
MOS Subject Classi�cation: 31 B 10, 31 B 25, 35 C 15, 35 E 05, 45 F 15,73 B 30, 73 B 40, 73 C 15, 73 D 30MIXED INTERFACE PROBLEMS OF THER-MOELASTIC PSEUDO{OSCILLATIONSLothar JentschFakult�at f�ur Mathematik, Technische Universit�at Chemnitz{ZwickauD-09107 Chemnitz, GermanyDavid Natroshvili and Irina SiguaDepartment of Mathematics, Georgian Technical UniversityKostava str. 77, Tbilisi 75, Republic of GeorgiaAbstract Three{dimensional basic and mixed interface problems of the mathe-matical theory of thermoelastic pseudo{oscillations are considered for piecewisehomogeneous anisotropic bodies. Applying the method of boundary potentialsand the theory of pseudodi�erential equations existence and uniqueness theo-rems of solutions are proved in the the space of regular functions Ck+� and inthe Bessel{potential (Hsp) and Besov (Bsp;q) spaces. In addition to the classicalregularity results for solutions to the basic interface problems, it is shown that inthe mixed interface problems the displacement vector and the temperature areH�older continuous with exponent 0 < � < 1=2.IntroductionThe paper deals with the three{dimensional interface problems of the mathematicaltheory of thermoelastic pseudo{oscillations for piecewise homogeneous anisotropic bodies.The most general case of the structure of a piecewise homogeneous elastic body under consi-deration can be mathematicaly described as follows. In three{dimensional Euclidean spaceIR3 we have some closed, smooth, connected non{self{intersecting surfaces eS1; eS2; :::; eSm ( eSj\eSk = ;; j 6= k): By these surfaces the whole space IR3 is devided into several connecteddomains 
1; :::;
l. Each domain 
r is supposed to be �lled up by an anisotropic materialwith corresponding, in general, di�erent thermoelastic coe�cients.Common boundaries of the two distinct materials are called interfaces or contact surfacesof the piecewise homogeneous elastic body. If some domains represent empty inclusions, thencorresponding to them surrounding surfaces are called boundary surfaces of the composedelastic body in question. Such type of piecewise homogeneous bodies encounter in many1
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physical, mechanical and engineering applications, and the transmission problems for themhave received considerable attention in the scienti�c literature.We consider the following two groups of interface conditions:I. On the whole contact surface there are givena) jumps of the displacement vector, the temperature, the vector of thermal stresses, andthe heat 
ux (Problem C) orb) jumps of the temperature, the heat 
ux and the normal components of the displace-ment and the stress vectors; in additions to these conditions, the limits of either the tangentcomponents of the stress vectors (Problem G) or the tangent components of the displacementvectors (Problem H) are given from both sides of the interface (cf. [13],[7],[8],[9]).II. The contact (interface) surface S is devided into two disjoint parts S1 and S2 by aregular curve 
: S = S1 [ S2 [ 
. On S1 the conditions of Problem C are prescribed, whileon S2 there are given:a) the conditions of Problem G (Problem C-G) orb) the conditions of Problem H (Problem C-H) orc) the displacement vector and the temperature (Problem C-DD) ord) the thermal stresses and the heat 
ux (Problem C-NN) ore) the displacement [stress] vector and jumps of the temperature and the heat 
ux (Pro-blem C-DC [Problem C-NC]) (cf. [19], [9], [10]).Moreover, on the boundary surfaces there are given the displacement or the stress vector,and the temperature or the heat 
ux (see [22]).We have studied the above problems by the classical potential methods and the theory ofpseudodi�erential equations (	DE) on manifolds. The investigation has been carried out inthe regular Ck+� spaces and in the Bessel{potential (Hsp) and Besov Bsp;q spaces. Besides theuniqueness and existence theorems we have established the regularity properties of solutionsnear singular points (in a vicinity of the curve 
). Using the embedding theorems it has beenshown that solutions to the mixed interface problems (interface crack problems), in general,possess C�{smoothness with 0 < � < 1=2.Similar problems for elliptic equations and, in particular, for the system of classicalelasticity theory (for isotropic and anisotrpic piecewise homogeneous bodies) are consideredin [2], [4], [26], [1], [19], [12], [10], [20], [23], [21], [27], [18]. The basic and crack type problemsof thermoelasticity for homogeneous anisotropic bodies are treated in [17], [16] and [5]. Thepresent investigation generalizes results obtained in these works to the case of regular andmixed interface problems described above.1 Mathematical Formulation of Problems1.1. For illustration of the method suggested we consider the following model problems. Weassume that the piecewise homogeneous composed anisotropic body consists of two elasticcomponents occupying bounded domain 
1 = 
+ and its compliment 
2 = 
� = IR3n
+;@
� = S; 
j = 
j [ S; j = 1; 2: Thus the whole space IR3 can be considered as a piecewisehomogeneous anisotropic body with one contact (interface) surface S.Let a smooth, connected, non{self{intersecting curve 
 � S devide the surface S intotwo parts S1 and S2: S = S1 [ S2 [ 
, Sj = Sj [ 
; j = 1; 2.2



For simplicity in what follows we provide that S and 
 are C1{regular (unless statedotherwise) though actually some �nite regularity is su�cient.1.2. Throughout the paper by Ck(
�); Ck(
�); Ck(S) and Ck+�(
�); Ck+�(
�),Ck+�(S) are denoted usual k{smooth and H�older (k; �){smooth function spaces with integerk � 0 and 0 < � < 1; W 1p (
+); W 1p;loc(
�); W 1p;comp(
�) are well{known Sobolev spaces(1 < p < 1), while Bsp;q(
+); Bsp;q;loc(
�); Bsp;q(S) and Hsp(
+); Hsp;loc(
�); Hsp(S) denotethe Besov and Bessel{potential spaces with s 2 IR, 1 < p < 1; 1 � q � 1 (see [14], [29],[30]).We need also the following function spaces de�ned on the submanifolds Sj � S withboundary 
: Bsp;q(Sj) = ff jSj : f 2 Bsp;q(S)g; Hsp(Sj) = ff jSj : f 2 Hsp(S)g;eBsp;q(Sj) = ff 2 Bsp;q(S) : supp f � Sjg; fHsp(Sj) = ff 2 Hsp(S) : supp f � Sjg;where f jSj denotes the restriction of f to Sj.Let us note here that in the sequel we will use the following notations (when no confusioncan be caused by this):a) if all elements of a vector v = (v1; v2; :::; vm) (matrix a = jjakjjjm�n) belong to one andthe same space X, we will write v 2 X (a 2 X) instead of v 2 [X]m (a 2 [X]m�n);b) if K : X1 � � � � �Xm ! Y1 � � � � � Yn and X1 = � � � = Xm, Y1 = � � � = Yn, we willwrite K : X ! Y instead of K : [X]m ! [Y ]n.For the sake of simplicity sometimes we will use also the notation either [a]m�n or [akj]m�nfor a matrix jjakjjjm�n.1.3. The system of equations of the linear theory of thermoelastic pseudo{oscillations ofhomogeneous anisotropic medium reads [22]crkjpqDjDqurp(x; � )� � 2�rurk(x; � )� �rkjDjur4(x; � ) = 0; k = 1; 2; 3;�rpqDpDqur4(x; � )� �crur4(x; � )� �Tr�rpqDpurq(x; � ) = 0; x 2 
r; r = 1; 2; (1.1)where crkjpq = crpqkj = crjkpq are elastic constants, �rpq = �rqp are heat conductivity coe�cients,cr is the thermal capacity, Tr is the temperature of the medium in the natural state, �rpq =�rqp are expressed in terms of the thermal and elastic constants, �r is the density of themedium; ur = (ur1; ur2; ur3)> is the displacement vector, ur4 is the temperature; � = � � i! isa complex parameter with ! 2 IR; and � 2 IRnf0g; Dp = @=@xp; here and in what followsthe summantion over repeated indices is meant from 1 to 3, unless otherwise stated; thesupperscript > denotes transposition.We note that equations (1.1) are obtained from the corresponding dynamic equations bythe formal Laplace transform [22].In the thermoelasticity theory the stress tensor f�rkjg, the strain tensor f"rkj = 2�1(Dkurj+Djurk)g and the temperature �eld ur4 are related by Duhamel-Neumann law�rkj = crkjpq"rpq � �rkjur4;the k-th component of the vector of thermostresses, acting on a surface element with thenormal vector n = (n1; n2; n3), is calculated by the formula�rkjnj = crkjpq"rpqnj � �rkjnjur4 = crkjpqnjDqurp � �rkjnjur4: (1.2)3



In order to rewrite the above equations in the matrix form we setU r = (ur; ur4)> = (ur1; :::; ur4)>;Cr(D) = jjCrkp(D)jj3�3; Crkp(D) = crkjpqDjDq; (1.3)�r(D) = �rpqDpDq; D = r = (D1;D2;D3); (1.4)T r(D;n) = jjT rkj(D;n)jj3�3; T rkj(D;n) = crkjpqnjDq;P r(D;n) = jj[T r(D;n)]3�3 ; [��rkjnj ]3�1jj3�4;Ar(D; � ) = �������������� [Cr(D) � � 2�rI3]3�3 [��rkjDj ]3�1[� �Tr�rkjDj]1�3 �r(D) � �cr ��������������4�4 ; (1.5)where Im = jj�kjjjm�m stands for the unit m �m matrix, �kj is Kronecker's symbol. Notethat T r(D;n) and P r(D;n) are called the stress operators of the classical elasticity and thethermoelastisity, respectively.From (1.2) it follows that[P r(D;n)U r]k = �rkjnj; k = 1; 2; 3:Further, equation (1.1) can be written as followsAr(D; � )U r(x; � ) = 0; x 2 
r; r = 1; 2: (1.6)From the physical considerations it follows that [22], [16]:a) the matrix [�rpq]3�3 is positive de�nite, i.e.,�r(�) = �rpq�p�q � �0j�j2 for � 2 IR3 with �0 = const > 0; (1.7)b) crkjpqekjepq is a positive de�nite quadratic form in the real symmetric variables ekj = ejk,which implies positive de�niteness of the matrix Cr(�); for � 2 IR3nf0g de�ned by (1.3), i.e.,Crkj(�)�j�k � �1j�j2j�j2 for �; � 2 IR3 with �1 = const > 0: (1.8)Inequalities (1.7) and (1.8) along with the symmetry properties of the matrices [�rpq]3�3and Cr(�) yield:Cr(�)� � � = Crkj(�)�j�k � �1j�j2j�j2 for � 2 IR3 (1.9)and �rpq�p�q � �0j�j2 (1.10)for arbitrary complex vector � 2 CI 3; throughout this paper a � b = Pmk=1 akbk denotes thescalar product of two vectors in CI m where upper bar means complex conjugate.1.4. From particular problems of mathematical physics and mechanics it is well knownthat, in general, solutions (or their derivatives) to mixed boundary value problems havesingularities near the curves on which di�erent boundary conditions collide (solutions do notbelong to C1(
�)). Because of this fact, on one hand, and to involve a wide class of boundarydata, on the other hand, we state the basic and mixed transmission problems in the Sobolevspaces W 1p (W 1p;loc) with p > 1. If we note that the inclusion U 2 W 1p (
+) [U 2 W 1p;loc(
�)]4



impliesU jS 2 B1�1=pp;p (S), then the appearance of Besov spaces in the forthcoming formulationof transmission problems will become transparent. Clearly, here U jS exists in the trace sense[14], [29]. In what follows we denote by n(x) the outward (to 
+) unit normal vector atx 2 S, and by l(x) and m(x) orthogonal unit vectors in the tangent plane. The orthogonallocal co{ordinate system n, l and m at x 2 S is oriented as follows: l �m = n; where � � �denotes the vector product of two vectors. The symbols [�]� denote limits on S from 
�.We will study the following problems.Find a pair of vectors (U1; U2) with propertiesU1 2 W 1p (
1); U2 2 W 1p;loc(
2); jU2k (x)j < cjxjN ; jDpU2k (x)j < cjxjN ; (1.11)k = 1; 4; p = 1; 2; 3;where c = const > 0 and N is a certain real number; moreover, U1 and U2 satisfy equations(1.6) in the distributional sense in the corresponding domains 
1 and 
2, respectively, andone of the following transmission conditions on the interface S:Problem C:[U1]+ � [U2]� = f on S; (1.12)[ eB1U1]+ � [ eB2U2]� = F on S; (1.13)f = ( ef ; f4)>; ef = (f1; f2; f3)>; F = ( eF;F4)>; eF = (F1; F2; F3)>;Problem G:[P 1U1 � l]+ = eF (+)l ; [P 1U1 �m]� = eF (+)m on S; (1.14)[P 2U2 � l]� = eF (�)l ; [P 2U2 �m]� = eF (�)m on S; (1.15)[u1 � n]+ � [u2 � n]� = efn; [P 1U1 � n]+ � [P 2U2 � n]� = eFn on S; (1.16)[u14]+ � [u24]� = f4; [e�1u14]+ � [e�2u24]� = F4 on S; (1.17)Problem H: conditions (1.16), (1.17) and[u1 � l]+ = ef (+)l ; [u1 �m]+ = ef (+)m on S; (1.18)[u2 � l]� = ef (�)l ; [u2 �m]� = ef (�)m on S; (1.19)Problem C{DD:[U1]+ � [U2]� = f (1); [ eB1U1]+ � [ eB2U2]� = F (1) on S1; (1.20)[U1]+ = '(+); [U2]� = '(�) on S2; (1.21)f (1) = ( ef (1); f (1)4 )>; ef (1) = (f (1)1 ; f (1)2 ; f (1)3 )>; F (1) = ( eF (1); F (1)4 )>;eF (1) = (F (1)1 ; F (1)2 ; F (1)3 )>; '(�) = ( e'(�); '(�)4 )>; e'(�) = ('(�)1 ; '(�)2 ; '(�)3 )>;5



Problem C{NN: conditions (1.20) on S1 and[ eB1U1]+ = �(+); [ eB2U2]� = �(�) on S2; (1.22)�(�) = (e�(�);�(�)4 )>; e�(�) = (�(�)1 ;�(�)2 ;�(�)3 )>;Problem C{DC: condition (1.17) on S and[u1]+ � [u2]� = ef (1); [P 1U1]+ � [P 2U2]� = eF (1) on S1; (1.23)[u1]+ = e'(+); [u2]� = e'(�) on S2;Problem C{NC: conditions (1.17) on S, (1.23) on S1 and[P 1U1]+ = e�(+); [P 2U2]� = e�(�) on S2;Problem C{G: conditions (1.17) on S, (1.23) on S1 and[u1 � n]+ � [u2 � n]� = ef (2)n ; [P 1U1 � n]+ � [P 2U2 � n]� = eF (2)n on S2; (1.24)[P 1U1 � l]+ = e�(+)l ; [P 1U1 �m]+ = e�(+)m on S2;[P 2U2 � l]� = e�(�)l ; [P 2U2 �m]� = e�(�)m on S2;Problem C{H: conditions (1.17) on S, (1.23) on S1, (1.24) on S2, and[u1 � l]+ = e'(+)l ; [u1 �m]+ = e'(+)m on S2;[u2 � l]� = e'(�)l ; [u2 �m]� = e'(�)m on S2;where eBr(D;n) = �������������� [T r(D;n)]3�3 [��rkjnj]3�1[0]1�3 e�r(D;n) ��������������4�4 ; (1.25)e�r(D;n) = 1Tr�rpqnpDq = 1Tr�r(D;n): (1.26)It is evident that �rst order derivatives of functions from W 1p (
+) and W 1p;loc(
�) belongto Lp(
+) and Lp;loc(
�), respectively, and they have no traces on S. However, for thevector functions (1.11), satisfying the conditionA1(D; � )U1 2 Lp(
+); A2(D; � )U2 2 Lp;loc(
�);we can de�ne correctly the functionals[P 1U1]+k ; [�1(D;n)u14]+; [P 2U2]�k ; [�2(D;n)u24]� 2 B�1=pp;p (S)by means of Green's formulae [17], [12]h[B1U1]+; [V 1]+iS = R
+ A1(D; � )U1 � V 1dx+ R
+ E1(U1; V 1)dx; (1.27)h[B2U2]�; [V 2]�iS = R
� A2(D; � )U2 � V 2dx+ R
� E2(U2; V 2)dx; (1.28)6



whereV r = (evr; vr4)>; evr = (vr1; vr2; vr3)>; V 1 2 W 1p0(
+); V 2 2 W 1p0;comp(
�); p0 = pp � 1 ;Br(D;n) = �������������� [T r(D;n)]3�3 [��rkjnj]3�1[0]1�3 �r(D;n) ��������������4�4 ; (1.29)Er(U r; V r) = crkjpqDpurq Dkvrj + � 2urkvrk � �rkjur4 Dkvrj+ �rpqDqur4 Dpvr4 + cr�ur4vr4 + �Tr�rkjDkurj vr4:Clearly, [V r]� 2 B1�1=p0p0;p0 (S) = B1=pp0;p0(S): The symbol h�; �iS in formulae (1.27) and (1.28)denotes the duality between B�1=pp;p (S) and B1=pp0;p0(S), which for smooth vectors f and g readsas hf; giS = ZS f � g dS(for details see [5]).Note thateBr(D;n) = I(r)4 Br(D;n) with I(r)4 = diag f1; 1; 1; T�1r g; (1.30)where diag fa1; � � � ; ang denotes a diagonal n � n matrix with the entries a1; � � � ; an on themain diagonal. In the above formulations of interface problems the conditions for the dis-placement vector ur and the temperature ur4 are understood in the trace sense, while theconditions for the stress vector P rU r and the heat 
ux �r(D;n)ur4 are to be considered inthe functional sense which has just been described. Therefore the functions given on theinterface S are to meet the following natural restrictions stipulated by (1.11):fk; ef (�)l ; ef (�)m ; efn 2 B1�1=pp;p (S); Fk; eF (�)l ; eF (�)m ; eFn 2 B�1=pp;p (S);f (1)k 2 B1�1=pp;p (S1); F (1)k 2 B�1=pp;p (S1); '(�)k ; ef (2)n ; e'(�)l ; e'(�)m 2 B1�1=pp;p (S2);�(�)k ; eF (2)n ; e�(�)l ; e�(�)m 2 B�1=pp;p (S2); k = 1; 4: (1.31)The inclusions (1.11) imply also the following compatibility conditions for the givenfunctions:a) in Problem C{DD:f0 = 8><>: f (1) on S1;'(+) � '(�) on S2; f0 2 B1�1=pp;p (S); (1.32)b) in Problem C{NN:F 0 = 8><>: F (1) on S1;�(+) ��(�) on S2; F 0 2 B�1=pp;p (S); (1.33)7



c) in Problem C{DC:ef (0) = 8><>: ef (1) on S1;e'(+) � e'(�) on S2; ef0 2 B1�1=pp;p (S); (1.34)d) in Problem C{NC:eF (0) = 8><>: eF (1) on S1;e�(+) � e�(�) on S2; eF (0) 2 B�1=pp;p (S); (1.35)e) in Problem C{G:ef (0)n = 8><>: ef (1) � n on S1;ef (2)n on S2; ef (0)n 2 B1�1=pp;p (S); (1.36)eF (0) = 8><>: eF (1) on S1;[e�(+)l � e�(�)l ]l+ [e�(+)m � e�(�)m ]m+ eF (2)n n on S2; eF (0) 2 B�1=pp;p (S); (1.37)f) in Problem C{H:ef (0) = 8><>: ef (1) on S1;[ e'(+)l � e'(�)l ]l+ [ e'(+)m � e'(�)m ]m+ ef (2)n n on S2; ef (0) 2 B1�1=pp;p (S); (1.38)eF (0)n = 8><>: eF (1) � n on S1;eF (2)n on S2; eF (0)n 2 B�1=pp;p (S): (1.39)In the sequel all these conditions are supposed to be ful�lled. Note that (1.32), (1.34),(1.36), and (1.38) [(1.33), (1.35), (1.37) and (1.39)] hold for arbitrary functions satisfying(1.31) with 1 < p < 2 [2 < p < 1], which follows from the multiplication properties ofBesov spaces (see [30], Ch. 3, Section 3.3.2).1.5. For the domains of general structure, described in Introduction, the basic and mixedtransmission problems mathematically could be formulated quite similarly: on the contactsurfaces the conditions one of the interface problems stated above are assigned, while onthe boundary of the composed body the conditions of either basic or mixed boundary valueproblemes are given (for detailes concerning the formulation such type of problems see [13]).We observe that all principal di�culties arising in the study of problems for the composedbodies of general structure are presented in the above model problems as well.We will investigate the above problems by making use of the boundary integral (pseudo-di�erential) equation methods. To this end we need some auxiliary material about propertiesof pseudo{oscillation potentials and operators generated by them. For the readers conveni-ence all necessary results are collected together in the next section.8



2 Properties of Pseudo{Oscillation Potentials2.1. Fundamental matrix. Denote by Fx!� and F�1�!x the generalized Fourier and theinverse Fourier transforms which for summable functions are de�ned as followsFx!�[f ] = ZIRn f(x)eix�dx; F�1�!x[g] = (2�)�n ZIRn g(�)e�ix�d�:Further, letAr(�; � ) be the symbol matrix of the di�erential operator Ar(D; � ) (see (1.5)):Ar(�; � ) = Ar(�i�; � ); � 2 IR3:LEMMA 2.1 Let � = � � i!; Re � = � > 0; ! 2 IR, and � 2 IR3: Then detAr(�; � ) 6= 0and [Ar(�; � )]�1 2 L2(IR3):Proof. The �rst part of the lemma follows from Lemma 1.1 of [12], while the second partis a consequence of the inequalityf[Ar(�; � )]�1gkj � c(�)1 + j�j2 for � 2 IR3;where the positive constant c(�) does not depend on � (it depends on � and the thermoelasticconstants of the medium in question).Applying Lemma 2.1 we can construct the fundamental matrix of the operator Ar(D; � )	r(x; � ) = F�1�!x[(Ar(�; � ))�1] = 1(2�)3 limR!1 Zj�j�R [Ar(�; � )]�1e�ix�d�; x 2 IR3nf0g:Let �r(x) and 
r(x) be the homogeneous (of order �1) fundamental matrix and funda-mental function of the di�erential operators Cr(D) and �r(D), respectively, (see (1.3) and(1.4)): �r(x) = F�1�!x[(Cr(�i�))�1] = �(8�2jxj)�1 2�R0 [Cr(a�)]�1d�; (2.1)
r(x) = F�1�!x[(�r(�i�))�1] = �[4�j�r1j1=2(�r1x � x)1=2]�1; x 2 IR3nf0g; (2.2)where a = jjakjjj3�3 is an orthogonal matrix with property a>x> = (0; 0; jxj)>;� = (cos'; sin'; 0)>; �r1 = jj�rpqjj3�3; j�r1j = det �r1 (see [16], [15]).It is evident that�r(x) = �r(x) = �r(�x) = [�r(x)]>; �r(tx) = t�1�r(x);
r(x) = 
r(�x); 
r(tx) = t�1
r(x);for any x 2 IR3nf0g and t > 0. 9



LEMMA 2.2 Let Re � = � > 0. Then entries of the matrix 	r(�; � ) belong to C1(IR3nf0g)and together with all derivatives decrease more rapidly than any negative power of jxj asjxj ! +1.In a neighbourhood of the origin (jxj < 1=2) the following inequalitiesjD�	rkj(x; � )�D�	rkj(x)j < c '(kj)j�j (x)hold, where � = (�1; �2; �3) is an arbitrary multi{index, j�j = �1 + �2 + �3; here	r(x) = �������������� [�r(x)]3�3 [0]3�1[0]1�3 
r(x) ��������������4�4 ; (2.3)'(kj)0 (x) = 1; '(kj)1 (x) = � ln jxj; '(kj)l (x) = jxj1�l; l � 2;for 1 � k; j � 3 and k = j = 4;'(k4)0 (x) = '(4k)0 (x) = � ln jxj; '(k4)m (x) = '(4k)m (x) = jxj�m; m � 1;for k = 1; 2; 3:Proof. Note that D�[Ar(�; � )]�1 = O([1 + j�j]�2�j�j);and[Ar(�; � )]�1 = �������������� [(Cr(�i�))�1]3�3 [0]3�1[0]1�3 [�r(�i�)]�1 ��������������+ �������������� [O(j�j�4)]3�3 [O(j�j�3)]3�1[O(j�j�3)]1�3 O(j�j�4) �������������� ;hold for su�ciently large j�j.Now the proof follows from Lemma 2.1 and equations (2.1), (2.2).Denote by A�r(D; � ) the operator formally adjoint to Ar(D; � ):A�r(D; � ) = [Ar(�D; � )]>:Clearly, the correspoding fundamental matrix is 	�r(x; � ) = [	r(�x; � )]>.By standard arguments we can derive the general integral representation formula for aregular solution of the equation (1.6)U r(x) = (�1)r+1 ZS fQr(Dy; n(y); � )[	r(x� y; � )]>g>[U r(y)]�dSy� (�1)r+1 ZS 	r(x� y; � )[Br(Dy; n)U r(y)]�dSy; x 2 
r; (2.4)where the operator Br(D;n) is de�ned by (1.29),Qr(Dy; n; � ) = �������������� [T r(Dy; n)]3�3 [�Tr�rkjnj]3�1[0]1�3 �r(Dy; n) ��������������4�4 ;here U2 is supposed to satisfy the inequality (1.11) (for details see [17], [12]).10



From Lemma 2.2 and equations (2.4) and (1.11) it follows that any solution of equation(1.6) actually decrease, together with all its derivatives, more rapidly than any negative powerof jxj as jxj ! 1. Therefore for any solution U2 of (1.6) in 
2 the condition U2 2 W 1p;loc(
2)implies U2 2 W 1p (
2) with 1 < p < 1: It is also evident that the vector U r 2 W 1p (
r)de�ned by (2.4) belongs to C1(
r).2.2. Potential operators of pseudo{oscillations. LetV r(g)(x) := ZS 	r(x� y; � )g(y)dSy; x 2 IR3nS;W r(g)(x) := ZS fQr(Dy; n(y); � )[	r(x� y; � )]>g>g(y)dSy; x 2 IR3nS;where g = (eg; g4)> and eg = (g1; g2; g3)>, be the generalized single and double layer potentials.Further, let us introduce the boundary integral (pseudodi�erential) operators on S:Hrg(z) := ZS 	r(z � y; � )g(y)dSy; z 2 S; (2.5)Krg(z) := ZS Br(Dz; n(z))	r(z � y; � )g(y)dSy; z 2 S; (2.6)eKrg(z) := ZS fQr(Dy; n(z); � )[	r(z � y; � )]>g>g(y)dSy; z 2 S; (2.7)Lr�g(z) := lim
�3x!z2SBr(Dx; n(z))W r(g)(x): (2.8)Clearly, these operators are generated by the above potentials. Their mapping and Fredholmproperties are described by the next two lemmata.LEMMA 2.3 [17], [5] Let k � 0 be an integer, 0 < � < �0 < 1, and S 2 Ck+1+�0. Theni) the operatorsV r : Ck+�(S)! Ck+1+�(
�); (2.9)W r : Ck+�(S)! Ck+�(
�); (2.10)are bounded, and[V r(g)]+ = [V r(g)]� � Hrg; g 2 C�(S); (2.11)[W r(g)]� = [�2�1I4 + eKr]g; g 2 C�(S); (2.12)[Br(D;n)V r(g)]� = [�2�1I4 +Kr]g; g 2 C�(S); (2.13)Lr+g = Lr�g � Lrg; g 2 C1+�(S); (2.14)ii) the operatorsHr : Ck+�(S)! Ck+1+�(S); (2.15)(�2�1I4 + eKr); (�2�1I4 +Kr) : Ck+�(S)! Ck+�(S); (2.16)11



Lr : Ck+1+�(S)! Ck+�(S) [S 2 Ck+2+�0]; (2.17)are bounded;iii) operators (2:9); (2:10), and (2:15){(2:17) can be extended to the following boundedoperators V r : Bsp;p(S)! Hs+1+1=pp (
�) [Bsp;q(S)! Bs+1+1=pp;q (
�)];W r : Bsp;p(S)! Hs+1=pp (
�) [Bsp;q(S)! Bs+1=pp;q (
�)];Hr : Bsp;q(S)! Bs+1p;q (S) [Hsp(S)! Hs+1p (S)]; (2.18)(�2�1I4 +Kr); (�2�1I4 + eKr) : Bsp;q(S)! Bsp;q(S) [Hsp(S)! Hsp(S)]; (2.19)Lr : Bsp;q(S)! Bs�1p;q (S) [Hsp(S)! Hs�1p (S)]; (2.20)for arbitrary s 2 IR; 1 < p < 1; and 1 � q � 1, provided S 2 C1); for these extendedoperators formulae (2:11) � (2:14) remain valid in corresponding spaces.LEMMA 2.4 [17], [12], [5] Operators Hr; (�2�1I4+Kr); (�2�1I4+ eKr) and Lr are elliptic	DOs of order �1; 0; 0 and 1, respectively. The principal symbol matrices of �Hr and Lrare positive de�nite. Operators (2:15); (2:16); (2:17) [(2:18); (2:19); (2:20)] are isomorphisms.In particular, (Hr)�1 is a singular integro{di�erential operator.3 Problem C3.1 The investigation of Problem C we begin with the following uniquenessTHEOREM 3.1 The homogeneous Problem C (f = 0; F = 0) has only the trivial solutionin the class of regular vectors.Proof. Let a pair (U1; U2), where U1 2 C1(
+) and U2 2 C1(
�); be an arbitrarysolution of the homogeneous Problem C. Further, let us write the following Green formulae[17],[5] R
r f[Ar(D; � )U r]kurk + 1�Tr [Ar(D; � )U r]4 u4gdx= (�1)r+1 RS f[Br(D;n)U r]�k [urk]� + 1� [ur4]�[e�r(D;n)ur4]�gdS� R
r fcrkjpqDpurqDkurj + �r� 2jurj2 + 1�Tr�rpqDqur4Dpur4 + crTr jur4j2gdx; r = 1; 2; (3.1)where Ar(D; � ); Br(D;n); and e�r(D;n) are de�ned by (1.5), (1.29), and (1.26), respectively;the superscript +[�] corresponds to r = 1 [r = 2].Due to the homogeneity of the problem in question the equations (3.1) yield2Xr=1 Z
r fcrkjpqDpurqDkurj + �r� 2jurj2 + 1�Tr�rpqDqur4Dpur4 + crTr jur4j2gdx = 0: (3.2)12



Recalling that � = � � i!, and separating the real and imaginary parts, we obtainP2r=1 R
r fcrkjpqDpurqDkurj + �r(�2 � !2)jurj2+ �j�2jTr�rpqDqur4 Dpur4 + crTr jurj2gdx = 0;!P2r=1 R
r n2��rjurj2 + 1j� j2Tr e�rpqDqur4Dpur4o dx = 0;whence, by (1.9) and (1.10), U r = 0 in 
r follows for arbitrary � with Re � = � > 0.COROLLARY 3.2 . Let U1 2 W 12 (
1) and U2 2 W 12 (
2) solve the homogeneous ProblemC. Then U r = 0 in 
r; r = 1; 2:3.2. We look for a solution to Problem C in the form of the single layer potentialsU1(x) = V 1[(H1)�1g1](x); x 2 
1; (3.3)U2(x) = V 2[(H2)�1g2](x); x 2 
2; (3.4)where gr = (egr; gr4)>; egr = (gr1; gr2; gr3)>; r = 1; 2; are unknown densities and (Hr)�1 is theoperator inverse to Hr (see Lemma 2.2).Due to Lemma 2.3, the transmission conditions (1.12) and (1.13) lead to the followingsystem of boundary equations on S:g1 � g2 = f; (3.5)I(1)4 (�2�1I4 +K1)(H1)�1g1 � I(2)4 (2�1I4 +K2)(H2)�1g2 = F; (3.6)where I(r)4 and Kr; r = 1; 2; are de�ned by (1.30) and (2.6), respectively.Let N1 = (�2�1I4 +K1)(H1)�1; N2 = �(2�1I4 +K2)(H2)�1;fN1 = I(1)4 N1; fN2 = I(2)4 N2; fN = fN1 + fN2: (3.7)Then equations (3.5) and (3.6) yield:g1 = f + g2; (3.8)fN g2 = F � fN1f: (3.9)Now we will study properties of the boundary operators fN1; fN2, and fN .LEMMA 3.3 Let S 2 Ck+2+�0; k � 0 be an integer and 0 < �0 � 1: ThenfN ; fNj : Ck+1+�(S)! Ck+�(S); 0 < � < �0; j = 1; 2; (3.10)are bounded operators with the trivial null{spaces.Operators fN ; fNj; j = 1; 2, de�ned by (3:10), are isomorphisms.13



Proof. The mapping property (3.10) is an easy consequence of Lemma 2.3, item ii) sincethe operator (Hr)�1 : Ck+1+
(S)! Ck+
(S) is an isomorphism due to Lemma 2.2.From Lemma 2.4 it follows also that the equation fNjh = 0 has only the trivial solution.Therefore the operators fNj; j = 1; 2; de�ned by (3.10) are invertible and their inverses arebounded.It remains to prove that the null-space of the operator fN is trivial as well. Let h =(h1; :::h4)> 2 C1+
(S) be an arbitrary solution of the equation fNh = 0; i.e., fN1h + fN2h =0: Then it is evident that the vectors U1(x) = V 1[(H1)�1h](x); x 2 
1 and U2(x) =V 2[(H2)�1h](x); x 2 
2; are regular and they solve the homogeneous Problem C, sinceg1 = h and g2 = h solve the homogeneous version of the system of equations (3.5), (3.6).Therefore by Theorem 3.1 we have U1 = 0 in 
1 and U2 = 0 in 
2, whence h = 0 followsimmediately.LEMMA 3.4 The principal simbol matrices of the operotors fN1; fN2 and fN are positivede�nite.Proof. Denote by �(P)(x; �) with x 2 S and � 2 IR2nf0g the principal homogeneoussymbol of the pseudodi�erential operator P.Equations (3.7) imply�(fN1) = I(1)4 �(N1); �(fN2) = I(2)4 �(N2);�(N1) = �(�2�1I4 +K1)[�(H1)]�1; �(N2) = ��(2�1I4 +K2)[�(H2)]�1; (3.11)�(fN ) = �(fN1) +�(fN2):Due to Lemmata 2.2, 2.4, and equation (1.29) we have�(Hr) = �(Hr0); �(Kr) = �(Kr0);where Hr0 and Kr0 are 4� 4 matrix boundary operators on S:Hr0g(x) := ZS 	r(x� y)g(y)dSy; x 2 S;Kr0g(x) := ZS Br0(Dx; n(x))	r(x� y)g(y)dSy; x 2 S;with g = (eg; g4)> and eg = (g1; g2; g3)>; here 	r is given by (2.3) andBr0(D;n) = �������������� [T r(D;n)]3�3 [0]3�1[0]1�3 �r(D;n) ��������������4�4 :ThereforeHr0 = �������������� [Hr�]3�3 [0]3�1[0]1�3 Hr
 ��������������4�4 ; (3.12)Kr0 = �������������� [Kr�]3�3 [0]3�1[0]1�3 Kr
 ��������������4�4 ; (3.13)14



where Hr� [Hr
] and Kr� [Kr
] are 3� 3 matrix [scalar] operators generated by the single layerpotential constructed by the fundamental matrix �r(x) [
r(x)] (see (2.3)):Hr�eg(x) = RS �r(x� y)eg(y)dSy; Kr�eg(x) = RS T r(Dx; n(x))�r(x� y)eg(y)dSy; (3.14)Hr
g4(x) = RS 
r(x� y)g4(y)dSy; Kr
g4(x) = RS �r(Dx; n(x))
r(x� y)g4(y)dSy:Taking into account the structure of the matrices (3.12) and (3.13), we get from (3.11)�(N1) = �(�2�1I4 +K10)[�(H10)]�1= �������������� [�(�2�1I3 +K1�)[�(H1�)]�1]3�3 [0]3�1[0]1�3 �(�2�1I1 +K1
)[�(H1
)]�1 ��������������4�4 ; (3.15)�(N2) = ��(2�1I4 +K20)[�(H20)]�1=� �������������� [�(2�1I3 +K2�)[�(H2�)]�1]3�3 [0]3�1[0]1�3 �(2�1I1 +K2
)[�(H2
)]�1 ��������������4�4 : (3.16)It can be shown that (�2�1I3 +K1�)(H1�)�1 and �(2�1I3 + K2�)(H2�)�1 are non-negative3 � 3 matrix pseudodi�erential operators with positive de�nite principal symbol matrices,while (�2�1I1 + K1
)(H1
)�1 and �(2�1I1 + K2
)(H2
)�1 are non-negative scalar 	DOs withpositive principal symbol functions (for details see [19], Lemma 4.2 ii).Therefore the equations (3.15) and (3.16) together with (3.11) yield that �(fN1), �(fN2),and �(fN ) are positive de�nite matrices for arbitrary x 2 S and � 2 IR2nf0g.COROLLARY 3.5 Let S; k; �, and �0 be as in Lemma 3:3. Then the operator fN (see(3:10)) is an isomorphism, andfN�1 : Ck+�(S)! Ck+1+�(S)is a bounded operator.Applying the above results we get from (3.8) and (3.9):g1 = fN�1(F + fN2f); g2 = fN�1(F � fN1f): (3.17)Clearly, gr 2 Ck+1+�(S); r = 1; 2; iff 2 Ck+1+�(S); F 2 Ck+�(S): (3.18)Now we can formulate the following existenceTHEOREM 3.6 Let S; k; � and �0, be as in Lemma 3:3, and let f and F meet theconditions (3:18). Then Problem C is uniquely solvable, and the solution is representable inthe form of potentialsU1(x) = V 1[(H1)�1fN�1(F + fN2f)](x); x 2 
1; (3.19)15



U2(x) = V 2[(H2)�1fN�1(F � fN1f)](x); x 2 
2: (3.20)Moreover,U r 2 Ck+1+�(
r); r = 1; 2; (3.21)jjU rjj(
r ;k+1;�) � C0[jjf jj(S;k+1;�)+ jjF jj(S;k;�)]; C0 = const > 0; (3.22)where jj � jj(M;k;�) denotes the norm in the space Ck+�(M).Proof. It follows from (3.3), (3.4), (3.17), Corollary 3.5 and Lemma 2.3, item i).3.3. In this section we assume S 2 C1 and establish uniqueness and existence results inthe Bessel{potential and Besov spaces.LEMMA 3.7 The operators (3:10) can be extended to the folloving bounded, elliptic 	DOs(of order �1)fN ; fNj : Hs+1p (S)! Hsp(S): Bs+1p;q (S)! Bsp;q(S) (3.23)for arbitrary s 2 IR; 1 < p <1; 1 � q � 1: Moreover, the operator fN , de�ned by (3:23),is invertible.Proof. The boundedness, ellipticity and mapping properties (3.23) of the operators fNand fNj easily follow from Lemmata 2.1, 2.2 and 3.4.The invertibility of the operator fN is a consequense of the embedding theorems for solu-tions of elliptic pseudodi�erential equations (	DE) on closed manifold. In fact, any solutionh 2 Hs+1p (S) [Bs+1p;q (S)] of the homogeneous pseudodi�erential equation fNh = 0; belongsalso to the space Ck+1+
(S), where k � 0 is an arbitrary integer and 0 < 
 < 1. Thereforeh = 0 due to Corollary 3.5, whence the unique solvability in the spaces Hs+1p (S) [Bs+1p;q (S)]of the non{homogeneous equation fNh = f follows for the arbitrary right{hand side vectorf 2 Hsp(S) [Bsp;q(S)].THEOREM 3.8 Letf 2 Bs+1p;p (S) [Bs+1p;q (S)]; F 2 Bsp;p(S) [Bsp;q(S)]: (3.24)Then Problem C is uniquely solvable in the space Hs+1+1=pp (
r) [Bs+1+1=pp;q (
r)], and the so-lution is representable by formulae (3:19) and (3:20).Proof. Let conditions (3.24) be ful�lled. Then Lemmata 3.7 and 2.3, item iii) imply thatthe vectors U r; r = 1; 2; de�ned by (3.19) and (3.20) represent a solution to Problem C ofthe class Hs+1+1=pp (
r) [Bs+1+1=pp;q (
r)]:As to the uniqueness of solution to Problem C in the above Bessel{potential and Besovspaces we can prove it as follows. 16



Let U r 2 Hs+1+1=pp (
r) [Bs+1+1=pp;q (
r)] r = 1; 2, be some solution to the homogeneousProblem C. We recall that U r 2 C1(
r). Then Lemma 2.3, item iii) and equations (1.30),(2.4) yieldU1(x) = W 1([U1]+)(x)� V 1([B1U1]+)(x)= W 1([U1]+)(x)� V 1(J (1)4 [ eB1U1]+)(x); x 2 
1; (3.25)U2(x) = �W 2([U2]�)(x) + V 2([B2U2]�)(x)= �W 2([U2]�)(x) + V 2(J (2)4 [ eB2U2]�)(x); x 2 
2; J (r)4 = [I(r)4 ]�1; (3.26)where [U1]+; [U2]� 2 Bs+1p;p (S) [Bs+1p;q (S)];[B1U1]+; [B2U2]� 2 Bsp;p(S) [Bsp;q(S)]:The homogeneous transmission conditions read (see (1.12), (1.13))[U1]+ = [U2]�; [ eB1U1]+ = [ eB2U2]�: (3.27)Denote[U1]+ = g; [ eB1U1]+ = h: (3.28)Then (3.27) along with (3.25), (3.26) and Lemma 2.3, item iii) implies (see (2.5){(2.8),(2.14)) that h and g solve the homogeneous system of boundary 	DEs:�(H1J (1)4 +H2J (2)4 )h+ ( eK1 + eK2)g = 0; (3.29)�(I(1)4 K1J (1)4 + I(2)4 K2J (2)4 )h+ (I(1)4 L1 + I(2)4 L2)g = 0: (3.30)From the positive de�niteness of the principal symbol matrices ��(Hr); �(Lr) (see Lemma2.4) and the equation �( eKr) = [�(Kr)]>, it follows that the system of 	DEs (3.29) and(3.30) is strongly elliptic in the sense of Douglis{Nirenberg. Therefore by the embeddingtheorems we conclude that h and g are smooth vector{functions on S: h 2 Ck+�(S); g 2Ck+1+�(S) for any k � 0 and 0 < � < 1. But then the vectors U r; r = 1; 2; given by (3.25)and (3.26), are regular due to the representation formulae (3.27), (3.28), and Lemma 2.3,item i). Now the conditions (3.27) and Theorem 3.1 complete the proof.REMARK 3.9 Using the representation formulas (3:25) and (3:26) we can solve ProblemC by the so{called direct boundary integral equation method. This method reduces the trans-mission problem in question to the strongly elliptic (in the sense of Douglis{Nirenberg) systemof 	DEs on SG = Q; (3.31)where  = ( 0;  00)> is the unknown vector with  0 = [ eB1U1]+ and  00 = [U1]+; the matrixoperator G is given by formulaG = �������������� [�H1J (1)4 �H2J (2)4 ]4�4 [ eK1 + eK2]4�4[� I(1)4 K1J (1)4 � I(2)4 K2J (2)4 ]4�4 [I(1)4 L1 + I(2)4 L2]4�4 ��������������8�8 ;17



while the given on S right hand{side 8{vector Q reads asQ = �(2�1I4 + eK2)f �H2J (2)4 F ; I(2)4 L2f + (2�1I4 � I(2)4 K2J (2)4 )F�> :In fact, in the proof of Theorem 3:8 we have shown that the operatorsG : [Ck+
(S)]4 � [Ck+1+
(S)]4 ! [Ck+1+
(S)]4 � [Ck+
(S)]4: [Hsp(S)]4 � [Hs+1p (S)]4 ! [Hs+1p (S)]4 � [Hsp(S)]4: [Bsp;q(S)]4 � [Bs+1p;q (S)]4 ! [Bs+1p;q (S)]4 � [Bsp;q(S)]4are invertible.Therefore the unique solution of Problem C can be represented also in the formU1(x) = W 1( 00)(x)� V 1(J (1)4  0)(x);U2(x) = �W 2( 00 � f)(x) + V 2[J (2)4 ( 0 � F )](x); (3.32)where  = ( 0;  00)> solves the system of 	DEs (3:31).Note that the conclusions of Theorems 3.6 and 3.8, concerning the smoothness propertiesof solutions, remain valid for the vectors de�ned by (3.32) if the conditions (3.18) and (3.24)hold.4 Problem GFirst let us rewrite the transmission conditions (1.14)-(1.17) in the following equivalent form[P 1U1 � l]+ + [P 2U2 � l]� = eF (+)l + eF (�)l ; (4.1)[P 1U1 �m]+ + [P 2U2 �m]� = eF (+)m + eF (�)m ; (4.2)[P 1U1 � l]+ � [P 2U2 � l]� = eF (+)l � eF (�)l ; (4.3)[P 1U1 �m]+ � [P 2U2 �m]� = eF (+)m � eF (�)m ; (4.4)[u1 � n]+ � [u2 � n]� = efn; (4.5)[P 1U1 � n]+ � [P 2U2 � n]� = eFn; (4.6)[u14]+ � [u24]� = f4 ; [e�1u14]+ � [e�2u24]� = F4: (4.7)Clearly, due to (4.3), (4.4), (4.6) and (4.7), the vector[ eB1U1]+ � [ eB2U2]� = Fis a prescribed vector on S withF = (( eF (+)l � eF (�)l )l + ( eF (+)m � eF (�)m )m+ eFnn;F4)>: (4.8)Denote[u1 � l]+ � [u2 � l]� =  1; [u1 �m]+ � [u2 �m]� =  2; (4.9)18



where  1 and  2 are the unknown scalar functions. Equations (4.5), (4.7), and (4.9) imply[U1]+ � [U2]� = f;wheref = ( 1l +  2m+ efnn; f4)>: (4.10)Now let us look for a solution to Problem G in the form (3.19) and (3.20), where F andf are given by (4.8) and (4.10), respectively. Then from the results of Section 3 it followsthat the transmission conditions (4.3){(4.7) are automatically satis�ed. It remains to satisfythe conditions (4.1) and (4.2). Taking into account Lemma 2.3, item i) and the equations(3.7), we get from (3.19) and (3.20):[ eB1(D;n)U1]+ = [(P 1(D;n)U1; e�1(D;n)u4)>]+ = fN1fN�1(F + fN2f);[ eB2(D;n)U2]� = [(P 2(D;n)U2; e�2(D;n)u4)>]� = �fN2fN�1(F � fN1f):Further, we setl� = [(l; 0)>]4�1; m� = [(m; 0)>]4�1; n� = [(n; 0)>]4�1; (4.11)where l, m and n are the tangent and the normal vectors introduced in Subsection 1.4.Conditions (4.1) and (4.2) then imply[P 1U1 � l]+ + [P 2U2 � l]� � [ eB1U1 � l�]+ + [ eB2U2 � l�]�� (fN1 � fN2)fN�1F � l� + 2fN2fN�1fN1f � l� = eF (+)l + eF (�)l ;[P 1U1 �m]+ + [P 2U2 �m]� � [ eB1U1 �m�]+ + [ eB2U2 �m�]�� (fN1 � fN2)fN�1F �m� + 2fN2fN�1fN1f �m� = eF (+)m + eF (�)m ; (4.12)since fN2fN�1fN1 = fN1fN�1fN2: By virtue of (4.10) from (4.12) we have the following systemof 	DEs for the unknown functions  1 and  2:3Xk;j=1[(fN2fN�1fN1)kj ( 1lj +  2mj)]lk = q1; (4.13)3Xk;j=1[(fN2fN�1fN1)kj ( 1lj +  2mj)]mk = q2; (4.14)whereq1 = 2�1f eF (+)l + eF (�)l � (fN1 � fN2)fN�1F � l�g� 3Xk=1[(fN2fN�1fN1)k4f4]lk � 3Xk;j=1[(fN2fN�1fN1)kj( efnnj)]lk;q2 = 2�1f eF (+)m + eF (�)m � (fN1 � fN2)fN�1F �m�g� 3Xk=1[(fN2fN�1fN1)k4f4]mk � 3Xk;j=1[(fN2fN�1fN1)kj( efnnj)]mk; (4.15)are given functions on S. 19



Now let MG := �������������� lk(fN2fN�1fN1)kj lj lk(fN2fN�1fN1)kjmjmk(fN2fN�1fN1)kj lj mk(fN2fN�1fN1)kjmj ��������������2�2 :We recall that the summation over repeated indices is meant from 1 to 3. Clearly, (4.13)and (4.14) can be written in the matrix formMG = q� (4.16)with the unknown vector  = ( 1;  2)> and the right hand{side q� = (q1; q2)> given byformulae (4.15).LEMMA 4.1 The operatorMG is an elliptic 	DO of order 1 with a positive de�nite princi-pal symbol matrix and the index equal to zero.Proof. The equations (3.7), (3.15), and (3.16) imply that MG is a 	DO of order 1 withthe principal symbol matrix�(MG) = �������������� lkljEkj lkmjEkjmkljEkj mkmjEkj ��������������2�2 = E1EE>1 ; (4.17)whereE1 = �������������� l1; l2; l3; 0m1; m2; m3; 0 ��������������2�4 ;E = �(fN2fN�1fN1) = �(fN2)�(fN�1)�(fN1) = �(fN2)[�(fN1) +�(fN2)]�1�(fN1):By Lemma 3.4 we have that the matrices �(fNr); r = 1; 2 are positive de�nite for arbi-trary x 2 S and � 2 IR2n0 (see (3.15), (3.16)). Therefore the matrix E is positive de�niteas well. Further, for arbitrary � = (�1; �2)> 2 CI 2 we have�(MG)� � � = (E1EE>1 )� � � = E(E>1 �) � (E>1 �)= E(l��1 +m��2) � (l��1 +m��2) � cj�j j�1l� + �2m�j2 = cj�j(j�1j2 + j�2j2); c > 0;whence the positive de�niteness of the matrix (4.17) follows. In turn, from this fact weconclude that the dominant singular part of the operator MG is formally self-adjoint. Thisimplies that the index of the operator MG is equal to zero.By the arguments applied in Theorem 3.1 we can easily proveLEMMA 4.2 The homogeneous Problem G ( efn = eFn = f4 = F4 = eF (�)l = eF (�)m = 0) hasonly the trivial solution in the class of regular vectors.LEMMA 4.3 Let S; k; �, and �0 be as in Lemma 3:3: Then the operatorMG : Ck+1+�(S)! Ck+�(S) (4.18)is an isomorphism.If S 2 C1, then (4:18) can be extended to the following bounded, invertible, elliptic 	DO(of order 1) MG : Hs+1p (S)! Hsp(S) [Bs+1p;q (S)! Bsp;q(S)];s 2 IR; 1 < p <1; 1 � q � 1:20



Proof. It is quite similar to that of Lemmata 3.3 and 3.7.The above results lead to the following existence theorems.THEOREM 4.4 Let S; k; �, and �0 be as in Lemma 3:3, and leteF (�)l ; eF (�)m ; eFn; F4 2 Ck+�(S); efn; f4 2 Ck+1+�(S):Then Problem G is uniquelly solvable, and the solution is representable in the form ofpotentials (3:19); (3:20) with F and f given by (4:8) and (4:10), where  1;  2 2 Ck+1+�(S)are de�ned by the system of 	DEs (4:13) and (4:14) (i.e., (4:16)). Morover, the smoothnessproperty (3:21) and the inequality (3:22) hold.THEOREM 4.5 Let S 2 C1 andeF (�)l ; eF (�)m ; eFn; F4 2 Bsp;p(S) [Bsp;q(S)]; efn; f4 2 Bs+1p;p (S) [Bs+1p;q (S)]:Then Problem G is uniquely solvable in the space Hs+1+1=pp (
r) [Bs+1+1=pp;q (
r)], and thesolutions are representable by the formulae (3:19)and(3:20) with F and f given by (4:8) and(4:10), where  1;  2 2 Bs+1p;p (S) [Bs+1p;q (S)] are de�ned by the system of 	DEs (4:13) and(4:14) (i.e., (4:16)).Proof. It is verbatim the proof of Theorem 3.8.5 Problem HAs in the previous section let us rewrite the transmission conditions of Problem H (see(1.16){(1.19)) in the equivalent form[u1 � l]+ + [u2 � l]� = ef (+)l + ef (�)l ; (5.1)[u1 �m]+ + [u2 �m]� = ef (+)m + ef (�)m ; (5.2)[u1 � l]+ � [u2 � l]� = ef (+)l � ef (�)l ; (5.3)[u1 �m]+ � [u2 �m]� = ef (+)m � ef (�)m ; (5.4)[u1 � n]+ � [u2 � n]� = efn; (5.5)[P 1U1 � n]+ � [P 2U2 � n]� = eFn; (5.6)[u14]+ � [u24]� = f4 ; [e�1u14]+ � [e�2u24]� = F4: (5.7)Equations (5.3){(5.5) imply [U1]+ � [U2]� = fwhere f is a given vector on Sf = (( ef (+)l � ef (�)l )l + ( ef (+)m � ef (�)m )m+ efn; f4)>: (5.8)It is also evident that [ eB1U1]+ � [ eB2U2]� = F21



with F = ( 1l +  2m+ eFnn;F4)>; (5.9)where eFn and F4 are given functions on S; while 1 = [P 1U1 � l]+ � [P 2U2 � l]� and  2 = [P 1U1 �m]+ � [P 2U2 �m]�;are yet unknown scalar functions.Now let us look for a solution to Problem H again in the form (3.19) and (3.20), with Fand f de�ned by (5.8) and (5.9), respectively. It can be easily checked that the transmissionconditions (5.3){(5.7) are then automatically satis�ed, while the equations (5.1) and (5.2)lead to the following system of 	DEs for the unknown vector  = ( 1;  2)> on S:MH = q�; (5.10)whereMH = �������������� lk(fN�1)kjlj lk(fN�1)kjmjmk(fN�1)kjlj mk(fN�1)kjmj ��������������2�2 ; (5.11)and where the right hand{side vector q� = (q1; q2)> is de�ned by formulae:q1 = 2�1f ef (+)l + ef (�)l � [fN�1(fN2 � fN1)f � l�]g� [(fN�1)kj( eFnnj)]lk � [(fN�1)k4F4]lk;q2 = 2�1f ef (+)m + ef (�)m � [fN�1(fN2 � fN1)f �m�]g� [(fN�1)kj( eFnnj)]mk � [(fN�1)k4F4]mk;here l� and m� are given by (4.11).By quite the same arguments as in Section 4 we can easily show that MH is an elliptic,invertible 	DO of order �1 with a positive de�nite principal symbol matrix.Therefore the operatorsMH : Ck+�(S)! Ck+1+�(S); S 2 Ck+2+�;: Hsp(S)! Hs+1p (S); S 2 C1;: Bsp;q(S)! Bs+1p;q (S); S 2 C1;are isomorphisms.As a result we arrive to the following existence theorems.THEOREM 5.1 Let S; k; �; and �0 be as in Lemma 3:3, and letef (�)l ; ef (�)m ; efn; f4 2 Ck+1+�(S); eFn; F4 2 Ck+�(S):Then Problem H has the unique solution representable in the form (3:19) and (3:20) withf and F given by (5:8) and (5:9), where  1;  2 2 Ck+�(S) in (5:9) are de�ned by the systemof 	DEs (5:10).THEOREM 5.2 Let S 2 C1 andef (�)l ; ef (�)m ; efn; f4 2 Bs+1p;p (S) [Bs+1p;q (S)]; eFn; F4 2 Bsp;p(S) [Bsp;q(S)]:Then Problem H is uniquelly solvable in the space Hs+1+1=pp (
r) [Bs+1+1=pp;q (
r)], and thesolution is representable by the formulae (3:19) and (3:20) with f and F given by (5:8) and(5:9), where  1;  2 2 Bsp;p(S) [Bsp;q(S)] in (5:9) are de�ned by the system of 	DEs (5:10).22



6 Problem C{DD6.1. From now on, for simplicity, we assume that S 2 C1. First we prove the uniqueness ofa solution in the particular case for p = 2. The general case (1 < p <1) will be consideredlater on.LEMMA 6.1 Let U r 2 W 12 (
r) be a solution of the homogeneous Problem C{DD (f (1) =F (1) = 0; '(�) = 0). Then U r = 0 in 
r; r = 1; 2:Proof. Applying the formulae (1.27) and (1.28) with V r = U r, and taking into account thehomogeneous transmission conditions, we arrive to the equation (3.2), whence, in the sameway as in the proof of Theorem 3.1, it follows that U r = 0 in 
r, r = 1; 2.The transmission conditions (1.21) imply[U1]+ � [U2]� = '(+) � '(�) and [U1]+ + [U2]� = '(+) + '(�) on S2: (6.1)On the other hand the vector F (1) (see (1.20) and (1.31)) can be extended from S1 ontoS2 preserving the functional space B�1=pp;p (S). Denote some �xed extension by F 0 2 B�1=pp;p (S);clearly, F 0jS1 = F (1): Evidently, an arbitrary extension F of the vector F (1) onto the wholesurface S (preserving the functional space) can be represented asF = F 0 + '; (6.2)where ' 2 eB�1=pp;p (S2).Now we apply (6.1) and (6.2), and reformulate the interface conditions (1.20) and (1.21)in the following equivalent form:[U1]+ � [U2]� = f0 on S; (6.3)[ eB1U1]+ � [ eB2U2]� = F on S1; (6.4)[U1]+ + [U2]� = '(+) + '(�) on S2; (6.5)where f0 and F are given by formulae (1.32) and (6.2), respectively, with the only yetunknown vector '.We look for the solution of Problem C{DD in the form of potentials (see (3.19), (3.20))U1(x) = V 1f(H1)�1fN�1[(F 0 + ') + fN2f0]g(x); x 2 
1; (6.6)U2(x) = V 2f(H2)�1fN�1[(F 0 + ')� fN1f0]g(x); x 2 
: (6.7)It can be easily checked that the conditions (6.3) and (6.4) are then automatically satis-�ed, while (6.5) leads to the 	DE for ' 2 eB�1=pp;p (S2)rS2fN�1' = q on S2; (6.8)where rS2 is the restriction operator to S2 and the right hand{side vector q is given byformulaq = 2�1('(+) + '(�))� rS2 [fN�1F 0 + 2�1fN�1(fN2 � fN1)f0] 2 B1�1=pp;p (S2): (6.9)	DEs of type (6.8) on manifolds with boundary have been investigated in [6], [3], [24],[5] (see also references cited therein). We need the following results about the Fredholmproperties of 	DEs de�ned on open surfaces.23



THEOREM 6.2 [5] Let P be an elliptic 	DO of order � 2 IR on S0 with a positive de�niteprincipal symbol matrix for any (x; �) 2 S0 � IR2nf0g, where S0 is an open C1{smoothmanifold with the C1{smooth boundary @S0, and let1p � 1 < s� �2 < 1p; s 2 IR; 1 < p < +1: (6.10)where S0 is an open C1{smooth manifold with the C1{smooth boundary @S0,Theni) the operatorsP : eBsp;q(S0)! Bs��p;q (S0); 1 � q � +1; (6.11): fHsp(S0)! Hs��p (S0); (6.12)are Fredholm;ii) for any two pairs (p1; s1); (p2; s2) 2 (1;+1) � IR satisfying the inequalities (6.9),there exists a common regularizer of the following operators:P : fHs1p1 (S0)! Hs1��p1 (S0);: fHs2p2 (S0)! Hs2��p2 (S0);: eBs1p1;q1(S0)! Bs1��p1;q1 (S0); 1 � q1 � +1;: eBs2p2;q2(S0)! Bs2��p2;q2 (S0); 1 � q2 � +1;iii) null{spaces and indices of the operators (6.11) and (6.12) are the same for all valuesof the parameters q 2 [1;+1]; p 2 (1;+1), and s 2 IR satisfying the conditions (6.10).Now we can investigate the equation (6.8).LEMMA 6.3 The operatorrS2fN�1 : eBsp;q(S2)! Bs+1p;q (S2); 1 < p < +1; 1 � q � +1; s 2 IR; (6.13)is an isomorphism if the condition1p � 32 < s < 1p � 12 (6.14)holds.Proof. Due to Lemma 3.4 and Theorem 6.2 it remains only to prove that the null{spaceof the operator (6.13) is trivial since the principal symbol matrix fN�1 is positive de�nite forarbitrary (x; �) 2 S2� IR2nf0g. This implies the self{adjointness of the main dominant partof the operator fN�1. So we have to show that the homogeneous version of equation (6.8)rS2fN�1' = 0 (6.15)has only the trivial solution. We begin with the case p = 2. Let ' 2 eB� 122;2 (S2) be somesolution of equation (6.15), and construct the potentialsU1(x) = V 1[(H1)�1fN�1'](x); x 2 
1;24



U2(x) = V 2[(H2)�1fN�1'](x); x 2 
2:It is evident that U r 2 W 12 (
r); r = 1; 2; due to Lemma 2.3, item iii). Further, fromLemma 6.1 it follows that U r(x) = 0; x 2 
r; r = 1; 2: Therefore [B1(D;n)U1]+ = 0 and[B2(D;n)U2]� = 0 on S. Whence0 = [ eB1(D;n)U1]+ � [ eB2(D;n)U2]�= I(1)4 (�2�1I4 +K1)(H1)�1fN�1'� I(2)4 (2�1I4 +K2)(H2)�1fN�1' = ';due to the equations (3.7).Thus equation (6.15) has only the trivial solution in the space eB�1=22;2 (S2). Now Theorem6.2, item iii) implies the same uniqueness result in the space eBsp;q(S2) with arbitrary s 2IR; p 2 (1;+1), and q 2 [1;+1] satisfying the inequalities (6.14).Now we can formulate the following existence result for the problem in question.THEOREM 6.4 Let 4=3 < p < 4 and f (1); F (1); '(�); f0 satisfy the conditions (1.31) and(1.32). Then Problem C{DD has the unique solution U r 2 W 1p (
r); r = 1; 2; representableby the formulae (6.6) and (6.7), where ' 2 eB�1=pp;p (S2) is de�ned by the uniquely solvable 	DE(6.8).Proof. First we note that in accordance with Lemma 6.3 the 	DE (6.8) is uniquelysolvable in the space eB�1=pp;p (S2) for an arbitrary p satisfying inequality (6.14) with s = �1=p.Whence inequality 4=3 < p < 4 follows. It is evident that the vectors U r; r = 1; 2, de�nedby (6.6) and (6.7), belong to the space W 1p (
r); r = 1; 2:It remains to prove the uniqueness of solution in the space W 1p (
r); r = 1; 2; for p 2(4=3; 4). Let U r 2 W 1p (
r); r = 1; 2; be some solution of the homogeneous Problem C{DD. Clearly, then [U1]+; [U2]� 2 B1�1=pp;p (S) and [ eB1U1]+; [ eB2U2]� 2 B�1=pp;p (S): In addition,f = [U1]+�[U2]� = 0 on S and F = [ eB1U1]+�[ eB2U2]� = 0 on S1. Therefore F 2 eB�1=pp;p (S2).But, due to Theorem 3.8, such solution is then representable by the formulae (3.19) and (3.20)which, in the case in question, take the formU r(x) = V r[(Hr)�1fN�1F ](x); x 2 
r; r = 1; 2; (6.16)with F 2 eB�1=pp;p (S2).Then the homogeneous version of conditions (1.21) on S2 lead to the equationrS2fN�1F = 0 on S2;from which F = 0 follows for arbitrary p 2 (4=3; 4) due to Lemma 6.3. Now equations (6.16)show that U r vanish in 
r (r = 1; 2), which completes the proof.The next theorem establishes the almost best smoothness result for solutions of the mixedinterface Problem C{DD (cf. [18], [5], [17], [12], [10]).THEOREM 6.5 Let f (1); F (1); '(�), and f0 be the same as in Theorem 6:4. Let43 < p < 4; 1 < t <1; 1t � 32 < s < 1t � 12 ; (6.17)25



and let U r 2 W 1p (
r); r = 1; 2; be the solution to Problem C{DD.In addition to the above conditions,i) if f (1) 2 Bs+1t;t (S1); '(�) 2 Bs+1t;t (S2); f0 2 Bs+1t;t (S); F (1) 2 Bst;t(S1);then U r 2 Hs+1+1=tt (
r); r = 1; 2;ii) if f (1) 2 Bs+1t;q (S1); '(�) 2 Bs+1t;q (S2); f0 2 Bs+1t;q (S); F (1) 2 Bst;q(S1);then U r 2 Bs+1+1=tt;q (
r); r = 1; 2;iii) if, in particular,f (1) 2 C�(S1); '(�) 2 C�(S2); f0 2 C�(S); F (1) 2 B��11;1(S1); (6.18)for some � > 0, then U r 2 C�(
r); r = 1; 2;with any � 2 (0; �0); �0 = minf�; 1=2g.Proof. The assertions i) and ii) follow from Theorems 6.2, 6.4 and Lemmata 2.3, 6.3along with the representation formulae (6.6) and (6.7).The assertion of the theorem on the C�{regularity of solution follows from the embeddings(see [29], [30])C�(
) = B�1;1(
) � B��"1;1 (
) � B��"1;q (
) � B��"t;q (
) � C��"�k=t(
); (6.19)where 
 � IR3 is a compact k{dimentional (k = 2; 3) C1{smooth manifold with a C1{smooth boundary, " is an arbitrary small positive number, 1 � q � +1; 1 < t < 1; � �"� k=t > 0 (here � and � � " � k=t are supposed to be non{integer). Taking t su�cientlylarge and " su�ciently small, we have:f (1) 2 B��"t;q (S1) = B1=2+�t;q (S1); '(�) 2 B��"t;q (S2) = B1=2+�t;q (S2);f (0) 2 B��"t;q (S) = B1=2+�t;q (S); F (1) 2 B��1�"t;q (S1) = B�1=2+�t;q (S1);with � = � � "� 1=2; due to (6.18).Lemmata 6.3, 2.3, item iii), and the conditions (6.17) then implyU r 2 B1=2+�+1=tt;q (
r) = B��"+1=tt;q (
r); r = 1; 2; (6.20)if 1t � 32 < �12 + � = � � "� 1 < 1t � 12 : (6.21)If the H�older exponent � from (6.18) is such that � � "� 1 = �1=2 + � > 1=t � 1=2; then,clearly, (6.18) holds also for arbitrary �0 < �, and thereforeU r 2 B1=2+�0+1=tt;q (
r); r = 1; 2; (6.22)26



for any �0 with �1=2 + �0 2 (1=t� 3=2; 1=t � 1=2) (i.e., �0 2 (1=t� 1; 1=t)).Now, the last embedding of (6.19) (with k = 3) together with (6.20), (6.21), and (6.22)yields either U r 2 C��"�2=t(
r); if �� "� 2=t < 1=2 � 1=t;or U r 2 C1=2�1=t(
r); if � > 1=2;which completes the proof.REMARK 6.6 Problem C{DD includes, as a particular case, a crack type problem forhomogeneous bodies with interior cut of the form of a two{dimentional nonclosed surface(similar to that of S2), when on the cut{surface the Dirichlet type conditions are given.In fact, if both elastic anisotropic materials occupying domains 
1 and 
2 are the same(say, e.g., material with index 1), and the conditions (1:20) on S1 are homogeneous (f (1) =0; F (1) = 0), then the surface S1 becomes a formal interface since the displacement vector u1and the temperature u14 satisfy equation (1.6) at point x 2 S1 which implies U1 2 C1(IR3nS2).This assertion can be easily proved by making use of the general integral representationformulae (2.4). Thus the surface S1 is erased and Problem C{DD is converted into thefollowing crack type problem:A1(D; � )U1(x) = 0 in IR3nS2; (6.23)[U1]� = '� on S2; (6.24)whereU1 2 W 1p (IR3nS2) \ C1(IR3nS2); '(�) 2 B1�1=pp;p (S2); '(+) � '(�) 2 eB1�1=pp;p (S2): (6.25)It should be noted that all the results obtained in Section 6 for Problem C{DD remaintrue (with evident slight modi�cations) for problem (6:23) � (6:25) as well (cf. [5] ).7 Problem C{NNAs in the previous sections we start the study of Problem C{NN with the reformulation ofthe interface conditions (1.22){(1.23). They are equivalent to the following equations:[ eB1U1]+ � [ eB2U2]� = F 0 on S; (7.1)[U1]+ � [U2]� = f (1) on S1; (7.2)[ eB1U1]+ + [ eB2U2]� = �(+) + �(�) on S2; (7.3)where F 0 is de�ned by (1.33).Further, denote by f0 2 B1�1=pp;p (S) some �xed extention of f (1) from S1 onto the wholesurface S. Then an arbitrary extention, preserving the functional space, readsf = f0 + ' 2 B1�1=pp;p (S);where ' 2 eB1�1=pp;p (S1). Clearly, f jS1 = f (1). 27



Now, let us look for a solution to Problem C{NN in the form of potentials (cf. (3.19),(3.20))U1(x) = V 1f(H1)�1fN�1[F 0+ fN2(f0 + ')]g(x); x 2 
1; (7.4)U2(x) = V 1f(H2)�1fN�1[F 0 � fN1(f0 + ')]g(x); x 2 
2; (7.5)where ' is the only yet unknown vector.It can be easily checked that conditions (7.1) and (7.2) are automatically satis�ed, while(7.3) leads to the 	DE for 'rS2fN1fN�1fN2' = q on S2; (7.6)here rS2 is again the restrection operator to S2, while the right hand{side in (7.6)q = 2�1(�(+) + �(�)) + 2�1rS2(fN2 � fN1)fN�1F0 � rS2 fN1fN�1fN2f0 2 B�1=pp;p (S2)is a given vector{function on S2.LEMMA 7.1 The homogeneous Problem C{NN (�(�) = 0; f (1) = 0; F (1) = 0) has onlythe trivial solution in the space W 12 (
r); r = 1; 2:Proof. It is quite similar to that of Lemma 6.1.LEMMA 7.2 The principal symbol matrix of the operator fN1fN�1fN2 is positive de�nite forall (x; �) 2 S � IR3 n f0g.Proof. It is an easy consequence of Lemma 3.3, since from the positive de�niteness of thematrices A1 and A2 the positive de�nitness of the matrix A1(A1 +A2)�1A2 follows.LEMMA 7.3 The operatorrS2fN1fN�1fN2 : eBs+1p;q (S2)! Bsp;q(S2); 1 < p <1; 1 � q � 1; s 2 IR;is an isomorphism if the condition (6.14) holds.Proof. It is verbatim the proof of Lemma 6.3.From the above lemata by quite the same arguments as in Section 6 we can prove thefollowing existence and regularity results for the problem under consideration.THEOREM 7.4 Let 4=3 < p < 4 and f (1); F (1); '(�), and F 0 satisfy conditions (1:31) and(1:33). Then Problem C{NN has the unique solution U r 2 W 1p (
r); r = 1; 2; representableby formulae (7:4) � (7:5), where ' 2 eB1�1=pp;p (S2) is de�ned by the uniquely solvable 	DE(7:6).If, in particular,f (1) 2 C�(S1); �(�) 2 B��11;1(S2); F (1) 2 B��11;1(S1); F 0 2 B��11;1(S);then U r 2 C�(
r); r = 1; 2;with any � 2 (0; �0); �0 = minf�; 1=2g. 28



REMARK 7.5 If the both elastic materials in question are the same and the interfaceconditions (1:20) are homogeneous, then Problem C{NN is converted into the following cracktype problem (cf. Remark 6:6) :A1(D; � )U1(x) = 0 in IR3nS2; (7.7)[ eB1U1]� = �(�) on S2; (7.8)whereU1 2 W 1p (IR3nS2) \ C1(IR3nS2); �(�) 2 B�1=pp;p (S2); �(+) � �(�) 2 eB�1=pp;p (S2): (7.9)It is obvious that the uniqueness, existence and regularity results obtained for Problem C{NN(see Theorem 7:4) remain also valid for the problem (7:7)� (7:9) (cf. [5]).REMARK 7.6 It is easy to see that the other problems formulated in Subsection 1:4(Problem C{DC, C{NC, C{H and C{G) can be treated by the method developed in the pre-vious sections. The representation formulae (3:19) and (3:20) reduce equivalently all thesemixed interface problems to uniquely solvable, elliptic systems of 	DEs on S2 for correspo-ding unknown vectors. Further, applying the same arguments as above we arrive at similarexistence, uniqueness and regularity results for the original mixed interface problems in appro-priate functional spaces (in particular, the H�older{smoothness exponents are as in Theorems6:5 and 7:4).ACKNOWLEDGEMENTThis research was partially supported by the Deutsche Forschungsgemeinschaft (DFG) under grantnumber 436 GEO 17/4/96.References[1] O.Chkadua, The non{classical boundary{contact problems of elasticity for homogeneous ani-sotropic media, Math. Nachr., 172, 49{64(1995).[2] M.Costabel and E.Stephan, A direct boundary integral equation method for transmissionproblems, J. Math. Anal. Appl., 106, 376{413 (1985).[3] R.Duduchava. On multidimensional singular integral operators I, II, J. Oper. Thoery, 11,41{76, 199{214(1984).[4] R.Duduchava, A.-M.S�andig and W.Wendland. Asymtotics of solutions to boundary equationswith applications to interface cracks in anisotropic composites. Universit�at Stuttgart, Mathe-matisches Institut A, Preprint Nr. 95{9(1995).[5] R.Duduchava, D.Natroshvili and E.Shargorodsky, Basic boundary value problems of thermo-elasticity for anisotropic bodies with cuts. I, II, Georgian Mathematical Journal, 2, 2, 123{140,3, 259{276(1995).[6] G.I.Eskin, Boundary Value Problems for Elliptic Pseudodi�erential Equations. Translationsof Math. Monographs AMS, Vol.52, Providence, Rode Island, 1981.29
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