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Abstract The two-dimensional interface crack problem is investigated for ani-
sotropic bodies in the Comninou formulation. It is established that, as in the
isotropic case, properly incorporating contact zones at the crack tips avoids con-
tradictions connected with the oscillating asymptotic behaviour of physical and
mechanical characteristics leading to the overlapping of material. Applying the
special integral representation formulae for the displacement field the problem in
question is reduced to the scalar singular integral equation with the index equal
to −1. The analysis of this equation is given. The comparison with the results of
previous authors shows that the integral equations corresponding to the interface
crack problems in the anisotropic and isotropic cases are actually the same from
the point of view of the theoretical and numerical analysis.

1 Introduction

This paper is concerned with two-dimensional mathematical problems of solid-solid inter-
action. We consider in IR2 two elastic half-planes x2 > 0 and x2 < 0 filled up by different
anisotropic materials which are coupled via the x1 axis. In addition, this solid structure
contains an interface crack (cut) of finite length. The conventional formulation of the prob-
lem, which assumes that the two faces of the crack are traction free and outside of the crack
the rigid contact conditions (continuity of the displacements and stresses) are given, leads
to contradictions. This is connected with the oscillating asymptotic behaviour of solutions
near the tips of the crack which exibits overlapping of material (for details see [7], [12], [3],
[4], [5], and references therein).

M.Comninou in [3], [4] considered an alternative version of the above mixed interface
problem in isotropic case. The basic idea of the new approach is that the crack faces are
always in contact at the very tips of the crack. Mathematically it means that the crack (cut)
interval is devided into three subintervals: two of them are contact intervals, one-sided small
vicinities of the tips of the crack, and the third one (the middle interval) corresponds to the
open traction free part of the crack. On these contact intervals special type transmission
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conditions are given which describe that the normal components of the displacement and the
stress vectors are continuous on the contact interval, while the tangent components of the
stress vector vanish on the same contact interval. The Comninou formulation of the interface
crack problem is free of the above contradictions. Moreover, we note that the interface crack
problem in Comninou formulation is uniquely solvable (see [15]). This approach has been
considered and studied by a lot of authors. An exhaustive information concerning theoretical
and numerical results for the isotropic case can be found in [3], [4], [5], [6], [8], [9], [10], [15].

As to the general anisotropic case, to the authors’ best knowlege, the above problem has
not been treated systematically in the scientific literature. In the present paper we apply
special potential type intregral representation formulae for the displacement vector (obtained
in [1], [2]) and investigate the above interface crack problem in the Comninou formulation.
We reduce the problem to the scalar singular integral equation of index −1 and give the
corresponding analysis. The equation in anisotropic case is quite similar to the equation
obtained by Gautesen and Dundurs in [9], [10] for the isotropic case. Therefore, applying
the same approach as in [8], [9], and [10] one can solve explicitly the singular integral equation
corresponding to the anisotropic case.

2 Formulation of the Problem

Denote by S(0) the upper half-plane (x2 > 0) and by S(1) the lower half-plane (x2 < 0). We

assume that the domains S(j) are filled up by anisotropic materials with elastic constants A
(j)
11 ,

A
(j)
12 , A

(j)
13 , A

(j)
22 , A

(j)
23 , and A

(j)
33 , j = 0, 1. The common boundary (x1-axis) of the above two

half-planes will be referred to as the contact line l. In what follows we will use the superscript
(j) with the physical characteristics corresponding to the domain S(j). Sometimes we will
omit the superscript (j) when this causes no confusion.

The system of equations of elastostatics in the anisotropic case, sans body forces, reads
as ([11])

A11
∂2u1

∂x2
1

+ 2A13
∂2u1

∂x1∂x2

+ A33
∂2u1

∂x2
2

+ A13
∂2u2

∂x2
1

+ (A12 + A33)
∂2u2

∂x1∂x2

+ A23
∂2u2

∂x2
2

= 0,

A13
∂2u1

∂x2
1

+ (A12 + A33)
∂2u1

∂x1∂x2
+ A23

∂2u1

∂x2
2

+ A33
∂2u2

∂x2
1

+ 2A23
∂2u2

∂x1∂x2
+ A22

∂2u2

∂x2
2

= 0, (2.1)

where u = (u1, u2)
⊤ is the displacement vector, and x = (x1, x2) ∈ S(j) ⊂ IR2. Here and in

what follows ⊤ denotes transposition.
The stress components σx1 , σx2 , τx1x2, and the strain components εx1, εx2, εx1x2 are related

by Hook’s law

σx1 = A11εx1 + A12εx2 + A13εx1x2 ,

σx2 = A12εx1 + A22εx2 + A23εx1x2 ,

τx1x2 = A13εx1 + A23εx2 + A33εx1x2 , (2.2)

where

εx1 =
∂u1

∂x1
, εx2 =

∂u2

∂x2
, εx1x2 =

∂u1

∂x2
+

∂u2

∂x1
. (2.3)
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The positive definiteness of the potential energy implies that ([11])

A11 > 0, A22 > 0, A33 > 0,

A11A22 − A2
12 > 0, A11A33 − A2

13 > 0,

A22A33 − A2
23 > 0,

∆ = det




A11 A12 A13

A12 A22 A23

A13 A23 A33




> 0. (2.4)

In the isotropic case

A11 = A22 = λ + 2µ, A12 = λ, A13 = A23 = 0, A33 = µ, ∆ = 4µ2(λ + µ),

where λ and µ are the Lamé constants.
As it has been indicated in the introduction, we follow the mathematical model of

M.Comninou developed in ([3], [4]) for the interface crack problem and assume that we
have an interface crack (cut) along the segment [−L, L] on the contact line. According to
the Comninou approach outside of the cut (|x1| > L) we have the perfect bond (the rigid
contact conditions) between the two materials. Moreover, the crack interval (−L, L) is dev-
ided into the three subintervals (−L,−a), (−a, b), and (b, L), where the different boundary
and contact conditions are given describing that the middle (open) part (−a, b) of the crack
is free of tractions, while the two remaining intervals represent small one-sided vicinites of
the tips of the crack and are the contact zones with special contact conditions (see below
the formulation of problem (C)). We observe that in this model the constants a and b are
unknowns and they must be determined in the course of solution.

In addition, we provide that the following conditions

σ∞

x2
= T, τ∞

x1x2
= S, (2.5)

where T and S are given real constant numbers, are fulfilled at infinity.
Problem (C). Find regular solutions u(j) to the system (2.1) in S(j) (j = 0, 1) satisfying

the following interface and boundary conditions on the contact line l

i) [u(0)]+ = [u(1)]−, [σ(0)
x2

]+ = [σ(1)
x2

]−, [τ (0)
x1x2

]+ = [τ (1)
x1x2

]−, (2.6)

x2 = 0, |x1| > L,

ii) [u
(0)
2 ]+ = [u

(1)
2 ]−, [σ(0)

x2
]+ = [σ(1)

x2
]−, [τ (0)

x1x2
]+ = [τ (1)

x1x2
]− = 0, (2.7)

x2 = 0, x1 ∈ (−L,−a) ∪ (b, L),

iii) [σ(0)
x2

]+ = [σ(1)
x2

]− = 0, [τ (0)
x1x2

]+ = [τ (1)
x1x2

]− = 0, x2 = 0, x1 ∈ (−a, b), (2.8)

where a and b are unknown real numbers (0 < a < L, 0 < b < L), and where the symbols
[·]+ and [·]− denote limits on l from S(0) and S(1), respectively.

By a regular solution to the system (2.1) is understood a two-dimensional vector u(j) =

(u
(j)
1 , u

(j)
2 )⊤ such that:

a) u(j) ∈ C(S(j)) ∩ C2(S(j)),
b) the corresponding stress components σ(j)

x1
, σ(j)

x2
, and τ (j)

x1x2
(see (2.2)) are continuously

extendible on the whole x1 axis except the points {−L; −a; b; L} in the vicinity of which
they have integrable singularities,
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c) for sufficiently large |x| = (x2
1 + x2

2)
1/2

u(j)(x) − u(j)
∞

(x) = O(1), (2.9)

∂

∂xk

[
u(j)(x) − u(j)

∞
(x)
]

= O(|x|−2), k = 1, 2, (2.10)

where

u(j)
∞

(x) =
1

A
(j)
22 A

(j)
33 − (A

(j)
23 )2




A
(j)
22 S − A

(j)
23 T

A
(j)
33 T − A

(j)
23 S


 x2. (2.11)

3 Preliminary material

In this section we collect some auxiliary material connected with the potential method in
the two-dimensional elasticity theory of anisotropic bodies.

3.1. First let us note that the conditions (2.2) and (2.4) imply

εx1 = a11σx1 + a12σx2 + a13τx1x2,

εx2 = a12σx1 + a22σx2 + a23τx1x2,

εx1x2 = a13σx1 + a23σx2 + a33τx1x2, (3.1)

where a11, a12, · · · , a33 are the entries of the matrix [akj ]3×3 inverse to [Akj]3×3 and satisfy
the conditions similar to (2.4).

In the isotropic case we have

a11 = a22 =
λ + 2µ

4µ(λ + µ)
, a12 = − λ

4µ(λ + µ)
, a13 = a23 = 0, a33 =

1

µ
.

We recall that the so-called characteristic equation of the system (2.1) (see [11])

a11α
4 − 2a13α

3 + (2a12 + a33)α
2 − 2a23α + a22 = 0 (3.2)

possesses only the complex roots

αk = ak + ibk, ᾱk = ak − ibk, (bk > 0), k = 1, 2. (3.3)

In the isotropic case α1 = α2 = i.
3.2. The fundamental matrix of solutions to the system (2.1) has been constructed by

M.Basheleishvili in [1]

Γ(z, t) = Im
2∑

k=1




Ak Bk

Bk Ck


 ln σk, (3.4)

where

Ak = − 2

∆a11

(A22α
2
k + 2A23αk + A33)dk,

Bk =
2

∆a11
(A23α

2
k + (A12 + A33)αk + A13)dk,

Ck = − 2

∆a11
(A33α

2
k + 2A13αk + A11)dk,

d−1
1 = (α1 − ᾱ1)(α1 − α2)(α1 − ᾱ2), d−1

2 = (α2 − α1)(α2 − ᾱ1)(α2 − ᾱ2); (3.5)

4



here z = x1 + ix2 and t = y1 + iy2 are arbitrary points in the plane, and

σk = zk − tk, zk = x1 + αk x2, tk = y1 + αk y2.

In the sequel we will use the notation v(z) for the function v(x1, x2) of the variables x1 and
x2.

The coefficients Ak, Bk, and Ck satisfy the equations

AkCk − B2
k = 0, k = 1, 2. (3.6)

Next, we set (see [1])

C = 2i
2∑

k=1

dk, A = 2i
2∑

k=1

αkdk, B = 2i
2∑

k=1

α2
kdk. (3.7)

It is easy to show that

C > 0, B > 0, BC − A2 > 0. (3.8)

From (3.7) it follows that

dk = − i

2
(Csk − Ark), αkdk = − i

2
(Apk − Cqk),

α2
kdk = − i

2
(Bpk − Aqk), Apk − Cqk = Ask − Brk, (3.9)

where

rk =
(−1)k

α1 − α2
, sk =

(−1)kα1α2

αk(α1 − α2)
, pk = −αkrk, qk = −αksk. (3.10)

These equations yield



pk qk

rk sk


 =

2idk

BC − A2




α2
k −αk

−αk 1







C A

A B


 ,

2∑

k=1




pk qk

rk sk


 =




1 0

0 1


 =: E. (3.11)

In what follows we shall also use the abridged notation

P(k) :=




pk qk

rk sk


 . (3.12)
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The stress vector T (∂z, n)u(z), acting on an arc element with the unit normal vector n =
(n1, n2), and the corresponding stress operator T (∂z, n) are calculated by the formulae

[T (∂z, n)u(z)]1 = σx1n1(z) + τx1x2n2(z),

[T (∂z, n)u(z)]2 = τx1x2n1(z) + σx2n2(z),

T (∂z, n) = [Tkj(∂z, n)]2×2,

T11(∂z, n) = n1(z)

(
A11

∂

∂x1
+ A13

∂

∂x2

)
+ n2(z)

(
A13

∂

∂x1
+ A33

∂

∂x2

)
,

T12(∂z, n) = n1(z)

(
A13

∂

∂x1
+ A12

∂

∂x2

)
+ n2(z)

(
A33

∂

∂x1
+ A23

∂

∂x2

)
,

T21(∂z, n) = n1(z)

(
A13

∂

∂x1

+ A33
∂

∂x2

)
+ n2(z)

(
A12

∂

∂x1

+ A23
∂

∂x2

)
,

T22(∂z, n) = n1(z)

(
A33

∂

∂x1
+ A23

∂

∂x2

)
+ n2(z)

(
A23

∂

∂x1
+ A22

∂

∂x2

)
. (3.13)

Taking into account (3.6) we get

[T (∂t, n)Γ(z, t)]⊤ = Im
2∑

k=1




Nk Mk

Lk Rk




∂ ln σk

∂s(t)
, (3.14)

where

Mk = − 2

a11

(a11α
2
k − a13αk + a12)dk, Rk = − 2

a11αk

(a12α
2
k − a23αk + a22)dk,

Nk = −αkMk, Lk = −αkRk,
∂

∂s(t)
= n1(t)

∂

∂y2

− n2(t)
∂

∂y1

. (3.15)

We have also the following relationship between the above coefficients



Nk Lk

Mk Rk


 =




pk qk

rk sk


+ 2ωdk




αk α2
k

−1 −αk


 , (3.16)

where

ω = b1b2 − a1a2 +
a12

a11

. (3.17)

The equations (3.9) imply



Nk Lk

Mk Rk


 =




pk qk

rk sk







1 − iωA −iωB

iωC 1 + iωA


 . (3.18)

Further, since αk represents the root of the equation (3.2), with the help of the Vieta’s
theorem we see that

Ak =
a11

2dk
M2

k , Bk =
a11

2dk
MkRk, Ck =

a11

2dk
R2

k. (3.19)
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Whence due to (3.11) and (3.16)




Ak Bk

Bk Ck


 =




Nk Mk

Lk Rk








ia11

BC − A2




C A

A B


+ ωa11




0 1

−1 0








. (3.20)

Therefore, from (3.18) and (3.20) we derive

2∑

k=1




Nk Lk

Mk Rk


 =




1 − iωA −iωB

iωC 1 + iωA


 , (3.21)

2∑

k=1




Ak Bk

Bk Ck


 =

im

BC − A2




C A

A B


 , (3.22)

where

m = a11(1 − ω2(BC − A2)). (3.23)

We note that the constants ω and m introduced above are positive [1]

ω > 0, m > 0. (3.24)

Furthermore, let us introduce the so-called pseudo-stress operator which will be essen-
tially amployed in the next sections

N(∂z , n)u(z) = T (∂z, n)u(z) + κN




0 1

−1 0




∂u(z)

∂s(z)
, (3.25)

where

κN = ω(BC − A2)m−1 > 0. (3.26)

By the direct calculations we get

[N(∂t, n)Γ(z, t)]⊤ = Im
2∑

k=1




Ek Fk

Gk Hk




∂ lnσk

∂s(t)
. (3.27)

Here the coefficients Ek, Fk, Gk, and Hk, due to (3.20), can be written as




Ek Fk

Gk Hk


 =

a11

m




Nk Mk

Lk Rk







1 + iωA −iωC

iωB 1 − iωA


 ,

whence

E(k) :=




Ek Fk

Gk Hk


 = − i

m




Ak Bk

Bk Ck







B −A

−A C


 . (3.28)
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Notice that

E(1) + E(2) = E, (3.29)

where E is the 2 × 2 identity matrix.
We note that the columns of the matrices (3.14) and (3.27), considered as vector functions

of the variable z (i.e., of the variables x1 and x2), solve the system (2.1) for z 6= t. Moreover,
by equations (3.21) we can show that the entries of the matrix (3.14) have singularities of
type |z − t|−1 and on arbitrary C1+α-smooth curve (with α > 0) they represent singular
kernels in variables z and t. Making use of (3.29) it can also be shown that the entries of
the matrix (3.27) on a C1+α-smooth curve have integrable singularities of type |z − t|−1+α.

For our purposes we need also the so-called hypersingular kernels constructed by the
fundamental solution (3.4). The direct calculations lead to the formulae

T (∂z, n)[T (∂t, n)Γ(z, t)]⊤ = −a−1
11 Re

2∑

k=1

P(k)




B −A

−A C




∂2 ln σk

∂s(z)∂s(t)
, (3.30)

T (∂z, n)[N(∂t, n)Γ(z, t)]⊤ = Im
2∑

k=1




E ′

k F ′

k

G′

k H ′

k




∂2 ln σk

∂s(z)∂s(t)
, (3.31)

where

E ′

(k) :=




E ′

k F ′

k

G′

k H ′

k


 = − i

m




Nk Lk

Mk Rk







B −A

−A C


 , k = 1, 2. (3.32)

These matrices can be also represented as follows

E ′

(k) =




pk qk

rk sk








κN




0 −1

1 0


− i

m




B −A

−A C








, k = 1, 2. (3.33)

The formulae (3.32) and (3.33) yield

E ′

k = −αkG
′

k, F ′

k = −αkH
′

k,




Ek Fk

Gk Hk


 =





ωa11




0 −1

1 0


+

ia11

BC − A2




C A

A B











E ′

k F ′

k

G′

k H ′

k


 ,

2∑

k=1




E ′

k F ′

k

G′

k H ′

k


 = κN




0 −1

1 0


− i

m




B −A

−A C


 , k = 1, 2. (3.34)

We remark that the coefficients A, B, C, ω, m, and κN defined by (3.7), (3.17), (3.23),
and (3.26), respectively, in the isotropic case read as

A = 0, B = C =
1

2
, ω = 2

κ − 1

κ + 1
, m =

κ

2µ(κ + 1)
, κN =

µ(κ − 1)

κ
, (3.35)
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where κ = (λ + 3µ)(λ + µ)−1.
3.3. Let l0 be a simple, closed, nonselfintersecting, C1+α-smooth curve which surrounds

a bounded domain Ω+. Further, let Ω− = IR2\Ω+, Ω+ = Ω+ ∪ l0, l0 = ∂Ω±. Throughout
this paper by n(z) (z ∈ l0) we denote the outward unit normal vector with respect to Ω+.

We introduce the following generalized potentials

V (g)(z) :=
1

π

∫

l0

Γ(z, t) g(t) ds, (3.36)

W (g)(z) :=
1

π

∫

l0

[T (∂t, n)Γ(z, t)]⊤ g(t) ds, (3.37)

W̃ (g)(z) :=
1

π

∫

l0

[N(∂t, n)Γ(z, t)]⊤ g(t) ds, (3.38)

where g = (g1, g2)
⊤ is a real-valued density; V , W and W̃ will be referred to as a single-layer

potential, a double-layer potential of the first kind and a double-layer potential of the second
kind, respectively. Clearly, the potentials (3.36)-(3.38) are solutions of the system (2.1) in
Ω+ and Ω− for arbitrary integrable density g. Properties of the above potentials in the space
of Hölder-continuous vector functions have been investigated in [1].

THEOREM 3.1 [1] Let l0 ∈ C2+α, 0 < α < 1, and 0 < β < α. Then

i) the single-layer potential V (g) is continuous in the whole plane if g ∈ C(l0) and V (g) ∈
Ck+1+β(Ω±) if g ∈ Ck+β(l0), with k = 0, 1, 2;

ii) the double-layer potentials W (g) and W̃ (g) belong to the spaces Ck+β(Ω±) if g ∈
Ck+β(l0) with k = 0, 1, 2; moreover, for arbitrary g ∈ Cβ(l0) and t0 ∈ l0 there hold the

following jump formulae

[W (g)(t0)]
± = ±g(t0) +

1

π

∫

l0

[T (∂t, n(t))Γ(t0, t)]
⊤g(t)ds, (3.39)

[W̃ (g)(t0)]
± = ±g(t0) +

1

π

∫

l0

[N(∂t, n(t))Γ(t0, t)]
⊤g(t)ds; (3.40)

iii) for arbitrary g ∈ Cβ(l0) and t0 ∈ l0 there hold the jump relations

[T (∂t0 , n)V (g)(t0)]
± = ∓g(t0) +

1

π

∫

l0

[T (∂t0 , n(t0))Γ(t0, t)] g(t)ds, (3.41)

[N(∂t0 , n)V (g)(t0)]
± = ∓g(t0) +

1

π

∫

l0

[N(∂t0 , n(t0))Γ(t0, t)] g(t)ds; (3.42)

iv) for arbitrary g ∈ C1+β(l0) the vectors T (∂z, n)W (g)(z) and T (∂z, n)W̃ (g)(z) are con-

tinuously extendible on l0 from Ω± and for arbitrary t0 ∈ l0 there hold

[T (∂t0 , n)W (g)(t0)]
± =

1

πa11
Re

2∑

k=1

P(k)




B −A

−A C



∫

l0

∂ ln σk

∂s(t0)

∂g(t)

∂s(t)
ds, (3.43)

[T (∂t0 , n)W̃ (g)(t0)]
± = ∓κN




0 1

−1 0




∂g(t0)

∂s(t0)
− 1

π
Im

2∑

k=1

E ′

(k)

∫

l0

∂ ln σk

∂s(t0)

∂g(t)

∂s(t)
ds. (3.44)
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We note that the integral operators in (3.39) and (3.41) have singular kernels, while the
integral operators in (3.40) and (3.42) have weakly singular kernels (cf. [13], [14], [1]).

3.4. Finally, we recall the Green formulae in anisotropic elasticity (see, e.g., [1]). Let
u ∈ C1(Ω+) ∩ C2(Ω+) represents a solution to the system (2.1) in Ω+. Then the following
equations hold

∫

Ω+

T (u, u)dσ =
∫

l0

[u]+[T (∂t, n)u]+ds, (3.45)

∫

Ω+

N(u, u)dσ =
∫

l0

[u]+[N(∂t, n)u]+ds, (3.46)

where T (u, u) and N(u, u) are positive definite quadratic forms and read as

T (u, u) = A11ε
2
x1

+ 2A12εx1εx2 + A22ε
2
x2

+ 2A13εx1εx1x2 +

+2A23εx2εx1x2 + A33ε
2
x1x2

, (3.47)

N(u, u) = A11ε
2
x1

+ 2(A12 + κN)εx1εx2 + A22ε
2
x2

+

+2A13εx1εx1x2 + 2A23εx2εx1x2 + (A33 −
1

2
κN)ε2

x1x2
+

1

2
κNω2

x1x2
, (3.48)

where εx1, εx2, and εx1x2 are given by (2.3), and

ωx1x2 =
∂u2

∂x1
− ∂u1

∂x2
.

It can be easily seen that the equatoin T (u, u) = 0 implies u(z) = (e1 − e3x2, e2 + e3x1),
while the equation N(u, u) = 0 yields u(z) = (e1, e2), where e1, e2, and e3 are arbitrary real
constants.

In the case of the domain Ω− the formulae (3.45) and (3.46) (with the sign ”–” in the
left-hand side) remain also valid if, in addition, the vector u meets the conditions

u(z) = O(1),
∂u(z)

∂xk
= O(|z|−2), k = 1, 2, (3.49)

at infinity.
3.5. For the interface crack problem formulated above the following uniqueness theorem

holds.

THEOREM 3.2 Let a pair (u(0), u(1)) of vector functions u(0) = (u
(0)
1 , u

(0)
2 )⊤ and u(1) =

(u
(1)
1 , u

(1)
2 )⊤ be a regular solution to the homogeneous version of Problem (C) (i.e., T = 0

and S = 0 ).
Then u(0) = (e1, e2)

⊤ in S(0) and u(1) = (e1, e2)
⊤ in S(1) where e1 and e2 are arbitrary

real constants.

Proof. We start with the remark that u(0) and u(1) satisfy conditions (3.49) at infinity, since
in the case under consideration u(j)

∞
(x) = 0, j = 0, 1 (see (2.9) and (2.10)). We proceed as

follows. Denote by KR the circle centered at the origin and radius R, and let l+R and l−R be the
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corresponding upper and lower semicircles. We put S
(0)
R = S(0) ∩ KR and S

(1)
R = S(1) ∩ KR.

Further, due to formula (3.45) and conditions (2.6)-(2.8), we have
∫

S
(0)
R

T (0)(u(0), u(0))dσ +
∫

S
(1)
R

T (1)(u(1), u(1))dσ =

=
∫

l+
R

[u(0)][T (0)(∂t, n)u(0)]ds +
∫

l−
R

[u(1)][T (1)(∂t, n)u(1)]ds, (3.50)

where n is the exterior unit normal vector to lR = l+R ∪ l−R. Taking into account the be-
haviour of the vectors u(j) at infinity, the positive definiteness of the forms T (0)(u(0), u(0))
and T (1)(u(1), u(1)), and passing to the limit in (3.50) as R → +∞, we conclude that the
right-hand side integrals in (3.50) vanish and, therefore,

T (j)(u(j), u(j)) = 0, j = 0, 1.

Whence

u(j)(z) = (e
(j)
1 − e

(j)
3 x2, e

(j)
2 + e

(j)
3 x1), j = 0, 1,

with arbitrary constants e
(j)
k , k = 1, 2, 3, and j = 0, 1. The behaviour of the displacement

fields at infinity implies that e
(j)
3 = 0, j = 0, 1, while from the contact conditions it follows

that e
(0)
k = e

(1)
k , k = 1, 2.

REMARK 3.3 We note that, if, in addition, the displacement fields in S(0) and S(1) vanish

at invinity, then the homogeneous Problem (C) possesses only the trivial solution.

4 The Basic Interface Problem

In this section we present the explicit solution of the basic interface problem for the piecewise
homogeneous anisotropic elastic plane S(0) ∪ S(1) introduced above (see Section 2). This
problem can be formulated as follows [1]: Find regular solutions u(j) to the system (2.1)
in the domains S(j) (j = 0, 1) satisfying on the interface x2 = 0 (i.e., on the line l) the
transmission conditions

[u(0)]+ − [u(1)]− = f(x1),

[τ (0)
x1x2

]+ − [τ (1)
x1x2

]− = ϕ1(x1),

[σ(0)
x2

]+ − [σ(1)
x2

]− = ϕ2(x1), −∞ < x1 < +∞, (4.1)

where f = (f1, f2)
⊤ ∈ C1+α(l) and ϕ = (ϕ1, ϕ2)

⊤ ∈ Cα(l) are given vector functions with
the following asymptotics at infinity

f(x1) = p0 +
q0

|x1|ε
, ϕ(x1) =

r0

|x1|1+η
; (4.2)

here p0, q0, r0, ε > 0, and η > 0 are real constants.
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In addition, we assume that the resultant vector vanishes, i.e.,
+∞∫

−∞

ϕ(x1) dx1 = 0, (4.3)

and that the stress components vanish at infinity as well.
The solution of the above basic interface problem is then representable in the form (for

details see [1], [2])

u(j)(z) =
κ

(1)
N − κ

(0)
N

∆0




0 −1

1 0


K +

1

π
Im

2∑

k=1

E (j)
(k)



(X(j) + iY (j))

+∞∫

−∞

f(t)dt

t − zkj

+

+ (X̃(j) + iỸ (j))

+∞∫

−∞

ϕ(t) ln(t − zkj)dt



 , j = 0, 1, (4.4)

where K is an arbitrary real constant, E (j)
(k) is given by (3.28), and zkj = x1+α

(j)
k x2; moreover,

∆0 = 2κ
(0)
N κ

(1)
N +

B(0)C(0) − (A(0))2

m(0)a
(0)
11

+
B(1)C(1) − (A(1))2

m(1)a
(1)
11

+

+
B(1)C(0) + B(0)C(1) − 2A(0)A(1)

m(0)m(1)
> 0;

X(0) + iY (0) =
1

∆0

{(
B(1)C(1) − (A(1))2

m(1)a
(1)
11

+ κ
(0)
N κ

(1)
N

)
E+

+
1

m(0)m(1)




B(1)C(0) − A(0)A(1) A(0)C(1) − A(1)C(0)

A(0)B(1) − A(1)B(0) B(0)C(1) − A(0)A(1)


−

−i




κ
(1)
N

m(0)




A(0) −C(0)

B(0) −A(0)


+

κ
(0)
N

m(1)




A(1) −C(1)

B(1) −A(1)











,

X̃(0) + iỸ (0) =
1

∆0





(κ
(0)
N − κ

(1)
N )




0 −1

1 0


+

+i




1

m(1)




C(1) A(1)

A(1) B(1)


+

1

m(0)




C(0) A(0)

A(0) B(0)











; (4.5)

the constant matrices X(1) +iY (1) and X̃(1) +iỸ (1) are obtained from the above formulae for
X(0) + iY (0) and X̃(0) + iỸ (0) by the interchange of the superscripts (0) and (1). Note that

X(0) + X(1) = E, Y (0) = Y (1), X̃(0) + X̃(1) = 0, Ỹ (0) = Ỹ (1). (4.6)

Making use of the relationships between the coefficients established in Subsection 3.2, from
(4.4) we derive the following representation formulae for the stress components σ(j)

x2
and τ (j)

x1x2




τ (j)
x1x2

σ(j)
x2


 = −1

π
Im

2∑

k=1

E ′(j)
(k)



(X(j) + iY (j))

+∞∫

−∞

f ′(t)dt

t − zkj
− (X̃(j) + iỸ (j))

+∞∫

−∞

ϕ(t)dt

t − zkj



 , (4.7)
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where j = 0, 1, and E ′(j)
(k) is given by (3.32).

5 Reduction of the Mixed Interface Problem to the

Integral Equation

In this section we shall essentially use the representation formulae (4.4) and (4.7) together
with the equations (3.28), (3.29), (3.32), (3.33), (3.34), (4.5), and (4.6), to investigate the
mixed interface problem (2.6)-(2.8).

Taking into account the interface conditions (2.6)-(2.8) we easily conclude that [σ(0)
x2

]+ −
[σ(1)

x2
]− = 0 and [τ (0)

x1x2
]+ − [τ (1)

x1x2
]− = 0 on the whole contact line l. Therefore, due to formula

(4.4), we look for the displacement fields in the domains S(j) in the form

u(j)(z) = u(j)
∞

(z) +
1

π
Im

2∑

k=1

E (j)
(k)(X

(j) + iY (j))




L∫
−L

u
(0)
1 (t)−u

(1)
1 (t)

t−zkj
dt

b∫
−a

u
(0)
2 (t)−u

(1)
2 (t)

t−zkj
dt


 , (5.1)

where z ∈ S(j), j = 0, 1.
In (5.1) the first summand u(j)

∞
(z), given by (2.11), represents the solution of (2.1) which

satisfies conditions (2.5) at infinity. Here and throughout this section we use the notations
u(0)(t) := [u(0)(t, 0)]+ and u(1)(t) := [u(1)(t, 0)]− for −∞ < t < +∞.

Clearly, the difference u
(0)
1 (t) − u

(1)
1 (t) is unknown in the interval (−L, L), while the

difference u
(0)
2 (t) − u

(1)
2 (t) is unknown in the interval (−a, b).

It is evident that the conditions

u
(0)
1 (±L) − u

(1)
1 (±L) = 0, (5.2)

u
(0)
2 (−a) − u

(1)
2 (−a) = 0, u

(0)
2 (b) − u

(1)
2 (b) = 0, (5.3)

are sufficient for the above displacement vectors u(j) to be continuously extendible on the
whole contact line l (see [14]).

Further, let

u
(0)
1 (x1) − u

(1)
1 (x1) = −

x1∫

−L

B1(t)dt, (5.4)

u
(0)
2 (x1) − u

(1)
2 (x1) = −

x1∫

−a

B2(t)dt. (5.5)

These equations yield

B(x1) = − d

dx1
(u(0)(x1) − u(1)(x1)), (5.6)

where B(x1) = (B1(x1), B2(x1))
⊤ is the so-called dislocation vector.
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We require that

L∫

−L

B1(t)dt = 0, (5.7)

b∫

−a

B2(t)dt = 0, (5.8)

which guarantee the conditions (5.2) and (5.3).
Moreover, we provide (cf. [3], [4])

B2(−a) = B2(b) = 0, (5.9)

which shows that the normal displacements u
(0)
2 and u

(1)
2 have a ”smooth contact” at the

points −a and b of the contact line l. From (5.1) it follows that the stress components can
be represented in terms of the dislocation vector




τ (j)
x1x2

σ(j)
x2


 =




S

T


+

1

π
Im

2∑

k=1

E ′(j)
(k) (X(j) + iY (j))




L∫
−L

B1(t)dt
t−zkj

b∫
−a

B2(t)dt
t−zkj


 . (5.10)

The limits of the displacement vectors (5.1) on the contact line are expressed by the
formulae

u(j)(x1) =
1

π
Y (j)




L∫
−L

u
(0)
1 (t)−u

(1)
1 (t)

t−x1
dt

b∫
−a

u
(0)
2 (t)−u

(1)
2 (t)

t−x1
dt


 , |x1| > L, j = 0, 1.

Since Y (0) = Y (1), due to (4.6), we have u(0)(x1) = u(1)(x1) for |x1| > L, and, therefore,
we can check that the first equation in (2.6) is automatically satisfied.

Next, applying the formula (5.10) we arrive at the equation on l



τ (0)
x1x2

σ(0)
x2




+

−




τ (1)
x1x2

σ(1)
x2




−

=
1

π
Im

2∑

k=1

(
E ′(0)

(k) (X(0) + iY (0))−

−E ′(1)
(k) (X(1) + iY (1))

)



L∫
−L

B1(t)dt
t−x1

b∫
−a

B2(t)dt
t−x1


 , |x1| > L.

With the help of the equality

Im
2∑

k=1

(
E ′(0)

(k) (X(0) + iY (0)) − E ′(1)
(k) (X(1) + iY (1))

)
= 0, (5.11)

which follows from the fomulae (3.32), (3.33), (3.34), (4.5), and (4.6), we can easily show
that the stress components (5.10) automatically satisfy the second and the third equations
in (2.6).
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In that case when x1 ∈ (−L,−a) ∪ (b, L) we have

u(j)(x1) = (−1)jX(j)




u
(0)
1 (x1) − u

(1)
1 (x1)

0


+

Y (j)

π




L∫
−L

u
(0)
1 (t)−u

(1)
1 (t)

t−x1
dt

b∫
−a

u
(0)
2 (t)−u

(1)
2 (t)

t−x1
dt


 .

Whence it follows that

u(0)(x1) − u(1)(x1) = (X(0) + X(1))




u
(0)
1 (x1) − u

(1)
1 (x1)

0


 =




u
(0)
1 (x1) − u

(1)
1 (x1)

0


 .

Therefore, u
(0)
2 (x1) = u

(1)
2 (x1) for x1 ∈ (−L,−a) ∪ (b, L), and the first equation in (2.7) is

also fulfilled.
Further, we derive the following relation




τ (0)
x1x2

σ(0)
x2




+

−




τ (1)
x1x2

σ(1)
x2




−

=

= Re
2∑

k=1

(
E ′(0)

(k) (X(0) + iY (0)) + E ′(1)
(k) (X(1) + iY (1))

)



B1(x1)

0


+

+
1

π
Im

2∑

k=1

(
E ′(0)

(k) (X(0) + iY (0)) − E ′(1)
(k) (X(1) + iY (1))

)



L∫
−L

B1(t)dt
t−x1

b∫
−a

B2(t)dt
t−x1


 ,

x1 ∈ (−L,−a) ∩ (b, L).

Now the equations (5.11) and the equality

Re
2∑

k=1

(
E ′(0)

(k) (X(0) + iY (0)) + E ′(1)
(k) (X(1) + iY (1))

)
= 0 (5.12)

imply that the second condition in (2.7) and the equation [τ (0)
x1x2

]+ = [τ (1)
x1x2

]− are also fulfilled.
Finally, from (5.10) we deduce for x1 ∈ (−a, b)




τ (0)
x1x2

σ(0)
x2




+

−




τ (1)
x1x2

σ(1)
x2




−

=

=Re
2∑

k=1

(
E ′(0)

(k) (X(0) + iY (0)) + E ′(1)
(k) (X(1) + iY (1))

)



B1(x1)

B2(x1)


+

+
1

π
Im

2∑

k=1

(
E ′(0)

(k) (X(0) + iY (0)) − E ′(1)
(k) (X(1) + iY (1))

)



L∫
−L

B1(t)dt
t−x1

b∫
−a

B2(t)dt
t−x1


 .
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Whence one can easily show that σ(0)
x2

= σ(1)
x2

and τ (0)
x1x2

= τ (1)
x1x2

for x1 ∈ (−a, b). Therefore,
the conditions (2.6)-(2.8) will be completely fulfilled if

[
σ(0)

x2

]+
= 0, x1 ∈ (−a, b), (5.13)

[
τ (0)
x1x2

]+
= 0, x1 ∈ (−L, L). (5.14)

These boundary conditions together with the formula (5.10) lead to the system of integral
equations

QB1(x1) +
R21

π

L∫

−L

B1(t)dt

t − x1
+

R22

π

b∫

−a

B2(t)dt

t − x1
= T, x1 ∈ (−a, b),

Q(H(x1 − b) − H(x1 + a))B2(x1) +
R11

π

L∫

−L

B1(t)dt

t − x1

+

+
R12

π

b∫

−a

B2(t)dt

t − x1
= S, x1 ∈ (−L, L), (5.15)

where H stands for the Heviside step function, and

Q =
1

∆0

(
κ

(1)
N

B(0)C(0) − (A(0))2

m(0)a
(0)
11

− κ
(0)
N

B(1)C(1) − (A(1))2

m(1)a
(1)
11

)
,




R11 R12

R21 R22


 =

1

∆0




B(1)C(1) − (A(1))2

m(0)m(1)a
(1)
11




B(0) −A(0)

−A(0) C(0)


+

+
B(0)C(0) − (A(0))2

m(0)m(1)a
(0)
11




B(1) −A(1)

−A(1) C(1)





 .

Remark that

R11 > 0, R22 > 0, R12 = R21. (5.16)

Thus, we have to find the unknown functions B1(x1) and B2(x1) satisfying the system of
integral equations (5.15) and conditions (5.7)-(5.9).

It is easy to check that in the isotropic case (cf. [3], [4])

R12 = R21 = 0, R11 = R22 =
2µ1(1 + α∗)

(κ1 + 1)(1 − β2
∗
)

=
2µ0(1 − α∗)

(κ0 + 1)(1 − β2
∗
)

= C∗,

Q = β∗C∗, β∗ =
µ0(κ1 − 1) − µ1(κ0 − 1)

µ0(κ1 + 1) + µ1(κ0 + 1)
, α∗ =

µ0(κ1 + 1) − µ1(κ0 + 1)

µ0(κ1 + 1) + µ1(κ0 + 1)
.

Therefore, in that case, the system (5.15) reads as

β∗B1(x1) +
1

π

b∫

−a

B2(t)dt

t − x1

=
T

C∗

, x1 ∈ (−a, b),

β∗(H(x1 − b) − H(x1 + a))B2(x1) +
1

π

L∫

−L

B1(t)dt

t − x1
=

S

C∗

, x1 ∈ (−L, L). (5.17)
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This system coincides with the equations obtained in [6] for the mixed interface problem
in question in the isotropic case (i.e., when the domains S(0) and S(1) in the problem (2.6)-
(2.8) are isotropic half-planes with distinct Lamé constants). The same system has been
investigated in [10] where the explicit solution is also constructed (see also [8], [9]).

We follow to [10] and make in (5.15) the change of independent variables

x1 = L
s − γ

1 − sγ
, t = L

r − γ

1 − rγ
, γ =

L(a − b)

L2 − ab +
√

(L2 − a2)(L2 − b2)
. (5.18)

Next we introduce the new unknown functions A1 and A2 rather than B1 and B2

R11B1(x1) = (1 − sγ)2A1(s), R22B2(x1) = (1 − sγ)2A2(s). (5.19)

After these manipulations the equations (5.15) are recast into the system

Q

R11

A1(s) +
R21

πR11

1∫

−1

(1 − rγ)A1(r)

(1 − sγ)(r − s)
dr +

1

π

c∫

−c

(1 − rγ)A2(r)

(1 − sγ)(r − s)
dr =

=
T

(1 − sγ)2
, |s| < c,

− Q

R22
H(c2 − s2)A2(s) +

1

π

1∫

−1

(1 − rγ)A1(r)

(1 − sγ)(r − s)
dr +

+
R12

πR22

c∫

−c

(1 − rγ)A2(r)

(1 − sγ)(r − s)
dr =

S

(1 − sγ)2
, |s| < 1, (5.20)

where

c =
a
√

L2 − b2 + b
√

L2 − a2

L(
√

L2 − b2 +
√

L2 − a2)
< 1.

The conditions (5.7)-(5.9) now read as

1∫

−1

A1(r)dr = 0, (5.21)

c∫

−c

A2(r)dr = 0, (5.22)

A2(−c) = A2(c) = 0. (5.23)

Applying the equality

a∫

−a

(1 − rγ)A(r)

(1 − sγ)(r − s)
dr =

a∫

−a

A(r)dr

r − s
− γ

1 − sγ

a∫

−a

A(r)dr,
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and bearing in mind that A1 and A2 are subjected to the conditions (5.21)-(5.23), from the
system (5.20) we infer

Q

R11
A1(s) +

R21

πR11

1∫

−1

A1(r)dr

r − s
+

1

π

c∫

−c

A2(r)dr

r − s
=

T

(1 − sγ)2
, |s| < c,

− Q

R22

H(c2 − s2) A2(s) +
1

π

1∫

−1

A1(r)dr

r − s
+

R12

πR22

c∫

−c

A2(r)dr

r − s
=

S

(1 − sγ)2
, |s| < 1. (5.24)

Clearly, the unknown functions A1 and A2 have to meet the conditions (5.21)-(5.23). Now
we show that this problem can be reduced to a single integral equation (cf. [10]). To this
end let us rewrite the second equation in (5.24) as follows

1

π

1∫

−1

A1(r)dr

r − s
=

Q

R22

H(c2 − s2) A2(s) −
R12

πR22

c∫

−c

A2(r)dr

r − s
+

S

(1 − sγ)2
, |s| < 1. (5.25)

Next, we shall apply the general theory of singular integral equations on arcs developed in
[14] (Chapter 5). According to this theory, if we look for a solution A1 to the equation (5.25)
in the class of functions which are unbounded at the both ends ±1 and satisfy the condition
(5.21), we can invert the left-hand side operator in (5.25). As a result we obtain

A1(s) = −X(s)

π

1∫

−1


 Q

R22

H(c2 − r2)A2(r) −
R12

πR22

c∫

−c

A2(t)dt

t − r
+

+
S

(1 − rγ)2

)
dr

X(r)(r − s)
, |s| < 1, (5.26)

where X(s) = (1 − s2)−1/2. On account the additional conditions (5.22) and (5.23) we can
simplify (5.26)

A1(s) = −R12

R22

H(c2 − s2)A2(s) −
QX(s)

πR22

c∫

−c

A2(r)dr

X(r)(r − s)
+ SX(s)

d

dγ

(√
1 − γ2

1 − sγ

)
. (5.27)

Substitution of this expression for A1 into the first equation of the system (5.24) implies

1

π

c∫

−c

A2(r)

r − s
(
√

1 − s2 − ν2
√

1 − r2)dr =
d

dγ

(
γT∗

√
1 − s2 − δS

√
1 − γ2

1 − sγ

)
, (5.28)

where |s| < c and

ν2 =
Q2

R11R22 − R2
12

> 0, T∗ =
R22(R11T − R12S)

R11R22 − R2
12

, δ =
QR22

R11R22 − R2
12

.

Thus, we have obtained the single integral equation (5.28) together with the conditions
(5.22)-(5.23) to find the unknown A2 in the class of functions bounded at the both ends ±c.
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Let us single out the so-called characteristic (dominant singular) part of the equation
(5.28)

1

π

c∫

−c

A2(r) dr

r − s
+

1

π

c∫

−c

K(s, r)A2(r) dr = Φ(s), −c < s < c, (5.29)

where

K(s, r) =
ν2

1 − ν2

r + s√
1 − s2(

√
1 − s2 +

√
1 − r2)

,

Φ(s) =
1

1 − ν2

1√
1 − s2

d

dγ

(
γT∗

√
1 − s2 − δS

√
1 − γ2

1 − sγ

)
.

Obviously, K(s, r) ∈ C1/2([−c, c] × [−c, c]) and Φ ∈ C1/2([−c, c]), i.e., the kernel K and the
right-hand side function Φ are Hölder-continuous functions with the exponent 1/2.

We look for solutions of the equation (5.29) in the class of functions which are bounded
at the both ends −c and c. Due to [14], we denote this class by h(−c, c). We emphasize that,
in addition, the solution has to satisfy the contitions (5.22) and (5.23). It is evident that
(see [14]), if equation (5.29) possesses a solution, then this solution automatically satisfies
the conditions (5.23) since the function Φ is Hölder-continuous. Thus, we have to look for a
solution to the equation (5.29) in the class h(−c, c) with the only additional condition (5.22).

It can be easily seen that the index of the equation (5.29) in the class h(−c, c) is equal to
−1. Furthermore, applying the uniqueness Theorem 3.2 and Remark 3.3 we can show that
the homogeneous version of equation (5.29) has no nontrivial solutions in the class h(−c, c).
Therefore, the homogeneous equation

1

π

c∫

−c

σ(r)

r − s
(
√

1 − s2 − ν−2
√

1 − r2)dr = 0, (5.30)

which is adjoint to equation (5.29), has only one linearly independent solution in the class
of functions unbounded at the both ends −c and c. We denote this nontrivial solution by
σ0(s). Due to the Noether’s theorems the condition

c∫

−c

Φ(r) σ0(r) dr = 0 (5.31)

is then necessary and sufficient for the equation (5.29) (i.e., (5.28)) to be solvable (cf. [14]).
The unknown parameters c and γ (i.e., a and b) are to be defined by the conditions (5.22)
and (5.31).

A direct comparison shows that the equations (5.28), (5.22), and (5.23) are quite similar
to the equations obtained by Gautesen and Dundurs (see equations (2.18), (2.13), and (2.19)
in [10]). In fact, the above integral equation (5.28) and the equation (2.18) in [10] coincide
term by term within the constant coefficients involved in these equations. Therefore, the
analysis given in [10] can also be applied word for word to our case to construct the explicit
solution of the equation (5.28) and to define the unknown parameters a and b.
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The above results show that the theoretical and numerical analysis of the singular integral
equations, corresponding to the Comninou formulation of the interface crack problem, are
quite similar in the isotropic and in the general anisotropic cases.
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