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Abstract

We consider a collocation method for Cauchy singular integral equations on the interval

based on weighted Chebyshev polynomials, where the coefficients of the operator are

piecewise continuous. Stability conditions are derived using Banach algebra methods,

and numerical results are given.

1 Introduction

The subject of the present paper is the investigation of a collocation method based on
weighted polynomials for the approximate solution of singular integral equations on (−1, 1)
of the type

a(x)u(x) +
b(x)

πi

∫ 1

−1

u(t)

t − x
dt = f(x), x ∈ (−1, 1), (1.1)

where u is the unknown function and a, b, f are given. All functions involved are assumed
to be complex-valued, and we require that b(±1) = 0.

A lot of attention has been paid to investigating polynomial collocation and quadrature
methods for this and similar types of equations (see [PS, Chapter 9]). These are essentially
based on special mapping properties of the operator AµI, where A denotes the operator on
the left-hand side of (1.1), and µ is a generalized Jacobi weight depending on the coefficients
a and b, which are required to satisfy a Hölder condition.

We are going to give a somewhat different approach using weighted polynomials as ansatz
functions (a finite section (Galerkin) method with the same type of ansatz functions was
investigated in [JRW]). Also in the case of variable coefficients a and b there will always
occur pure Jacobi weights, which are easier to cope with than generalized Jacobi weights
(for instance, the recurrence coefficients of the corresponding orthogonal polynomials, which
are needed in the computer implementation of our method, are explicitly known), and we
will always use the same (Chebyshev) collocation points independently of the coefficients.
This is an advantage if a Newton method for a nonlinear singular integral equation results
in a sequence of linear equations of type (1.1), the coefficients of which are different in
each step. Furthermore, we can (apart from the additional assumption b(±1) = 0) admit
arbitrary piecewise continuous coefficients. Coefficients with jumps can occur, for example,
when considering seepage problems for channels or dams with corners ([Ju2]). Finally we
mention that one can introduce a scale of Sobolev-like spaces with respect to a system of
weighted orthogonal polynomials analogous to [BHS] and can under suitable smoothness
conditions on the coefficients obtain error estimates for the collocation method in the norms
of these Sobolev-like spaces, which are continuously embedded in certain spaces of weighted
continuous functions. The results we achieved here, however, still need to be improved.

We will prove the strong convergence of the approximation operators associated with our
collocation method, and will investigate the stability of this method using Banach algebra
techniques, which have proved to be an efficient tool in stability analysis (see for example
[Si], [JS], [HRS], [JRW]). We obtain necessary and sufficient stability conditions in the
case of continuous coefficients and a sufficient condition if the coefficients are piecewise
continuous.

In Section 2 we give some notations and define the numerical method we are going to
deal with, Section 3 provides some basic facts on Banach algebra techniques we will need for
the stability analysis, Section 4 is concerned with the strong convergence of some operator
sequences, and in Section 5 we will use Banach algebra techniques to derive the main
result concerning the stability. Finally, we make some remarks concerning the computer
implementation and present numerical results in Section 6.
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2 Some notations and preliminaries

We consider equation (1.1) in the weighted Lebesgue space L2
σ := L2

σ(−1, 1) of all (classes
of) measurable functions u : (−1, 1) → C for which

‖u‖2
σ :=

∫ 1

−1
|u(x)|2σ(x) dx

is finite, equipped with the inner product

(u, v)σ :=
∫ 1

−1
u(x)v(x)σ(x) dx,

which turns L2
σ into a Hilbert space. Here σ is a Jacobi weight defined by σ(x) = vα,β(x) :=

(1 − x)α(1 + x)β satisfying the conditions

− 1 < α, β < 1. (2.2)

These conditions guarantee the boundedness of the Cauchy singular integral operator S
defined by

(Su)(x) =
1

πi

∫ 1

−1

u(t)

t − x
dt (2.3)

on L2
σ ([GK], Theorem I.4.1). The coefficients a, b are assumed to belong to the algebra PC

of all piecewise continuous functions. The latter is defined as the closure (in the space of all
bounded functions, equipped with the supremum norm) of the set of those functions being
continuous on [−1, 1] with the possible exception of a finite number of jumps in (−1, 1),
where the value of the function coincides with the left-sided limit. Note that PC-functions
possess finite one-sided limits at all points. Under these assumptions, the operator on the
left-hand side of (1.1), which in the following will be briefly referred to as aI+bS, is bounded
on L2

σ.
Let ϕ denote the Chebyshev weight of second kind,

ϕ(x) =
√

1 − x2,

and let Un be the orthonormal polynomial of degree n (with positive leading coefficient)
with respect to the inner product (., .)ϕ. For these polynomials we have the well-known
trigonometric representation

Un(cos s) =

√
2

π

sin(n + 1)s

sin s
.

If σ is a Jacobi weight satisfying (2.2), we define the function

wσ :=
√

σϕ.

Obviously, wσ−1I is an isometric isomorphism from L2
ϕ onto L2

σ. Thus, the functions

ũn := wσ−1Un, n = 0, 1, 2, . . . , (2.4)

form an orthonormal basis in L2
σ, because the same is true for Un in the space L2

ϕ. For the
approximation method we want to apply to (1.1), the functions (2.4) will be used as ansatz
functions. We need two sequences of projections with respect to the system {ũn}∞n=0. The
first are the Fourier projections P σ

n given by

P σ
n

∞∑

k=0

ξkũk :=
n−1∑

k=0

ξkũk.
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Evidently, P σ
n converges strongly to the identity operator I as n → ∞. The second is

the weighted interpolation operator L̃σ
n assigning to a Riemann integrable function f the

uniquely determined weighted polynomial of degree less than n (that is, the element of
Xn := span {ũk}n−1

k=0) that coincides with f in the collocation points xϕ
kn = cos kπ

n+1
(k =

1, . . . , n), which are the zeros of Un. Thus we can write

L̃σ
n = wσ−1Lϕ

n(wσ−1)−1I,

where Lϕ
n is the usual (polynomial) Lagrangian interpolation operator with respect to these

nodes. A class of functions f for which ‖L̃σ
nf − f‖σ → 0 will be described in Corollary 4.6.

We now consider a collocation method which replaces equation (1.1) by the discrete
approximate equations

L̃σ
n(aI + bS)vn = L̃σ

nf, (2.5)

where vn ∈ span {ũk}n−1
k=0 is sought. Our main concern is the applicability of this method to

the original equation. In the following, we are going to define in a somewhat more general
situation what we understand by this concept: Let X be a Banach space, let {Pn} ⊂ L(X)
(where L(X, Y ) means the set of all linear bounded operators between two Banach spaces
X and Y , and L(X) := L(X, X)) be a sequence of projections with Pn → I (strongly),
Xn = im Pn, A ∈ L(X) and An ∈ L(Xn), where we require that AnPn converges strongly
to A.

Definition 2.1 The projection method

Anun = Pnf (2.6)

is said to be applicable to the equation

Au = f (2.7)

if the following conditions are fulfilled:

(i) The equations (2.6) have a unique solution for all sufficiently large n.

(ii) Their solutions un converge to a solution of (2.7) for n → ∞.

Definition 2.2 The sequence {An} is said to be stable if there is an n0 such that An is
invertible for all n ≥ n0 and sup

n≥n0

‖A−1
n Pn‖ < ∞.

The problem of the applicability of (2.6) to (2.7) can be reduced to the stability of {An} by
the following lemma.

Lemma 2.1 ([HRS], Prop. 1.1) Let AnPn → A strongly. Then (2.6) is applicable to
(2.7) if and only if A is invertible and the sequence {An} is stable.

In our concrete situation we have X = L2
σ, Pn = P σ

n , A = aI + bS and An = L̃σ
nA|Xn

. The
strong convergence of these operators will be dealt with in section 4.

Remark 2.2 Note that in the following we consider the projection method (2.6) rather
than (2.5). If, however, (2.6) is applicable to (1.1) and the right-hand side f satisfies
‖f − L̃σ

nf‖σ → 0 (n → ∞), the solutions vn of (2.5) converge to the solution u of (1.1).

Proof. We have

‖vn − u‖ ≤ ‖A−1
n L̃σ

nf − A−1
n AnP σ

n u‖ + ‖P σ
n u − u‖

≤ ‖A−1
n P σ

n ‖
(
‖L̃σ

nf − f‖ + ‖Au − AnP
σ
n u‖

)
+ ‖P σ

n u − u‖ −→ 0
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3 Banach algebra techniques

3.1 Basic facts

In this subsection we compile some basic facts that will be used later on to investigate the
stability problem for our approximation method by Banach algebra techniques.

Definition 3.1 Let B, C be unital Banach algebras, J ⊂ B a closed two-sided ideal. A
unital homomorphism W : B → C is called J -lifting, if W (J ) is a closed two-sided ideal in
C and W |J is an isomorphism between J and W (J ).

The following theorem is usually called ‘lifting theorem’, its first version appears in [Si].

Theorem 3.1 (see [HRS], Theorem 1.8) Let B, Ct be unital Banach algebras, where t
belongs to an arbitrary index set T , let Jt be closed two-sided ideals in B and let Wt : B → Ct

be Jt-lifting homomorphisms. By J we denote the smallest closed two-sided ideal in B that
contains all Jt, t ∈ T . Then an element b ∈ B is invertible in B if and only if Wt(b) is
invertible in Ct for all t ∈ T and the coset b + J is invertible in the quotient algebra B/J .

The invertibility of the coset b + J is usually investigated by the help of local principles.

Definition 3.2 Let B be a unital Banach algebra. A subset M ⊂ B is called a localizing
class if 0 6∈ M and if for all a1, a2 ∈ M there exists an element a ∈ M such that

aaj = aja = a (j = 1, 2).

In the following let M be a localizing class. Two elements x, y ∈ B are called M-equivalent

(in symbols: x
M∼ y), if

inf
a∈M

‖a(x − y)‖ = inf
a∈M

‖(x − y)a‖ = 0.

Further, x ∈ B is called M-invertible if there exist a1, a2 ∈ M , z1, z2 ∈ B such that

z1xa1 = a1, a2xz2 = a2.

A system {Mt}t∈T of localizing classes (T is an arbitrary index set) is said to be covering,
if for each system {at}t∈T , at ∈ Mt, there exists a finite subsystem at1 , . . . , atn such that
at1 + · · ·+ atn is invertible in B.

Now we can formulate the local principle of Gohberg and Krupnik:

Theorem 3.2 ([GK], Theorem XII.1.1) Let B be a unital Banach algebra, {Mt}t∈T a

covering system of localizing classes in B, x ∈ B and x
Mt∼ xt for all t ∈ T . Further, assume

that x commutes with all elements from
⋃

t∈T

Mt. Then x is invertible in B if and only if xt

is Mt-invertible for all t ∈ T .

Another local principle is due to Allan and Douglas:

Theorem 3.3 ([BS], Theorem 1.34) Let B be a unital Banach algebra and C ⊂ B a
closed central subalgebra (that is, all elements of C commute with all elements of B) that
contains the unit element. For every maximal ideal t of C we introduce the local ideal Jt as
the smallest closed two-sided ideal of B that contains t. Then

(i) An element x ∈ B is invertible in B if and only if the cosets x + Jt are invertible in
B/Jt for all t.
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(ii)
⋂
t
Jt is contained in the radical of B.

Remark 3.1 (see [PS], proof of Theorem 1.21) If B, C are C∗-algebras, there is a
close relation between the two local principles. Let M(C) denote the maximal ideal space
of C. For t ∈ M(C) we define Mt := {a ∈ C : 0 ≤ (Ga)(s) ≤ 1, (Ga)(s) ≡ 1 in some neigh-
bourhood of t}, where G : C → C(M(C)) denotes the Gelfand map. Then {Mt}t∈M(C) forms
a covering system of localizing classes in B, and the local ideals occurring in the principle

of Allan and Douglas can be described by Jt = {x ∈ B : x
Mt∼ 0}.

3.2 Application to stability analysis

We want to investigate the applicability of the approximation method (2.6) to equation
(2.7). In all what follows we assume that AnPn converges strongly to A, which allows us to
reduce the problem to the question if {An} is stable. Furthermore, we specify X to be a
Hilbert space.

By E we denote the set of all operator sequences {AnPn}, where An ∈ L(Xn) and
sup

n
‖AnPn‖ < ∞. Endowed with componentwise algebraic operations and the norm

‖{Bn}‖E = sup
n

‖Bn‖, E becomes a C∗-algebra. The set N := {{Cn} ∈ E : ‖Cn‖ → 0}
is a closed ideal in E . In the sequel we will use the notation GB for the set of all invertible
elements of a Banach algebra B. The following well-known result identifies the question of
stability with an invertibility problem.

Lemma 3.2 ([HRS], Proposition 1.2) A sequence {An} ∈ E is stable if and only if
{An} + N ∈ G(E/N ).

We introduce a further family of operators Wn ∈ L(X), where we assume that Wn = W ∗
n

converges weakly to 0, WnPn = Wn and W 2
n = Pn. Let A denote the set of all sequences

{An} ∈ E for which An, A∗
n, Ãn := WnAnWn and Ã∗

n are strongly convergent.

Lemma 3.3 The set A is a C∗-algebra.

Proof. Evidently, A is a linear space. If {An} ∈ A, then so is {A∗
n} (note that {WnA

∗
nWn} =

{(WnAnWn)∗}). Let {A(n)} be a fundamental sequence in A, where A(n) = {A(n)
k }∞k=1. If

ε > 0 is given, we have

‖A(n)
k − A

(m)
k ‖ < ε

for all k if m, n are large enough. Hence, there is a sequence {Ak} ∈ L(X) such that

‖A(n)
k − Ak‖ → 0 (n → ∞) uniformly with respect to k. If we choose x ∈ X, we can

estimate

‖(Ak − Al)x‖ ≤ ‖Ak − A
(n)
k ‖ ‖x‖ + ‖Al − A

(n)
l ‖ ‖x‖ + ‖(A(n)

k − A
(n)
l )x‖.

The first two terms can be made arbitrarily small by the choice of n, and the third one goes
to zero if n is fixed and k, l → ∞, since {A(n)

k }∞k=1 ∈ A. Hence, Ak is strongly convergent.

The sequences A∗
k, Ãk and Ã∗

k are treated in the same way (note that ‖Ã(n)
k − Ã

(m)
k ‖ ≤

const ‖A(n)
k − A

(m)
k ‖ because of the weak convergence of Wn).

In the following, the coset {An}+N of a sequence {An} ∈ E will be denoted by ̂{An}. The
ideal N is contained in A, and thus Â := A/N is a C∗-subalgebra of Ê := E/N and is
therefore inverse-closed (that means Â ∩ GÊ = GÂ). Hence, the stability of {An} ∈ A is

equivalent to ̂{An} ∈ GÂ.
In all what follows, K(X, Y ) denotes the space of all compact linear operators between

two Banach spaces X and Y . If X = Y , we briefly write K(X) instead of K(X, X).
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Lemma 3.4 ([PS], 1.1.h) Let X, Y, Z, V be Banach spaces, {An} ⊂ L(Z, V ), {Bn} ⊂
L(X, Y ) such that An → A ∈ L(Z, V ), B∗

n → B∗ ∈ L(Y ∗, X∗) strongly. If K ∈ K(Y, Z),
then ‖AnKBn − AKB‖L(X,V ) → 0 (n → ∞).
If K ∈ K(Y, Z) and Bn ⇀ B ∈ L(X, Y ) (weakly), then KBn → KB strongly.

Let J0 := { ̂{PnKPn} : K ∈ K(X)}, J1 := { ̂{WnKWn} : K ∈ K(X)}. By Lemma 3.4,
J0, J1 are subsets of Â.

Lemma 3.5 ([Si], Satz 2) J0, J1 are closed ideals in Â, and the smallest closed ideal
containing J0 and J1 equals

J = {{PnK1Pn + WnK2Wn} + N : K1, K2 ∈ K(X)}.

Proof. We show that I0 := {{PnKPn +Cn} : K ∈ K(X), ‖Cn‖ → 0} is a closed ideal in A,
whence the corresponding property of J0 in Â follows immediately. Obviously, I0 is a linear
space. Let {Bn} ⊂ I0 be a fundamental sequence, Bn = {A(n)

k }∞k=1, A
(n)
k = PkT

(n)Pk + C
(n)
k ,

where T (n) ∈ K(X), ‖C(n)
k ‖ → 0 (k → ∞). We have A

(n)
k → T (n) (strongly), and hence

for ε > 0 the relation ‖T (n) − T (m)‖ ≤ sup
k

‖A(n)
k − A

(m)
k ‖ < ε holds for n, m large enough.

Therefore, T (n) converges uniformly to some T ∈ K(X). Besides, we can estimate

‖C(n)
k − C

(m)
k ‖ ≤ ‖Pk(T

(n) − T (m))Pk‖ + ‖A(n)
k − A

(m)
k ‖ < ε

for sufficiently large m, n independently of k. Thus, there exists a sequence {Ck} with

‖C(n)
k − Ck‖ → 0 (n → ∞), and since ‖Ck‖ ≤ ‖C(n)

k − Ck‖ + ‖C(n)
k ‖, we have {Ck} ∈ N .

If we put B := {PkTPk + Ck}, we have

‖Bn − B‖A ≤ const ‖T (n) − T‖ + sup
k

‖C(n)
k − Ck‖ −→ 0 (n → ∞),

which proves the closedness of I0. To show (for instance) that I0 is a left ideal, let {Ak} ∈ A,
Ak → A, {Bk} = {PkTPk + Ck} ∈ I0. Then

{Ak}{Bk} = {PkAkTPk + AkCk} = {PkATPk + Pk(Ak − A)TPk + AkCk︸ ︷︷ ︸
∈N

} ∈ I0

(cf. Lemma 3.4). The proof for J1, J is analogous. Obviously, J is contained in every ideal
that contains J0 and J1, which completes the proof.

For ̂{An} ∈ Â we define

W0
̂{An} := s− lim

n→∞
An, W1

̂{An} := s− lim
n→∞

WnAnWn.

Note that W0, W1 are correctly defined. Evidently, Wi (i = 0, 1) are continuous
∗-homomorphisms from Â into L(X) (remember that ‖s− lim An‖ ≤ lim inf ‖An‖). Fur-
ther, it is easy to see that Wi|Ji

is an isomorphism between Ji and the ideal K(X) of all
compact linear operators on X, in other words, Wi is Ji-lifting. If we apply Theorem 3.1
with T = {0, 1} to this situation, we obtain the original version of the lifting theorem:

Theorem 3.4 ([Si], Satz 3) Let {An} ∈ A, An → A, Ãn → Ã strongly. Then {An} is

stable if and only if A, Ã ∈ GL(X) and ̂{An} + J ∈ G(Â/J ).

Remark 3.6 The third condition of the preceding theorem can be written in the equivalent
form {An} + I ∈ G(A/I), with the ideal I = {{PnK1Pn + WnK2Wn + Cn} : K1, K2 ∈
K(X), ‖Cn‖ → 0}.
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In the following two sections we are going to apply the tools from this section to the stability
analysis of the collocation method. There we choose Pn = P σ

n and introduce the operators
Wn = W σ

n defined by

W σ
n

∞∑

k=0

αkũk =
n−1∑

k=0

αn−1−kũk,

which obviously possess the properties required above. The approximation operators under
consideration here are An = L̃σ

n(aI + bS)P σ
n , a, b ∈ PC, in the space X = L2

σ. We will
show that, under the additional condition b(±1) = 0, we have {An} ∈ A, compute Ã and
apply Theorem 3.4 (with Remark 3.6) to the stability problem. The invertibility of the coset
{An} + I will be investigated by the local principle of Gohberg and Krupnik.

4 Strong convergence of the operator sequences

The strong convergence of An = L̃σ
n(aI + bS)P σ

n and of A∗
n will be shown for Riemann inte-

grable coefficients. Unfortunately, the authors did not succeed in proving the convergence
of Ãn and Ãn

∗
without the additional condition b ∈ PC and b(±1) = 0.

4.1 Strong convergence of An

First we give sufficient conditions for the weighted interpolation polynomial L̃σ
nf to converge

in the L2
σ-norm. For this end, we provide some material from [Fr] concerning the convergence

of Gaussian quadrature rules and Lagrangian interpolation operators.
Consider a Jacobi weight v. Let xv

kn (k = 1, . . . , n) be the zeros of the orthogonal
polynomial of degree n related to v, and Lv

n the Lagrangian interpolation operator with
respect to xv

kn. By Qv
n we denote the Gaussian quadrature rule

Qv
nf :=

∫ 1

−1
(Lv

nf)(x)v(x) dx =
n∑

k=1

Av
knf(xv

kn).

Lemma 4.1 ([Fr], Hilfssatz III.1.5) Let g : (−1, 1) → [0,∞), g(2ν)(x) ≥ 0 for all
x ∈ (−1, 1) and ν = 0, 1, 2, . . ., and let

∫ 1
−1 g(x)v(x) dx < ∞. Then

Qv
ng ≤

∫ 1

−1
g(x)v(x) dx.

Lemma 4.2 ([Fr], Satz III.1.4) Let f be bounded on (−1, 1). Then

Qv
nf →

∫ 1

−1
f(x)v(x) dx (n → ∞)

provided that this integral exists in the Riemann sense.

Lemma 4.3 (cf. [Fr], Satz III.1.6b) Assume that f is bounded on every compact subin-
terval of (−1, 1) and the (improper) Riemann integral

∫ 1
−1 f(x)v(x) dx exists. Suppose that

there exist functions g−1, g1 satisfying the conditions of Lemma 4.1 and the relations

lim
x→−1+0

f(x)

g−1(x)
= lim

x→1−0

f(x)

g1(x)
= 0. (4.1)

Then Qv
nf → ∫ 1

−1 f(x)v(x) dx (n → ∞).
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Proof. Splitting the interval, we can restrict ourselves to the case f(x) = 0 in some
neighbourhood of 1, g := g−1. Let ε > 0 be arbitrary and δ > 0 such that |f(x)| ≤ εg(x)
for −1 < x ≤ −1 + δ. Lemma 4.2 yields

lim
n→∞

∑

xv
kn

≥−1+δ

Av
knf(xv

kn) =
∫ 1

−1+δ
f(x)v(x) dx.

Furthermore,
∣∣∣∣∣∣

∑

xv
kn

<−1+δ

Av
knf(xv

kn)

∣∣∣∣∣∣
≤ ε

n∑

k=1

Av
kng(xv

kn) ≤ ε
∫ 1

−1
g(x)v(x) dx

by Lemma 4.1, and
∣∣∣∣∣

∫ 1+δ

−1
f(x)v(x) dx

∣∣∣∣∣ ≤ ε
∫ 1

−1
g(x)v(x) dx.

Remark 4.4 If v = vγ,δ with γ, δ satisfying (2.2) we can choose g−1 = (1 + x)−1−δ+ε,
g1(x) = (1− x)−1−γ+ε with some ε > 0. Hence, the Gaussian quadrature rule converges if f
is locally Riemann integrable and satisfies

|f(x)| ≤ const(1 − x)−1−γ+ε(1 + x)−1−δ+ε.

Lemma 4.5 ([Fr], Satz III.2.1) Assume the hypotheses of Lemma 4.3 are fulfilled with
|f |2 instead of f and lim

x→−1+0
g−1(x) = lim

x→1−0
g1(x) = ∞. Then lim

n→∞
‖Lv

nf − f‖L2
v

= 0.

Proof. According to [Fr], Satz III.4.3, the polynomials are dense in L2
v. (This remains true

in the complex case, since real and imaginary part can be approximated separately.) Let
ε > 0, and let p be a polynomial with ‖p − f‖L2

v
< ε. For n > deg p we have

‖f − Lv
nf‖2 ≤ 2(‖f − p‖2 + ‖Lv

n(p − f)‖2)

< 2(ε2 + Qv
n(|p − f |2))

(note that the Gaussian quadrature rule with n nodes is exact for polynomials of degree less
than 2n). Given r > 0, in a suitable neighbourhood of − 1 the relation

|p(x) − f(x)|2 ≤ 2(|p(x)|2 + |f(x)|2) < rg−1(x)

holds (as well as the analogous relation in a neighbourhood of 1). Thus, (4.1) is satisfied
with |p − f |2 instead of f . We further have

∫ 1

−1
|p(x) − f(x)|2v(x) dx ≤ 2

∫ 1

−1
(|p(x)|2 + |f(x)|2)v(x) dx < ∞.

Lemma 4.3 now yields Qv
n(|p − f |2) → ∫ 1

−1 |p(x) − f(x)|2v(x) dx < ε2.

Corollary 4.6 Let σ = vα,β. If f is locally Riemann integrable on (−1, 1) and

|f(x)| ≤ const(1 − x)(−1−α)/2+ε(1 + x)(−1−β)/2+ε

with some ε > 0, then

‖L̃σ
nf − f‖σ → 0 (n → ∞).
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Proof. Using the isometric isomorphism wσ−1I : L2
ϕ → L2

σ, we have

‖L̃σ
nf − f‖σ = ‖Lϕ

nw−1
σ−1f − w−1

σ−1f‖ϕ.

Now the assertion follows from Lemma 4.5 and Remark 4.4.

In the sequel we will investigate the behaviour of the operators An. First we do this for the
multiplication operator A = aI separately.

Proposition 4.1 Let a be Riemann integrable. Then L̃σ
naP σ

n → aI strongly on L2
σ. Fur-

thermore, we have the estimation ‖L̃σ
naP σ

n ‖L(L2
σ) ≤ ‖a‖∞.

Proof. First we show the convergence on the dense subset span {ũm}∞m=0. Clearly, the
functions aũm satisfy the conditions of Corollary 4.6. Thus, for n > m we have ‖Anũm −
Aũm‖σ = ‖L̃σ

naũm−aũm‖σ → 0. For showing the uniform boundedness, let u ∈ L2
σ and write

P σ
n u = wσ−1qn with a polynomial qn of degree less than n. If we again note the exactness of

the Gaussian quadrature rule, we have

‖L̃σ
naP σ

n u‖2
σ = ‖Lϕ

naqn‖2
ϕ = Qϕ

n(|aqn|2)
≤ ‖a‖2

∞Qϕ
n(|qn|2) = ‖a‖2

∞‖qn‖2
ϕ = ‖a‖2

∞‖P σ
n u‖2

σ ≤ ‖a‖2
∞‖u‖2

σ.

Now the assertion follows from the Banach-Steinhaus theorem.

Let ̺ be a Jacobi weight and µ ∈ (0, 1). By Hµ
0 (̺) we denote the Banach space of all

functions f for which ̺f ∈ C0,µ[−1, 1] and (̺f)(±1) = 0. The norm in this space is defined

by ‖f‖Hµ
0
(̺) := ‖̺f‖C0,µ , where, as usually, ‖g‖C0,µ = ‖g‖∞ + sup

x 6=y

|g(x) − g(y)|
|x − y|µ .

Lemma 4.7 ([GK], Theorem I.6.2) Let ̺ = vγ,δ, µ ∈ (0, 1) and µ < γ, δ < µ + 1. Then
the Cauchy singular integral operator S defined by (2.3) is bounded on Hµ

0 (̺).

Proposition 4.2 The operators L̃σ
nSP σ

n converge to S on span {ũm}∞m=0.

Proof. Let ̺ = vγ,δ, where we choose γ, δ such that

max
{
0,

α

2
− 1

4

}
< γ <

1 + α

2
, max

{
0,

β

2
− 1

4

}
< δ <

1 + β

2
,

and let

0 < µ < min

{
γ, δ, γ +

1

4
− α

2
, δ +

1

4
− β

2

}
.

Then we have µ < γ, δ < µ + 1 and ũm ∈ Hµ
0 (̺). The latter relation follows from

̺ũm(x) = Um(x)(1 − x)γ+1/4−α/2(1 + x)δ+1/4−β/2,

the exponents being greater than µ. By Lemma 4.7, we also have Sũm ∈ Hµ
0 (̺), which

means that h := ̺Sũm ∈ C0,µ. Thus, we can estimate

|(Sũm)(x)| = |(̺−1h)(x)| = |h(x)(1 − x)−γ(1 + x)−δ|
≤ const (1 − x)−(1+α)/2+ε(1 + x)−(1+β)/2+ε

if ε > 0 is small enough. Corollary 4.6 now gives the assertion.

In all what follows we exclude the cases α = 1
2

and β = 1
2

since they bring about some
technical difficulties in the proofs that we could only partially overcome. Some remarks
concerning these cases will be given in a separate subsection.
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Lemma 4.8 (comp. [PS], 9.7 and 9.9) Assume that (2.2) is satisfied. Let g, b̃ ∈
C0,η[−1, 1] (η ∈ (0, 1)) be real-valued functions for which g(x) − ib̃(x) 6= 0 for all
x ∈ [−1, 1]. Let λ, ν be integers such that α0 := λ + g̃(1), β0 := ν − g̃(−1) ∈ (−1, 1),

where g(x)− ib̃(x) =
√

b̃2(x) + g2(x)eiπg̃(x) with a continuous function g̃. Then there exists a

positive function c ∈ C0,η[−1, 1] such that the operator (gI + iSb̃I)vα0,β0cI transforms every
polynomial of degree n into a polynomial of degree n − κ, where κ = −(λ + ν). (If n < κ,
this is to be understood in the sense that a polynomial of negative degree is identically zero.)

If, as we assumed, α 6= 1
2

and β 6= 1
2
, we can choose b̃ ≡ 1 and g ∈ C1 such that λ :=

1
4
− α

2
− g̃(1) and ν := 1

4
− β

2
+ g̃(−1) are integers, whence we get the mapping properties

described in Lemma 4.8 for the operator (gI + iS)wσ−1cI with some positive function c,
c ∈ C0,η for all η ∈ (0, 1). Furthermore, we can always achieve κ ≥ −1 (we need the latter
relation to guarantee the exactness of the Gaussian quadrature rule): Evidently, we always
have g̃(x) ∈ (−1, 0).

• In case α0 := 1
4
− α

2
, β0 := 1

4
− β

2
< 0 we choose g̃(1) = α0, g̃(−1) = −1 − β0 and have

κ = 1.

• If α0 , β0 > 0, let g̃(1) = α0 − 1, g̃(−1) = −β0.

• Finally, take g̃(1) = α0, g̃(−1) = −β0 if α0 < 0 < β0, and g̃(1) = α0 − 1, g̃(−1) =
−1 − β0 if β0 < 0 < α0.

Our proof of the uniform boundedness of L̃σ
nSP σ

n will be based on the following decomposi-
tion of the operator S:

S = igI − ic−1(gI + iS)cI + c−1(cS − ScI). (4.2)

Here g ∈ C1 and c are the same as in Lemma 4.8. In particular, c ∈ C0,η for all η ∈ (0, 1).
Now we are going to estimate the three summands of L̃σ

nSP σ
n separately.

By virtue of Proposition 4.1 we have ‖L̃σ
ngP σ

n ‖ ≤ ‖g‖∞, so we are done with the first
term.

Lemma 4.9 ([Ne], Theorem 9.25) Let v, v∗ be Jacobi weights with vv∗ ∈ L1. Let l ∈ N
be fixed and q a polynomial with deg q ≤ ln. Then

n∑

k=1

Av
kn|q(xv

kn)|v∗(xv
kn) ≤ const

∫ 1

−1
|q(x)|v(x)v∗(x) dx,

the constant being independent of n and q.

Proposition 4.3 We have the estimation

‖L̃σ
nc−1(gI + iS)cP σ

n ‖L(L2
σ) ≤ const ‖c−1‖∞ ‖gcI + iScI‖L(L2

σ).

Proof. According to Lemma 4.8, qn−κ := (gI + iS)cP σ
n u is a polynomial of degree less than

n − κ for all u ∈ L2
σ. Now we have

‖L̃σ
nc−1(gI + iS)cP σ

n u‖2
σ = ‖Lϕ

nc−1(wσ−1)−1qn−κ‖2
ϕ

=
n∑

k=1

Aϕ
kn|c−1(xϕ

kn)|2(wσ−1(xϕ
kn))−2|qn−κ(x

ϕ
kn)|2

10



≤ ‖c−1‖2
∞

n∑

k=1

Aϕ
kn(wσ−1(xϕ

kn))−2|qn−κ(x
ϕ
kn)|2

≤ const ‖c−1‖2
∞

∫ 1

−1
|qn−κ(x)|2(wσ−1(x))−2ϕ(x) dx

= const ‖c−1‖2
∞ ‖qn−κ‖2

σ

≤ const ‖c−1‖2
∞ ‖gcI + iScI‖2

L(L2
σ) ‖u‖2

σ,

where we used Lemma 4.9 with v = ϕ, v∗ = w−2
σ−1 for the estimation in the fourth line.

The following lemma is a generalization of [Ju1, Lemma 2.3].

Lemma 4.10 Let σ = vα,β and 0 < γ < m := 1−max{α,β,0}
2

. Then

∫ 1

−1

∣∣∣∣∣
1

|t − x|γ − 1

|t − y|γ
∣∣∣∣∣

2

σ−1(t) dt ≤ const |x − y|2λ

for all λ ∈ (0, 1) with λ + γ < m.

Proof. Let λ0 := λ + γ. We have

|t − x|−γ − |t − y|−γ =
|t − x|λ0−γ − |t − y|λ0−γ

|t − x|λ0
+

|t − x|λ0−γ − |t − y|λ0−γ

|t − y|λ0

+
|t − y|2λ0−γ − |t − x|2λ0−γ

|t − x|λ0 |t − y|λ0
.

Hence, we can estimate
∣∣∣|t − x|−γ − |t − y|−γ

∣∣∣
2

≤ 3
(
|t − x|λ0−γ − |t − y|λ0−γ

)2
(

1

|t − x|2λ0
+

1

|t − y|2λ0

)

+3

(
|t − y|2λ0−γ − |t − x|2λ0−γ

)2

|t − x|2λ0 |t − y|2λ0

≤ const

[
|x − y|2(λ0−γ)

(
1

|t − x|2λ0
+

1

|t − y|2λ0

)
+

|x − y|4λ0−2γ

|t − x|2λ0 |t − y|2λ0

]

= const |x − y|2λ


 1

|t − x|2λ0
+

1

|t − y|2λ0
+

∣∣∣∣∣
1

t − x
− 1

t − y

∣∣∣∣∣

2λ0




≤ const |x − y|2λ

(
1

|t − x|2λ0
+

1

|t − y|2λ0

)
.

Obviously, we have σ−1 ∈ Lp for p < 1
max{α,β,0} . Then for the adjoint exponent q the relation

q > 1
1−max{α,β,0}

= 1
2m

holds. Since λ0 < m, we can guarantee 2λ0q < 1. Hence, the Hölder
inequality gives

∫ 1

−1

σ−1(t)

|t − x|2λ0
dt ≤ ‖σ−1‖Lp

(∫ 1

−1

dt

|t − x|2λ0q

) 1

q

≤ const

independently of x, and the lemma is proved.
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Lemma 4.11 Let σ = vα,β and c ∈ C0,η with η > 1+max{α,β,0}
2

. Then K := cS − ScI ∈
K(L2

σ, C0,λ) for some λ > 0.

Proof. Choose 1−η < γ < 1−max{α,β,0}
2

and put k(t, x) := c(t)−c(x)
t−x

|t−x|γ . If λ ≤ η−(1−γ),

we have k ∈ C0,λ in both variables, uniformly with respect to the other ([Mu], §5). Moreover,

we require γ + λ < 1−max{α,β,0}
2

. Let now u ∈ L2
σ. We can write

|(Ku)(x) − (Ku)(y)| ≤
∫ 1

−1

∣∣∣∣∣
k(t, x)

|t − x|γ − k(t, y)

|t − y|γ
∣∣∣∣∣ |u(t)| dt

≤


∫ 1

−1

∣∣∣∣∣
k(t, x)

|t − x|γ − k(t, y)

|t − y|γ
∣∣∣∣∣

2

σ−1(t) dt




1

2

‖u‖σ,

and, using Lemma 4.10, the following estimation holds:

∫ 1

−1

∣∣∣∣∣
k(t, x)

|t − x|γ − k(t, y)

|t − y|γ
∣∣∣∣∣

2

σ−1(t) dt ≤

≤
∫ 1

−1

(∣∣∣∣∣
k(t, x) − k(t, y)

|t − x|γ
∣∣∣∣∣+ |k(t, y)|

∣∣∣∣∣
1

|t − x|γ − 1

|t − y|γ
∣∣∣∣∣

)2

σ−1(t) dt

≤ 2
∫ 1

−1



∣∣∣∣∣
k(t, x) − k(t, y)

|t − x|γ
∣∣∣∣∣

2

+ |k(t, y)|2
∣∣∣∣∣

1

|t − x|γ − 1

|t − y|γ
∣∣∣∣∣

2

σ−1(t) dt

≤ const |x − y|2λ
∫ 1

−1

σ−1(t) dt

|t − x|2γ
+ const |x − y|2λ

≤ const |x − y|2λ.

Hence, all functions in {Ku : ‖u‖σ ≤ 1} uniformly satisfy a Hölder condition with the
exponent λ. It remains to show the uniform boundedness of these functions. Using Lemma
2.4 from [CJLM], we get

|(Ku)(x)| ≤ 1

π

∫ 1

−1

∣∣∣∣∣
c(t) − c(x)

t − x

∣∣∣∣∣ |u(t)| dt

≤ const

(∫ 1

−1

σ−1(t) dt

|t − x|2(1−η)

) 1

2

‖u‖σ

≤ const (1 − x)−α+/2(1 + x)−β+/2‖u‖σ,

where α+ := max{0, α}, β+ := max{0, β}. In particular, ‖u‖σ ≤ 1 implies |(Ku)(0)| ≤
const, which together with the uniform Hölder condition results in ‖Ku‖∞ ≤ const. Thus,
we have K ∈ L(L2

σ, C
0,λ) for some λ > 0, and the assertion follows if we note that the

embedding C0,λ ⊂ C0,λ′

is compact for λ > λ′.

Using Lemma 4.11 and Corollary 4.6, we can now estimate the third summand:

‖L̃σ
nc−1KP σ

n ‖L(L2
σ) ≤ ‖L̃σ

n‖L(C0,λ,L2
σ) ‖c−1‖C0,λ ‖K‖L(L2

σ,C0,λ) ≤ const.

Thus, we have proved the uniform boundedness of L̃σ
nSP σ

n . If we note the obvious identity
L̃σ

nbSP σ
n = L̃σ

nbP σ
n L̃σ

nSP σ
n , we can summarize the results of this subsection as follows:

Theorem 4.1 Let a, b be Riemann integrable on [−1, 1]. Then the operators
An = L̃σ

n(aI + bS)P σ
n converge strongly to aI + bS on L2

σ.
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4.2 The cases α = 1
2
, β = 1

2

If one of the numbers α0 := 1
4
− α

2
, β0 := 1

4
− β

2
is zero, the decomposition (4.2), on which our

proof of the uniform boundedness of L̃σ
nSP σ

n was based, is not possible. We cannot choose
b̃ ≡ 1 in Lemma 4.8 since in this case α0 − g̃(1) (or β0 + g̃(−1), respectively) cannot be an
integer. We can, however, to some extent overcome the difficulties connected with this fact
if we estimate the whole term L̃σ

nbSP σ
n instead of considering L̃σ

nSP σ
n separately.

Assume for instance α0 = 0, β0 6= 0. In this case we can proceed as follows. Let b be a
function satisfying the following conditions:





b ∈ C0,η for some η > 1+max{α,β,0}
2

b(1) = 0

b(−1) 6= 0.

(4.3)

(If β0 = 0, we would also require b(−1) = 0). For the following argument we can assume
without loss of generality that b is real-valued and b(−1) < 0. Now we choose some g ∈ C1,
g(1) = 1 (that is, g̃(1) = 0) such that the operator (gI + iSbI)wσ−1cI possesses the mapping
properties described in Lemma 4.8 with κ ≥ −1. If β0 > 0, we can choose g such that
g̃(−1) = 1 − β0, whence κ = −1, if β0 < 0 we choose g̃(−1) = −β0 and have κ = 0. (If we
had β0 = 0, we would simply take g ≡ 1, which means κ = 0.)

Instead of (4.2) we now use the decomposition

bS = SbI + K = igI − ic−1(gI + iSbI)cI + c−1(cS − ScI)bI + K,

where K = bS −SbI ∈ K(L2
σ, C0,µ) for some µ > 0 (compare Lemma 4.11). This enables us

to show in the same way as before that An = L̃σ
nbSP σ

n and A∗
n converge strongly if b satisfies

(4.3). In particular, we have ‖L̃σ
n(1 − x)ηSP σ

n ‖ ≤ const if η > 1+max{α,β,0}
2

.

Proposition 4.4 Let α0 = 0, β0 6= 0. Let b ∈ PC and b(x) = o((1 − x)η) for x → 1 with

some η > 1+max{α,β,0}
2

. Then ‖L̃σ
nbSP σ

n ‖ ≤ const.

Proof. Let χ be Riemann integrable, and let b̃ ∈ P1, which denotes the set of all polynomials
vanishing in 1. Then L̃σ

nχb̃SP σ
n = L̃σ

nχ(1 + k)kP σ
n L̃σ

nb̃1SP σ
n with some nonnegative integer

k, where b̃1 satisfies (4.3). Hence, the uniform boundedness of L̃σ
nbSP σ

n continues to hold if
b is the product of a polynomial from P1 with a Riemann integrable function.

Now let b be as in the hypothesis with a finite number of jumps. Then (1 − x)−ηb is
piecewise continuous and can therefore be approximated uniformly by a piecewise poly-
nomial b̃ =

∑m
j=1 χj b̃j , where b̃j ∈ P1, χj is the characteristic function of [xj , xj+1] and

−1 = x1 < x2 < . . . < xm+1 = 1. (Note that P1 is dense in C[xj , xj+1] for all j = 1, . . .m
due to the Stone-Weierstraß theorem.) Then we have

∥∥∥L̃σ
n

(
(1 − x)η b̃ − b

)
SP σ

n

∥∥∥ ≤
∥∥∥L̃σ

n

(
b̃ − (1 − x)−ηb

)
P σ

n

∥∥∥
∥∥∥L̃σ

n(1 − x)ηSP σ
n

∥∥∥

≤ const
∥∥∥b̃ − (1 − x)−ηb

∥∥∥
∞

,

which can be made as small as desired by the choice of b̃. If we note the fact that the set of
all sequences from E which, together with their adjoint operators, are strongly convergent
is a closed subalgebra of E (compare the proof of Lemma 3.3), we get the assertion for b
with a finite number of jumps. If b ∈ PC is arbitrary, b(x) = o((1 − x)η), we approximate
(1−x)−ηb uniformly by a function b̃ with the same properties and only finitely many jumps
and repeat the same arguments as above to get the assertion for b.

Remark 4.12 If α0 = β0 = 0, we would have to require b = o((1−x2)η) for x → ±1 in the
preceding proposition.
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4.3 Strong convergence of A∗
n

In all what follows we identify the dual space of L2
σ with L2

σ itself and consider A∗
n as an

element of L(L2
σ). As an auxiliary relation, we deduce a formula for the Fourier coefficients

of L̃σ
nf : We have L̃σ

nf =
∑n−1

k=0 αkũk, where, because of the exactness of the Gaussian
quadrature rule,

αk =
n−1∑

s=0

αs

=δks︷ ︸︸ ︷
n∑

j=1

Ãσ
jnũk(x

ϕ
jn)ũs(x

ϕ
jn)

=
n∑

j=1

Ãσ
jnũk(x

ϕ
jn)

n−1∑

s=0

αsũs(xjn)

=
n∑

j=1

Ãσ
jnũk(x

ϕ
jn)f(xϕ

jn),

(4.4)

where Ãσ
jn := w−2

σ−1(x
ϕ
jn)Aϕ

jn and δks denotes the Kronecker symbol.

Now we compute (L̃σ
naP σ

n )∗ with Riemann integrable a. For u =
∑∞

k=0 ukũk, v =∑∞
k=0 vkũk we have due to (4.4)

(L̃σ
naP σ

n u, v)σ =

=
n−1∑

k=0

vk




n∑

j=1

Ãσ
jna(xϕ

jn)
n−1∑

s=0

usũs(x
ϕ
jn) ũk(x

ϕ
jn)




=
n−1∑

s=0

us




n∑

j=1

Ãσ
jna(xϕ

jn)
n−1∑

k=0

vkũk(x
ϕ
jn) ũs(x

ϕ
jn)




= (u, L̃σ
naP σ

n v)σ,

that means

(L̃σ
naP σ

n )∗ = L̃σ
naP σ

n ,

which is strongly convergent due to Proposition 4.1.
Since we have (L̃σ

nbSP σ
n )∗ = (L̃σ

nSP σ
n )∗ (L̃σ

nbP σ
n )∗, we can now restrict ourselves to investi-

gating (L̃σ
nSP σ

n )∗. This will be done again by using a three-term decomposition according to
(4.2). The multiplication operator was already considered. To deal with (gI + iS)cI (we can
obviously neglect the factor c−1), we note that in Lemma 4.8 there is always κ ∈ {−1, 0, 1},
which implies that

qn−κ := (gI + iS)cP σ
n u

is always a polynomial of degree at most n. If u, v ∈ L2
σ and Ãσ

jn are as above, we can write

(L̃σ
n(gI + iS)cP σ

n u, v)σ =

=
n∑

j=1

Ãσ
jnqn−κ(x

ϕ
jn)(P σ

n v)(xϕ
jn)

= (wσ−1qn−κ, L̃σ
nw−1

σ−1P
σ
n v)σ

14



= (wσ−1(gI + iS)cP σ
n u, L̃σ

nw
−1
σ−1P

σ
n v)σ

= (u, P σ
n c(gI + iS)∗wσ−1L̃σ

nw−1
σ−1P

σ
n v)σ.

(Note that gI + iS ∈ L(L2
σ) and wσ−1L̃σ

nf ∈ L2
σ.) Hence, we have

(L̃σ
n(gI + iS)cP σ

n )∗ = P σ
n c(gI + iS)∗wσ−1L̃σ

nw
−1
σ−1P

σ
n .

Lemma 4.13 (Cf. [MR], Cor. 3.2 and the following remark; [DT], Th. 6.2.1)
Let u, w be Jacobi weights satisfying

u√
wϕ

,

√
wϕ

u
∈ L2.

If f is a function with f ′ϕu ∈ L2, then the following estimation holds:

‖u(Lw
n f − f)‖L2 ≤ const

n
‖f ′ϕu‖L2.

Lemma 4.14 The operators P σ
n c(gI + iS)∗wσ−1L̃σ

nw−1
σ−1P σ

n converge strongly in L2
σ.

Proof. Since the uniform boundedness is trivial in view of Lemma 4.3, we only have to show
the convergence on span {ũm}∞m=0. First we consider the term wσ−1L̃σ

nw−1
σ−1I. Let m ≥ n.

We can write

‖wσ−1L̃σ
nw−1

σ−1 ũm − ũm‖σ = ‖L̃σ
nUm − Um‖ϕ = ‖ϕ1/2wσ−1(Lϕ

nw−1
σ−1Um − w−1

σ−1Um)‖L2 .

We now apply Lemma 4.13 with f = w−1
σ−1Um, u = ϕ1/2wσ−1 and w = ϕ, which allows us to

estimate the last expression by

const

n
‖(w−1

σ−1Um)′ ϕ1/2wσ−1 ϕ‖L2 ≤ const

n
−→ 0 (n → ∞).

Since P σ
n → I and (gI + iS)∗ ∈ L(L2

σ), the assertion follows.

Due to Lemma 4.11, we have K := cS−ScI ∈ K(L2
σ, C0,λ) for some λ > 0. Furthermore,

(P σ
n )∗ = P σ

n → I in L2
σ and L̃σ

n → E (cf. Corollary 4.6), where E denotes the continuous
embedding of C0,λ into L2

σ. Thus, if we write again K instead of EK, Lemma 3.4 gives

‖L̃σ
nKP σ

n − K‖L(L2
σ) −→ 0 (n → ∞),

and hence

‖(L̃σ
nKP σ

n )∗ − K∗‖L(L2
σ) −→ 0 (n → ∞).

Thus, we have proved the following theorem:

Theorem 4.2 If a, b are Riemann integrable, then (L̃σ
n(aI +bS)P σ

n )∗ is strongly convergent.

15



4.4 Strong convergence of Ãn

First we consider the case of a multiplication operator A = aI with a Riemann integrable
function a. The following lemma together with Proposition 4.1 shows the convergence of
Ãn in this case.

Lemma 4.15 We have W σ
n L̃σ

naW σ
n ≡ L̃σ

naP σ
n .

Proof. It is sufficient to show the identity on span {ũm}. For n > m we have (compare
relation (4.4))

W σ
n L̃σ

naW σ
n ũm = W σ

n L̃σ
naũn−1−m

= W σ
n

n−1∑

k=0




n∑

j=1

Ãσ
jnũk(x

ϕ
jn)ũn−1−m(xϕ

jn)a(xϕ
jn)


 ũk

=
n−1∑

k=0




n∑

j=1

Ãσ
jnũn−1−k(x

ϕ
jn)ũn−1−m(xϕ

jn)a(xϕ
jn)


 ũk =:

n−1∑

k=0

βkmũk.

If we remember that xϕ
jn = cos jπ

n+1
(j = 1, . . . , n) and Aϕ

jn = π
1−(xϕ

jn
)2

n+1
, we get

βkm =
2

n + 1

n∑

j=1

sin
(n − k)jπ

n + 1
sin

(n − m)jπ

n + 1
a(xϕ

jn)

=
2

n + 1

n∑

j=1

sin
(k + 1)jπ

n + 1
sin

(m + 1)jπ

n + 1
a(xϕ

jn)

= βn−1−k,n−1−m,

which means W σ
n L̃σ

naW σ
n ũm = L̃σ

naP σ
n ũm.

Let V := xI − iwσ−1SwσI, that is, (V u)(x) = xu(x) − iwσ−1(x)(Swσu)(x) for u ∈ L2
σ. The

following lemma is a generalization of a result from [RR] (cf. also [PS, Th. 4.123]), which is
formulated there for the case α = β = 0.

Lemma 4.16 ([RR], see also [PS], Theorem 4.123) V is a shift operator with respect
to the system {ũn}∞n=0, more precisely, the relation

V
∞∑

k=0

αkũk =
∞∑

k=0

αkũk+1

holds. The adjoint operator, which satisfies

V ∗
∞∑

k=0

αkũk =
∞∑

k=0

αk+1ũk,

is given by

V ∗ = xI + iwσ−1SwσI.

Proof. For the shift property of V compare the proof of [PS, Theorem 4.123]. To verify the
representation of V ∗, note that σ1/2I : L2

σ → L2 is an isometric isomorphism and S∗ = S in
L2.
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Lemma 4.17 ([Lu], Lemma 3.10, cf. also [Mu], §5) Assume that

b ∈ Cp,η[−1, 1] (0 < η ≤ 1) and b(j)(±1) = 0 (j = 0, . . . , p).

Let further v = v−γ,−δ and λ := η − max{γ, δ, 0} > 0. Then

bv ∈ Cp,λ[−1, 1] and (bv)(j)(±1) = 0 (j = 0, . . . , p).

We introduce the notations

PC0 := {b ∈ PC[−1, 1] : b(±1) = 0} ,

C0 := {b ∈ C[−1, 1] : b(±1) = 0}

and

C1,η
0,0 :=

{
b ∈ C1,η[−1, 1] : b(±1) = b′(±1) = 0

}
.

Proposition 4.5 Let b ∈ PC0. Then W σ
n L̃σ

nbSW σ
n converges strongly to −bw−1

σ SwσI.

Proof. First let b ∈ C1,η
0,0 , where η > max{1

4
+ α

2
, 1

4
+ β

2
, 0}. We use the following decompo-

sition of bS (cf. Lemma 4.16):

bS = bw−1
σ SwσI + bS − SbI + (Sbw−1

σ I − bw−1
σ S)wσI︸ ︷︷ ︸

=:K

= ibϕ−1(xI − V ∗) + K.

(4.5)

Using Lemma 4.15, we can manage the first two summands (note that bϕ−1 is continuous):

iW σ
n L̃σ

nbϕ−1xW σ
n = iL̃σ

nbϕ−1xP σ
n −→ ibϕ−1xI

and

−iW σ
n L̃σ

nbϕ
−1V ∗W σ

n = −iW σ
n L̃σ

nbϕ−1W σ
n · W σ

n V ∗W σ
n

= −iL̃σ
nbϕ−1P σ

n · P σ
n V −→ −ibϕ−1V.

The multiplication operator wσI is an isometric isomorphism from L2
σ onto L2

ϕ−1 . Since

b ∈ C1,η
0,0 , we get bϕ−1 ∈ C1 from Lemma 4.17, and Lemma 4.11 gives us Sbw−1

σ I − bw−1
σ S ∈

K(L2
ϕ−1 , C0,λ) as well as bS − SbI ∈ K(L2

σ, C0,λ) with some λ > 0. Hence, K ∈ K(L2
σ, C0,λ).

Since W σ
n converges weakly to 0, we have KW σ

n → 0 strongly in L(L2
σ, C0,λ) by virtue of

Lemma 3.4. Moreover, we have ‖W σ
n L̃σ

n‖ ≤ ‖W σ
n ‖‖L̃σ

n‖L(C0,λ,L2
σ) ≤ const, which results in

W σ
n L̃σ

nKW σ
n → 0 (strongly). Thus, we can conclude

W σ
n L̃σ

nbSW σ
n → ibϕ−1(xI − V ) = −bw−1

σ SwσI (b ∈ C1,η
0,0 ).

If χ is an arbitrary Riemann integrable function and b ∈ C1,η
0,0 , we get (using Lemma 4.15)

W σ
n L̃σ

nχbSW σ
n = W σ

n L̃σ
nχW σ

n · W σ
n L̃σ

nbSW σ
n → −χbw−1

σ SwσI. (4.6)

Now we consider the general case b ∈ PC0. Without loss of generality we can restrict
ourselves to investigating functions with a finite number of jumps, that is, we can write
b =

∑m
j=1 χjbj , where bj ∈ C0, χj = χ[xj ,xj+1] is the characteristic function of the subinterval

[xj , xj+1], and −1 = x1 < x2 < . . . < xm < xm+1 = 1 is an arbitrary partition of [−1, 1].
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Now we approximate b by piecewise C1,η
0,0 -functions: Let ε > 0 and choose numbers y1 ∈

(−1, x2), ym+1 ∈ (xm, 1) such that

|b1(x)| <
ε

2
for x ≤ y1, |bm(x)| <

ε

2
for x ≥ ym+1.

Let (for instance) b̃0(x) = b̃m+1(x) := ε
2
(1 − x)2(1 + x)2. Then b̃0, b̃m+1 ∈ C1,η

0,0 ,

|b1(x) − b̃0(x)| < ε for x ∈ [−1, y1], |bm(x) − b̃m+1(x)| < ε for x ∈ [ym+1, 1].

Put yj := xj (j = 2, . . . , m), y0 := −1, ym+2 := 1. For j = 1, . . . , m we choose functions
b̃j ∈ C1,η

0,0 such that

|bj(x) − b̃j(x)| < ε, x ∈ [yj, yj+1].

If we define χ̃j := χ[yj ,yj+1], b̃ :=
∑m+1

j=0 χ̃j b̃j , we obviously have ‖b − b̃‖∞ < ε. Since

‖{L̃σ
n(b − b̃)SP σ

n }‖E ≤ ‖L̃σ
n(b − b̃)P σ

n ‖ ‖L̃σ
nSP σ

n ‖ ≤ const ‖b − b̃‖∞ < ε

and since A is a closed subalgebra of E , we can conclude from (4.6) and Proposition 4.6
from the following subsection that W σ

n L̃σ
nbSW σ

n is strongly convergent. The continuity of
the homomorphism W1 and the relation

‖(b − b̃)w−1
σ SwσI‖ ≤ const ‖b − b̃‖∞

imply that W1 {L̃σ
nbSP σ

n } = −bw−1
σ SwσI for b ∈ PC0 with finitely many jumps. An arbi-

trary PC0-function can be approximated uniformly by such functions, and we can repeat
the same arguments as above to get the assertion.

Remark 4.18 If we have one of the special cases from subsection 4.2, say α = 1
2
, we

require b(x) = o((1 − x)ξ), ξ > 1+max{α,β,0}
2

and choose b̃ in the preceding proof such that

‖(b − b̃)(1 − x)−ξ‖∞ becomes small. Thus we can estimate ‖{L̃σ
n(b − b̃)SP σ

n }‖E ≤
‖(b − b̃)(1 − x)−ξ‖∞ ‖L̃σ

n(1 − x)ξSP σ
n ‖ < ε.

Remark 4.19 (cf. [GK], Theorem IX.4.1) If a ∈ PC, b ∈ PC0, the operator Ã =
aI − bw−1

σ SwσI is invertible in L2
σ if and only if A = aI + bS is so.

4.5 Strong convergence of Ãn
∗

Proposition 4.6 If a is Riemann integrable and b ∈ PC0, then Ãn
∗

= (W σ
n L̃σ

n(aI+bS)W σ
n )∗

is strongly convergent.

Proof. For the multiplication operator we have

(W σ
n L̃σ

naW σ
n )∗ = (L̃σ

naP σ
n )∗ = L̃σ

naP σ
n −→ aI

by Lemma 4.15.
The investigation of bS will again be based on (4.5), where we first assume b ∈ C1,η

0,0 .
The expression bϕ−1xI is already covered by the preceding arguments. Further we have

(W σ
n L̃σ

nbϕ−1V ∗W σ
n )∗ = (W σ

n L̃σ
nbϕ−1W σ

n · W σ
n V ∗W σ

n )∗

= W σ
n V W σ

n L̃σ
nbϕ−1P σ

n = V ∗P σ
n L̃σ

nbϕ−1P σ
n −→ V ∗bϕ−1I.
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Since K ∈ K(L2
σ, C0,λ) and hence ‖L̃σ

nK −K‖L(L2
σ) → 0, we also have ‖(L̃σ

nK)∗ −K∗‖ → 0.
Thus, we can write

(W σ
n L̃σ

nKW σ
n )∗ = W σ

n

(
(L̃σ

nK)∗ − K∗
)
W σ

n + W σ
n K∗W σ

n ,

the first summand uniformly and the second strongly converging to 0 (compare Lemma
3.4). If χ is Riemann integrable (in particular a characteristic function of a subinterval) and
b ∈ C1,η

0,0 , we have

(W σ
n L̃σ

nχbSW σ
n )∗ = (W σ

n L̃σ
nbSW σ

n )∗(W σ
n L̃σ

nχW σ
n )∗,

which allows us to apply the preceding reflections. By approximation we can finally get the
assertion for arbitrary b ∈ PC0 (compare the proof of Proposition 4.5).

5 Application of the local principle and main result

Having shown {An} = {L̃σ
n(aI + bS)P σ

n } ∈ A and having computed Ã, we are left with
investigating the invertibility of the coset {An}+I ∈ A/I (comp. Theorem 3.4), which will
be done by the local principle of Gohberg and Krupnik.

For t ∈ [−1, 1] let

mt := {f ∈ C[−1, 1] : 0 ≤ f(x) ≤ 1, f(x) ≡ 1 in some neighbourhood of t}

and define

Mt := {{L̃σ
nfP σ

n } + I : f ∈ mt}.

Lemma 5.1 (comp. [JS], Lemma 2.6) {Mt}t∈[−1,1] is a covering system of localizing
classes in A/I.

Now we have to show that {An} + I commutes with all elements of
⋃

t∈[−1,1]

Mt. For this

end, we consider an analogous problem in the space L2(T), where T is the unit circle
{t ∈ C : |t| = 1}. If f ∈ L2(T), f(t) =

∑∞
k=−∞ fkt

k, we introduce the operators

(PT
n f)(t) :=

n∑

k=−n−1

fkt
k,

(WT
n f)(t) := f−1t

−n−1 + · · · + f−n−1t
−1 + fn + · · ·+ f0t

n

and consider the algebra AT and the ideal (in AT) IT related to these operator sequences
and defined analogously to A and I.

Let Mn be the Multhopp interpolation operator that assigns to every Riemann integrable
function f on T the polynomial (Mnf)(t) =

∑n
k=−n−1 αkt

k coinciding with f in the nodes
e(ikπ)/(n+1) (k = −n − 1, . . . , n). We remind that ‖Mnf − f‖L2(T) → 0 for all Riemann
integrable f . We further introduce the projections (Pf)(t) =

∑∞
k=0 fkt

k, Q = I − P and
(Tf)(t) = 1

2
(f(t) − f(t−1)). Note that T is the orthogonal projection onto the subspace

of all odd functions (that means, the space of all f ∈ L2(T) for which f(t) = −f(t̄) for
all t ∈ T). If a is a complex-valued function on [−1, 1], we define a function â on T by
â(eiϕ) := a(cos ϕ).
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Finally, we use the following mapping F from L2
σ onto the subspace of all odd functions:

(Fu)(t) :=





√
πu(ℜt)wσ(ℜt), ℑt > 0

−(Fu)(t̄), ℑt < 0

0, t = ±1,

where ℜt and ℑt denote the real and the imaginary part of a complex number t, respectively.
Using the formula

Un(x) =
(x + i

√
1 − x2)n+1 − (x − i

√
1 − x2)n+1

√
2πi

√
1 − x2

,

we obtain

(F ũn)(t) =
tn+1 − t−n−1

√
2i

,

which shows that F is an isometric isomorphism between L2
σ and the space of all odd

functions in L2(T). The following lemma summarizes the transformation of some operators
we are interested in.

Lemma 5.2 The following identities hold:

L̃σ
n = F−1MnF,

bI = F−1b̂F,

P σ
n = F−1PT

n FP σ
n ,

V ∗ = F−1(t−1P + tQ)F,

P σ
n F−1TPT

n = P σ
n F−1T,

PT
n FP σ

n = FP σ
n ,

P σ
n F−1TWT

n = W σ
n F−1T (tP + QtI),

WT
n FP σ

n = t−1FW σ
n .

Lemma 5.3 ([JS], Lemma 2.5) If f ∈ C(T), then the sequences {QMnfPPT
n } and

{PMnfQPT
n } belong to IT.

Lemma 5.4 Let f ∈ C[−1, 1]. Then the sequence {L̃σ
nfV ∗P σ

n − V ∗L̃σ
nfP σ

n } belongs to I.

Proof. Using Lemma 5.2, we can transform the sequence under consideration as follows:

{L̃σ
nfV ∗P σ

n − V ∗L̃σ
nfP σ

n } (5.7)

= {F−1
[
Mnf̂(t−1P + tQ)PT

n − (t−1P + tQ)Mnf̂PT
n

]
FP σ

n }

We will show that the term in brackets belongs to IT. Note that we can insert the operator
Mn before the expression (t−1P + tQ)Mnf̂PT

n since the space im Mn is left invariant by
t−1P + tQ. We have

{Mnf̂ tQPT
n − MntQMnf̂PT

n }

= {MntP
T
n (Mnf̂QPT

n − QMnf̂PT
n )}

= {MntP
T
n }{PT

n Mnf̂QPT
n − QMnf̂PPT

n } ∈ IT
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according to Lemma 5.3. (Note that {MntPT
n } ∈ AT ([JS]).) Analogously,

{Mnt−1PMnf̂PT
n − Mnf̂ t−1PPT

n } = {Mnt−1PT
n }{PMnf̂QPT

n − QMnf̂PPT
n } ∈ IT.

Hence, there are operators K1, K2 ∈ K(L2(T)) such that (5.7) equals

{P σ
n F−1T (PT

n K1P
T
n + WT

n K2W
T
n + Cn)FP σ

n },
where ‖Cn‖ → 0. (We insert the projection T to be able to consider the three summands
individually, since it is not guaranteed that each of them maps into im F .) If we use the
relations given in Lemma 5.2, we see that the latter expression equals

{P σ
n F−1TK1FP σ

n + W σ
n F−1T (tP + QtI)K2t

−1FW σ
n + P σ

n F−1TCnFP σ
n },

which is obviously an element of I.

Proposition 5.1 Let a ∈ PC, b ∈ PC0. The coset {L̃σ
n(aI + bS)P σ

n } + I commutes with
all elements of

⋃

t∈[−1,1]

Mt.

Proof. In the case of the multiplication operator A = aI, the assertion is a consequence of

L̃σ
naP σ

n L̃σ
nfP σ

n = L̃σ
nfP σ

n L̃σ
naP σ

n = L̃σ
nafP σ

n .

As for the singular integral operator, we start with considering coefficients of the form χb
with a Riemann integrable function χ and b ∈ C1,η

0,0 , where η > max{1
4

+ α
2
, 1

4
+ β

2
, 0}.

Equation (4.5) and Lemma 4.11 give

χbS = χK + iχbϕ−1(xI − V ∗)

with χK ∈ K(L2
σ, R), where R denotes the Banach space of all Riemann integrable

functions on [−1, 1], endowed with the supremum norm. Consequently, the commutator
L̃σ

nfP σ
n L̃σ

nχKP σ
n − L̃σ

nχKP σ
n L̃σ

nfP σ
n converges uniformly to fχK − χKfI ∈ K(L2

σ) and is
therefore of the form

P σ
n (fχK − χKfI)P σ

n + Cn, ‖Cn‖ → 0,

which is contained in I.
If we abbreviate c := iχbϕ−1, it remains to consider

L̃σ
nfcV ∗P σ

n − L̃σ
ncV ∗L̃σ

nfP σ
n = L̃σ

ncP σ
n (L̃σ

nfV ∗P σ
n − V ∗L̃σ

nfP σ
n ),

and Lemma 5.4 shows that this expression is in I. Hence, the assertion is true for coefficients
of the form χb, where b ∈ C1,η

0,0 , and χ is a characteristic function of a subinterval. Arbitrary
PC0-coefficients can be approximated in the supremum norm by sums of such functions
(compare the proof of Lemma 4.5). Finally, we take into account that ‖{L̃σ

nbSP σ
n } + I‖ ≤

const‖b‖∞ and that the ideal I is closed, which completes the proof of the proposition.

Now we are able to give local representatives for {An} + I.

Lemma 5.5 Let τ ∈ [−1, 1], a, aτ ∈ PC, b, bτ ∈ PC0 such that

aτ (τ ± 0) = a(τ ± 0), bτ (±0) = b(τ ± 0). (5.8)

Then {L̃σ
n(aI + bS)P σ

n } + I and {L̃σ
n(aτI + bτS)P σ

n } + I are Mτ -equivalent.
If further bτ = χ[−1,τ ]b1 +χ[τ,1]b2 with b1, b2 ∈ C1,η

0,0 , η > max{1
4
+ α

2
, 1

4
+ β

2
, 0}, then {L̃σ

n((aτ +
ibτϕ

−1x)I − ibτϕ
−1V ∗)P σ

n } + I is Mτ - equivalent to both cosets.
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Proof. Let f ∈ mτ . We have
∥∥∥{L̃σ

nfP σ
n }{L̃σ

n((a − aτ )I + (b − bτ )S)P σ
n }
∥∥∥
A/I

≤ ‖L̃σ
nf(a − aτ )P

σ
n + L̃σ

nf(b − bτ )P
σ
n L̃σ

nSP σ
n ‖L(L2

σ)

≤ ‖f(a − aτ )‖∞ + const ‖f(b − bτ )‖∞,

which can be made arbitrarily small by a suitable choice of f . Thus, we have proved the
first assertion (note Proposition 5.1). For the second, formula (4.5) shows

bS = ibτϕ
−1(xI − V ∗) + χ[−1,t]K1 + χ[t,1]K2

with K1, K2 ∈ K(L2
σ, C

0,λ) and therefore L̃σ
n(χ[−1,t]K1 + χ[t,1]K2)P

σ
n ∈ I.

Remark 5.6 If we have one of the special cases with respect to the exponents of the weight
σ considered in Subsection 4.2, we slightly modify the preceding lemma and its proof. If
for instance α = 1

2
, we require that b(x) = o((1 − x)ξ) for x → 1, ξ > 1+max{α,β,0}

2
, which

ensures ‖L̃σ
n(1−x)ξSP σ

n ‖ ≤ const. Then we estimate as follows: ‖L̃σ
nf(b−bτ )P

σ
n L̃σ

nSP σ
n ‖ ≤

‖f(1 − x)−ξ(b − bτ )‖∞ ‖L̃σ
n(1 − x)ξSP σ

n ‖.

In the following we are going to give stability conditions. If the coefficients of the singular
integral operator are continuous, we can obtain a very general result.

Theorem 5.1 Let a, b ∈ C[−1, 1] with b(±1) = 0, and let A = aI + bS. Then the sequence
{An} = {L̃σ

nAP σ
n } is stable if and only if A is invertible in L2

σ.

Proof. Due to Theorem 3.4 and Remark 4.19, we only have to consider the invertibility of
the coset {An}+I. Let τ ∈ [−1, 1]. Note that the invertibility of A implies a2(τ)−b2(τ) 6= 0
( [GK, Th. IX.4.1]). We choose aτ ∈ C, bτ ∈ C1,η

0,0 such that (5.8) is fulfilled, and additionally
a2

τ (x) − b2
τ (x) 6= 0 for all x ∈ [−1, 1]. Then, because of Lemma 5.5, an Mτ -equivalent local

representative of {An} + I is given by {At
n} + I, where (cf. Lemma 5.2)

Aτ
n = L̃σ

n

(
(aτ + ibτϕ

−1x)I − ibτϕ
−1V ∗

)
P σ

n

= F−1Mn

(
(âτ + ib̂τ ϕ̂

−1x̂)I − ib̂τ ϕ̂
−1(t−1P + tQ)

)
PT

n FP σ
n

= F−1
[
Mn(cτP + c̃τQ)PT

n

]
FP σ

n

with cτ (s) = âτ + ib̂τ ϕ̂
−1(x̂ − s−1) and c̃τ (s) = cτ (s

−1), and hence

cτ (x + iy) =





aτ (x) − bτ (x), y ≥ 0

aτ (x) + bτ (x), y < 0.

Let

Bτ
n = L̃σ

n

((
aτ

a2
τ − b2

τ

− i
bτ

a2
τ − b2

τ

ϕ−1x

)
I + i

bτ

a2
τ − b2

τ

ϕ−1V ∗

)
P σ

n

= F−1
[
Mn(c−1

τ P + c̃τ
−1Q)PT

n

]
FP σ

n .
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Evidently, Bτ
n ∈ A. The proof of [JS, Theorem 2.1] now yields

Aτ
nBτ

n = F−1
[
Mn(cτP + c̃τQ)PT

n

] [
Mn(c−1

τ P + c̃τ
−1Q)PT

n

]
FP σ

n

= F−1[PT
n + CT

n ]FP σ
n = P σ

n + Cn,

where {CT
n } ∈ IT, {Cn} ∈ I (cf. the proof of Lemma 5.4). Analogously, Bτ

nAτ
n = P σ

n + C ′
n,

{C ′
n} ∈ I, and Theorem 3.2 yields the assertion.

As for arbitrary piecewise continuous coefficients, we restrict ourselves to giving a sufficient
stability condition in a special case.

Proposition 5.2 Let a ∈ PC, b ∈ PC0 such that A = aI + bS is invertible in L2
σ and that

moreover for the one-sided limits
∣∣∣a(τ ± 0) + ib(τ ± 0)tϕ−1(τ)

∣∣∣ >
∣∣∣b(τ ± 0)ϕ−1(τ)

∣∣∣

holds for all τ ∈ [−1, 1]. Then {An} = {L̃σ
nAP σ

n } is stable.

Proof. Again we only have to show the invertibility of the coset {An} + I. For t ∈ [−1, 1]
choose aτ ∈ PC, b1, b2 ∈ C1,η

0,0 (η > max{1
4

+ α
2
, 1

4
+ β

2
, 0}) such that aτ and bτ := χ[−1,t]b1 +

χ[t,1]b2 satisfy (5.8) and
∣∣∣aτ (s ± 0) + ibτ (s ± 0)sϕ−1(s)

∣∣∣ >
∣∣∣bτ (s ± 0)ϕ−1(s)

∣∣∣ (5.9)

for all s ∈ [−1, 1]. Then {Aτ
n} + I, where Aτ

n is defined as in the proof of Theorem 5.1, is
an Mτ -equivalent local representative of {An}. We have

Aτ
n =

(
L̃σ

n(aτ + ibτϕ
−1x)P σ

n

) (
P σ

n − iL̃σ
n bτϕ

−1(aτ + ibτϕ
−1x)−1

︸ ︷︷ ︸
=:cτ

P σ
n V ∗P σ

n )

(for the invertibility of aτ + ibτϕ
−1x in L∞ note (5.9)). Since ‖{L̃σ

ncτP
σ
n }‖A ≤ ‖cτ‖∞ < 1

and ‖V ∗P σ
n ‖ = 1, the sequence {P σ

n − iL̃σ
ncτP

σ
n V ∗P σ

n } is invertible in A, which of course
also implies the invertibility of {Aτ

n} + I in A/I.

6 Implementation and numerical results

6.1 Some remarks on the implementation

For practical computations, we write the weighted polynomial vn that solves (2.5) in the
form

vn(x) = wσ−1(x)
n−1∑

k=0

ξkP
(σ)
k (x),

where P
(σ)
k denotes the monic orthogonal polynomial of degree k with respect to the weight

wσ−1 , and we solve the system of linear equations

n−1∑

k=0

[(
awσ−1P

(σ)
k

)
(xϕ

jn) + b(xϕ
jn)

(
Swσ−1P

(σ)
k

)
(xϕ

jn)
]

︸ ︷︷ ︸
=: ajk

ξk = f(xϕ
jn), j = 1, . . . , n (6.10)

to determine the ξk, k = 0, . . . , n − 1.
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It is well-known that the orthogonal polynomials satisfy a three-term recurrence formula
of the form

P
(σ)
k+1(x) = (x − αk)P

(σ)
k (x) − βkP

(σ)
k−1(x), j = 0, 1, 2, . . . , (6.11)

where P
(σ)
−1 ≡ 0 and P

(σ)
1 ≡ 1. In the case of Jacobi weights, there are explicit formulas for

the αk and βk. This allows us to compute the matrix coefficients ajk recursively. We have

aj,k+1 = (xϕ
jn − αk)ajk − βkaj,k−1, k = 1, . . . , n − 1,

with the initial values

aj0 = (awσ−1) (xϕ
jn) + b(xϕ

jn)̺0(x
ϕ
jn)

and

aj1 = (xϕ
jn − α0) (awσ−1) (xϕ

jn) + b(xϕ
jn)

(
β0 + (xϕ

jn − α0)̺0(x
ϕ
jn)
)

= (xϕ
jn − α0)aj0 + b(xϕ

jn)β0,

where β0 := 1
πi

∫ 1
−1 wσ−1(t) dt and ̺0(x) := (Swσ−1) (x). The computation of ̺0 is based

upon formula (2.2) from [GW]. If (6.10) is solved, one can efficiently compute the values of
vn from the coefficients ξj using (6.11).

6.2 Numerical examples

In the following examples, we approximated the error ‖u − vn‖σ by the quadrature rule√
Qϕ

m(|u − vn|2σϕ−1) with m = 256. We always chose a ≡ 1 and α = β = 0.

Example 1 b(x) = i
√

1 − x2, f(x) = 1 +

√
1 − x2

π
ln

1 − x

1 + x
, u ≡ 1.

Example 2 b(x) = i
√

1 − x2, f(x) = |x| + x

√
1 − x2

π
ln

(1 + x)(1 − x)

x2
, u(x) = |x|.

Example 3 b(x) = i
√

1 − x2, f(x) = sgn x +

√
1 − x2

π
ln

(1 + x)(1 − x)

x2
, u(x) = sgn x.

√
Qϕ

m(|u − vn|2σϕ−1)

n Ex. 1 Ex. 2 Ex. 3

8 7.99 E-3 8.04 E-3 4.98 E-2

16 4.04 E-3 4.12 E-3 3.56 E-2

32 2.01 E-3 2.04 E-3 2.52 E-2

64 9.49 E-4 9.59 E-4 1.77 E-2

128 3.65 E-4 3.68 E-4 1.18 E-2

256 2.65 E-6 2.07 E-5 5.78 E-3

512 1.02 E-7 1.78 E-6 4.28 E-4
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We also considered some examples with b(±1) 6= 0, which are not covered by the theo-
retical results of this paper. One is inclined to conjecture that in this case the sequence An

is stable if and only if the operators A = aI + bS and Ã = aI − bw−1
σ SwσI are invertible in

L2
σ. In Example 4 this is the case, whereas in Example 5 the operator A is invertible but

Ã is not. In both cases the approximate solutions seem to converge, but in Example 5 the
convergence is somewhat slower in despite of the same smoothness of the input data.

Example 4 b = − i
10

, f(x) = |x| − x

10π
ln

(1 + x)(1 − x)

x2
, u(x) = |x|.

Example 5 b = −i, f(x) = |x| − x

π
ln

(1 + x)(1 − x)

x2
, u(x) = |x|.

√
Qϕ

m(|u − vn|2σϕ−1)

n Ex. 4 Ex. 5

8 8.33 E-3 8.36 E-3

16 4.21 E-3 4.46 E-3

32 2.07 E-3 2.27 E-3

64 9.67 E-4 1.09 E-3

128 3.70 E-4 4.61 E-4

256 1.63 E-5 1.45 E-4

512 1.26 E-6 8.80 E-6
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