where PISU) denotes the monic orthogonal polynomial of degree k with respect to the weight
wy—1, and we solve the system of linear equations

n—1

> [(awe— BT (@5,) + b(af,) (Swenr P7) (@5)] & = £(25,), G =1,...,n(6.10)

k=0

to determine the &, k=10,...,n — 1.
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It is well-known that the orthogonal polynomials satisfy a three-term recurrence formula
of the form

P(x) = (¢ — ) P (z) = B P (), j=0,1,2,..., (6.11)

where Pg) = (0 and Pl(g) = 1. In the case of Jacobi weights, there are explicit formulas for
the aj and (3. This allows us to compute the matrix coefficients aj; recursively. We have

— (P _
Ajk+1 = (xjn - Oék)ajk - 6kaj,k—17 k=1,...,n—1,

with the initial values

ajo = (aws—1) (x5,) + b(xf,)0o(xF,)

and
ap = (a5, = ao) (awg) (af,) +b(xf,) (o + (af = av)eo(af)
= (xfn — ag)ajo + b(ﬁfn)ﬁoa
where [y := %f_ll wy-1(t) dt and gg(x) = (Swy-1) (). The computation of gy is based

upon formula (2.2) from [GW]. If (6.10) is solved, one can efficiently compute the values of
v, from the coefficients §; using (6.11).

6.2 Numerical examples

In the following examples, we approximated the error ||lu — v,||, by the quadrature rule
\/Qﬂ(|u — v, |2op~1) with m = 256. We always chose a = 1 and o = 5 = 0.

11—z
n )
1+z

1= 2
Example 1 b(z) =ivV1 — 22, f(z) =1+ Lo 1
T

1 — 22

Example 2 b(z) = iv/1 — 22, f(z) = |z| + 2 - In (1+2)(1—=)

12

s u(x) =[xl

V1—a22

Example 3 b(z) = iv/1 — 22, f(z) = sgnx + - n (1+2)(1—x)

, u(x) = sgnz.

72
VQa(lu—v2op)
n| Ex 1 Ex. 2 Ex. 3

81799 E-3 | 8.04 E-3 | 4.98 E-2
16 | 4.04 E-3 | 4.12 E-3 | 3.56 E-2
32 1 2.01 E-3 | 2.04 E-3 | 2.52 E-2
64 | 9.49 E-4 | 9.59 E-4 | 1.77 E-2
128 | 3.65 E-4 | 3.68 E-4 | 1.18 E-2
256 | 2.65 E-6 | 2.07 E-5 | 5.78 E-3
512 | 1.02 E-7 | 1.78 E-6 | 4.28 E-4
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We also considered some examples with b(£1) # 0, which are not covered by the theo-
retical results of this paper. One is inclined to conjecture that in this case the sequence A,
is stable if and only if the operators A = al +bS and A = al — bw; ' Sw,I are invertible in
L?. In Example 4 this is the case, whereas in Example 5 the operator A is invertible but
A is not. In both cases the approximate solutions seem to converge, but in Example 5 the
convergence is somewhat slower in despite of the same smoothness of the input data.

x (1+2x)(1—ux)

Example 4 b= —, f(z) = |z| - 1om In = ;

(1+2)(1 —x)

xr2

Example 5 b= —i, f(z) = |z| — ;ln

JOr(lu— valPop )
n| Ex 4 Ex. 5
81833 E-3| 836 E-3

16 | 4.21 E-3 | 4.46 E-3
32 1207 E-3| 227 E-3
64 | 9.67 E-4 | 1.09 E-3

128 | 3.70 E-4 | 4.61 E-4

256 | 1.63 E-5 | 1.45 E-4

512 | 1.26 E-6 | 8.80 E-6
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