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Smoothed universal correlations in the two-dimensional AndersonmodelVille Uski1, Bernhard Mehlig2�, Rudolf A. R�omer1, and Michael Schreiber11Institut f�ur Physik, Technische Universit�at, D-09107 Chemnitz, Germany2Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, UK(Revision: September 1998 ; compiled September 4, 1998)AbstractWe report on calculations of smoothed spectral correlations in the two-dimensional Anderson model for weak disorder. As pointed out in (M.Wilkin-son, J. Phys. A: Math. Gen. 21, 1173 (1988)), an analysis of the smoothingdependence of the correlation functions provides a sensitive means of estab-lishing consistency with random matrix theory. We use a semiclassical ap-proach to describe these 
uctuations and o�er a detailed comparison betweennumerical and analytical calculations for an exhaustive set of two-point cor-relation functions. We consider parametric correlation functions with an ex-ternal Aharonov-Bohm 
ux as a parameter and discuss two cases, namelybroken time-reversal invariance and partial breaking of time-reversal invari-ance. Three types of correlation functions are considered: density-of-states,velocity and matrix element correlation functions. For the values of smooth-ing parameter close to the mean level spacing the semiclassical expressionsand the numerical results agree quite well in the whole range of the magnetic
ux.PACS numbers: 05.45.+b, 03.65.Sq, 71.23.-k, 73.23.-b Typeset using REVTEX1



I. INTRODUCTIONDisordered quantum systems in the metallic regime exhibit irregular 
uctuations of eigen-values [1], eigenfunctions [2] and also of matrix elements [3,4]. Parametric 
uctuations havebeen discussed in [5]. In the metallic regime, which is characterized by a large conductanceg � 1, such 
uctuations can be described by random matrix theory (RMT) [6] on energyscales smaller than the Thouless energy ED = g�, (� is the mean level spacing). Alterna-tively, semiclassical methods may be used in this regime, as suggested in [7]. A semiclassicalestimate for parametric correlations of level velocities is given in [8]. Matrix element correla-tions are discussed in [4,9,10]. Within a semiclassical approach it is essential to incorporatelevel broadening and work with smoothed correlation functions. The level broadening �needs to be larger or of the order of the mean level spacing, � �. This ensures that theperiodic orbit sums are truncated in such a way that only orbits with periods Tp shorterthan the Heisenberg time tH = 2�~=� contribute. The results reported in [8,9,11] predictcharacteristic dependences on the smoothing. As pointed out in [7], the smoothing depen-dence of the 
uctuations provides a sensitive means of establishing consistency with RMT.The semiclassical approach provides a natural approach of incorporating such a smoothing.In this paper, we report on extensive numerical calculations of correlation functions in thetwo-dimensional (2D) Anderson model of localization [12] in the metallic regime, comparealso [13]. In the limit of large g, the statistical properties of eigenvalues and eigenvectorsin this model can be described by RMT on energy scales smaller than the Thouless energyED = g�, compare [14{16].We calculate parametric correlation functions (where an Aharonov-Bohm 
ux is used asan external parameter) as well as 
uctuations in systems with weakly broken time-reversal(T)-symmetry. We calculate three types of correlation functions, namely correlations of thedensity of states [13], of velocities [8,13] and of matrix elements [4,7,9{11]. T-invarianceis broken by means of an Aharonov-Bohm 
ux �. According to RMT, 
uctuations in aT-invariant system, where � = 0, follow the statistics of the Gaussian orthogonal ensemble2



(GOE). At � ' �0=4, where �0 = hc=e denotes the 
ux quantum, T-invariance is fullybroken, and RMT predicts the behavior of the Gaussian unitary ensemble (GUE). For� � �0=4 T-invariance is only weakly broken. In this case the correlation functions aredescribed by the Pandey-Mehta ensemble [17]. The e�ect of a weak magnetic �eld can beexhibited particularly transparently within a semiclassical approach.All correlation functions calculated in the following will be expressed in terms ofsmoothed spectral densities. In the literature, Lorentzian [8] as well as Gaussian broadening[7,9] have been used. For numerical calculations, Gaussian broadened densities are muchmore convenient, since one invariably deals with �nite stretches of spectra, and boundarye�ects are less pronounced due to faster decaying tails in the Gaussian case.We calculate these correlation functions numerically, analyze the smoothing dependencein detail, and determine the three non-universal constants, namely the mean level spacing�, the conductance g and, in the case of matrix element correlations, the variance �2o� ofo�-diagonal matrix elements. We report on successes of and problems with the semiclassicalapproach in describing correlations in the Anderson model in the metallic regime.The article is organized as follows. In Sec. II, we recall those features of the semiclassicalapproach that will be used in the derivation of the correlation functions. In Sec. III we de-scribe the Anderson model of localization in the weakly disordered regime at �nite external
ux. In Sec. IV we study the correlation functions for the transition from the GOE to GUEtransition, and in Sec. V the parametric correlation functions, and compare the semiclas-sical formulae with the results from the numerical simulations of the Anderson model. InSec. VI we study the distribution functions of our results and compare them to theoreticalpredictions. We conclude in Sec. VII with a discussion of our results.II. THE SEMICLASSICAL APPROACH TO UNIVERSAL CORRELATIONSIn this paper, we calculate correlation functions of the following densities. We considerthe density of states de�ned as 3



d(E;�) =X� ��[E � E�(�)] : (1)Here, E�(�) are the quantum eigenvalues and ��(E) = (p2��)�1=2 exp (�E2=2�2). Second,we consider the density of parametric velocities [13,18,19]dv(E;�) =X� @E�@� ��[E � E�(�)] : (2)After unfolding (see the next section), the average level velocity is zero. Third, we computecorrelation functions involving a density of expectation valuesdm(E;�) =X� A�� ��[E � E�(�)] ; (3)with A�� = h �(�)j bAj �(�)i, where  �(�) are the eigenfunctions corresponding to E�(�).bA is an operator of some real-space observable, not commuting with the Hamilton operatorbH. It is assumed that hA��i = 0.In all cases, the corresponding densities are decomposed into a smooth and an oscillatorypart, d(E;�) = hd(E;�)i + ed(E;�) ; (4)where the �rst term denotes a mean contribution, and the second term is a 
uctuating partwhich vanishes upon disorder averaging. The mean parts of the densities (2) and (3) areapproximately zero.For all three densities, we calculate correlation functions of the typeC(�1; �2) = hed(E;�1) ed�(E;�2)iE : (5)The average h� � �iE denotes an appropriate average, e.g., over disorder realizations and/orenergy in the metallic regime. Semiclassically, such correlation functions can be calculatedusing a representation of the densities in terms of the classical periodic orbits [20],ed(E;�) = (6)12�~Xp;r wp;r Tp exp h� i~rSp(E) + 2�irnp ��0 � �2r2T 2p2~2 i :4



Here, the sum is over periodic orbits p and their repetitions r. The wp;r are the semiclassicalweights, including Maslov indices. In general they are complex quantities. Tp denote theperiods and Sp(E) the actions of the periodic orbits p. Their windings around the 
ux �are counted by the winding numbers np. Similar expressions can be derived for densitiesweighted with level velocities or matrix elements as shown e.g. in [7,8,11,21].Correlation functions of the type (5) thus involve double sums over periodic orbits. It isargued [22] that the average h� � �iE suppresses the non-diagonal contributions to this doublesum. This is certainly the case for � > �. Within the diagonal approximation which amountsto neglecting the non-diagonal contributions we obtainC(�1; �2) = 1(2�~)2 Xpr jwprj2 T 2p e��2r2T 2p =~2��e2�inp �1��2�0 + e2�i np �1+�2�0 � : (7)We can then make use of the sum rule [23]Xp jwpj2 T 2p f(Tp) ' Z T0 dT T f(T ) ; (8)which is valid when long periods Tp dominate the sum in (7). In order to apply (8) to(7), two further approximations are necessary. First, repetitions are neglected, the usualargument being that periodic orbits proliferate exponentially. Second, assuming that thewinding numbers are Gaussian distributed, Eq. (7) is averaged over the distribution ofwinding numbers P (n; T ) = (2��T )�1=2 exp(�n2=2�T ) [24]. The parameter � = 2D=L2,where D is the di�usion constant and L the system size. Evaluating the discrete averageover the winding numbers by Poisson summation, we then obtain the desired semiclassicalexpressions.We remark that the level broadening used in Eq. (1) ensures that the periodic orbit sumsare truncated in such a way that only orbits with periods Tp shorter than the Heisenberg timetH = 2�~=� contribute. We note that one could alternatively use a Lorentzian broadening[8]. For numerical calculations, Gaussian broadened densities are much more convenient,5



since one invariably deals with �nite stretches of spectra, and boundary e�ects are lesspronounced due to faster decaying tails in the Gaussian case.III. THE 2D ANDERSON MODEL OF LOCALIZATIONWe performed numerical simulations within the 2D Anderson model of localization [12],by diagonalizing the Hamiltonian with the help of the Lanczos algorithm [25]. In the site-basis the model Hamiltonian with periodic boundary conditions isbH =Xn jni�nhnj +Xn6=m jnitnmhmj ; (9)where jni represent the Wannier states at sites n in the N �N lattice. The on-site potentialenergies �n are taken to be uniformly distributed between �W=2 and +W=2. The hoppingparameters tnm are non-zero only for nearest-neighbor sites n;m and we set the energy scaleby choosing t = 1 for these sites. For convenience, we assume that the 2D model is embeddedin 3D and de�nes the xy-plane.In the presence of a magnetic �eld the hopping parameters acquire an additional fac-tor exp i2��=(�0N), where � is the magnetic 
ux, which a periodic orbit encircles in thehopping direction. This phase represents the Aharonov-Bohm e�ect on the system withperiodic boundary conditions under the magnetic 
ux. We use two magnetic 
uxes, �x and�y, corresponding to x- and y-directions. The corresponding phase of the hopping param-eter is exp i2�[�x=(�0N) + �y=(�0N)]. For completeness, we also study the in
uence of ahomogeneous magnetic �eld B in z-direction. In this case the hopping parameters are mul-tiplied by exp�i2�Bry=�0, when, e.g., hopping in x-direction. ry is the y-coordinate of thesite, and the sign is di�erent for opposite hopping directions. To maintain the appropriateperiodicity of the boundary conditions, B=�0 must then be chosen as an integer multiple of1=N . The hopping parameters in y-directions do not change due to B, when we choose thevector potential A in the Landau gauge A = (0; Bx; 0).The energy spectrum for a single realization of disorder still has an energy dependentdensity of states. In order to study the universal 
uctuations, we thus need to \unfold" the6



spectrum [14], such that the original set of eigenvalues fE�g is mapped to a new set f"�g,where "� = hN (E�; �)i = N (E�; �)� eN (E�; �); (10)where N (E;�) = R E�1 dE0d(E 0; �) is the integrated density of states, and eN (E�; �) is the
uctuating part of N (E;�). In practise we computed hN (E�; �)i by �tting the N (E�; �)data to a second order polynomial. Then we set the value of the polynomial at E� tohN (E�; �)i. This procedure works particularly well for a relatively small number of eigen-values, where the mean level spacing � is almost a constant. After unfolding, we have� = 1. We remark that an unfolding based on a cubic spline interpolation [14] does notwork so well in the present case.The semiclassical approach applies to weakly disordered systems and for parts of thespectrum, where the electron states spread throughout the system. Thus the conductanceg = tH=tD, with tD = L2=�D the Thouless time, should obey g � 1. However, in thein�nitely large 2D Anderson model, it is well-known that all states are localized for any�nite amount of disorder [26,27]. Nevertheless, for suitably weak disorder and at smallsystems, one can �nd large regions in the spectrum for which g � 1 [16], such that we neednot go to higher dimensions to test the semiclassical results. With zero 
ux the (unfolded)spectral 
uctuations of the 2D Anderson model in this limit of weak disorder are describedby the GOE of RMT [14,15,28]. Upon increasing the 
ux there is a transition to GUE [28].In order to test that we indeed are investigating a part of the spectrum in which universalityholds, we calculate the nearest-neighbor energy level spacing distribution and check thatthe statistics for zero 
ux is given by the Wigner-Dyson result for GOE, whereas for �nite
ux or magnetic �eld we have the GUE result [6]. In the following sections we consider thedependence of the spectral statistics on the magnetic 
ux �x � � in the x-direction. Themagnetic 
ux �y in the y-direction and the homogenous magnetic �eld in z-direction areused as convenient switches between GOE (�y = 0 and B = 0) and GUE (�y 6= 0 or B 6= 0)behavior. We note that for weak magnetic 
ux (�; �y � �0=4), time-reversal symmetry7



is only weakly broken and the statistical properties of the spectrum are described by thePandy-Mehta ensemble [17,28].IV. THE GOE TO GUE TRANSITIONIn this section, we will study the correlation functions of the density of states Cd(�), thedensity of level velocities Cv(�), and the density of matrix element correlations Cm(�) asfunctions of the external magnetic 
ux � = �x. Hence, we also have �y = 0, B = 0. Weshall always �rst consider the semiclassical derivation of these correlations and then turnour attention to a numerical computation within the 2D Anderson model.A. Density of statesWe �rst consider correlations of the density of states, as de�ned in Eq. (1), and calculatethe statistic Cd(�) = D���ed(E;�)���2EE ; (11)where h� � �iE denotes an average over a suitably chosen energy interval as explained in thelast section. Within the diagonal approximation [8] we obtainCd(�) = 12�2�2 1X�=�1 n1� p�2 ����2 exp����4 erfc����2� p�2 z exp(z2) erfc(z)o (12)with z = (� � 2�=�0)2=�2, �2 = �=�2�~ and erfc(z) the complementary error function[29]. This expression describes the crossover of the spectral properties from GOE to GUEbehavior, as the 
ux � is varied. A corresponding expression for a transition driven by amagnetic �eld was given in [30]. Note that Eq. (12) is periodic in � with period �0=2. Eq.(12) can be further simpli�ed in the limit of small � (with � > 1). We consider two cases,namely � = 0 and � = �0=4. In the �rst case, the system exhibits 
uctuations described bythe GOE, in the second case the 
uctuations are described by the GUE. We then have8



C(�) ' 2� 14�2�2 ; (13)where � = 1 in the GOE and � = 2 in the GUE. It must be emphasized that one requires� 1 for Eq. (12) to hold. This ensures that only orbits with periods Tp < tH contribute to(6). For small values of the level broadening, the diagonal approximation used in deriving(12) ceases to be valid [31]. On the other hand, in the limit of �� 1, one has [32]C(�) ' DX� �2� [E � E�(�)]E ' 12p�� ; (14)which is independent of �. In summary, one obtains for GOE and GUEC(�) = 8><>: 12p�� for � < �c;2� 14�2�2 for � > �c : (15)Thus the crossover between these two limiting behaviors occurs at �c ' ��3=2=�.Numerical results for the density of statesWe obtained numerical data from the 2D Anderson model for 90 samples of di�erentrealizations of disorder with W = 2:4, using 
ux values �=�0 = 0; 0:007; 0:014; : : : ; 0:497.Larger values are not needed because of the periodicity of Cd in �0=2. There were 27�27 sitesin the system. For each disorder realization we computed 100 subsequent energy eigenvaluesEi 2 [�3:4;�1:9], thereby avoiding contributions from localized states in the band tails andfrom nearly ballistic states at the band center. We remark that the mean density of levelsis already nearly constant for this interval and thus the second order polynomial is ideal forthe unfolding procedure. After unfolding these eigenvalues, we calculated the Wigner-Dysonstatistics P (s) for nearest-neighbor level spacings. As shown in Fig. 1, we �nd for 
ux � = 0that P (s) follows the GOE behavior. For 
ux values close to �0=4, we have P (s) of theGUE. Thus with this choice of parameters we are indeed in the ergodic regime of the modelas required.The comparison between the results for the Anderson model, averaged over all disorderrealizations, and the semiclassical approximation with di�erent broadening values � in units9



of � is shown in Fig. 2. The agreement is the best for � 1, as expected. For smaller valuesthere are deviations near the GOE cases � = 0 and � = 0:5�0. The constant � = 1:21 usedin plotting Fig. 2 was determined from the statistics of level velocities, as we explain belowin section IVB. We emphasize that in Fig. 2 and throughout the rest of this paper, we havenot symmetrized our data with respect to the periodicity in �0. Thus the slight deviationsfrom periodicity at �0=2 re
ect the accuracy of our data.In Fig. 3 we show the small �-behavior of Cd. The crossover, predicted in Eq. (15) at�c ' ��3=2=� � 0:18=�, can be seen to occur between the values 0:03 < � < 0:8 for theGOE, and 0:03 < � < 0:15 for the GUE. The upper limits of the intervals in each case canbe considered as lower boundaries for the validity range of the diagonal approximation. Theupper validity range of the diagonal approximation can also be inferred from Fig. 3 to beclose to 4:5 for GOE and 1:7 for GUE.B. Density of level velocitiesNext we consider 
uctuations of the density of level velocities, and compute the statisticCv(�) = D���edv(E;�)���2EE : (16)Within the diagonal approximation, we obtainCv(�)= �~� 1X�=�1 nh1 + 4����4ip� exp����4 erfc����2�4��� �2 � [1 + 4z2]p� exp(z2) erfc(z)� 4zo (17)with z and � as in Eq. (12). For small � (and with � > 1), one obtains the following limitingbehaviour Cv(�) ' 8><>: 0 for � = 0 ,p��~=� for � = �0=4 . (18)Alternatively, in the limit of very small �, we obtain in analogy with Eq. (14)10



Cv(�) ' DX� �@E�@� �2 �2� [E � E�(�)]E ' �2diag2p�� ; (19)where �2diag is the variance of the level velocities @E�=@�. For � = 2, we have [33]�2diag(E) = �2o�(E) ; (20)where �2o�(E) = *�@H@� �2��0+ E�'E�0'E�6=�0 : (21)With �2o�(E) = 2�~� (see section V) we obtain for the GUE case (� = 2)Cv(�) = p� �~� : (22)This implies that the semiclassical result of Eq. (18), obtained within the diagonal approxi-mation, remains valid for small � [as opposed to the estimate (14)]. We remark that whilethis is true for the GOE (� = 0; �0=2) and GUE (� = �0=4) cases, it is no longer true in thetransition regime [28]. It will be seen in the next section that similar arguments apply to
uctuations of matrix elements.Numerical results for the density of level velocitiesUsing the same data as for the density of states correlations, we computed Cv for theAnderson model with di�erent broadenings, as shown in Fig. 4. In this case the agreementwith the semiclassical approximation is good even around � = 0 and � = �0=2, i.e. in theGOE case. We remark that the shoulders visible in Fig. 4 around � = 0:07�0 and 0:43�0 forthe semiclassical expressions at small � are an artefact of our approximation for � < �.The parameter � was determined from the small �-behavior of the Cv by �tting thenumerical results to Eq. (22) as shown in Fig. 5. The agreement of the small �-behavior ofthe numerical data with Eq. (22) is rather good. Indeed, the agreement is good for all valuesof �, as expected from Eq. (18) and discussed above. An alternative way is to compute ahistogram for the level velocities in the unitary case and to use Eq. (20) and the estimate11



�2o�(E) = 2�~�. This is shown in Fig. 6. Both methods do not give exactly the samevalue of � due to numerical accuracy and the limited number of samples. With the formermethod we estimate a value � = 1:2� 0:1, and with the latter one � = 1:4� 0:2, where theerror limits represent the standard deviation of the values obtained for di�erent realizationsof disorder. We have chosen the value � = 1:21 such that the overall agreement of eachcorrelation function in Fig. 4 is as good as possible for all � and all � 0:3. We emphasizethat such an agreement is very sensitive on the actual value of � chosen. Furthermore, weneed to assume that � remains constant for all �. As we will show later, this assumption isat least questionable for the Anderson model.C. Density of matrix elementsIn this section we turn to 
uctuations of expectation values and consider the statisticCm(�) = D���edm(E;�)���2EE (23)and obtain, again in the diagonal approximation,Cm(�) = �2o�(E)2p�� 1X�=�1� n exp��� �4 erfc����2 + exp(z2) erfc(z)o (24)with z and � as in Eq. (12). Moreover, �2o�(E) is the variance of non-diagonal matrixelements �2o�(E) = 
jA��0j2� E� 'E�0'E�6=�0 : (25)Correspondingly, �2diag(E;�) is the variance of diagonal matrix elements. Unlike �2o� itdepends on the value of the 
ux �. In the limiting cases of GOE and GUE, the variancesare related as �2diag(E;�) = 2��2o�(E) : (26)12



In the limit of small �, one obtains for GOE and GUE,Cm(�) ' 2� �2o�2p�� : (27)We shall now argue that these results, derived assuming � 1, remain valid in the limit ofsmall �. Proceeding as in the previous section, we obtain for small �Cm(�) ' �2diag2p�� = 2� �2o�2p�� ; (28)which is the same as Eq. (27) calculated for � 1.Numerical results for the density of matrix elementsWe computed eigenvalues and the expectation values of the diagonal matrix elements xnnfor the dipole moment operator x̂ in the site-basis for 69 di�erent realizations of disorderW = 2:4 in the Anderson model at 
ux �=�0 = 0; 0:007; : : : ; 0:497. We obtained Cm withdi�erent broadenings � as shown in Fig. 7. Here the agreement is reasonable, but not as goodas in the two previous cases. We note that the small � behavior is much better describedby the universal � = 0 term than by the complete expression of Eq. (24).We emphasize that for the present correlation, we had to determine two constants de-scribing the system, namely, � and �2o�. This makes it even more important to have variousindependent ways of computing them. The variance �2o� of the o�-diagonal matrix elementscan be determined from the diagonal elements in a similar way as the determination of thedi�usion constant from the level velocities. Namely, we can use the small �-behavior of Eq.(27) as shown in Fig. 8. Interestingly, we �nd that although Eq. (27) is expected to remainvalid for � ' 1, there are already strong deviations of our numerical data from the behaviorpredicted by Eq. (27). This may indicate that the approximations used in the derivationof Eq. (24) are less reliable for the matrix element correlations than for density of statesand velocity correlations. We can also use the histogram of the diagonal matrix elementsas shown in Fig. 9. Both methods give slightly di�erent values for �2o� in GOE and GUE,13



whereas we assumed in the derivation of the semiclassical formulae that �2o� is independenton the magnetic 
ux. For GOE we obtain a value around �2o� = 0:7 � 0:1 and for GUE�2o� = 0:8 � 0:2. Both estimates are compatible within the error limits, though. In Fig. 8,we choose �2o� = 0:65 in order to get the best overall agreement between Eq. (24) and ournumerical results. Also, we have again used � = 1:21 as an estimate of 2D=L2 as in theprevious sections.Keeping in mind the sensitivity of the expressions (12), (17), and (24) to the actual valuesof � and �2o�, we can conclude this section by noting that our numerical data for the 2DAnderson model in the ergodic regime show the main features predicted for the correlationsand convincingly exhibit the GOE to GUE transition.V. PARAMETRIC STATISTICSIn this section, we will study the parametric correlation functions of the density of statesKd(��), the density of level velocities Kv(��), and the density of matrix elementsKm(��)as functions of the di�erence in external magnetic 
ux �� = ��x, averaged over di�erent
ux values �. Since, as studied in the previous section, the spectral properties change fromGOE to GUE as � is varied, we introduce an additional 
ux �y = �0=4 in the transversedirection, so as to have spectral statistics according to the GUE for all values of �. Again, weshall start by �rst considering the semiclassical derivation of these parametric correlationsand afterwards compare to numerical data from the 2D Anderson model.A. Density of statesFor the parametric case we de�ne [13]Kd(��) = hed(E;�)ed�(E;�+��)iE;� ; (29)where h� � �iE;� denotes an average over E and �. One obtains within the diagonal approxi-mation 14



Kd(��) = 1X�=�1 14�2�2 �1 �p� z exp(z2) erfc(z)	 (30)with z = (� +��=�0)2=�2 and �2 = �=�2~�.Numerical results for the density of statesWe computed 69 realizations of disorder for the 2D system with 27 � 27 sites and adisorder strength W = 1:7, using the same part of the spectrum as previously and 
uxvalues �=�0 = 0; 0:01; 0:02; : : : ; 1:0. P (s) re
ects the GUE, as in Fig. 1, for all values of �due to the additional transverse 
ux �y. In Fig. 10, we show the comparison between thesemiclassical expression (30) and the numerical data. The agreement is very good for allvalues of �.The parameter � was determined in the same way as in the GOE to GUE transition insection IV. Because the system had been made unitary by introducing an additional 
ux �y,Eq. (22) is valid for all values of �. Consequently, the �tting procedure for the small �-valuesshould give the same � for all the 
ux values, and the histogram of the level velocities shouldhave the same variance. However, we found di�erences, which cannot be explained only bythe error bars. This has been illustrated in Fig. 11. The value � = 2:5, used in Fig. 10was chosen such that the agreement is the best for all ��, all � and all three parametriccorrelations.We also usedW = 2:4 as in section IV for the GOE to GUE transition and computed theparametric correlations. But in this case the agreement between the semiclassical theory andthe data obtained from the Anderson model is slightly less convincing than with W = 1:7.B. Density of level velocitiesFor the parametric correlation of the density of level velocities, we de�ne [13]Kv(��) = hedv(E;�)ed�v(E;�+��)iE;� : (31)15



Within a semiclassical approach, we obtainKv(��) = �~� 1X�=�1�n(1 + 4z2)p� exp(z2) erfc(z)� 4zo (32)with z and � as in Eq. (30) and for Gaussian broadening. This expression is periodic in ��with period �0. It has previously been derived in [8], using Lorentzian broadening, see also[34]. Comparing the � = 0 term of Eq. (32) with the corresponding expression�2o�(E)2�� n(1 + 4z2)p� exp(z2) erfc(z)� 4zo (33)obtained from a Brownian motion model [9], we have �2o�(E) = 2�~� (compare section IV).Numerical results for the density of level velocitiesUsing the same data as in section VA for the density of states, we computed the para-metric statistics for the density of level velocities for the Anderson model. The comparisonwith Eq. (32) can be seen in Fig. 12. The agreement with the semiclassical approxima-tion is again very good. We remark that the overestimation of the minima in Kv around�� = 0:1�0 and 0:9�0 for the semiclassical expressions at small � 0:1 is an artefact of thediagonal approximation [4]. C. Density of matrix elementsLastly, we consider the parametric correlation Km(��) of matrix elements, i.e.,Km(��) = hedm(E;�)ed�m(E;�+��)iE;� : (34)As before we obtain [9] Km(��) = �2o�2p�� 1X�=�1 exp(z2) erfc(z) (35)16



within the diagonal approximation and with z and � as in Eq. (30). We have assumed thatthe mean density of states hdi is essentially energy- and 
ux-independent. Moreover, wehave neglected the energy-dependence of the o�-diagonal variance.Numerical results for the density of matrix elementsIn Fig. 13, we show the comparison between semiclassical and numerical results for theparametric statistics of the matrix elements of the dipole moment operator using the samedata as for the two previous parametric correlations. The agreement here is even betterthan in the GOE to GUE transition. This is noteworthy, because of the large discrepanciesbetween the values of � for di�erent 
ux values (cp. Fig. 11) which we neglected in thesemiclassical derivation of Eq. (35). The o�-diagonal variance �2o� was determined in thesame way as in section IV for the GOE to GUE transition, giving �2o� = 0:50�0:05. We getdi�erent values for di�erent 
ux values as for the di�usion constant, but the variations aremuch smaller. By calculating directly the variance of the matrix elements between nearest-neighbor sites we get a slightly larger value �2o� = 0:65�0:05. Here, the error bars representthe deviations from the average value for di�erent 
ux values.Thus in summary, we �nd that as in section IV, the general behavior of the data obtainedfor the 2D Anderson model in the GUE case is very well reproduced by the semiclassicalexpressions (30), (32), and (35). In fact, the agreement is even better than in section IV.VI. DISTRIBUTIONSThe distributions of level velocities [13], shown in Fig. 6, and of the diagonal matrixelements of the dipole moment operator, in Fig. 9, are well approximated by Gaussiandistributions, as predicted in random matrix theory. According to Eq. (25) the variance ofthe matrix elements in the GOE case (� = 0) should be approximately two times largerthan in the GUE case (� � �0=4). We obtain a factor of �2diag(� = 0)=�2diag(� � �0=4) �(1:3� 0:2)=(0:8� 0:1) = 1:6� 0:5 in agreement with this prediction, although the standard17



deviations are quite large. We again emphasize that the level spacing distributions obey theWigner-Dyson statistics, predicted in random matrix theory, as shown in Fig. 1 for all thedisorders and magnetic �elds chosen in our work.We also calculated the distributions of the o�-diagonal elements A��0 with E� ' E�0.We �nd that their distribution is also well approximated by a Gaussian as shown in Fig.14. The corresponding variance �2o� should be independent of the magnetic 
ux. This isapproximately true for our data. With disorder W = 2:4 we get �2o� = 0:8 � 0:2 in GOE(�x = �y = 0), and 0:9 � 0:2 in GUE (�x = �0=4, �y = 0) and with W = 1:7, we �nd�2o� = 0:7 � 0:2 at �x = 0, �y = �0=4 and 0:6 � 0:2 at �x = �y = �0=4. The error barsrepresent again the standard deviations of the values obtained for di�erent realizations ofdisorder. VII. CONCLUSIONSIn this paper, we have reported on extensive calculations of smoothed correlation func-tions in the 2D Anderson model of localization. We have calculated correlation functions ofenergy levels, their parametric derivatives and of diagonal matrix elements in the metallicregime (g � 1). For two cases, namely for parametric correlations and for 
uctuations in thetransition regime between GOE and GUE, we have presented detailed comparisons of ournumerical results with semiclassical theory, focussing on the dependence of the 
uctuationson the level broadening.Our results can be summarized as follows. First, one expects the semiclassical theoryto be appropriate for level-broadenings in the range of 1 < � � g (with � in units of �).Comparison with asymptotic expressions for small � [Eqs. (14), (22) and (28)] shows that thelower bound actually extends to �c ' ��3=2=� for density-of-states 
uctuations. In the caseof 
uctuations of level velocities and matrix elements, moreover, the diagonal approximationremains valid for arbitrarily small �. This is simply due to the fact that the additional factorsin Eqs. (2) and (3) are essentially random and help to suppress o�-diagonal contributions18



to (7). Our numerical results verify these conclusions.Second, at large values of � we observe deviations from the universal theoretical results,as expected. This is evident in Figs. 3, 5 and 8. The value of the conductance in this caseis g = 12� 3. Interestingly, in Fig. 8 in particular, we observe deviations from the universalprediction at considerably smaller values of �. From this we conclude that 
uctuations ofmatrix elements are particularly sensitive to non-universal e�ects. This is consistent withthe following observation. In the universal regime, the semiclassical expressions derived inthis paper should be dominated by those terms for which j� � 2�=�0j is minimal. However,in the case of matrix element 
uctuations, non-universal contributions are particularly large(compare Fig. 7). This is not surprising since it can be shown that short periodic orbitsmake large, non-universal contributions to Cm(�).Third, in the case of parametric 
uctuations (Figs. 10, 12 and 13) we observe excellentagreement with the semiclassical predictions. This is due to the fact that (i) these numericalresults are averaged over a considerably larger ensemble and (ii) that the conductance islarger (g = 24 � 5).Fourth, we emphasize that in our case the parameters g and �2o�(E) are found to dependon the magnetic 
ux (compare Fig. 11). The 
ux dependence turned out to be moreprominent with the smaller disorder strength we used. That is why our numerical resultsfor the correlations in the GOE to GUE transition agrees better with the semiclassicalformulae with W = 2:4 than with W = 1:7, even if the conductance is smaller in the formercase. Within the framework of the semiclassical theory g and �2o�(E) are expected to beindependent of � since an Aharonov-Bohm 
ux does not change the classical mechanics.Fifth, we have veri�ed the relation between the variances of diagonal and non-diagonalmatrix elements in the GOE and GUE. The agreement of our numerical results with theprediction is reasonably good [35].In summary, we have shown to which extent 
uctuations in the 2D Anderson model areaccurately described by universal semiclassical formulae. We have found, in particular, thatthe 
uctuations depend sensitively on the level-broadening and that this dependence can19



be used to assess consistency with RMT, as originally suggested in [7]. This is particularlyimportant for the following reason. In order to test recent predictions [36] on the e�ect ofincipient localization on the 
uctuations of wave-function amplitudes in the 2D Andersonmodel it is essential to have an accurate and quantitative understanding of the metallicregime. ACKNOWLEDGMENTSV.U. would like to thank F. Milde for help with using the Lanczos algorithm and thank-fully acknowledges �nancial support by the DAAD. V.U. and R.A.R. gratefully acknowledgesupport by the DFG as part of Sonderforschungsbereich 393.
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FIG. 1. Histograms for energy level spacings of the unfolded energies for all samples withdisorder W = 2:4 and a system size N2 = 272. The (smooth) lines denote the GOE (solid) andGUE (dotted) Wigner-Dyson distributions [6] for � = 0 and �=�0 = 0:25� 0:05, respectively.
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FIG. 2. GOE to GUE transition for density of states correlations according to Eq. (12) (solidlines) and corresponding results from the numerical simulations of the Anderson model (symbols).The parameter � = 1:21 and � = 0:316 (�), 0:447 (�), 0:631 (2), 0:891 (3), 1:26 (4), 1:78 (+),2:51 (�). 25
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FIG. 4. GOE to GUE transition for level velocity correlations according to Eq. (17) (solid lines)and corresponding results from the numerical simulations of the Anderson model (symbols). Theparameters are the same as in Fig. 2. We additionally include the broadenings � = 0:158 (5) and0:224 (�). 27
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FIG. 6. Distribution of level velocities averaged over 
ux values �=�0 = 0:175; : : : ; 0:329 and 90di�erent realizations of disorder for W = 2:4. The line represents a �t by a Gaussian distribution.
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FIG. 7. GOE to GUE transition for matrix element correlations according to Eq. (24) (solidlines) and corresponding results from the numerical simulations of the Anderson model (symbols).The parameters are the same as in Fig. 4 and the o�-diagonal variance is taken to be �2o� = 0:65.The dashed lines indicate the � = 0 term of Eq. (24) for small �.30
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31



−4 −2 0 2 4
xn,n

0.0

0.1

0.2

0.3

0.4

0.5

P
(x

n,
n)
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FIG. 10. Parametric correlations of density of states according to Eq. (30) (solid lines) comparedto the numerical results for the Anderson model (symbols) as a function of ��. The parametersare W = 1:7, � = 2:5 and � = 0.112 (�), 0.158 (5), 0.224 (�), 0.316 (�), 0.447 (�), 0.631 (2),0.891 (3), 1.26 (4). The curves have been shifted by multiples of 0:1 for clarity.33
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FIG. 11. Parameter � = 2D=L2 for the Anderson model, determined by �tting Eq. (22) to thedata (3) and from the variance of the level velocities () with W = 1:7 and di�erent 
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FIG. 12. Parametric correlations of level velocities according to Eq. (32) (solid lines) comparedto the numerical results for the Anderson model (symbols) as a function of ��. The parametersare the same as in Fig. 10. The curves have been shifted by multiples of 1 for clarity.35
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FIG. 13. Parametric correlations of matrix elements according to Eq. (35) (solid lines) com-pared to the numerical results for the Anderson model (symbols) as a function of ��. The param-eters are the same as in Fig. 10 and �2o� = 0:48 has been used. The curves have been shifted bymultiples of 0:1 for clarity. 36
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FIG. 14. Distribution of real and imaginary parts of the o�-diagonal dipole matrix elements at
ux values � = 0 (�lled symbols) and � = �0=4 (open symbols). Additionally, �y = 0 for W = 2:4(�) and �y = �0=4 for W = 1:7 (�). The lines represent �ts by Gaussians. The distributions forW = 1:7 have been shifted by 0:2 for clarity.
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