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Abstract Three dimensional basic and mixed interface problems of the mathe-
matical theory of thermoelastic pseudo oscillations are considered for piecewise
homogeneous anisotropic bodies. Applying the method of boundary potentials
and the theory of pseudodifferential equations existence and uniqueness theo-
rems of solutions are proved in the the space of regular functions C**® and in
the Bessel potential (/7) and Besov (5] ) spaces. In addition to the classical
regularity results for solutions to the basic interface problems, it is shown that in
the mixed interface problems the displacement vector and the temperature are
Holder continuous with exponent (0 < o < 1/2.

Introduction

The paper deals with the three dimensional interface problems of the mathematical
theory of thermoelastic pseudo oscillations for piecewise homogeneous anisotropic bodies.
The most general case of the structure of a piecewise homogeneous elastic body under consi-
deration can be mathematicaly described as follows. In three dimensional Euclidean space
IR? we have some closed, smooth, connected non self intersecting surfaces 51,8, ...S,, (gjﬂ
Sy =0, j # k). By these surfaces the whole space IR is devided into several connected
domains Q,,....,Q;.. Each domain €, is supposed to be filled up by an anisotropic material
with corresponding, in general, different thermoelastic coefficients.

Common boundaries of the two distinct materials are called interfaces or contact surfaces
of the piecewise homogeneous elastic body. If some domains represent empty inclusions, then
corresponding to them surrounding surfaces are called boundary surfaces of the composed
elastic body in question. Such type of piecewise homogeneous bodies encounter in many
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physical, mechanical and engineering applications, and the transmission problems for them
have received considerable attention in the scientific literature.

We consider the following two groups of interface conditions:

I. On the whole contact surface there are given

a) jumps of the displacement vector, the temperature, the vector of thermal stresses, and
the heat flux (Problem C) or

b) jumps of the temperature, the heat flux and the normal components of the displace-
ment and the stress vectors; in additions to these conditions, the limits of either the tangent
components of the stress vectors (Problem ) or the tangent components of the displacement
vectors (Problem H) are given from both sides of the interface (cf. [13],[7],[8],]9]).

IT. The contact (interface) surface S is devided into two disjoint parts Sy and Sy by a
regular curve y: S = 57 U Sy U~v. On 5 the conditions of Problem C are prescribed, while
on Sy there are given:

a) the conditions of Problem G (Problem C-G) or

b) the conditions of Problem H (Problem C-H) or

¢) the displacement vector and the temperature (Problem C-DD) or

d) the thermal stresses and the heat flux (Problem C-NN) or

e) the displacement [stress] vector and jumps of the temperature and the heat flux (Pro-
blem C-DC [Problem C-NCJ) (cf. [19], 9], [10]).

Moreover, on the boundary surfaces there are given the displacement or the stress vector,
and the temperature or the heat flux (see [22]).

We have studied the above problems by the classical potential methods and the theory of
pseudodifferential equations (WDE) on manifolds. The investigation has been carried out in
the regular C*** spaces and in the Bessel potential (H?) and Besov B spaces. Besides the
uniqueness and existence theorems we have established the regularity properties of solutions
near singular points (in a vicinity of the curve v). Using the embedding theorems it has heen
shown that solutions to the mixed interface problems (interface crack problems), in general,
possess C'” smoothness with 0 < a < 1/2.

Similar problems for elliptic equations and, in particular, for the system of classical
elasticity theory (for isotropic and anisotrpic piecewise homogeneous bodies) are considered
in [2], [4], [26], [1], [19], [12], [10], [20], [23], [21], [27], [18]. The basic and crack type problems
of thermoelasticity for homogeneous anisotropic bodies are treated in [17], [16] and [5]. The
present investigation generalizes results obtained in these works to the case of regular and
mixed interface problems described above.

1 Mathematical Formulation of Problems

1.1. For illustration of the method suggested we consider the following model problems. We
assume that the piecewise homogeneous composed anisotropic body consists of two elastic
components occupying bounded domain Q; = O and its compliment Q, = O~ = R3\O+;
INE =9, Q0 =0Q,US, j=1,2. Thus the whole space IR* can be considered as a piecewise
homogeneous anisotropic body with one contact (interface) surface S.

Let a smooth, connected, non self intersecting curve v C S devide the surface S into
two parts S; and Sy: S =S, US, Uy, S, =S, U~, j=1,2.



For simplicity in what follows we provide that S and v are C regular (unless stated
otherwise) though actually some finite regularity is sufficient.

1.2. Throughout the paper by C*(QF), C*(QF), CF(S) and CF+o(QF), CF+(QF),
C*+>(S) are denoted usual k& smooth and Holder (k, a) smooth function spaces with integer
k>0and 0 < o< 1; WHOT), W, (Q7), W) _..(27) are well known Sobolev spaces
(1 < p < o0), while B2 (Q%), B2 (Q7), B2 (5) and H(QY), H2\ (), H>(S) denote
the Besov and Bessel potential spaces with s € IR, 1 < p < oo, 1 < ¢ < oo (see [14], [29],
30])

We need also the following function spaces defined on the submanifolds S; C 5 with
boundary ~:

By a(5i) =Afls, = fe By (S)} H(S;) =A{[ls, = fe H(9)r,

By (S))={f € By, (S) : supp f C S}, H(S;)={f € H)(S) : supp f C 5,1,
where fl|s denotes the restriction of f to S;.

Let us note here that in the sequel we will use the following notations (when no confusion
can be caused by this):

a) if all elements of a vector v = (vy, Vg, ..., V) (Matrix @ = ||ag;||mxn) belong to one and
the same space X, we will write v € X (a € X) instead of v € [X]™ (a € [X]nxn);
b)if K : Xy x---x X, >V x---xY,and Xy =---=X,,, ¥ =--- =Y, we will

write K+ X — YV instead of K : [X]" — [V]".

For the sake of simplicity sometimes we will use also the notation either [a],,xn O [ar]mxn
for a matrix ||ax;||mson-

1.3. The system of equations of the linear theory of thermoelastic pseudo oscillations of
homogeneous anisotropic medium reads [22]

Ching D un;(mﬂ') — 7'2,0,,7/,2(.7:77') — B Douy(e,7) = 0, k=1,2,3,
Ay DpDguy(,7) — Teuy(w, ) — 716, Dyui(e,7) = 0, z€Q,, r=1,2, (1.1)

r _ _ : oo Ar .. .
where ¢ = ¢ . = ¢ are elastic constants, A7 = A7 are heat conductivity coefficients,

pg
B;, are expressed in terms of the thermal and elastic constants, p, is the density of the

¢, 1s the thermal capacity, T, is the temperature of the medium in the natural state, 3

medium; u” = (uf, uy, uf)" is the displacement vector, v is the temperature; 7 = o — iw is
a complex parameter with w € IR, and o € IR\{0}; D, = d/dx,; here and in what follows
the summantion over repeated indices is meant from 1 to 3, unless otherwise stated; the
supperscript T denotes transposition.

We note that equations (1.1) are obtained from the corresponding dynamic equations by
the formal Laplace transform [22].

In the thermoelasticity theory the stress tensor {o7}, the strain tensor {e}; = 27" (Dyu’ +
D;up)} and the temperature field u), are related by Duhamel-Neumann law

r __r roo_ar T,
Tk = ChkipgCpq 614.7“’4’

the k-th component of the vector of thermostresses, acting on a surface element with the
normal vector n = (nq,nq, n3), is calculated by the formula

r _r r .Aar I A . rooar 0T
ThiMi = ChipgSpq™i — Brinitiy = Crjpgni Doty — Byymjug. (1.2)



In order to rewrite the above equations in the matrix form we set

U= (u" )T = (uf, . ul)’,
CT(D) = ||Cl:p(D)||?><?7 C;p(D) = C;;y’qu7DQ7 (]3)
A"(D) NyDpDyy D =N = (Dy, Dy, D3), (1.4)
T”(D,n) ||T1:,7‘(Dan)||3x3a le,y‘(nan) = C;;qun.fnqv
P (D,n) = |[T"(D,n)]axs , [—Brnjlaxillsxa,

A(D7) = [C7(D) = 7%p, Islsxs [ 85 Dilaxa -
| [— 7165 Dilixs - AY(D) —7e, 7 '

4x4

where 1, = ||0k|lmxm stands for the unit m x m matrix, dz; is Kronecker’s symbol. Note
that T7"(D,n) and P"(D,n) are called the stress operators of the classical elasticity and the
thermoelastisity, respectively.

From (1.2) it follows that

[PT(D.n)U" |y = opnj, k=1,2,3.
Further, equation (1.1) can be written as follows
A" (D, YU (2,7)=0, 2€Q,, r=1,2. (1.6)

From the physical considerations it follows that [22], [16]:
a) the matrix [A7 ]a.a is positive definite, i.e.,

A(&§) = AL 66y > So|€]? for €€ IR® with & = const > 0; (1.7)

b) €4 jpq €hiCpq 15 a positive definite quadratic form in the real symmetric variables ey; = ey,

which implies positive definiteness of the matrix C"(¢), for £ € IR*\{0} defined by (1.3), i.e.,
Cri(&nime > &€ n? for &n € R’ with & = const > 0. (1.8)

Inequalities (1.7) and (1.8) along with the symmetry properties of the matrices [A] ]a.a
and C7(&) yield:

C™ (& -n = Cp(Enime > &ilEfl* for €€ IR (1.9)

and
e, > dalnl (1.10)

for arbitrary complex vector n € @'*; throughout this paper a - b = 327, aub, denotes the
scalar product of two vectors in @' where upper bar means complex conjugate.

1.4. From particular problems of mathematical physics and mechanics it is well known
that, in general, solutions (or their derivatives) to mixed boundary value problems have
singularities near the curves on which different houndary conditions collide (solutions do not
belong to C''(2F)). Because of this fact, on one hand, and to involve a wide class of boundary
data, on the other hand, we state the basic and mixed transmission problems in the Sobolev

spaces W (W) with p > 1. Tf we note that the inclusion 7 € W) (Q%) [ € W] (Q7)]
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implies Uls € B;;)]/p(g), then the appearance of Besov spaces in the forthcoming formulation
of transmission problems will become transparent. Clearly, here /|5 exists in the trace sense
[14], [29]. Tn what follows we denote by n(x) the outward (to Q%) unit normal vector at
x € S, and by I(2) and m(x) orthogonal unit vectors in the tangent plane. The orthogonal
local co ordinate system n, [ and m at = € S is oriented as follows: [ x m = n, where - x -
denotes the vector product of two vectors. The symbols [-]* denote limits on S from OQF.

We will study the following problems.

Find a pair of vectors (IU', U?) with properties

U' e W (), U €W (D), |UXx)| <V, |DUX) < x|, (1.11)

k:‘l7—47 p:]72737

where ¢ = const > 0 and N is a certain real number; moreover, /' and U? satisfy equations
(1.6) in the distributional sense in the corresponding domains €y and €5, respectively, and
one of the following transmission conditions on the interface S:

Problem C:
('Y (U =f on S, (1.12)
(BT — [B*UY = F on &, (1.13)

f:(.fvf4)-r7 .f:(.fhf?vﬁ?)—rv F:(ﬁv F4>T7 F:(FUF??F}%)T;
Problem G:

(P = FEN D PUm] = FY oon 8, (1.14)
(PPU - = FO (PPU?-m] = FO) on 8, (1.15)
(! -n]t —[u?-n]" = f,, [P'U' -n]* —[P?U*-n]" =F, on &, (1.16)
[A]* = (il = fo, [Nul]® =[N0l = Fioon S, (1.17)

Problem H: conditions (1.16), (1.17) and

W' 0F = FP [t omt = on S, (1.18)
W )" = f7 [uem)” =7 on S (1.19)

Problem C-DD:
[[]1]+ o [[]2]* — f'(1)7 [§1[J1]+ o [é?[]?]* — F’“) on 5117 (]20)
[[]1]4- — 99(4‘)7 [[]2]* — 99(7) on 5'27 (]2])

SO =GO FO = Y BT RO = (RO )T
~ - + ~ + + +
FO = (PO R ROT, o = (M, 0fNT, 30 = (o, o0, 8T



Problem C-NN: conditions (1.20) on Sy and
(Bt = o) [B2?] = &) on S, (1.22)
) = (B, 0T, ) = (0], 0, of) T
Problem C-DC: condition (1.17) on S and

[T = [t = fO, (PO =[P = FD oon Sy, (1.23)

W' =™, W =) o 5y

Problem C-NC: conditions (1.17) on S, (1.23) on S; and

[PU'T =0, [P =00 on Sy

Problem C—-G: conditions (1.17) on S, (1.23) on S; and

(' -n]t —[u?-n]” = fO, [P'U"-n]* —[P?U2-n]” = F® on 5, (1.24)
(POt =0 [P m]t =0 on S,
(P20 -1 =0, [P m]” = 0L on Sy

Problem C—H: conditions (1.17) on S, (1.23) on Sy, (1.24) on 53, and

where
- T"(D,n)|axs |—07.n;]
B (D.n) - [T7(D,n)]ax3 [f% ilax 7 (1.25)
[0]1x3 A"(D,m) "
~7’ ] r ] r
N'(D,n) = FT)\pqnqu = ﬁ)\ (D,n). (1.26)

It is evident that first order derivatives of functions from W; (Q+) and W!

p,loc

(27) belong
to L,(QF) and ©,10,.(27), respectively, and they have no traces on S. However, for the
vector functions (1.11), satisfying the condition

AYD, U € L,(0F), AXD,7)U? € Lyyoe(S)),
we can define correctly the functionals
[PYUTE, DD )]t [PPUP), (D mud] € B,/7(S)
by means of Green’s formulae [17], [12]
([B'U'TH, [V']F)s :Q£ AV D, U - V' +Q£ EY U, Ve, (1.27)

(B2, [VE)s = [ AXD,7)U?-Vide + [ E2(U2,V?)da, (1.28)
Q- Q-
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where

Vi= (@0, o= (], un,en)T, Ve T/V;,(Q*')7 Ve W1,’mmp(Q7), p=—

P

B”(D,n) _ [TT(Da”)]Bx:a [*51:,7‘”.7‘]%1 7 (].29)

[0T1 x3 (D) |
EC(U" VYY) = &, Doul Dot 4+ 72ujo), — Bl Dyo?
+ )\;q Dyuly Do + c,,TuZE + TT,ﬂ;j Dku; V.
Clearly, [V"]* € B;,Tp],/pl(g) = B;,/’i,(g). The symbol (-, -)s in formulae (1.27) and (1.28)
denotes the duality between B;;/p(g) and B;,{Z(Sﬂ7 which for smooth vectors f and ¢ reads
as

S

(for details see [5]).
Note that

Br(D,n) = 1B (D,n) with 1) = diag {1,1,1,7'}, (1.30)

where diag{ay,---,a,} denotes a diagonal n x n matrix with the entries ay,---,a, on the
main diagonal. In the above formulations of interface problems the conditions for the dis-
placement vector u” and the temperature u} are understood in the trace sense, while the
conditions for the stress vector P"U" and the heat flux A"(D,n)u} are to be considered in
the functional sense which has just been described. Therefore the functions given on the
interface S are to meet the following natural restrictions stipulated by (1.11):

fkaﬁ(i)vﬁ(ﬁi)vﬁv € B;,;1/p(‘q)7 Fka ﬁl(i)v ﬁfgvi)v 'ﬁn € B;;/p(‘q>7
_ _ +) 7 ~(+) ~ _
fl£1) S B;,p1/p(‘q1)7 FI£1) € B%;/p(SH)’ 992 )7. 722)7995 )799(i) € B;J)]/P(Sz)?

.

621)7 ﬁ(z)jag;i)’qé(i) c B;’;/P(SQ)’ k=T,4. (1.31)

T .

The inclusions (1.11) imply also the following compatibility conditions for the given
functions:

a) in Problem C DD:

(M on 5y,
o= ! e B (S, (1.32)
X
o) — o) on Sy,

F e B, 7(9); (1.33)



¢) in Problem C DC:

For_ ) - foe BIUP(S); (1.34)
3 3 on S, "
d) in Problem C NC:
- ) on S| -
0 ’ 0 —1 .
FO = " ~ FO e B 1S, (1.35)

(o k (o 1-1
= e B),(S), (1.36)

(M
fM(O) _ f . on 5117 f(o) c B;;J/p(sf)’ (] 38)
(2 — N+ 1D — gm + fPn o Sy,
- FOip on Sy, - B
FO) = FO e B 1k (S). (1.39)

F on Sy,

In the sequel all these conditions are supposed to be fulfilled. Note that (1.32), (1.34),
(1.36), and (1.38) [(1.33), (1.35), (1.37) and (1.39)] hold for arbitrary functions satisfying
(1.31) with 1 < p <2 [2 < p < oo], which follows from the multiplication properties of
Besov spaces (see [30], Ch. 3, Section 3.3.2).

1.5. For the domains of general structure, described in Introduction, the basic and mixed
transmission problems mathematically could be formulated quite similarly: on the contact
surfaces the conditions one of the interface problems stated above are assigned, while on
the boundary of the composed body the conditions of either basic or mixed boundary value
problemes are given (for detailes concerning the formulation such type of problems see [13]).
We observe that all principal difficulties arising in the study of problems for the composed
bodies of general structure are presented in the above model problems as well.

We will investigate the above problems by making use of the boundary integral (pseudo-
differential) equation methods. To this end we need some auxiliary material about properties
of pseudo oscillation potentials and operators generated by them. For the readers conveni-
ence all necessary results are collected together in the next section.



2 Properties of Pseudo—Oscillation Potentials

2.1. Fundamental matrix. Denote by F,_¢ and ‘7:57—1”” the generalized Fourier and the
inverse Fourier transforms which for summable functions are defined as follows

Fouel Nl = [ Jla)eda, F2 Il = 2m) " [ gl€)e"de.

R R

Further, let A" (£, 7) be the symbol matrix of the differential operator A"(D, 1) (see (1.5)):

Ar(gvT) = Ar(iigvT)v 5 € ]Rr%

LEMMA 2.1 et 7 =0 —iw, Ret =0 >0, w € IR, and £ € IR*. Then det A"(£,7) # 0
and [A"(-,7)] " € Ly(IR?).

Proof. The first part of the lemma follows from Lemma 1.1 of [12], while the second part
is a consequence of the inequality

B c(o)
A ()] " < for € € IR,
where the positive constant ¢(a) does not depend on £ (it depends on o and the thermoelastic
constants of the medium in question). ]

Applying Lemma 2.1 we can construct the fundamental matrix of the operator A”(D, 7)

V(o) = FLIAER) ] = o fim [ LA e e 0],
l¢I<R

Let T"(2) and ~4"(x) be the homogeneous (of order —1) fundamental matrix and funda-
mental function of the differential operators C" (D) and A"(D), respectively, (see (1.3) and

(1.4)):

2
() = Feo [(C7(—i6)) '] = (8 [al) " [1C7 (an)] . (2.1)
V() = F LA (=€) = —[am | AT 2 (A ) V270 e BP0}, (2.2)
where @ = ||ag;||3x3 is an orthogonal matrix with property a' =" = (0,0, |z])7,

n = (cosp,sinp,0)7; AT = [|A7 |laxa, [AT] = det AT (see [16], [15]).
It is evident that

() = T (o) = () = ["@)]T, T () = 1T (),

Y =) AT = (),
for any x € IR*\{0} and ¢ > 0.



LEMMA 2.2 Let ReT = 0 > 0. Then entries of the matriz V" (-, ) belong to C(IR*\{0})

and together with all derivatives decrease more rapidly than any negative power of |z| as
|2] = 400.
In a neighbourhood of the origin (|x| < 1/2) the following inequalities

r r k
[DOW (2, 7) — DPW ()] < el ()

hold, where 3 = (1, B2, B3) is an arbitrary multi index, || = B1 4+ B2 + B3; here

1" (7)]3x3 3x1
v (o) — || T [0 | o3

Oixa  A"(2) ||,
k7 k7 k7 _
o0 (x) =1, ) =~ Inlal, (@) = |2 1> 2,
for 1<Fk,7<3 and k=j=4;
k k —m
oy () = b ) = = fa], @0 (x) = (M () = |27, >
for k=1,2,3.

b

Proof. Note that
DILAT (&))" = O + |17,

and

Cm(—16)) Maxs 3x1 O(€] Yaxz  [OUE]))ax
A = [(C(—i&))"): [0] N [O(1¢[)] [O(1¢])]

(0115 [A"(=i)] (O )ik O

hold for sufficiently large |£|.
Now the proof follows from Lemma 2.1 and equations (2.1), (2.2). |

Denote by A* (D, ) the operator formally adjoint to A"(D,7):
AT (D, 1) =[A"(—D,7)]T.

Clearly, the correspoding fundamental matrix is U (2, 7) = [U"(—2,7)]T.
By standard arguments we can derive the general integral representation formula for a
regular solution of the equation (1.6)

U() = ()™ QD) )y T ()] S,
oy / V(g 7)[B(D,,n)U" (y)]£dS,, =€, (2.4)
where the operator B"(D,n) is defined by (1.29),

[TT( Dyv 77/)]3><3 [TTrﬁzljnj]Rﬂ
[0]1><3 )‘T(Dyvn)

QT(DyanaT) =

4x4

here U? is supposed to satisfy the inequality (1.11) (for details see [17], [12]).
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From Lemma 2.2 and equations (2.4) and (1.11) it follows that any solution of equation
(1.6) actually decrease, together with all its derivatives, more rapidly than any negative power
of || as [#] = oco. Therefore for any solution U/? of (1.6) in Q, the condition U? € W, ()
implies % € W)(Q,) with 1 < p < oo. Tt is also evident that the vector U" € W1(Q,,)
defined by (2.4) belongs to C>(€2,.).

2.2. Potential operators of pseudo—oscillations. l.et

Vi(g)(x) = /w (v~ y.7)g(y)dS,. = € R\S,
W) = ./ {Q (D). DNV (& — .Y g(y)dS,, o € IS,

where g = (g, g4)" and § = (g1, ¢2,93) ", be the generalized single and double layer potentials.
Further, let us introduce the boundary integral (pseudodifferential) operators on S:

Hy(z) = /\Tﬂ” :—y,m)g(y)dS,, z € S, (2.5)
K'g(z) = /B’” (Do (=)W (= — y,7)g(y)dS,, = € 5. (2.6)
Krg(z) = / Q7 (Dyon(2), 1)V (= — y.1)] T} g(y)dS,. = € 5. (2.7)
() = im B (D)W (g)(x). (2

Clearly, these operators are generated by the above potentials. Their mapping and Fredholm
properties are described by the next two lemmata.

LEMMA 2.3 [17], [5] Let k >0 be an integer, 0 < o < o' < 1, and S € C*'42" Then
i) the operators

VT OFP(S) - ORI (OF), (2.9)
W CF(8) — O (QF), (2.10)

are bounded, and

V()" =[V'(g)]” =Hg, g€ C(5), (2.11)
(W) = [+27 " 1s+ K7]g, g€ C°(9), (2.12)
[B"(D,m)V" ()] = [F2 '".+ K"lg, g€ C(5), (2.13)

hg=Llg=Lg, geC'(S); (2.14)

i1) the operators
H o CFF(S) = CFTI(9), (2.15)

(+27 'L+ K7, (27 L 4+ K7) - CFF(9) — o (9), (2.16)
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L ORI (§) o OFF(S) [§ e oFt2re] (2.17)

are bounded;
ii1) operators (2.9),(2.10), and (2.15) (2.17) can be extended to the following bounded

operators

V' Be () = HIPEUP(QE) (B (S) = BETU(QF)],

Wr o B:(S) = HFVP(QF) [B: (S) — B:E/P(Q%)],
W B (S) = BEU(S) [HA(S) — H(S)], (2.18)
(£27 'L+ K7, (£27' L+ K7) 2 B2 (S) = B2 (S) [H2(S) — H3(9)], (2.19)
L2 B (S) — B:'(S) [H2(S) — H: ()], (2.20)

for arbitrary s € IR, 1 < p < oo, and 1 < g < oo, provided S € C™); for these extended
operators formulae (2.11) — (2.14) remain valid in corresponding spaces.

LEMMA 2.4 [17], [12], [5] Operators H", (427 ' 1,4K"), (+27 " ,+K") and L" are elliptic
U DOs of order —1, 0, 0 and 1, respectively. The principal symbol matrices of —H" and L"
are positive definite. Operators (2.15),(2.16),(2.17) [(2.18),(2.19), (2.20)] are isomorphisms.

In particular, (H")"" is a singular integro differential operator.

3 Problem C

3.1 The investigation of Problem C we begin with the following uniqueness

THEOREM 3.1 The homogencous Problem C (f =0, F = 0) has only the trivial solution

in the class of reqular vectors.

Proof. Tet a pair (U',U?), where U' € C'(QF) and U? € C'(Q), be an arbitrary
solution of the homogeneous Problem C. Further, let us write the following Green formulae

[171,[5]

Qf {TAY(D, 7)U" |y, + ;TT[A”(D7 VU 4 ugbda
= (A B D, + LT i s

— f{cquD wl Dpu’ + pomur|? + ?)\” Doy Dpuy + 7

Wy e, r=1,2, (3.1)

where A"(D,7), B"(D,n), and X”(D, n) are defined by (1.5), (1.29), and (1.26), respectively;
the superscript +[—] corresponds to r =1 [r = 2].
Due to the homogeneity of the problem in question the equations (3.1) yield

Z /{chqu wl Dy’ + pom u” P + 7)\ Dl Dyl + —|7/4| Ydax = 0. (3.2)

7’1Q
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Recalling that 7 = o — 1w, and separating the real and imaginary parts, we obtain
S e DD+ pn (0 )
u|*}dr =0,

o r r 7 Cr
—I—m)\pq Dq7l,4 Dp7l,4 —I— T_r

wy Qf {20',0,,|7/,”|2 + |T|1TTTX;0 D)y Dpuﬁ} dr =0,

whence, by (1.9) and (1.10), U" = 0 in §Q, follows for arbitrary 7 with Re7 = ¢ > 0. |

COROLLARY 3.2 . Let U' € W) () and U? € W, (Q3) solve the homogeneous Problem
C. Then U" =0in Q,., r=1,2.

3.2. We look for a solution to Problem C in the form of the single layer potentials

Ulz)=V'[(H") "¢"I(z), =€ W, (3.3)

U(z) = V[(H*) "¢*l(x), =€ Qy, (3.4)
where ¢ = (", 95)", ¢" = (¢}, 95, 95) ", » = 1,2, are unknown densities and (H")™" is the
operator inverse to H" (see Lemma 2.2).

Due to Lemma 2.3, the transmission conditions (1.12) and (1.13) lead to the following
system of boundary equations on S:

g —9* =1 (3.5)
B2 e KA g B+ K g = (3.6)

where fy) and K", r = 1,2, are defined by (1.30) and (2.6), respectively.
et

Ny = (27T L+ KR Ny = (27 L+ K2)(H?)

No=19N,, Ny =10, N =N, 4+ A, (3.7)

Then equations (3.5) and (3.6) yield:
g =r+g" (3-8)
Ng' =1 WF. (39)

Now we will study properties of the boundary operators /\71, N27 and .

LEMMA 3.3 Let S € CF2+" >0 be an integer and 0 < o/ < 1. Then
N, N CFF1H(9) o5 OF(8), 0<a<a, j=1,2, (3.10)

are bounded operators with the trivial null spaces.

Operators N'; N;, 7 =1,2, defined by (3.10), are isomorphisms.
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Proof. The mapping property (3.10) is an easy consequence of Lemma 2.3, item ii) since
the operator (H")~' : C*1H7(S) — C*7(S) is an isomorphism due to Lemma 2.2.

From Lemma 2.4 it follows also that the equation /\77}1 = (0 has only the trivial solution.
Therefore the operators /\M/j, Jj = 1,2, defined by (3.10) are invertible and their inverses are
bounded.

It remains to prove that the null-space of the operator N is trivial as well. Tet h =
(hi,...hq)T € C'"(S) be an arbitrary solution of the equation Nh =0,ie, Nih+ Noh =
0. Then it is evident that the vectors U'(x) = V'[(H") "h](z), x € @ and U?(x) =
Vz[(Hz)f h](z ), x € €y, are regular and they solve the homogeneous Problem (), since
g' = h and ¢g*> = h solve the homogeneous version of the system of equations (3.5), (3.6).
Therefore by Theorem 3.1 we have ' = 0 in ; and U? = 0 in Q,, whence h = 0 follows

immediately. ]

LEMMA 3.4 The principal simbol matrices of the operotors /\717 Ny and N are positive
definite.

Proof. Denote by O (P)(x,£) with x € S and ¢ € IR*\{0} the principal homogeneous
symbol of the pseudodifferential operator P.
FEquations (3.7) imply

o) = VTN ON) = IO (),
ON) =02 L+ KYOH". OWN) = fa(zf L+ K)o, (3.11)
TN) = T(N) + T(Na).
Due to Lemmata 2.2, 2.4, and equation (1.29) we have
O(H") = 0(Hy), O(K") = 0T(Ky),
where HZ, and K% are 4 x 4 matrix boundary operators on S:

/\Tl (x —y)g(y)dsS,, = €9,
Kog(x /R Do,n(e)V(x — y)g(y)dS,, = €S,

with g = (g, 94)" and § = (g1, 92,93)7; here W is given by (2.3) and

[T7(D,n)]axz [0ax

By(D.n) =
[0]13 (D)l
Therefore

HT 0

wr — [Hilaxs  [0]axi | (3.12)
[0]1x5 M, 4x4
Kr 0

Kr — [Kilaxs  [0]ax 7 (3.13)
[0]1x5 IC; 4x4
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where Hi [H.] and K. [K7] are 3 x 3 matrix [scalar] operators generated by the single layer
potential constructed by the fundamental matrix I (2) [v"(x)] (see (2.3)):

M) = [T = 9)a)dS,, Krilr) = [ T (Don(e ) (@ = y)i(y)ds,. (314)
Hga(a) = [ 270 = S, Kga(a) = [N (Deon(@)y" (s = y)ga(y)dS,.

S"

Taking into account the structure of the matrices (3.12) and (3.13), we get from (3.11)

T(N) =0 (=271 + Ko) [0 (Ho)]

| 12 L KO (HR)] s [0]ax 7 (3.15)
[0]1 3 o(-2"h+ ICL)[O-(H;)]q 4x4
T(Ny) =02 '+ K)o (H)] ™
|| Te@ B KR () s [0]5x _ (3.16)
[0]1 3 0-(271 L+ IC%)[O‘(H%)]q 4x4

It can be shown that (=2 'I3+ K{)(Hp) ' and —(27 15 + KE)(HE) ' are non-negative
3 x 3 matrix pseudodifferential operators with positive definite principal symbol matrices,
while (=271 + K;)(H;)q and —(2°'1, + K%)(Hi)q are non-negative scalar WDQOs with
positive principal symbol functions (for details see [19], Lemma 4.2 ii).

Therefore the equations (3.15) and (3.16) together with (3.11) yield that 0 (N), T(N3),

and O (N') are positive definite matrices for arbitrary x € S and ¢ € IR*\{0}. |

COROLLARY 3.5 let S, k, a, and o' be as in Lemma 3.3. Then the opemtorﬁ (see

(3.10)) is an isomorphism, and
NV OF(§) s ORI (S)
is a bounded operator.

Applying the above results we get from (3.8) and (3.9):
g =N F+Nof), g =N (F — Nif). (3.17)
Clearly, g" € C*1+o(S) r =1,2,if
feCH*(8), Fe CcH(s). (3.18)
Now we can formulate the following existence

THEOREM 3.6 let S, k, o and o', be as in Lemma 3.3, and let [ and I meet the
conditions (3.18). Then Problem C is uniquely solvable, and the solution is representable in
the form of potentials

U'a) = VI (H )Y TNUF 4+ Nof)l(2), =€, (3.19)
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Ua) = V(H)TNT(F — NiH)](x), =€y (3.20)

Moreover,
Ure CH @), r=1,2, (3.21)
||UT||(QT,1<+1,Q) < CO[||f||(S,k+1,a) + ||F||(S,k,fy)]7 Co = const > 0, (3-22)
where || ||(v.5.0) denotes the norm in the space C*T(M).
Proof. Tt follows from (3.3), (3.4), (3.17), Corollary 3.5 and Lemma 2.3, item i). |

3.3. In this section we assume S € ('™ and establish uniqueness and existence results in
the Bessel potential and Besov spaces.

LEMMA 3.7 The operators (3.10) can be extended to the folloving bounded, elliptic WDOs
(of order —1)

NN, o HFY(S) — HE(S)

1 (3.23)
BH(8) = Br(S)

for arbitrary s € IR, 1 < p < oo, 1 < g < oo. Moreover, the operator N, defined by (3.23),
is invertible.

Proof. The houndedness, ellipticity and mapping properties (3.23) of the operators N
and /\77 easily follow from Lemmata 2.1, 2.2 and 3.4.

The invertibility of the operator Nisa consequense of the embedding theorems for solu-
tions of elliptic pseudodifferential equations (WDE) on closed manifold. In fact, any solution
h e HX*'(S) [B2E1(9)] of the homogeneous pseudodifferential equation Nh = 0, belongs
also to the space C*+'+7(S) where k > 0 is an arbitrary integer and 0 < v < 1. Therefore
h =0 due to Corollary 3.5, whence the unique solvability in the spaces H*'(5) [BSF1(.5)]

of the non homogeneous equation N = f follows for the arbitrary right hand side vector

[ e 13(8) [1;,(5)] '
THEOREM 3.8 et
FeBS B S, F e B (9) [B,(5)] (3.24)

Then Problem C is uniquely solvable in the space H;+1+1/p(ﬂ,,) [R;ZHUP(QT)], and the so-
lution is representable by formulae (3.19) and (3.20).

Proof. Let conditions (3.24) be fulfilled. Then Lemmata 3.7 and 2.3, item iii) imply that
the vectors U", r = 1,2, defined by (3.19) and (3.20) represent a solution to Problem C of
the class H2H'+1/P(Q,) [Bat+r(Q,)].

As to the uniqueness of solution to Problem C in the above Bessel potential and Besov
spaces we can prove it as follows.
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Let U € H;+1+1/p(ﬂ,,) [R;f;H]/p(QT)] r = 1,2, be some solution to the homogeneous
Problem C. We recall that U" € C'™(€,.). Then Lemma 2.3, item iii) and equations (1.30),
(2.4) yield

Ul(x) = WY ) () — V1([B U] )()
= WYU'TH T)—V1( [R UM (=), = € Oy, (3.25)
U(x) = WU ]7 + V(B )(x)
FVEIPB Y a), w € QIO =11, (3.26)
where
[, (071 € By (S) B3 (9]
[B'UTE, [B2UP] € B (S) [B;,(9)].

The homogeneous transmission conditions read (see (1.12), (1.13))

[U1]+ = [Uz]f, [B1U1]+ = [RQUQ]*. (3.27)
Denote
(' =g, [BU'T =h. (3.28)

Then (3.27) along with (3.25), (3.26) and Lemma 2.3, item iii) implies (see (2.5) (2.8),
(2.14)) that h and g solve the homogeneous system of boundary WDEs:

(HW +H2] )h+(l€‘+l€)q—0 (3.29)

(IR 4 PRI+ (102 + 1P %)g = (3.30)

From the positive definiteness of the principal symbol matrices —G (H"), (L") (see Lemma
2.4) and the equation O(K") = [0(K")]T, it follows that the system of WDEs (3.29) and
(3.30) is strongly elliptic in the sense of Douglis Nirenberg. Therefore by the embedding
theorems we conclude that h and g are smooth vector functions on S: h € C**°(S), ¢ €
CHH1+2(8) for any k > 0 and 0 < a < 1. But then the vectors U", r = 1,2, given by (3.25)

and (3.26), are regular due to the representation formulae (3.27), (3.28), and Lemma 2.3,
item i). Now the conditions (3.27) and Theorem 3.1 complete the proof. |

REMARK 3.9 Using the representation formulas (3.25) and (3.26) we can solve Problem
C' by the so called direct boundary integral equation method. This method reduces the trans-
mission problem in question to the strongly elliptic (in the sense of Douglis Nirenberg) system

of WDFs on S

v = Q. (3.31)
where ¢ = (Y, "7 is the unknown vector with ' = (BT and " = [U'*; the matrix

operator (7 is given by formula

[~ H I H I K"+ K240
[— 7K TW = P2y, 12+ 1892204

G:

b

8X8

17



while the given on S right hand side 8 vector ) reads as
. T
Q= (27 L+ K2 f = MO F 1022 4 (27 1 — 10K F)

In fact, in the proof of Theorem 3.8 we have shown that the operators

Gz [CRS x [CH(S)]) = [CHH(9)]) < [CH ()]
[ (S > TS = [HyFH(S)]

P

[By ()" = (B ()] = (B (S)]

are invertible.
Therefore the unique solution of Problem (' can be represented also in the form

U (x) = W (") () — V(IS (),

(3.32)
U (x) = —W2(0" — [)() + VLI (@ — F)](a),

where b = (' ") solves the system of WDFEs (3.31).

Note that the conclusions of Theorems 3.6 and 3.8, concerning the smoothness properties
of solutions, remain valid for the vectors defined by (3.32) if the conditions (3.18) and (3.24)
hold.

4 Problem G

First let us rewrite the transmission conditions (1.14)-(1.17) in the following equivalent form

PO+ PO = Y+ B (4.1)
(PUT -]t + [PU?-m] = F 4 ) (4.2)
Pttt —prute = B - o), (4.3)
(P'UY-m])t — [P2U?-m]” = FH - ) (4.4)
W ot e = (4.5
[P'U-nt — [PPU% 0] = F,, (4.6)
PR = A Bl ) = R (4.7

Clearly, due to (4.3), (4.4), (4.6) and (4.7), the vector

[B'UY — [B*UY = F
is a prescribed vector on S with
Fo= (K FEY 4 (B — FO)ym+ Fon, BT (4.8)
Denote

[ -0 — [0 =y, [ -m]T —[u® - m] =y, (4.9)
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where 1 and 1, are the unknown scalar functions. Equations (4.5), (4.7), and (4.9) imply
[ U] = f,
where

f= (0l +dam + fan, f). (4.10)

Now let us look for a solution to Problem G in the form (3.19) and (3.20), where F' and
[ are given by (4.8) and (4.10), respectively. Then from the results of Section 3 it follows
that the transmission conditions (4.3) (4.7) are automatically satisfied. It remains to satisfy

the conditions (4.1) and (4.2). Taking into account Lemma 2.3, item i) and the equations
(3.7), we get from (3.19) and (3.20):

[B'(D.n)U'TH = [(PY(D,n)U" N (Dn)ug)TTF = MiN T (F + Aof),

[B*(D,n)U°] = [(PX(D.n)U” N (D.n)ug) ] = —AoN ' (F — N f).
Further, we set

"= [(170>T]4><17 m” = [(m/70>T]4><17 n" = [(nvo)—r]‘bﬂv (4'”>
where I, m and n are the tangent and the normal vectors introduced in Subsection 1.4.

Conditions (4.1) and (4.2) then imply
(P'U - 4+ [P0 = [BWU -+ [BUR 1)
= (M = NN P4 2NN TN f -1 = ) 4 i),

[P'U"-m]t + [P°U?-m] _[B U'-m*t —I—[B U?-m*~

= (N = NN F-m* 4 20NN TN f-m> = FOH 4 B (4.12)

since N\oN N, = N A, By virtue of (4.10) from (4.12) we have the following system
of UDEs for the unknown functions ¢ and ,:

é;[(NzN "Nk, (11 + dem )|l = a1, (4.13)
kﬁ:][(ﬁ?ﬁ]/ﬁ)k?(%l.f + thom;)my, = g2, (4.14)
where 7'7
o = 2 H{FD L FO (N NN TR
S M)mﬁ]/kki (RN s (ol
@ = 21‘{15; D) (A - %;)N‘F-m*}
YA M)mfdmki[(NzN Kooy (4.15)

are given functions on S.
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Now lef,
NN TNl (NN TN m,

ma(NoN T Nkl ma( NN N iym,

We recall that the summation over repeated indices is meant from 1 to 3. Clearly, (4.13)

Mg =

2X2

and (4.14) can be written in the matrix form

Meap =g~ (4.16)
with the unknown vector ¢ = (¢1,12)7 and the right hand side ¢* = (qi1,¢2)" given by
formulae (4.15).

LEMMA 4.1 The operator Mg is an elliptic W DO of order 1 with a positive definite princi-

pal symbol matriz and the index equal to zero.

Proof. The equations (3.7), (3.15), and (3.16) imply that Ms is a WDO of order 1 with

the principal symbol matrix

LB Lo By
O(Me)=|| T TR — I ERT, (4.17)

mylibyy mymiby ||

Lo o, s, 0

my, Mg, M3, 0 94

B o= 0NN = O(NG)0 (N (M) = T(N)[O (M) + O(N)] O (M)

By Lemma 3.4 we have that the matrices O(N,), r = 1,2 are positive definite for arbi-
trary z € S and £ € IR*\0 (see (3.15), (3.16)). Therefore the matrix F is positive definite
as well. Further, for arbitrary n = (m1,72)" € @'* we have

T (Man-n=(FEEn-n = E(ETn) - (Fn)
= E(m +m n2) - (P 4 mn2) > elél ™+ nam* [ = cl€l(Im|* + [n2]*), ¢ >0,
whence the positive definiteness of the matrix (4.17) follows. In turn, from this fact we

conclude that the dominant singular part of the operator M is formally self-adjoint. This
implies that the index of the operator M is equal to zero. ]

By the arguments applied in Theorem 3.1 we can easily prove

LEMMA 4.2 The homogeneous Problem GG (ﬁ —F, = fi=Fy = ﬁl(i) = ﬁ;i) =0) has

only the trivial solution in the class of reqular vectors.

LEMMA 4.3 el S, k, o, and o’ be as in Lemma 3.3. Then the operator
M : CFFHo(8) — CFF(9) (4.18)

is an isomorphism.
[fS €, then (4.18) can be extended to the following bounded, invertible, elliptic W DO
(of order 1)
M+ HPH(S) — H(S) [BXY(S) — B2 (9)],

selR, 1 <p<oo, 1 <qg<oo.
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Proof. 1t is quite similar to that of Lemmata 3.3 and 3.7. ]

The above results lead to the following existence theorems.

THEOREM 4.4 et S, k, o, and o' be as in Lemma 3.3, and let

Fl(i)v ﬁ;gvi)v ’ﬁna F4 € C]H_O/(S)v .f;m f4 € C]H_]_Hy(‘q)‘

Then Problem G is uniquelly solvable, and the solution is representable in the form of
potentials (3.19),(3.20) with F and f given by (4.8) and (4.10), where 1, 1y € CFH1+(S)
are defined by the system of WDFEs (4.13) and (4.14) (i.e., (4.16)). Morover, the smoothness
property (3.21) and the inequality (3.22) hold.

THEOREM 4.5 Let S € C% and

FE RS, Fye B (S)[BL()], Jar fo € BZE(S)[B(9)].

Then Problem (i is uniquely solvable in the space H;+1+1/p(ﬂ,,) [R;f;“']/p(ﬁ,,)], and the
solutions are representable by the formulae (3.19)and(3.20) with F' and [ given by (4.8) and
(4.10), where by, )y € BSEYS) [BIE(S)] are defined by the system of WDFEs (4.13) and
(4.14) (i.c., (4.16)).

Proof. 1t is verbatim the proof of Theorem 3.8. ]

5 Problem H

As in the previous section let us rewrite the transmission conditions of Problem H (see

(1.16) (1.19)) in the equivalent form

' N0 = R (5.1)

W' -m] T+ [ om] = fU 4 O, (5.2)

' et o= Y, (5.3)

' -m]* —[u?m]” = 0, (5.4)

' enlt =[] = (5.5)
[PTUT -t —[PPU% -] = B, (5.6)
WllF =2 = A, Nl - R = R (5.7)

FEquations (5.3) (5.5) imply
[t = =

where f is a given vector on S
F= (= A+ (PP = HD0)m 4 o g (5.8)

It is also evident that

(BT — [B*UY = F
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with
F'= (Ul 4 om + ﬁnna th)T7 (5.9)
where F,, and Fj are given functions on 5, while
Wby = [P1U1 -l]+ o [P2U2 . l]f and by = [P1U1 -m]+ _ [P2U2 . m]f,

are yet unknown scalar functions.

Now let us look for a solution to Problem H again in the form (3.19) and (3.20), with F
and [ defined by (5.8) and (5.9), respectively. It can be easily checked that the transmission
conditions (5.3) (5.7) are then automatically satisfied, while the equations (5.1) and (5.2)
lead to the following system of WDEs for the unknown vector 1 = (¢1,1,)7 on S:

Moty = ¢, (5.10)

where

BN Dl (N ) gm;

My = . .
mp(N"Diily mp(N ) m;

(5.11)

2x2
and where the right hand side vector ¢* = (q1,¢2)" is defined by formulae:
o o= 2 AT IV N - N
— I (Fang e — (V") Pl
g2 = 2 I+ I - NN = N ]}
— TN (Fan ) — (N e il
here I* and m™* are given by (4.11).
By quite the same arguments as in Section 4 we can easily show that My is an elliptic,

invertible DO of order —1 with a positive definite principal symbol matrix.
Therefore the operators
My o CF(S) = CFIF(S), S e oFFP e
s s+1 o0
HX(S) — H(S), S e,
s s+1 o0
By, (S) = B (S), Sed™,
are isomorphisms.
As a result we arrive to the following existence theorems.

THEOREM 5.1 Let S, k, o, and o’ be as in Lemma 3.3, and lel
.]Fl(i)v .~7(n,i)7 .ﬁm f4 € Ck+1+o/(‘q)7 ﬁna F4 € Ck-l—(y(‘q)‘

Then Problem H has the unique solution representable in the form (3.19) and (3.20) with
fand F given by (5.8) and (5.9), where 3y, 1y € C*2(S) in (5.9) are defined by the system
of WDFEs (5.10).

THEOREM 5.2 et S € O™ and
=+ 7 s s s n s s
fl( )7 . T(ni)7 fnv .f4 S Bp:;] (‘q) [Bp,_g1 (‘q)]7 an F4 € Bp,fp(‘q> [B/p,q(‘q)]‘

Then Problem H is uniquelly solvable in the space H;+1+1/p(Q,,) [R;ZHUP(QT)], and the
solution is representable by the formulae (3.19) and (3.20) with f and F given by (5.8) and
(5.9), where 1, pa € By () [B),(S)] in (5.9) are defined by the system of WDFs (5.10).
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6 Problem C-DD

6.1. From now on, for simplicity, we assume that S € (. First we prove the uniqueness of
a solution in the particular case for p = 2. The general case (1 < p < oo) will be considered
later on.

LEMMA 6.1 Let U € W, (,) be a solution of the homogeneous Problem C DD (f(‘) =
FOY =0, o® = 0). Then U™ =0 in Q,, r—1,2.

Proof. Applying the formulae (1.27) and (1.28) with V" = U", and taking into account the

homogeneous transmission conditions, we arrive to the equation (3.2), whence, in the same

way as in the proof of Theorem 3.1, it follows that U" =0 in Q,, r =1,2. ]
The transmission conditions (1.21) imply
) =[] =W — ) and [T+ [0 =M+ on S, (6.1)

On the other hand the vector F(1) (see (1.20) and (1.31)) can be extended from S; onto
S, preserving the functional space B;;/p(g). Denote some fixed extension by 'V € B;;/p(g);

clearly, F°|g, = F(). Evidently, an arbitrary extension F of the vector F(") onto the whole
surface S (preserving the functional space) can be represented as

F=F" 4o, (6.2)

where ¢ € ﬁ;;/p(gg).
Now we apply (6.1) and (6.2), and reformulate the interface conditions (1.20) and (1.21)
in the following equivalent form:

[ =7 = fPon S, (6.3)
[B'UY — [B*UY” = Fon S, (6.4)
[T 4+ U] = o+ o on S, (6.5)

where f® and F are given by formulae (1.32) and (6.2), respectively, with the only yet
unknown vector .

We look for the solution of Problem C DD in the form of potentials (see (3.19), (3.20))
D) = VHH) TR 4 )+ R, e 0, (6.6)
) = VHHY RO 1) M), e . (6.7)

It can be easily checked that the conditions (6.3) and (6.4) are then automatically satis-
fied, while (6.5) leads to the WDE for ¢ € B;;/p(gg)

TSQN71QO =q on Sy, (6.8)
where rg, 1s the restriction operator to Sy and the right hand side vector ¢ is given by
formula

q=2"(¢D + o) g, N4 2NN, — A0 € BLVP(S,). (6.9)

UDEs of type (6.8) on manifolds with boundary have been investigated in [6], [3], [24],
[5] (see also references cited therein). We need the following results about the Fredholm
properties of WDEs defined on open surfaces.
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THEOREM 6.2 [5] Let P be an elliptic VDO of order o € IR on Sy with a positive definite
principal symbol matriz for any (x,€) € Sy x IR*\{0}, where Sy is an open C™ smooth

manifold with the C™ smooth boundary 05y, and let
1 a 1
- —l<s—=<—, s€lR, 1<p<+oo. (6.10)
p 2 p

where Sy is an open C° smooth manifold with the C'™ smooth boundary 05,
Then

i) the operators

P o B (So) = Bl (S0), 1<q< 4o, (6.11)
H;(So) — Ilv'[,gio/(g())7 (6]2)
are Fredholm;

i) for any two pairs (p1,$1), (p2,32) € (1,400) X IR satisfying the inequalities (6.9),
there exists a common reqularizer of the following operators:

P H2(So) — H27(S,),
Hy2 (S0) = HJ2 " (S),
B2, (So) = B2 7(S0), 1< ai < +oo,

P11 P1,91
B2 g, (S0) = B 7(S0), 1< g2 < +oo;

ii1) null spaces and indices of the operators (6.11) and (6.12) are the same for all values
of the parameters g € [1,400], p € (1,400), and s € IR satisfying the conditions (6.10).

Now we can investigate the equation (6.8).

LEMMA 6.3 The operator

re, N 7' ﬁ;ﬁq(‘%) — B;f(;](gg), Il <p<+4oo, 1 <g<+o0, s€ IR, (6.13)
is an isomorphism if the condition

LJ <5< L] (6.14)

po2° " 2 '

holds.

Proof. Due to Lemma 3.4 and Theorem 6.2 it remains only to prove that the null space
of the operator (6.13) is trivial since the principal symbol matrix N1is positive definite for
arbitrary (z,£) € Sy x IR?\{0}. This implies the self adjointness of the main dominant part
of the operator N1 So we have to show that the homogeneous version of equation (6.8)

re, N 'o =0 (6.15)

-1
has only the trivial solution. We begin with the case p = 2. Let ¢ € B, (S2) be some
solution of equation (6.15), and construct the potentials

U (@) = VRN l(w), 2 € i,
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U2 () = V(RN ) (a), @ € .

It is evident that U” € W, (Q,), r = 1,2, due to Lemma 2.3, item iii). Further, from
Lemma 6.1 it follows that U"(z) = 0, x € Q,, r = 1,2. Therefore [B'(D,n)U']" = 0 and
[B*(D,n)U?]~ =0 on S. Whence

0 = [B'(D,n)U"TT —[B*D,n)U?"
— I L KDY HY)Y N T o — I L+ K (H) TN o = o,

due to the equations (3.7).

Thus equation (6.15) has only the trivial solution in the space ﬁ;;/Q(Sg). Now Theorem
6.2, item iii) implies the same uniqueness result in the space ﬁ;’q(sfg) with arbitrary s €
IR, p € (1,400), and g € [1,400] satisfying the inequalities (6.14). |

Now we can formulate the following existence result for the problem in question.

THEOREM 6.4 Let4/3 < p <4 and fO, FO_ o3 0 satisfy the conditions (1.31) and
(1.32). Then Problem C DD has the unique solution U" € W; (Q.), r = 1,2, representable

by the formulae (6.6) and (6.7), where ¢ € ﬁ;;/p(gg) is defined by the uniquely solvable U DF
(6.8).

Proof. First we note that in accordance with Lemma 6.3 the WDE (6.8) is uniquely
solvable in the space ﬁ;;/p(gg) for an arbitrary p satisfying inequality (6.14) with s = —1/p.
Whence inequality 4/3 < p < 4 follows. It is evident that the vectors U", r = 1,2, defined
by (6.6) and (6.7), belong to the space W (Q,), r =1,2.

It remains to prove the uniqueness of solution in the space W; (Q.), r =12 for p €

(4/3,4). Let U" € W)(Q,), r = 1,2, be some solution of the homogeneous Problem C
DD. Clearly, then [U']*,[U%]~ € B)_'/7(S) and [B'U'*, [B2U?] € B, }7(S). Tn addition,
S=10TH [ =00n Sand F = [B'U'*~[B2U%" = 0on S,. Therefore I € B, 1/7(S,).
But, due to Theorem 3.8, such solution is then representable by the formulae (3.19) and (3.20)
which, in the case in question, take the form

U'(z) =V [(H)'N ' Fl(2), v€Q,, r=1,2, (6.16)

with F' € B 1/7(S,).
Then the homogeneous version of conditions (1.21) on Sy lead to the equation

TSQ/\/*]F:O on .S,,

from which F' = 0 follows for arbitrary p € (4/3,4) due to Lemma 6.3. Now equations (6.16)
show that U” vanish in Q, (r = 1,2), which completes the proof. |

The next theorem establishes the almost best smoothness result for solutions of the mixed

interface Problem C DD (cf. [18], [5], [17], [12], [10]).

THEOREM 6.5 Let f(), FM o) and fO be the same as in Theorem 6.4. Let

4< <4, T<t< ] 3< <] ] (6.17)
g sPs™ e T A '
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and let U € W(Q,.), r = 1,2, be the solution to Problem C' DD.
In addition to the above conditions,
) if
SO e BIF(S), ¢ € Bif'(S2)., [0 € BiF'(S), FUY e B (S),
then
= H:-I—1+1/t(QT)7 r—1,9:
i) if
F e BE(S), o) € BIF(Sh), [0 e BIE(S), FU e By (S),
then
U e BN Q), e = 1,2

i) if, in particular,

O e co(8), o) e 0(Sy), o e c?(S), FM e B2 (S)), (6.18)

Neel

for some a > 0, then

Urec?Q,), r=1,2,
with any B € (0, a9), ag = min{a, 1/2}.

Proof. The assertions i) and ii) follow from Theorems 6.2, 6.4 and Lemmata 2.3, 6.3
along with the representation formulae (6.6) and (6.7).
The assertion of the theorem on the C° regularity of solution follows from the embeddings

(see [29], [30])
C*(Q) = BL . (Q) C BLI(Q) C BLI(Q) C By, 7(Q) cco=HQ), (6.19)

where Q C IR? is a compact k dimentional (k = 2,3) ('™ smooth manifold with a C'>
smooth boundary, & is an arbitrary small positive number, 1 < ¢ < 400, 1 < < 00, a —
e —k/t >0 (here a and o« — & — k/t are supposed to be non integer). Taking ¢ sufficiently
large and & sufficiently small, we have:

f(1) c 3255(31) _ B1/Q+”(S1), (P(i) c Bz;e(%) _ B”H’T(Sg),

t,q t,q

f(O) c B:;E(S) _ B1/2-|-(T(S)7 F(1) c B::qf1fs(sf1) _ 11:371/24-(7(5,1)7

t,q t,q

with 0 = a — & — 1/2, due to (6.18).
Lemmata 6.3, 2.3, item iii), and the conditions (6.17) then imply

U e BPTN Q) = Byt Ny, =102, (6.20)
i

! 3< ]+ = 1<] ] (6.21)

o2 T eE t2 ‘

If the Holder exponent o from (6.18) is such that @« — ¢ — 1= —1/24+ 0 > 1/t — 1/2, then,
clearly, (6.18) holds also for arbitrary o/ < «a, and therefore

U e BIPora), r=1,2, (6.22)
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for any oq with —1/2 4+ 09 € (1/t —3/2,1/t —1/2) (i.e., 00 € (1/t — 1,1/1)).
Now, the last embedding of (6.19) (with & = 3) together with (6.20), (6.21), and (6.22)

yields either
U e Co =2 @Q,), if a—e—2/t<1/2—1/t,

or

U e 'R, i o> 1/2,
which completes the proof. ]

REMARK 6.6 Problem C DD includes, as a particular case, a crack type problem for
homogeneous bodies with interior cut of the form of a two dimentional nonclosed surface
(similar to that of Sy), when on the cut surface the Dirichlet type conditions are given.
In fact, if both elastic anisolropic materials occupying domains Q4 and €y are the same
(say, e.g., material with index 1), and the conditions (1.20) on Sy are homogeneous (1) =
0, F() = 0), then the surface Sy becomes a formal interface since the displacement vector u
and the temperature u) satisfy equation (1.6) at point x € Sy which implies U' € C™(IR*\Sy).
This assertion can be easily proved by making use of the general integral representation
formulae (2.4). Thus the surface Sy is erased and Problem C DD is converted into the
following crack type problem:

AD, P (2) = 0 in R\S,, (6.23)
U = ¢f on S, (6.24)

where
U € WIHIRNS;) N O (IR\Sy), o) € B VP(8,), o) — o) e Bl VP(S,). (6.25)

It should be noted that all the results obtained in Section 6 for Problem C DD remain
true (with evident slight modifications) for problem (6.23) — (6.25) as well (cf. [5] ).

7 Problemm C-NN

As in the previous sections we start the study of Problem C NN with the reformulation of
the interface conditions (1.22) (1.23). They are equivalent to the following equations:

(Bt — [B2UY = F° on S, (7.1)
T = 0 e s .
[B'UT + [B*U? = &) 400 on S, (7.3)

where F?is defined by (1.33).
Further, denote by 9 ¢ 3;7;1/19(5*) some fixed extention of (V) from S, onto the whole
surface S. Then an arbitrary extention, preserving the functional space, reads

f=1"4+ee B S,

where ¢ € ﬁ;’;1/p(‘q1). Clearly, fls, = ).
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Now, let us look for a solution to Problem C NN in the form of potentials (cf. (3.19),
(3.20))

U () = VHH) VP04 (0 + @)} ). v el (7.4)
() = V) N F N+ @)l Ha), =€ O, (7.5)

where ¢ is the only yet unknown vector.
It can be easily checked that conditions (7.1) and (7.2) are automatically satisfied, while
(7.3) leads to the WDE for ¢

T‘Q’Q./,\\J/]N71NQ@ =q on Sy (7.6)
here rg, is again the restrection operator to Sy, while the right hand side in (7.6)
g=2"(0M + o) 127 g (N — NN 'Ry — rg, AN TTALfO € B, )7(S,)
is a given vector function on 5.

LEMMA 7.1 The homogeneous Problem C NN (@) =0, () =0, F() = 0) has only
the trivial solution in the space W, (§,.), r = 1,2.

Proof. 1t is quite similar to that of Lemma 6.1. ]

LEMMA 7.2 The principal symbol matriz of the opemtor/\wﬂﬁqf\w/g is positive definite for
all (z,€) € S x IR\ {0}.

Proof. Tt is an easy consequence of LLemma 3.3, since from the positive definiteness of the
matrices A; and A, the positive definitness of the matrix A;(A; + Ay) ' Ay follows. [

LEMMA 7.3 The operator
re, NN TN - BN (Sy) — B2 (S5), 1 <p<oo, 1 <g<oo,s€ IR,
is an isomorphism if the condition (6.14) holds.

Proof. 1t is verbatim the proof of Lemma 6.3. ]

From the above lemata by quite the same arguments as in Section 6 we can prove the
following existence and regularity results for the problem under consideration.

THEOREM 7.4 Let4/3 < p <4 and fO, FM o) and FO satisfy conditions (1.31) and
(1.33). Then Problem C NN has the unique solution U" € W; (Q.), r = 1,2, representable

by formulae (7.4) — (7.5), where p € ﬁ;fp]/p(‘%) is defined by the uniquely solvable WDF
(7.6).

If, in particular,

[ ecn(s), o e By L (S)., FU e BL L(S). F'e BLL(9),

00 ,00

then
UreC?Q), r=1,2,

with any B € (0, a9), ag = min{a, 1/2}.
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REMARK 7.5 If the both elastic materials in question are the same and the interface
conditions (1.20) are homogeneous, then Problem C NN is converted into the following crack
type problem (cf. Remark 6.6) :

AD, YUY (z) = 0 in IR\S,, (7.7)
[B'U')E = o) on S, (7.8)

where
U' € W) (IRNS,) N O (IRNS,), 0 € B 1/P(S,), o) — o) ¢ B 1/P(S,).  (7.9)

It is obvious that the uniqueness, existence and reqularity results obtained for Problem C NN

(see Theorem 7.4) remain also valid for the problem (7.7) — (7.9) (¢f. [5]).

REMARK 7.6 [t is easy to see that the other problems formulated in Subsection 1.4
(Problem C DC, C NC, C H and C G) can be treated by the method developed in the pre-
vious sections. The representation formulae (3.19) and (3.20) reduce equivalently all these
mixed interface problems to uniquely solvable, elliptic systems of WDFs on Sy for correspo-
ding unknown vectors. Further, applying the same arquments as above we arrive at similar
existence, uniqueness and reqularity results for the original mixed interface problems in appro-
priate functional spaces (in particular, the Holder smoothness exponents are as in Theorems

6.5 and 7.4).
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