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Introduction

Boundary value problems (BVPs) of the theory of thermoelasticity have a long history.
They encounter in many physical, mechanical, and engineering applications where the ther-
mal stresses appear. Therefore, the mathematical model of thermoelasticity have received
considerable attention in the scientific literature (for exhaustive historical and bibliographical
material see [43], [61]).

Without trying to discuss the history in detail we note that three-dimensional regular
problems of statics, pseudo-oscillations, steady state oscillations, and general dynamics of
the thermoelasticity theory of homogeneous isotropic elastic bodies are completely investi-
gated by many authors (see, for example, [43], [8], [24], [61], [28]-[30] and references therein).
The main mathematical tools applied for the investigation of various aspects of the above
problems are variational and functional methods ([14], [61]), the potential methods and the
direct and indirect boundary integral equations (BIE) methods ([43], [28]-[30]), different ver-
sions of the Bubnov-Galerkin methods and the method of generalized Fourier series (method
of regular sources) ([43]).

To the best of the authors’ knowledge the problems of thermoelastic pseudo-oscillations
and steady state oscillations for anisotropic bodies have not been treated systematically in
the scientific literature (cf. [32]).

In the present memoir we undertake to examine a wide class of the basic regular, mixed,
and crack type boundary value and interface problems for the systems of differential equa-
tions of pseudo-oscillations and steady state oscillations of the thermoelasticity theory of
homogeneous anisotropic bodies. We develope the potential method to prove the existence
and uniqueness theorems in various functional spaces and to establish the almost best regu-
larity properties of solutions. We note that many problems considered in this memoir have
not been treated even in the isotropic thermoelasticity.

It should be mentioned that the methods, developed for the isotropic case in the above
cited references, unfortunately, are not always applicable in the case of general anisotropy. It
concerns, especially, the steady state oscillation problems where quite new ideas are required.
In particular, the exterior BVPs of steady state thermoelastic oscillations in the isotropic
case have been studied on the basis of the classical Sommerfeld-Kupradze thermo-radiation
conditions and the uniqueness theorems were proved with the help of the well-known Rellich’s
lemma, since components of the displacement vector and the temperature in the isotropic
case can be represented as a sum of metaharmonic functions (for details see [43]).

In the anisotropic case we need a nontrivial generalization of the thermo-radiation con-
ditions at infinity. We notice that the basic difficulties in dealing with the steady state
oscillation problems are connected with a very complicated geometrical form of the corre-
sponding characteristic surfaces which play a significant role in the study of the far field
behaviour of solutions (cf. [77], [53]).

The monograph consists of six chapters and is organized as follows.
In the first chapter there are constructed the matrices of fundamental solutions to the

systems of pseudo-oscillation and steady state oscillation equations of thermoelasticity theory
by Fourier transform and limiting absorption principle, and their asymptotic properties at
infinity and in a vicinity of the origin are studied.
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On the basis of the results obtained the generalized Sommerfeld-Kupradze type thermo-
radiation conditions are formulated and the Somigliana type integral representation formulae
for bounded and unbounded domains (with compact boundaries) are derived.

We emphasize that the above mentioned fundamental matricies are not represented ex-
plicitly in terms of elementary functions. This essentially complicates the investigation of
corresponding integral operators.

The second chapter deals with the detail formulation of boundary value and interface
problems for homogeneous and peacewise homogeneous (composed) anisotropic bodies. Be-
sides the usual classical setting in Ck,α-continuous Hölder functional spaces here is given
a weak formulation of the problems in the Sobolev W 1

p (W 1
p,loc) spaces with 1 < p < ∞.

The weak setting relies upon the definition of generalized boundary trace functionals in
the Besov Bs

p,q spaces which are introduced and broadly discussed in Section 4. Note that
crack type and mixed problems, in general, do not admit Cα-continuous solutions (with
α > 1/2) in closed domains even for C∞-regular boundary data. Therefore, these problems
are formulated only in the natural weak setting.

In the third chapter there are proved uniqueness theorems of solutions to the regular and
mixed homogeneous boundary value and interface problems in the appropriate functional
spaces. Here the crucial moment is selection of the functional classes where the homogeneous
steady state oscillation problems in unbounded domain admit only the trivial solution. This
is done with the help of the above mentioned generalized Sommerfeld-Kupradze type thermo-
radiation conditions.

Chapter IV is entirely devoted to the study of single and double layer potential type
operators and boundary integral (pseudodifferential) operators generated by them. These
results are the main tools used in the subsequent chapters.

The existence theorems of solutions to the regular nonhomogeneous boundary value and
interface problems are proved in the fifth chapter. By the potential method these problems
are reduced to the equivalent systems of pseudodifferential equations on the boundary of
the elastic body (or on the interface of the composed body) under considereation . It is
established that these BIEs are elliptic systems (in general, in the sense of Douglis-Nirenberg)
with trivial null-spaces and zero indices. The general theory of pseudodifferential equations
on closed smooth manifold and corresponding embedding theorems then immediately lead
to the existence results for the above indicated nonhomogeneous problems in Ck,α functional
spaces with integer k ≥ 1 and 0 < α < 1 in the case of classical setting or in W 1

p (W 1
p,loc)

spaces with 1 < p < ∞ in the case of weak setting (provided the boundary data belong to
appropriate natural spaces).

Finally, in the last sixth chapter the existence theorems of solutions to the nonhomoge-
neous mixed and crack type boundary value problems and to the mixed interface problems
are proved again by the potential method. These problems are reduced to the equivalent
pseudodifferential equations on some proper subset of the boundary (or of the interface).
The investigation of these equations is carried out with the help of the theory of ΨDEs on
manifold with boundary. The BIEs are again elliptic systems of ΨDEs (in general, in the
sense of Douglis-Nirenberg) with positive definite principal homogeneous symbol matricies,
trivial null-spaces and indices equal to zero. Making use of these results the existence of so-
lutions to the problems indicated above are proved in the Sobolev W 1

p (W 1
p,loc ) spaces with

4/3 < p < 4. Applying the corresponding embedding theorems it is shown that the solutions
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possess Cα-smoothness (with arbitrary α < 1/2) at the crack edges (in crack problems) and
at the collision curves of changing boundary conditions (in mixed problems) provided again
that the boundary data belong to appropriate natural spaces.

The authors like to appreciate very much the financial support of the Deutsche For-
schungsgemeinschaft under grants number 436 GEO 17/2/95, 436 GEO 17/4/96, 436 GEO
17/2/97.
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CHAPTER I

BASIC EQUATIONS. FUNDAMENTAL MATRICES.
THERMO-RADIATING CONDITIONS

In this chapter first we construct exponentially decreasing fundamental solution to the system
of pseudo-oscillation equations of the thermoelasticity theory of anisotropic bodies and then
by the limiting absorption principle we obtain two fundamental matrices for the system
of steady state oscillation equations. Further, we derive the asymptotic formulae for the
entries of these matrices and formulate the generalized Sommerfeld-Kupradze type radiation
conditions in anisotropic thermoelasticity.

1 Basic Differential Equations of Thermoelasticity

In this section we collect an auxiliary material concerning the governing equations and the
basic mechanical and physical concepts of the thermoelasticity theory (for details we refer
to [61], [43]).

1.1. The system of equations of coupled linear thermoelastodynamics of homogeneous
anisotropic elastic medium reads (see [61], Ch. V)

ckjpqDjDq up(x, t) + Xk(x, t) = ̺D2
t uk(x, t) + βkjDju4(x, t),

λpqDpDqu4(x, t) − c0Dtu4(x, t) − T0βpqDtDpuq(x, t) = −Q(x, t), (1.1)

where ckjpq = cpqkj = cjkpq are elastic constants, λpq = λqp are heat conductivity coefficients,
c0 > 0 is the thermal capacity, T0 > 0 is the temperature of the medium in the natural state,
βpq = βqp are expressed in terms of the thermal and elastic constants, ̺ =const> 0 is the
density of the medium; u = (u1, u2, u3)

⊤ is the displacement vector, u4 is the temperature,
X = (X1, X2, X3)

⊤ is the bulk force, Q is the heat source; x = (x1, x2, x3) denotes the spatial
variable, while t is the time variable; here and in what follows the summation over repeated
indices is meant from 1 to 3, unless otherwise stated; the superscript ⊤ denotes transposition
and Dp = Dxp

:= ∂/∂xp, Dt := ∂/∂t.
In the sequel, we usually consider the homogeneous version of equations (1.1), i.e., we

assume X = 0, Q = 0. In addition, without any restriction of generality ̺ = 1 is assumed
as well.

In (1.1) the term −T0βpqDtDpuq(x, t) describes the coupling between the temperature
and strain fields. It vanishes only for a stationary heat flow. In that case or if this term is
neglected, we have the so-called decoupled thermoelasticity theory.
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In the thermoelasticity theory the stress tensor {σkj}, the strain tensor {εkj} and the
temperature field u4 are related by Duhamel–Neumann law

σkj = ckjpqεpq − βkju4, εkj = 2−1(Dkuj +Djuk), k, j = 1, 2, 3;

the k−th component of the vector of thermostresses, acting on a surface element with the
unit normal vector n = (n1, n2, n3), is calculated by the formula

σkjnj = ckjpqεpqnj − βkjnju4 = ckjpqnj Dqup − βkjnju4, k = 1, 2, 3. (1.2)

The formal Laplace transform of the equations (1.1) (with respect to t) leads to the
so-called pseudo-oscillation equations of the thermoelasticity theory

ckjpqDjDqup(x) = τ 2uk(x) + βkjDju4(x),

λpqDpDqu4(x) − τc0u4(x) − τT0βpqDpuq(x) = 0; (1.3)

here τ = σ − iω is a complex parameter with ω ∈ IR and σ ∈ IR \ {0}.
If all data involved in (1.1) are harmonic time dependent, i.e.,

uk(x, t) =
1
uk (x) cosωt+

2
uk (x) sinωt, k = 1, 2, 3, 4, ω ∈ IR,

then we get the so-called steady state oscillation equations of the theory of thermoelasticity

ckjpqDjDqup(x) = −ω2uk(x) + βkjDju4(x),

λpqDpDqu4(x) + iωc0u4(x) + iωT0βpqDpuq(x) = 0, (1.4)

where the following notation uk(x) =
1
uk (x) + i

2
uk (x), k = 1, 2, 3, 4, is employed.

It is evident that system (1.4) formally can be obtained from (1.3) provided σ = 0, but
this similarity is a very formal one and it will become apparent later on.

Finally, let us note that, if the displacement vector and the temperature do not de-
pend on the time variable t, then from (1.1) we obtain equations of the so-called decoupled
thermoelastostatics

ckjpqDjDqup(x) = βkjDju4(x), k = 1, 2, 3, (1.5)

λpqDpDqu4(x) = 0. (1.6)

In this monograph we shall not systematically treat the equations of decoupled thermoe-
lastostatics (1.5)-(1.6), since in this case all the boundary value and interface problems, we
intend to consider, are also completely decoupled into two independent problems for the
temperature field and the dicplacement field. The corresponding problems of elastostatics of
anisotropic bodies for the system (1.5) have been studied in [8], [54], while the problems for
the stationary distribution of the temperature field which, in fact, are BVPs for the second
order scalar elliptic differential equation (1.6) can be found, for example, in [50].

1.2. In order to rewrite the above equations in the matrix form, let us set

U = (u1, u2, u3, u4)
⊤ = (u, u4)

⊤, u = (u1, u2, u3)
⊤,

C(D) = [Ckp(D)]3×3, Ckp(D) = ckjpqDjDq, (1.7)
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Λ(D) = λpqDpDq, D = ∇ = (D1, D2, D3). (1.8)

For the sake of simplicity we shall use also the notation either [A]m×n or [Akp]m×n for the
m× n matrix A.

Now we can represent equations (1.3) and (1.4) in the following form, respectively,

A(D, τ)U(x) = 0, (1.9)

A(D,−iω)U(x) = 0, (1.10)

where

A(D, κ) =




[C(D) − κ
2 I3]3×3 [−βkjDj ]3×1

[−κT0βkjDj ]1×3 Λ(D) − κc0




4×4

, (1.11)

Im = [δkj]m×m stands for the identity m×m matrix, δkj is Kronecker’s symbol.
Clearly, κ = τ = σ − iω corresponds to the pseudo–oscillations, while κ = −iω corre-

sponds to the steady state oscillations, and κ = 0 to the decoupled thermoelastostatics.
Further we introduce the classical stress operator

T (D, n) = [Tkp(D, n)]3×3 = [ckjpq nj Dq]3×3, (1.12)

and the thermoelastic stress operator

P (D, n) = [ [T (D, n)]3×3, [−βkjnj ]3×1 ]3×4 . (1.13)

Due to (1.2) we have

[P (D, n)U ]k = σkjnj = [T (D, n)u]k − βkjnju4, k = 1, 2, 3.

1.3. From the physical considerations it follow that (see [22], [61]):

a) the matrix [λpq]3×3 is positive definite, i.e.,

Λ(ξ) = λpqξpξq ≥ δ0 |ξ|
2, ξ ∈ IR3, δ0 = const > 0; (1.14)

b) the quadratic form ckjpqekjepq is positive definite in the real symmetric variables ekj =
ejk,

ckjpqekjepq ≥ δ′ekjekj, δ
′ = const > 0; (1.15)

which implies positive definiteness of the matrix C(ξ), ξ ∈ IR3 \ {0}, defined by (1.7), i.e.,

Ckj(ξ)ηjηk ≥ δ1|ξ|
2|η|2, ξ, η ∈ IR3, δ1 = const > 0. (1.16)

Inequalities (1.14) and (1.16) together with the symmetry properties of the matrices [λpq]
and C(ξ) yield

C(ξ)η · η = Ckj(ξ)ηjηk ≥ δ1|ξ|
2 |η|2, ξ ∈ IR3, (1.17)

λpqηpηq ≥ δ0|η|
2, (1.18)
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for an arbitrary complex vector η ∈ CI 3. Here a · b =
∑m
k=1 akbk denotes the usual scalar

product of the two complex vectors a = (a1, · · · , am) and b = (b1, · · · , bm) in CI m, while
upper bar denotes complex conjugate. We shall also employ the following notation (”real”
scalar product of complex vectors)

〈a , b〉 =
m∑

k=1

akbk, a, b ∈ CI m. (1.19)

1.5 We emphasize that the differential operator A(D, κ) defined by (1.11) is not formally
self-adjoint. Denote by A∗(D, κ) the operator formally adjoint to A(D, κ)

A∗(D, κ) = A⊤(−D, κ) = A⊤(−D, κ) =

=




[C(D) − κ
2I3]3×3 [κT0βkjDj ]3×1

[βkjDj ]1×3 Λ(D) − κc0




4×4

. (1.20)

Let us note here that throughout this memoir we shall use the following notations (when no
confusion can be caused by this):

a) if all elements of a vector v = (v1, ..., vm) (matrix a = [akj]m×n) belong to one and the
same space X, we shall write v ∈ X (a ∈ X) instead of v ∈ [X]m (a ∈ [X]m×n);

b) if K : X1 × · · · ×Xm → Y1 × · · · × Yn and X1 = · · · = Xm = X, Y1 = · · · = Yn = Y,
we shall write K : X → Y rather than K : [X]m → [Y ]n.

Let Ω+ ⊂ IR3 be a bounded domain with a C2−smooth connected boundary S = ∂Ω+,
Ω+ = Ω+ ∪ S and Ω− = IR3 \ Ω+. We assume that Ω+ (Ω−) is filled by a homogeneous
anisotropic medium with the elastic and thermal characteristics described above.

Now we present the so-called Green formulae for the operator A(D, κ) which will be used
many times in the sequel.

Let U = (u1, u2, u3, u4)
⊤, V = (v1, v2, v3, v4)

⊤ ∈ C2(Ω+) ∩ C1(Ω+) (i.e., U and V are
regular vectors in Ω+) and A(D, κ)U, A∗(D, κ)V ∈ L1(Ω

+). Then the following equations
hold for arbitrary κ ∈ CI (cf. [55], [53], [16]):

∫

Ω+

A(D, κ)U · V dx =
∫
S
[B(D, n)U ]+ · [V ]+ dS −

∫

Ω+

E(U, V ) dx, (1.21)

∫

Ω+

{A(D, κ)U · V − U · A∗(D, κ)V } dx =
∫
S
{[B(D, n)U ]+ · [V ]+−

−[U ]+ · [Q(D, n, κ)V ]+
}
dS, (1.22)

∫

Ω+

{
[A(D, κ)U ]k uk + 1

κT0
[A(D, κ)U ]4 u4

}
dx =

= −
∫

Ω+

{
ckjpqDpuqDkuj + κ

2|u|2 + 1
κT0

λkjDku4Dju4 + c0
T0
|u4|2

}
dx+

+
∫
S

{
[B(D, n)U ]+k [uk]

+ + 1
κT0

[u4]
+[∂nu4]

+
}
dS, (1.23)

where

∂n = λ(D, n) := λpqnpDq, (1.24)
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B(D, n) =




[T (D, n)]3×3 [−βkjnj ]3×1

[0]1×3 λ(D, n)




4×4

. (1.25)

Q(D, n, κ) =




[T (D, n)]3×3 [κT0βkjnj]3×1

[0]1×3 λ(D, n)




4×4

, (1.26)

E(U, V ) = ckjpqDpuqDkvj + κ
2ukvk − βkju4Djvk + λpqDqu4Dpv4 +

+c0κu4v4 + κT0v4βpqDpuq. (1.27)

Here and in what follows n(x) denotes the exterior unit normal vector of S at the point
x ∈ S. The symbols [ · ]± denote limits on S from Ω±.

Note that, if we consider the first three components of the U as the displacement vector
and the fourth one as the temperature, then the vector B(D, n)U has the following thermo-
mechanical sense: the first three components of the B(D, n)U represent the corresponding
vector of thermal stresses (see (1.13)), while the fourth component describes the heat flux
through the surface S.

The similar formulae hold valid also for the domain Ω−, when κ = 0 or Reκ > 0, with the
following changes (related to the choice of direction of the normal vector): the superscript
”+” must be replaced everywhere by the superscript ”−” and in front of the surface integrals
the sign ”−” is to be put.

In this case the vectors U and V have to satisfy the conditions

U, V ∈ C2(Ω−) ∩ C1(Ω−), A(D, κ)U, A∗(D, κ)V ∈ L1(Ω
−), (1.28)

A(D, κ)U and A∗(D, κ)V have compact supports and, in addition, U and V have the fol-
lowing asymptotic behaviour at infinity

Uk(x), Vk(x) =




o(1) for κ = 0,

O(|x|N) for Reκ = σ > 0, k = 1, 2, 3, 4,
(1.29)

with an arbitrary fixed positive number N . In fact, it can be proved that, if U and V are
solutions of the corresponding homogeneous equations , then the conditions (1.29) imply

DβUk(x), D
βVk(x) =




O(|x|−1−|β|) for κ = 0,

O(|x|−ν) for Reκ = σ > 0, k = 1, 2, 3, 4,
(1.30)

where ν is an arbitrary positive number, β = (β1, β2, β3) is an arbitrary multi-index and
|β| = β1 + β2 + β3 (see, for example, [7], [42], [54].

The principal remark here is that for solutions U and V of the steady state oscillation
equation (1.10) (i.e., when κ = −iω) the Green formulae, similar to (1.21)-(1.23), are not
valid any more for the unbounded domain Ω−.
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1.5. In this subsection, before starting the construction of the fundamental matrices,
we shall analyse the so-called characteristic matrices corresponding to the above differential
operators of the thermoelasticity theory. They will play a fundamental role in the sequel.

Let us introduce the characteristic polynomial of the operator A(D, κ)

M(ξ, κ) = detA(−iξ, κ). (1.31)

Denote by N(−iξ, κ) the matrix adjoint to A(−iξ, κ), i.e.,

A(−iξ, κ)N(−iξ, κ) = N(−iξ, κ)A(−iξ, κ) = M(ξ, κ)I4. (1.32)

Clearly, we have

[A(−iξ, κ)]−1 = [M(ξ, κ)]−1N(−iξ, κ), (1.33)

where [A(−iξ, κ)]−1 is the matrix inverse to A(−iξ, κ). Equations (1.31), (1.11), and (1.7)
yield

M(ξ, κ) = det




[−C(ξ) − κ
2 I3]3×3 [iβkjξj]3×1

[iκT0βkjξj]1×3 −κc0




4×4

+

+det




[−C(ξ) − κ
2 I3]3×3 [iβkjξj]3×1

[0]1×3 −Λ(ξ)




4×4

=

= Λ(ξ) det[C(ξ) + κ
2 I3] − κT0 det




[−C(ξ) − κ
2 I3]3×3 [βkjξj]3×1

[βkjξj]1×3 c0T
−1
0




4×4

=

= Λ(ξ) det[C(ξ) + κ
2 I3] −

−κT0 det




[−C(ξ) − κ
2 I3]3×3 − [c−1

0 T0βkjξjβpqξq]3×3 [βkjξj]3×1

[0]1×3 c0T
−1
0




4×4

=

= Λ(ξ) det[C(ξ) + κ
2 I3] + κc0 det[C̃(ξ) + κ

2 I3], (1.34)

where C(ξ) and Λ(ξ) are defined by (1.7) and (1.8), respectively, and

C̃(ξ) = [C̃kp(ξ)]3×3 = C(ξ) + [c−1
0 T0βkjβpqξjξq]3×3, (1.35)

C̃kp(ξ) = (ckjpq + c−1
0 T0βkjβpq)ξjξq, k, p = 1, 2, 3.

Next, we set

Ψ(ξ, κ) = det[C(ξ) + κ
2 I3], (1.36)

Ψ̃(ξ, κ) = det[C̃(ξ) + κ
2 I3]. (1.37)

The relations (1.35) and (1.17) imply that the matrix C̃(ξ) for any ξ ∈ IR3\{0} is positive
definite and, therefore,

C̃(ξ)η · η = C(ξ)η · η + c−1
0 T0|βkjξjηk|

2 ≥ δ1|ξ|
2|η|2 (1.38)
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for an arbitrary η ∈ CI 3 and the same δ1 as in (1.17).
Thus, we have

M(ξ, κ) = Λ(ξ)Ψ(ξ, κ) + κc0Ψ̃(ξ, κ). (1.39)

It is evident that, if |κ| < κ0 with some positive κ0, then there exists a positive number
̺0 such that

|Ψ(ξ, κ)| ≥ 1, |Ψ̃(ξ, κ)| ≥ 1, |M(ξ, κ)| ≥ 1, (1.40)

for |ξ| ≥ ̺0; here ̺0 depends on κ0 and the thermoelastic constants.

LEMMA 1.1 Let τ = σ− iω, Re τ = σ > 0 and ξ ∈ IR3. Then M(ξ, τ) 6= 0 for any ω ∈ IR.
Moreover, [A(−iξ, τ)]−1 ∈ L2(IR

3).

Proof. Let us suppose that the assertion of the lemma is false, i.e., M(ξ, τ) = 0. Then
the homogeneous system of linear algebraic equations

A(−iξ, τ) a = 0 (1.41)

has some nontrivial solution a = (a1, · · · , a4)
⊤ ∈ CI 4 \ {0}.

Multiplying the k−th equation of (1.41) by ak and summing the first three equations we
get

−ckjpqξjξqapak − τ 2δkpapak + iβkjξja4ak = 0,

iτT0βkjξjaka4 − λpqξpξq|a4|
2 − τc0|a4|

2 = 0.

Deviding the latter equation by τT0, taking the complex conjugate and adding to the
first one, we obtain

ckjpqξjξqapak + τ 2akak + τ [|τ |2T0]
−1λpqξpξq|a4|

2 + c0T
−1
0 |a4|

2 = 0.

Due to (1.17) we deduce by separating the real and imaginary parts




C(ξ) ã · ã+ (σ2 − ω2)|ã|2 + σ[|τ |2T0]

−1Λ(ξ)|a4|2 + c0T
−1
0 |a4|2 = 0,

ω{2σ|ã|2 + [|τ |2T0]
−1Λ(ξ)|a4|2} = 0,

where ã = (a1, a2, a3)
⊤.

From this system and the inequality (1.14) it follows that a1 = · · · = a4 = 0, for any
ξ ∈ IR3, ω ∈ IR, and σ > 0. This contradiction proves the first part of the lemma.

The second part of the lemma is a consequence of the inequality

[A(−iξ, τ)]−1
kj ≤

c(σ)

1 + |ξ|2
for ξ ∈ IR3,

where the positive constant c(σ) does not depend on ξ (it depends on σ and on the ther-
moelastic constants of the medium in question).
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1.6. Now we shall analyse the characteristic polynomial M(ξ,−iω) of the operator
A(D,−iω). It can be easily shown that (see (1.36), (1.37), (1.39))

M(ξ,−iω) = Λ(ξ)Φ(ξ, ω)− iωc0Φ̃(ξ, ω) (1.42)

where

Φ(ξ, ω) = det[C(ξ) − ω2 I3] = Ψ(ξ,−iω), (1.43)

Φ̃(ξ, ω) = det[C̃(ξ) − ω2 I3] = Ψ̃(ξ,−iω). (1.44)

Characteristic surfaces of the operator A(D,−iω) are defined by the equation

M(ξ,−iω) = 0, ξ ∈ IR3, (1.45)

which, in turn, due to (1.42), is equivalent to the following system




Φ(ξ, ω) = 0,

Φ̃(ξ, ω) = 0, ξ ∈ IR3.
(1.46)

Passing on the spherical co-ordinates

ξ1 = ̺ cosϕ sin θ, ξ2 = ̺ sinϕ sin θ, ξ3 = ̺ cos θ,

0 ≤ ̺ < +∞, 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π,

and, taking into account formulae (1.43), (1.44), (1.17) and (1.38), we conclude that each
equation of the system (1.46) has three positive roots with respect to ̺2. These roots are
proportional to ω2, and polynomials Φ(ξ, ω) and Φ̃(ξ, ω) can be represented in the form:

Φ(ξ, ω) = Φ(η, 0) [̺2 − ω2̺2
1(θ, ϕ)][̺2 − ω2̺2

2(θ, ϕ)][̺2 − ω2̺2
3(θ, ϕ)], (1.47)

Φ̃(ξ, ω) = Φ̃(η, 0) [̺2 − ω2 ˜̺21(θ, ϕ)][̺2 − ω2 ˜̺22(θ, ϕ)][̺2 − ω2 ˜̺23(θ, ϕ)],

where η = ξ/̺, ̺ = |ξ|, Φ(η, 0) = detC(η) > 0, Φ̃(η, 0) = detC̃(η) > 0; here {̺2
k(θ, ϕ)}3

k=1

and { ˜̺2k(θ, ϕ)}3
k=1 do not depend on ω and are solutions of the following equations (with

respect to ̺2):

Φ(ξ, 1) = Φ(η, 0)̺6 + Φ(2)(η)̺4 + Φ(1)(η)̺2 − 1 = 0, (1.48)

Φ̃(ξ, 1) = Φ̃(η, 0)̺6 + Φ̃(2)(η)̺4 + Φ̃(1)(η)̺2 − 1 = 0, (1.49)

where Φ(j)(η) and Φ̃(j)(η) are even, homogeneous functions of order 2j in η (see (1.43),
(1.44)).

In what follows we consider the so-called regular case, i.e., we assume the following
conditions to be fulfilled (cf. [53], [77]):

I0. ∇ξΦ(ξ, ω) 6= 0 at real zeros of the polynomial Φ(ξ, ω);

II0. Gaussian curvature of the manifold, defined by the real zeros of the polynomial
Φ(ξ, ω), does not vanish anywhere.
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From the above conditions I0−II0 it follows that the real zeros of the polynomial Φ(ξ, ω)
form nonselfintersecting, closed, convex two-dimensional surfaces S0

j , j = 1, 2, 3, enveloping
the origin of co-ordinates. For an arbitrary vector x ∈ IR3 \ {0} there exist exactly two
points on each S0

j , namely ξj = (ξj1, ξ
j
2, ξ

j
3) and ξj∗ = −ξj, at which the exterior unit normal

is parallel to the vector x. We provide that at ξj the normal vector n(ξj) and x have the
same direction, while at ξj∗ they are opposite directed. Note that, if ξj ∈ S0

j and ξk ∈ S0
k

correspond to the same vector x, then (due to the convexity property of the above surfaces)
(ξj · x) 6= (ξk · x) for k 6= j.

In the sequel, the ξj ∈ S0
j will be referred to as the point which corresponds to the vector

x (i.e., to the direction x/|x|).
Clearly,

̺ = |ω| ̺k(θ, ϕ) > 0, k = 1, 2, 3,

represent the equations of the surfaces S0
k in the spherical co-ordinates.

The set of points in IR3 defined by the system of equations (1.46) may have a very
complicated geometric form. Among these forms we single out and study the following
regular case: The system (1.46) is either inconsistent in IR3 (i.e., it defines the empty set) or
it defines a two-dimensional manifold, i.e., equations (1.48) and (1.49) have m (1 ≤ m ≤ 3)
common roots and, if 1 ≤ m < 3, the remaining two groups of the roots form disjoint sets
for arbitrary values of θ and ϕ. We denote these common roots by ν1(θ, ϕ), · · · , νm(θ, ϕ)
(1 ≤ m ≤ 3) and without loss of generality assume that

0 < ̺1(θ, ϕ) < ̺2(θ, ϕ) < ̺3(θ, ϕ), 0 < ν1(θ, ϕ) < · · · < νm(θ, ϕ). (1.50)

Thus, in this case the characteristic equation (1.45) (i.e., the system (1.46)) defines
analytic (characteristic) surfaces Sc1, · · · , S

c
m, whose equations in the spherical co-ordinates

read as

̺ = |ω| νk(θ, ϕ) > 0, k = 1, · · · , m.

The BVPs corresponding to the case m = 0 turned out to be very similar to those of
the pseudo-oscillation ones (see Remark 2.7) and therefore in what follows we shall mainly
consider the case 1 ≤ m ≤ 3.

1.7. From the above arguments it follows that

Ψ(ξ, κ) = Φ(η, 0) [̺2 + κ
2̺2

1(θ, ϕ)][̺2 + κ
2̺2

2(θ, ϕ)][̺2 + κ
2̺2

3(θ, ϕ)], (1.51)

Ψ̃(ξ, κ) = Φ̃(η, 0) [̺2 + κ
2 ˜̺21(θ, ϕ)][̺2 + κ

2 ˜̺22(θ, ϕ)][̺2 + κ
2 ˜̺23(θ, ϕ)], (1.52)

for any ξ ∈ IR3 and κ ∈ CI .
Consequently, according to (1.39) we have

M(ξ, κ) = Φ(η, 0) Λ(ξ) [̺2 + κ
2̺2

1(θ, ϕ)][̺2 + κ
2̺2

2(θ, ϕ)][̺2 + κ
2̺2

3(θ, ϕ)] +

+κc0 Φ̃(η, 0) [̺2 + κ
2 ˜̺21(θ, ϕ)][̺2 + κ

2 ˜̺22(θ, ϕ)][̺2 + κ
2 ˜̺23(θ, ϕ)] =

= Φm(̺, θ, ϕ; κ) Ψm(̺, θ, ϕ; κ), (1.53)
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where

Φm(̺, θ, ϕ; κ) = Φm(ξ, κ) = Φm(−ξ, κ) = Φm(ξ,−κ) =

= (−1)m [̺2 + κ
2ν2

1(θ, ϕ)] · · · [̺2 + κ
2ν2
m(θ, ϕ)], (1.54)

Ψm(̺, θ, ϕ; κ) = Ψm(ξ, κ) = Ψm(−ξ, κ) =

= (−1)m {Φ(η, 0) Λ(ξ) [̺2 + κ
2λ2

1(θ, ϕ)] · · · [̺2 + κ
2λ2

3−m(θ, ϕ)] +

+κc0 Φ̃(η, 0) [̺2 + κ
2λ̃2

1(θ, ϕ)] · · · [̺2 + κ
2λ̃2

3−m(θ, ϕ)]; (1.55)

here λ2
j(θ, ϕ) and λ̃2

j(θ, ϕ) denote the different (non-common) roots of the equations (1.48)
and (1.49), respectively. Note that formulae (1.51), (1.52), (1.53), (1.54) and (1.55) are valid
for arbitrary ξ ∈ IR3 and κ ∈ CI .

The multiplier (−1)m in (1.54) ensures the inequality

Φm(0,−iω) > 0 (1.56)

which will be employed later on.

REMARK 1.2 Note that the polynomial Φm(̺, θ, ϕ;−iω) in ̺ vanishes on Scj ,
j = 1, · · · , m (i.e., when ̺ = |ω|νj(θ, ̺)) while Ψm(̺, θ, ϕ;−iω) is different from zero for any
real ̺ and ω. Therefore, there exists a positive number ε0 such that

|Ψm(̺, θ, ϕ; κ)| > 0

for |Im ̺| ≤ ε0 and |Re κ| ≤ ε0, where ̺ = ̺′ + i̺′′, κ = σ − iω and |̺| ≤ 2̺0 with arbitrary
ω and ̺0 fixed.

Now from equations (1.53) and (1.54) it follows that, if |Re κ| = |σ| < ε0 and |σ νj(θ, ϕ)| <
ε0, then the complex numbers ± (ω+iσ)νj(θ, ϕ) = ± iκνj(θ, ϕ), j = 1, · · · , m, are the only ze-
ros of the polynomial (1.53) with respect to ̺ in the strip |Im ̺| = |̺′′| < ε0. As a consequence
we have that M(ξ, κ) 6= 0 for ξ ∈ IR3 and 0 < |σ| = |Re κ| < ε0.
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2 Fundamental Matrices

In this section with the help of the fundamental matrix of the pseudo-oscillation equations
we will construct maximally decreasing fundamental matrices of the steady state oscillation
operator by limiting absorption principle (cf. [53]).

Denote by Γ(x, τ) a fundamental matrix of the operator A(D, τ): A(D, τ)Γ(x, τ) =
I4 δ(x), τ = σ − iω, σ 6= 0, where δ(x) is Dirac’s distribution.

Let 0 < |Reτ | = |σ| < ε0 with ε0 > 0 from Remark 1.2. Then due to the representation
(1.53), Remark 1.2, and equation (1.33) we have

M(ξ, τ) 6= 0, ξ ∈ IR3, [A(−iξ, τ)]−1 ∈ L2(IR
3). (2.1)

Therefore, we can represent Γ(x, τ) by the Fourier integral [55]

Γ(x, τ) = F−1
ξ→x ([A(−iξ, τ)]−1) = (2π)−3 lim

R→∞

∫

|ξ|<R

[A(−iξ, τ)]−1 e−ixξ dξ. (2.2)

By Fx→ξ and F−1
ξ→x we denote the generalized Fourier and inverse Fourier transforms

which for summable functions are defined as follows (see, e.g., [20])

Fx→ξ[f ] =
∫
IRn

f(x) eixξ dx, F−1
ξ→x[g] = (2π)−n

∫
IRn

g(ξ) e−ixξ dξ.

From the conditions σ 6= 0 and (2.1), and properties of the Fourier transform it easily
follows that the entries of the matrix Γ(x, τ) together with all derivatives decrease more
rapidly than any negative power of |x| as |x| → +∞. The behaviour of this matrix in a
neighbourhood of the origin will be established below (see Lemma 2.1) (cf. [23]).

Let h be a cut off function with properties

h(ξ) = h(−ξ), h ∈ C∞(IR3), h(ξ) = 1 for |ξ| < ̺0,

h(ξ) = 0 for |ξ| > 2̺0 (2.3)

with ̺0 from (1.40).
Now we decompose (2.2) into the two parts

Γ(x, τ) = Γ(1)(x, τ) + Γ(2)(x, τ),

where

Γ(1)(x, τ) = F−1
ξ→x ([1 − h(ξ)] [A(−iξ, τ)]−1) , (2.4)

Γ(2)(x, τ) = F−1
ξ→x (h(ξ) [A(−iξ, τ)]−1) = (2π)−3

∫
|ξ|<2̺0

h(ξ) [A(−iξ, τ)]−1 e−ixξ dξ. (2.5)

The main result of this section will follow from two the lemmata which we now present.
Let Γ(0)(x) be the homogeneous (of order −1) fundamental matrix of the operator C(D)

(see [53], [54])

Γ(0)(x) = F−1
ξ→x ([C(−iξ)]−1) = (−8π2|x|)−1

2π∫
0
[C(aη)]−1 dϕ, (2.6)
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where x ∈ IR3 \ {0}, a = [akj]3×3 is an orthogonal matrix with property a⊤x⊤ = (0, 0, |x|)⊤,
η = (cosϕ, sinϕ, 0)⊤. Further, let γ(0)(x) be the homogeneous (of order −1) fundamental
function of the operator Λ(D) (see [50])

γ(0)(x) = F−1
ξ→x

(
[Λ(−iξ)]−1

)
= −[4π |L|1/2(L−1x · x)1/2]−1 (2.7)

with L = [λpq]3×3, |L| = detL.

LEMMA 2.1 The entries of the matrix Γ(1)(x, τ) belong to C∞(IR3 \ {0}) and for an ar-
bitrary σ ∈ [−ε0, ε0] together with all derivatives decrease more rapidly than any negative
power of |x| as |x| → +∞.

The limit

lim
σ→0

Dβ
xΓ

(1)(x, σ − iω) = Dβ
xΓ

(1)(x,−iω)

exists uniformly for |x| > δ with an arbitrary δ > 0 and in a neigbourhood of the origin
( say |x| < 1/2) the following inequalities

|Dβ
xΓ

(1)
kj (x, σ − iω) −Dβ

xΓ
(1)
kj (x,−iω)| ≤ |σ| c ϕ(kj)

|β| (x),

|Dβ
xΓ

(1)
kj (x, σ − iω) −Dβ

xΓkj(x)| ≤ c ϕ
(kj)
|β| (x),

hold, where c = const > 0 does not depend on σ,

Γ(x) =




[Γ(0)(x)]3×3 [0]3×1

[0]1×3 γ(0)(x)




4×4

, (2.8)

ϕ
(kj)
0 (x) = 1, ϕ

(kj)
1 (x) = −ln|x|, ϕ(kj)

l (x) = |x|1−l, l ≥ 2,

for 1 ≤ k, j ≤ 3 and k = j = 4;

ϕ
(k4)
0 (x) = ϕ

(4k)
0 (x) = −ln|x|, ϕ(k4)

m (x) = ϕ(4k)
m (x) = |x|−m, m ≥ 1,

for k = 1, 2, 3; β is an arbitrary multi-index.

Proof. Note that the relations

Dβ[A(−iξ, τ)]−1
kj = O([1 + |ξ|]−2−|β|),

and

[A(−iξ, τ)]−1 =




[(C(−iξ))−1]3×3 [0]3×1

[0]1×3 [Λ(−iξ)]−1


+




[O(|ξ|−4)]3×3 [O(|ξ|−3)]3×1

[O(|ξ|−3)]1×3 O(|ξ|−4)


 ,

hold for sufficiently large |ξ|.
Now the proof follows from Lemma 1.1, equations (2.6), (2.7), and properties of the

Fourier transform of homogeneous functions (see, for example, [20], [52]-Lemma 2.17, [53]-
Lemma 3.1).
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Now we analyse properties of the matrix Γ(2)(x, τ).
Going to the spherical co-ordinates in the integral (2.5) we get

Γ(2)(x, τ) = (2π)−3
∫
Σ1

dΣ1

{
̺0∫
0

+
2̺0∫
̺0

}
h(ξ)[A(−iξ, τ)]−1 e−ixξ̺2 d̺, (2.9)

where Σ1 is the unit sphere in IR3 centered at the origin.
Taking into account Remark 1.2, the analyticity of the integrand with respect to ̺, and

introducing the complex ̺ = ̺′+i̺′′ plane we can rewrite (2.9) by Cauchy theorem as follows

Γ(2)(x, τ) = (2π)−3
∫
Σ1

dΣ1

{
∫

l±
[A(−iξ, τ)]−1 e−ixξ̺2 d̺+

+
2̺0∫
̺0
h(ξ) [A(−iξ, τ)]−1 e−ixξ̺2 d̺

}
, (2.10)

where l± = [0, |ω|ν1 − δ]∪ l±1,δ ∪ [|ω|ν1 + δ, |ω|ν2 − δ]∪ l±2,δ ∪ · · · ∪ l±m,δ ∪ [|ω|νm+ δ, ̺0], δ > 0 is
a sufficiently small number, l+j,δ [l−j,δ] is the semicircle in the upper [lower] half-plane centered
at |ω|νj and radius δ oriented clockwise [counter-clockwise]; in (2.10) the contour l+ [l−]
corresponds to the case σω < 0 [σω > 0].

Now passing to the limit in (2.10) as σ → 0± we get

σω > 0 : lim
σ→0

Γ(2)(x, σ − iω) = (2π)−3
∫
Σ1

dΣ1

{
∫

l−
[A(−iξ,−iω)]−1 e−ixξ̺2 d̺+

+
2̺0∫
̺0
h(ξ) [A(−iξ,−iω)]−1 e−ixξ̺2 d̺

}
=: Γ

(2)
+ (x,−iω), (2.11)

σω < 0 : lim
σ→0

Γ(2)(x, σ − iω) = (2π)−3
∫
Σ1

dΣ1

{
∫

l+
[A(−iξ,−iω)]−1 e−ixξ̺2 d̺+

+
2̺0∫
̺0
h(ξ) [A(−iξ,−iω)]−1 e−ixξ̺2 d̺

}
=: Γ

(2)
− (x,−iω), (2.12)

These limits exist uniformly for |x| < R0 with an arbitrary R0.
Such type of integrals have been studied in [53]. Applying the arguments quite similar

to that of [53] we arrive at the formulae

Γ
(2)
± (x,−iω) = (2π)−3

[
lim
δ→0

∫

|Φm|>δ

h(ξ) [A(−iξ,−iω)]−1 e−ixξ dξ±

±iπ
m∑
j=1

∫
Σ1

{
N(−iξ,−iω)e−ixξ̺2

[∂/∂̺Φm(̺,θ,ϕ;−iω)]Ψm(̺,θ,ϕ;−iω)

}

̺=|ω|νj

dΣ1


 , (2.13)

where Φm and Ψm are defined by (1.54) and (1.55), respectively.
We need to go over to the integrals over Scj in the last summand of (2.13). To this end

let us note that the exterior unit normal of Scj is defined by the equation

n(ξ) = (−1)j
∇ξΦm(ξ,−iω)

|∇ξΦm(ξ,−iω)|
, ξ ∈ Scj , j = 1, ..., m,
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since due to (1.54), (1.50) and(1.56)

(−1)j [∂/∂̺Φm(ξ,−iω)]̺=|ω|νj
> 0, j = 1, ..., m. (2.14)

Further,

dΣ1 =

[
ξ/|ξ| · n(ξ)

̺2

]

̺=|ω|νj

dScj = (−1)j
[
∂/∂̺Φm(ξ,−iω)

̺2|∇Φm(ξ,−iω)|

]

̺=|ω|νj

dScj .

Therefore, (2.13) implies

Γ
(2)
± (x,−iω) = (2π)−3

[
V.P.

∫

IR3

h(ξ) [A(−iξ,−iω)]−1 e−ixξ dξ±

±iπ
m∑
j=1

(−1)j
∫
Sc

j

N(−iξ,−iω)e−ixξ

|∇Φm(ξ,−iω)|Ψm(ξ,−iω)
dScj


 , (2.15)

where

V.P.
∫

IR3

h(ξ) [A(−iξ,−iω)]−1 e−ixξ dξ = lim
δ→0

∫

|Φm(ξ,−iω)|>δ

h(ξ) [A(−iξ,−iω)]−1 e−ixξ dξ.

Existence and asymptotic behaviour of integrals similar to the above ones are investigated
in [21], [78], [79]. Namely, in [78] there are analysed the following functions (n-dimensional
version of the case in question)

Ij(x) =
∫
Sc

j

f(ξ)eixξ

|∇Φm(ξ)|
dScj , j = 1, ...m, (2.16)

J(x) = V.P.
∫
IRn

f(ξ)eixξ

Φm(ξ)
dξ, n ≥ 2, (2.17)

where
i) diam(supp f) <∞; f,Φm ∈ C∞(IRn),
ii) the equation Φm(ξ) = 0, ξ ∈ IRn, defines (n−1)-dimensional closed nonselfintersecting

surfaces Scj , j = 1, ..., m, with the full curvature different from zero everywhere; moreover,
∇Φm(ξ) 6= 0 for ξ ∈ Scj ;

iii) for an arbitrary unit vector η the system




Φm(ξ) = 0,

∇Φm(ξ)|∇Φm(ξ)|−1 = ±η,
(2.18)

has only a finite number of solutions with respect to ξ.
Clearly, in the case under consideration the above conditions for the functions occured

in (2.15) are fulfilled due to (2.3) and I0 − II0. Moreover,

Φm(ξ,−iω) = Φm(ξ, iω) = Φm(−ξ, iω),

and the corresponding system of type (2.18) defines 2m points ±ξj ∈ Scj j = 1, ..., m (the
so–called stationary points); we emphasize also that the unit exterior normal vector n(ξj)
has the same direction as η, while n(−ξj) is opposite directed.
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We assume the function Φm(ξ) in (2.16) and (2.17) to possess the analogous symmetry
property with respect to ξ.

Now let |x| be sufficiently large, η = x/|x|, and let ±ξj ∈ Scj , j = 1, ..., m, be the
stationary points corresponding to η, i.e., n(ξj) = η, n(−ξj) = −n(ξj) = −η.

According to the results in references [21], [78], we have then the following asymptotic
formulae for the functions Ij and J :

Ij(x) = [aje
ixξj

+ ãje
−ixξj

] |x|−(n−1)/2 +O(|x|−(n+1)/2),

J(x) =
m∑

j=1

[bje
ixξj

+ b̃je
−ixξj

] |x|−(n−1)/2 +O(|x|−(n+1)/2), (2.19)

where

aj = aj(ξ
j) = (2π)(n−1)/2 1

[κ(ξj)]1/2
f(ξj)

|∇Φm(ξj)|
e−i(n−1)π/4,

ãj = ãj(−ξ) = (2π)(n−1)/2 1

[κ(−ξj)]1/2
f(−ξj)

|∇Φm(−ξj)|
ei(n−1)π/4,

bj = iπaj sgn(η · ∇Φm(ξj)) = iπ(−1)jaj ,

b̃j = iπãj sgn(η · ∇Φm(−ξj)) = −iπ(−1)jãj , (2.20)

κ(ξ) is the Gaussian curvature at the point ξ ∈ Scj .
The asymptotic formulae (2.19) can be differentiated any times with respect to x.
It is easy to see that the symmetry properties of Scj imply

κ(ξ) = κ(−ξ), ∇Φm(−ξ) = −∇Φm(ξ), (2.21)

for any ξ ∈ Scj j = 1, ..., m.
By virtue of (2.16), (2.17), and (2.19) we derive

J(x) + λ
m∑
j=1

iπ(−1)jIj(x) =

=
m∑
j=1

iπ(−1)j [(1 + λ)aje
ixξj

− (1 − λ)ãje
−ixξj

] |x|−(n−1)/2 +O(|x|−(n+1)/2) (2.22)

with aj and ãj defined by (2.20) and an arbitrary λ.
Now we prove the following proposition.

LEMMA 2.2 Entries of matrices (2.15) belong to C∞(IR3) and for sufficiently large |x| the
asymptotic formulae

Γ
(2)
± (x,−iω) =

m∑

j=1

c
(j)
± (ξj,−iω) e±ixξj

|x|−1 +O(|x|−2) (2.23)

hold, where the point ξj ∈ Scj corresponds to x (i.e., n(ξj) = x/|x|) and

c
(j)
+ ≡ c

(j)
1 (ξj,−iω) := (−1)j

1

2π[κ(ξj)]1/2
N(iξj,−iω)

|∇Φm(ξj,−iω)|Ψm(ξj,−iω)
,

c
(j)
− ≡ c

(j)
2 (ξj,−iω) := (−1)j

1

2π[κ(ξj)]1/2
N(−iξj,−iω)

|∇Φm(ξj,−iω)|Ψm(ξj,−iω)
; (2.24)

moreover, (2.23) can be differentiated any times with respect to x.
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Proof. The first part of the lemma is evident due to (2.3) and I0 − II0. To prove the
asymptotic formulae (2.23), we first perform the change of variable ξ by −ξ in (2.15) and
afterwards rewrite it as follows

Γ
(2)
± (x,−iω) = (2π)−3[J(x) ±

m∑

j=1

iπ(−1)jIj(x)], (2.25)

where Ij(x) and J(x) are given by (2.16) and (2.17), respectively, with n = 3; moreover,

f(ξ) =
h(ξ)N(iξ,−iω)

Ψm(ξ,−iω)
, (2.26)

h(ξ), Φm(ξ,−iω), and Ψm(ξ,−iω) are defined by (2.3), (1.54), and (1.55), respectively; here
we have used the fact that h, Φm, and Ψm are even functions in ξ.

Now (2.23) follows from (2.25), (2.22), (2.21), (2.26), and (2.20).

Thus, we have proved that there exist one sided limits of the matrix (2.2) as
Reτ = σ → 0 ± .

Let us set

σω > 0 : lim
σ→0

Γ(x, σ − iω) = Γ(1)(x,−iω) + Γ
(2)
+ (x,−iω) =: Γ(x, ω, 1), (2.27)

σω < 0 : lim
σ→0

Γ(x, σ − iω) = Γ(1)(x,−iω) + Γ
(2)
− (x,−iω) =: Γ(x, ω, 2), (2.28)

where Γ(1), Γ
(2)
+ and Γ

(2)
− are given by (2.4), (2.11) and (2.12), respectively.

Combining the two latter formulae we have

Γ(x, ω, r) = F−1
ξ→x[(1 − h(ξ))A−1(−iξ,−iω)] +

+(2π)−3 V.P.
∫

IR3

h(ξ)A−1(−iξ,−iω)e−ixξ dξ +

+(−1)r+1 iπ
(2π)3

m∑
j=1

(−1)j
∫
Sc

j

N(−iξ,−iω)e−ixξ

|∇Φm(ξ,−iω)|Ψm(ξ,−iω)
dScj , r = 1, 2. (2.29)

Now we formulate the main result of this section.

THEOREM 2.3 The matrix–functions Γ(x, ω, r), r = 1, 2, defined by (2.29), are funda-
mental matrices of the operator A(D,−iω) and satisfy the following conditions:

i) Γ(x, ω, r) ∈ C∞(IR3 \ {0}) and in a neighbourhood of the origin (|x| < 1/2)

|Dβ
xΓkj(x, ω, r) −Dβ

xΓkj(x)| ≤ c ϕ
(kj)
|β| (x), c = const > 0, k, j = 1, ..., 4,

where Γkj(x), ϕ
(kj)
|β| , c = const > 0 and β are the same as in Lemma 2.1;

ii) for sufficiently large |x|

Γ(x− y, ω, r) =
m∑

j=1

c(j)r (ξj,−iω) e(−1)r+1i(x−y)ξj

|x|−1 +O(|x|−2), (2.30)

where c(j)r are defined by (2.24), ξj ∈ Scj corresponds to the vector x and a range of the
variable y is a bounded subset of IR3; the equation (2.30) can be differentiated any times with
respect to x and y.
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Proof. It follows immediately from Lemmata 2.1 and 2.2.

REMARK 2.4 Note that, if in (2.30) the vector (x− y) is replaced by −(x− y), then the
point ξj is to be changed by −ξj, simultaneously, since to the vector −x there corresponds
the point −ξj ∈ Scj (−x/|x| = n(−ξj)). As a result the exponential factor in (2.30) will not
be changed.

REMARK 2.5 The fundamental matrix of the adjoint operator A∗(D, τ), clearly, has the
form

Γ∗(x, τ) = F−1
ξ→x[{A

∗(−iξ, τ)}−1] = F−1
ξ→x[{A

⊤(iξ, τ)}−1] =

= F−1
ξ→x[{A

⊤(−iξ, τ)}−1] = (2π)−3
∫

IR3

[A⊤(−iξ, τ)]−1 eixξ dξ =

= Γ⊤(−x, τ), τ = σ − iω, σ 6= 0, (2.31)

where Γ(x, τ) is given by (2.2).
Therefore, there exist limits similar to (2.27) and (2.28)

Γ∗(x, ω, r) = lim
σ→0

Γ∗(x, τ) = lim
σ→0

Γ⊤(−x, τ) = Γ⊤(−x, ω, r), r = 1, 2, (2.32)

where (−1)r+1σω > 0 is assumed.
The entries of matrix (2.31) and their derivatives decrease more rapidly then any negative

power of |x| as |x| → +∞ if 0 < |σ| < ε0 (see Remark 1.2 ).
The asymptotic formulae for Γ∗(x, ω, r) follow from (2.32) and Theorem 2.3

Γ∗(x, ω, r) =
m∑

j=1

c̃(j)r e(−1)rixξj

|x|−1 +O(|x|−2),

where |x| is sufficiently large, ξj ∈ Scj corresponds to x, and

c̃(j)r = [c
(j)
r (−ξj,−iω)]⊤

with c(j)r defined by (2.24).
From Lemmata 2.1, 2.2, and Theorem 2.3 together with the equations (2.31), (2.32), and

Γ(x) = Γ(x) = Γ⊤(x) = Γ(−x), Γ(tx) = t−1Γ(x), t > 0,

we infer that the matrices Γ(x, τ), Γ(x, ω, r), Γ∗(x, τ), and Γ∗(x, ω, r) have the matrix Γ(x)
as the dominant singular part in a neighbourhood of the origin.

REMARK 2.6 Equation (2.30) implies the following representation

Γ(x− y, ω, r) =
m∑

j=1

(j)

Γ (x− y, ω, r),
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where for sufficiently large |x|

(j)

Γ (x− y, ω, r) = c(j)r e(−1)r+1i(x−y)ξj

|x|−1 +O(|x|−2),

Dxp

(j)

Γ (x− y, ω, r) + i(−1)r ξjp
(j)

Γ (x− y, ω, r) = O(|x|−2),

j = 1, ..., m, p = 1, 2, 3, r = 1, 2,

ξj ∈ Scj corresponds to x and a range of y is again a bounded subset of IR3; here the matrices

c(j)r are given by (2.24).

REMARK 2.7 If the system of equations (1.46) is inconsistent in IR3 for some ω > 0,
then M(ξ,−iω) = detA(−iξ,−iω) 6= 0 for arbitrary ξ ∈ IR3 and ω ∈ IR, and

Γ(x,−iω) = F−1
ξ→x

(
[A(−iξ,−iω)]−1

)
∈ C∞(IR3 \ {0}) (2.33)

is a fundamental matrix of the operator A(D,−iω) whose entries together with all derivatives
decrease more rapidly than any negative power of |x| as |x| → +∞.

The main singular part of (2.33) in a neighbourhood of the origin is again the matrix
Γ(x). Therefore this case is very similar to the pseudo-oscillation one [55].
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3 Thermo-Radiation Conditions. Somigliana Type

Integral Representations

In this section we formulate the generalized Sommerfeld-Kupradze type radiation conditions
in the thermoelasticity theory of anisotropic bodies and derive Somigliana type integral
representation formulae.

3.1. Let us introduce the classes SKm
r (Ω−) of vector-functions defined on an unbounded

domain of type Ω− (which is the complement to a compact region Ω+ in IR3).
A vector-function U = (U1, U2, U3, U4)

⊤ belongs to the class SKm
r (Ω−), r = 1, 2, if it is

C1-smooth in Ω−, and for sufficiently large |x| the following relations hold (no summation
over the repeated index j in the last equation)

U(x) =
m∑

j=1

(j)

U (x),
(j)

U (x) = (
(j)

U 1, · · · ,
(j)

U 4)
⊤ = O(|x|−1),

Dp

(j)

U (x) + i(−1)r ξjp
(j)

U (x) = O(|x|−2), p = 1, 2, 3, j = 1, ..., m, (3.1)

where ξj ∈ Scj corresponds to the vector x.
Clearly, this definition is essentially related to the operator A(D,−iω) and its charac-

teristic equation (1.45). The conditions (3.1) will be referred to as generalized Sommerfeld-
Kupradze type radiation conditions in the thermoelasticity theory of anisotropic bodies(cf.
[12]).

A four-dimensional vector U = (U1, · · · , U4)
⊤, satisfying conditions (3.1), will also be

referred to as (m, r)−thermo-radiating vector. We say that a 4 × 4 matrix belongs to the
class SKm

r (Ω−) if each column of the matrix is a (m, r)−thermo-radiating vector.
Remark 2.6 implies that Γ(x, ω, r) ∈ SKm

r (IR3 \ {0}).
In the isotropic case m = 1 and Sc1 is defined by the equation ̺2 = k2

1 with k2
1 = ω2µ−1 (µ

is the Lamé constant and ω is the oscillation parameter). Therefore the point ξ1 ∈ Sc1, which
corresponds to the given direction (vector) x, is given by ξ1 = k1η, η = x/|x|, and conditions
(3.1) are equivalent to the well-known thermoelastic radiation conditions (see, e.g., [12], Ch.
III).

3.2. Let U = (U1, · · · , U4)
⊤ be a regular vector-function in Ω±, i.e., U ∈ C2(Ω±)∩C1(Ω±).

In addition, let A(D, τ)U ∈ L1(Ω
±) and conditions (1.30) be satisfied (in the case of the

domain Ω−). If we assume that either 0 < |Reτ | = |σ| < ε0 or σ > 0, and use the identity
(1.22), by standard arguments we obtain the following integral representation formulae (see,
for example, [54], [16])

∫

Ω±

Γ(x− y, τ)A(Dy, τ)U(y) dy ±
∫
S

{
[Q(Dy, n(y), τ)Γ⊤(x− y, τ)]⊤[U(y)]±−

−Γ(x− y, τ)[B(Dy, n(y))U(y)]±} dSy =




U(x), x ∈ Ω±,

0, x ∈ Ω∓,
(3.2)

where boundary operators B and Q are given by (1.25) and (1.26), respectively, and the
fundamental matrix Γ(x, τ) is defined by (2.2); n(y) is the outward unit normal vector of S
at the point y ∈ S and S is a C2-smooth surface.
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From the representation formula (3.2) it follows that any solution of equation (1.9),
satisfying the condition (1.29) with σ > 0, actually, is a C∞-regular in Ω± vector-function
which decrease, together with all derivatives, more rapidly than any negative power of |x|
as |x| → +∞.

Due to Theorem 2.3 and equalities (2.27), (2.28) analogous representation formulae can
be written by means of the fundamental matrices Γ(x, ω, r) in the case of the domain Ω+. One
needs only to replace A(D, τ) and Γ(x, τ) in (3.2) by A(D,−iω) and Γ(x, ω, r), respectively.
Concerning the domain Ω− we will prove the following proposition.

THEOREM 3.1 Let ∂Ω− = S be a C2-smooth surface and U be a regular
(m, r)−thermo-radiating vector in Ω−, i.e., U ∈ C2(Ω−)∩C1(Ω−)∩ SKm

r (Ω−). Let, in addi-
tion, A(D,−iω)U have a compact support and belong to the space L1(Ω

−). Then

U(x) =
∫

Ω−

Γ(x− y, ω, r)A(Dy,−iω)U(y) dy +

+
∫
S
{Γ(x− y, ω, r)[B(Dy, n(y))U(y)]−−

−[Q(Dy, n(y),−iω)Γ⊤(x− y, ω, r)]⊤[U(y)]−
}
dSy, x ∈ Ω−; (3.3)

here B, Q and n are the same as in (3.2).

Proof. Let R be a sufficiently large positive number and Ω+ ⊂ BR := {x ∈ IR3 : |x| < R}.
We assume also that suppA(D,−iω)U ⊂ BR. Denote Ω−

R = Ω− ∩ BR and ∂BR = ΣR.
Then the vector-function U is regular in Ω−

R. Therefore, we can write the following integral
representation (cf. (3.2))

U(x) =
∫

Ω−
R

Γ(x− y, ω, r)A(Dy,−iω)U(y) dy +

+

{
∫

ΣR

−
∫
S

}
{[Q(Dy, n(y),−iω)Γ⊤(x− y, ω, r)]⊤[U(y)] −

−Γ(x− y, ω, r)[B(Dy, n(y))U(y)]} dSy, x ∈ Ω−
R, (3.4)

where n(y) is the exterior normal on the both surfaces S and ΣR; clearly, n(y) = y/R
for y ∈ ΣR. Note that in the first integral the domain Ω−

R can be replaced by Ω−, since
A(Dy,−iω)U has a compact support.

Our goal is to show that the integral over ΣR tends to zero as R → +∞.
To this end, denote the right-hand side expression in (3.3) by T [U ]. Then by integrating

of (3.4) from ν to 2ν with respect to R and deviding the result by ν, we get

U(x) = T [U ](x) +X(ν),

where

X(ν) = 1
ν

2ν∫
ν
dR

∫
ΣR

{[Q(Dy, η,−iω)Γ⊤(x− y, ω, r)]⊤[U(y)] −

−Γ(x− y, ω, r)[B(Dy, η)U(y)]} dΣR, η = n(y) = y/R.

Next we prove that X(ν) → 0 as ν → +∞.
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It can be done by applying the arguments similar to that of [77]. In fact, for definiteness,
let r = 1. Then due to the thermo-radiation conditions (3.1)

B(Dy, η)U(y) =
m∑

j=1

B(iξj, η)
(j)

U (y) +O(R−2),

where ξj ∈ Scj corresponds to the vector η.
According to Remarks 2.4, 2.6, and Theorem 2.3 analogous formulae hold also for

[Q(Dy, η,−iω)Γ⊤(x − y, ω, 1)]⊤ and Γ(x − y, ω, 1) (note that x is some fixed point in Ω−
R).

The terms corresponding to O(R−2) in the expression of X(ν) decay as O(ν−1), while the
all other summands have the following structure

vst(ν) = 1
ν

2ν∫
ν
dR

∫
Σ1

ψ(η) gs(Rη) ht(Rη)R
2 dΣ1,

where ψ ∈ C∞(Σ1), η ∈ Σ1, gs and ht (s, t = 1, · · · , m) are smooth functions satisfying the
following inequalities

|gs(Rη)| < cR−1, | ∂
∂R
gs(Rη) − iµs(η)gs(Rη)| < cR−2,

|ht(Rη)| < cR−1, | ∂
∂R
ht(Rη) − iµt(η)ht(Rη)| < cR−2,

µj(η) = (η · ξj) > 0, c = const > 0,

due to (3.1).
The last inequality is a consequence of (2.14), since

(η · ξj) = (n(ξj) · ξj) = (−1)j
(

∇Φm(ξj ,−iω)

|∇Φm(ξj ,−iω)|
· ξj

)
=

= (−1)j |ξj |

|∇Φm(ξj ,−iω)|

[
∂
∂|ξ|

Φm(ξj,−iω)
]
ξ=ξj

> 0.

Now we proceed as follows

vst(ν) = 1

iν

2ν∫
ν
dR

∫
Σ1

ψ(η)
µs(η)+µt(η)

[iµs(η) gs(Rη) ht(Rη) +

+gs(Rη) iµt(η) ht(Rη)]R
2 dΣ1 =

= 1

iν
∫
Σ1

dΣ1

2ν∫
ν

{
ψ(η)

µs(η)+µt(η)
∂
∂R

[gs(Rη) ht(Rη)] +O(R−3)
}
R2 dR =

= 1

iν
∫
Σ1

ψ(η)
µs(η)+µt(η)

{(2ν)2gs(2νη) ht(2νη) − ν2gs(νη) ht(νη) −

−
2ν∫
ν
gs(Rη) ht(Rη) 2RdR} dΣ1 +O(ν−1) = O(ν−1).

Thus, X(ν) → 0 as ν → +∞ which completes the proof.

REMARK 3.2 From the above proof it follows that, if U satisfies the assumptions of The-
orem 3.1 and R is a sufficiently large positive number such that supp A(D,−iω)U ⊂ BR,
then

∫
ΣR

{[Q(Dy, n(y),−iω)Γ⊤(x− y, ω, r)]⊤[U(y)] −

−Γ(x− y, ω, r)[B(Dy, n(y))U(y)]} dΣR = 0

for an arbitrary x ∈ BR ∩ Ω−.
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COROLLARY 3.3 Let U be the same as in Theorem 3.1. Then the derivatives DβU are
again (m, r)−thermo-radiating vectors for an arbitrary multi-index β and the asymptotic
representation of DβU at infinity can be obtained by the direct differentiation from the cor-
responding asymptotic formula of U .

COROLLARY 3.4 Let A(D,−iω)U(x) = 0 in IR3 and U ∈ SKm
r (IR3). Then U = 0 in

IR3.

COROLLARY 3.5 Let F = (F1, ..., F4)
⊤ ∈ C1(IR3) and diam supp F < +∞. Then the

equation

A(D,−iω)U(x) = F (x), x ∈ IR3

is uniquely solvable in the class C2(IR3) ∩ SKm
r (IR3) and the solution is representable by the

following convolution type integral

U(x) =
∫

IR3

Γ(x− y, ω, r)F (y) dy, x ∈ IR3.
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CHAPTER II

FORMULATION OF BOUNDARY VALUE AND INTERFACE PROBLEMS

Here we present the classical and weak formulations of the boundary value and interface
problems of the thermoelasticity theory which will be investigated in the subsequent chapters.

4 Functional Spaces

In this section we introduce some functional spaces which will be needed in the formulation
of boundary value and interface problems. We recall here some properties of these spaces
and for details refer to, for example, [75], [76], [47], [45], [1].

Let Ω+, Ω−, and S be the same as in Subsection 1.5.
By Ck(Ω±), Ck(Ω±), Ck(S), and Ck,α(Ω±), Ck,α(Ω±), Ck,α(S), with integer k ≥ 0 and

0 < α ≤ 1, we denote the usual k-smooth and Hölder (k, α)-smooth function spaces. Note
that here we assume S to be a Ck,α-smooth manifold. Further, C∞

comp(Ω
−) stands for the

class of C∞-regular functions with compact supports in Ω−, C(Ω±) and C(S) denote the
spaces of continuous functions in Ω± and S, respectively, and Cα := C0,α for 0 < α < 1.

By W 1
p (Ω±), W 1

p,loc(Ω
±), and W 1

p,comp(Ω
±) we denote the usual Sobolev spaces, i.e., spaces

of measurable, in general, complex-valued functions that together with their first order gener-
alized derivatives are p-integrable, locally p-integrable, and compactly supported p-integrable
functions, respectively, in corresponding domains. Further, Lp(Ω

±), Lp,loc(Ω
±), Lp,comp(Ω

±),
and Lp(S) denote the usual (Lebesgue) measurable function spaces.

Let s ∈ IR, 1 < p < ∞, 1 ≤ q ≤ ∞, and S ∈ C∞. Then Bs
p,q(Ω

±), Bs
p,q,loc(Ω

±),
Bs
p,q(S), and Hs

p(Ω
±), Hs

p,loc(Ω
±), Hs

p(S), stand for the Besov and the Bessel-potential spaces,
respectively.

Next, let S1 be a submanifold of S with a C∞-smooth boundary ∂S1. We introduce the
following spaces on S1:

Bs
p,q(S1) = {f |S1 : f ∈ Bs

p,q(S)}, Hs
p(S1) = {f |S1 : f ∈ Hs

p(S)},

B̃s
p,q(S1) = {f ∈ Bs

p,q(S) : supp f ⊂ S1}, H̃s
p(S1) = {f ∈ Hs

p(S) : supp f ⊂ S1},

where f |S1 denotes the restriction of f to S1, and s, p, and q are as above. The appearance
of the Besov and Bessel-potential spaces with p 6= 2 and q 6= 2 is not only of mathematical
interest. The case is that for particular mixed and crack type boundary value and interface
problems with specific geometry studied in mathematical physics and mechanics it is well
known that, in general, solutions or their derivatives have singularities at the collision curves
of changing boundary conditions or edge points of cracks and they do not belong to the class
of C1-regular functions in closed domains (see,e.g., [71], [81]).
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Because of this fact and in order to allow a wide class of boundary data, on one side,
and to establish optimal regularity properties of the solutions, on the other hand, we state
the basic and mixed interface (transmission) problems in Sobolev spaces with p > 1. If we
invoke that u ∈ W 1

p (Ω+) [W 1
p,loc(Ω

−)] implies u|∂Ω± ∈ B1−1/p
p,q (∂Ω±), then the need of Besov

spaces in formulation of our BVPs and interface problems becomes transparent. Clearly,
here u|S is defined in the trace sense.

We recall that Hs
2 = W s

2 = Bs
2,2, W

t
p = Bt

p,p, and Hk
p = W k

p , for any s ∈ IR, for any
positive and non-integer t, and for any non-negative integer k.

It is evident that first order derivatives of functions from W 1
p (Ω+) and [W 1

p,loc(Ω
−)] be-

long to Lp(Ω
+) and Lp,loc(Ω

−), respectively, and, in general, they have no traces on S.
However, for vector-functions U ∈W 1

p (Ω+) [W 1
p,loc(Ω

−)], satisfying, in addition, A(D, κ)U ∈

Lp(Ω
+) [Lp,loc(Ω

−)] the functionals [P (D, n)U ]±S ∈ [B−1/p
p,p (S)]3 and [λ(D, n)U4]

±
S ∈ B−1/p

p,p (S),

i.e., the functional [B(D, n)U ]±S ∈ [B−1/p
p,p (S)]4 (see (1.25)), can be defined correctly by means

of the Green formulae (1.21).
To this end, let us set

〈 [B(D, n)U ]+S , [V ]+S 〉S :=
∫

Ω+

E(U, V ) dx+
∫

Ω+

A(D, κ)U · V dx (4.1)

[
〈 [B(D, n)U ]−S , [V ]−S 〉S := −

∫

Ω−

E(U, V ) dx−
∫

Ω−

A(D, κ)U · V dx

]
, (4.2)

where E(U, V ) is given by (1.27), and

V ∈W 1
p′(Ω

+) [V ∈W 1
p′,comp(Ω

−) ],
1

p
+

1

p′
= 1.

Clearly, by the trace theorem [V ]±S ∈ B
1−1/p′

p′,p′ (S).
It is easy to see that the right-hand side expression in (4.1) [(4.2)] gives the same value

for arbitrary vector-functions V ∈ W 1
p′(Ω

+) [V ∈ W 1
p′,comp(Ω

−)] having the same traces on
S (provided U is fixed). This in turn shows, that the functionals defined by the above
equations are, actually, supported on S. We also note that, if U ∈ C1(Ω+) [U ∈ C1(Ω−) ]
and A(D, κ)U ∈ L1(Ω

+) [L1,loc(Ω
−) ], then the above introduced functionals correspond to

the usual boundary values [B(D, n)U ]+ and [B(D, n)U ]−, respectively. Therefore, we can

consider 〈 · , · 〉S in (4.1) and (4.2) as dualities between the spaces B−1/p
p,p (S) and B

1/p
p′,p′(S).

Note that

〈 f , g 〉S =
∫
S
〈 f , g 〉 dS =

4∑
j=1

fj gj dS

for the smooth vector functions f = (f1, · · · , f4)
⊤ and g = (g1, · · · , g4)

⊤, i.e., the above
duality extends the usual ”real” L2-scalar product.

Throuhgout this monograph all boundary and interface conditions for the displacement
vector and temperature always are understood in the trace sense, while for the stress vector
and heat flux they are to be concidered in the above duality sense, i.e., in the sense of
continuous linear functionals.

REMARK 4.1 Let us note the following two simple things. Firstly, the condition

[B(D, n)U ]+ = F on S,
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where U ∈ [W 1
p (Ω+)]4, A(D, κ)U ∈ [Lp(Ω

+)]4, and F ∈ [B−1/p
p,p (S)]4, means in the above

functional sense that

∫

Ω+

E(U, V ) dx+
∫

Ω+

A(D, κ)U · V dx = 〈F , [V ]+S 〉S (4.3)

for arbitrary V ∈ [W 1
p′(Ω

+)]4.
Secondly, let

U ∈ [W 1
p (Ω+)]4, A(D, κ)U ∈ [Lp(Ω

+)]4, F ∈ [B−1/p
p,p (S1)]

4,

where S1 a submanifold of the surface S as described above. Then the condition

[B(D, n)U ]+ = F on S1,

is understood as follows

∫

Ω+

E(U, V ) dx+
∫

Ω+

A(D, κ)U · V dx = 〈F , [V ]+S 〉S =: 〈F , [V ]+S1
〉S1 (4.4)

for arbitrary V ∈ [W 1
p′(Ω

+)]4 whose trace [V ]+S is supported on S1, i.e., [V ]+S\S1
= 0. Evi-

dently, [V ]+S1
∈ [B̃

1/p
p′,p′(S1)]

4. Here 〈 · , · 〉S1 is the duality between the spaces [B−1/p
p,p (S1)]

4 and

[B̃
1/p
p′,p′(S1)]

4. Boundary conditions for the exterior domain Ω− are understood quite analo-
gously. We have only to change the sign ”+” by the sign ”−” in front of the volume integrals
in the left-hand sides of (4.3) and (4.4), and the superscript ”+” is to be replaced by the su-
perscript ”−” in the right-hand sides. Moreover, a test function V is to be taken from the
same type of Sobolev spaces as above but now with a compact support in Ω−.
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5 Formulation of the Basic and Mixed BVPs

In this section and in what follows boundary value and interface problems for the pseudo-
oscillation and steady state oscillation equations will be marked by the subscripts τ and
ω, respectively (unless otherwise stated). We note that in the pseudo-oscillation problems
τ = σ − iω with σ > 0 and ω ∈ IR.

We start by the formulation of the so-called basic and mixed boundary value problems
for the bounded domain Ω+ and its unbounded complement Ω−. As above, we assume that
S = ∂Ω± is a C2-smooth manifold. Moreover, U = (u, u4)

⊤ is again a four-dimensional
vector-function whose first three components correspond to the displacement vector, while
the fourth component describes the temperature field.

We consider the following BVPs.
Find a solution U to the system of differential equations (1.9) [(1.10)] in Ω± satisfying

one of the boundary conditions on S:

Problem (P1)
±
τ [(P1)

±
ω ]:

[u]± = f̃ , f̃ = (f1, f2, f3)
⊤, (5.1)

[u4]
± = f4, (5.2)

i.e., the dicplacement vector and the temperature are prescribed on S.

Problem (P2)
±
τ [(P2)

±
ω ]:

[u]± = f̃ , (5.3)

[λ(D, n) u4]
± = F4, (5.4)

i.e., the dicplacement vector and the heat flux through the surface S are given on S. Here
λ(D, n) = ∂n is given by (1.24). The case [∂nu4]

± = 0 describes a thermal insulation over
the surface bounding the body.

Problem (P3)
±
τ [(P3)

±
ω ]:

[P (D, n)U ]± = F̃ , F̃ = (F1, F2, F3)
⊤, (5.5)

[u4]
± = f4, (5.6)

i.e., the vector of thermal stresses and the temperature are given on S. Here P (D, n) is
defined by (1.13).

Problem (P4)
±
τ [(P4)

±
ω ]:

[P (D, n)U ]± = F̃ , (5.7)

[λ(D, n) u4]
± = F4, (5.8)

i.e., the vector of thermal stresses and the heat flux are prescribed on S.
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Problem (Pmix)
±
τ [(Pmix)

±
ω ]:

[u]± = f̃ (1) and [u4]
± = f

(1)
4 on S1, f̃

(1) = (f
(1)
1 , f

(1)
2 , f

(1)
3 )⊤, (5.9)

[P (D, n)U ]± = F̃ (2) and [λ(D, n)u4]
± = F

(2)
4 on S2, F̃

(2) = (F
(2)
1 , F

(2)
2 , F

(2)
3 )⊤, (5.10)

where S1∪S2 = S, S1∩S2 = ∅, Sj 6= ∅, j = 1, 2; we assume here that the common boundary
of ∂S1 = ∂S2 is also a smooth curve.

The functions fk, Fk, f
(1)
k and F

(2)
k are given functions and in the sequel they will be

referred as boundary data of the BVPs.
Let us introduce the matrix boundary operators

B(1)(D, n) := I4 = [δkj ]4×4, B(2)(D, n) :=



I3 [0]3×1

[0]1×3 λ(D, n)




4×4

,

B(4)(D, n) := B(D, n), B(3)(D, n) :=




[T (D, n)]3×3 [−βkjnj ]3×1

[0]1×3 1




4×4

, (5.11)

where T (D, n) and B(D, n) are given by formulae (1.12) and (1.25), respectively. The
boundary conditions corresponding to the above problems (Pk)±τ [(Pk)±ω ] can be then written
as follows

[B(k)(D, n)U ]± = g, k = 1, 2, 3, 4, (5.12)

where the four-dimensional vector g is constructed by the boundary data of the corresponding
problem.

By a solution of the interior BVPs (Pk)+
τ and (Pk)+

ω we understand a vector U from the
space either C1(Ω+) ∩ C2(Ω+) or W 1

p (Ω+) with p > 1.
The mixed BVPs (Pmix)+

τ and (Pmix)+
ω will be considered only in the space W 1

p (Ω+) since,

in general, they have no solutions in the space of smooth functions C1(Ω+).
Clearly, in the case of the Sobolev spaces W 1

p (Ω+) the differential equations (1.9) and
(1.10) are to be considered in the distributional (weak) sense, while the boundary conditions
are to be understood in the functional-trace sense described in the previous section.

Moreover, in the exterior BVPs for the domain Ω− we provide that a solution to the
pseudo-oscillation equations (1.9) has to satisfy the conditions (1.29) at infinity (i.e., (1.30)),
while a solution to the steady state oscillation equations (1.10) has to meet the generalized
Sommerfeld-Kupradze type (m, r)−thermo-radiation conditions (3.1). It is also evident that
in the exterior problems for the homogeneous pseudo-oscillation equations we may assume
U ∈ W 1

p (Ω−) (due to the required asymptotic behaviour at infinity), while in the exterior
problems for the homogeneous steady state oscillation equations we have to look for solution
in the space W 1

p,loc(Ω
−).

We remark that every solution to the homogeneous elliptic equations with constant co-
efficients (1.9) and (1.10) is C∞-regular in Ω+ and Ω−. Therefore, we have to control the
smoothness of the solutions only near the boundary S.
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Concerning the boundary data in the above formulated problems we note that the pre-
cised functional spaces for them will be given below when we start the systematic study of
the existence of solutions to the nonhomogeneous BVPs (see Chapter V).

However, we mention here only some necessary (compatibility) conditions. Namely, when
we look for a solution U ∈ C1(Ω±), then the boundary functions fk and Fk (k = 1, · · · , 4)
have to belong to some subspaces of C1(S) and C0(S), respectively, while the following
natural conditions fk ∈ B1−1/p

p,p (S) and Fk ∈ B−1/p
p,p (S) must be satisfied when we seek a

solution U in the space W 1
p (Ω±) [W 1

p,loc(Ω
±)]. Analogously, in the mixed BVPs we have to

require the natural restrictions f
(1)
k ∈ B1−1/p

p,p (S1) and F
(2)
k ∈ B−1/p

p,p (S2).
We note here that in the elasticity theory of isotropic bodies the basic BVPs in the

classical setting by potential methods have been exaustively investigated in [43], while the
mixed BVPs have been studied in [48], [13], [72], [73] (L2-setting) (see also references therein).
The same problems of the elasticity theory of anisotropic bodies are considered in [54], [8],
[57] (classical and Lp-setting).
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6 Formulation of Crack Type Problems

This type of problems appear when the elastic body under consideration has interior cracks
of the form of two-dimensional open manifolds. We consider the case when these crack
surfaces are disjoint and do not hit the boundary of the body.

We deal with the following model problems.
Let S1 be an open, two-dimensional, C∞-regular, two-sided, connected manifold with

C∞-regular boundary ∂S1. Moreover, we assume S1 to be a subset of some closed C∞-
regular surface S surrounding a bounded domain, say Ω+. Further, let IR3

S1
= IR3 \ S1,

S1 = S1 ∪ ∂S1, and as usual, Ω− = IR3 \ Ω+. We choose that direction of the unit normal
vector on S1 which corresponds to the outward normal vector on S (with respect to Ω+).
Due to this choice, the symbols [ · ]± denote again limits on S1 from Ω± either in the usual
classical-trace sense or in the functional-trace sense described in Section 5.

Let the whole unbounded domain IR3
S1

be filled up by an anisotropic elastic material with
thermoelastic characteristics introduced in Section 1.

The crack type problems in the thermoelasticity theory are formulated as follows (cf.
[16]).

Find a solution U = (u, u4)
⊤ ∈ W 1

p,loc(IR
3
S1

), p > 1, to the system of steady state
oscillation equation (1.10) in IR3

S1
satisfying the generalized Sommerfeld-Kupradze type

(m, r)−thermo-radiation conditions at infinity (3.1) and one of the following boundary con-
ditions on S1:

Problem (CR.D)ω:




[u]+ = f̃ (+),

[u4]
+ = f

(+)
4 ,

and





[u]− = f̃ (−),

[u4]
− = f

(−)
4 ,

(6.1)

where f̃± = (f±
1 , f

±
2 , f

±
3 )⊤, f± = (f±

1 , · · · , f
±
4 )⊤;

Problem (CR.N )ω:




[P (D, n)U ]+ = F̃ (+),

[λ(D, n)u4]
+ = F

(+)
4 ,

and





[P (D, n)U ]− = F̃ (−),

[λ(D, n)u4]
− = F

(−)
4 ,

(6.2)

where F̃± = (F±
1 , F

±
2 , F

±
3 )⊤, F± = (F±

1 , · · · , F
±
4 )⊤.

The boundary data f±
k and F±

1 belong again to the natural spaces

f±
k ∈ B1−1/p

p,p (S1), F±
k ∈ B−1/p

p,p (S1), k = 1, · · · , 4. (6.3)

Moreover, we assume

f+
k − f−

k ∈ B̃1−1/p
p,p (S1), F+

k − F−
k ∈ B̃−1/p

p,p (S1), k = 1, · · · , 4, (6.4)

which is stipulated by the fact that an arbitrary solution U to the equation (1.10) is C∞-
regular in IR3

S1
and, obviously,

[U ]+ − [U ]− = 0 and [B(D, n)U ]+ − [B(D, n)U ]− = 0, on S \ S1. (6.5)
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The formulation of crack type BVPs for the pseudo-oscillation equations are similar to
the above ones.

In this case we look for a solution U = (u, u4)
⊤ ∈ W 1

p (IR3
S1

), p > 1, to the system
of equations (1.9) in IR3

S1
satisfying the decay conditions (1.30) at infinity, and either the

boundary conditions (6.1) (in Problem (CR.D)τ ) or the boundary conditions (6.2) (in Prob-
lem (CR.N )τ ) on S1. The boundary data f±

k and F±
1 are supposed again to meet embeddings

(6.3) and (6.4).
If one considers the crack type problems for the domains Ω± with the interior cut S1,

then to the above boundary conditions (6.1) and (6.2) on S1, clearly, one has to add one
of the basic boundary conditions on S corresponding to the BVPs (Pk)±τ [(Pk)±ω ]. As it
becomes transparent later on, these type of BVPs can be investigated by slight and evident
modifications of our analysis developed in the next chapters. Therefore, we confine ourselves
to deal with only the above formulated model problems.

We remark that analogous problems of elastostatics of isotropic and anisotropic bodies
have been investigated in [13], [17], [18] (see also references therein). The above formulated
crack problems for the pseudo-oscillation equations of the thermoelasticity theory in the
general anisotropic case have been treated in [16].
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7 Basic and Mixed Interface Problems

In this section we formulate the basic and mixed interface problems of the thermoelasticity
theory for piecewise homogeneous anisotropic bodies. In the scientific literature the mixed
interface problems are called also as interface crack problems.

The most general case of the structure of a piecewise homogeneous elastic body un-
der consideration can be mathematicaly described as follows. In three-dimensional Eu-
clidean space IR3 we have some closed, smooth, connected, nonselfintersecting surfaces
S̃1, S̃2, ..., S̃n (S̃j ∩ S̃k = ∅, j 6= k). By these surfaces the whole space IR3 is devided into sev-
eral connected domains Ω1, ...,Ωl. Each domain is supposed to be filled up by an anisotropic
material with corresponding, in general, different thermoelastic coefficients.

Common boundaries of the two distinct materials are called interfaces or contact surfaces
of the piecewise homogeneous elastic body. If some domains represent empty inclusions, then
corresponding to them surrounding surfaces are called boundary surfaces of the composed
elastic body in question. Such type of piecewise homogeneous structures encounter in many
physical, mechanical and engineering applications. Therefore, besides the theoretical impor-
tance of the transmission problems we intend to study, this interest is also motivated by
their fundamental applications to many areas of science and technology.

7.1. For illustration of the method suggested we consider the following model problems.
We assume that the piecewise homogeneous composed anisotropic body consists of two
elastic components occupying bounded domain Ω1 = Ω+ and its unbounded complement
Ω2 = Ω− = IR3\Ω+; ∂Ω± = S, Ωµ = Ωµ ∪ S, µ = 1, 2. Thus, the whole space IR3 can be
considered as a piecewise homogeneous anisotropic body with the single contact (interface)
surface S.

Let a smooth, connected, nonselfintersecting curve l ⊂ S devide the contact surface S
into two open parts S1 and S2: S = S1 ∪ S2 ∪ l, S = S1 ∩ S2 = ∅, Sj = Sj ∪ l, j = 1, 2.

We treat the two groups of interface conditions:
I. Basic interface problems. On the whole contact surface S there are given
a) jumps of the displacement vector, the temperature, the vector of thermal stresses, and

the heat flux (Problem (C)) or
b) jumps of the temperature, the heat flux, and the normal components of the displace-

ment and the stress vectors; in addition to these conditions, the limits of either the tangent
components of the stress vectors (Problem (G)) or the tangent components of the displace-
ment vectors (Problem (H)) are given from both sides of the interface (cf. [43],[28],[31],[33]).

II. Mixed interface problems. On the submanifold S1 the conditions of Problem (C) are
prescribed, while on S2 there are given:

a) the conditions of Problem (G) (Problem (C − G)) or
b) the conditions of Problem (H) (Problem (C −H)) or
c) the displacement vector and the temperature (on the both sides of S2) (Problem

(C − DD)) or
d) the thermal stresses and the heat flux (on the both sides of S2) (Problem (C −NN ))

or
e) the displacement [stress] vector (on the both sides of S2) and the jumps of the tem-

perature and the heat flux (Problem (C − DC) [Problem (C −NC)]) (cf. [56], [32], [34], [39],
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[38]).
The analogous basic interface problems in the classical elasticity and thermoelasticity of

isotropic bodies have been studied by the potential and variational methods in [43], [31],
[64], [81] (see also [72], [59], [60]). In anisotropic elasticity the basic interface problems have
been considered in [33], [39], [22], while the mixed interface problems have been investigated
in [34], [56], [64], [39], [9].

7.2. Before we start the mathematical formulation of the above interface problems let
us introduce some notations.

We assume that the domain Ωµ (µ = 1, 2) is filled up by elastic material whose ther-

moelastic constants are c
(µ)
kjpq, λ

(µ)
pq , β(µ)

pq , c
(µ)
0 , with the same properties as in Section 1. The

displacement vector and the temperature in Ωµ are denoted by u(µ) and u
(µ)
4 , respectively.

All operators and thermo-mechanical characteristics corresponding to the elastic material
occupying the domain Ωµ we mark with the superscript µ. For example, the basic equations
of pseudo-oscillations and steady state oscillations now read as (see (1.7)-(1.11))

A(µ)(D, τ)U (µ)(x) = 0 in Ωµ, (7.1)

A(µ)(D,−iω)U (µ)(x) = 0 in Ωµ. (7.2)

The symbols T (µ)(D, n), P (µ)(D, n), and λ(µ)(D, n) stand now for the corresponding classical
stress operator, thermo-stress operator, and heat flux operator, respectively (see (1.11),
(1.13), (1.24)).

First we formulate the basic interface problems for the steady state oscillation equations
of thermoelasticity.

Find vector functions U (µ) (µ = 1, 2) that solve the equations (7.2) in Ωµ and that satisfy
the following interface (transmission) conditions on S:

Problem (C)ω:

[u(1)]+ − [u(2)]− = f̃ , [u
(1)
4 ]+ − [u

(2)
4 ]− = f4, (7.3)

[P (1)(D, n)U (1)]+ − [P (2)(D, n)U (2)]− = F̃ ,

λ̃(1)(D, n)[u
(1)
4 ]+ − λ̃(2)(D, n)[u

(2)
4 ]− = F4,





(7.4)

where

f = (f̃ , f4)
⊤, f̃ = (f1, f2, f3)

⊤, F = (F̃ , F4)
⊤, F̃ = (F1, F2, F3)

⊤.

Problem (G)ω:

[P (1)(D, n)U (1) · l]+ = F̃
(+)
l , [P (1)(D, n)U (1) ·m]+ = F̃ (+)

m , (7.5)

[P (2)(D, n)U (2) · l]− = F̃
(−)
l , [P (2)(D, n)U (2) ·m]− = F̃ (−)

m , (7.6)

[u(1) · n]+ − [u(2) · n]− = f̃n, [P (1)(D, n)U (1) · n]+ − [P (2)(D, n)U (2) · n]− = F̃n, (7.7)
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[u
(1)
4 ]+ − [u

(2)
4 ]− = f4, [λ(1)(D, n)u

(1)
4 ]+ − [λ(2)(D, n)u

(2)
4 ]− = F4. (7.8)

Problem (H)ω: conditions (7.7), (7.8), and

[u(1) · l]+ = f̃
(+)
l , [u(1) ·m]+ = f̃ (+)

m , (7.9)

[u(2) · l]− = f̃
(−)
l , [u(2) ·m]− = f̃ (−)

m . (7.10)

Here and in what follows we denote by n(x) again the outward (to Ω+) unit normal vector
at the point x ∈ S, and by l(x) and m(x) orthogonal unit vectors in the tangent plane. The
orthogonal local co-ordinate system n, l, and m at x ∈ S is orientated as follows: l×m = n,
where · × · denotes the vector product of two vectors.

The conditions (7.5)-(7.6) and (7.9)-(7.10), in fact, represent limits on S of the tangent
components of the thermo-stress vector and the displacement vector, respectively, while the
second equation in (7.4) represents the jump of the heat flux on S.

The conditions (7.3) and (7.4) can be written then as follows:

[U (1)]+ − [U (2)]− = f on S, (7.11)

[B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F on S, (7.12)

where B(µ)(D, n) is defined by (1.25).
Next, we recall that S1 and S2 are the two disjoint submanifolds of S such that S1∪S2 =

S, and formulate the mixed interface problems.
Find vector functions U (µ) (µ = 1, 2) that solve the equations (7.2) in Ωµ and that satisfy

one of the following mixed interface conditions on S:

Problem (C − DD)ω:

[U (1)]+ − [U (2)]− = f (1)

[B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F (1)





on S1, (7.13)

[U (1)]+ = ϕ(+), [U (2)]− = ϕ(−) on S2, (7.14)

where

f (1) = (f̃ (1), f
(1)
4 )⊤, f̃ (1) = (f

(1)
1 , f

(1)
2 , f

(1)
3 )⊤,

F (1) = (F̃ (1), F
(1)
4 )⊤, F̃ (1) = (F

(1)
1 , F

(1)
2 , F

(1)
3 )⊤,

ϕ(±) = (ϕ̃(±), ϕ
(±)
4 )⊤, ϕ̃(±) = (ϕ

(±)
1 , ϕ

(±)
2 , ϕ

(±)
3 )⊤.

Problem (C − NN )ω: conditions (7.13) on S1 and

[B(1)(D, n)U (1)]+ = Φ(+), [B(2)(D, n)U (2)]− = Φ(−) on S2, (7.15)

Φ(±) = (Φ̃(±),Φ
(±)
4 )⊤, Φ̃(±) = (Φ

(±)
1 ,Φ

(±)
2 ,Φ

(±)
3 )⊤.
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Problem (C − DC)ω: condition (7.8) on S and

[u(1)]+ − [u(2)]− = f̃ (1), [P (1)(D, n)U (1)]+ − [P (2)(D, n)U (2)]− = F̃ (1) on S1, (7.16)

[u(1)]+ = ϕ̃(+), [u(2)]− = ϕ̃(−) on S2. (7.17)

Problem (C − NC)ω: conditions (7.8) on S, (7.16) on S1, and

[P (1)(D, n)U (1)]+ = Φ̃(+), [P (2)(D, n)U (2)]− = Φ̃(−) on S2. (7.18)

Problem (C − G)ω: conditions (7.8) on S, (7.16) on S1, and

[u(1) · n]+ − [u(2) · n]− = f̃ (2)
n

[P (1)(D, n)U (1) · n]+ − [P (2)(D, n)U (2) · n]− = F̃ (2)
n





on S2, (7.19)

[P (1)(D, n)U (1) · l]+ = Φ̃
(+)
l , [P (1)(D, n)U (1) ·m]+ = Φ̃(+)

m on S2,

[P (2)(D, n)U (2) · l]− = Φ̃
(−)
l , [P (2)(D, n)U (2) ·m]− = Φ̃(−)

m on S2.

Problem (C − H)ω: conditions (7.8) on S, (7.16) on S1, (7.19) on S2, and

[u(1) · l]+ = ϕ̃
(+)
l , [u(1) ·m]+ = ϕ̃(+)

m on S2,

[u(2) · l]− = ϕ̃
(−)
l , [u(2) ·m]− = ϕ̃(−)

m on S2.

In the all above steady state oscillation problems we require that the vector function U (2)

satisfies the (m, r)−thermo-radiation conditions at infinity.
Moreover, by a solution to the above interface problems we understand a pair of vector-

functions (U (1), U (2)) satisfying the conditions of the corresponding problem.
We note that the basic interface problems formulated above will be studied in both the

regular (C1(Ω1),C1(Ω2)) and the Sobolev (W 1
p (Ω1),W 1

p,loc(Ω
2)) spaces.

Therefore, the given data of the interface problems belong to the corresponding natural
functional spaces, and the transmission conditions are to be understood in the classical sense
and in the functional-trace sense, respectively.

Particularly, in the regular case, all data corresponding to the displacement vector and
the temperature are embedded in C1(S) space, while the data corresponding to the thermo-
stress vector and the heat flux are embedded in C0(S) space. In the case of weak setting (in
Sobolev spaces), these data are in B1−1/p

p,p (S) and B−1/p
p,p (S) spaces, respectively.

The above mixed type interface problems will be treated only in the weak setting, i.e.,
in this case we look for the unknown vector functions U (1) and U (2) in the Sobolev spaces

U (1) ∈W 1
p (Ω1) and U (2) ∈W 1

p,loc(Ω
2) ∩ SKm

r (Ω2) 1 < p <∞. (7.20)

This implies that the data of the mixed interface problems have to meet the following
natural restrictions caused by (7.20):
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f4 ∈ B1−1/p
p,p (S), F4 ∈ B−1/p

p,p (S), (7.21)

f
(1)
k ∈ B1−1/p

p,p (S1), F
(1)
k ∈ B−1/p

p,p (S1), ϕ
(±)
k , f̃ (2)

n , ϕ̃
(±)
l , ϕ̃(±)

m ∈ B1−1/p
p,p (S2),

Φ
(±)
k , F̃ (2)

n , Φ̃
(±)
l , Φ̃(±)

m ∈ B−1/p
p,p (S2), k = 1, 4. (7.22)

Moreover, the inclusions (7.20) lead also to the following necessary (compatibility) condi-
tions:

a) in the problem (C − DD)ω:

f =




f (1) on S1,

ϕ(+) − ϕ(−) on S2,
f ∈ [B1−1/p

p,p (S)]4; (7.23)

b) in the problem (C − NN )ω:

F =





F (1) on S1,

Φ(+) − Φ(−) on S2,
F ∈ [B−1/p

p,p (S)]4; (7.24)

c) in the problem (C − DC)ω:

f̃ =




f̃ (1) on S1,

ϕ̃(+) − ϕ̃(−) on S2,
f̃ ∈ [B1−1/p

p,p (S)]3; (7.25)

d) in the problem (C − NC)ω:

F̃=




F̃ (1) on S1,

Φ̃(+) − Φ̃(−) on S2,
F̃ ∈ [B−1/p

p,p (S)]3; (7.26)

e) in the problem (C − G)ω:

f̃n =




f̃ (1) · n on S1,

f̃ (2)
n on S2,

f̃n ∈ B1−1/p
p,p (S), (7.27)

F̃=




F̃ (1) on S1,

[Φ̃
(+)
l − Φ̃

(−)
l ]l + [Φ̃(+)

m − Φ̃(−)
m ]m+ F̃ (2)

n n on S2,
F̃ ∈ [B−1/p

p,p (S)]3; (7.28)

f) in the problem (C − H)ω:

f̃ =




f̃ (1) on S1,

[ϕ̃
(+)
l − ϕ̃

(−)
l ]l + [ϕ̃(+)

m − ϕ̃(−)
m ]m+ f̃ (2)

n n on S2,
f̃ ∈ [B1−1/p

p,p (S)]3, (7.29)
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F̃n =




F̃ (1) · n on S1,

F̃ (2)
n on S2,

F̃n ∈ B−1/p
p,p (S). (7.30)

In the sequel all these conditions are supposed to be fulfilled. Note that the conditions
(7.23), (7.25), (7.27), (7.29), and (7.24), (7.26), (7.28) and (7.30), hold for arbitrary functions
satisfying (7.21) with 1 < p < 2 and 2 < p < ∞, respectively. This follows from the
multiplication properties of Besov spaces (see [76], Ch. 3, Section 3.3.2).

Finally, we note that for the domains of general structure, described in the beginning of
the section, the basic and mixed transmission problems mathematically could be formulated
quite similarly: on the contact surfaces the conditions one of the interface problems stated
above are assigned, while on the boundary of the composed body the conditions of the basic
(or mixed) boundary value problemes are given. We observe that the all principal difficulties
arising in the study of problems for the composed bodies of general structure are presented
in the above model problems as well.

7.3 The basic and mixed interface problems for the pseudo-oscillation case are formulated
in the same way. The only difference is that a solution U (2) to the equation (7.2) in Ω2 has
to satisfy the natural decay condition (1.30) at infinity. Therefore, in the weak setting, we
look for solutions in the spaces

U (1) ∈W 1
p (Ω1) and U (2) ∈W 1

p (Ω2), 1 < p <∞. (7.31)

These problems, due to the above agreement, we denote by symbols (C)τ , (G)τ , (H)τ ,
(C − DD)τ , (C − NN )τ , (C − DC)τ , (C − NC)τ , (C − G)τ , (C − H)τ , respectively.

The interface condtions on S in the regular and weak setting of these problems read again
as in the steady state oscillation case.
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CHAPTER III

UNIQUENESS THEOREMS

In this chapter we study the homogeneous versions of the above problems and prove
the corresponding uniqueness theorems. The problems in the classical formulation will be
analyzed completely, while the problems in the weak setting will be treated only partially.
Namely, we consider here the case p = 2. The general case (p > 1) will be considered later
together with the existence questions.

8 Uniqueness Theorems for Pseudo-Oscillation Prob-

lems

8.1. Let us begin with the consideration of the basic BVPs of pseudo-oscillations.

THEOREM 8.1 The homogeneous versions of the problems (Pk)+
τ , k = 1, 2, 3, 4, have only

the trivial solutions in the class of regular vector functions C1(Ω+).

Proof. Let U = (u, u4)
⊤ ∈ C1(Ω+)∩C∞(Ω+) be a solution to one of the homogeneous BVPs

indicated in the theorem. Making use of the identity (1.23) with κ = τ = σ − iω, where
σ > 0 and ω ∈ IR, we get

∫

Ω+

{
ckjpqDpuqDkuj + τ 2|u|2 + 1

τT0
λpqDqu4Dpu4 + c0

T0
|u4|2

}
dx = 0, (8.1)

since the two other integrals in (1.23) vanish due to the homogeneity of the differential equa-
tion (1.9) and the boundary conditions (see (5.1)-(5.8)). Separating the real and imaginary
parts leads to the system of equations

∫

Ω+

{
ckjpqDpuqDkuj + (σ2 − ω2)|u|2 + σ

|τ |2T0
λpqDqu4Dpu4 + c0

T0
|u4|2

}
dx = 0, (8.2)

ω
∫

Ω+

{
2σ|u|2 + 1

|τ |2T0
λpqDqu4Dpu4

}
dx = 0. (8.3)

Hence, by (1.14) and (1.15), we infer that u = 0 and u4 = 0 in Ω+.

THEOREM 8.2 Let U = (u, u4)
⊤ ∈ W 1

2 (Ω+) be a solution to one of the homogeneous
BVPs (Pk)+

τ , k = 1, 2, 3, 4. Then U = 0 in Ω+.

Proof. We prove the theorem for the problem (P4)
+
τ . The other problems can be treated

analogously.
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In the case under cosideration the homogeneous boundary conditions (5.7) and (5.8)
(with F = 0) are understood in the functional-trace sense described in Section 4. Invoking
the definition (4.1) with κ = τ , and noting that A(D, τ)U(x) = 0 in Ω+, we conclude

〈 [B(D, n)U ]+S , [V ]+S 〉S =
∫

Ω+

E(U, V ) dx, (8.4)

where V = (v, v4)
⊤, with v = (v1, v2, v3)

⊤, is an arbitrary vector function of the space
[W 1

2 (Ω+)]4, and E(U, V ) is given by (1.27). Clearly, (8.4) implies

〈 [P (D, n)U ]+S , [v]+S 〉S =
∫

Ω+

{
ckjpqDpuqDkvj + τ 2upvp − βpqu4Dpvq

}
dx, (8.5)

〈 [λ(D, n)u4]
+
S , [v4]

+
S 〉S =

∫

Ω+

{
λpqDqu4Dpv4 + c0τu4v4 + τT0v4βpqDpuq

}
dx, (8.6)

where v = (v1, v2, v3)
⊤ and v4 are arbitrary elements of the spaces [W 1

2 (Ω+)]3 and W 1
2 (Ω+),

respectively.
Multiplying (8.6) by (τT0)

−1, taking its complex conjugate, and adding the result term-
wise to the (8.5) lead then us to the equation

〈 [P (D, n)U ]+S , [v]+S 〉S + 1
τT0

〈 [λ(D, n)u4]
+
S , [v4]

+
S 〉S =

=
∫

Ω+

{
ckjpqDpuqDkvj + τ 2upvp − βpq[u4Dpvq − v4Dpuq]+

+ 1
τT0
λpqDqu4Dpv4 + c0

T0
u4v4

}
dx, (8.7)

It is evident that, if U is a solution to the homogeneous BVP (P4)
+
τ , then the left-hand side

expression in (8.7) vanishes. Whence

∫

Ω+

{
ckjpqDpuqDkvj + τ 2upvp − βpq[u4Dpvq − v4Dpuq]+

+ 1
τT0
λpqDqu4Dpv4 + c0

T0
u4v4

}
dx = 0, (8.8)

For arbitrary vj ∈ W 1
2 (Ω+), j = 1, 4. Since we are allowed to put here vj = uj and apply

the arguments of the proof of Theorem 8.1, we get uj = 0 (j = 1, 4) in Ω+.
Now we make some remarks concerning the other homogeneous boundary value problems.

First of all we note that the starting point to prove the uniqueness of solutions in Sobolev
spaces always is the formula (8.4). For example, let us consider the homogeneous problems
(P1)

+
τ , and let some vector-function U ∈ W 1

2 (Ω+) be its soluton. Due to the homogeneity
of the problem, obviousely, [U ]+ = 0 on S in the usual trace sense. Next, let us calculate
the corresponding thermo-stress vector and the heat flux on S, i.e., the vector [B(D, n)U ]+S
which is understood in the functional sense. To this end we have to apply the definition
(4.1) which in the case in question reads as (8.4). Surely, we may substitute the solution
U ∈ W 1

2 (Ω+) in the place of the vector-function V ∈ W 1
2 (Ω+) in the equations (8.4)-(8.8).

Since the trace [U ]+S vanishes on S, we again arrive at the equations (8.2) and (8.3). Whence
U = 0 in Ω+ follows.

THEOREM 8.3 The homogeneous mixed BVP (Pmix)+
τ in the class W 1

2 (Ω+) has only the
trivial solution.
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Proof. Denote by U = (u, u4)
⊤ ∈ W 1

2 (Ω+) an arbitrary solution of the homogeneous mixed

problem (Pmix)
+
τ . Clearly, [U ]+S1

= 0 in the usual trace sense and, therefore, [U ]+S2
∈ B̃

1/2
2,2 (S2),

since U ∈ B
1/2
2,2 (S). Further, let us note that the homogeneous boundary conditions for the

vector U on S2, due to Remark 4.1, imply
∫

Ω+

E(U, V ) dx = 〈 [B(D, n)U ]+S2
, [V ]+S2

〉S2 = 0 (8.9)

for arbitrary V ∈ W 1
2 (Ω+) with the property [V ]+S2

∈ B̃
1/2
2,2 (S2). Clearly, the equation (8.9)

is equivalent to (8.8), where we may again substitute the vector-function U in the place of
V , since the U satisfies the restrictions required above for V in (8.9). Therefore, with the
help of the arguments in the proof of Theorems 8.1 and 8.2 we easily conclude that uj = 0
(j = 1, 4) in Ω+.

The uniqueness theorems for the exterior basic BVPs for the pseudo-oscillation equations
can be proved quite analogously.

THEOREM 8.4 The homogeneous BVPs (Pk)
−
τ , k = 1, 2, 3, 4, and (Pmix)

−
τ have only the

trivial solutions in the space W 1
2 (Ω−).

Proof. We will prove the theorem only for the problem (Pmix)−τ , since for the other problems
it is verbatim.

Let U = (u, u4)
⊤ ∈W 1

2 (Ω−)∩C∞(Ω−) be an arbitrary solution to the mixed homogeneous
BVP for the pseudo-oscillation equations. Then, in addition, the U satisfies the decay
condition (1.30) at infinity. Due to Remark 4.1 and the homogeneity of the boundary
conditions for stresses on S2 the following equation

〈 [B(D, n)U ]−S2
, [V ]−S2

〉S = −
∫

Ω−

E(U, V ) dx = 0, (8.10)

holds for arbitrary V ∈W 1
2,comp(Ω

−) with [V ]−S2
∈ B̃

1/2
2,2 (S2), i.e., [V ]−S1

= 0.
As in the proof of Theorem 8.2 we can easily show that (8.10) yields

∫

Ω−

{
ckjpqDpuqDkvj + τ 2upvp − βpq[u4Dpvq − v4Dpuq]+

+ 1
τT0
λpqDqu4Dpv4 + c0

T0
u4v4

}
dx = 0. (8.11)

Note that C∞-regular vector functions having compact supports in Ω− and with zero traces
on S1 are densely embedded in the space {U ∈W 1

2 (Ω−) : [U ]−S1
= 0}. Thus, we can choose

a sequence {V (n) ∈ C∞
comp(Ω

−) : [V (n)]−S1
= 0} which converges to the vector function U in

the W 1
2 (Ω−)-norm. Therefore, simple limiting arguments yield that we may substitute uk in

the place of vk in (8.11). As a result we finally obtain

∫

Ω−

{
ckjpqDpuqDkuj + τ 2|u|2 + 1

τT0
λpqDqu4Dpu4 + c0

T0
|u4|2

}
dx = 0, (8.12)

which completes the proof (see the proof of Theorem 8.1).

8.2. Now we consider the crack type problems.

THEOREM 8.5 The homogeneous problems (CR.D)τ and (CR.N )τ have only the trivial
solutions in the space W 1

2 (IR3
S1

).

44



Proof. Let U ∈ W 1
2 (IR3

S1
) be some solution to the homogeneous problem (CR.D)τ . Clearly,

[U ]+S1
= 0 and [U ]−S1

= 0 in the usual trace sense. Recall that S1 ⊂ S, where S = ∂Ω+ for
some bounded domain Ω+. Next, let us calculte the functional traces [B(D, n)U ]±S . Note
that [B(D, n)U ]±S\S1

exist in the usual trace sense and [B(D, n)U ]+
S\S1

= [B(D, n)U ]−
S\S1

since

U ∈ C∞(IR3
S1

). We apply again the definitions (4.1) and (4.2) to write the equations

〈 [B(D, n)U ]+S , [V ]+S 〉S =
∫

Ω+

E(U, V ) dx, (8.13)

〈 [B(D, n)U ]−S , [V ′]−S 〉S = −
∫

Ω−

E(U, V ′) dx, (8.14)

where

V = (v, v4)
⊤ ∈W 1

2 (Ω+), V ′ = (v′, v′4)
⊤ ∈W 1

2,comp(Ω
−),

v = (v1, v2, v3)
⊤, v′ = (v′1, v

′
2, v

′
3)

⊤.

Making again use of the limiting arguments from the proof of Theorem 8.4, we easily conclude
by virtue of (8.13) and (8.14)

∫

Ω+

E(U, V )dx+
∫

Ω−

E(U, V ′)dx =

= 〈[B(D, n)U ]+S , [V ]+S 〉S − 〈[B(D, n)U ]−S , [V ′]−S 〉S (8.15)

for arbitrary V ∈ [W 1
2 (Ω+)]4 and arbitrary V ′ ∈ [W 1

2,comp(Ω
−)]4.

By the same manipulations as in the proof of Theorem 8.2, we derive from (8.15)

∫

Ω+

{
ckjpqDpuqDkvj + τ 2upvp − βpq[u4Dpvq − v4Dpuq]+

+ 1
τT0
λpqDqu4Dpv4 + c0

T0
u4v4

}
dx+

+
∫

Ω−

{
ckjpqDpuqDkv′j + τ 2upv′p − βpq[u4Dpv′q − v′4Dpuq]+

+ 1
τT0
λpqDqu4Dpv

′
4 + c0

T0
u4v

′
4

}
dx =

= 〈 [P (D, n)U ]+S , [v]+S 〉S + 1
τT0

〈 [λ(D, n)u4]
+
S , [v4]

+
S 〉S −

−〈 [P (D, n)U ]−S , [v′]−S 〉S −
1
τT0

〈 [λ(D, n)u4]
−
S , [v′4]

−
S 〉S. (8.16)

We may substitute in this equation V = U |Ω+ and V ′ = U |Ω−, where U |Ω± denotes the
restriction of U onto Ω±. Taking into account the equalities [U ]±S1

= 0, [B(D, n)U ]+
S\S1

=

[B(D, n)U ]−
S\S1

, and [U ]+
S\S1

= [U ]−
S\S1

, we easily see that (see also Remark 4.1)

〈 [P (D, n)U ]+S , [u]+S 〉S + 1
τT0

〈 [λ(D, n)u4]
+
S , [u4]

+
S 〉S −

−〈 [P (D, n)U ]−S , [u]−S 〉S −
1
τT0

〈 [λ(D, n)u4]
−
S , [u4]

−
S 〉S =

= 〈 [P (D, n)U ]+
S\S1

, [u]+
S\S1

〉S\S1
+ 1

τT0
〈 [λ(D, n)u4]

+
S\S1

, [u4]
+
S\S1

〉S\S1
−

−〈 [P (D, n)U ]−
S\S1

, [u]−
S\S1

〉S\S1
− 1

τT0
〈 [λ(D, n)u4]

−
S\S1

, [u4]
−
S\S1

〉S\S1
= 0.
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Therefore, (8.16) implies

∫

IR3
S1

{
ckjpqDpuqDkuj + τ 2|u|2 + 1

τT0
λpqDqu4Dpu4 + c0

T0
|u4|2

}
dx = 0.

Whence U = 0 in IR3
S1

follows.

8.3. To prove the uniqueness theorems for the basic and mixed homogeneous interface
problems, one has to apply the arguments quite similar to the above ones to derive the
following basic equation for solutions of the indicated homogeneous problems

∑2
µ=1

∫
Ωµ

{
c
(µ)
kjpqDpu

(µ)
q Dku

(µ)
j + τ 2|u(µ)|2 + 1

τT0
λ(µ)
pq Dqu

(µ)
4 Dpu

(µ)
4 +

+
c
(µ)
0

T0
|u(µ)|2

}
dx = 0. (8.17)

For regular solutions this formula can be obtained from the following Green identities for Ωµ

(µ = 1, 2)

∫
Ωµ

{
[A(µ)(D, τ)U (µ)]k u(µ)

k + 1
τT0

[A(µ)(D, τ)U (µ)]4 u
(µ)
4

}
dx =

= (−1)µ+1
∫
S

{
[B(µ)(D, n)U (µ)]

(µ)
k [u(µ)

k]
(µ) + 1

τT0
[u

(µ)
4 ](µ)[λ(µ)(D, n)u(µ)

4](µ)

}
dS −

−
∫

Ωµ

{
c
(µ)
kjpqDpu

(µ)
q Dku(µ)

j + τ 2|u(µ)|2 + 1
τT0
λ

(µ)
kj Dku

(µ)
4 Dju(µ)

4 +
c
(µ)
0

T0
|u(µ)

4 |2
}
dx, (8.18)

where [·](1) := [·]+S and [·](2) := [·]−S .
For solutions of the homogeneous problems in the Sobolev spaces W 1

2 (Ωµ) formula (8.17)
follows from the definitions of functional traces given in Section 4.

Now we formulate the uniqueness results for the interface problems of thermoelastic
pseudo-oscillations.

THEOREM 8.6 The homogeneous basic and mixed interface problems (C)τ , (G)τ , (H)τ ,
(C − DD)τ , (C − NN )τ , (C − DC)τ , (C − NC)τ , (C − G)τ , (C − H)τ , have only the trivial
solutions in the corresponding Sobolev spaces, i.e., if (U1, U2) ∈ (W 1

2 (Ω1),W 1
2 (Ω2)) solves

one of the above homogeneous problems, then U (µ) = 0 in Ωµ, µ = 1, 2.

Proof. By the reasonings similar to the already applied ones in the previous subsection, we
can easily conclude that for the pair of vector functions (U1, U2) ∈ (W 1

2 (Ω1),W 1
2 (Ω2)), which

is solution to one of the homogeneous problems indicated in the theorem, the formula (8.17)
holds. Whence the proof follows.

We remark that the regular case (i.e., when (U (1), U (2)) ∈ (C1(Ω1), C1(Ω2))) is coverd by
this theorem.
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9 Uniqueness Theorems for the Steady State Oscilla-

tion Problems

9.1. First we shall establish some auxiliary results concerning the coefficients of asymptotic
formulae (2.30) and ascertain the structure of the matrix functions (2.24).

We recall that

N(−iξ,−iω) = [Nkj(−iξ,−iω)]4×4 (9.1)

is the adjoint matrix to

A(−iξ,−iω) =




[ω2 I3 − C(ξ)]3×3 [iβkjξj ]3×1

[ωT0βkjξj]1×3 −Λ(ξ) + iωc0




4×4

, (9.2)

where C(ξ) and Λ(ξ) are defined by (1.7) and (1.8), respectively, while Nkj(−iξ,−iω) denotes
the cofactor of the element Ajk(−iξ,−iω) of the matrix (9.2) (cf. (1.32), (1.33)).

Let us set

C(ξ, ω) = ω2 I3 − C(ξ), C̃(ξ, ω) = ω2 I3 − C̃(ξ), (9.3)

where C̃(ξ) is given by (1.35). Denote by C∗(ξ, ω) and C̃∗(ξ, ω) the corresponding adjoint
matrices.

Due to (1.43) and (1.44) we have

C(ξ, ω)C∗(ξ, ω) = −Φ(ξ, ω) I3, C̃(ξ, ω) C̃∗(ξ, ω) = −Φ̃(ξ, ω) I3. (9.4)

From the condition I0 (see Subsection 1.6) it follows that rankC(ξ, ω) = 2 and, conse-
quently, rankC∗(ξ, ω) = 1 for an arbitrary ξ ∈ S0

l . Moreover (for the same ξ ∈ S0
l ) there

exists an orthogonal real matrix G(ξ, ω) such that

G⊤(ξ, ω)C∗(ξ, ω)G(ξ, ω) =




λ1 0 0

0 0 0

0 0 0




= λ1I0, I0 =




1 0 0

0 0 0

0 0 0



, (9.5)

where the real value λ1 = λ1(ξ, ω) 6= 0 is an eigenvalue of the matrix C∗(ξ, ω) (two other
eigenvalues are equal to zero; for details see [53]).

Further, let d(ξ, ω) = −ωc0[Λ(ξ)]−1 and

d(ξ, ω)G⊤(ξ, ω) C̃∗(ξ, ω)G(ξ, ω) = [bkj(ξ, ω)]3×3. (9.6)

LEMMA 9.1 Let ξ ∈ Scj , j = 1, ..., m, where Scj are the characteristic surfaces defined in
Subsection 1.6. Then the matrix N has the following structure

N(±iξ,−iω) =




[N (ξ, ω)]3×3 [0]3×1

[0]1×3 0




4×4

,

where N (ξ, ω) = −Λ(ξ)[1 + ib11(ξ, ω)λ−1
1 (ξ, ω)]C∗(ξ, ω).
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Proof. Let ξ ∈ Scj be an arbitrary point (1 ≤ j ≤ m). Clearly, ξ belongs to some surface S0
l ,

1 ≤ l ≤ 3, as well (see Subsection 1.6). Therefore,

N44(±iξ,−iω) = −Φ(ξ, ω) = 0, (9.7)

due to (1.46).
By direct calculations we get

N4k(−iξ,−iω) = −iωT0Nk4(−iξ,−iω), k = 1, 2, 3, (9.8)

Npq(−iξ,−iω) = −Λ(ξ)C∗
pq(ξ, ω) + iωc0C̃

∗
pq(ξ, ω) = Npq(iξ,−iω), 1 ≤ p, q ≤ 3. (9.9)

The condition I0 of Subsection 1.6 implies

∇M(ξ,−iω) = Λ(ξ)∇Φ(ξ, ω)− iωc0∇Φ̃(ξ, ω) 6= 0,

since Λ(ξ) 6= 0 on Scj .
This relation together with the equations (1.31), (1.32), (1.34), and

detA(−iξ′,−iω) = detA(iξ′,−iω) = M(−ξ′,−iω) = M(ξ′,−iω), ξ′ ∈ IR3,

yields

rankA(iξ,−iω) = 3, rankN(iξ,−iω) = 1, (9.10)

i.e., any two columns (rows) of the matrix (9.1) are linearly dependent.
Taking into account the equations (9.8) and (9.7) it can be easily proved that

Nk4(−iξ,−iω) = 0, N4k(−iξ,−iω) = 0, k = 1, 2, 3.

Thus, we have obtained the following representation

N(±iξ,−iω) =




[N (0)(ξ, ω)]3×3 [0]3×1

[0]1×3 0




4×4

with

N (0)(ξ, ω) = [Npq(iξ,−iω)]3×3, (9.11)

where Npq(iξ,−iω) = Nqp(iξ,−iω) are defined by (9.9).
Now from (9.9) and (9.11) together with (9.5) and (9.6) it follows

N (0)(ξ, ω) = −Λ(ξ)C∗(ξ, ω) + iωc0C̃
∗(ξ, ω) ,

G⊤(ξ, ω)N (0)(ξ, ω)G(ξ, ω) = −Λ(ξ)λ1(ξ, ω)I0 + iωc0G
⊤(ξ, ω) C̃∗(ξ, ω)G(ξ, ω) =

= −Λ(ξ)




λ1(ξ, ω) + ib11 ib12 ib13

ib12 ib22 ib23

ib13 ib23 ib33



, (9.12)

where bpq are real functions defined by (9.6).
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By virtue of (9.10) we have rankN (0)(ξ,−iω) = 1, and, consequently,

rank [G⊤(ξ, ω)N (0)(ξ, ω)G(ξ, ω)] = 1,

since G is an orthogonal matrix. This, in turn, implies that the matrix (9.12) has only
one linearly independent column (row). Inasmuch as λ1 6= 0, there exist complex numbers
α = α1 + iα2 and β = β1 + iβ2 such that




ib12

ib22

ib23




= α




λ1 + ib11

ib12

ib13



,




ib13

ib23

ib33




= β




λ1 + ib11

ib12

ib13



. (9.13)

Equating the corresponding elements and separating the real and imaginary parts lead
to the equations

(α2
1 + α2

2)λ1 = 0, (β2
1 + β2

2)λ1 = 0,

i.e., α = β = 0. But then from (9.13), (9.12), and (9.5) we derive

N (0)(ξ, ω) = −Λ(ξ){λ1(ξ, ω)G(ξ, ω)I0G
⊤(ξ, ω) + ib11(ξ, ω)G(ξ, ω)I0G

⊤(ξ, ω)} =

= −Λ(ξ)[λ1(ξ, ω) + ib11(ξ, ω)]G(ξ, ω)I0G
⊤(ξ, ω) =

= −Λ(ξ)[1 + iλ−1
1 (ξ, ω)b11(ξ, ω)]C∗(ξ, ω),

which completes the proof.

REMARK 9.2 Due to equation (2.24) and Lemma 4.1 we get (for arbitrary
ξ ∈ Scj , j = 1, ..., m, and r = 1, 2)

c(j)r (ξ,−iω) = dj(ξ,−iω)




[C∗(ξ, ω)]3×3 [0]3×1

[0]1×3 0




4×4

(9.14)

with

dj(ξ,−iω) = (−1)j+1 Λ(ξ)[1 + iλ−1
1 (ξ, ω)b11(ξ, ω)]

[2π(κ(ξ))1/2|∇Φm(ξ,−iω)|Ψm(ξ,−iω)]
.

LEMMA 9.3 Let U = (u, u4)
⊤ be a regular vector in Ω− of the class SKm

r (Ω−), and let
A(D,−iω)U have a compact support.

Then for sufficiently large |x|

u(x) =
m∑

j=1

|x|−1dj(ξ
j,−iω)e(−1)r+1ixξj

C∗(ξj, ω)b̃(ξj) +O(|x|−2), (9.15)

u4(x) = O(|x|−2), (9.16)

with the same dj as in Remark 9.2; here C∗(ξ, ω) is the adjoint matrix to C(ξ, ω), b̃ =
(b1, b2, b3)

⊤ is uniquely determined by the vector U (see below (9.18)), and the point ξj ∈ Scj
corresponds to the vector x/|x|.
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Proof. Denote by Ω the support of A(D,−iω)U . Then by Theorems 2.3, 3.1 and Remark
2.6 we have (for sufficiently large |x|)

U(x) =
m∑
j=1

{
∫
Ω
|x|−1e(−1)r+1i(x−y)ξj

c(j)r (ξj,−iω)[A(Dy,−iω)U(y)] dy+

+
∫
S
|x|−1e(−1)r+1i(x−y)ξj

c(j)r (ξj,−iω)[B(Dy, n(y))U(y)]− dSy −

−
∫
S
|x|−1e(−1)r+1i(x−y)ξj

{Q((−1)riξj, n(y),−iω)[c(j)r (ξj,−iω)]⊤}⊤[U(y)]− dSy

}
+

+O(|x|−2) =
m∑
j=1

|x|−1e(−1)r+1ixξj

c(j)r (ξj,−iω) b(ξj) +O(|x|−2), (9.17)

where

b(ξj) = (b̃(ξj), b4(ξ
j))⊤ =

∫
Ω
e(−1)riyξj

[A(Dy,−iω)U(y)] dy +

+
∫
S
e(−1)riyξj

[B(Dy, n(y))U(y)]− dSy −

−
∫
S
e(−1)riyξj

Q⊤((−1)riξj, n(y),−iω)[U(y)]− dSy; (9.18)

here ξj corresponds to the vector x/|x|.
Now (9.15) and (9.16) follow immediately from (9.17) and (9.14). Note that the vector

b(ξj) is represented explicitly by (9.18).

REMARK 9.4 From (9.15) with the help of equation (9.5) we get the following equivalent
asymptotic formula for u

u(x) =
m∑

j=1

|x|−1e(−1)r+1ixξj

λ1(ξ
j, ω)G(ξj, ω)I0G

⊤(ξj, ω)a(j)(ξj, ω) +O(|x|−2), (9.19)

where

a(j)(ξj, ω) = dj(ξ
j,−iω) b̃(ξj), (9.20)

dj and b̃ are the same as in Lemma 9.3.
Note that due to (9.5)

I0G
⊤ a(j) = ([G⊤ a(j)]1, 0, 0)⊤. (9.21)

9.2. In this subsection we assume S = ∂Ω− to be a connected C1-regular surface and
prove the following uniqueness theorem.

THEOREM 9.5 Let U be a regular solution to the homogeneous exterior problem (Pk)−ω
(k = 1, ..., 4) and U ∈ SKm

r (Ω−) with r = 1 for ω > 0 and r = 2 for ω < 0.
Then U = 0 in Ω−.
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Proof. Let R, BR, ΣR and Ω−
R be the same as in the proof of Theorem 3.1. Since U satisfies

the homogeneous conditions of the problem (Pk)−ω , from (1.23) (with Ω+ = Ω−
R and µ = −iω)

it follows that
∫

Ω−
R

{ckjpqDpuqDkuj − ω2 |u|2 − i(ωT0)
−1λkj Dku4Dju4 + c0(T0)

−1|u4|2} dx =

=
∫

ΣR

{
[B(D, n)U ]k [uk] −

i
ωT0

[u4] [∂nu4]
}
dΣR,

where B(D, n) and ∂n are defined by (1.25) and (1.24), respectively.
Owing the fact that ckjpqDpuqDkuj and λkjDku4Dju4 are non-negative real quantities,

from the last equation by separating the imaginary part we get

Im

{
∫

ΣR

{
[B(Dx, η)U(x)]k [uk(x)] −

i
ωT0

[u4(x)] [∂ηu4(x)]
}
dΣR

}
+

+ 1
ωT0

∫

Ω−
R

λkjDku4(x)Dju4(x) dx = 0, (9.22)

where η = x/|x| is the unit outward normal at the point x ∈ ΣR.
Due to Lemma 9.3 it is easily seen that

∫

Ω−
R

λkjDku4(x)Dju4(x) dx =
∫

Ω−

λkj Dku4(x)Dju4(x) dx+O(R−1),

∫
ΣR

|u4(x) ∂ηu4(x)| dΣR = O(R−2),
∫

ΣR

|u4(x) uk(x)| dΣR = O(R−1),

as R→ +∞ (k = 1, 2, 3). Clearly, ∂η = ∂n on ΣR.
Taking into account (1.25) and applying the above relations in (9.22) we obtain

Im

{
∫

ΣR

[T (Dx, η)u]k [uk] dΣR

}
+ 1

ωT0

∫

Ω−

λkj Dku4Dju4 dx = O(R−1), (9.23)

where T (D, η) is the stress operator of elastostatics defined by (1.12).
In the same way as in the proof of Theorem 3.1 (by integrating with respect to R from

ν to 2ν and deviding the result by ν) from (9.23) we derive

Im

{
1
ν

2ν∫
ν

∫
ΣR

[T (Dx, η)u]k [uk] dΣR dR

}
+ 1

ωT0

∫

Ω−

λkj Dku4Dju4 dx = O(ν−1), (9.24)

where ν is large enough.
Further, by Lemma 9.3 the first summand in the left-hand side of (9.24) can be trans-

formed as follows

F (ν) = Im

{
1
ν

2ν∫
ν

∫
ΣR

[T (D,η)u]k [uk] dΣR dR

}
=

= Im

{
1
ν

2ν∫
ν

∫
ΣR

m∑
j=1

[i(−1)r+1R−1dj(ξ
j,−iω)e(−1)r+1ixξj

T (ξj, η)C∗(ξj, ω)b̃(ξj)]k ×

×
m∑
l=1

[R−1dl(ξl,−iω)e(−1)rixξl

C∗(ξl, ω)b̃(ξl)]k dΣR dR+O(ν−1)
}

=

= Re

{
(−1)r+1

ν

∫
Σ1

m∑
j,l=1

dj(ξ
j,−iω)dl(ξl,−iω)[T (ξj, η)C∗(ξj, ω)b̃(ξj)]k×

×[C∗(ξl, ω)b̃(ξl)]k

(
2ν∫
ν
e(−1)r+1iR[µj(η)−µl(η)] dR

)
dΣ1

}
+O(ν−1), (9.25)
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where µj(η) = (η · ξj) and ξj corresponds to the vector x/|x|.
It can be easily proved that µj(η) 6= µl(η) if j 6= l (see Subsection 1.6). Therefore, if

j 6= l, clearly,

2ν∫
ν
e±iR[µj(η)−µl(η)] dR = O(1),

and (9.25) implies

F (ν) = Re

{
(−1)r+1

m∑
j=1

∫
Σ1

T (ξj, η)C∗(ξj, ω)a(j) · C∗(ξj, ω)a(j) dΣ1

}
+O(ν−1) (9.26)

with a(j) defined by (9.20).
In view of the symmetry property of C∗(ξ, η) and equality T⊤(ξ, η) = T (η, ξ) we have

from (9.26)

F (ν) = (−1)r+1

2

m∑
j=1

∫
Σ1

C∗(ξj, ω)[T (ξj, η) + T (η, ξj)]C∗(ξj, ω)a(j) · a(j) dΣ1 +

+O(ν−1). (9.27)

Now passing to the limit in (9.24) as ν → +∞ and bearing in mind (9.25) and (9.27) we
arrive at the equation

1
ωT0

∫

Ω−

λkjDku4Dju4 dx+ (−1)r+1

2

m∑
j=1

∫
Σ1

Ej(ξ
j, ω) dΣ1 = 0 (9.28)

with

Ej(ξ
j, ω) = C∗(ξj, ω)[T (ξj, η) + T (η, ξj)]C∗(ξj, ω)a(j) · a(j), (9.29)

where ξj ∈ Scj corresponds again to η, i.e., n(ξj) = η.
In what follows we claim that the integral in the second term of (9.28) is a non-negative

function for all ξj ∈ Scj .
To see this, let us note that

T (ξ, η) + T (η, ξ) = ∂
∂n(ξ)

C(ξ) = − ∂
∂n(ξ)

C(ξ, ω),

where η = n(ξ), ∂/∂n(ξ) = nk(ξ)Dk is a directional derivative, C(ξ) and C(ξ, ω) are defined
by (1.7) and (9.3), respectively.

We recall that in Subsection 1.6 we introduced the two sets of surfaces {Scj}
m
j=1 and

{S0
p}

3
p=1 defined by equations (1.46) and by the first equation of the same system, respectively.

Therefore, each Scj coincides with some S0
p for some p = p(j). Let us fix this correspondence,

i.e., Scj = S0
p(j).

Further, we proceed as follows. Note that

−
[
C∗(ξ, ω)

(
∂

∂n(ξj)
C(ξ, ω)

)
C∗(ξ, ω)

]
= − ∂

∂n(ξj)
[C∗(ξ, ω)C(ξ, ω)C∗(ξ, ω)] =

=
[

∂
∂n(ξj)

Φ(ξ, ω)
]
C∗(ξ, ω) (9.30)

for all ξ = ξj ∈ Scj (see (9.4)).
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With the help of (9.5), (9.30), and (9.29) we deduce

Ej(ξ
j, ω) =

{[
∂

∂n(ξ)
Φ(ξ, ω)

]
C∗(ξ, ω)a(j) · a(j)

}
ξ=ξj

=

=
{[

∂
∂n(ξ)

Φ(ξ, ω)
]
λ1(ξ, ω)I0G

⊤(ξ, ω)a(j) ·G⊤(ξ, ω)a(j)
}
ξ=ξj

=

=
{[

∂
∂n(ξ)

Φ(ξ, ω)
]
λ1(ξ, ω)

∣∣∣
[
G⊤(ξ, ω)a(j)

]
1

∣∣∣
2
}

ξ=ξj

. (9.31)

Now we show that the function

ψ(ξ) =
[

∂
∂n(ξ)

Φ(ξ, ω)
]
λ1(ξ, ω), ξ ∈ Scj , (9.32)

is strictly positive.
Since λ1(ξ, ω) is the only nonzero eigenvalue of the matrix C∗(ξ, ω) for ξ ∈Scj= S0

p , we
have

{λ1(ξ, ω)}ξ∈Sc
j

= {SpC∗(ξ, ω)}ξ∈Sc
j

= {C∗
11(ξ, ω) + C∗

22(ξ, ω) + C∗
33(ξ, ω)}ξ∈Sc

j
=

= 1
2ω





∂
∂ω

∣∣∣∣∣∣∣∣∣∣∣

ω2 − C11(ξ) −C12(ξ) −C13(ξ)

−C12(ξ) ω2 − C22(ξ) −C23(ξ)

−C13(ξ) −C23(ξ) ω2 − C33(ξ)

∣∣∣∣∣∣∣∣∣∣∣




ξ∈Sc

j

=

= − 1
2ω

{
∂
∂ω

Φ(ξ, ω)
}
ξ∈Sc

j

= − 1
2ω

{
∂
∂ω

Φ(ξ, ω)
}
ξ∈S0

p

=

= Φ(ζ, 0)ω4{̺2
1(̺

2
p − ̺2

2)(̺
2
p − ̺2

3) + ̺2
2(̺

2
p − ̺2

1)(̺
2
p − ̺2

3) +

+̺2
3(̺

2
p − ̺2

1)(̺
2
p − ̺2

2)} = (−1)p+1

∣∣∣∣
{

̺
2ω2

∂
∂̺

Φ(ξ, ω)
}
̺=|ω|̺p

∣∣∣∣ =

= (−1)p+1
∣∣∣{λ1(ξ, ω)}ξ∈S0

p

∣∣∣ , (9.33)

where ζ = ξ/|ξ|, Φ(ζ, 0) > 0; here we employed the representation (1.47).
It is easy to check that the exterior unit normal vector of S0

p is calculated by the following
formula

n(ξ) = (−1)p+1 ∇Φ(ξ,ω)
|∇Φ(ξ,ω)|

, ξ ∈ S0
p .

Therefore,
{

∂
∂n(ξ)

Φ(ξ, ω)
}
ξ∈Sc

j

=
{
(−1)p+1 ∇Φ(ξ,ω)

|∇Φ(ξ,ω)|
· ∇Φ(ξ, ω)

}
ξ∈S0

p

=

= {(−1)p+1|∇Φ(ξ, ω)|}ξ∈S0
p
, (9.34)

which together with (9.33) yields

ψ(ξ) = |∇Φ(ξ, ω)| |λ1(ξ, ω)| > 0 for ξ ∈ S0
p = Scj . (9.35)

Hence by virtue of (9.31)-(9.35) we get

Ej(ξ
j, ω) =

{
|∇Φ(ξ, ω)| |λ1(ξ, ω)|

∣∣∣
[
G⊤(ξ, ω)a(j)

]
1

∣∣∣
2
}

ξ=ξj

≥ 0. (9.36)
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Now from (9.28) it follows that

λkjDku4(x)Dju4(x) = 0, x ∈ Ω−, Ej(ξ
j, ω) = 0, ξ ∈ Scj ,

if (−1)r+1ω > 0.
Applying (1.18), (9.35), (9.36), and (9.19)-(9.21) we conclude that u4(x) = 0 in Ω− and

[G⊤(ξj, ω)a(j)(ξj, ω)]1 = 0, i.e.,

Dβu(x) = O(|x|−2) as |x| → +∞ (9.37)

for an arbitrary multi-index β.
Thus, we have obtained that u is a solution to the steady state oscillation equations of

elasticity theory

C(D)u(x) + ω2 u(x) = 0, x ∈ Ω−,

satisfying the homogeneous boundary condition either [u]− = 0 or [Tu]− = 0 on S (see
(5.1)-(5.8)) and the decay condition (9.37) at infinity.

Due to Lemma 3.4 in [39] (see also [53], Section 4) we then have u(x) = 0 in Ω−, which
completes the proof.

9.3 In this subsection we consider the same basic BVPs (Pk)−ω (k = 1, 4) together with the
mixed BVP (Pmix)−ω in the weak setting in the Sobolev space W 1

2,loc(Ω
−). Here the principal

difference in comparison with the pseudo-oscillation case is that the steady state oscillation
equations do not admit nontrivial square integrable in Ω− solutions, as it can be seen from
the previous subsection (see the corresponding results for the Helmholtz equation and for
the elastic oscillation equations, for example, in [10], [11], [77], [80], [43]).

As it is evident from the proof of Theorem 8.5, one of the central moments to establish the
uniqueness of solutions to the homogeneous steady state oscillation problems is the derivation
of formula (9.22) which follows from the corresponding Green identities for regular functions.
In the sequel we shall show that the same type formula can be derived for weak solutions as
well.

THEOREM 9.6 The homogeneous exterior BVPs (Pk)−ω (k = 1, ..., 4) and (Pmix)−ω have
only the trivial solutions in the class W 1

2,loc(Ω
−) ∩ SKm

r (Ω−) with r = 1 for ω > 0 and r = 2
for ω < 0.

Proof. For definiteness, let U ∈ W 1
2,loc(Ω

−) ∩ SKm
r (Ω−) be a solution of the homogeneous

problem (P4)
−
ω .

Due to the definition (4.2) the homogeneous boundary condition [B(D, n)U ]− = 0, which
is understood in the functional sense, is equivalent to the equation

〈 [B(D, n)U ]−S , [V ]−S 〉S = −
∫

Ω−

E(U, V ) dx = 0, (9.38)

where V ∈W 1
2,comp(Ω

−) is an arbitrary vector function and E(U, V ) is defined by (1.27) with
κ = −iω.
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Applying the standard manipulations we easily derive from (9.38)

〈 [P (D, n)U ]−S , [v]−S 〉S −
i

ωT0
〈 [λ(D, n)u4]

−
S , [v4]

−
S 〉S = (9.39)

= −
∫

Ω−

{ckjpqDpuqDkvj − ω2ukvk − βpq[u4Dpvq − v4Dpuq]−

− i
ωT0

λpqDqu4Dpv4 + c0
T0
u4v4

}
dx = 0. (9.40)

Further, let hR(x) be a real cut off function with the following properties:

hR ∈ C∞(IR3), hR(x) = 1 for |x| ≤ R, hR(x) = 0 for |x| ≥ 2R, (9.41)

where R > 0 is an arbitrary real number such that the open ball BR centered at the origin
and the radius R contains the closed domain Ω+ as a proper subset. Recall that ∂BR =: ΣR.

Next, we set VR(x) := hR(x)U(x). Clearly, VR(x) ∈W 1
2,comp(Ω

−)∩C∞(Ω−). Substitution
of this vector function in (9.39) in the place of V implies

E1 + E2 = 0, (9.42)

where

E1 =
∫

Ω−
R

{
ckjpqDpuqDkuj − ω2|u|2 − i

ωT0
λpqDqu4Dpu4 + c0

T0
|u4|

2
}
dx, (9.43)

E2 =
∫

B2R\BR

{ckjpqDpuqDk(hRuj) − ω2hR|u|2 − βpq[u4Dp(hRuq) − hRu4Dpuq]−

− i
ωT0

λpqDqu4Dp(hRu4) + c0
T0
hR|u4|

2
}
dx; (9.44)

here Ω−
R = Ω− ∩BR.

The differentiation by parts in (9.44) leads to the equation

E2 = −
∫

B2R\BR

[A(D,−iω)U ]kukhR dx+ i
ωT0

∫

B2R\BR

[A(D,−iω)U ]4u4hR dx−

−
∫

ΣR

[P (D, n)U ]kuk dΣR + i
ωT0

∫
ΣR

[λ(D, n)u4]u4 dΣR =

= −
∫

ΣR

{
[P (D, n)U ]kuk −

i
ωT0

[λ(D, η)u4]u4

}
dΣR, (9.45)

since A(D,−iω)U in Ω− and n = η on ΣR.
Therefore, (9.42), (9.43), and (9.44), due to the formulae (1.13) and (1.25), yield

Im

{
∫

ΣR

{
[B(D, n)U ]kuk −

i
ωT0

[λ(D, η)u4]u4

}
dΣR+

+ 1
ωT0

∫

Ω−
R

λpqDqu4Dpu4dx



 = 0 (9.46)

for arbitrary solution U ∈W 1
2,loc(Ω

−) to the homogeneous problem (P4)
−
ω .

Thus, we have obtained again the relation (9.22). This formula can be derived in the
same way for weak solutions of the other basic and mixed BVPs indicated in the theorem.
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Now applying the same analysis as in the proof of Theorem 9.5 we can show that U = 0 in
Ω−.

9.4. The uniqueness theorems for the homogeneous crack type problems of thermoelastic
oscillations can be proved by quite the same approach as above. To avoid the repetition of
the arguments outlined in the previous subsections, we only note here that with the help of
the identity (9.46) these problems by the analysis given in the proof of Theorem 9.5 are again
reduced to the corresponding homogeneous BVPs of steady state oscillations of the elasticity
theory with the displacement vector which behaves like O(|x|−2) at infinity. Therefore, due
to the results in [53], [54], [17], [39], such a displacement vector identically vanishes in the
domain of analyticity. This finally leads to the corresponding uniqueness results for the above
mentioned homogeneous crack type problems of the steady state thermoelastic oscillations.
As a consequence we have the following uniqueness theorem.

THEOREM 9.7 The homogeneous crack type BVPs (CR.D)ω and (CR.N )ω have only the
trivial solutions in the class W 1

2,loc(IR
3
S1

) ∩ SKm
r (IR3

S1
) with r = 1 for ω > 0 and r = 2 for

ω < 0.

9.5. For the homogeneous basic and mixed interface problems of the steady state ther-
moelastic oscillations we have a different situation since not all of them have only the trivial
solution.

Let us first consider the basic homogeneous problem (C)ω (see (7.3), (7.4)).

THEOREM 9.8 The homogeneous problem (C)ω has only the trivial solution in the class
(C1(Ω1) , C1(Ω2) ∩ SKm

r (Ω2)) with r = 1 for ω > 0 and r = 2 for ω < 0.

Proof. Let (U (1), U (2)) be a solution of the homogeneous problem (C)ω from the class indicated
in the theorem. Further, let R, BR, ΣR, and Ω−

R =: Ω2
R be the same as in the proof of Theorem

9.6. By the Green formula (1.23) then we have

∫

Ω1

{
c
(1)
kjpqDpu

(1)
q Dku

(1)
j − ω2|u(1)|2 − i

ωT0
λ(1)
pq Dqu

(1)
4 Dpu

(1)
4 +

c
(1)
0

T0
|u(1)|2

}
dx =

=
∫
S

{
[B(1)(D, n)U (1)]+k [u(1)

k]
+ − i

ωT0
[u

(1)
4 ]+[λ(1)(D, n)u(1)

4]+
}
dS, (9.47)

∫

Ω2
R

{
c
(2)
kjpqDpu

(2)
q Dku

(2)
j − ω2|u(2)|2 − i

ωT0
λ(2)
pq Dqu

(2)
4 Dpu

(2)
4 +

c
(2)
0

T0
|u(2)|2

}
dx =

= −
∫
S

{
[B(2)(D, n)U (2)]−k [u(2)

k]
− − i

ωT0
[u

(2)
4 ]−[λ(2)(D, n)u(2)

4]−
}
dS +

+
∫

ΣR

{
[B(2)(D, n)U (2)]k[u(2)

k] −
i

ωT0
[u

(2)
4 ][λ(2)(D, n)u(2)

4]
}
dΣR. (9.48)

Whence
∫

Ω1

{
c
(1)
kjpqDpu

(1)
q Dku

(1)
j − ω2|u(1)|2 − i

ωT0
λ(1)
pq Dqu

(1)
4 Dpu

(1)
4 +

c
(1)
0

T0
|u(1)|2

}
dx+

+
∫

Ω2
R

{
c
(2)
kjpqDpu

(2)
q Dku

(2)
j − ω2|u(2)|2 − i

ωT0
λ(2)
pq Dqu

(2)
4 Dpu

(2)
4 +

c
(2)
0

T0
|u(2)|2

}
dx =

=
∫

ΣR

{
[B(2)(D, n)U (2)]k[u(2)

k] −
i

ωT0
[u

(2)
4 ][λ(2)(D, n)u(2)

4]
}
dΣR, (9.49)
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due to the homogeneity of the transmission conditions.
In turn (9.49) implies (if we look at the imaginary part)

Im

{
∫

ΣR

{
[B(2)(D, n)U (2)]k[u(2)

k] −
i

ωT0
[u

(2)
4 ][λ(2)(D, n)u(2)

4]
}
dΣR+

+ 1
ωT0

∫

Ω1

λ(1)
pq Dqu

(1)
4 Dpu

(1)
4 dx+ 1

ωT0

∫

Ω2
R

λ(2)
pq Dqu

(2)
4 Dpu

(2)
4 dx



 = 0. (9.50)

From this equation, as in the proof of Theorem 9.5, we can show that u
(1)
4 = 0 in Ω1, u

(2)
4 = 0

in Ω2, and u(2) = 0 in Ω2 with r = 1 for ω > 0 and r = 2 for ω < 0.
Next, the homogeneous interface conditions (7.3) and (7.4) imply that [U (1)]+ = 0 and

[B(1)(D, n)U (1)]+ = 0 on S, which together with the following general integral representation
formula of the solution U (1) in Ω1

U (1)(x) =
∫
S

{
[Q(1)(D, n,−iω)[Γ(1)(x− y), ω, r)]⊤]⊤ [U (1)]+−

−Γ(1)(x− y, ω, r) [B(1)(D, n)U (1)]+
}
dS, x ∈ Ω1, (9.51)

completes the proof.

It is evident that in the case of the homogeneous problems (G)ω and (H)ω we again obtain
the equation (9.50) with the same conclusion as above:

U (2)(x) = 0 in Ω2, (9.52)

u
(1)
4 (x) = 0 in Ω1. (9.53)

From these equations and the corresponding homogeneous transmission conditions we con-
clude:

i) In the case of the homogeneous problem (G)ω the displacement vector u(1) solves the
following BVP

C(1)(D)u(1)(x) + ω2 u(1)(x) = 0

β
(1)
kj Dku

(1)
j (x) = 0





in Ω1, (9.54)

[T (1)(D, n)u(1)]+ = 0 and [u(1) · n]+ = 0 on S. (9.55)

ii) In the case of the homogeneous problem (H)ω the displacement vector u(1) solves the
following BVP

C(1)(D)u(1)(x) + ω2 u(1)(x) = 0

β
(1)
kj Dku

(1)
j (x) = 0





in Ω1, (9.56)

[u(1)]+ = 0 and [T (1)(D, n)u(1) · n]+ = 0 on S. (9.57)

These homogeneous problems for the elastic field have not, in general, the only trivial solu-
tions.
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Denote by JG(Ω1) and JH(Ω1), respectively, the set of values of the frequency parameter
ω for which the above problems (9.54)-(9.55) and (9.56)-(9.57) admit nontrivial solutions.
Obviously, JG(Ω1) is the intersection of the spectral sets of the so-called second and third
interior BVPs of the theory of steady state elastic oscillations (in terms of the monograph
[43]), while JH(Ω1) is the intersection of the spectral sets of the first and fourth interior
BVPs.

Such frequencies are called also Jones eigenfrequencies, while the corresponding nontrivial
solutions are referred to as Jones modes. Spectral problems similar to (9.54)-(9.55) encounter
also in the fluid-structure interaction problems (see, e.g., [26], [27], [46], [35], [37], and
references therein).

Clearly, JG(Ω1) and JH(Ω1) are at most denumarable and to each Jones eigenfrequency
there corresponds only finitely many linearly independent Jones modes (cf. [54]). In general,
JG(Ω1) and JH(Ω1) are not empty (see [43], [40]), hoewer there exist domains for which they
are empty sets (for details see [43], [25], [36]).

The above arguments easily lead to the following proposition.

THEOREM 9.9 The homogeneous problems (G)ω and (H)ω have only the trivial solutions
in the class (C1(Ω1) , C1(Ω2)∩SKm

r (Ω2)) with r = 1 for ω > 0 and r = 2 for ω < 0, provided
that ω is not a corresponding Jones eigenfrequency.

Analogous uniqueness theorems hold valid also in the case of the weak formulation of the
basic steady state oscillation interface problems.

THEOREM 9.10 The homogeneous interface problem (C)ω has only the trivial solution in
the class (W 1

2 (Ω1) , W 1
2,loc(Ω

2) ∩ SKm
r (Ω2)) with r = 1 for ω > 0 and r = 2 for ω < 0.

THEOREM 9.11 The homogeneous interface problems (G)ω and (H)ω have only the trivial
solutions in the class (W 1

2 (Ω1) , W 1
2,loc(Ω

2) ∩ SKm
r (Ω2)) with r = 1 for ω > 0 and r = 2 for

ω < 0, provided that ω is not a corresponding Jones eigenfrequency.

The proofs of these assertions are quite similar to the proof of Theorem 9.6.
The uiqueness theorems for the homogeneous mixed interface problems requires some

new ideas which will be presented below.

THEOREM 9.12 The homogeneous mixed interface problems (C − DD)ω, (C − NN )ω,
(C − DC)ω, (C − NC)ω, (C − G)ω, (C − H)ω, have only the trivial solutions in the class
(W 1

2 (Ω1) , W 1
2,loc(Ω

2) ∩ SKm
r (Ω2)) with r = 1 for ω > 0 and r = 2 for ω < 0.

Proof. We demonstrate the proof for the problem (C − DD)ω since it is verbatim for the
other problems.

Let (U (1), U (2)) be an arbitrary solution of the homogeneous interface problem (C−DD)ω
of the class indicated in the theorem. By the same analysis as in the proof of Theorems 9.6
and 9.8 we again arrive at the equations (9.52) and (9.53). To see this, one has to apply
the identities (9.47) and (9.48) where the surface integrals over S should be replaced by
the appropriate duality relations, in accordance with the definitions of functional traces,
and afterwards to take into account the homogeneity of the corresponding transmission and
boundary conditions of the problem in question (see (7.13), (7.14)).
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As a result we obtain that the vector function U (1) = (u(1), 0)⊤ ∈ W 1
2 (Ω1) has to satisfy

the conditions:

A(1)(D,−iω)U (1)(x) = 0 in Ω1, (9.58)

[U (1)]+ = 0 on S = S1 ∪ S2, (9.59)

[B(1)(D, n)U (1)]+ = 0 on S1. (9.60)

Note that we may apply the representation (9.51) for the vector-function U (1) under consid-
eration (see Theorem 10.8, item ii) in Section 10). Therefore, we have

U (1)(x) =
∫
S2

Γ(1)(x− y, ω, r) [B(1)(D, n)U (1)]+dS, x ∈ Ω1, (9.61)

where [B(1)(D, n)U (1)]+ ∈ B̃
−1/2
2,2 (S2) due to the condition (9.60).

It is evident that we can extend the vector function U (1) from Ω1 onto the whole IR3
S2

by the same formula (9.61) since the right-hand side integral is defined in IR3
S2

. Denote this

extension by the symbol Ũ (1)

From the above representation it follows that (cf. Theorem 10.8)

Ũ (1) ∈W 1
2,loc(IR

3
S2

) ∩ SKm
r (IR3

S2
) (9.62)

[Ũ (1)]+ = 0 and [Ũ (1)]− = 0 on S2, (9.63)

A(1)(D,−iω)Ũ (1)(x) = 0 in IR3
S2
. (9.64)

The second equation in (9.63) is a consequence of the ”continuity” property of the so-called
single layer integral operator (9.61) (see below Theorem 10.8).

Thus, we have established that the vector function Ũ (1) given by the integral (9.61) solves
the homogeneous crack type problem (9.62)-(9.64) in the sapce W 1

2,loc(IR
3
S2

) ∩ SKm
r (IR3

S2
)

where r and ω are as in Theorem 9.12. Due to Theorem 9.7 we then conclude that Ũ (1)

vanishes in IR3
S2

, which completes the proof.

We note that properties of surface potentials similar to (9.61) and boundary integral
operators corresponding to them will be studied in detail in various functional spaces in the
next chapter.
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CHAPTER IV

POTENTIALS AND BOUNDARY INTEGRAL OPERATORS

In this chapter we introduce and study the generalized single and double layer potentials
of the thermoelastisity theory of anisotropic bodies. We investigate their smoothness prop-
erties in the closed domains, asymtotic behaviour at infinity and establish jump relations on
the surface of integration. We analyse also boundary integral (pseudodifferential) operators
generated by these potentials and consider their mapping properties in various functional
spaces. Note that the analogous questions for the potential type operators in the elasticity
theory of isotropic and anisotropic bodies have been exaustively studied in [43], [8], [33],
[34], [57], [17], [39], [13], [54], [31].

In Section 10 we examine in detail properties of the thermoelastic steady state oscillation
potentials and afterwards, in Section 11, we breafly treat the same topics for the pseudo-
oscillation potentials.

10 Thermoelastic Steady State Oscillation Potentials

10.1. Let us introduce the following generalized single and double layer steady state oscil-
lation potentials constructed by the fundamental solution (2.29)

V (g)(x) :=
∫
S

Γ(x− y, ω, r) g(y) dSy, x ∈ IR3 \ S, (10.1)

W (g)(x) :=
∫
S
[Q(Dy, n(y),−iω)Γ⊤(x− y, ω, r)]⊤ g(y) dSy, x ∈ IR3 \ S, (10.2)

where S = ∂Ω±, g = (g1, ..., g4)
⊤ = (g̃, g4)

⊤, g̃ = (g1, g2, g3)
⊤; the operator Q(D, n,−iω) is

defined by (1.26) with κ = −iω.
Note that here and in what follows, for simplicity of the notations, we do not mark with

the subscript ω the steady state oscillation potentials and the integral operators correspond-
ing to them.

To investigate the existence of solutions to the nonhomogeneous BVPs posed in Chapter
II we need special mapping properties of the above potentials and the boundary integral
(pseudodifferential) operators generated by them.

Let

H g(z) =
∫
S

Γ(z − y, ω, r) g(y) dSy, z ∈ S, (10.3)

K1 g(z) =
∫
S
[B(Dz, n(z))Γ(z − y, ω, r)] g(y) dSy, z ∈ S, (10.4)

K2 g(z) =
∫
S
[Q(Dy, n(y),−iω)Γ⊤(z − y, ω, r)]⊤ g(y) dSy, z ∈ S, (10.5)

L± g(z) = lim
Ω±∋x→z∈S

B(Dx, n(z))W (g)(x), z ∈ S, (10.6)
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where the boundary differential operator B(D, n) is given by (1.25). Here the integrals (10.4)
and (10.5) are understood in the Cauchy principal value sense.

In the sequel everywhere the two positive numbers α and α′ are subjected to the inequal-
ities 0 < α < α′ ≤ 1.

LEMMA 10.1 Let k ≥ 0 be an integer and S ∈ Ck+1,α′

. Then for an arbitrary summable
g the potentials V (g) and W (g) are C∞-smooth solutions to the equation (1.10) in Ω± and
belong to the class SKm

r (Ω−).
The following formulae

[V (g)(z)]+ = [V (g)(z)]− = H g(z), g ∈ C(S), (10.7)

[B(D, n)V (g)(z)]± = (∓2−1I4 + K1) g(z), g ∈ Cα(S), (10.8)

[W (g)(z)]± = (±2−1I4 + K2) g(z), g ∈ Cα(S), (10.9)

hold and the operators

H : Cl,α(S) → Cl+1,α(S), (10.10)

K1, K2 : Cl,α(S) → Cl,α(S), (10.11)

V : Cl,α(S) → Cl+1,α(Ω±), (10.12)

W : Cl,α(S) → Cl,α(Ω±), (10.13)

where 0 ≤ l ≤ k, are bounded.

Proof. The first part of the lemma follows immediately from the properties of the funda-
mental matrix Γ(x − y, ω, r) and is trivial, since the columns of Γ(x − y, ω, r) are solutions
of the homogeneous equation (1.10) for x 6= y.

To prove the second part, we proceed as follows.
From equations (1.25), (1.26), and Theorem 2.3 we have

Γ(x− y, ω, r)− Γ(x− y) =: Γ̃(x− y, ω, r), (10.14)

B(D, n) = B0(D, n) − B̃(n), (10.15)

Q(D, n,−iω) = B0(D, n) − iωT0B̃(n), (10.16)

where |DβΓ̃kj(x, ω, r)| < cϕ
(kj)
|β| (x), k, j = 1, ..., 4, in a vicinity of the origin,

B0(D, n) =




[T (D, n)]3×3 [0]3×1

[0]1×3 ∂n




4×4

, B̃(n) =




[0]3×3 [βkjnj ]3×1

[0]1×3 0




4×4

;

here Γ(x), β, c and ϕ
(kj)
|β| are as in Lemma 2.1.
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Therefore, we can single out the dominant singular terms in the above potentials and
represent them in the form

V (g)(x) = V0(g)(x) + Ṽ (g)(x), (10.17)

W (g)(x) = W0(g)(x) + W̃ (g)(x), (10.18)

B(D, n)V (g)(x) −B0(D, n)V0(g)(x) =: R(g)(x),

where

V0(g)(x) =
∫
S

Γ(x− y) g(y) dSy,

W0(g)(x) =
∫
S
[B0(Dy, n(y))Γ(x− y)]⊤g(y) dSy.

The kernels of the potentials Ṽ (g), W̃ (g) and R(g) have singularities of type O(|x − y|−1)
as |x− y| → 0. Therefore, Ṽ , W̃ , and R are continuous vectors in IR3 provided g ∈C(S).

It is easy to see that

V0(g) = (v(0)(g̃), v
(0)
4 (g4))

⊤, W0(g) = (w(0)(g̃), w
(0)
4 (g4))

⊤,

B0(D, n)V0(g) = (T (D, n)v(0)(g̃), ∂nv
(0)
4 (g4))

⊤,

where v(0)(g̃) and w(0)(g̃) are single and double layer potentials of elastostatics (corresponding
to the operator C(D)) constructed by the fundamental matrix Γ(0)(x):

v(0)(g̃)(x) :=
∫
S

Γ(0)(x− y) g̃(y) dSy, (10.19)

w(0)(g̃)(x) :=
∫
S
[T (Dy, n(y))Γ(0)(y − x)]⊤ g̃(y) dSy, (10.20)

while v
(0)
4 (g4) and w

(0)
4 (g4) are potentials of the same type (corresponding to the homogeneous

operator Λ(D)) constructed by the fundamental function γ(0)(x):

v
(0)
4 (g4)(x) :=

∫
S
γ(0)(x− y) g4(y) dSy, (10.21)

w
(0)
4 (g4)(x) :=

∫
S
∂n(y)γ

(0)(y − x) g4(y) dSy, (10.22)

(see Lemma 2.1).
The properties of the latter potentials and boundary integral operators on S, generated by

them, are studied in detail for regular function spaces in [8], [50], [54], [55], [57]. The results
in the above mentioned references together with the representation formulae (10.17)-(10.18)
yield equations (10.7)-(10.9) and mapping properties (10.10)-(10.13).

For a pseudodifferential operator (ΨDO) K on S we denote by (K)0 and σ(K)(x, ξ̃)
(x ∈ S, ξ̃ ∈ IR2 \ {0}) the dominant singular part and the principal homogeneous symbol,
respectively. As usual, if no confusion arises, in the sequel the arguments x and ξ̃ will be
omitted.

LEMMA 10.2 The operators H, ±2−1I4+K1, and ±2−1I4+K2 are elliptic ΨDOs of order
−1, 0, and 0, respectively, with index equal to zero.

62



Proof. From equations (10.14)-(10.16) and (10.3)-(10.5) it follows that

(H)0 =




[H(0)]3×3 [0]3×1

[0]1×3 H(0)
4




4×4

, (10.23)

(±2−1I4 + K1)0 =




[±2−1I3 + K(0)]3×3 [0]3×1

[0]1×3 ±2−1I1 + K(0)
4




4×4

, (10.24)

(±2−1I4 + K2)0 =




[±2−1I3+
∗

K (0)]3×3 [0]3×1

[0]1×3 ±2−1I1+
∗

K
(0)
4




4×4

, (10.25)

where

H(0) g̃(z) =
∫
S

Γ(0)(z − y) g̃(y) dSy, H(0)
4 g4(z) =

∫
S
γ(0)(z − y) g4(y) dSy,

K(0) g̃(z) =
∫
S
[T (Dz, n(z))Γ(0)(z − y)] g̃(y) dSy,

∗

K (0) g̃(z) =
∫
S
[T (Dy, n(y))Γ(0)(y − z)]⊤ g̃(y) dSy,

K(0)
4 g4(z) =

∫
S
∂n(z)γ

(0)(z − y) g4(y) dSy,

∗

K
(0)
4 g4(z) =

∫
S
∂n(y)γ

(0)(y − z) g4(y) dSy. (10.26)

Due to the general theory of ΨDOs (see, e.g., [74], [20]) we have to show that the principal
symbol matrices of the operators (10.23), (10.24), and (10.25) are nonsingular and that the
indices of these operators are equal to zero.

It is evident that K(0) [K(0)
4 ] and

∗

K (0) [
∗

K
(0)
4 ] are mutually adjoint singular integral

operators while H(0) [H(0)
4 ] is a formally self-adjoint integral operator with a weakly singular

kernel of the type O(|x− y|−1).
For the principal symbols we have (see [54], [57], [37])

σ(H(0)) = − 1
2π

∫

l∓
[C(aξ)]−1 dξ3 = − 1

2π

+∞∫
−∞

[C(aξ)]−1 dξ3, (10.27)

σ(±2−1I3 + K(0)) = i
2π

∫

l∓
T (aξ, n) [C(aξ)]−1 dξ3 = [σ(±2−1I3+

∗

K (0))]⊤, (10.28)

σ(H(0)
4 ) = − 1

2π

∫

l∓
[Λ(aξ)]−1 dξ3 = − 1

2π

+∞∫
−∞

[Λ(aξ)]−1 dξ3 < 0, (10.29)

σ(±2−1I1 + K(0)
4 ) = i

2π

∫

l∓
λ(aξ, n) [Λ(aξ)]−1 dξ3 = σ(±2−1I1+

∗

K
(0)
4 ) = ±2−1,(10.30)

where ξ = (ξ̃, ξ3), ξ̃ = (ξ1, ξ2) ∈ IR2 \ {0}, λ(ξ, n) is defined by (1.24),

a(x) =




l1(x) m1(x) n1(x)

l2(x) m2(x) n2(x)

l3(x) m3(x) n3(x)
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is an orthogonal matrix with deta(x) = +1, l = (l1, l2, l3)
⊤, m = (m1, m2, m3)

⊤ and n =
(n1, n2, n3)

⊤ is a triple of orthogonal vectors at x ∈ S (l and m lie in the tangent plane
at x ∈ S and n is again the exterior unit normal), l− (l+) is a closed clockwise (counter-
clockwise) oriented contour in the lower (upper) complex half-plane ξ3 = ξ′3 + iξ′′3 enclosing
all roots of the equations

detC(aξ) = 0, Λ(aξ) = 0,

with respect to ξ3 with negative (positive) imaginary parts. The last equation in (10.30)

follows due to the fact that the kernel-function of the integral operators K(0)
4 and

∗

K
(0)
4 have

weak singularities of type O(|x− y|−2+α′
) on a C1,α′

-smooth manifold.
The entries of the matrices (10.28) are homogeneous functions of order 0, while (10.27)

and (10.29) are homogeneous functions of order −1 in ξ̃. Moreover, all the above principal
homogeneous symbols are nonsingular for |ξ̃| = 1, the corresponding integral operators are
elliptic ΨDOs of order 0 and −1, respectively, and their indices are equal to zero (for details
see [54], [57], [39], [16]).

Now (10.23), (10.24), and (10.25) imply

σ(H) =




[σ(H(0))]3×3 [0]3×1

[0]1×3 σ(H(0)
4 )




4×4

, (10.31)

σ(±2−1I4 + K1) = [σ(±2−1I4 + K2)]
⊤ =

=




[σ(±2−1I3 + K
(0)

)]3×3 [0]3×1

[0]1×3 σ(±2−1I1 + K(0)
4 )




4×4

, (10.32)

which together with equations (10.23), (10.24), and (10.25) completes the proof.

REMARK 10.3 More subtle analysis of the fundamental solution Γ(x, ω, r) shows that in
a vicinity of the origin the following representation

Γ(x, ω, r) = Γ(x) + iΓ̃′(x) − ωT0[Γ̃
′(x)]⊤ + Γ̃′′(x, ω, r), (10.33)

Γ̃′(x) =




[0]3×3 [Γ̃′
k4(x)]3×1

[0]1×3 0




4×4

,

holds, where Γ(x) is the same as in Lemma 2.1 and Γ̃′
k4(x) is independent of ω; first order

derivatives of Γ̃′
k4(x) are homogeneous functions of order −1 and

|DβΓ̃′
k4(x)| < cϕ

(k4)
|β| (x)

with the same ϕ
(k4)
|β| (x) as in Lemma 2.1; the second order derivatives of the entries of the

matrix Γ̃′′(x, ω, r) have singularities of the type O(|x|−1).
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REMARK 10.4 Note that the operator −H(0) [−H(0)
4 ] is a positive operator which implies

that the corresponding principal homogeneous symbol is a positive definite matrix [is a positive
function] (see [54]). Therefore, the principal homogeneous symbol matrix σ(−H) is also
positive definite due to the equation (10.31) and the inequality (10.29).

10.2. Now we turn our attention to the equation (10.6). To prove the existence of limits
(10.6) and to study properties of the operators L± we need some auxiliary results which are
now presented.

LEMMA 10.5 Let U = (u, u4)
⊤ be a regular solution of the homogeneous interior problem

(P1)
+
ω . Then u4(x) = 0 in Ω+ and u is a solution to the following interior homogeneous

BVP of steady state oscillations of the elasticity theory

C(D)u(x) + ω2 u(x) = 0 in Ω+, (10.34)

[u(z)]+ = 0 on S, (10.35)

satisfying, in addition, the equation βkjDjuk = 0 in Ω+.

Proof. The equation u4(x) = 0 in Ω+ follows from the identity (1.23), if we look at the
imaginary part. Then we obtain the BVP (10.34)-(10.35) for the displacement vector u with
the additional equation indicated in the lemma due to the homogeneous conditions of the
problem (P1)

+
ω .

By Σ[(P1)
+
ω ] we denote the spectral set corresponding to the problem (P1)

+
ω (i.e., the set

of values of the parameter ω for which the homogeneous problem (P1)
+
ω possesses a nontrivial

solution). Note that the spectral set corresponding to the problem (10.34)-(10.35) is at most
countable. Therefore, Lemma 10.5 implies the following proposition (cf. [54]).

COROLLARY 10.6 The set Σ[(P1)
+
ω ] is either finite or countable (with the only possible

accumulation point at infinity).

Now we are redy to examine the properties of the hypersingular operators L±.

LEMMA 10.7 Let S ∈ C2,α′

and g ∈ C1,α(S). Then limits (10.6) exist and

L+ g(z) = L− g(z) =: L g(z), z ∈ S. (10.36)

Moreover, the operator

L : Cl+1,α(S) → Cl,α(S), S ∈ Ck+2,α′

, k ≥ 0, 0 ≤ l ≤ k, (10.37)

is a bounded singular integro-differential operator with nonsingular positive definite principal
homogeneous symbol matrix and with index equal to zero.

Proof. First we prove the existence of limits (10.6). With the help of equations (10.15),
(10.16), and (10.33) we deduce

B(Dx, n(x))[Q(Dy, n(y),−iω)Γ⊤(x− y, ω, r)]⊤ = K̃3(x, y, x− y) +

+[K̃ ′
2(x, y, x− y) + ωT0K̃

′′
2 (x, y, x− y)] + K̃1(x, y, x− y;ω), (10.38)
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where

K̃3(x, y, x− y) = B0(Dx, n(x))[B0(Dy, n(y))Γ(y − x)]⊤ =

=




[T (Dx, n(x))[T (Dy, n(y))Γ(y − x)]⊤]3×3 [0]3×1

[0]1×3 ∂n(x)∂n(y)γ
(0)(y − x)




4×4

is a hypersingular kernel with the entries of the type O(|x− y|−3) as |x− y| → 0, while

K̃ ′
2(x, y, x− y) = iB0(Dx, n(x)){B0(Dy, n(y))[Γ̃′(x− y)]⊤}⊤ −

−B̃(n(x))[B0(Dy, n(y))Γ(x− y)]⊤

and

K̃ ′′
2 (x, y, x− y) = −B0(Dx, n(x))[B0(Dy, n(y))Γ̃′(x− y)]⊤ −

−i[B0(Dx, n(x))Γ(x− y)]B̃⊤(n(y))

are singular kernels on S with the entries of the type O(|x− y|−2) as |x− y| → 0,, and the
entries of the matrix K̃1(x, y, x− y;ω) have singularities of the type O(|x− y|−1). Note that
here either x ∈ Ω+ or x ∈ Ω−.

In turn, (10.38) implies

B(Dx, n(x))W (g)(x) = (T (Dx, n(x))w(0)(g̃)(x), ∂n(x)w
(0)
4 (g4)(x))

⊤ +

+
∫
S
[K̃ ′

2(x, y, x− y) + ωT0K̃
′′
2 (x, y, x− y)] g(y) dSy +

+
∫
S
K̃1(x, y, x− y;ω) g(y) dSy, (10.39)

where w(0)(g̃) and w
(0)
4 (g4) are defined by (10.20) and (10.22), respectively. It can be shown

(see [54], [57], [16], [37]) that the limits

lim
Ω±∋x→z∈S

T (Dx, n(x))w(0)(g̃)(x) = L(0)g̃(z), (10.40)

lim
Ω±∋x→z∈S

∂n(x)w
(0)
4 (g4)(x) = L(0)

4 g4(z), (10.41)

exist for any gk ∈C1,α(S), k = 1, ..., 4, and that the operators L(0) and L(0)
4 are non-negative,

formally self-adjoint singular integro-differential operators with positive definite principal
symbols

σ(L(0)) = − 1
2π

∫

l∓
T (aξ, n)C−1(aξ)T⊤(aξ, n) dξ3, (10.42)

σ(L(0)
4 ) = − 1

2π

∫

l∓
λ2(aξ, n)Λ−1(aξ) dξ3 = −[4σ(H(0)

4 )]−1. (10.43)

Here the contours l∓ are the same as in formulae (10.27)-(10.30).

The operators L(0) and L(0)
4 are elliptic ΨDOs of order 1 with index equal to zero and

they possess mapping property (10.37) (for details see [16]).
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Further, Remark 10.3 yields that there exist limits on S from Ω± of the second term in
the right-hand side expression of (10.39)

lim
Ω±∋x→z∈S

∫
S
[K̃ ′

2(x, y, x− y) + ωT0K̃
′′
2 (x, y, x− y)] g(y) dSy =

= [α′
±(z) + ωT0α

′′
±(z)]g(z) + K̃′

2 g(z) + ωT0 K̃′′
2 g(z),

where K̃′
2 and K̃′′

2 are singular integral operators with singular kernels K̃ ′
2 and K̃ ′′

2 , respec-
tively; α′

± and α′′
± are some smooth matrices independent of ω (we do not need their explicit

expressions for our purposes).
The existence of the limits on S (from Ω±) of the third term in the right-hand side of

(10.39) is evident. It is also obvious that these limits are equal to each other and that the
boundary operator K̃1, generated by this term, is a weakly singular integral operator (ΨDO
of order s ≤ −1).

Thus, the existence of the operators L± is proved in the space C1,α(S) and we have

L± g(z) =




[L(0) g̃(z)]3×3 [0]3×1

[0]1×3 L(0)
4 g4(z)




4×4

+

+[α′
±(z) + ωT0 α

′′
±(z)]g(z) + K̃′

2 g(z) + ωT0 K̃′′
2 g(z) + K̃1 g(z). (10.44)

We also see that the operators (10.44) possess the mapping property (10.37).
It remains to show L+ = L−.
The integral representation formulae (3.2) and (3.3) of a regular vector U we rewrite as

follows

U(x) = ±{W ([U ]±)(x) − V ([BU ]±)(x)}, x ∈ Ω±, (10.45)

provided A(D,−iω)U(x) = 0 in Ω± and U ∈ SKm
r (Ω−); here W and V are double and single

layer potentials operators (see (10.1) and (10.2)).
Due to Lemma 10.1 from (10.45) we have

(−2−1I4 + K2)[U ]+ = H[BU ]+, (2−1I4 + K2)[U ]− = H[BU ]−,

where the operators H and K2 are defined by (10.3) and (10.5), respectively.
If in these equations we substitute U(x) = W (g)(x) with an arbitrary g ∈C1,α(S), apply

the same Lemma 10.1 and the above results concerning the limits (10.6), we arrive at the
following relations

(−2−1I4 + K2)(2
−1I4 + K2) g = HL+ g,

(2−1I4 + K2)(−2−1I4 + K2) g = HL− g. (10.46)

Whence

H(L+ g −L− g) = 0. (10.47)

By (10.44) we have L+ g−L− g =: h ∈ Cα(S) and, therefore, V (h) is a regular vector in Ω±.
Now, on one side, (10.47) yields that V (h) is a regular solution to the homogeneous

roblem (P1)
−
ω and we conclude V (h)(x) = 0, x ∈ Ω−, due to Theorem 9.5.
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On the other side, the same equation (10.47) implies that V (h) is a regular solution to the
homogeneous problem (P1)

+
ω as well, and, by Corollary 10.6, we get V (h)(x) = 0, x ∈ Ω+,

provided ω ∈\ Σ[(P1)
+
ω ].

The above equations imply h = [BV (h)]− − [BV (h)]+ = 0.
Thus, we have proved that L+ g = L− g for all g ∈ C1,α(S) if ω 6∈ Σ[(P1)

+
ω ], which

according to (10.44) leads to the equation

[α′
+(z) − α′

−(z)]g(z) + ωT0[α
′′
+(z) − α′′

−(z)]g(z) = 0.

Consequently, α′
+(z) = α′

−(z), α′′
+(z) = α′′

−(z), and (10.36) holds for an arbitrary value
of the parameter ω.

It is also evident that the dominant singular part (L)0 of the operator L and the corre-
sponding principal homogeneous symbol matrix read

(L)0 =




[L(0)]3×3 [0]3×1

[0]1×3 L(0)
4




4×4

, (10.48)

σ(L) =




[σ(L(0))]3×3 [0]3×1

[0]1×3 σ(L(0)
4 )




4×4

, (10.49)

(see (10.40), (10.41), (10.42), (10.43)). Whence the positive definiteness of the matrix (10.49)
and the formally self-adjointness of the operator (10.48) follow immediately, since the matrix
σ(L(0)) is positive definite and, as formulae (10.46), (10.29), and (10.30) show

σ(L(0)
4 ) = −[4σ(H(0)

4 )]−1 > 0. (10.50)

The proof is completed.

10.3. In this subsection we collect the known results concerning some properties of the
above introduced single and double layer potentials in Besov and Bessel-potential spaces.
The proof of the theorem below is, in fact, the same as proof of analogous theorem in the
elasticity theory (or even in the theory of harmonic functions). One has to relay on the fact
that regular function spaces are densely embedded in Besov and Bessel-potential functional
spaces, and apply the usual limiting extension procedure together with the duality and
interpolation principles (for details we refer to, for example, [16], [17], [13], [51]).

THEOREM 10.8 The operators (10.12), (10.13), (10.10), (10.11), and (10.37) can be ex-
tended by continuity to the following bounded operators

V : Bs
p,p(S) → Hs+1+1/p

p (Ω+) [Bs
p,p(S) → H

s+1+1/p
p,loc (Ω−) ∩ SKm

r (Ω−)],

: Bs
p,q(S) → Bs+1+1/p

p,q (Ω+) [Bs
p,q(S) → B

s+1+1/p
p,q,loc (Ω−) ∩ SKm

r (Ω−)],

W : Bs
p,p(S) → Hs+1/p

p (Ω+) [Bs
p,p(S) → H

s+1/p
p,loc (Ω−) ∩ SKm

r (Ω−)],

: Bs
p,q(S) → Bs+1/p

p,q (Ω+) [Bs
p,q(S) → B

s+1/p
p,q,loc(Ω

−) ∩ SKm
r (Ω−)],

H : Hs
p(S) → Hs+1

p (S) [Bs
p,q(S) → Bs+1

p,q (S)],

K1,K2 : Hs
p(S) → Hs

p(S) [Bs
p,q(S) → Bs

p,q(S)],

L : Hs+1
p (S) → Hs

p(S) [Bs+1
p,q (S) → Bs

p,q(S)],
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for arbitrary s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞, provided S ∈ C∞.
Moreover,
i) for these extended operators the formulae (10.7), (10.8), (10.9), and (10.36) remain

valid in the corresponding spaces;
ii) the integral representation formula (3.3) remains valid for U ∈ W 1

p (Ω−) ∩ SKm
r (Ω−)

with A(D,−iω)U = 0 in Ω−; the integral representation formula (3.2) in Ω+ remains valid
for U ∈W 1

p (Ω+) with τ = −iω and A(D,−iω)U = 0 in Ω+.
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11 Thermoelastic Pseudo-Oscillation Potentials

In this section we deal with the single and double layer pseudo-oscillation potentials which
are defined as follows

Vτ (g)(x) :=
∫
S

Γ(x− y, τ) g(y) dSy, x ∈ IR3 \ S, (11.1)

Wτ (g)(x) :=
∫
S
[Q(Dy, n(y), τ)Γ⊤(x− y, τ)]⊤ g(y) dSy, x ∈ IR3 \ S, (11.2)

where Γ(x− y, τ) is the fundamental matrix defined by (2.2), S = ∂Ω±, g = (g1, ..., g4)
⊤ =

(g̃, g4)
⊤, g̃ = (g1, g2, g3)

⊤; the operator Q(D, n, τ) is defined by (1.26) with κ = τ .
Due to the results of Section 2 it is evident that the mapping properties and the jump

relations of the above pseudo-oscillation potentials and the steady state oscillation potentials
(10.1)-(10.2) are the same. It is also obvious that the asymptotic behaviour of the potentials
(11.1)-(11.2) at infinity is quite similar to the asymptotic behaviour of the fundamental
matrix Γ(x− y, τ) since S is a compact surface.

Next, we introduce the boundary integral (pseudodifferential) operators generated by the
pseudo-oscillation potentials

Hτ g(z) =
∫
S

Γ(z − y, τ) g(y) dSy, z ∈ S, (11.3)

K1,τ g(z) =
∫
S
[B(Dz, n(z))Γ(z − y, τ)] g(y) dSy, z ∈ S, (11.4)

K2,τ g(z) =
∫
S
[Q(Dy, n(y), τ)Γ⊤(z − y, τ)]⊤ g(y) dSy, z ∈ S, (11.5)

L±
τ g(z) = lim

Ω±∋x→z∈S
B(Dx, n(z))Wτ (g)(x), z ∈ S, (11.6)

where the boundary differential operator B(D, n) is given again by (1.25), and the integrals
(11.4) and (11.5) are understood in the Cauchy principal value sense.

The properties of the above introduced operators are described by the following propo-
sitions.

THEOREM 11.1 Let k ≥ 0 be an integer and S ∈ Ck+1,α′

. Then for an arbitrary
summable g the potentials Vτ (g) and Wτ (g) are C∞-smooth solutions to the equation (1.9)
in Ω± and together with all derivatives they decrease more rapidly then any negative power
of |x| as |x| → +∞.

Moreover, if 0 ≤ l ≤ k, then
i) the operators

Vτ : Cl,α(S) → Cl+1,α(Ω±), (11.7)

Wτ : Cl,α(S) → Cl,α(Ω±), (11.8)

are bounded, and

[Vτ (g)(z)]
+ = [Vτ (g)(z)]

− = Hτ g(z), g ∈ C(S), (11.9)

[B(D, n)Vτ (g)(z)]
± = (∓2−1I4 + K1,τ ) g(z), g ∈ Cα(S), (11.10)
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[Wτ (g)(z)]
± = (±2−1I4 + K2,τ ) g(z), g ∈ Cα(S), (11.11)

L+
τ g = L−

τ g =: Lτ g, g ∈ C1,α(S), k ≥ 1; (11.12)

ii) the operators

Hτ : Cl,α(S) → Cl+1,α(S), (11.13)

K1,τ , K2,τ : Cl,α(S) → Cl,α(S), (11.14)

Lτ : Cl+1,α(S) → Cl,α(S), (11.15)

are bounded.

THEOREM 11.2 The operators Hτ , ±2−1I4 + K1,τ , ±2−1I4 + K2,τ , and Lτ are elliptic
ΨDOs of order −1, 0, 0, and 1, respectively, with index equal to zero. Moreover, the principal
homogeneous symbol matrices of the operators −Hτ and Lτ are positive definite.

THEOREM 11.3 The operators (11.7), (11.8), and (11.13)-(11.15) can be extended by
continuity to the following bounded operators

Vτ : Bs
p,p(S) → Hs+1+1/p

p (Ω±) [Bs
p,q(S) → Bs+1+1/p

p,q (Ω±)],

Wτ : Bs
p,p(S) → Hs+1/p

p (Ω±) [Bs
p,q(S) → Bs+1/p

p,q (Ω±)],

Hτ : Hs
p(S) → Hs+1

p (S) [Bs
p,q(S) → Bs+1

p,q (S)],

K1,τ ,K2,τ : Hs
p(S) → Hs

p(S) [Bs
p,q(S) → Bs

p,q(S)],

Lτ : Hs+1
p (S) → Hs

p(S) [Bs+1
p,q (S) → Bs

p,q(S)],

for arbitrary s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞, provided S ∈ C∞.
Moreover,
i) for these extended operators the formulae (11.9)-(11.12) remain valid in the correspond-

ing spaces;
ii) the integral representation formula (3.2) remains valid for U ∈ W 1

p (Ω±) with A(D, τ)U
= 0 in Ω±, provided that U satisfies the decay condition (1.30) at infinity in the case of the
domain Ω−.

Clearly, the proofs of these theorems are verbatim the proofs of the analogous propositions
in the previous section and, therefore, we omit them (for details see [16]).

We note here that the formula similar to (10.46) holds also for the pseudo-oscillation
operators and read as

(−2−1I4 + K2,τ )(2
−1I4 + K2,τ) = HτLτ . (11.16)

From the general integral representation formula (3.2) we can also easily derive the fol-
lowing identity

(−2−1I4 + K1,τ )(2
−1I4 + K1,τ) = LτHτ . (11.17)
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REMARK 11.4 The results of Section 2 imply that the dominant singular parts and the
principal homogeneous symbol matrices of the operators Hτ , ±2−1I4 + K1,τ , ±2−1I4 + K2,τ ,
and Lτ read as (cf. (10.23)-(10.25), (10.48), (10.31), (10.32), (10.49))

(Hτ )0 =




[H(0)]3×3 [0]3×1

[0]1×3 H(0)
4




4×4

, (11.18)

(±2−1I4 + K1,τ )0 =




[±2−1I3 + K(0)]3×3 [0]3×1

[0]1×3 ±2−1I1 + K(0)
4




4×4

, (11.19)

(±2−1I4 + K2,τ )0 =




[±2−1I3+
∗

K (0)]3×3 [0]3×1

[0]1×3 ±2−1I1+
∗

K
(0)
4




4×4

, (11.20)

(Lτ )0 =




[L(0)]3×3 [0]3×1

[0]1×3 L(0)
4




4×4

, (11.21)

and

σ(±2−1I4 + K1,τ ) = [σ(±2−1I4 + K2,τ )]
⊤ =

=




[σ(±2−1I3 + K
(0)

)]3×3 [0]3×1

[0]1×3 σ(±2−1I1 + K(0)
4 )




4×4

, (11.22)

σ(Hτ ) =




[σ(H(0))]3×3 [0]3×1

[0]1×3 σ(H(0)
4 )




4×4

, (11.23)

σ(Lτ ) =




[σ(L(0))]3×3 [0]3×1

[0]1×3 σ(L(0)
4 )




4×4

. (11.24)

The matrices (11.22)-(11.24), as it has been shown in the previous section, are nonsin-
gular. Moreover, σ(−Hτ ) and σ(Lτ ) are positive definite.
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CHAPTER V

REGULAR BOUNDARY VALUE AND INTERFACE PROBLEMS

Here we consider the nonhomogeneous regular basic bondary value and interface problems
formulated in Chapter II for the pseudo-oscillation and steady state oscillation equations of
the thermoelasticity theory of anisotropic bodies. The existence theorems will be proved in
the Hölder continuous and Sobolev functional spaces with the help of the boundary integral
equation method.

12 Basic BVPs of Pseudo-Oscillations

12.1. Let us first consider the regular problem (P1)
+
τ (see (5.1) and (5.2)) where we assume

that S ∈ C2,α′

.
We look for a solution in the form of the double layer potential (see (11.2))

U(x) = Wτ (g)(x), x ∈ Ω+, (12.1)

where g = (g1, · · · , g4)
⊤ ∈ C1,α(S) is the unknown density. As above, here and in what

follows we again provide that 0 < α < α′ ≤ 1.
Applying the jump formula for a double layer potential (see Theorem 11.1, item i)) and

taking into account the boundary conditions of the problem in question we arrive at the
boundary integral equation (BIE)

N+
1,τg(x) := [2−1I4 + K2,τ ] g(x) = G(1)(x), x ∈ S, (12.2)

where G(1) = (f1, · · · , f4)
⊤ ∈ C1,α(S) is the given vector function on S (see (5.1)-(5.2)), and

K2,τ is defined by (11.5).
Due to Theorem 11.2 the singular integral operator in the left-hand side of (12.2) is an

elliptic ΨDO with zero index.
Further, we show that the homogeneous version of the equation (12.2) (i.e., when f = 0)

has only the trivial solution. Let g0 ∈ C1,α(S) be an arbitrary solution of the equation

[2−1I4 + K2,τ ] g(x) = 0, x ∈ S. (12.3)

It is evident that the vector function

U0(x) = Wτ (g0)(x) ∈ C1,α(Ω+) (12.4)

represents then a regular solution of the homogeneous problem (P1)
+
τ due to (12.3). There-

fore, by the uniqueness Theorem 8.1 we conclude U0(x) = 0 in Ω+ which, in turn, implies

[B(D, n)U0]
+ = Lτ g0 = 0 on S,
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where Lτ = L±
τ is defined by (11.6).

In accordance with equation (11.12) we get

[B(D, n)U0]
− = 0 on S, (12.5)

where U0 is given again by (12.4) in Ω−.
Thus, we have obtained that the vector function

U0(x) = Wτ (g0)(x) ∈ C1,α(Ω−) (12.6)

represents a regular solution to the problem (P2)
−
τ . Therefore, U0(x) = 0 in Ω− due to

Theorem 8.1.
As a result we have for arbitrary x ∈ S

[U0(x)]
+ − [U0(x)]

− = [Wτ (g0)(x)]
+ − [Wτ (g0)(x)]

− = g0 = 0

which proves that the equation (12.3) has only the trivial solution.
According to the general theory of singular integral equations (see, e.g., [49], [43], Ch.IV),

the nonhomogeneous equation (12.2) is solvable for an arbitrary right-hand side. Moreover,
the corresponding embedding theorems for the solution of SIE on closed manifold yield that,
if S ∈ Ck+1,α′

and f ∈ Ck,α(S), then g ∈ Ck,α(S).
Finally, we arrive at the following existence theorem.

THEOREM 12.1 Let S ∈ Ck+1,α′

and fj ∈ Ck,α(S) where j = 1, 4 and k ≥ 1 is an
arbitrary integer. Then the problem (P1)

+
τ (i.e., (1.9), (5.1), (5.2)) is uniquelly solvable in

the space Ck,α(Ω+) and the solution is representable in the form (12.1), where g ∈ Ck,α(S)
solves the BIE (12.2).

REMARK 12.2 Note that, if one looks for a regular solution to the BVP problem (P1)
+
τ

in the form of a single layer potential (see (11.1))

U(x) = Vτ (h)(x), x ∈ Ω+, (12.7)

then one gets the ΨDE

Hτh(x) = G(1)(x), x ∈ S, (12.8)

due to Theorem 11.1 (see (11.9)).
Applying again the uniqueness Theorem 8.1 and properties of a single layer potential, by

the arguments similar to the above ones it can be easily shown that kerHτ is trivial. Note that
−Hτ is an elliptic ΨDO of order −1 (with positive definite principal homogeneous symbol
matrix) and its index equals zero. Invoking the general theory of ΨDO on closed smooth
manifolds (see,e.g., [74]) we conclude that the operator

Hτ : Cl,α(S) → Cl+1,α(S), S ∈ Ck,α′

0 ≤ l ≤ k − 1, k ≥ 1, (12.9)

is an isomorphism. Therefore, the equation (12.8) is uniquely solvable in the space Ck−1,α(S)
provided that S ∈ Ck,α′

and f ∈ Ck,α(S) (k ≥ 1). As a result we obtain that the solution
of the problem (P1)

+
τ can also be uniquely represented as a single layer potential (12.7),
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where h ∈ Ck−1,α(S) is the unique solution of the equation (12.8). Clearly, we again have
U = Vτ (h) ∈ Ck,α(Ω+).

We remark that applying the equation (11.17) one can show that, in fact, the operator

H−1
τ : Cl+1,α(S) → Cl,α(S), S ∈ Ck,α′

0 ≤ l ≤ k − 1, k ≥ 1, (12.10)

which is inverse to the operator (12.9), is a singular integro-differential operator (i.e., a ΨDO
of order 1). Obviously, the principal homogeneous symbol matrix of the operator −H−1

τ is
also positive definite.

It should be noted that to prove the existence of a regular solution by the single layer
approach, as it is evident from the above arguments, C1,α′

-smoothness of the boundary surface
∂Ω+ = S is sufficient, while by the double layer approach we need S ∈ C2,α′

.

12.2. Let us look for a regular solution of the problem (P2)
+
τ (see (5.3)-(5.4)) again in

the form (12.1). The boundary conditions of the problem in question and the properties of
the duble layer potential lead to the following system of equations for the unknown density
g on S

{[2−1I4 + K2,τ ] g(x)}j = fj(x), j = 1, 2, 3, (12.11)

{Lτ g(x)}4 = F4(x). (12.12)

Note that the operators involved in the first three equations are singular integral operators
(SIO), i.e., ΨDOs of zero order, while in the fourth equation we have singular integro-
differential operators, i.e., ΨDOs of order 1.

In order to rewrite these equations in the matrix form we set

N+
2,τ :=




[(2−1I4 + K2,τ)pq]3×4

[(Lτ )4q]1×4




4×4

(12.13)

with p = 1, 2, 3, and q = 1, 4.
Clearly, then (12.11) and (12.12) are equvalent to the equation

N+
2,τ g(x) = G(2)(x), x ∈ S, G(2) = (f1, f2, f3, F4)

⊤. (12.14)

We assume that G(2) ∈ [Ck,α(S)]3 × [Ck−1,α(S)], i.e.,

S ∈ Ck+1,α′

, fj ∈ Ck,α(S), j = 1, 2, 3, F4 ∈ Ck−1,α(S), (12.15)

where k ≥ 1, 0 < α < α′ ≤ 1. Moreover, we seek the unknown density vector g in the space
[Ck,α(S)]4.

The system of ΨDEs (12.13) is elliptic in the sense of Douglis-Nirenberg (cf.[3], [2], [82])
and its principal symbol matrix

σ(N+
2,τ ) =




[σ(2−1I3 + K
(0)

)]3×3 [0]3×1

[0]1×3 σ(L(0)
4 )




4×4

(12.16)
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is nonsingular for arbitrary x ∈ S and |ξ̃| = 1 (see Remark 11.4, the formulae (10.26),
(10.28), (10.41), (10.43), and the proofs of Lemmata 10.2 and 10.7).

The index of the operator N+
2,τ equals to zero, since the index of the corresponding

dominant singular part is zero.
Next, we show that the system (12.11)-(12.12) (i.e., (12.14)) can be equivalently reduced

to the system of singular integral equations (SIEs). To this end we formulate the following
lemma which will be frequently used in the sequel (see, e.g., [58], [20]).

LEMMA 12.3 The scalar operator

Rh(z) = 1
2π

∫
S
|z − y|−1 h(y) dSy, z ∈ S, S ∈ C1,α′

, (12.17)

generated by the harmonic single layer potential, is a formally self-adjoint, equivalent smooth-
ing lifting ΨDO of order −1, (i.e., Rh = 0 implies h = 0) with the principal homogeneous
symbol equal to |ξ̃|−1 (i.e., σ(R)(x, ξ̃) = |ξ̃|−1, x ∈ S, ξ̃ ∈ IR2 \ {0}).

Due to this lemma it is evident that the system (12.11)-(12.12) is equivalent to the system
of SIEs on S

{[2−1I4 + K2,τ ] g(x)}j = fj(x), j = 1, 2, 3, (12.18)

R{Lτ g(x)}4 = RF4(x), (12.19)

which can also be written as

R2N
+
2,τ g(x) = G(2)

∗ , (12.20)

where

R2 =




[I3]3×3 [0]3×1

[0]1×3 R




4×4

(12.21)

and

G(2)
∗ = (f1, f2, f3,RF4)

⊤. (12.22)

Clearly, (12.20) is an elliptic SIE with index zero.
Further, we prove that the nonhomogeneous system (12.11)-(12.12) (i.e., (12.14) and

(12.20)) is uniquely solvable. Invoking again the theory of SIEs on smooth manifolds ([49],
[43]), we have to show that the homogeneous version of the system (12.11)-(12.12) admits
only the trivial solution. It is an easy consequence of the corresponding uniqueness theorem
and the jump relations of a double layer potential, and can be shown by the same arguments
as in the previous subsection. These results imply that the equation (12.20) is uniquely

solvable for arbitrary G
(2)
∗ ∈ Ck,α(S) in the space g ∈ Ck,α(S) which immediately leads to

the following assertion.

THEOREM 12.4 Let conditions (12.15) be fulfilled. Then the problem (P2)
+
τ ( i.e., (1.9),

(5.3), (5.4)) is uniquely solvable in the space Ck,α(Ω+) and the solution is representable in
the form (12.1), where g ∈ Ck,α(S) solves the system of BIEs (12.11)-(12.12) ( i.e., (12.20)).
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Let us note here that the single layer aproach is again applicable and leads to the existence
results described in Theorem 12.4 (cf. Remark 12.2).

12.3. In this subsection we consider the nonhomogeneous problem (P3)
+
τ (see (5.5),

(5.6)). We look for a regular solution U again in the form (12.1) which yields the following
system of BIEs on S:

{Lτ g(x)}j = Fj(x), j = 1, 2, 3, (12.23)

{[2−1I4 + K2,τ ] g(x)}4 = f4(x), (12.24)

where we provide

S ∈ Ck+1,α′

, Fj ∈ Ck−1,α(S), j = 1, 2, 3, f4 ∈ Ck,α(S) (12.25)

with the same k, α′, and α as in (12.15). The unknown density g is again assumed to belong
to the class Ck,α(S).

We set

N+
3,τ :=




[(Lτ)pq]3×4

[(2−1I4 + K2,τ)4q]1×4




4×4

(12.26)

with p = 1, 2, 3, and q = 1, 4.
The equations (12.23)-(12.24) can be then written in the matrix form as

N+
3,τ g(x) = G(3)(x), x ∈ S, G(3) = (F1, F2, F3, f4)

⊤ ∈ [Ck−1,α(S)]3 × Ck,α(S). (12.27)

The operator N+
3,τ is elliptic (again in the sense of Douglis-Nirenberg) with the nonsingular

principal symbol matrix

σ(N+
3,τ ) =




[σ(L(0))]3×3 [0]3×1

[0]1×3 σ(2−1I1 + K(0)
4 )




4×4

(12.28)

(see Section 10 and Remark 11.4) and the index equal to zero.
Introduce the matrix operator

R3 =




[I3R]3×3 [0]3×1

[0]1×3 I1




4×4

, (12.29)

where R is the equivalent lifting operator (12.17).
Now it can be easily seen that

R3N
+
3,τ g(x) = G(3)

∗ , G(3)
∗ = (RF1,RF2,RF3, f4)

⊤ ∈ Ck,α(S), (12.30)

is an elliptic system of SIEs equivalent to (12.23)-(12.24), due to Lemma 12.3.
As in the previous subsection we can easily establish that the homogeneous version of

the system (12.23)-(12.24) admits only the trivial solution. Therefore, the nonhomogeneous
system (12.30) and, consequently, (12.23)-(12.24) are uniquely solvable in the class Ck,α(S) if
the boundary data meet the conditions (12.25). Thus, we have proved the following existence
result.
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THEOREM 12.5 Let conditions (12.25) be fulfilled. Then the problem (P3)
+
τ ( i.e., (1.9),

(5.5), (5.6)) is uniquely solvable in the space Ck,α(Ω+) and the solution is representable in
the form (12.1), where g ∈ Ck,α(S) solves the system of BIEs (12.23)-(12.24) ( i.e., (12.30)).

We emphasize that the single layer aproach is again applicable and lead to the same
existence results.

12.4. Here we consider the nonhomogeneous boundary value problem (P4)
+
τ (see (5.7),

(5.8)). We look for a regular solution U again in the form (12.1) which now leads to the
hypersingular BIE (ΨDE of order +1) on S

N+
4,τ g(x) := Lτ g(x) = G(4)(x), G(4) = (F1, · · · , F4)

⊤ ∈ [Ck−1,α(S)]4. (12.31)

Due to Remark 11.4 the dominant singular part and the principal homogeneous positive
definite symbol matrix of the singular integro-differential operator N+

4,τ := Lτ are given by
formulae (11.21) and (11.24), respectively. Moreover, the index of Lτ is equal to zero.

The ΨDE (12.31) is equivalent to the elliptic system of SIEs

R4N
+
4,τ g(x) = G(4)

∗ , G(4)
∗ = (RF1, · · · ,RF4)

⊤ ∈ Ck,α(S), (12.32)

where

R4 = [I4R]4×4 (12.33)

with R defined by (12.17).
Applying uniqueness Theorem 8.1 and formula (11.12) we conclude that the homogeneous

version of equation (12.31) has only the trivial solution. Therefore, the nonhomogeneous
systems (12.32) and (12.31) are uniquely solvable in the space Ck,α(S). This implies the
following proposition.

THEOREM 12.6 Let S ∈ Ck+1,α′

and F ∈ [Ck−1,α(S)]4 with the same k, α′, and α as in
(12.15). Then the problem (P4)

+
τ ( i.e., (1.9), (5.7), (5.8)) is uniquely solvable in the space

Ck,α(Ω+) and the solution is representable in the form (12.1), where g ∈ Ck,α(S) solves the
system of BIEs (12.31) ( i.e., (12.32)).

REMARK 12.7 The classical single layer approach for the problem (P4)
+
τ (see (12.7))

reduces the BVP to the system of SIEs on S ∈ Ck,α′

(k ≥ 1)

(−2−1I4 + K1,τ ) h(x) = G(4), G(4) = (F1, · · · , F4)
⊤ ∈ Ck−1,α(S). (12.34)

The SIO in the left-hand side is elliptic with index zero. Moreover, Theorems 8.1 and 11.1,
item i) imply ker(−2−1I4 + K1,τ ) = {0}. Therefore, the mapping

− 2−1I4 + K1,τ : Cl,α(S) → Cl,α(S), 0 ≤ l ≤ k − 1, (12.35)

is an isomorphism.
These arguments show that the equation (12.34) is always solvable in the space h ∈

Ck−1,α(S). This, in turn, proves that the the unique solution to the BVP (P4)
+
τ is repre-

sentable also in the form of a single layer potential

U(x) = Vτ (h)(x) ∈ Ck,α(Ω+),

where h ∈ Ck−1,α(S) solves the SIE (12.34).
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12.5. The existence theorems of solutions to the basic exterior BVPs for the pseudo-
oscillation equations of thermoelasticity theory can be proved by the word for word repetition
of the arguments outlined in the previous subsections. Therefore, we confine oureselves by
formulation the final results.

THEOREM 12.8 The basic exterior nonhomogeneous BVPs (Pn)−τ (n = 1, 4), formulated
in Section 5 (see (5.1)-(5.8)) are uniquely solvable in the space Ck,α(Ω−) provided that

S ∈ Ck+1,α′

, fj ∈ Ck,α(S), Fj ∈ Ck−1,α(S), j = 1, 4, (12.36)

where 0 < α < α′ ≤ 1 and k ≥ 1 is an arbitrary integer. The solutions are representable in
the form of a double layer potential

U(x) = Wτ (g)(x), x ∈ Ω−, (12.37)

where g ∈ Ck,α(S) solves the elliptic (in general, in the sense of Douglis-Nirenberg) system
of boundary integral (pseudodifferential) equation on S

N−
n,τ g(x) = G(n)(x). (12.38)

Here the BIOs are defined as follows

N−
1,τ := −2−1I4 + K2,τ , N−

4,τ := Lτ , (12.39)

N−
2,τ :=




[(−2−1I4 + K2,τ )pq]3×4

[(Lτ)4q]1×4




4×4

, N−
3,τ :=




[(Lτ )pq]3×4

[(−2−1I4 + K2,τ )4q]1×4




4×4

(12.40)

where p = 1, 3, q = 1, 4, and K2,τ and Lτ are given by (11.5) and (11.6), respectively.
The right-hand side vector functions G(n) in (12.38) are constructed by the boundary data

of the BVPs under consideration and read as

G(1) = (f1, · · · , f4)
⊤ ∈ [Ck,α(S)]4,

G(2) = (f1, f2, f3, F4)
⊤ ∈ [Ck,α(S)]3 × Ck−1,α(S),

G(3) = (F1, F2, F3, f4)
⊤ ∈ [Ck−1,α(S)]3 × Ck,α(S),

G(4) = (F1, · · · , F4)
⊤ ∈ [Ck−1,α(S)]4. (12.41)

Note that the mappings

N−
1,τ : [Cl,α(S)]4 → [Cl,α(S)]4, 0 ≤ l ≤ k,

N−
2,τ : [Cl,α(S)]4 → [Cl,α(S)]3 × Cl−1,α(S), 1 ≤ l ≤ k,

N−
3,τ : [Cl,α(S)]4 → [Cl−1,α(S)]3 × Cl,α(S), 1 ≤ l ≤ k,

N−
2,τ : [Cl,α(S)]4 → [Cl−1,α(S)]4, 1 ≤ l ≤ k,

are again isomorphisms. Moreover, the equations (12.38) (n=2,3,4) can be equivalently
reduced to the corresponding elliptic SIEs by the same lifting procedure as above with the
help of the lifting operators Rn.
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Finally, we remark that one can apply the single layer approach in the all above exterior
BVPs to prove the existence theorems and obtain the results described in Theorem 12.8.

12.6. In this subsection we shall study the above considered problems in the weak setting.
Let us first treat the problems (P1)

±
τ . We again look for the solutions U ∈W 1

p (Ω±), 1 < p <
∞, in the form of double layer potentials (12.1) and (12.37). Now the unknown density vector
function g should be found in the natural space B1−1/p

p,p (S) since Wτ : B1−1/p
p,p (S) →W 1

p (Ω±)
(see Theorem 11.3 and Section 4).

In what follows, for simplicity, we ilustrate our approach for the case S ∈ C∞, and at
the same time notice that, actually, some finite smoothness is sufficient for our purposes (for
details see [57]).

Applying again Theorem 11.3 and taking into account the boundary conditions (5.1)-(5.2)
we arrive at the BIEs on S

N±
1,τ g(x) := [±2−1I4 + K2,τ ] g(x) = G(1)(x), G(1) = (f1, · · · , f4)

⊤, (12.42)

which formally coincide with the equations (12.2) and (12.38) (for n = 1). But now here

G(1) ∈ B1−1/p
p,p (S) (12.43)

and we look for the unknown vector function g in the same space, i.e.,

g ∈ B1−1/p
p,p (S), 1 < p <∞. (12.44)

Now we prove the following proposition.

LEMMA 12.9 The operators

N±
1,τ : [Bs

p,q(S)]4 → [Bs
p,q(S)]4 (12.45)

are isomorphisms for arbitrary s ∈ IR, 1 < p <∞, and 1 ≤ q ≤ ∞.

Proof. We outline the proof for the operator N+
1,τ . For N−

1,τ it is verbatim.
The mapping property (12.45) follows from Theorem 11.3. Since N+

1,τ is an elliptic ΨDO
on closed smooth manifold S, the null-space kerN+

1,τ and the index indN+
1,τ are the same

for arbitrary two pairs (s1, p1) and (s2, p2), where s1, s2 ∈ IR and p1, p2 ∈ (1,∞), and for
arbitrary 1 ≤ q ≤ ∞ (see [4], [41], [74], Ch.2). Let s = 0 and p = q = 2, and prove that in
this particular case the null-space of the operator N+

1,τ is trivial and the index equals zero.
In fact, let g0 ∈ B0

2,2(S) = L2(S) be some solution to the homogeneous equation N+
1,τ g0 = 0.

The embedding theorems for solutions of elliptic SIEs (see, e.g., [43], Ch.4) imply that,
actually, g0 ∈ Ck,α(S) for any k ≥ 0, due to the smoothness of the boundary surface S
and the right-hand side of the homogeneous SIE in question. The double layer potential
U0(x) = Wτ (g0)(x) represents then a regular vector function of the class C1,α(Ω+) which
solves the homogeneous BVP (P1)

+
τ . Therefore, in the same way as above (see Subsection

12.1) we conclude that g0 = 0 on S, which proves that kerN+
1,τ is trivial in L2(S). According

to the above remark it then follows that kerN+
1,τ is trivial also in the space Bs

p,q(S) for
arbitrary s ∈ IR, 1 < p <∞, and 1 ≤ q ≤ ∞.

Finally we note that the equality indN+
1,τ = 0 follows from Theorem 11.2 which completes

the proof.

This lemma yields the following existence results.
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THEOREM 12.10 Let the boundary data meet the condition (12.43). Then the BVP (P1)
+
τ

[(P1)
−
τ ] is uniquelly solvable in the Sobolev space W 1

p (Ω+) [W 1
p (Ω−)] with 1 < p < ∞ and

the solution is representable in the form of a double layer potential (12.1) [(12.37)] with the
density g ∈ B1−1/p

p,p (S) which solves the corresponding SIE (12.42)

Proof. Solvability of the problems (P1)
±
τ is a ready consequence of Lemma 12.9 (for s =

1 − 1/p and q = p).
Now let us prove that the homogeneous BVP (P1)

+
τ has no nontrivial solutions in the

space W 1
p (Ω+) for 1 < p < ∞. Obviously, this implies that the corresponding nonhomoge-

neous problem is unquely solvable in the same space. Note that the case p = 2 has already
been considered in Section 8.

We proceed as follows. Let U ∈ W 1
p (Ω+) be some solution to the homogeneous problem

(P1)
+
τ . Then by Theorem 11.3, item ii), U can be represented as (cf. (3.2))

U(x) = Wτ ([U ]+)(x) − Vτ ([B(D, n)U ]+)(x) = −Vτ ([B(D, n)U ]+)(x), x ∈ Ω+, (12.46)

since by assumption [U ]+ = 0 on S.
On the other hand the same homogeneous boundary condition and the representation

(12.46) together with Theorem 11.3, item i) imply

[U ]+ = −Hτ ([B(D, n)U ]+) = 0 on S, (12.47)

where [B(D, n)U ]+ ∈ B−1/p
p,p (S).

Noting that −Hτ : Bs
p,q(S) → Bs+1

p,q (S) is an elliptic ΨDO on the closed smooth surface S
(with the positive definite principal homogeneous symbol matrix) we conclude that the null-
space kerHτ and the index indHτ in the spaces Bs

p,q(S) do not depend on s ∈ IR, 1 < p <∞,

and 1 ≤ q ≤ ∞, and are the same as, for example, in the sapce B
−1/2
2,2 (S) = H

−1/2
2 (S).

Applying the embeding theorem for the solution of the elliptic ΨDEs on closed smooth
manifold (see, e.g., [74], Ch.2) we easily show that kerHτ is trivial in B

−1/2
2,2 (S). Further,

we observe that the operator −Hτ : B
−1/2
2,2 (S) → B

1/2
2,2 (S) and its adjoint −H∗

τ have the

same mapping properties, i.e., −H∗
τ : B

−1/2
2,2 (S) → B

1/2
2,2 (S). Since the dominant singular

part of the operator Hτ is self-adjoint we conclude that indHτ = 0 in B
−1/2
2,2 (S). Therefore,

the equation (12.47) has only the trivial solution in the space B−1/p
p,p (S) for arbitrary p > 1.

Thus, [B(D, n)U ]+ = 0, which shows that U = 0 in Ω+ due to (12.46).
The proof for the BVP (P1)

−
τ is verbatim.

The analogous theorems hold valid for the problems (Pn)−τ , n = 2, 3, 4. The proofs relay
on the following assertions which can be proved by the arguments quite similar to that ones
applied in the proof of Lemma 12.9.

LEMMA 12.11 Let s ∈ IR, 1 < p <∞, and 1 ≤ q ≤ ∞.
Then the mappings

N±
2,τ : [Bs

p,q(S)]4 → [Bs
p,q(S)]3 × Bs−1

p,q (S),

N±
3,τ : [Bs

p,q(S)]4 → [Bs−1
p,q (S)]3 ×Bs

p,q(S),

N±
4,τ : [Bs

p,q(S)]4 → [Bs−1
p,q (S)]4,

are isomorphisms.
Here N±

2,τ , N
±
3,τ , N

±
4,τ are defined as in Subsections 12.1-12.4.
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Proof. One needs only to apply the equivalent lifting operator Rn, defined by formulae
(12.21), (12.29), and (12.33), to the operators N±

l,τ and show that the mappings

RnN
±
n,τ : [Bs

p,q(S)]4 → [Bs
p,q(S)]4, n = 2, 3, 4,

are isomorphisms. Since the operators RnN±
n,τ are elliptic singular operators (i.e., ΨDOs of

order 0) on the closed smooth manifold S, we can use the same arguments as in the proof
of Lemma 12.9 to see that kerRnN±

n,τ = {0} and indRnN±
n,τ = 0 in the space [Bs

p,q(S)]4.
Whence kerN±

n,τ = {0} and indN±
n,τ = 0 (in the corresponding functional space) follow

immediately.

This lemma (for s = 1− 1/p and q = p) together with Theorem 8.2 implies the following
existence theorem.

THEOREM 12.12 Let 1 < p <∞ and the boundary data in (5.3)-(5.8) meet the conditions

fj ∈ B1−1/p
p,p (S), Fj ∈ B−1/p

p,p (S), j = 1, 4. (12.48)

Then the BVP (Pn)
±
τ (n = 2, 3, 4) are uniquelly solvable in the Sobolev spaces W 1

p (Ω±) and
the solutions are representable in the form of double layer potentials (12.1) and (12.37) with
the density g ∈ B1−1/p

p,p (S) which solves the corresponding ΨDE on S

N±
n,τ g = G(n). (12.49)

Here N±
n,τ are the same as in Theorem 12.8.

Proof. For illustration of the method we outline the proof in the case of BVP (P4)
−
τ . For

the other problems it is quite analogous.
Let us look for a solution in the form of a double layer potential (12.37), where g belongs

to the natural space B−1/p
p,p (S). Then due to Theorem 11.3 and the boundary conditions

(5.7)-(5.8) we get the following ΨDE on S for the unknown density g

N−
4,τ g := Lτ g(x) = G(4), (12.50)

where G(4) := (F1, · · · , F4)
⊤ ∈ B−1/p

p,p (S).
By Lemma 12.11 (for s = 1 − 1/p and q = p) the equation (12.50) is uniquely solvable

in the space g ∈ B1−1/p
p,p (S). Whence Wτ (g) ∈ H1

p (Ω
−) = B1

p,p(Ω
−) = W 1

p (Ω−) by Theorem
11.3. Moreover, Wτ (g) represents a solution of the BVP in question due to (12.50). Now by
virtue of Theorems 8.2 and 11.3, and the arguments in the final part of the proof of Theorem
12.10, we conclude that the vector function U(x) = Wτ (g) ∈W 1

p (Ω−) is a unique solution of
the problem (P4)

−
τ which completes the proof.

REMARK 12.13 It is evident that one can apply a single layer approach to obtain the
same existense results in the Sobolev spaces W 1

p (Ω±) (see Remarks 12.2 and 12.7).
We illustrate this alternative approach for the problem (P1)

±
τ . We look for a solution in

the form of a single layer potential (12.7) where the density h is to be found in the appropriate
space B−1/p

p,p (S). We recall that Vτ : B−1/p
p,p (S) → W 1

p (Ω±) (see Theorem 11.3). Taking into
account the boundary conditions (5.1)-(5.2) and applying the trace properties of a single layer
potential, we arrive at the elliptic BIE (elliptic ΨDE of order −1)

Hτ h = G(1), (12.51)
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where

G(1) := f = (f1, · · · , f4)
⊤ ∈ B1−1/p

p,p (S). (12.52)

By the same arguments as above we can easily show that the mapping

−Hτ : Bs
p,q(S) → Bs+1

p,q (S), (12.53)

where s ∈ IR, 1 < p <∞, and 1 ≤ q ≤ ∞, is an isomorphism.
Therefore, there exists the unique solution h ∈ B−1/p

p,p (S) of the equation (12.51) with the
right-hand side (12.52). Further, invoking Theorem 8.2 it can be established that the single
layer potential U(x) = Vτ (h)(x) represents the unique solution to the problems (P1)

±
τ in the

space W 1
p (Ω±).

We note that the ellipti ΨDO of order +1 (cf. (2.11))

−H−1
τ : Bs+1

p,q (S) → Bs
p,q(S), (12.54)

is a singular integro-differential operator with a positive definite principal homogeneous sym-
bol matix. Here H−1

τ stands for the inverse of Hτ , and s ∈ IR, 1 < p <∞, and 1 ≤ q ≤ ∞.
A ready consequence of the above results is that every solution U ∈W 1

p (Ω±), 1 < p <∞,
of the homogeneous equation (1.9) can be uniquely represented in the form of the single layer
potential

U(x) = Vτ (H
−1
τ [U ]±)(x), x ∈ Ω±, (12.55)

where [U ]± are the traces of the solution U on S from Ω±.
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13 Basic exterior BVPs of Steady Steady Oscillations

In this section we shall investigate the basic exterior BVPs for steady state oscillation equa-
tions of thermoelasticity theory. In what follows we provide that r = 1 for ω > 0 and r = 2
for ω < 0.

13.1. First we present the following lemma which will essentially be used below in the
proof of existence theorems.

LEMMA 13.1 Let g ∈ C1,α(S), S ∈ C2,α′

, and

U(x) = W (g)(x) + p0 V (g)(x), x ∈ IR3 \ S, S = ∂Ω±, (13.1)

p0 = p1 + ip2, p1 ≥ 0, p2 sgnω < 0, (13.2)

where V and W are single and double layer potentials defined by (10.1) and (10.2), respec-
tively, while ω is the frequency parameter.

If the vector U vanishes in Ω−, then the density g = 0 on S.

Proof. Due to Lemmata 10.1 and 10.7 we have

g = [U ]+ − [U ]− = [U ]+, −p0 g = [B(D, n)U ]+ − [B(D, n)U ]− = [B(D, n)U ]+, (13.3)

whence

[B(D, n)U ]+ = −p0 [U ]+ on S (13.4)

follows.
Since U is a regular vector in Ω+ we can apply the identity (1.23). Taking into account

(13.4) and separating the imaginary part, we arrive at the equation

1
ωT0

∫

Ω+

λkj Dku4Dju4 dx− p2

∫
S
|[u]+|2 dS + p1

ωT0

∫
S
|[u4]

+|2 dS = 0.

In view of (1.18), (13.2), and (13.4) from this equality it follows that [U ]+ = 0 and by
(13.3) we get g = 0.

In the sequel we fix the complex number p0 as follows

p0 = 1 − iω. (13.5)

REMARK 13.2 In what follows we shall use the representation (13.1) to prove the ex-
istence of solutions to the exterior BVPs for the steady state oscillation equations of the
thermoelasticity theory. The similar representation for the Helmholtz equation has been first
applied in the papers [6], [62], [44]. This type of representation of solutions proved to be very
useful since it reduces the exterior BVPs to the uniquely solvable BIEs for arbitrary values
of the frequency parameter ω (for details see below).

REMARK 13.3 In contrast to the pseudo-oscillation case the classical single layer or dou-
ble layer approach reduces the exterior BVPs of steady state oscillations to the BIEs which
for a countable set of the so-called exeptional values of the frequency parameter ω are not
solvable for arbitrary boundary data (see [80], [43], [10], [11]). To investigate the solvability of
these BIEs one needs to find explicitly all eigenvalues and eigenfunctions of the corresponding
boundary integral operators and their adjoint ones (for details see [80], [43]).
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13.2. We start with the problem (P1)
−
ω . We look for a solution of the problem in the

form (13.1) with p0 defined by (13.5). By virtue of the boundary conditions (5.1)-(5.2) and
Lemma 10.1, we get the following ΨDE on S for the unknown density vector g

N−
1 g := (−2−1I4 + K2 + p0 H) g = G(1) (13.6)

with G(1) = (f1, ..., f4)
⊤ ∈ Ck,α(S).

LEMMA 13.4 Let

S ∈ Ck+1,α′

with integer k ≥ 1 and 0 < α < α′ ≤ 1. (13.7)

Then the ΨDE (13.6) is an elliptic SIO with index zero, while the mapping

N−
1 := −2−1I4 + K2 + p0 H : Cl,α(S) → Cl,α(S), 0 ≤ l ≤ k, (13.8)

is an isomorphism.

Proof. First let us note that the operator N−
1 is an elliptic singular integral operator with

index equal to zero and possesses the mapping property (13.8) due to Lemmata 10.1 and
10.2. Therefore, it remains to prove that

N−
1 g = 0 (13.9)

has only the trivial solution in Cl,α(S).
Let g be some solution of (13.9) and construct the vector U by formula (13.1). Applying

the emmbeding theorems for solutions to a singular integral equation of normal type on
closed smooth manifold we infer that g ∈ Ck,α(S) (see, e.g., [43], Ch. 4). This implies
that U is a regular vector in Ω±. Now the equation (13.9) yields that [U ]− = 0 on S, and,
consequently, U(x) = 0 in Ω− follows immediately by Theorem 9.5, since U ∈ SKm

r (Ω−).
Then g = 0 by Lemma 13.1. Therefore (13.8) is a one-to-one correspondence and N−

1 is
invertible.

The material collected until now is enough to prove the existence theorem.

THEOREM 13.5 Let S, k, α′, and α be as in (13.7) and let fj ∈ Ck,α(S) (j = 1, ..., 4).
Then Problem (P1)

−
ω has a unique regular solution of the class Ck,α(Ω−) ∩ SKm

r (Ω−) and
the solution is representable in the form (13.1) with the density g ∈ Ck,α(S) defined by the
uniquely solvable SIE (13.6).

Proof. It follows from Lemmata 10.1, 13.4, and Theorem 9.5.

REMARK 13.6 We note that the special representation (13.1) reduces the BVP (P1)
−
ω

to the equivalent boundary integral equation (13.6) for an arbitrary value of the frequency
parameter ω. If one seeks the solution in the form of either single or double layer potential
then such equivalence will be, in general, violated (see Remark 13.3).
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13.3. We look for a regular solution to the problem (P2)
−
ω again in the form (13.1). Then

the boundary conditions (5.3) and (5.4) lead to the following system of ΨDEs on S for the
unknown density g

N−
2 g := {B(2)(D, n)[W (g) + p0 V (g)]}− = G(2), G(2) = (f1, f2, f3, F4)

⊤,

i.e.,

{[−2−1I4 + K2 + p0H] g}q = fq, q = 1, 2, 3, (13.10)

{[L + p0 (2−1I4 + K1)] g}4 = F4, (13.11)

where

fq ∈ Ck,α(S), F4 ∈ Ck−1,α(S), q = 1, 2, 3. (13.12)

Therefore, the operator N−
2 is represented as

N−
2 =




[{−2−1I4 + K2 + p0H}ql]3×4

[{L + p0 (2−1I4 + K1)}4l]1×4




4×4

= (N−
2 )0 + Ñ−

2 , (13.13)

q = 1, 2, 3, l = 1, ..., 4,

where (N−
2 )0 is the dominant singular part of N−

2 . Due to (10.25), (10.48), and Lemma 10.1
we have

(N−
2 )0 =




[−2−1I3+
∗

K (0)]3×3 [0]3×1

[0]1×3 L(0)
4




4×4

. (13.14)

The entries of the first three rows of the matrix Ñ−
2 are weakly singular integral operators

(ΨDOs of order s ≤ −1), while the fourth row contains singular integral operators (ΨDOs of
order s ≤ 0). It is easy to see that (13.14) is a ΨDO elliptic in the sense of Douglis-Nirenberg.

Now it is also evident that the operator R2, defined by (12.21), is an equivalent lift-
ing operator which reduces the system (13.10)-(13.11) to the equivalent system of singular
integral equations

R2N
−
2 g = G(2)

∗ , G(2)
∗ = (f1, f2, f3,RF4)

⊤.

For the principal homogeneous symbol matrix we have

σ(R2N
−
2 ) =




[σ(−2−1I3+
∗

K (0))]3×3 [0]3×1

[0]1×3 σ(RL(0)
4 )




4×4

,

which is nonsingular due to Lemmata 10.2, 10.7, and 12.3.

LEMMA 13.7 Let conditions (13.7) be fulfilled. Then the ΨDO

N−
2 : [Cl,α(S)]4 → [Cl,α(S)]3 × Cl−1,α(S), 1 ≤ l ≤ k, (13.15)

is an isomorphism.
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Proof. The mapping property (13.15) of the operator N−
2 is an easy consequence of Lem-

mata 10.1 and 10.7. Clearly, the invertibility of the operator (13.15) is equivalent to the
invertibility of the operator

R2N
−
2 : [Cl,α(S)]4 → [Cl,α(S)]4, 0 ≤ l ≤ k, (13.16)

according to Lemma 12.3.
Now from Lemmata 10.2, 10.7, and 12.3 it follows that R2N

−
2 is an elliptic singular

integral operator with index zero. By the arguments applied in the proof of Lemma 13.4 we
can show that the homogeneous equation N−

2 g = 0, where g ∈ Cl,α(S), has only the trivial
solution g = 0. Further, by Lemma 12.3 we conclude that the null-space of the operator
R2N

−
2 in Cl,α(S) is trivial, which completes the proof.

THEOREM 13.8 Let conditions (13.7) and (13.12) be fulfilled. Then the problem (P2)
−
ω

has a unique regular solution of the class Ck,α(Ω−) ∩ SKm
r (Ω−) and the solution is repre-

sentable in the form (13.1) with the density g ∈ Ck,α(S) defined by the uniquely solvable
ΨDEs (13.10)-(13.11).

Proof. It is a ready consequence of Lemmata 10.1, 13.7 and Theorem 9.5.

6.4. Here we consider the problem (P3)
−
ω . Applying again the same representation

formula (13.1) and taking into account the boundary conditions (5.7) and (5.8), we arrive
at the following system of ΨDEs for the unknown density g on S:

N−
3 g := {B(3)(D, n)[W (g) + p0 V (g)]}− = G(3), G(3) = (F1, F2, F3, f4)

⊤,

i.e.,

{[L + p0(2
−1I4 + K1)] g}q = Fq, q = 1, 2, 3, (13.17)

{[−2−1I4 + K2 + p0H] g}4 = f4, (13.18)

where

Fq ∈ Ck−1,α(S), f4 ∈ Ck,α(S), q = 1, 2, 3. (13.19)

Clearly, N−
3 is representable in the form

N−
3 =




[{L + p0(2
−1I4 + K1)}ql]3×4

[{−2−1I4 + K2) + p0H}4l]1×4




4×4

= (N−
3 )0 + Ñ−

3 , (13.20)

q = 1, 2, 3, l = 1, ..., 4,

where

(N−
3 )0 =




[L(0)]3×3 [0]3×1

[0]1×3 −2−1I1+
∗

K
(0)
4




4×4
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is the dominant singular part of N−
3 due to (10.25) and (10.48); the operator Ñ−

3 contains
ΨDOs of order s ≤ 0 in the first three rows and ΨDOs of order s ≤ −1 in the fourth row.
Obviously, N−

3 is again an elliptic ΨDO in the sense of Douglis-Nirenberg.
The diagonal operator R3, defined by (12.29), is an equivalent lifting operator which

reduces (13.17)-(13.18) to the equivalent system of singular integral equations

R3N
−
3 g = G(3)

∗ , G(3)
∗ = (RF1,RF2,RF3, f4)

⊤.

The principal homogeneous symbol matrix of the operator R3N
−
3 reads

σ(R3N
−
3 ) =




[σ(RL(0))]3×3 [0]3×1

[0]1×3 σ(−2−1I1+
∗

K
(0)
4 )




4×4

and is nonsingular according to the results of Section 10.
Now in the same way as in the previous subsection we can prove the following assertions.

LEMMA 13.9 Let the conditions (13.7) be fulfilled.
Then the ΨDO

N−
3 : [Cl,α(S)]4 → [Cl−1,α(S)]3 × Cl,α(S), 1 ≤ l ≤ k,

is an isomorphism.

THEOREM 13.10 Let the conditions (13.7) and (13.19) be fulfilled. Then the problem
(P3)

−
ω has a unique regular solution of the class Ck,α(Ω−) ∩ SKm

r (Ω−) and the solution is
representable in the form (13.1) with the density g ∈ Ck,α(S) defined by the uniquely solvable
ΨDEs (13.17)-(13.18).

6.5. The representation (13.1) of a regular solution and the boundary conditions (5.7),
(5.8) reduce the BVP (P4)

−
ω to the system of ΨDEs on S

N−
4 g := [L + p0(2

−1I4 + K1)] g = G(4), G(4) = (F1, · · · , F4)
⊤. (13.21)

For the dominant singular part we have the following elliptic ΨDO (of order 1) (N−
4 )0 = (L)0,

where (L)0 is given by (10.48). It is easy to check that the diagonal operator R4 = I4R with
R defined by (12.17), is a lifting operator, which reduces equivalently the equations (13.21)
to the following elliptic system of singular integral equations with index equal to zero

R4N
−
4 g = G(4)

∗ , G(4)
∗ = (RF1, · · · ,RF4)

⊤.

The proofs of the next lemma and theorem are quite similar to the proofs of Lemma 13.4
and Theorem 13.5.

LEMMA 13.11 Let the conditions (13.7) be fulfilled.
Then the ΨDO

N−
4 : Cl,α(S) → Cl−1,α(S), 1 ≤ l ≤ k,

is an isomorphism.
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THEOREM 13.12 Let the conditions (13.7) be fulfilled and Fj ∈ Ck−1,α(S), j = 1, 4.
Then the problem (P4)

−
ω has a unique regular solution of the class Ck,α(Ω−)∩ SKm

r (Ω−) and
the solution is representable in the form (13.1) with the density g ∈ Ck,α(S) defined by the
uniquely solvable ΨDE (13.21).

13.5. In this subsection we consider the problems (Pn)−ω (n = 1, 4) in the Sobolev
space W 1

p,loc(Ω
−). The corresponding existence theorems can be proved with the help of the

following lemma (cf. Lemmata 12.9 and 12.11).

LEMMA 13.13 Let S be a C∞-regular surface and let s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
Then the mappings

N−
1 : [Bs

p,q(S)]4 → [Bs
p,q(S)]4

N−
2 : [Bs

p,q(S)]4 → [Bs
p,q(S)]3 ×Bs−1

p,q (S),

N−
3 : [Bs

p,q(S)]4 → [Bs−1
p,q (S)]3 ×Bs

p,q(S),

N−
4 : [Bs

p,q(S)]4 → [Bs−1
p,q (S)]4,

are isomorphisms.
Here the ΨDOs N−

1 , N−
2 , N−

3 ,and N−
4 are given by formulae (13.8), (13.13), (13.20),

and (13.21), respectively.

Proof. The mapping properties indicated in the lemma follow from Lemma 10.8. The
operators N−

n (n = 1, 4) have zero indices since N−
n − N−

n,τ are compact operators in the
corresponding functional spaces due to the results of Section 2 and since indN−

n,τ = 0 (n =
1, 4) (see Lemmata 12.9 and 12.11). Here the operators N−

n,τ are the same as in Section 12.
It remains to prove that kerN−

n is trivial. To see this, let us consider the homogeneous
equations N−

n g = 0 which are equivalent to the SIEs RnN
−
n g = 0, where Rn (n = 1, 4)

are the same invertible lifting operators as in Section 12 and g ∈ Bs
p,q(S). Bearing in maind

that RnN−
n (n = 1, 4) are elliptic SIOs on the closed smooth manifold S we infer that any

solution g ∈ L2(S) to the above SIEs, actually, belongs to the space C1,α(S) due to the
embedding theorems. Moreover, by the above mentioned equivalence we get N−

n g = 0.
These relations imply that the linear combination of the double and single layer potentials
W (g)(x)+ p0 V (g)(x) constructed by the density g ∈ C1,α(S) and p0 given by (13.5), belong
to the class C1,α(Ω−) ∩ SKm

r (Ω−) and solves the homogeneous exterior BVP (Pn)−ω . By the
uniqueness theorems (see Section 9) W (g)(x) + p0 V (g)(x) = 0 in Ω− whence g = 0 on S
follows by Lemma 13.1. Thus, kerRnN−

n is trivial in the space L2(S). It is then trivial aslo
in the space Bs

p,q(S) for arbitrary s ∈ IR, 1 < p < ∞, and 1 ≤ q ≤ ∞ (see the reasonings
in the proof of Lemma 12.9). Terefore, kerRnN−

n = {0} again due to the invertibility of the
operator Rn (n = 1, 4) which completes the proof.

This lemma implies the following existence results.

THEOREM 13.14 Let 1 < p <∞ and the boundary data in (5.1)-(5.8) satisfy the condi-
tions

fj ∈ B1−1/p
p,p (S), Fj ∈ B−1/p

p,p (S), j = 1, 4.
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Then the BVP (Pn)
−
ω (n = 1, 4) are uniquely solvable in the class W 1

p,loc(Ω
−)∩SKm

r (Ω−) and

the solutions are representable in the form (13.1), where the density g ∈ B1−1/p
p,p (S) solves

the corresponding ΨDE on S

N−
n g = G(n) n = 1, 4.

Here G(n) are boundary data given by (12.41).

Proof. It is quite similar to the proof of Theorems 12.10 and 12.12. Indeed, the solvability
of the BVPs indicated in the theorem follows from Lemma 13.13. To prove the uniqueness
of solutions in the class W 1

p,loc(Ω
−) ∩ SKm

r (Ω−), we can again apply the general integral
representation formula (see Theorem 10.8, item ii)) and show that all solutions to the ho-
mogeneous BVPs (Pn)

−
ω of this class, actually, belong to the class of regular vector functions

C1(Ω−)∩SKm
r (Ω−) due to the ellipticity of the corresponding ΨDEs on closed smooth surface

S. This completes the proof.
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14 Basic Interface Problems of Pseudo-Oscillations

In this section we shall construct an ”explicit” solution to the basic nonhomogeneous interface
problem (C)τ which will essentially be employed afterwards in the study of the other regular
and mixed interface problems.

14.1. Let us consider the problem (C)τ , i.e., we look for four-dimensional vector functions

U (1) = (u(1), u
(1)
4 )⊤ ∈ C1(Ω1) and U (2) = (u(2), u

(2)
4 )⊤ ∈ C1(Ω2) which are solutions of the

pseudo-oscillation equations

A(1)(D, τ)U (1)(x) = 0 in Ω1, (14.1)

A(2)(D, τ)U (2)(x) = 0 in Ω2, (14.2)

and satisfy the transmission conditions on the interface S

[u(1)]+ − [u(2)]− = f̃ , [u
(1)
4 ]+ − [u

(2)
4 ]− = f4, (14.3)

[P (1)(D, n)U (1)]+ − [P (2)(D, n)U (2)]− = F̃ ,

[λ(1)(D, n)u
(1)
4 ]+ − [λ(2)(D, n)u

(2)
4 ]− = F4,





(14.4)

where P (µ)(D, n) and λ(µ)(D, n) are the thermostress and heat flux operators defined by
(1.13) and (1.24), respectively. Here

S ∈ Ck+1,α′

, fj ∈ Ck,α(S), Fj ∈ Ck−1,α(S), j = 1, 4, (14.5)

f = (f1, · · · , f4)
⊤, F = (F1, · · · , F4)

⊤,

where as above k ≥ 1 is an integer and 0 < α < α′ ≤ 1.
Making use of the notation (1.25) the above transmission conditions can be written as

follows

[U (1)]+ − [U (2)]− = f, (14.6)

[B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F. (14.7)

We look for a solution to the problem (C)τ in the form of single layer potentials

U (1)(x) = V (1)
τ [(H(1)

τ )−1g(1)](x), x ∈ Ω1, (14.8)

U (2)(x) = V (2)
τ [(H(2)

τ )−1g(2)](x), x ∈ Ω2, (14.9)

where g(µ) = (g̃(µ), g
(µ)
4 )⊤, g̃(µ) = (g

(µ)
1 , g

(µ)
2 , g

(µ)
3 )⊤, µ = 1, 2, are unknown densities and

(H(µ)
τ )−1 is the operator inverse to H(µ)

τ (see Remark 12.2). Here and in what follows the
superscript µ (µ = 1, 2) denotes that the corresponding operator is constructed by the
thermoelastic characteristics of the elastic material occupying the domain Ωµ.
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Due to Theorem 11.1, the transmission conditions (14.3) and (14.4), i.e., (14.6) and
(14.7), lead to the following system of boundary equations on S:

g(1) − g(2) = f, (14.10)

(−2−1I4 + K(1)
1,τ )(H

(1)
τ )−1g(1) − (2−1I4 + K(2)

1,τ)(H
(2)
τ )−1g(2) = F, (14.11)

where K(µ), µ = 1, 2, are defined by (11.4).
Let

N1,τ = (−2−1I4 + K(1)
1,τ )(H

(1)
τ )−1, N2,τ = −(2−1I4 + K(2)

1,τ )(H
(2)
τ )−1,

Nτ = N1,τ + N2,τ . (14.12)

Then equations (14.10) and (14.11) yield:

g(1) = f + g(2), (14.13)

Nτ g
(2) = F −N1,τ f. (14.14)

Now we will study properties of the boundary operators N1,τ , N2,τ , and Nτ .

LEMMA 14.1 Let S be as in (14.5). Then

Nτ , Nj,τ : Cl,α(S) → Cl−1,α(S), j = 1, 2, 1 ≤ l ≤ k, (14.15)

are bounded operators with the trivial null-spaces.
Operators Nτ , Nj,τ , j = 1, 2, defined by (14.15), are isomorphisms.

Proof. The mapping property (14.15) is an easy consequence of Theorem 11.1, item ii), since
the operator (H(µ)

τ )−1 : Cl,α(S) → C l−1,α(S) is an isomorphism due to Remark 12.2.
From Remark 12.7 it follows also that the equations Nj,τ h = 0 (j = 1, 2) have only the

trivial solutions. Therefore, the operators Nj,τ , (j = 1, 2) defined by (14.12), (14.15) are
invertible and their inverses are bounded.

It remains to prove that the null-space of the operator Nτ is trivial as well. Let h =
(h1, ...h4)

⊤ ∈ C1,α(S) be an arbitrary solution of the equation Nτ h = 0, i.e., N1,τ h+Nj,τ h =
0. Then it can be easily seen that the vectors U (1)(x) = V (1)

τ [(H(1)
τ )−1h](x), x ∈ Ω1 and

U (2)(x) = V (2)
τ [(H(2)

τ )−1h](x), x ∈ Ω2, are regular and they solve the homogeneous problem
(C)τ , since g(1) = h and g(2) = h solve the homogeneous version of the system of equations
(14.10), (14.11). Therefore, by Theorem 8.6 we have U (1) = 0 in Ω1 and U (2) = 0 in Ω2,
whence h = 0 on S follows immediately.

LEMMA 14.2 The principal homogeneous symbol matrices of the operators N1τ , N2,τ , and
Nτ are positive definite.

Proof. Here again σ(K)(x, ξ) with x ∈ S and ξ̃ ∈ IR2\{0} denotes the principal homogeneous
symbol of the pseudodifferential operator K.

Equations (14.12) imply

σ(Nτ ) = σ(N1,τ ) + σ(N2,τ ),

σ(N1,τ ) = σ(−2−1I4 + K(1)
1,τ ) [σ(H(1)

τ )]−1,

σ(N2,τ ) = −σ(2−1I4 + K(2)
1,τ ) [σ(H(2)

τ )]−1. (14.16)
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In the same way as in the proof of Lemma 10.2 we can easily show that

σ(H(µ)
τ ) = σ((H(µ))0), σ(K(µ)

1,τ ) = σ((K(µ))0),

where (H(µ))0 and (K(µ))0 are 4 × 4 matrix boundary operators on S:

(H(µ))0 g(x) :=
∫
S

Γ(µ)(x− y) g(y) dSy, x ∈ S,

(K(µ))0 g(x) :=
∫
S
[B

(µ)
0 (Dx, n(x))Γ(µ)(x− y)] g(y) dSy, x ∈ S,

with g = (g̃, g4)
⊤ and g̃ = (g1, g2, g3)

⊤; here Γ(µ)(x) is given by (2.8) and

B
(µ)
0 (D, n) =




[T (µ)(D, n)]3×3 [0]3×1

[0]1×3 λ(µ)(D, n)




4×4

.

Therefore,

(H(µ))0 =




[H(µ,0)]3×3 [0]3×1

[0]1×3 H(µ,0)
4




4×4

, (14.17)

(K(µ))0 =




[K(µ,0)]3×3 [0]3×1

[0]1×3 K(µ,0)
4




4×4

, (14.18)

where H(µ,0), K(µ,0), and H(µ,0)
4 , K(µ,0)

4 are 3 × 3 matrix and scalar operators, respectively,
generated by the single layer potentials constructed by the fundamental matrix Γ(µ,0)(x) and
the fundamental function γ(µ,0)(x)] (see (2.6), (2.7), (10.19)-(10.22), (10.26)):

H(µ,0) g̃(x) =
∫
S

Γ(µ,0)(x− y) g̃(y) dSy, H(µ,0)
4 g4(x) =

∫
S
γ(µ,0)(x− y) g4(y) dSy, (14.19)

K(µ,0) g̃(x) =
∫
S

[T (µ)(Dx, n(x))Γ(µ,0)(x− y)] g̃(y) dSy,

K(µ,0)
4 g4(x) =

∫
S
λ(µ)(Dx, n(x))γ(µ,0)(x− y) g4(y) dSy.

Taking into account the structure of the matrices (14.17) and (14.18) we get from (14.16)

σ(N1,τ ) = σ

(
−2−1I4 + (K(1))0

)
[σ((H(1))0)]

−1 = (14.20)

=




[
σ(−2−1I3 + K(1,0))[σ(H(1,0))]−1

]
3×3

[0]3×1

[0]1×3 σ(−2−1I1 + K(1,0)
4 )[σ(H(1,0)

4 )]−1




4×4

,

σ(N2,τ ) = −σ

(
2−1I4 + (K(2))0

)
[σ((H(2))0)]

−1 = (14.21)

= −




[
σ(2−1I3 + K(2,0))[σ(H(2,0))]−1

]
3×3

[0]3×1

[0]1×3 σ(2−1I1 + K(2,0)
4 )[σ(H(2,0)

4 )]−1




4×4

.
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Next, let us note that the following Green formulae hold for regular solutions to the system of
classical elastostatics C(µ)(D) u(µ) = 0 and to the elliptic scalar equation λ

(µ)
kj DkDj u

(µ)
4 = 0

in Ωµ:

∫

Ω1

E
(1)
0 (u(1), u(1)) dx =

∫

∂Ω1

[u(1)]+[T (1)(D, n)u(1)]+ dS,

∫

Ω2

E
(2)
0 (u(2), u(2)) dx = −

∫

∂Ω2

[u(2)]−[T (2)(D, n)u(2)]− dS,

∫

Ω1

λ
(1)
kj Dku

(1)
4 Dju

(1)
4 dx =

∫

∂Ω1

[u
(1)
4 ]+[λ(1)(D, n)u

(1)
4 ]+ dS,

∫

Ω2

λ
(2)
kj Dku

(2)
4 Dju

(2)
4 dx = −

∫

∂Ω2

[u
(2)
4 ]−[λ(2)(D, n)u

(2)
4 ]− dS, (14.22)

where E
(µ)
0 (u(µ), u(µ)) = c

(µ)
kjpqDku

(µ)
j Dju

(µ)
k ≥ 0 (see (1.15)), the classical stress operator

T (µ)(D, n) and the co-normal derivative (the heat flux operator) λ(µ)(D, n) are given by

(1.12) and (1.24), respectively; moreover, u(2) = o(1) and u
(2)
4 = o(1) at infinity.

Further, if we substitute in these formulae the corresponding single layer potentials
v(µ,0) and v

(µ,0)
4 (see (10.19), (10.21)) with densities (H(µ,0))−1 g̃ and (H(µ,0)

4 )−1g4, respec-

tively, in the place of u(µ) and u
(µ)
4 , we can show that (−2−1I3 + K(1,0))(H(1,0))−1 and

−(2−1I3 + K(2,0))(H(2,0))−1 are non-negative 3 × 3 matrix pseudodifferential operators with

positive definite principal symbol matrices, while (−2−1I1 +K(1,0)
4 )(H(1,0)

4 )−1 and −(2−1I1 +

K(2,0)
4 )(H(2,0)

4 )−1 are non-negative scalar ΨDOs with positive principal symbol functions (for
details see [55], Lemma 4.2).

Therefore, the equations (14.20) and (14.21) together with (14.16) yield that σ(N1,τ ),

σ(N2,τ ), and σ(Nτ ) are positive definite matrices for arbitrary x ∈ S and ξ̃ ∈ IR2\{0}.

COROLLARY 14.3 Let S, k, α′, and α be as in (14.5). Then the operator N−1
τ , inverse

to the operator Nτ defined by (14.15), is an isomorphism; consequently,

N−1
τ : Cl−1,α(S) → Cl,α(S), 1 ≤ l ≤ k,

is a bounded operator.

Applying the above results we get from (14.13) and (14.14):

g(1) = N−1
τ (F + N2,τ f), g(2) = N−1

τ (F −N1,τ f). (14.23)

Clearly, g(µ) ∈ Ck,α(S), (µ = 1, 2) if conditions (14.5) are fulfilled. Now we are ready to
formulate the following existence results.

THEOREM 14.4 Let S, k, α′, α, f and F meet the conditions (14.5).
Then the nonhomogeneous problem (C)τ is uniquely solvable, and the solution is repre-

sentable in the form of potentials

U (1)(x) = V (1)
τ

[
(H(1)

τ )−1N−1
τ (F + N2,τ f)

]
(x), x ∈ Ω1, (14.24)

U (2)(x) = V (2)
τ

[
(H(2)

τ )−1N−1
τ (F −N1,τ f)

]
(x), x ∈ Ω2. (14.25)
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Moreover,

U (µ) ∈ Ck,α(Ωµ), µ = 1, 2, (14.26)

and

||U (µ)||(Ωµ,k,α) ≤ C0

[
||f ||(S,k,α) + ||F ||(S,k−1,α)

]
, C0 = const > 0, (14.27)

where || · ||(M,k,α) denotes the norm in the space Ck,α(M).

Proof. It follows from (14.8), (14.9), (14.23), Corollary 14.3 and Remark 12.2.

14.2. In this subsection we assume S ∈ C∞, and establish the existence results for the
problem (C)τ in the weak setting with 1 < p <∞.

First we prove the following statement.

LEMMA 14.5 The operators (14.15) can be extended by continuity to the folloving bounded
elliptic ΨDOs (of order −1)

Nτ , Nj,τ : Hs+1
p (S) → Hs

p(S) [Bs+1
p,q (S) → Bs

p,q(S)] (14.28)

for arbitrary s ∈ IR, 1 < p < ∞, 1 ≤ q ≤ ∞. Moreover, the operator Nτ defined by (14.28)
is invertible.

Proof. The boundedness, ellipticity, and mapping properties (14.28) of the operators Nτ and
Nj,τ easily follow from Lemmata 13.3 and 14.2.

The invertibility of the operator Nτ is a consequense of the embedding theorems for
solutions of elliptic pseudodifferential equations on closed smooth manifold (see the proof
of the analogous assertions in Section 12). In fact, any solution h ∈ Hs+1

p (S) [Bs+1
p,q (S)] of

the homogeneous pseudodifferential equation Nτ h = 0, belongs also to the space Ck,α(S),
where k ≥ 1 is an arbitrary integer and 0 < α < 1. Therefore, we can derive h = 0 on
S, due to Corollary 14.3. From the fact that kerNτ = {0} it follows indNτ = 0, since
the principal homogeneous symbol matrix of Nτ is positive definite. These results imply
the unique solvability of the nonhomogeneous equation Nτ h = f in the spaces Hs+1

p (S)
[Bs+1

p,q (S)] for the arbitrary right-hand side vector f ∈ Hs
p(S) [Bs

p,q(S)].

Now we are able to prove the existence theorem.

THEOREM 14.6 Let

S ∈ C∞, fj ∈ B1−1/p
p,p (S), F ∈ B−1/p

p,p (S), j = 1, 4, 1 < p <∞. (14.29)

Then the problem (C)τ is uniquely solvable in the space (W 1
p (Ω1),W 1

p (Ω2)) and the solution
is representable by formulae (14.24)-(14.25).

Proof. Let conditions (14.29) be fulfilled. Then Lemma 14.5 and Theorem 11.3 imply that
the pair of vectors (U (1), U (2)) defined by (14.24) and (14.25) represent a solution to the
problem (C)τ of the class (W 1

p (Ω1),W 1
p (Ω

2)).
Next we show the uniqueness of solution to the problem (C)τ in the Sobolev spaces

(W 1
p (Ω1),W 1

p (Ω2)).

95



Let (U (1), U (2)) ∈ (W 1
p (Ω1),W 1

p (Ω2)) be some solution to the homogeneous problem (C)τ .

We recall that U (µ) ∈ C∞(Ωµ). Then Lemma 11.3, item ii) yield

U (1)(x) = W (1)
τ

(
[U (1)]+

)
(x) − V (1)

τ

(
[B(1)(D, n)U (1)]+

)
(x), x ∈ Ω1, (14.30)

U (2)(x) = −W (2)
τ

(
[U (2)]−

)
(x) + V (2)

τ

(
[B(2)(D, n)U (2)]−

)
(x), x ∈ Ω2, (14.31)

where

[U (1)]+, [U (2)]− ∈ B1−1/p
p,p (S),

[B(1)(D, n)U (1)]+, [B(2)(D, n)U (2)]− ∈ B−1/p
p,p (S).

The homogeneous transmission conditions read as (see (14.6), (14.7))

[U (1)]+ = [U (2)]−, [B(1)(D, n)U (1)]+ = [B(2)(D, n)U (2)]−. (14.32)

Denote

[U (1)]+ =: g, [B(1)(D, n)U (1)]+ =: h. (14.33)

Then (14.32) along with (14.30), (14.31), and Lemma 11.3 implies that the vector functions
h and g solve the homogeneous system of boundary ΨDEs:

−(H(1)
τ + H(2)

τ ) h+ (K(1)
2,τ + K(2)

2,τ ) g = 0, (14.34)

−(K(1)
1,τ + K(2)

1,τ ) h+ (L(1)
τ + L(2)

τ ) g = 0. (14.35)

From the positive definiteness of the principal symbol matrices −σ(H(µ)
τ ), σ(L(µ)

τ ) (see

Lemma 11.2), and the equation σ(K(µ)
2,τ ) = [σ(K(µ)

1,τ )]
⊤, it follows that the system of ΨDEs

(14.34) and (14.35) is strongly elliptic in the sense of Douglis-Nirenberg. Therefore, by
the embedding theorems we conclude that h and g are smooth vector functions on S, i.e.
h ∈ Ck−1,α(S) and g ∈ Ck,α(S) for any k ≥ 1 and 0 < α < 1. But then the vectors
U (µ), µ = 1, 2, given by (14.30) and (14.31), are regular due to the representation formulae
(14.32), (14.33), and Lemma 11.1. Now the conditions (14.32) and Theorem 8.6 complete
the proof.

REMARK 14.7 Using the representation formulae (14.30) and (14.31) we can solve the
problem (C)τ by the so-called direct boundary integral equation method. This method re-
duces the transmission problem in question to the strongly elliptic (in the sense of Douglis-
Nirenberg) system of ΨDEs on S

Gτ ψ = Q, (14.36)

where ψ = (ψ′, ψ′′)⊤ is the unknown vector with ψ′ = [B(1)(D, n)U (1)]+ and ψ′′ = [U (1)]+;
the matrix operator Gτ is given by formula

Gτ =




[ −H(1)
τ −H(2)

τ ]4×4 [K(1)
2,τ + K(2)

2,τ ]4×4

[ −K(1)
1,τ −K(2)

1,τ ]4×4 [L(1)
τ + L(2)

τ ]4×4




8×8

,
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while the given on S right hand-side 8-vector Q reads as

Q =
(
(2−1I4 + K(2)

2,τ ) f −H(2)
τ F , L(2)

τ f + (2−1I4 −K(2)
1,τ )F

)⊤
.

Actually, in the proof of Theorem 14.3 we have shown that the operators

Gτ : [Ck−1,α(S)]4 × [Ck,α(S)]4 → [Ck,α(S)]4 × [Ck−1,α(S)]4

: [Hs
p(S)]4 × [Hs+1

p (S)]4 → [Hs+1
p (S)]4 × [Hs

p(S)]4

: [Bs
p,q(S)]4 × [Bs+1

p,q (S)]4 → [Bs+1
p,q (S)]4 × [Bs

p,q(S)]4

are invertible.
Therefore, the unique solution to the problem (C)τ can be represented also in the form

U (1)(x) = W (1)
τ (ψ′′)(x) − V (1)

τ (ψ′)(x),

U (2)(x) = −W (2)
τ (ψ′′ − f)(x) + V (2)

τ (ψ′ − F )(x),
(14.37)

where ψ solves the system of ΨDEs (14.36).
Note that the conclusions of Theorems 14.4 and 14.6 remain valid for the vectors defined

by (14.37) if the conditions (14.5) and (14.29) are fulfilled.

14.3. In this subsection we investigate the problem (G)τ .
First let us rewrite the transmission conditions (7.5)-(7.8) in the following equivalent

form

[P (1)(D, n)U (1) · l]+ + [P (2)(D, n)U (2) · l]− = F̃
(+)
l + F̃

(−)
l , (14.38)

[P (1)(D, n)U (1) ·m]+ + [P (2)(D, n)U (2) ·m]− = F̃ (+)
m + F̃ (−)

m , (14.39)

[P (1)(D, n)U (1) · l]+ − [P (2)(D, n)U (2) · l]− = F̃
(+)
l − F̃

(−)
l , (14.40)

[P (1)(D, n)U (1) ·m]+ − [P (2)(D, n)U (2) ·m]− = F̃ (+)
m − F̃ (−)

m , (14.41)

[u(1) · n]+ − [u(2) · n]− = f̃n, (14.42)

[P (1)(D, n)U (1) · n]+ − [P (2)(D, n)U (2) · n]− = F̃n, (14.43)

[u
(1)
4 ]+ − [u

(2)
4 ]− = f4, [λ(1)(D, n)u

(1)
4 ]+ − [λ(2)(D, n)u

(2)
4 ]− = F4. (14.44)

Clearly, due to (14.40), (14.41), (14.43), and (14.44), the vector

[B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F

is a given vector on S with

F =
(
(F̃

(+)
l − F̃

(−)
l ) l + (F̃ (+)

m − F̃ (−)
m )m+ F̃n n, F4

)⊤
. (14.45)

Denote

[u(1) · l]+ − [u(2) · l]− = ψ1, [u(1) ·m]+ − [u(2) ·m]− = ψ2, (14.46)

where ψ1 and ψ2 are the unknown scalar functions. Equations (14.42), (14.44), and the first
equation in (14.46) imply

[U (1)]+ − [U (2)]− = f,
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where

f = (ψ1l + ψ2m+ f̃nn, f4)
⊤. (14.47)

Now let us look for a solution to the problem (G)τ in the form (14.24) and (14.25), where
F and f are given by (14.45) and (14.47), respectively. Then from the results of the previ-
ous subsection it follows that the transmission conditions (14.40)-(14.44) are automatically
satisfied. It remains to satisfy only the conditions (14.38) and (14.39). Taking into account
Lemma 11.1 and the equations (14.12), we get from (14.24) and (14.25):

[B(1)(D, n)U (1)]+ = [(P (1)(D, n)U (1), λ(1)(D, n)u4)
⊤]+ = N1,τN

−1
τ (F + N2,τf),

[B(2)(D, n)U (2)]− = [(P (2)(D, n)U (2), λ(2)(D, n)u4)
⊤]− = −N2,τN

−1
τ (F −N1,τf).

Further, we put

l∗ = [(l, 0)⊤]4×1, m∗ = [(m, 0)⊤]4×1, n∗ = [(n, 0)⊤]4×1, (14.48)

where l, m and n are again the tangent and the normal vectors introduced in Subsection 7.2.
Conditions (14.38) and (14.39) then imply

[P (1)(D, n)U (1) · l]+ + [P (2)(D, n)U (2) · l]− ≡

≡ [B(1)(D, n)U (1) · l∗]+ + [B(2)(D, n)U (2) · l∗]− ≡

≡(N1,τ −N2,τ )N
−1
τ F · l∗ + 2N2,τN

−1
τ N1,τf · l∗ = F̃

(+)
l + F̃

(−)
l ,

[P (1)(D, n)U (1) ·m]+ + [P (2)(D, n)U (2) ·m]− ≡

≡ [B(1)(D, n)U (1) ·m∗]+ + [B(2)(D, n)U (2) ·m∗]− ≡

≡(N1,τ −N2,τ )N
−1
τ F ·m∗ + 2N2,τN

−1
τ N1,τf ·m∗ = F̃ (+)

m + F̃ (−)
m , (14.49)

since N2,τN−1
τ N1,τ = N1,τN−1

τ N2,τ . By virtue of (14.47) from (14.49) we have the following
system of ΨDEs for the unknown functions ψ1 and ψ2:

3∑

k,j=1

[(N2,τN
−1
τ N1,τ )kj

(ψ1lj + ψ2mj)]lk = q1, (14.50)

3∑

k,j=1

[(N2,τN
−1
τ N1,τ )kj

(ψ1lj + ψ2mj)]mk = q2, (14.51)

where

q1 = 2−1{F̃ (+)
l + F̃

(−)
l − (N1,τ −N2,τ)N

−1
τ F · l∗} −

−
3∑

k=1

[(N2,τN
−1
τ N1,τ )k4f4]lk −

3∑

k,j=1

[(N2,τN
−1
τ N1,τ )kj(f̃nnj)]lk,

q2 = 2−1{F̃ (+)
m + F̃ (−)

m − (N1,τ −N2,τ)N
−1
τ F ·m∗} −

−
3∑

k=1

[(N2,τN
−1
τ N1,τ )k4f4]mk −

3∑

k,j=1

[(N2,τN
−1
τ N1,τ)kj(f̃nnj)]mk, (14.52)

are given functions on S.
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Now let

MG,τ :=



lk(N2,τN−1

τ N1,τ )kjlj lk(N2,τN−1
τ N1,τ)kjmj

mk(N2,τN
−1
τ N1,τ )kjlj mk(N2,τN

−1
τ N1,τ )kjmj




2×2

.

We recall that the summation over repeated indices is meant from 1 to 3. Clearly, (14.50)
and (14.51) can be written in the matrix form as

MG,τ ψ = q∗ (14.53)

with the unknown vector ψ = (ψ1, ψ2)
⊤ and the right-hand side q∗ = (q1, q2)

⊤ given by
formulae (14.52).

LEMMA 14.8 The operator MG,τ is an elliptic ΨDO of order 1 with a positive definite
principal homogeneous symbol matrix and the index equal to zero.

Proof. The equations (14.12), (14.20), and (14.21) imply that MG,τ is a ΨDO of order 1
with the principal homogeneous symbol matrix

σ(MG) =



lkljEkj lkmjEkj

mkljEkj mkmjEkj




2×2

= E1EE
⊤
1 , (14.54)

where

E1 =



l1, l2, l3, 0

m1, m2, m3, 0




2×4

,

E = σ(N2,τN
−1
τ N1,τ ) = σ(N2,τ )σ(N−1

τ )σ(N1,τ) =

= σ(N2,τ)[σ(N1,τ ) + σ(N2,τ )]
−1
σ(N1,τ).

Due to Lemma 14.2 the matrices σ(Nj,τ), j = 1, 2, are positive definite for arbitrary

x ∈ S and ξ̃ ∈ IR2\0 (see (14.20), (14.21)). Therefore, the matrix E is positive definite as
well. Next, for arbitrary η = (η1, η2)

⊤ ∈ CI 2 we have

σ(MG,τ)η · η = (E1EE
⊤
1 )η · η = E(E⊤

1 η) · (E
⊤
1 η) =

= E(l∗η1 +m∗η2) · (l∗η1 +m∗η2) ≥ c|ξ| |η1l
∗ + η2m

∗|2 = c |ξ| (|η1|2 + |η2|2), c > 0,

whence the positive definiteness of the matrix (14.54) follows. In turn, from this fact we
conclude that the dominant singular part of the operator MG,τ is formally self-adjoint. This
implies that the index of the operator MG,τ is equal to zero.

LEMMA 14.9 Let S, k, α, and α′ be as in (14.5). Then the operator

MG,τ : Cl,α(S) → Cl−1,α(S), 1 ≤ l ≤ k, (14.55)

is an isomorphism.
If S ∈ C∞, then (14.55) can be extended by continuity to the following bounded, invertible,

elliptic ΨDO (of order 1)

MG,τ : Hs+1
p (S) → Hs

p(S) [Bs+1
p,q (S) → Bs

p,q(S)],

s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
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Proof. It is quite similar to the proofs of Lemmata 14.1 and 14.5.

The above results yield the following existence theorems.

THEOREM 14.10 Let S, k, α′, and α be as in (14.5), and let

F̃
(±)
l , F̃ (±)

m , F̃n, F4 ∈ Ck−1,α(S), f̃n, f4 ∈ Ck,α(S).

Then the problem (G)τ is uniquelly solvable, and the solution is representable in the form
(14.24) − (14.25) with F and f given by (14.45) and (14.47), where ψ1, ψ2 ∈ Ck,α(S) are
defined by the system of ΨDEs (14.50) and (14.51) (i.e., (14.53)). Moreover, the embedding
(14.26) and the inequality (14.27) hold.

THEOREM 14.11 Let S ∈ C∞ and

F̃
(±)
l , F̃ (±)

m , F̃n, F4 ∈ B−1/p
p,p (S), f̃n, f4 ∈ B1−1/p

p,p (S).

Then the problem (G)τ is uniquely solvable in the space (W 1
p (Ω1),W 1

p (Ω2)), and the solutions
are representable by the formulae (14.24)−(14.25) with F and f given by (14.45) and (14.47),
where ψ1, ψ2 ∈ B1−1/p

p,p (S) are defined by the system of ΨDEs (14.50) and (14.51) (i.e.,
(14.53)).

The proof of these theorems are quite similar (in fact, verbatim) to the proofs of Theorems
14.4 and 14.6.

14.4. In this subsection we shall study the problem (H)τ . As in the previous subsection
let us rewrite the transmission conditions of the problem (see Subsection 7.2) in the equivalent
form

[u(1) · l]+ + [u(2) · l]− = f̃
(+)
l + f̃

(−)
l , (14.56)

[u(1) ·m]+ + [u(2) ·m]− = f̃ (+)
m + f̃ (−)

m , (14.57)

[u(1) · l]+ − [u(2) · l]− = f̃
(+)
l − f̃

(−)
l , (14.58)

[u(1) ·m]+ − [u(2) ·m]− = f̃ (+)
m − f̃ (−)

m , (14.59)

[u(1) · n]+ − [u(2) · n]− = f̃n, (14.60)

[P (1)(D, n)U (1) · n]+ − [P (2)(D, n)U (2) · n]− = F̃n, (14.61)

[u
(1)
4 ]+ − [u

(2)
4 ]− = f4, [λ(1)(D, n)u

(1)
4 ]+ − [λ(2)(D, n)u

(2)
4 ]− = F4. (14.62)

Equations (14.58)-(14.60) imply

[U (1)]+ − [U (2)]− = f,

where f is a given vector on S

f =
(
(f̃

(+)
l − f̃

(−)
l ) l + (f̃ (+)

m − f̃ (−)
m )m+ f̃n n, f4

)⊤
. (14.63)

It is also evident that

[B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F
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with

F = (ψ1l + ψ2m+ F̃nn, F4)
⊤, (14.64)

where F̃n and F4 are given functions on S, while

ψ1 = [P (1)(D, n)U (1) · l]+ − [P (2)(D, n)U (2) · l]−

and

ψ2 = [P (1)(D, n)U (1) ·m]+ − [P (2)(D, n)U (2) ·m]−,

are yet unknown scalar functions.
We look for a solution to the problem (H)τ again in the form (14.24)-(14.25), with F and

f defined by (14.63) and (14.64), respectively. It can be easily checked that the transmission
conditions (14.58)-(14.62) are then automatically satisfied, while the equations (14.56) and
(14.57) lead to the following system of ΨDEs for the unknown vector ψ = (ψ1, ψ2)

⊤ on S:

MH,τ ψ = q∗, (14.65)

where

MH,τ =



lk(N−1

τ )kjlj lk(N−1
τ )kjmj

mk(N
−1
τ )kjlj mk(N

−1
τ )kjmj




2×2

, (14.66)

and where the right hand-side vector q∗ = (q1, q2)
⊤ is defined by formulae:

q1 = 2−1{f̃ (+)
l + f̃

(−)
l − [N−1

τ (N2,τ −N1,τ)f · l∗]}

− [(N−1
τ )kj(F̃nnj)]lk − [(N−1

τ )k4F4]lk,

q2 = 2−1{f̃ (+)
m + f̃ (−)

m − [N−1
τ (N2,τ −N1,τ)f ·m∗]}

− [(N−1
τ )kj(F̃nnj)]mk − [(N−1

τ )k4F4]mk;

here l∗ and m∗ are given by (14.48).
By quite the same arguments as in Subsection 14.3 we can easily show that MH,τ is an

elliptic invertible ΨDO of order −1 with a positive definite principal symbol matrix.
Therefore the operators

MH,τ : Ck−1,α(S) → Ck,α(S), S ∈ Ck+1,α′

,

: Hs
p(S) → Hs+1

p (S), S ∈ C∞,

: Bs
p,q(S) → Bs+1

p,q (S), S ∈ C∞,

are isomorphisms.
These results lead us to the following existence theorems.

THEOREM 14.12 Let S, k, α, and α′ be as in (14.5) and let

f̃
(±)
l , f̃ (±)

m , f̃n, f4 ∈ Ck,α(S), F̃n, F4 ∈ Ck−1,α(S).

Then the problem (H)τ has the unique solution representable in the form (14.24)-(14.25)
with f and F given by (14.63) and (14.64), where ψ1, ψ2 ∈ Ck−1,α(S) in (14.64) are defined
by the system of ΨDEs (14.65).
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THEOREM 14.13 Let S ∈ C∞ and

f̃
(±)
l , f̃ (±)

m , f̃n, f4 ∈ B1−1/p
p,p (S), F̃n, F4 ∈ B−1/p

p,p (S).

Then the problem (H)τ is uniquely solvable in the space (W 1
p (Ω1),W 1

p (Ω2)), and the solution
is representable by the formulae (14.24) and (14.25) with f and F given by (14.63) and
(14.64), where ψ1, ψ2 ∈ B−1/p

p,p (S) in (14.64) are defined by the system of ΨDEs (14.65).

Again proofs are verbatim the proofs of Theorems 14.4 and 14.6. qx
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15 Basic Inteface Problems of Steady State Oscilla-

tions

In this section we deal with the basic interface problems (C)ω, (G)ω, and (H)ω of steady
state thermoelastic oscillations formulated in Section 7. In contrast to the pseudo-oscillation
case, one can not here apply the single layer approach to obtain the ”explicit” solution to
the basic interface problem (C)ω for an arbitrary value of the frequency parameter ω, since
the integral operator H is not invertible for the so-called exceptional values of ω. Therefore,
we offer another approach which relays on the representation of a solution in the form of a
complex linear combination of the single and double layer potentials (see Section 13).

15.1. Here we again assume that the conditions (14.5) are fulfilled and look for the
solution to the nonhomogeneous interface problem (C)ω (see (7.3)-(7.4) or (7.11)-(7.12)) in
the following form

U (1)(x) = W (1)(g(1))(x), x ∈ Ω1, (15.1)

U (2)(x) = W (2)(g(2))(x) + p0 V
(2)(g(2))(x), x ∈ Ω2, (15.2)

where W (µ) and V (µ) are the double and single layer potentials constructed by the funda-
mental solution Γ(µ)(x − y, ω, r) (see (10.1)-(10.2)), g(µ) = (g

(µ)
1 , · · · , g(µ)

4 )⊤ (µ = 1, 2) are
unknown densities, and p0 is given by (13.5). Moreover, in the sequel we again provide that

r = 1 for ω > 0 and r = 2 for ω < 0. (15.3)

Taking into account the properties of the above potentials and inserting the representa-
tions (15.1)-(15.2) into the transmission conditions (7.11)-(7.12), we get the system of ΨDEs
on S for g(µ) (µ = 1, 2):

[2−1I4 + K(1)
2 ] g(1) − [−2−1I4 + K(2)

2 + p0H
(2)] g(2) = f, (15.4)

L(1) g(1) − [L(2) + p0(2
−1I4 + K(2)

1 )] g(2) = F, (15.5)

where H(µ), K(µ)
1 , K(µ)

2 , and L(µ) (µ = 1, 2) are defined by (10.3), (10.4), (10.5), and (10.6),
respectively.

To investigate the solvability of the above system of ΨDEs we first prove the following
lemma.

LEMMA 15.1 Let g(µ) ∈ C1,α(S) (µ = 1, 2) and let the vector functions, represented by
(15.1)-(15.2), vanish in Ω1 and Ω2, respectively.

Then g(µ) = 0 (µ = 1, 2) on S.

Proof. Obviously, the regular vector function U (1), defined by (15.1), can be extended by
the same formula from the domain Ω1 into Ω2. Denote the extended vector function again
by U (1). By Lemmata 10.1 and 10.7 then we have

[U (1)]− = −g(1) and [B(1)(D, n)U (1)]− = 0 on S, (15.6)
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in accordance with the assumption U (1) = 0 in Ω1. Since U (1) is a (m, r)−thermo-radiating
regular vector function, we deduce by virtue of Theorem 9.5 and the second equation in
(15.6) that U (1) = 0 in Ω2, whence g(1) = 0 on S follows.

The assertion for g(2) is a ready consequence of Lemma 13.1.

In the matrix form the system (15.4)-(15.5) reads

MC g = Q, (15.7)

where g = (g(1), g(2))⊤, Q = (f, F )⊤, and

MC =




[2−1I4 + K(1)
2 ]4×4 [2−1I4 −K(2)

2 − p0H
(2)]4×4

[L(1)]4×4 [−L(2) − p0(2
−1I4 + K(2)

1 )]4×4




8×8

. (15.8)

Next, let us introduce the following operators

Φ1 := 2−1I4 + K(1)
2 , Ψ1 := L(1), (15.9)

Φ2 := −2−1I4 + K(2)
2 + p0H

(2), Ψ2 := L(2) + p0(2
−1I4 + K(2)

1 ), (15.10)

and rewrite the system (15.4)-(15.5) as

Φ1 g
(1) − Φ2 g

(2) = f, (15.11)

Ψ1 g
(1) − Ψ2 g

(2) = F. (15.12)

Note that the mappings

Φ2 : Cl,α(S) → Cl,α(S), 0 ≤ l ≤ k, (15.13)

Ψ2 : Cl,α(S) → Cl−1,α(S), 1 ≤ l ≤ k, (15.14)

are isomorphisms due to Lemmata 13.4 and 13. 11. Therefore, (15.11)-(15.12) equivalently
can be reduced to the system

g(2) = Φ−1
2 Φ1 g

(1) − Φ−1
2 f, (15.15)

[Ψ1 − Ψ2 Φ−1
2 Φ1] g

(1) = F − Ψ2 Φ−1
2 f. (15.16)

REMARK 15.2 Note that the system (15.4)-(15.5) (i.e., (15.11)-(15.12)) is equivalent to
the following system of SIEs

Φ1 g
(1) − Φ2 g

(2) = f, (15.17)

R4 Ψ1 g
(1) −R4 Ψ2 g

(2) = R4 F, (15.18)

where the equivalent lifting matrix operator R4 is given by (12.33).

LEMMA 15.3 The operator MC is elliptic in the sense of Douglis-Nirenberg with index
equal to zero. The mapping

MC : [Cl,α(S)]8 → [Cl,α(S)]4 × [Cl−1,α(S)]4, 1 ≤ l ≤ k, (15.19)

is isomorphism.
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Proof. First we show that MC is an elliptic ΨDO in the sense of Douglis-Nirenberg. To
this end let us remark that, due to the results of Section 10 (see (10.23)-(10.30), (10.48),
(10.49)), for the principal homogeneous symbol matrices of the operators (15.9) and (15.10)
we have the following expressions:

σ(Φ1) = σ((2−1I4 + K(1)
2 )0) =:




[K(1)]3×3 [0]3×1

[0]1×3 K
(1)
44




4×4

, (15.20)

σ(Φ2) = σ((−2−1I4 + K(2)
2 )0) =:




[K(2)]3×3 [0]3×1

[0]1×3 K
(2)
44




4×4

, (15.21)

σ(Ψ1) = σ((L(1))0) =:




[L(1)]3×3 [0]3×1

[0]1×3 L
(1)
44




4×4

, (15.22)

σ(Ψ2) = σ((L(2))0) =:




[L(2)]3×3 [0]3×1

[0]1×3 L
(2)
44




4×4

, (15.23)

where (K)0 denotes again the dominant singular part of the operator K; here we employed
the notations:

K(1) = σ(2−1I3+
∗

K
(1,0)

) = [σ(2−1I3 + K(1,0))]⊤, (15.24)

K(2) = σ(−2−1I3+
∗

K
(2,0)

) = [σ(−2−1I3 + K(2,0))]⊤, (15.25)

K
(1)
44 = σ(2−1I3+

∗

K
(1,0)

4 ) =
1

2
, (15.26)

K
(2)
44 = σ(−2−1I3+

∗

K
(2,0)

4 ) = −
1

2
, (15.27)

L(j) = σ(L(j,0)), j = 1, 2, (15.28)

L
(j)
44 = σ(L(j,0)

4 ) = −[4σ(
(j,0)
4 )] > 0, j = 1, 2, (15.29)

where by
∗

K
(µ,0)

, K(µ,0),
∗

K
(µ,0)

4 , K(µ,0), L(µ,0), and L(µ,0)
4 are denoted again the operatos (10.26),

(10.40), and (10.41) corresponding to the thermo-elastic characteristics of the medium oc-
cupying the domain Ωµ (cf. (14.19)).

In Lemma 3.3 of the reference [39] it has been proved that

σ∗ = det




[K(1)]3×3 −[K(2)]3×3

[L(1)]3×3 [−L(2)]3×3




6×6

6= 0 (15.30)
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for arbitrary x ∈ S and ξ̃ ∈ IR2 \ {0}.
Let us now consider the symbol matrix of the operator MC

σ(MC) =




σ(Φ1) −σ(Φ2)

σ(Ψ1) −σ(Ψ2)




8×8

(15.31)

and show that the corresponding determinant does not vanish for arbitrary x ∈ S and
ξ̃ ∈ IR2 \ {0}, which in turn implies the usual ellipticity of the system (15.17)-(15.18) (or
the ellipticity of the system (15.4)-(15.5) in the sense of Douglis-Nirenberg). By virtue of
formulae (15.20)-(15.29) we get from (15.31) after some simple rearrangements

detσ(MC) = det




[K(1)]3×3 [0]3×1 −[K(2)]3×3 [0]3×1

[0]1×3 K
(1)
44 [0]1×3 −K(2)

44

[L(1)]3×3 [0]3×1 [−L(2)]3×3 [0]3×1

[0]1×3 L
(1)
44 [0]1×3 −L(2)

44




8×8

=

= det




[K(1)]3×3 −[K(2)]3×3

[L(1)]3×3 [−L(2)]3×3




6×6

det




1
2

1
2

L
(1)
44 −L(2)

44




2×2

=

= −
(
L

(1)
44 + L

(2)
44

)
σ∗ 6= 0, (15.32)

due to (15.29) and (15.30).
Next we show that the index of the operator MC equals zero. To see this, let us note that

the index does not depend on a compact pertubation, and consider the following operator

M̃C =




[M̃(1)
C ]4×4 [M̃(2)

C ]4×4

[M̃(3)
C ]4×4 [M̃(4)

C ]4×4




8×8

, (15.33)

where

M̃(1)
C =




[2−1I3+
∗

K
(1,0)

]3×3 [0]3×1

[0]1×3 2−1I1+
∗

K
(1,0)

4




4×4

,

M̃(2)
C =




[2−1I3−
∗

K
(2,0)

−{H(2,0)}]3×3 [0]3×1

[0]1×3 2−1I1−
∗

K
(2,0)

4 −{H(2,0)
4 }




4×4

,

M̃(3)
C =




[L(1,0)]3×3 [0]3×1

[0]1×3 L(1,0)
4




4×4

,

M̃(4)
C =




[ − L(2,0) − {2−1I3 + K(2,0)}]3×3 [0]3×1

[0]1×3 −L(2,0)
4 − {2−1I1 + K(2,0)

4 }




4×4

.
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Clearly, the dominant singular parts (MC)0 and (M̃C)0 coinside. Indeed, these dominant
singular parts in the both cases can be represented in the form (15.33) where the summands
in curly brackets are removed.

The corresponding formally adjoint operator to M̃C reads as

M̃∗
C =




[M̃(1)∗
C ]4×4 [M̃(2)∗

C ]4×4

[M̃(3)∗
C ]4×4 [M̃(4)∗

C ]4×4




8×8

, (15.34)

where

M̃(1)∗
C =




[2−1I3 + K(1,0)]3×3 [0]3×1

[0]1×3 2−1I1 + K(1,0)
4




4×4

,

M̃(2)∗
C =




[L(1,0)]3×3 [0]3×1

[0]1×3 L(1,0)
4




4×4

,

M̃(3)∗
C =




[2−1I3 −K(2,0) −H(2,0)]3×3 [0]3×1

[0]1×3 2−1I1 −K(2,0)
4 −H(2,0)

4




4×4

,

M̃(4)∗
C =




[ − L(2,0) − 2−1I3−
∗

K
(2,0)

]3×3 [0]3×1

[0]1×3 −L(2,0)
4 − 2−1I1−

∗

K
(2,0)

4




4×4

.

We again recall that the operators involved in (15.33) and (15.34) are defined in Section

10. Moreover, here we have applied that the operators L(µ,0), L(µ,0)
4 , H(µ,0), and H(µ,0)

4 are
formally self-adjoint (see [33], [57]).

In what follows we prove that the homogeneous equations

M̃C ϕ = 0, ϕ = (ϕ(1), ϕ(2))⊤, ϕ(j) = (ϕ
(j)
1 , · · · , ϕ(j)

4 )⊤, j = 1, 2, (15.35)

and

M̃∗
C ψ = 0, ψ = (ψ(1), ψ(2))⊤, ψ(j) = (ψ

(j)
1 , · · · , ψ(j)

4 )⊤, j = 1, 2, (15.36)

have only the trivial solutions.
Due to the above established ellipticity we consider these equations in the regular space

of C1,α-smooth vector functions.
Note that the system (15.35) can be decomposed into the following two independent

systems:

[2−1I3+
∗

K (1,0)] ϕ̃(1) − [ − 2−1I3+
∗

K (2,0) + H(2,0)] ϕ̃(2) = 0,

L(1,0) ϕ̃(1) − [L(2,0) + 2−1I3 + K(2,0)] ϕ̃(2) = 0,





(15.37)

[2−1I1+
∗

K4
(1,0)] ϕ̃

(1)
4 − [ − 2−1I1+

∗

K4
(2,0) + H(2,0)

4 ] ϕ̃
(2)
4 = 0,

L(1,0)
4 ϕ̃

(1)
4 − [L(2,0)

4 + 2−1I1 + K(2,0)
4 ] ϕ̃

(2)
4 = 0,





(15.38)
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where ϕ̃(j) = (ϕ
(j)
1 , ϕ

(j)
2 , ϕ

(j)
3 )⊤, j = 1, 2.

These systems are generated by the following interface problems for the equations of
elastostatics and the stationary distribution of temperature

C(µ)(D)u(µ) = 0 in Ωµ, u(µ) = (u
(µ)
1 , u

(µ)
2 , u

(µ)
3 )⊤, µ = 1, 2,

[u(1)]+ − [u(2)]− = 0 and [T (1)(D, n)u(1)]+ − [T (2)(D, n)u(2)]− = 0 on S,

u(2)(x) = o(1) as |x| → +∞,





(15.39)

and

λ(µ)
pq DpDqu

(µ)
4 = 0 in Ωµ, µ = 1, 2,

[u
(1)
4 ]+ − [u

(2)
4 ]− = 0 and [λ(1)(D, n)u

(1)
4 ]+ − [λ(2)(D, n)u

(2)
4 ]− = 0 on S,

u
(2)
4 (x) = o(1) as |x| → +∞,





(15.40)

where C(µ)(D), T (µ)(D, n), and λ(µ)(D, n) are given by (1.7), (1.12), and (1.24), respectively.

If one looks for solutions (u(1), u(2)) and (u
(1)
4 , u

(2)
4 ) in the form of following potentials (see

(10.19)-(10.22) )

u(1)(x) =
∫
S
[T (1)(Dy, n(y))Γ(1,0)(y − x)]⊤ ϕ̃(1)(y) dSy =: w(1,0)(ϕ̃(1))(x), (15.41)

u(2)(x) =
∫
S
[T (2)(Dy, n(y))Γ(2,0)(y − x)]⊤ ϕ̃(2)(y) dSy +

+
∫
S

Γ(2,0)(y − x) ϕ̃(2)(y) dSy =: w(2,0)(ϕ̃(2))(x) + v(2,0)(ϕ̃(2))(x), (15.42)

u
(1)
4 (x) =

∫
S
λ(1)(Dy, n(y))γ(1,0)(y − x) ϕ̃

(1)
4 (y) dSy =: w

(1,0)
4 (ϕ̃

(1)
4 )(x), (15.43)

u
(2)
4 (x) =

∫
S
λ(2)(Dy, n(y))γ(2,0)(y − x) ϕ̃

(2)
4 (y) dSy +

+
∫
S
γ(2,0)(y − x) ϕ̃

(2)
4 (y) dSy =: w

(2,0)
4 (ϕ̃

(2)
4 )(x) + v

(2,0)
4 (ϕ̃

(2)
4 )(x), (15.44)

one arrives at the systems (15.37) and (15.38).
Using the usual Green identities (14.22) it can be easily shown that the homogeneous

problems (15.39) and (15.40) have only the trivial solutions.
These uniqueness results and standard arguments of the potential theory imply that the

systems (15.37) and (15.38) possess only the trivial solutions as well.
Indeed, let (ϕ(1), ϕ(2))⊤ be some solution to the homogeneous system (15.37), and let

us construct by these densities the potentials (15.41) in Ω1 and (15.42) in Ω2. Due to the
above uniqueness u(µ)(x) = 0 in Ωµ, µ = 1, 2. Applying the jump properties of the single and
double layer potentials of elastostatics (see [8], [33], [54]) we conclude that ϕ(1) = ϕ(2) = 0
on S. For the system (15.38) the proof is verbatim. Thus, kerM̃C = {0}.

To prove that kerM̃∗
C = {0}, we decompose analogously the system (15.36) into the two

systems

[2−1I3 + K(1,0)] ψ̃(1) + L(1,0) ψ̃(2) = 0,

[ − 2−1I3 + K(2,0) + H(2,0)] ψ̃(1) + [L(2,0) + 2−1I3+
∗

K (2,0)] ψ̃(2) = 0,





(15.45)
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[2−1I1 + K(1,0)
4 ] ψ̃

(1)
4 + L(1,0)

4 ψ̃
(2)
4 = 0,

[ − 2−1I1 + K(2,0)
4 + H(2,0)

4 ] ψ̃
(1)
4 + [L(2,0)

4 + 2−1I1+
∗

K
(2,0)
4 ] ψ̃

(2)
4 = 0.





(15.46)

Denote by (ψ(1), ψ(2))⊤ some solution of the homogeneous system (15.45) and by these den-
sities construct the vectors (see (15.41)-(15.44))

u(1)
∗ (x) = v(1,0)(ψ̃(1))(x) + w(1,0)(ψ̃(2))(x) in Ω− = Ω2, (15.47)

u(2)
∗ (x) = v(2,0)(ψ̃(1))(x) + w(2,0)(ψ̃(2))(x) in Ω+ = Ω1. (15.48)

Obviously, C(1)(D)u
(1)
∗ = 0 in Ω− = Ω2 and C(2)(D)u

(2)
∗ = 0 in Ω+ = Ω1. It can be also

easily verified that the equations (15.45) correspond to the conditions

[T (1)(D, n)u(1)
∗ ]− = 0, (15.49)

[T (2)(D, n)u(2)
∗ ]+ + [u(2)

∗ ]+ = 0. (15.50)

Therefore, u
(1)
∗ is a solution of the homogeneous exterior stress problem in Ω−, while u

(2)
∗

represnts a solution to the Roben type problem in Ω+. By uniqueness theorems, which can
be established again with the help of (14.22), we conclude u

(1)
∗ = 0 in Ω−, and u

(2)
∗ = 0 in

Ω+. The jump relations then lead to the equations

[u(1)
∗ ]+ = ψ̃(2), [T (1)(D, n)u(1)

∗ ]+ = −ψ̃(1),

[u(2)
∗ ]+ = −ψ̃(2), [T (2)(D, n)u(2)

∗ ]+ = ψ̃(1), (15.51)

whence

[u(1)
∗ ]+ + [u(2)

∗ ]− = 0,

[T (1)(D, n)u(1)
∗ ]+ + [T (2)(D, n)u(2)

∗ ]− = 0. (15.52)

Making use once again Green formulae (14.22) together with homogeneous conditions (15.52)

we obtain that u
(1)
∗ = 0 in Ω+ and u

(2)
∗ = 0 in Ω−. Now (15.51) shows ψ̃(1) = ψ̃(2) = 0 on

S. In the same way we can show that the system (15.46) has also only the trivial solution.
Thus, kerM̃∗

C = {0} as well, and, therefore, indM̃C = 0, which proves the first part of the
lemma.

Next we prove that the mapping (15.19) is an isomorphism. Due to the first part of the
lemma it remains to check that the homogeneous equation M̃C g = 0 admits only the trivial
solution. Let g = (g(1), g(2))⊤ be an arbitrary solution of this equation. Then the potentials
(15.1) and (15.2) solve the homogeneous problem (C)ω and by Theorem 9.8 they vanish in
the corresponding domains. Now Lemma 15.1 completes the proof.

COROLLARY 15.4 Let S ∈ C∞ and let s ∈ IR, 1 < p < ∞, 1 ≤ q ≤ ∞. Then the
operators

MC : [Hs
p(S)]8 → [Hs

p(S)]4 × [Hs−1
p (S)]4,

: [Bs
p,q(S)]8 → [Bs

p,q(S)]4 × [Bs−1
p,q (S)]4,

are isomorphisms.
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Proof. It follows from the fact that, due to the general theory of elliptic ΨDEs on closed
smooth manifolds, the uniqueness of solution implies the corresponding existence results for
the nonhomogeneous equation (15.7) in the Besov Bs

p,q(S) and the Bessel-potential Hs
p(S)

spaces (see the proof of Lemma 12.9).

We are now ready to present the solution of the system (15.4)-(15.5) (i.e., (15.17)-(15.18))
in terms of explicitly given boundary integral operators and their inverses. To this end we
need the following lemma.

LEMMA 15.5 Let S, k, and α be as in (14.5). Then the mapping

[Ψ1 − Ψ2 Φ−1
2 Φ1] : [Cl,α(S)]4 → ×[Cl−1,α(S)]4, 1 ≤ l ≤ k, (15.53)

is an elliptic invertible ΨDO of order +1.

Proof. First we show the ellipticity of the principal homogeneous symbol matrix of the
operator in question. Due to the equations (15.20)-(15.29) we have

M := σ(Ψ1 − Ψ2 Φ−1
2 Φ1) = σ(Ψ1) −σ(Ψ2)[σ(Φ2)]

−1
σ(Φ1) =

= {σ(Ψ1)[σ(Φ1)]
−1 −σ(Ψ2)[σ(Φ2)]

−1} σ(Φ1) =

=








[L(1)]3×3 [0]3×1

[0]1×3 L
(1)
44







[(K(1))−1]3×3 [0]3×1

[0]1×3 2


−

−




[L(2)]3×3 [0]3×1

[0]1×3 L
(2)
44







[(K(2))−1]3×3 [0]3×1

[0]1×3 −2











[K(1)]3×3 [0]3×1

[0]1×3 2−1


 =

=




[L(1)(K(1))−1 − L(2)(K(2))−1]3×3 [0]3×1

[0]1×3 2L
(1)
44 + 2L

(2)
44







[K(1)]3×3 [0]3×1

[0]1×3 2−1


 . (15.54)

We used here that the matrix K(1) defined by (15.24) is not singular (see, e.g., [33], [54])
and employed the following simple facts: if

X =




[X̃]3×3 [0]3×1

[0]1×3 x44




4×4

and Y =




[Ỹ ]3×3 [0]3×1

[0]1×3 y44




4×4

,

then

XY =




[X̃Ỹ ]3×3 [0]3×1

[0]1×3 x44y44




4×4

and X−1 =




[(X̃)−1]3×3 [0]3×1

[0]1×3 (x44)
−1




4×4

where detX̃ 6= 0 and x44 6= 0 are assumed.
We recall that the matrices (15.24), (15.25), (15.28) are nonsingular. Moreover, by the

arguments applied in the proof of Lemma 14.2 we can show that the positive definiteness of
the quadratic form ckjpqεkjεpq (see (1.15)) and the jump formulae for double layer potentials
(14.29)-(14.32) imply that the matrices

L(1)(K(1))−1 and − L(2)(K(2))−1 (15.55)
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are positive definite (for details see [39], [57], [33], [55]). Therefore, the matrix

M0 :=




[L(1)(K(1))−1 − L(2)(K(2))−1]3×3 [0]3×1

[0]1×3 2L
(1)
44 + 2L

(2)
44




4×4

, (15.56)

is positive efinite. Consequently, the matrix M defined by (15.54), which represents the
principal homogeneous symbol matrix of the operator (15.53), is nonsingular. Thus, the
operator (15.53) is an elliptic ΨDO.

Further, from (15.54) it follows that the dominant singular part of the operator (15.53)
can be represented as the composition of two operators where the first one is the operator with
the positive definite principal symbol matrix (15.56), while the second one is the following
invertible operator




[2−1I3+
∗

K 1,(0)]3×3 [0]3×1

[0]1×3 2−1




4×4

,

which corresponds to the second matrix multiplyer in (15.54). These facts yield that the
index of the operator (15.53) equals zero.

Next we prove that the operator (15.53) has the trivial null-space . Let the homogeneous
equation

[Ψ1 − Ψ2 Φ−1
2 Φ1] g

′ = 0, g′ = (g′1, · · · , g
′
4)

⊤, (15.57)

admit a nontrivial solution g′ 6= 0. Then the nontrivial vector (g′,Φ−1
2 Φ1 g

′)⊤ 6= 0 solves the
system (15.11)-(15.12) (with f = 0, F = 0). This contradicts to Lemma 15.3. Therefore,
(15.57) has only the trivial solution, which completes the proof.

COROLLARY 15.6 Let S ∈ C∞ and let s ∈ IR, 1 < p < ∞, 1 ≤ q ≤ ∞. Then the
operators

Ψ1 − Ψ2 Φ−1
2 Φ1 : [Hs

p(S)]4 → [Hs−1
p (S)]4,

: [Bs
p,q(S)]4 → [Bs−1

p,q (S)]4,

are elliptic invertible ΨDOs of order +1.

Proof. It is verbatim the proof of Corollary 15.4.

Let us introduce the following ΨDO of order −1

Ψ := [Ψ1 − Ψ2 Φ−1
2 Φ1]

−1. (15.58)

From Lemma 15.5 it follows that we can represent the solution of the system (15.7) ”explic-
itly” by formulae

g(1) = ΨF − Ψ Ψ2 Φ−1
2 f, (15.59)

g(2) = Φ−1
2 Φ1 ΨF − Φ−1

2 (Φ1 Ψ Ψ2 Φ−1
2 + I) f, (15.60)
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where I is again the identity operator.
Substituting (15.59) and (15.60) into (15.1) and (15.2) we obtain the following represen-

tation of solution of the problem (C)ω:

U (1)(x) = W (1)
(
ΨF − Ψ Ψ2 Φ−1

2 f
)

(x), (15.61)

U (2)(x) =
(
W (2) + p0 V

(2)
) (

Φ−1
2 Φ1 ΨF − Φ−1

2 [Φ1 Ψ Ψ2 Φ−1
2 + I] f

)
(x), (15.62)

where F and f are the boundary data of the interface problem under consideration (see
(7.3)-(7.4) or (7.11)-(7.12)).

Now we are in the position to formulate the basic existence results in the form of the
following propositions.

THEOREM 15.7 Let conditions (14.5) be fulfilled. Then the formulae (15.61)-(15.62) de-
fine the unique regular solution to the problem (C)ω of the class

(U (1) , U (2)) ∈ ([Ck,α(Ω1)]4 , [Ck,α(Ω2) ∩ SKm
r (Ω2)]4) (15.63)

(with r and ω as in (15.3)).

Proof. It is a ready consequence of the uniqueness Theorem 9.5 and Lemmata 10.1, 15.1,
15.3, and 15.5.

THEOREM 15.8 Let S ∈ C∞, 1 < p <∞, and

f ∈ [B1−1/p
p,p (S)]4, F ∈ [B−1/p

p,p (S)]4. (15.64)

Then the formulae (15.61)-(15.62) represent the unique solution to the problem (C)ω of the
class

(U (1) , U (2)) ∈ ([W 1
p (Ω1)]4 , [W 1

p,loc(Ω
2) ∩ SKm

r (Ω2)]4) (15.65)

(with r and ω as in (15.3)).

Proof. Solvability of the problem (C)ω in the class indicated in the theorem is an immidiate
consequence of the formulae (15.61)-(15.62), and Theorem 10.8 (with s = 1 − 1/p).

To prove the uniqueness of solution to the problem (C)ω for arbitrary p ∈ (1,∞), we
have to repeate word for word the arguments of the proof of Theorem 14.6. The case is
that the key integral representation formulae similar to (14.30)-(14.31) we can also write for
a solution (U (1) , U (2)) to the homogeneous problem (C)ω of the class (15.65) (see Theorem
10.8, item ii)).

15.2. In this subsection we present the existence results for the problem (G)ω. First we
transform the interface conditions (7.5)-(7.8) to the equivalent equations on S (cf. Subsection
14.3):

[B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F, (15.66)

[u(1) · n]+ − [u(2) · n]− = f̃n, [u
(1)
4 ]+ − [u

(2)
4 ]− = f4, (15.67)

[P (1)(D, n)U (1) · l]+ + [P (2)(D, n)U (2) · l]− = F̃
(+)
l + F̃

(−)
l , (15.68)

[P (1)(D, n)U (1) ·m]+ + [P (2)(D, n)U (2) ·m]− = F̃ (+)
m + F̃ (−)

m , (15.69)
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where

F =
(
(F̃

(+)
l − F̃

(−)
l ) l + (F̃ (+)

m − F̃ (−)
m )m+ F̃n n, F4

)⊤
, (15.70)

and l, m, and n are as in Subsection 7.2.
We seek the solution of the problem (G)ω in the form of potentials (15.61)-(15.62), where

F is given by (15.70), and

f = (ϕ l + ψm+ f̃n n, f4)
⊤. (15.71)

Here ϕ and ψ are unknown scalar functions of the space Ck,α(S), while F̃
(±)
l , F̃ (±)

m , F̃n, F4,
f̃n, and f4 are given functions on S. We assume that

F̃
(±)
l , F̃ (±)

m , F̃n, F4 ∈ Ck−1,α(S), f̃n, f4 ∈ Ck−1,α(S),

S ∈ Ck+1,α′

, k ≥ 1, 0 < α < α′ ≤ 1.
(15.72)

From the results of the previous subsection it is evident that the vectors U (1) and U (2)

given by (15.61) and (15.62) are regular solutions to the steady state oscillation equations
of thermoelasticity theory (7.2). Moreover, they automatically satisfy the conditions (15.66)
and (15.67). It remains to fulfil the conditions (15.68) and (15.69) by choosing the unknown
functions ϕ and ψ appropriately.

Due to the jump relations of the single and double layer potentials (see Lemmata 10.1
and 10.7) we have from (15.61)-(15.62) (see also (15.9), (15.10) and (15.58))

[B(1)(D, n)U (1)]+ = L(1) Ψ [F − Ψ2 Φ−1
2 f ] = Ψ1 Ψ [F − Ψ2 Φ−1

2 f ] =

= Ψ1 ΨF − Ψ1 Ψ Ψ2 Φ−1
2 (ϕ l + ψm+ f̃n n, f4)

⊤, (15.73)

[B(2)(D, n)U (2)]− = [L(2) + p0(2
−1I4 + K(2)

1 )] Φ−1
2 [Φ1 ΨF −

−(Φ1 Ψ Ψ2 Φ−1
2 + I)f ] = Ψ2 Φ−1

2 [Φ1 ΨF − (Φ1 Ψ Ψ2 Φ−1
2 + I)f ] =

= Ψ2 Φ−1
2 Φ1 ΨF − Ψ2 Φ−1

2 (Φ1 Ψ Ψ2 Φ−1
2 + I)(ϕ l + ψm+ f̃n n, f4)

⊤. (15.74)

Now let l∗, m∗, and n∗, be the 4-vectors defined by (14.48) and let

e∗ = (0, 0, 0, 1)⊤. (15.75)

Then

(ϕ l + ψm+ f̃n n, f4)
⊤ = ϕ l∗ + ψm∗ + f̃n n

∗ + f4 e
∗. (15.76)

Next we set

q̃1 = Ψ1 ΨF − Ψ1 Ψ Ψ2 Φ−1
2 (f̃n n

∗ + f4 e
∗),

q̃2 = Ψ2 Φ−1
2 Φ1 ΨF − Ψ2 Φ−1

2 (Φ1 Ψ Ψ2 Φ−1
2 + I)(f̃n n

∗ + f4 e
∗). (15.77)

Applying these notations in (15.73) and (15.74) we get

[B(1)(D, n)U (1)]+ =
(
[P (1)(D, n)U (1), λ(1)(D, n)u(1)4 ]+

)⊤
=

= −Ψ1 Ψ Ψ2 Φ−1
2 (ϕ l∗ + ψm∗) + q̃1, (15.78)

[B(2)(D, n)U (2)]− =
(
[P (2)(D, n)U (2), λ(2)(D, n)u(2)4 ]−

)⊤
=

= −Ψ2 Φ−1
2 (Φ1 Ψ Ψ2 Φ−1

2 + I) (ϕ l∗ + ψm∗) + q̃2 =

= −Ψ1 Ψ Ψ2 Φ−1
2 (ϕ l∗ + ψm∗) + q̃2, (15.79)
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since

−Ψ2 Φ−1
2 [Φ1 Ψ Ψ2 Φ−1

2 + I] = −[Ψ2 Φ−1
2 Φ1 Ψ + I]Ψ2 Φ−1

2 =

= −[(Ψ2 Φ−1
2 Φ1 + Ψ1 − Ψ̃1)Ψ + I]Ψ2 Φ−1

2 =

= −[−Ψ−1 Ψ + Ψ1 Ψ + I]Ψ2 Φ−1
2 = −Ψ1 Ψ Ψ2 Φ−1

2 (15.80)

due to (15.58).
Substitution of the formulae (15.78)-(15.79) into the interface conditions (15.68)-(15.69)

leads to the following system of ΨDEs on S for the unknown functions ϕ and ψ:

−Ψ1 Ψ Ψ2 Φ−1
2 (ϕ l∗ + ψm∗) + q̃1 · l

∗ = 2−1(q̃1 · l
∗ + q̃2 · l

∗), (15.81)

−Ψ1 Ψ Ψ2 Φ−1
2 (ϕ l∗ + ψm∗) + q̃1, ·m

∗ = 2−1(q̃1 ·m
∗ + q̃2 ·m

∗). (15.82)

This system can also be rewritten as

MG h = q, (15.83)

where h = (ϕ, ψ)⊤ is the sought for 2-vector, q = (q1, q2)
⊤ is the given 2-vector,

q1 = 2−1(q̃1 · l
∗ + q̃2 · l

∗), q2 = 2−1(q̃1 ·m
∗ + q̃2 ·m

∗), (15.84)

MG =



lk(KG)kjlj lk(KG)kjmj

mk(KG)kjlj mk(KG)kjmj




2×2

, (15.85)

KG = −Ψ1 Ψ Ψ2 Φ−1
2 , (15.86)

in (15.85) the summation over repeated indices k and j is meant from 1 to 3.
Note that KG is a 4×4 matrix ΨDO of order 1. As in the proof of Lemma 15.5 we easily

derive that the principal homogeneous symbol matrix of the operator KG reads as

σ(KG) = −σ(Ψ1)σ(Ψ)σ(Ψ2)[σ(Φ2)]
−1 =

= −




[L(1)]3×3 [0]3×1

[0]1×3 L
(1)
44


 M−1




[L(2)]3×3 [0]3×1

[0]1×3 L
(2)
44







[(K(2))−1]3×3 [0]3×1

[0]1×3 −2




with the same M, K(j), L(j), and L
(j)
44 as in (15.54), due to formulae (15.20)-(15.29) and

(15.54). The last equation together with (15.56) implies

σ(KG) =




[Z]3×3 [0]3×1

[0]1×3 Z44




4×4

, (15.87)

where

Z44 = 2L
(1)
44 L

(2)
44 [L

(1)
44 + L

(2)
44 ]−1 (15.88)
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is a positive function, while

Z = −L(1)(K(1))−1 [L(1)(K(1))−1 − L(2)(K(2))−1]−1L(2)(K(2))−1 =

= {−K(2)(L(2))−1[L(1)(K(1))−1 − L(2)(K(2))−1]K(1)(L(1))−1}−1 =

= [K(1)(L(1))−1 −K(2)(L(2))−1]−1 (15.89)

is a positive definite 3 × 3 matrix (since the matrices (15.55) are positive definite). Whence
for arbitrary x ∈ S, ξ̃ ∈ IR2 \ {0}, and η ∈ CI 3 there hold the inequalities

Z44(x, ξ̃) ≥ c′ |ξ̃|, Z(x, ξ̃)η · η ≥ c′′ |ξ̃| |η|2, (15.90)

with positive constants c′ and c′′.

LEMMA 15.9 The principal homogeneous symbol matrices of the ΨDOs KG amd MG are
positive definite.

Proof. The positive definiteness of σ(KG) follows from the equations (15.87)-(15.89). In the
case of the matrix MG, for arbitrary x ∈ S, ξ̃ ∈ IR2 \ {0}, and η ∈ CI 2, we have

σ(MG)η · η =



lk(x)lj(x)[σ(KG)]kj lk(x)mj(x)[σ(KG)]kj

mk(x)lj(x)[σ(KG)]kj mk(x)mj(x)[σ(KG)]kj




2×2



η1

η2


 ·



η1

η2


 =

= [lk(x)lj(x)Zkjη1 + lk(x)mj(x)Zkjη2]η1 + [mk(x)lj(x)Zkjη1 +mk(x)mj(x)Zkjη2]η2 =

= Zkj[lj(x)η1 +mj(x)η2][lk(x)η1 +mk(x)η2] = Z[η1l(x) + η2m(x)] · [η1l(x) + η2m(x)] ≥

≥ c′′|ξ̃| |η1l(x) + η2m(x)|2 = c′′|ξ̃| |η|2,

due to the second inequality in (15.90). Therefore, σ(MG) is a positive definite matrix as
well.

COROLLARY 15.10 The dominant singular parts of the operators (15.85) and (15.86)
are formally self-adjoint elliptic ΨDOs of order 1 with indices equal to zero.

Next we recall that JG(Ω1) denotes the set of Jones eigenfrequencies for the problem (G)ω
and prove the following assertion.

LEMMA 15.11 If ω 6∈ JG(Ω1), then the operators

MG : [Cl,α(S)]2 → [Cl−1,α(S)]2, 1 ≤ l ≤ k,

: [Hs
p(S)]2 → [Hs−1

p (S)]2, S ∈ C∞, s ∈ IR, 1 < p <∞,

: [Bs
p,q(S)]2 → [Bs−1

p,q (S)]2, S ∈ C∞, s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞,

are isomorphisms.

Proof. Again due to the general theory of ΨDOs on closed smooth manifolds, it suffices to
show that the homogeneous version of equation (15.83) (q = 0) has only the trivial solution
in the space C1,α(S). Let h = (ϕ, ψ)⊤ ∈ [C1,α(S)]2 be some solution of the homogeneous
equation and construct the vectors U (1) and U (2) by formulae (15.61)-(15.62), where F = 0
and f = l∗ϕ + m∗ψ. Clearly, to the nontrivial pair (ϕ, ψ) there corresponds the nontrivial
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vector f since l∗ and m∗ are orthonormal (see (14.48)). On the other hand it is evident that
(U (1), U (2)) ∈ (C1,α(Ω1) , C1,α(Ω2) ∩ SKm

r (Ω2)) and they satisfy the homogeneous conditions
(15.66)-(15.69), which are equivalent to the homogeneous version of equations (7.5)-(7.8).
Therefore, by Theorem 9.9 we conclude U (µ) = 0 in Ωµ (µ = 1, 2). Now, from the equation
[U (1)]+ − [U (2)]− = f = l∗ϕ+m∗ψ = 0, it follows that ϕ = ψ = 0.

With quite the same arguments as in the previous subsection (see proofs of Theorems
15.7 and 15.8) we derive the following propositions.

THEOREM 15.12 Let ω 6∈ JG(Ω1) and conditions (15.72) be fulfilled. Then the problem
(G)ω is uniquely solvable in the class ([Ck,α(Ω1)]4 , [Ck,α(Ω2) ∩ SKm

r (Ω2)]4) and the solution
is representable in the form of potentials (15.61)-(15.62), where F and f are given by (15.70)
and (15.71), respectively, and where (ϕ, ψ)⊤ ∈ [Ck,α(S)]2 is the unique solution of the system
of ΨDEs (15.83) with the right-hand side q ∈ [Ck−1,α(S)]2.

THEOREM 15.13 Let ω 6∈ JG(Ω1), S ∈ C∞, and

F̃
(±)
l , F̃ (±)

m , F̃n, F4 ∈ B−1/p
p,p (S), f̃n, f4 ∈ B1−1/p

p,p (S), 1 < p <∞.

Then the problem (G)ω is uniquely solvable in the class ([W 1
p (Ω1)]4 , [W 1

p,loc(Ω
2)∩SKm

r (Ω2)]4)
and the solution is representable in the form of potentials (15.61)-(15.62), where F and f are
given by (15.70) and (15.71), respectively, and where (ϕ, ψ)⊤ ∈ [B1−1/p

p,p (S)]2 is the unique

solution of the system of ΨDEs (15.83) with the right-hand side q ∈ [B−1/p
p,p (S)]2.

15.3. Here we investigate the nonhomogeneous problem (H)ω applying the same ap-
proach as above. Again we start with the reformulation of the interface conditions (7.7)-
(7.10) to the equivalent equations

[U (1)]+ − [U (2)]− = f, [λ(1)(D, n)u
(1)
4 ]+ − [λ(2)(D, n)u

(2)
4 ]− = F4, (15.91)

[P (1)(D, n)U (1) · n]+ + [P (2)(D, n)U (2) · n]− = F̃ (+)
n , (15.92)

[u(1) · l]+ + [u(2) · l]− = f̃
(+)
l + f̃

(−)
l , [u(1) ·m]+ + [u(2) ·m]− = f̃ (+)

m + f̃ (−)
m , (15.93)

where

f =
(
[f̃

(+)
l − f̃

(−)
l ] l + [f̃ (+)

m + f̃ (−)
m ]m+ f̃ (+)

n n, f4

)⊤
. (15.94)

Next we set

F = (ϕ l + ψm+ F̃ (+)
n n, F4)

⊤ = ϕ l∗ + ψm∗ + F̃ (+)
n n∗ + F4 e

∗, (15.95)

where ϕ and ψ are unknown scalar functions, while l∗, m∗, n∗, and e∗ are the same 4-vectors
as in the previous subsection. Here we assume either

f̃
(±)
l , f̃ (±)

m , f̃n, f4 ∈ Ck,α(S), F̃n, F4 ∈ Ck−1,α(S),

S ∈ Ck+1,α′

, k ≥ 1, 0 < α < α′ ≤ 1,
(15.96)

or

f̃
(±)
l , f̃ (±)

m , f̃n, f4 ∈ B1−1/p
p,p (S), F̃n, F4 ∈ B−1/p

p,p (S), S ∈ C∞, 1 < p <∞. (15.97)
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Now we look for the solution to the the nonhomogeneous problem (H)ω in the form of
potentials (15.61)-(15.62), where f and F are defined by (15.94) and (15.95), respectively.

One can easily chack that the conditions (15.91) and (15.92) are automatically fulfilled.
It remains to satisfy conditions (15.93).

Note that

[U (1)]+ = Φ1 Ψ (F − Ψ2 Φ−1
2 f) = Φ1 Ψ (ϕ l∗ + ψm∗) + q̃3, (15.98)

[U (2)]− = Φ2 (Φ−1
2 Φ1 ΨF − Φ−1

2 [Φ1 Ψ Ψ2 Φ−1
2 + I] f) =

= Φ1 Ψ (ϕl∗ + ψm∗) + q̃4, (15.99)

where q̃3 and q̃4 are given 4-vectors:

q̃3 = Φ1 Ψ (F̃n n
∗ + f4 e

∗) − Φ1 Ψ Ψ2 Φ−1
2 f,

q̃4 = Φ1 Ψ (F̃n n
∗ + f4 e

∗) − [Φ1 Ψ Ψ2 Φ−1
2 + I] f.

(15.100)

Therefore, the interface conditions (15.93) lead to the system of ΨDEs for ϕ and ψ on S:

Φ1 Ψ (ϕ l∗ + ψm∗) · l∗ = 2−1[q̃3 · l∗ + q̃4 · l∗],

Φ1 Ψ (ϕ l∗ + ψm∗) ·m∗ = 2−1[q̃3 ·m∗ + q̃4 ·m∗].
(15.101)

We rewrite these equations in matrix form

MH h = q′, (15.102)

where h = (ϕ, ψ)⊤ is the sought for 2-vector, q′ = (q′1, q
′
2)

⊤ is the given 2-vector,

q′1 = 2−1[q̃3 · l
∗ + q̃4 · l

∗], q′2 = 2−1[q̃3 ·m
∗ + q̃4 ·m

∗], (15.103)

MH =



lk(KH)kjlj lk(KH)kjmj

mk(KH)kjlj mk(KH)kjmj




2×2

, (15.104)

KH = Φ1 Ψ; (15.105)

here again the summation over repeated indices k and j is meant from 1 to 3.
By formulae (15.20)-(15.29) and (15.54) we get

σ(KH) = σ(Φ1)σ(Ψ) =




[X]3×3 [0]3×1

[0]1×3 X44




4×4

, (15.106)

where

X = K(1)
(
[L(1)(K(1))−1 − L(2)(K(2))−1]K(1)

)−1
= [L(1)(K(1))−1 − L(2)(K(2))−1]−1 (15.107)

is a positive definite 3 × 3 matrix and

X44 = 2−1[L
(1)
44 + L

(2)
44 ]−1 > 0

for arbitrary x ∈ S and ξ̃ ∈ IR2 \ {0}.
Now by the same reasonings as in the previous subsection one can prove the following

propositions.
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LEMMA 15.14 The principal homogeneous symbol matrices of the ΨDOs KH amd MH

are positive definite.

COROLLARY 15.15 The dominant singular parts of the operators (15.104) and (15.105)
are formally self-adjoint elliptic ΨDOs of order −1 with indices equal to zero.

LEMMA 15.16 If ω 6∈ JH(Ω1) (i.e., ω is not Jones eigenfrequency of the problem (H)ω),
then the operators

MH : [Cl−1,α(S)]2 → [Cl,α(S)]2, 1 ≤ l ≤ k,

: [Hs
p(S)]2 → [Hs+1

p (S)]2, S ∈ C∞, s ∈ IR, 1 < p <∞,

: [Bs
p,q(S)]2 → [Bs+1

p,q (S)]2, S ∈ C∞, s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞,

are isomorphisms.

THEOREM 15.17 Let ω 6∈ JH(Ω1), S ∈ C∞, and conditions (15.96) [(15.97)] be fulfilled.
Then the nonhomogeneous problem (H)ω is uniquely solvable in the class

(U (1), U (2)) ∈ ([Ck,α(Ω1)]4 , [Ck,α(Ω2) ∩ SKm
r (Ω2)]4)

[
(U (1), U (2)) ∈ ([W 1

p (Ω1)]4 , [W 1
p,loc(Ω

2) ∩ SKm
r (Ω2)]4)

]

and the solution is representable in the form of potentials (15.61)-(15.62), where f and F
are given by (15.94) and (15.95), respectively, and where

(ϕ, ψ)⊤ ∈ [Ck,α(S)]2
[
(ϕ, ψ)⊤ ∈ [B1−1/p

p,p (S)]2
]

is the unique solution to the system of ΨDEs (15.102).
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CHAPTER VI

MIXED AND CRACK TYPE PROBLEMS

In this chapter we study the basic mixed BVPs, the crack type problems, and the
mixed interface problems formulated in Chapter II. Applying the boundary integral equa-
tion method we prove the existence theorems in Sobolev spaces and establish the almost
best regularity results for solutions near the edges of cracks and at the collision curves of
changing boundary conditions.

Throughout this chapter the interface surfaces (S), the collision curves and the crack
edges are assumed to be C∞-smooth. Moreover, the parameters r and ω in the steady state
oscillation problems are subjected to the requirement (15.3).

16 Basic Mixed BVPs

16.1 In this subsection we present some results from the theory of elliptic pseudodifferential
equations on manifolds with boundary in Bessel-potential and Besov spaces. They will be
the main tools for proving existence theorems for the above mentioned mixed and crack type
problems. All the results outlined below in this subsection can be found, for example, in [4],
[20], [41], [66], [15], [67], [68], [69].

Let S ∈ C∞ be a compact n-dimensional manifold with the boundary ∂S ∈ C∞ and let
A be a strongly elliptic m × m matrix pseudodifferential operator of order κ ∈ IR on S.
Denote by σ(A)(x, ξ) the principal homogeneous symbol matrix of the operator A in some
local coordinate system. Here x ∈ S, ξ ∈ IRn \ {0}. Consider the following m ×m matrix
function

A(0)
η (x, ξ) = |ξ|−κσ(A)(x, |ξ′|η, ξn), (16.1)

where ξ′ = (ξ1, ..., ξn−1) and η belongs to the unit sphere Σ(n−2) in IRn−1.
It is known that the matrix A(0)

η in (16.1) admits the factorization

A(0)
η (x, ξ) = A−

η (x, ξ)D(η, x, ξ)A+
η (x, ξ) for x ∈ ∂S,

where [A−
η (x, ξ)]±1 and [A+

η (x, ξ)]±1 are matrices, which are homogeneous of degree 0 in ξ and
admit analytic bounded continuations with respect to ξn into the lower and upper complex
half-planes, respectively. Moreover, D(η, x, ξ) is a bounded lower triangular matrix with
entries of the form

(ξn − i|ξ′|

ξn + i|ξ′|

)δj(x)
, j = 1, ...m,
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on the main diagonal; here

δj(x) = (2πi)−1 lnλj(x), j = 1, ..., m,

where λ1(x), ..., λm(x) are the eigenvalues of the matrix

A(x) = [σ(A)(x, 0, ...0,−1)]−1[σ(A)(x, 0, ..., 0,+1)].

The branch in the logarithmic function is chosen with regard to the inequality 1/p − 1 <
Re δj(x) < 1/p, j = 1, ..., m, p > 1. The numbers δj(x) do not depend on the choice of the
local co-ordinate system.

Note that, if σ(A)(x, ξ) is a positive definite matrix for every x ∈ S and ξ ∈ IRn \ {0},
then

Re δj(x) = 0 for j = 1, ..., m, (16.2)

since, in this case, the eigenvalues of the matrix A(x) are positive numbers for any x ∈ S.
The Fredholm properties of such operators are characterized by the following lemma.

LEMMA 16.1 Let 1 < p < ∞, s ∈ IR, 1 ≤ q ≤ ∞, and let A be a strongly elliptic
pseudodifferential operator having a positive definite principal homogeneous symbol matrix,
i.e.,
σ(A)(x, ξ)ζ · ζ ≥ c |ζ |2 for x ∈ S, ξ ∈ IRn with |ξ| = 1, and ζ ∈ CI m,
where c is a positive constant.

Then the operators

A : H̃s
p(S) → Hs−κ

p (S), (16.3)

: B̃s
p,q(S) → Bs−κ

p,q (S), (16.4)

are bounded Fredholm operators of index zero if and only if

1/p− 1 < s− κ/2 < 1/p. (16.5)

Moreover, the null-spaces and indices of the operators (16.3),(16.4) are the same for all
values of the parameter q ∈ [1,+∞], and for all values of the parameters p ∈ (1,∞) and
s ∈ IR satisfying the inequality (16.5).

16.2. First we consider the basic mixed BVP (Pmix)
+
τ for the pseudo-oscillation equations

of thermoelasticity (see (5.9)-(5.10)).
We assume that the boundary data meet the following conditions

f
(1)
j ∈ B1−1/p

p,p (S1), F
(1)
j ∈ B−1/p

p,p (S2), j = 1, 4, 1 < p <∞, (16.6)

and look for the solution U in the space W 1
p (Ω+).

Let f0 = (f01, · · · , f04)
⊤ ∈ B1−1/p

p,p (S) be some fixed extention of the given vector function

f (1) = (f
(1)
1 , · · · , f (1)

4 )⊤ ∈ B1−1/p
p,p (S1) onto the whole surface S = ∂Ω+. Then an arbitrary

extention, preserving the functional space, is represented as

f = f0 + ϕ ∈ B1−1/p
p,p (S), (16.7)
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where ϕ ∈ B̃1−1/p
p,p (S2). Clearly, f |S1 = f0|S1 = f (1).

Let us seek the solution of the mixed BVP (Pmix)+
τ in the form of a single layer potential

U(x) = Vτ (H
−1
τ f)(x), x ∈ Ω+, (16.8)

where Vτ is given by (11.1), H−1
τ is the operator inverse to Hτ (see (11.1) and Remark 12.13),

and f is given by formula (16.7).
Applying Theorem 11.3 we can easily see that the conditions (5.9) are automatically

satisfied, while the conditions (5.10) lead to the ΨDE for the unknown vector function ϕ

[B(D, n)U ]+ = [−2−1I4 + K1,τ ]H
−1
τ (f0 + ϕ) = F (1) on S2, (16.9)

where f0 and F (1) = (F
(1)
1 , · · · , F (1)

4 )⊤ ∈ B−1/p
p,p (S2) are given vector-functions, and where the

operator K1,τ is defined by (11.4).
Let

N+
τ,mix := [−2−1I4 + K1,τ ]H

−1
τ . (16.10)

Then the equation (16.9) is written as

rS2 N
+
τ,mix ϕ = g on S2, (16.11)

where rS2 is the restriction operator on S2, and

g = F (1) − rS2 N
+
τ,mix f0 ∈ B−1/p

p,p (S2). (16.12)

The properties of the operators N+
τ,mix and rS2 N

+
τ,mix are described by the following lemmata.

LEMMA 16.2 The principal homogeneous symbol matrix of the ΨDO N+
τ,mix is positive

definite for arbitrary x ∈ S and ξ̃ ∈ IR2 \ {0}.

Proof. It is verbatim the proof of Lemma 14.2 for the operator N1,τ .

LEMMA 16.3 The operators

rS2 N
+
τ,mix : [B̃s+1

p,q (S2)]
4 → [Bs

p,q(S2)]
4, (16.13)

: [H̃s+1
p (S2)]

4 → [Hs
p(S2)]

4, (16.14)

are bounded for any s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
These operators are invertible if the condition

1/p− 3/2 < s < 1/p− 1/2 (16.15)

holds.

Proof. The boundedness and Fredholmity of the operators (16.13) and (16.14) under the
restriction (16.15) follow from Lemmata 16.2 and 16.1 with s + 1 and 1 in the place of s
and κ. Due to Lemma 16.2 the dominant singular part of the operator N+

τ,mix is formally
self-adjoint. Therefore, the Fredholm indices of the operators (16.13) and (16.14) equal zero.
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It remains to prove that the operators under consideration have the trivial null-spaces.
Obviously, if we are able to find two numbers s1 ∈ IR and p1 ∈ (1,∞) satisfying the
inequalities (16.15) such that the homogeneous equation

rS2 N
+
τ,mix ϕ = 0 (16.16)

has no nontrivial solutions in the space B̃s1
p1,p1

(S2) [H̃s1
p1

(S2)], then due to Lemma 16.1 we
can conclude that the null-spaces of the operators (16.13), (16.14) are trivial for all values
of the parameters s and p subjected to the condition (16.15).

To this end let us take

s1 = −1/2, p1 = 2, q = 2, (16.17)

which satisfy inequalities (16.15). We recall that B̃
±1/2
2,2 (S2) = H̃

±1/2
2 (S2).

Let some vector function ϕ0 ∈ B̃
1/2
2,2 (S2) solve the homogeneous equation (16.16) and let

us construct the single layer potential

U0(x) = Vτ (H
−1
τ ϕ0)(x), x ∈ Ω+. (16.18)

By Theorem 11.3 and Remark 12.13 we have

U0(x) ∈ H1
2 (Ω+) = W 1

2 (Ω+), (16.19)

and, moreover, U0 satisfies the conditions corresponding to the homogeneous mixed BVP
(Pmix)+

τ due to the the homogeneous equation (16.16) and the inclusion ϕ0 ∈ B̃
1/2
2,2 (S2). With

regard Theorem 8.3 we then infer that U0 = 0 in Ω+, and, consequently, [U0]
+ = ϕ0 = 0.

This completes the proof.

Now we can formulate the following existence result.

THEOREM 16.4 Let 4/3 < p < 4 and conditions (16.6) be fulfilled. Then the nonhomo-
geneous mixed problem (Pmix)+

τ is uniquely solvable in the space W 1
p (Ω+) and the solution is

representable in the form of the single layer potential (16.8), where the density f is given by
(16.7) and where ϕ is the unique solution of the ΨDE (16.11).

Proof. First we note that, in accordance with Lemma 16.3, the ΨDE (16.11) is uniquely
solvable for s = −1/p and 4/3 < p < 4, where the last inequality follows from the condition
(16.15). This implies the solvability of the problem (Pmix)+

τ in the space W 1
p (Ω+) with p

as above. Next we show that this problem is uniquely solvable in the space W 1
p (Ω+) for

arbitrary p ∈ (4/3, 4) (for p = 2 it has been proved in Theorem 8.3).
We proceed as follows. Let U ∈ W 1

p (Ω+) be some solution of the homogeneous problem
(Pmix)+

τ . Clearly, then

[U ]+ ∈ B̃1−1/p
p,p (S2). (16.20)

By Remark 12.13 we have the following representation for the vector U (see (12.55))

U(x) = Vτ (H
−1
τ [U ]+)(x), x ∈ Ω+. (16.21)

Since U satisfies the homogeneous conditions (5.10), from (16.21) we get

rS2 N
+
τ,mix [U ]+ = 0 on S2. (16.22)
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Whence [U ]+ = 0 on S follows due to the inclusion (16.20), Lemma 16.3, and the inequality
4/3 < p < 4. Therefore, U = 0 in Ω+.

Now we can prove the main regularity result for the solution to the mixed BVP (Pmix)+
τ .

THEOREM 16.5 Let the conditions (16.6) be fulfilled,

4/3 < p < 4, 1 < t <∞, 1 ≤ q ≤ ∞, 1/t− 3/2 < s < 1/t− 1/2, (16.23)

and let U ∈W 1
p (Ω+) be the unique solution to the mixed problem (Pmix)

+
τ .

In addition to (16.6),
i) if

f (1) ∈ Bs+1
t,t (S1), F

(1) ∈ Bs
t,t(S2), (16.24)

then

U ∈ H
s+1+1/t
t (Ω+); (16.25)

ii) if

f (1) ∈ Bs+1
t,q (S1), F

(1) ∈ Bs
t,q(S2), (16.26)

then

U ∈ B
s+1+1/t
t,q (Ω+); (16.27)

iii) if

f (1) ∈ Cα(S1), F
(1) ∈ Bα−1

∞,∞(S2), for some α > 0, (16.28)

then

U ∈ Cν(Ω+) with any ν ∈ (0, α0), α0 := min{α, 1/2}. (16.29)

Proof. Theorem 11.3 and Remark 12.13 (see (12.53)) together with the conditions (16.24)
[(16.26)] imply g ∈ Bs

t,t(S2) [Bs
t,q(S2)], where g is defined by (16.12). Note that f0 ∈ Bs+1

t,t (S)

[Bs+1
t,q (S)] is some extension of the vector f (1) onto the whole of S.
Next, by Lemma 16.3 and conditions (16.23) we conclude that the equation (16.11) is

uniquely solvable in the space B̃s+1
t,t (S2) [B̃s+1

t,t (S2)]. Therefore, we have that in the repres-
ntation (16.8) of the unique solution U to the problem (Pmix)+

τ in the space W 1
p (Ω+) the

density vector f = f0 + ϕ satisfies inclusion

f = f0 + ϕ ∈ Bs+1
t,t (S) [Bs+1

t,q (S)] (16.30)

as well (together with the embeding (16.7)).
Applying again Theorem 11.3 and Remark 12.13 concerning the mapping properties of

the single layer operator Vτ and the ΨDO H−1
τ we find that (16.25) [(16.27)] holds.

For the last assertion (item iii)) we use the following embeddings (see, e.g., [75], [75])

Cα(S) = Bα
∞,∞(S) ⊂ Bα−ε

∞,1 (S) ⊂ Bα−ε
∞,q (S) ⊂ Bα−ε

t,q (S) ⊂ Cα−ε−k/t(S), (16.31)
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where ε is an arbitrary small positive number, S ⊂ IR3 is a compact k-dimensional (k = 2, 3)
smooth manifold with smooth boundary (see Subsection 6.1), 1 ≤ q ≤ ∞, 1 < t < ∞,
α − ε − k/t > 0, α and α − ε − k/t are not integer numbers. From the assumption iii) of
the theorem and the embeddings (16.31), it is easily seen that the condition (16.26) follows
with any s ≤ α− ε− 1.

Bearing in mind (16.23), and taking t sufficiently large and ε sufficiently small, we are
able to put s = α− ε− 1 if

1/t− 3/2 < α− ε− 1 < 1/t− 1/2, (16.32)

and s ∈ (1/t− 3/2, 1/t− 1/2) if

1/t− 1/2 < α− ε− 1. (16.33)

By (16.27) the solution U belongs then to B
s+1+1/t
t,q (Ω+) with s + 1 + 1/t = α − ε − 1/t if

there holds (16.32), and with s + 1 + 1/t ∈ (2/t − 1/2, 2/t + 1/2) if there holds (16.33).
In the last case we can take s + 1 + 1/t = 2/t + 1/2 − ε. Therefore, we have either U ∈

B
α−ε+1/t
t,q (Ω+) or U ∈ B

2/t+1/2−ε
t,q (Ω+) in accordance with inequalities (16.32) and (16.33).

Now the last embedding in (16.31) (with k = 3) yields that either U ∈ Cα−ε−2/t(Ω+) or
U ∈ C1/2−ε−1/t(Ω+), which lead to the inclusion

U ∈ Cα0−ε−2/t(Ω+), (16.34)

where α0 := min{α, 1/2}. Since t is sufficiently large and ε is sufficiently small, the embedding
(16.34) completes the proof.

16.3. The basic mixed exterior BVP (Pmix)−τ (see (5.9)-(5.10)) can be considered by
applying quite the same approach and by the word for word arguments. Therefore, in this
subsection we formulate only the basic results concerning the existence and regularity of
solutions.

Let the boundary data f
(1)
j and F

(1)
j (j = 1, 4) of the BVP (Pmix)−τ satisfy the conditions

(16.6), and f0, f , and ϕ be as in the previous subsection. We again look for the solution in
the form of the single layer potential

U(x) = Vτ (H
−1
τ f)(x), x ∈ Ω−, (16.35)

where

f = f0 + ϕ ∈ B1−1/p
p,p (S), f0 ∈ B1−1/p

p,p (S), ϕ ∈ B̃1−1/p
p,p (S2). (16.36)

As above f0 is the given vector function satisfying the condition f0|S1 = f (1), while ϕ is the
unknown vector function which has to be defined by the ΨDE

rS2 N
−
τ,mix ϕ = g on S2, (16.37)

where rS2 is again the restriction operator on S2, and

N−
τ,mix = [2−1I4 + K1,τ ]H

−1
τ , (16.38)

g = F (1) − rS2 N
−
τ,mix f0 ∈ B−1/p

p,p (S2). (16.39)

124



LEMMA 16.6 The principal homogeneous symbol matrix of the ΨDO N−
τ,mix is positive

definite for arbitrary x ∈ S and ξ̃ ∈ IR2 \ {0}.

LEMMA 16.7 The operators

rS2 N
−
τ,mix : [B̃s+1

p,q (S2)]
4 → [Bs

p,q(S2)]
4,

: [H̃s+1
p (S2)]

4 → [Hs
p(S2)]

4,

are bounded for any s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
These operators are invertible if the condition (16.15) holds.

THEOREM 16.8 Let 4/3 < p < 4 and let the conditions (16.6) be fulfilled. Then the
nonhomogeneous mixed problem (Pmix)−τ is uniquely solvable in the space W 1

p (Ω−) and the
solution is representable in the form (16.35), where the density f is given by (16.36) and
where ϕ is the unique solution of the ΨDE (16.37).

THEOREM 16.9 Let the conditions (16.6) and (16.23) be fulfilled, and let U ∈ W 1
p (Ω−)

be the unique solution to the mixed problem (Pmix)−τ .
In addition to (16.6),
i) if there hold the inclusions (16.24), then

U ∈ H
s+1+1/t
t (Ω−);

ii) if there hold the inclusions (16.26), then

U ∈ B
s+1+1/t
t,q (Ω−);

iii) if there hold the inclusions (16.28), then

U ∈ Cν(Ω−) with any ν ∈ (0, α0), α0 := min{α, 1/2}.

The proofs of these propositions are verbatim the proofs of Lemmata 16.2, 16.3, and Theo-
rems 16.4, 16.5.

16.4. In this subsection we shall study the basic mixed exterior BVP (Pmix)−ω for the
steady state oscillation equations of the thermoelasticity theory formulated in Section 5 (see
(5.9)-(5.10))). Again let f (1), F (1), f0, f , and ϕ be the same as in Subsection 16.2.

We look for a solution to the BVP (Pmix)−ω in the form

U(x) = (W + p0V ) (N−1
1 f)(x), x ∈ Ω−, (16.40)

where V and W are the single and double layer potentials given by formulae (10.1) and
(10.2), respectively, p0 is defined by (13.5),

f = f0 + ϕ ∈ B1−1/p
p,p (S), f0 ∈ B1−1/p

p,p (S), ϕ ∈ B̃1−1/p
p,p (S), (16.41)

and N−1
1 is an elliptic SIO inverse to the operator (cf. (13.6))

N1 := −2−1I4 + K2 + p0H. (16.42)
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Note that N−1
1 is an elliptic SIO due to Lemma 10.2. Moreover, the mapping

N−1
1 : [Bs

p,q(S)]4 → [Bs
p,q(S)]4, 1 < p <∞, 1 ≤ q ≤ ∞, s ∈ IR, (16.43)

is an isomorphism according to Lemma 13.13.
Applying Theorem 10.8, item i), one can easily see that the vector U represented by

formula (16.40) automatically satisfies the boundary conditions (5.9) on S1 since [U ]+ = f
on S and f |S1 = f0|S1 = f (1). It remains to fulfil the conditions (5.10) on S2 which lead to
the ΨDE for the unknown vector ϕ

[B(D, n)U ]+ = [L + p0(2
−1I4 + K1)]N

−1
1 (f0 + ϕ) = F (2) on S2, (16.44)

where L is defined by (10.36) and (10.6), while K1 is given by (10.4).
Next we set

N−
mix := −[L + p0(2

−1I4 + K1)]N
−1
1 , (16.45)

and rewrite the equation (16.44) as

rS2 N
−
mix ϕ = q on S2, (16.46)

where rS2 is again the restriction operator on S2, and

q = −F (2) + rS2 N
−
mix f0 ∈ B−1/p

p,p (S2). (16.47)

The inclusion (16.47) for the right-hand side vector function q follows from Theorem 10.8
and the mapping property (16.43). Further, we present the properties of the operators N−

mix

and rS2 N
−
mix.

LEMMA 16.10 The principal homogeneous symbol matrix of the ΨDO N−
mix is positive

definite for arbitrary x ∈ S and ξ̃ ∈ IR2 \ {0}.

Proof. First we note that the principal homogeneous symbol matrix of the operator N−
mix

reads as

σ(N−
mix) = −σ(L)σ(N−

1 ) =

= −




[σ(L(0))]3×3 [0]3×1

[0]1×3 σ(L(0)
4 )




4×4




[σ(−2−1I3+
∗

K (0))]−1
3×3 [0]3×1

[0]1×3 −2




4×4

=

=




[ −σ(L(0))[σ(−2−1I3+
∗

K (0))]−1]3×3 [0]3×1

[0]1×3 2σ(L(0)
4 )




4×4

,

due to formulae (10.25), (10.30), (10.49). As we have already mentioned in the proof of

Lemma 15.5, the matrix [−σ(L(0))[σ(−2−1I3+
∗

K (0))]−1]3×3 is positive definite for arbitrary

x ∈ S and ξ̃ ∈ IR2 \ {0} (for details see [57], [39], [33], [55]), while the function 2σ(L(0)
4 ) is

positive in accordance with the inequality (10.50). Hence σ(N−
mix) is positive definite.
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LEMMA 16.11 The operators

rS2 N
−
mix : [B̃s+1

p,q (S2)]
4 → [Bs

p,q(S2)]
4, (16.48)

: [H̃s+1
p (S2)]

4 → [Hs
p(S2)]

4, (16.49)

are bounded for any s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
These operators are invertible if the condition (16.15) holds.

Proof. It is quite similar to the proof of Lemma 16.3. Indeed, the boundedness and Fred-
holmity of the operators in question follow from Lemma 16.10 and Lemma 16.1 with s + 1
and 1 in the place of s and κ.

Further, due to Lemma 16.10 the dominant singular part of the operator N−
mix is formally

self-adjoint which shows that the Fredholm indices of the operators (16.48) and (16.49) equal
zero.

To prove that their null-spaces are trivial, as in the proof of Lemma 16.3, we concider
the homogeneous ΨDE

rS2 N
−
mix ϕ = 0 on S2, (16.50)

and prove that it has only the trivial solution in the space B̃
1/2
2,2 (S2) = H̃

1/2
2 (S2). It corre-

sponds to the particular values of the parameters s and p (and q) given by (16.17).

Let some vector function ϕ0 ∈ B̃
1/2
2,2 (S2) solve the equation (16.50), and construct the

vector

U0(x) = (W + p0V ) (N−1
1 ϕ0)(x), x ∈ Ω−. (16.51)

By Theorem 10.8, Lemma 13.13 and the mapping property (16.43) we conclude

U0(x) ∈W 1
2,loc(Ω

−) ∩ SKm
r (Ω−). (16.52)

Moreover, U0 satisfies the boundary conditions of the homogeneous mixed BVP (Pmix)−ω due

to the homogeneous equation (16.50) and the inclusion ϕ0 ∈ B̃
1/2
2,2 (S2). By virtue of the

uniqueness results (see Theorem 9.6) the vector function (16.51) then vanish in Ω−, and,
consequently, [U0]

− = ϕ0 = 0 on S. The proof is completed.

These lemmata imply the foolowing existence results.

THEOREM 16.12 Let 4/3 < p < 4 and let the conditions (16.6) be fulfilled. Then the
nonhomogeneous mixed exterior problem (Pmix)−ω is uniquely solvable in the class W 1

p,loc(Ω
−)∩

SKm
r (Ω−) and the solution is representable in the form (16.40), where the density f is given

by (16.41) and where ϕ is the unique solution of the ΨDE (16.46).

Proof. Again it is quite similar to the proof of Theorem 16.4. If we fix s = −1/p, then the
nonhomogeneous equation (16.46) is uniquely solvable in the space B̃1−1/p

p,p (S2) for arbitrary
p ∈ (4/3, 4) which follows from Lemma 16.11 and the inequality (16.15) (with s = −1/p).
This implies the solvability of the nonhomogeneous mixed exterior problem (Pmix)−ω in the
class W 1

p,loc(Ω
−) ∩ SKm

r (Ω−), indicated in the theorem.
Now we show that this problem is uniquely solvable for arbitrary p ∈ (4/3, 4) (for p = 2

it has already been proved in Theorem 9.6).
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To this end let us consider the homogeneous problem (Pmix)
−
ω in the class W 1

p,loc(Ω
−) ∩

SKm
r (Ω−) with p ∈ (4/3, 4), and let a vector function U be its arbitrary solution. Since

[U ]− ∈ B1−1/p
p,p (S) we conclude that U is uniquely representable in the form

U(x) = (W + p0V ) (N−1
1 [U ]−)(x), x ∈ Ω−, (16.53)

due to Theorem 13.14.
Moreover, [U ]− ∈ B̃1−1/p

p,p (S2) and

[B(D, n)U ]−S2
= rS2 N

−
mix [U ]− = 0 on S2, (16.54)

inasmuch as U is a solution to the homogeneous problem (Pmix)−ω . Further, Lemma 16.11
together with the conditions s = −1/p and p ∈ (4/3, 4) implies that [U ]− = 0 on S. Now
the representation formula (16.53) completes the proof.

Finally, we formulate the following regularity results.

THEOREM 16.13 Let the conditions (16.6) and (16.23) be fulfilled, and let the vector-
function U ∈W 1

p,loc(Ω
−) ∩ SKm

r (Ω−) be the unique solution to the mixed problem (Pmix)
−
ω .

In addition to (16.6),
i) if there hold the inclusions (16.24), then

U ∈ H
s+1+1/t
t,loc (Ω−) ∩ SKm

r (Ω−); (16.55)

ii) if there hold the inclusions (16.26), then

U ∈ B
s+1+1/t
t,q,loc (Ω−) ∩ SKm

r (Ω−); (16.56)

iii) if there hold the inclusions (16.28), then

U ∈ Cν(Ω−) ∩ SKm
r (Ω−) with any ν ∈ (0, α0), α0 := min{α, 1/2}. (16.57)

The proof of these propositions is verbatim the proof of Theorem 16.5. We only emphasize
here that every solution of the equation (1.10) in Ω− in the distributional sence, actually,
is C∞-regular in the domain Ω−. Therefore, the inclusions (16.55)-(16.56) should be estab-
lished in some compact (exterior) neigbourhood of the boundary S where we can apply the
embeddings (16.31) and the arguments employed in the proof of Theorem 16.5.
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17 Crack Type Problems

In this section we shall investigate the crack type problems (CR.D)ω and (CR.N )ω for the
steady state oscillation equations of the thermoelasticity theory formulated in Section 6. We
note that the crack type problems (CR.D)τ and (CR.N )τ for the pseudo-oscillation equations
of the thermoelasticity theory are considered in detail in the reference [16].

17.1. First we treat the problems (CR.D)ω (see (6.1)). Let S1, ∂S1, f
(±), f̃ (±), f

(±)
j

(j = 1, 4), be the same as in Section 6. Here we again assume that

f
(±)
j ∈ B1−1/p

p,p (S1), f
(+)
j − f

(−)
j ∈ B̃1−1/p

p,p (S1), j = 1, 4, p > 1. (17.1)

We recall that S1 is a submanifold of the closed C∞-regular surface S surrounding the
bounded domain Ω+, IR3

S1
= IR3 \ S1, and Ω− = IR3 \ Ω+.

Let U ∈ W 1
p,loc(IR

3
S1

) ∩ SKm
r (IR3

S1
) be some solution to the steady state oscillation equa-

tions (1.10). Then U ∈ C∞(IR3
S1

) ∩ SKm
r (IR3

S1
) and, moreover,

[U ]+S2
= [U ]−S2

, [B(D, n)U ]+S2
= [B(D, n)U ]−S2

, (17.2)

where S2 = S \ S1.
Due to Theorem 10.8 and the representations (3.2)-(3.3) we have the following formulae

W
(
[U ]+S

)
(x) − V

(
[B(D, n)U ]+S

)
(x) =




U(x) for x ∈ Ω+,

0 for x ∈ Ω−,
(17.3)

−W
(
[U ]+S

)
(x) + V

(
[B(D, n)U ]+S

)
(x) =





0 for x ∈ Ω+,

U(x) for x ∈ Ω−,
(17.4)

since U |Ω+ ∈W 1
p,(Ω

+) and U |Ω− ∈W 1
p,loc(Ω

−)∩SKm
r (Ω−) and A(D,−iω)U = 0 in IR3

S1
. Here

V and W are single and double layer potentials defined by (10.1) and (10.2), respectively.
By adding these equations term by term and using the conditions (17.2), we obtain the

following general integral representation of the above vector function U :

U(x) = W (ϕ)(x) − V (ψ)(x), x ∈ IR3
S1
, (17.5)

where

ϕ = [U ]+S1
− [U ]−S1

∈ B̃1−1/p
p,p (S1), (17.6)

ψ = [B(D, n)U ]+S1
− [B(D, n)U ]−S1

∈ B̃−1/p
p,p (S1). (17.7)

We remark that the double and single layer potentials in (17.5) with densities (17.6) and
(17.7) are C∞-regular vector functions in IR3

S1
and belong to the classW 1

p,loc(IR
3
S1

)∩SKm
r (IR3

S1
)

in accordance with Theorem 10.8. Furthermore, if the representation (17.5) holds for some
vector function U ∈W 1

p,loc(IR
3
S1

) with ϕ ∈ B̃1−1/p
p,p (S1) and ψ ∈ B̃−1/p

p,p (S1), then automatically
U ∈ SKm

r (IR3
S1

), and the densities ϕ and ψ are related to the vector U by the equations (17.6)
and (17.7) (which follow from the jump relations of the surface potentials involved in (17.5)).
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Next, we transform the boundary conditions of the problem (CR.D)ω to the equivalent
equations on S1:

[U ]+S1
− [U ]−S1

= f (+) − f (−), (17.8)

[U ]+S1
+ [U ]−S1

= f (+) + f (−). (17.9)

Now, we look for the solution in the form (17.5), where ϕ and ψ are unknown densi-
ties having the mechanical sense described by the equations (17.6)-(17.7) due to the above
remark.

It is evident that ϕ is then represented explicitly by formula

ϕ = f (+) − f (−) ∈ B̃1−1/p
p,p (S1) (17.10)

in accordance with (17.8), while the second boundary condition (17.9) leads to the ΨDE for
ψ on S1:

− rS1 Hψ = g on S1; (17.11)

here the operator H is given by (10.3), rS1 is the restriction operator to S1, and

g = 2−1(f (+) + f (−)) − rS1 K2 (f (+) − f (−)) ∈ B̃1−1/p
p,p (S1), (17.12)

where the SIO K2 is defined by (10.5).
The inclusion (17.12) follows from Theorem 10.8.
The operator rS1 H possesses the following properties.

LEMMA 17.1 The principal homogeneous symbol matrix of the pseudodifferential operator
H is positive definite for arbitrary x ∈ S1 and ξ̃ ∈ IR2 \ {0}.

Proof. It follows from Remark 10.4.

LEMMA 17.2 The operators

rS1 H : [B̃s
p,q(S1)]

4 → [Bs+1
p,q (S1)]

4, (17.13)

: [H̃s
p(S1)]

4 → [Hs+1
p (S1)]

4, (17.14)

are bounded for any s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
These operators are invertible if the condition (16.15) holds.

Proof. The mapping properties, boubdedness, and Fredholmity of the operators (17.13)-
(17.14) follow from Theorem 10.8 and Lemma 16.1 (with κ = −1). Further, by Lemma 17.1
we conclude that the Fredholm indices of the operators in question equal zero.

To prove that the null-spaces are trivial, we take again s = −1/2 and p = q = 2 (which
satisfy the inequalities (16.15)) and consider the homogeneous equation

− rS1 Hψ = 0 on S1 (17.15)

in the space B̃
−1/2
2,2 (S1) = H̃

−1/2
2 (S1).
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Let ψ0 ∈ B̃
−1/2
2,2 (S1) be some solution to the equation (17.15) and construct the vector

function

U0(x) = −V (ψ0)(x), x ∈ IR3
S1
. (17.16)

Obviously, U0 ∈W 1
p,loc(IR

3
S1

) ∩ SKm
r (IR3

S1
. Moreover, U0 solves the homogeneous crack prob-

lem (CR.D)ω in IR3
S1

due to the choice of the density ψ0 and the continuity of the single
layer potential (see Theorem 10.8). By Theorem 9.7 we then infer that U0 = 0 in IR3

S1
, and,

consequently, by Theorem 10.8 we have [B(D, n)U0]
+
S1

− [B(D, n)U0]
−
S1

= −ψ0 = 0. This

shows that ker[rS1 H] is trivial in B̃
−1/2
2,2 (S1). Now by Lemma 16.1 we conclude that, if s

and p satisfy inequality (16.15), the operators (17.13) and (17.14) have thivial kernels and,
therefore, are invertible.

This lemma implies the following existence theorem.

THEOREM 17.3 Let 4/3 < p < 4 and let the conditions (17.1) be fulfilled. Then the
nonhomogeneous crack type problem (CR.D)ω is uniquely solvable in the class W 1

p,loc(IR
3
S1

)∩
SKm

r (IR3
S1

) and the solution is representable in the form (17.5), where ϕ is given by (17.10)
and ψ is the unique solution of the ΨDE (17.11).

Proof. If we set s = −1/p, then the condition (16.15) yields the inequalities for p: 4/3 < p <
4. Therefore, due to Lemma 17.2, the nonhomogeneous equation (17.11) with the right-hand
side q given by (17.12) is uniquely solvable. This shows that the nonhomogeneous crack type
problem (CR.D)ω is solvable in the class W 1

p,loc(IR
3
S1

)∩ SKm
r (IR3

S1
), and the vector U defined

by (17.5) represents a solution to the problem in question.
Next, we prove that the problem is uniquely solvable for arbitrary p ∈ (4/3, 4).
Let 4/3 < p < 4 and let U be any solution to the homogeneous problem (CR.D)ω from the

class indicated in the theorem. Due to the above mentioned results, U is then representable
by the formula (17.5) where ϕ and ψ are defined by (17.6) and (17.7). Therefore, ϕ = 0, and

U(x) = −V (ψ)(x), x ∈ IR3
S1
. (17.17)

Further, the homogeneous boundary conditions on S1 yield that

− rS1 Hψ = 0 on S1, (17.18)

where ψ ∈ B̃−1/p
p,p (S1) with 4/3 < p < 4. From this equation by Lemma 16.2 it follows

that ψ = 0 on S1, since for s = −1/p and p ∈ (4/3, 4) the condition (16.15) holds and the
homogeneous equation (17.18) does not possess nontrivial solutions. Now by (17.17) we get
U = 0 in IR3

S1
which completes the proof.

As in the case of the basic mixed BVPs here we have the following regularity results.

THEOREM 17.4 Let the conditions (17.1) and (16.23) be fulfilled, and let the vector func-
tion U ∈W 1

p,loc(IR
3
S1

) ∩ SKm
r (IR3

S1
) be the unique solution to the problem (CR.D)ω.

In addition to (17.1),
i) if

f (±) ∈ Bs+1
t,t (S1), f

(+) − f (−) ∈ B̃s+1
t,t (S1), (17.19)
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then

U ∈ H
s+1+1/t
t,loc (IR3

S1
) ∩ SKm

r (IR3
S1

); (17.20)

ii) if

f (±) ∈ Bs+1
t,q (S1), f

(+) − f (−) ∈ B̃s+1
t,q (S1), (17.21)

then

U ∈ B
s+1+1/t
t,q,loc (IR3

S1
) ∩ SKm

r (IR3
S1

); (17.22)

iii) if

f (±) ∈ Cα(S1), [f (+) − f (−)]∂S1 = 0, for some α > 0, (17.23)

then

U |Ω+ ∈ Cν(Ω+),

U |Ω− ∈ Cν(Ω−) ∩ SKm
r (Ω−) with any ν ∈ (0, α0), α0 := min{α, 1/2}.

(17.24)

Proof. It is again verbatim the proof of Theorem 16.5 (see also the remark after Theorem
16.13).

17.2. In this subsection we consider the problem (CR.N )ω (see (6.2)). The corresponding
boundary conditions (6.2) we transform to the equivalent equations on the crack surface S1:

[B(D, n)U ]+S1
− [B(D, n)U ]−S1

= F (+) − F (−), (17.25)

[B(D, n)U ]+S1
+ [B(D, n)U ]−S1

= F (+) + F (−), (17.26)

where we assume that

F
(±)
j ∈ B−1/p

p,p (S1), F
(+)
j − F

(−)
j ∈ B̃−1/p

p,p (S1), j = 1, 4, p > 1. (17.27)

We look for a solution

U ∈W 1
p,loc(IR

3
S1

) ∩ SKm
r (IR3

S1
) (17.28)

in the form (17.5), where the densities ϕ and ψ are related to the sought for vector U again
by the realations (17.6) and (17.7). Therefore, we can define ψ explicitly

ψ = F (+) − F (−) ∈ B̃−1/p
p,p (S1), (17.29)

while the boundary condition (17.26) implies the ΨDE (of order 1) for the unknown vector-
function ϕ

rS1 Lϕ = g on S1; (17.30)

here the ΨDO L is given by (10.6) and

g = 2−1(F (+) + F (−)) + rS1 K1 (F (+) − F (−)) ∈ B−1/p
p,p (S1), (17.31)

where the SIO K1 is defined by (10.4). Note that the inclusion (17.31) for the right-hand
side vector g follows again from Theorem 10.8 and conditions (17.27).

Now we show that the equation (17.30) is uniquely solvable in the space B̃1−1/p
p,p (S1).

To this end we remark that the principal homogeneous symbol matrix of the operator L
is positive definite for arbitrary x ∈ S1 and ξ̃ ∈ IR2 \ {0} due to Lemma 10.7. The basic
invertibility property of the operator rS1 L is described by the following proposition.
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LEMMA 17.5 The operators

rS1 L : [B̃s+1
p,q (S1)]

4 → [Bs
p,q(S1)]

4, (17.32)

: [H̃s+1
p (S1)]

4 → [Hs
p(S1)]

4, (17.33)

are bounded for any s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
These operators are invertible if the condition (16.15) holds.

Proof. It is quite similar to the proof of Lemma 17.2.

With the help of this lemma and by the arguments employed in the proofs of Theo-
rems 17.3 and 16.5 one can easily derive the following existence and uniqueness results and
establish the regularity of solutions.

THEOREM 17.6 Let 4/3 < p < 4 and let the conditions (17.27) be fulfilled. Then the
nonhomogeneous crack type problem (CR.N )ω is uniquely solvable in the class W 1

p,loc(IR
3
S1

)∩
SKm

r (IR3
S1

) and the solution is representable in the form (17.5), where ψ is given by (17.29)
and ϕ is the unique solution of the ΨDE (17.30).

THEOREM 17.7 Let the conditions (17.27) and (16.23) be fulfilled, and let the vector-
function U ∈W 1

p,loc(IR
3
S1

) ∩ SKm
r (IR3

S1
) be the unique solution to the problem (CR.N )ω.

In addition to (17.27),
i) if

F (±) ∈ Bs
t,t(S1), F

(+) − F (−) ∈ B̃s
t,t(S1),

then

U ∈ H
s+1+1/t
t,loc (IR3

S1
) ∩ SKm

r (IR3
S1

);

ii) if

F (±) ∈ Bs
t,q(S1), F

(+) − F (−) ∈ B̃s
t,q(S1),

then

U ∈ B
s+1+1/t
t,q,loc (IR3

S1
) ∩ SKm

r (IR3
S1

);

iii) if

F (±) ∈ Bα−1
∞,∞(S1), F

(+) − F (−) ∈ B̃α−1
∞,∞(S1), for some α > 0,

then

U |Ω+ ∈ Cν(Ω+),

U |Ω− ∈ Cν(Ω−) ∩ SKm
r (Ω−) with any ν ∈ (0, α0), α0 := min{α, 1/2}.

REMARK 17.8 For an arbitrary solution U ∈W 1
p (IR3

S1
) of the pseudo-oscillation equation

(1.9) there also holds the representation formula by potential type integrals similar to (17.5)
with the densities ϕ and ψ related to the vector U by relations (17.6) and (17.7). Therefore,
for the crack type problems (CR.D)τ and (CR.N )τ the existence and uniqueness theorems,
and the regularity results analogous to the above ones can be proved with quite the same
arguments (for details see [16]).
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18 Mixed Interface Problems of Steady State Oscil-

lations

In this section first we shall prove the existence and uniqueness theorems for the mixed
interface problems for the steady state oscillation equations of the thermoelasticity theory
formulated in Section 7. Afterwards, as in the previous sections, we shall establish the
smoothness properties of solutions. Throughout this section we shall keep and employ the
notations of Section 15.

18.1. Problem (C − DD)ω. To examine the existence of solutions to the problem
in question (see (7.13)-(7.14)) we shell exploit the representation formulae (15.61)-(15.62),
and use again the Fredholm properties of ΨDOs on manifold with boundary described by
Lemma 16.1. First, let us note that the conditions (7.14) on S2 are equivalent to the following
equations

[U (1)]+ − [U (2)]− = ϕ(+) − ϕ(−), [U (1)]+ + [U (2)]− = ϕ(+) + ϕ(−), on S2.

According to (7.21) and (7.23) we require that

f (1) ∈ B1−1/p
p,p (S1), ϕ

(±) ∈ B1−1/p
p,p (S2), F

(1) ∈ B−1/p
p,p (S1), (18.1)

and, moreover,

[U (1)]+ − [U (2)]− = f ∈ B1−1/p
p,p (S), where f =




f (1) on S1,

ϕ(+) − ϕ(−) on S2.
(18.2)

Clearly, this last inclusion is the necessary compatibility condition for the problem (C−DD)ω.
In view of the third embedding in (18.1), the vector F (1) can be extended from S1 onto

S2 preserving the functional space B−1/p
p,p (S). Denote some fixed extension by F 0,

F 0 ∈ B−1/p
p,p (S), F 0|S1 = F (1). (18.3)

Evidently, any arbitrary extension F of F (1) onto the whole of S which preservers the func-
tional space can be represented as

F = F 0 + ϕ ∈ B−1/p
p,p (S), where ϕ ∈ B̃−1/p

p,p (S2). (18.4)

Now we can reformulate the interface problem (C − DD)ω in the following equivalent form:
Find a pair of vector functions

(U (1), U (2)) = (W 1
p (Ω1) , W 1

p,loc(Ω
2) ∩ SKm

r (Ω2)) (18.5)

satisfying the differential equations (7.2) and the interface conditions

[U (1)]+ − [U (2)]− = f on S, (18.6)

[B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F on S1, (18.7)

[U (1)]+ + [U (2)]− = ϕ(+) + ϕ(−) on S2, (18.8)
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where B(µ)(D, n) is defined by (1.25), f and F are given by (18.2) and (18.4), respectively.
Let us note that f and F 0 are considered now as the known vector functions on the whole
of S, while F is given only on S1 (F |S1 = F 0|S1 = F (1)), and ϕ(±) are given vector functions
on S2.

We look for the solution to the problem (C − DD)ω in the form (cf. (15.61)-(15.62))

U (1)(x) = W (1)
(
Ψ [F 0 + ϕ] − Ψ Ψ2 Φ−1

2 f
)

(x), (18.9)

U (2)(x) =
(
W (2) + p0 V

(2)
) (

Φ−1
2 Φ1 Ψ [F 0 + ϕ] − Φ−1

2 [Φ1 Ψ Ψ2 Φ−1
2 + I] f

)
(x), (18.10)

where ϕ ∈ B̃−1/p
p,p (S2) is the unknown vector-function, and F 0 and f are as above. Further-

more, W (µ) and V (µ) are the double and single layer potentials of steady state oscillations,
the complex number p0 and the boundary operators Ψ, Ψj , Φj are defined by equations
(13.5) and (15.58), (15.9), (15.10).

It is easy to verify that the inerface conditions (18.6) and (18.7) are satisfied automati-
cally, since from (18.9) and (18.10) it follows that

[U (1)]+ − [U (2)]− = f, [B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F 0 + ϕ on S.

It remains only to satisfy the condition (18.8) which leads to the ΨDE for ϕ

[U (1)]+ + [U (2)]− = Φ1 Ψ [F 0 + ϕ] − Φ1 Ψ Ψ2 Φ−1
2 f + Φ1 Ψ [F 0 + ϕ] −

−[Φ1 Ψ Ψ2 Φ−1
2 + I] f = ϕ(+) + ϕ(−) on S2, (18.11)

which can be rewritten as

rS2 [Φ1 Ψϕ] =: rS2 KH ϕ = q on S2, (18.12)

where rS2 is the restriction operator on S2, the ΨDO (of order −1) KH has been defined by
(15.105), while the given right-hand side q reads as follows

q = 2−1(ϕ(+) + ϕ(−)) − rS2 {Φ1 ΨF 0 − [Φ1 Ψ Ψ2 Φ−1
2 + 2−1 I] f} ∈ B1−1/p

p,p (S2). (18.13)

Due to Lemma 15.14 the principal homogeneous symbol matrix of the operator KH =
Φ1 Ψ is positive definite. Therefore, we can apply Lemma 16.1 to study the equation (18.12).

LEMMA 18.1 The operators

rS2 KH : [B̃s
p,q(S2)]

4 → [Bs+1
p,q (S2)]

4, (18.14)

: [H̃s
p(S2)]

4 → [Hs+1
p (S2)]

4, (18.15)

are bounded for any s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
These operators are invertible if the condition (16.15) holds.

Proof. The mapping properties (18.14) and (18.15), boundedness and Fredholmity of the

above operators follow from equations KH = Φ1 Ψ, Φ1 = 2−1 I4 + K(1)
2 , Ψ = [Ψ1 −

Ψ2 Φ−1
2 Φ1]

−1, and Corollary 15.6, Theorem 10.8 and Lemma 16.1 (with κ = −1). From
the positive definiteness of the principal homogeneous symbol matrix σ(KH) it follows that
the Fredholm indices of the operators (18.14) and (18.15) equal zero.
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It remains to prove that the corresponding null-spaces are trivial. To this end, let us take
s = −1/2 and p = q = 2, which meet inequalities (16.15), and show that the homogeneous
equation

rS2 KH ϕ = 0 on S2 (18.16)

has no nontrivial solutions in the space B̃
−1/2
2,2 (S2) = H̃

−1/2
2 (S2).

Let ϕ ∈ B̃
−1/2
2,2 (S2) be any solution to the equation (18.16) and construct the vector

functions

U
(1)
0 (x) = W (1) (Ψϕ) (x), x ∈ Ω1, (18.17)

U
(2)
0 (x) =

(
W (2) + p0 V

(2)
) (

Φ−1
2 Φ1 Ψϕ

)
(x), x ∈ Ω2. (18.18)

Clearly, Ψϕ ∈ B
1/2
2,2 (S) and Φ−1

2 Φ1 Ψϕ ∈ B
1/2
2,2 (S). Therefore, by Theorem 10.8 we have

(U
(1)
0 , U

(2)
0 ) = (W 1

2 (Ω1) , W 1
2,loc(Ω

2) ∩ SKm
r (Ω2)). (18.19)

Moreover, these vectors satisfy homogeneous differential equations of steady state oscillations
(7.2) in the corresponding domains Ω1 and Ω2, and the homogeneous interface conditions of
the problem (C − DD)ω on S, since

[U0]
+
S = [U0]

−
S , [B(1)(D, n)U

(1)
0 ]+S1

− [B(2)(D, n)U
(2)
0 ]−S1

= ϕ|S1 = 0,

[U0]
+
S2

= [U0]
−
S2

= rS2 KH ϕ = 0 on S2.

These conditions follow from the formulae (18.17), (18.18), definition of the operator Ψ (see
(15.58)) and the fact that ϕ solves the homogeneous equation (18.16).

Therefore, by Theorem 9.12 we conclude that U (1) = 0 in Ω1 and U (2) = 0 in Ω2. Whence
ϕ = 0 on S follows. Thus, the null-spaces of the operators (18.14) and (18.15) are trivial

in the space B̃
−1/2
2,2 (S2) = H̃

−1/2
2 (S2). Now, Lemma 16.1 completes the proof for arbitrary p

and s satisfying the inequalities (16.15), and arbitrary q ∈ [1,∞].

This lemma implies the following existence theorems.

THEOREM 18.2 Let 4/3 < p < 4 and let the conditions (18.1)-(18.2) be fulfilled. Then the
nonhomogeneous problem (C −DD)ω is uniquely solvable in the class (W 1

p (Ω1) , W 1
p,loc(Ω

2)∩
SKm

r (Ω2)) (with the parameters r and ω as in (15.3)) and the solution is representable in the
form (18.9)-(18.10), where ϕ is the unique solution of the ΨDE (18.12).

Proof. First we observe that, if s = −1/p, then the inequality (16.15) yields 4/3 < p < 4.
Therefore, by Lemma 18.1 the nonhomogeneous ΨDE (18.12) with the right-hand side q given
by (18.13) is uniquely solvable in the space B̃1−1/p

p,p (S2). This shows that the nonhomogeneous
problem (C − DD)ω is solvable under the conditions indicated in the theorem, and the pair
(U (1), U (2)) defined by (18.9)-(18.10) represents a solution to the problem in question.

Further, we prove that the problem is uniquely solvable for any p ∈ (4/3, 4).
Let some pair (U (1), U (2)) ∈ (W 1

p (Ω1) , W 1
p,loc(Ω

2)∩SKm
r (Ω2)) (with the parameters p, r,

and ω as in the theorem) represents a solution to the homogeneous problem (C − DD)ω. In
accordance with (18.6)-(18.7) then we have

[U (1)]+S − [U (2)]−S = 0, [B(1)(D, n)U (1)]+S − [B(2)(D, n)U (2)]−S = F ∈ B̃−1/p
p,p (S2),

[U (1)]+ − [U (2)]− = 0 on S2.
(18.20)
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Clearly, F may differ from zero only on the submanifold S2 due to the homogeneous condition
(18.7).

Further, by Theorem 15.8 we conclude that the vector functions U (1) and U (2) are uniquely
representable in the form

U (1)(x) = W (1) (ΨF ) (x), x ∈ Ω1,

U (2)(x) =
(
W (2) + p0 V

(2)
) (

Φ−1
2 Φ1 ΨF

)
(x), x ∈ Ω2,

where F is defined by the second equation in (18.20).
The third equation in (18.20) then yields

rS2 KH F = 0 on S2,

where F ∈ B̃−1/p
p,p (S2) and p ∈ (4/3, 4). Therefore, F = 0 on S due to Lemma 18.1 (with

s = −1/p) which implies U (µ) = 0 in Ωµ (µ = 1, 2).

Now we can formulate the following regularity results.

THEOREM 18.3 Let the conditions (18.1), (18.2), and (16.23) be fulfilled, and let the
pair (U (1), U (2)) = (W 1

p (Ω1) , W 1
p,loc(Ω

2) ∩ SKm
r (Ω2)) be the unique solution to the problem

(C − DD)ω.
In addition to (18.1)-(18.2),
i) if

f (1) ∈ Bs+1
t,t (S1), ϕ

(±) ∈ Bs+1
t,t (S2), F

(1) ∈ Bs
t,t(S1), f ∈ Bs+1

t,t (S), (18.21)

then

(U (1), U (2)) ∈ (H
s+1+1/t
t (Ω1) , H

s+1+1/t
t,loc (Ω2) ∩ SKm

r (Ω2)); (18.22)

ii) if

f (1) ∈ Bs+1
t,q (S1), ϕ

(±) ∈ Bs+1
t,q (S2), F

(1) ∈ Bs
t,q(S1), f ∈ Bs+1

t,q (S), (18.23)

then

(U (1), U (2)) ∈ (B
s+1+1/t
t,q (Ω1) , B

s+1+1/t
t,q,loc (Ω2) ∩ SKm

r (Ω2)); (18.24)

iii) if

f (1) ∈ Cα(S1), ϕ
(±) ∈ Cα(S2), F

(1) ∈ Bα−1
∞,∞(S1), f ∈ Cα(S), (18.25)

for some α > 0, then

(U (1), U (2)) ∈ (Cν(Ω1) , Cν(Ω2) ∩ SKm
r (Ω2))

with any ν ∈ (0, α0), α0 := min{α, 1/2}.
(18.26)
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Proof. Here it is again verbatim the proof of Theorem 16.5 (see also the remark after Theorem
16.13).

18.2. Problem (C − NN )ω. As in the previous subsection we start with the reformu-
lation of the problem. In particular, the conditions (7.13) and (7.15) are equivalent to the
following equations

[B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F on S, (18.27)

[U (1)]+ − [U (2)]− = f on S1, (18.28)

[B(1)(D, n)U (1)]+ + [B(2)(D, n)U (2)]− = Φ(+) + Φ(−) on S2, (18.29)

where

F :=




F (1) on S1,

Φ(+) − Φ(−) on S2.
F ∈ B−1/p

p,p (S), Φ(±) ∈ B−1/p
p,p (S2), (18.30)

f := f 0 + ϕ ∈ B1−1/p
p,p (S), f 0 ∈ B1−1/p

p,p (S), ϕ ∈ B̃1−1/p
p,p (S2); (18.31)

here f 0 is some fixed extension of the vector f (1) from S1 onto S2 preserving the functional
space: f 0|S1 = f (1), and, therefore, f = f 0 + ϕ with ϕ as in (18.31), represents an arbitrary
extension of f (1) onto the whole of S: f |S1 = f 0|S1 = f (1).

Obviously, the inclusion F ∈ B−1/p
p,p (S) is the necessary compatibility condition for the

problem under consideration.
Let us now look for the solution to the problem (C − NN )ω in the form (cf. (15.61)-

(15.62))

U (1)(x) = W (1)
(
ΨF − Ψ Ψ2 Φ−1

2 [f 0 + ϕ]
)

(x), (18.32)

U (2)(x) =
(
W (2) + p0 V

(2)
) (

Φ−1
2 Φ1 ΨF − Φ−1

2 [Φ1 Ψ Ψ2 Φ−1
2 + I] [f 0 + ϕ]

)
(x), (18.33)

where f 0 and F are the given vector functions on S, while ϕ is the unknown vector function.
It can be easily seen that the conditions (18.27) and (18.28) are satisfied automatically,

since

[U (1)]+ − [U (2)]− = f 0 + ϕ, [B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F on S.

due to the above representations.
It remains only to fulfil the condition (18.29) which yields the following ΨDE on S2 for

the unknown vector ϕ:

[B(1)(D, n)U (1)]+ + [B(2)(D, n)U (2)]− = Ψ1 ΨF − Ψ1 Ψ Ψ2 Φ−1
2 [f 0 + ϕ] +

+Ψ2 Φ−1
2 Φ1 ΨF − Ψ2 Φ−1

2 [Φ1 Ψ Ψ2 Φ−1
2 + I] [f 0 + ϕ] = Φ(+) + Φ(−), (18.34)

With the help of equations (15.9), (15.10), (15.58) we can simplify this equation:

rS2 [−Ψ1 Ψ Ψ2 Φ−1
2 ϕ] =: rS2 KG ϕ = q on S2, (18.35)

138



where the ΨDE (of order +1) KG has been defined by (15.86), while the right-hand side
vector function q reads as follows

q = 2−1(Φ(+) + Φ(−)) − rS2 {Ψ1 Ψ − 2−1I]F + KG f
0} ∈ B−1/p

p,p (S2). (18.36)

According to Lemma 15.9 the principal homogeneous symbol matrix of the operator KG

is positive definite. Therefore, we can again apply Lemma 16.1 to examine the equation
(18.35), and employ the same arguments as in the previous section to prove the following
propositions.

LEMMA 18.4 The operators

rS2 KG : [B̃s+1
p,q (S2)]

4 → [Bs
p,q(S2)]

4, (18.37)

: [H̃s+1
p (S2)]

4 → [Hs
p(S2)]

4, (18.38)

are bounded for any s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
These operators are invertible if the condition (16.15) holds.

THEOREM 18.5 Let 4/3 < p < 4 and let the conditions (18.30)-(18.31) be fulfilled. Then
the nonhomogeneous problem (C −NN )ω is uniquely solvable in the class of vector functions
(W 1

p (Ω1) , W 1
p,loc(Ω

2)∩SKm
r (Ω2)) (with the parameters r and ω as in (15.3)) and the solution

is representable in the form (18.32)-(18.33), where ϕ is the unique solution of the ΨDE
(18.35).

THEOREM 18.6 Let the conditions (18.30), (18.31), and (16.23) be fulfilled, and let the
pair (U (1), U (2)) ∈ (W 1

p (Ω1) , W 1
p,loc(Ω

2) ∩ SKm
r (Ω2)) be the unique solution to the problem

(C − NN )ω.
In addition to (18.30)-(18.31),
i) if

f (1) ∈ Bs+1
t,t (S1), F

(1) ∈ Bs
t,t(S1), Φ(±) ∈ Bs

t,t(S2), F ∈ Bs
t,t(S), (18.39)

then there holds the inclusion (18.22);
ii) if

f (1) ∈ Bs+1
t,q (S1), F

(1) ∈ Bs
t,q(S1), Φ(±) ∈ Bs

t,q(S2), F ∈ Bs
t,q(S), (18.40)

then there holds the inclusion (18.24);
iii) if

f (1) ∈ Cα(S1), F
(1) ∈ Bα−1

∞,∞(S1), Φ(±) ∈ Bα−1
∞,∞(S2), F ∈ Bα−1

∞,∞(S), (18.41)

for some α > 0, then there holds the inclusion (18.26).

The proofs of the above assertions are verbatim the proofs of Lemma 18.1 and Theorems
18.2 and 16.5.

18.3. Problem (C − DC)ω. In this case the interface conditions read as follows (see
Subsection 7.2):

[u
(1)
4 ]+ − [u

(2)
4 ]− = f4, [λ(1)(D, n)u

(1)
4 ]+ − [λ(2)(D, n)u

(2)
4 ]− = F4 on S, (18.42)
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[u(1)]+ − [u(2)]− = f̃ (1), [P (1)(D, n)U (1)]+ − [P (2)(D, n)U (2)]− = F̃ (1) on S1, (18.43)

[u(1)]+ = ϕ̃(+), [u(2)]− = ϕ̃(−) on S2, (18.44)

where

f4 ∈ B1−1/p
p,p (S), F4 ∈ B−1/p

p,p (S), ϕ̃(±) = (ϕ
(±)
1 , ϕ

(±)
2 , ϕ

(±)
3 )⊤ ∈ [B1−1/p

p,p (S2)]
3,

f̃ (1) = (f
(1)
1 , f

(1)
2 , f

(1)
3 )⊤ ∈ [B1−1/p

p,p (S1)]
3, F̃ (1) = (F

(1)
1 , F

(1)
2 , F

(1)
3 )⊤ ∈ [B−1/p

p,p (S1)]
3.

(18.45)

Let F̃ 0 = (F 0
1 , F

0
2 , F

0
3 )⊤ be some fixed extension of the vector F̃ (1) from S1 onto S2 preserving

the functional space, i.e.,

F̃ 0 ∈ [B−1/p
p,p (S)]3, F̃ 0|S1 = F̃ (1). (18.46)

Then an arbitrary extension of F̃ (1) onto the whole of S preserving the functional space can
be written as follows

F̃ = (F1, F2, F3)
⊤ = F̃ 0 + ϕ̃ ∈ [B−1/p

p,p (S)]3, (18.47)

where ϕ̃ is an arbitrary vector function with the support in S2, i.e.,

ϕ̃ = (ϕ1, ϕ2, ϕ3)
⊤ ∈ [B̃−1/p

p,p (S2)]
3. (18.48)

Next we set

F = (F1, · · · , F4)
⊤ := F 0 + ϕ ∈ [B−1/p

p,p (S)]4, (18.49)

where

F 0 = (F̃ 0, F4)
⊤ ∈ [B−1/p

p,p (S)]4 (18.50)

is the given vector function, and

ϕ = (ϕ̃, 0)⊤ ∈ [B̃−1/p
p,p (S2)]

4 (18.51)

with ϕ̃ subjected to the condition (18.48).
It is easily seen that the conditions (18.42)-(18.44) are equivalent to the equations

[U (1)]+ − [U (2)]− = f on S, (18.52)

[B(1)(D, n)U (1)]+k − [B(2)(D, n)U (2)]−k = Fk on S1, k = 1, 2, 3, (18.53)

[B(1)(D, n)U (1)]+4 − [B(2)(D, n)U (2)]−4 = F4 on S, (18.54)

[U (1)]+k + [U (2)]−k = ϕ
(+)
k + ϕ

(−)
k on S2, k = 1, 2, 3, (18.55)

where f is the given vector function

f = (f1, · · · , f4)
⊤ =:





(f̃ (1), f4)
⊤ on S1,

(ϕ̃(+) − ϕ̃(−), f4)
⊤ on S2,

(18.56)
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satisfying the following necessary compatibility condition (cf.(7.25))

f ∈ [B1−1/p
p,p (S)]4, (18.57)

and Fk and ϕ̃± are as above.
After this reformulation of the problem in question let us look for the solution in the form

(18.9)-(18.10), where f , F 0, and ϕ are defined by formulae (18.56), (18.50), and (18.51),
respectively. These representations imply

[U (1)]+ − [U (2)]− = f, [B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F 0 + ϕ. (18.58)

Therefore, the conditions (18.52), (18.53), and (18.54) are satisfied automatically. It remains
to meet the conditions (18.55) which, by virtue of (18.11) and (18.12), lead to the system of
ΨDEs for the vector function ϕ = (ϕ̃, 0)⊤ on S2:

rS2 [Φ1 Ψϕ]k =: rS2 [(KH)kj ϕj ] = qk on S2, k = 1, 2, 3, (18.59)

where the summation over the repeated index j is meant from 1 to 3, and (see (18.13))

qk = 2−1(ϕ
(+)
k + ϕ

(−)
k ) − rS2 {Φ1 ΨF 0 − [Φ1 Ψ Ψ2 Φ−1

2 + 2−1 I] f}k ∈ B1−1/p
p,p (S2); (18.60)

here KH is again the ΨDO of order −1 defined by (15.105) with properties described by
Lemmata 15.14 and 18.1.

Let

K̃H := [(KH)kj]3×3, k, j = 1, 2, 3, q̃ := (q1, q2, q3)
⊤. (18.61)

Then (18.59) can be written in the matrix form as

rS2 K̃H ϕ̃ = q̃ (18.62)

where ϕ̃ = (ϕ1, ϕ2, ϕ3)
⊤ ∈ [B̃−1/p

p,p (S2)]
3 is the sought for vector.

The following properties of the ΨDO K̃H are immediate consequence Lemmata 15.14 and
18.1.

LEMMA 18.7 The principal homogeneous symbol matrix of the operator K̃H is positive
definite for arbitrary x ∈ S and ξ̃ ∈ IR2 \ {0}. The following operators

rS2 K̃H : [B̃s
p,q(S2)]

3 → [Bs+1
p,q (S2)]

3, (18.63)

: [H̃s
p(S2)]

3 → [Hs+1
p (S2)]

3, (18.64)

are bounded for any s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
These operators are invertible if the condition (16.15) holds.

Proof. The first assertion of the lemma follows from the proof of Lemma 15.14 (see (15.106)-
(15.107)), since σ(K̃H) = X, where X is the positive definite 3× 3 matrix given by formula
(15.107) (for arbitrary x ∈ S and ξ̃ ∈ IR2 \ {0}).

The boundedness of the operators (18.63)-(18.64) is a cosequence of Lemma 18.1.
It is evident that the Fredholm indices of these operators equal zero. This follows from

the positive definiteness of the principal symbol matrix σ(K̃H). Therefore, to prove the last
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proposition of the lemma, we have to show that the corresponding null-spaces are trivial for
any s and p satisfying the inequalities (16.15).

Again, we take s = −1/p and p = q = 2 to prove that the homogeneous ΨDE

rS2 K̃H ϕ̃ = 0 (18.65)

has no nontrivial solutions. Let ϕ̃0 = (ϕ01, ϕ02, ϕ03)
⊤ ∈ [B̃−1/p

p,p (S2)]
3 be any solution to the

equation (18.65) and using the formulae (18.17) and (18.18) construct the vector functions

U
(1)
0 and U

(2)
0 , where the density ϕ is represented as follows

ϕ = (ϕ̃0, 0)⊤ ∈ [B
−1/2
2,2 (S2)]

4.

Therefore, the embedding (18.19) remains valid, and, moreover, U
(1)
0 and U

(2)
0 satisfy the

homogeneous interface conditions (18.52)-(18.55):

[U
(1)
0 ]+ = [U

(2)
0 ]− on S,

[B(1)(D, n)U
(1)
0 ]+k − [B(2)(D, n)U

(2)
0 ]−k = ϕ0k on S1, k = 1, 2, 3,

[B(1)(D, n)U
(1)
0 ]+4 − [B(2)(D, n)U

(2)
0 ]−4 = 0 on S,

[U
(1)
0 ]+k = [U

(2)
0 ]−k = [ rS2 Φ1 Ψϕ ]k = [ rS2 K̃H ϕ̃ ]k = 0 on S2, k = 1, 2, 3.

Due to Theorem 9.12 we infer U
(µ)
0 in Ωµ (µ = 1, 2), which, in turn, yields that ϕ0k = 0,

k = 1, 2, 3. Thus the null-spaces of the operators (18.63)-(18.64) are trivial in the spaces

B̃
−1/2
2,2 (S2) = H̃

−1/2
2 (S2). Now Lemma 16.1 completes the proof.

This lemma implies the following existence and regularity results.

THEOREM 18.8 Let 4/3 < p < 4 and let the conditions (18.45),(18.57) be fulfilled. Then
the nonhomogeneous problem (C − DC)ω is uniquely solvable in the class of vector functions
(W 1

p (Ω1) , W 1
p,loc(Ω

2)∩SKm
r (Ω2)) (with the parameters r and ω as in (15.3)) and the solution

is representable by formulae (18.9)-(18.10), where f , F 0, and ϕ are given by (18.56), (18.50)
and (18.51), respectively, and ϕ̃ is the unique solution of the ΨDE (18.62).

THEOREM 18.9 Let the conditions (18.45), (18.57), and (16.23) be fulfilled, and let the
pair (U (1), U (2)) ∈ (W 1

p (Ω1) , W 1
p,loc(Ω

2) ∩ SKm
r (Ω2)) be the unique solution to the problem

(C − DC)ω.
In addition to (18.45),(18.57),
i) if

f4 ∈ Bs+1
t,t (S), F4 ∈ Bs

t,t(S), ϕ̃(±) ∈ [Bs+1
t,t (S2)]

3,

f̃ (1) ∈ [Bs+1
t,t (S1)]

3, F̃ (1) ∈ [Bs
t,t(S1)]

3, f ∈ [Bs+1
t,t (S)]4,

(18.66)

then there holds the inclusion (18.22);
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ii) if

f4 ∈ Bs+1
t,q (S), F4 ∈ Bs

t,q(S), ϕ̃(±) ∈ [Bs+1
t,q (S2)]

3,

f̃ (1) ∈ [Bs+1
t,q (S1)]

3, F̃ (1) ∈ [Bs
t,q(S1)]

3, f ∈ [Bs+1
t,q (S)]4,

(18.67)

then there holds the inclusion (18.24);
iii) if

f4 ∈ Cα(S), F4 ∈ Bα−1
∞,∞(S), ϕ̃(±) ∈ [Cα(S2)]

3,

f̃ (1) ∈ [Cα(S1)]
3, F̃ (1) ∈ [Bα−1

∞,∞(S1)]
3, f ∈ [Cα(S)]4,

(18.68)

for some α > 0, then there holds the inclusion (18.26).

The proofs of these theorems are again verbatim the proofs of Theorems 18.2 and 16.5.
18.4. Problem (C−NC)ω. The investigation of this problem can be carried out by quite

the same approach as in the previous subsection. The interface conditions of the problem
now have the following form:

[u
(1)
4 ]+ − [u

(2)
4 ]− = f4, [λ(1)(D, n)u

(1)
4 ]+ − [λ(2)(D, n)u

(2)
4 ]− = F4 on S, (18.69)

[u(1)]+ − [u(2)]− = f̃ (1), [P (1)(D, n)U (1)]+ − [P (2)(D, n)U (2)]− = F̃ (1) on S1, (18.70)

[P (1)(D, n)U (1)]+ = Φ̃(+), [P (2)(D, n)U (2)]− = Φ̃(−), on S2, (18.71)

where

f4 ∈ B1−1/p
p,p (S), F4 ∈ B−1/p

p,p (S), Φ̃(±) = (Φ
(±)
1 ,Φ

(±)
2 ,Φ

(±)
3 )⊤ ∈ [B−1/p

p,p (S2)]
3,

f̃ (1) = (f
(1)
1 , f

(1)
2 , f

(1)
3 )⊤ ∈ [B1−1/p

p,p (S1)]
3, F̃ (1) = (F

(1)
1 , F

(1)
2 , F

(1)
3 )⊤ ∈ [B−1/p

p,p (S1)]
3.

(18.72)

Let f̃ 0 = (f 0
1 , f

0
2 , f

0
3 )⊤ be some fixed extension of the vector f̃ (1) from S1 onto S2 preserving

the functional space, i.e.,

f̃ 0 ∈ [B1−1/p
p,p (S)]3, f̃ 0|S1 = f̃ (1). (18.73)

Again an arbitrary extension of f̃ (1) onto the whole of S preserving the functional space can
be represented as the sum

f̃ = (f1, f2, f3)
⊤ := f̃ 0 + ϕ̃ ∈ [B1−1/p

p,p (S)]3, f̃ |S1 = f̃ 0|S1 = f̃ (1), (18.74)

where ϕ̃ is an arbitrary vector function supported on S2

ϕ̃ = (ϕ1, ϕ2, ϕ3)
⊤ ∈ [B̃1−1/p

p,p (S2)]
3. (18.75)

Further, let us introduce the notations

f = (f1, · · · , f4)
⊤ := f 0 + ϕ ∈ [B1−1/p

p,p (S)]4, (18.76)
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where

f 0 = (f̃ 0, f4)
⊤ ∈ [B1−1/p

p,p (S)]4 (18.77)

is the given vector function, and

ϕ := (ϕ̃, 0)⊤ ∈ [B̃1−1/p
p,p (S2)]

4 (18.78)

with ϕ̃ subjected to the condition (18.75).
Next we reduce the conditions (18.69)-(18.71) to the following equivalent equations

[B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F on S, (18.79)

[U (1)]+4 − [U (2)]−4 = f4 on S, (18.80)

[U (1)]+k − [U (2)]−k = fk, on S1, k = 1, 2, 3, (18.81)

[B(1)(D, n)U (1)]+k + [B(2)(D, n)U (2)]−k = Φ
(+)
k + Φ

(−)
k on S2, k = 1, 2, 3, (18.82)

where F is the given vector function

F = (F1, · · · , F4)
⊤ :=





(F̃ (1), F4)
⊤ on S1,

(Φ̃(+) − Φ̃(−), F4)
⊤ on S2,

(18.83)

satisfying the necessary compatibility condition (cf.(7.26))

F ∈ [B−1/p
p,p (S)]4, (18.84)

and fk and Φ̃± are as above.
Now we look for a solution to the reformulated problem (18.79)-(18.82) in the form

(18.32)-(18.33), where the density vectors f 0, F , and ϕ are defined by formulae (18.77),
(18.83), and (18.78), respectively. By virtue of these representations we have

[U (1)]+ − [U (2)]− = f 0 + ϕ, [B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F. (18.85)

Therefore, the conditions (18.79), (18.80), and (18.81) are fulfilled automatically. The re-
maining conditions (18.82), in accordance with the equation (18.34), lead to the system of
ΨDEs for the unknown vector function ϕ = (ϕ̃, 0)⊤ on S2:

rS2 [−Ψ1 Ψ Ψ2 Φ−1
2 ϕ]k = rS2 [(KG)kj ϕj ] = qk on S2, k = 1, 2, 3, (18.86)

where KG = −Ψ1 Ψ Ψ2 Φ−1
2 is the same ΨDO of order +1 as in Subsection 16.2 (see also

(15.86)), the summation over the repeated index j is again meant from 1 to 3, and (see
(18.36))

qk = 2−1(Φ
(+)
k +Φ

(−)
k )−rS2 {[Ψ1 Ψ −2−1 I]F +KG f

0}k ∈ B−1/p
p,p (S2), k = 1, 2, 3.(18.87)

Next we set

K̃G := [(KG)kj]3×3, k, j = 1, 2, 3, q̃ := (q1, q2, q3)
⊤. (18.88)

The system (18.86) can be then rewritten in the matrix form as follows

rS2 K̃G ϕ̃ = q̃ (18.89)

where ϕ̃ = (ϕ1, ϕ2, ϕ3)
⊤ ∈ [B̃1−1/p

p,p (S2)]
3 is the sought for vector function.

144



LEMMA 18.10 The principal homogeneous symbol matrix of the operator K̃G is positive
definite for arbitrary x ∈ S and ξ̃ ∈ IR2 \ {0}. The operators

rS2 K̃G : [B̃s+1
p,q (S2)]

3 → [Bs
p,q(S2)]

3, (18.90)

: [H̃s+1
p (S2)]

3 → [Hs
p(S2)]

3, (18.91)

are bounded for any s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
These operators are invertible if the condition (16.15) holds.

Proof. It is quite similar to the proofs of Lemma 18.7 and follows from Lemmata 15.9, 18.4,
and 16.1.

With the help of this lemma one can easily derive the following exictence and regularity
results.

THEOREM 18.11 Let 4/3 < p < 4 and let the conditions (18.72) and (18.84) be fulfilled.
Then the nonhomogeneous problem (C − NC)ω is uniquely solvable in the class of vector
functions (W 1

p (Ω1) , W 1
p,loc(Ω

2) ∩ SKm
r (Ω2)) (with the parameters r and ω as in (15.3)) and

the solution is representable by formulae (18.32)-(18.33), where F , f 0, and ϕ are given by
(18.83), (18.77) and (18.78), respectively, and ϕ̃ is the unique solution of the ΨDE (18.89).

THEOREM 18.12 Let the conditions (18.72), (18.84), and (16.23) be fulfilled, and let the
pair (U (1), U (2)) ∈ (W 1

p (Ω1) , W 1
p,loc(Ω

2) ∩ SKm
r (Ω2)) be the unique solution to the problem

(C − NC)ω.
In addition to (18.72),(18.84),
i) if

f4 ∈ Bs+1
t,t (S), F4 ∈ Bs

t,t(S), Φ̃(±) ∈ [Bs
t,t(S2)]

3,

f̃ (1) ∈ [Bs+1
t,t (S1)]

3, F̃ (1) ∈ [Bs
t,t(S1)]

3, F ∈ [Bs
t,t(S)]4,

(18.92)

then there holds the inclusion (18.22);
ii) if

f4 ∈ Bs+1
t,q (S), F4 ∈ Bs

t,q(S), Φ̃(±) ∈ [Bs
t,q(S2)]

3,

f̃ (1) ∈ [Bs+1
t,q (S1)]

3, F̃ (1) ∈ [Bs
t,q(S1)]

3, F ∈ [Bs
t,q(S)]4,

(18.93)

then there holds the inclusion (18.24);
iii) if

f4 ∈ Cα(S), F4 ∈ Bα−1
∞,∞(S), Φ̃(±) ∈ [Bα−1

∞,∞(S2)]
3,

f̃ (1) ∈ [Cα(S1)]
3, F̃ (1) ∈ [Bα−1

∞,∞(S1)]
3, F ∈ [Bα−1

∞,∞(S)]4,
(18.94)

for some α > 0, then there holds the inclusion (18.26).
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The proofs of these propositions are again word for word of the proofs of Theorems 18.2 and
16.5.

18.5. Problem (C −G)ω. The interface conditions of the problem (C −G)ω read as (see
Subsection 7.2):

[u
(1)
4 ]+ − [u

(2)
4 ]− = f4, [λ(1)(D, n)u

(1)
4 ]+ − [λ(2)(D, n)u

(2)
4 ]− = F4 on S, (18.95)

[u(1)]+ − [u(2)]− = f̃ (1), [P (1)(D, n)U (1)]+ − [P (2)(D, n)U (2)]− = F̃ (1) on S1, (18.96)

[u(1) · n]+ − [u(2) · n]− = f̃ (2)
n ,

[P (1)(D, n)U (1) · n]+ − [P (2)(D, n)U (2) · n]− = F̃ (2)
n ,

[P (1)(D, n)U (1) · l]+ = Φ̃
(+)
l , [P (1)(D, n)U (1) ·m]+ = Φ̃(+)

m ,

[P (2)(D, n)U (2) · l]− = Φ̃
(−)
l , [P (2)(D, n)U (2) ·m]− = Φ̃(−)

m ,





on S2, (18.97)

where the boundary data belong to the following natural spaces

f̃ (1) = (f
(1)
1 , f

(1)
2 , f

(1)
3 )⊤ ∈ [B1−1/p

p,p (S1)]
3, f4 ∈ B1−1/p

p,p (S),

F̃ (1) = (F
(1)
1 , F

(1)
2 , F

(1)
3 )⊤ ∈ [B−1/p

p,p (S1)]
3, F4 ∈ B−1/p

p,p (S),

Φ̃
(±)
l , Φ̃(±)

m , F̃ (2)
n ∈ B−1/p

p,p (S2), f̃
(2)
n ∈ B1−1/p

p,p (S2),

(18.98)

These interface conditions imply that the vector function

F :=





(F̃ (1), F4)
⊤ on S1,

(
[Φ̃

(+)
l − Φ̃

(−)
l ] l + [Φ̃(+)

m − Φ̃(−)
m ]m+ F̃ (2)

n n, F4

)⊤
on S2,

(18.99)

represents the difference [B(1)(D, n)U (1)]+−[B(2)(D, n)U (2)]− on S, and, therefore, we assume
the following natural compatibility condition (cf. (7.28))

F = (F1, · · · , F4)
⊤ ∈ [B−1/p

p,p (S)]4. (18.100)

Analogously, the function

f̃n :=




f̃ (1) · n on S1,

f̃ (2)
n on S2,

(18.101)

represents the difference [u(1) · n]+ − [u(2) · n]− on S, and, we again provide the natural
compatibility condition

f̃n ∈ B1−1/p
p,p (S). (18.102)

Further, let us represent the boundary vector functions f̃ (1) in the form

f̃ (1) = f̃
(1)
l l + f̃ (1)

m m+ f̃ (1)
n n onS1, (18.103)
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where

f̃
(1)
l = f̃ (1) · l, f̃ (1)

m = f̃ (1) ·m, f̃ (1)
n = f̃ (1) · n. (18.104)

We denote by f̃
(0)
l and f̃ (0)

m some fixed extensions of the functions f̃
(1)
l and f̃ (1)

m from S1 onto
S2 preserving the functional space. Then arbitrary extensions can be represented as

f̃l = f̃
(0)
l + ϕl, f̃m = f̃ (0)

m + ϕm, (18.105)

where

f̃l, f̃
(0)
l , f̃m, f̃

(0)
m ∈ B1−1/p

p,p (S), ϕl, ϕm ∈ B̃1−1/p
p,p (S2),

f̃l|S1 = f̃
(0)
l |S1 = f̃

(1)
l f̃m|S1 = f̃ (0)

m |S1 = f̃ (1)
m .

(18.106)

Clearly, here ϕl and ϕm are arbitrary scalar functions of the space B̃1−1/p
p,p (S2).

Finally, let us set

f = (f1, · · · , f4)
⊤ := f 0 + ϕ ∈ [B1−1/p

p,p (S)]4, f̃ = (f1, f2, f3)
⊤, (18.107)

where f4 is the same function as in (18.95), while

f 0 = (f̃
(0)
l l + f̃ (0)

m m+ f̃n n, f4)
⊤ ∈ [B1−1/p

p,p (S)]4, (18.108)

ϕ = (ϕl l + ϕmm, 0)⊤ ∈ [B̃1−1/p
p,p (S2)]

4; (18.109)

here f̃ (0) = f̃
(0)
l l + f̃ (0)

m m+ f̃n n and f̃n is given by (18.101).
It cab be easily seen that (see (18.101) and (18.103))

f̃ |S1 = f̃ (0)|S1 = f̃ (1) on S1, (18.110)

f̃ · n|S2 = f̃ (0) · n|S2 = f̃n = f̃ (2)
n on S2. (18.111)

Now we are able to reduce the interface conditions (18.95)-(18.97) to the following equiv-
alent equations in terms of the above introduced functions:

[B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F on S, (18.112)

[U (1)]+4 − [U (2)]−4 = f4 on S, (18.113)

[U (1)]+k − [U (2)]−k = fk, k = 1, 2, 3, on S1, (18.114)

[u(1) · n]+ − [u(2) · n]− = f̃ · n on S2, (18.115)

[P (1)(D, n)U (1) · l]+ + [P (2)(D, n)U (2) · l]− = Φ̃
(+)
l + Φ̃

(−)
l on S2, (18.116)

[P (1)(D, n)U (1) ·m]+ + [P (2)(D, n)U (2) ·m]− = Φ̃(+)
m + Φ̃(−)

m on S2, (18.117)

where F , f̃ , and fk are given by (18.99), (18.107)-(18.109).
After this reformulation we look for the solution of the problem under consideration in

the form (18.32)-(18.33), where now F and f 0 defined by (18.99) and (18.108) are the given
vector functions on S, while the vector function ϕ given by (18.109) is unknown. We observe
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that the conditions (18.112), (18.113), (18.114), and (18.115) are satisfied automatically,
since the repesentations (18.32)-(18.33) yield

[U (1)]+ − [U (2)]− = f 0 + ϕ, [B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F. (18.118)

It remains only to meet conditions (18.116) and (18.117) which lead to the following system
of ΨDEs on S2 for the unknown functions ϕl and ϕm (see Subsection 15.2, formulae (15.73),
(15.74))

[P (1)(D, n)U (1) · l]+ + [P (2)(D, n)U (2) · l]− =

= [B(1)(D, n)U (1) · l∗]+ + [B(2)(D, n)U (2) · l∗]− =

= [Ψ1 ΨF − Ψ1 Ψ Ψ2 Φ−1
2 (f 0 + ϕ)] · l∗ +

+[Ψ2 Φ−1
2 Φ1 ΨF − Ψ2 Φ−1

2 (Φ1 Ψ Ψ2 Φ−1
2 + I)(f 0 + ϕ)] · l∗ = Φ̃

(+)
l + Φ̃

(−)
l ,

[P (1)(D, n)U (1) ·m]+ + [P (2)(D, n)U (2) ·m]− =

= [B(1)(D, n)U (1) ·m∗]+ + [B(2)(D, n)U (2) ·m∗]− =

= [Ψ1 ΨF − Ψ1 Ψ Ψ2 Φ−1
2 (f 0 + ϕ)] ·m∗ +

+[Ψ2 Φ−1
2 Φ1 ΨF − Ψ2 Φ−1

2 (Φ1 Ψ Ψ2 Φ−1
2 + I)(f 0 + ϕ)] ·m∗ = Φ̃(+)

m + Φ̃(−)
m ,

where l∗ = (l1, l2, l3, 0)⊤ and m∗ = (m1, m2, m3, 0)⊤ are the 4-vectors introduced in Section
14 (see (14.48)).

With the help of (15.80) we arrive at the system of equations

rS2 KG (ϕll
∗ + ϕmm

∗) · l∗ = ql,

rS2 KG (ϕll
∗ + ϕmm

∗) ·m∗ = qm,





on S2, (18.119)

where the ΨDE KG is defined by (15.86), and

ql = 2−1(Φ
(+)
l + Φ

(−)
l ) − rS2 {Ψ1 Ψ − 2−1I]F + KG f

0} · l∗ ∈ B−1/p
p,p (S2),

qm = 2−1(Φ(+)
m + Φ(−)

m ) − rS2 {Ψ1 Ψ − 2−1I]F + KG f
0} ·m∗ ∈ B−1/p

p,p (S2).
(18.120)

Now, taking into account the formula (15.85), we can rewrite the above system in the
matrix form

rS2 MG h = g on S2, (18.121)

where g = (ql, qm)⊤ ∈ [B−1/p
p,p (S2)]

2 is the given vector on S2, and h = (ϕl, ϕm)⊤ ∈

[B̃1−1/p
p,p (S2)]

2 is the unknown vector. Due to Lemma 15.9 the principal homogeneous symbol
matrix of the ΨDO MG is positive definite. Therefore, by quite the same arguments as in
the previous subsections and invoking Theorem 9.12 and Lemma 16.1, one can prove the
following propositions.

LEMMA 18.13 The operators

rS2 MG : [B̃s+1
p,q (S2)]

2 → [Bs
p,q(S2)]

2, (18.122)

: [H̃s+1
p (S2)]

2 → [Hs
p(S2)]

2, (18.123)

are bounded for any s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
These operators are invertible if the condition (16.15) holds.
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THEOREM 18.14 Let 4/3 < p < 4 and let the conditions (18.98), (18.100), and (18.102)
be fulfilled. Then the nonhomogeneous problem (C − G)ω is uniquely solvable in the class of
vector functions (W 1

p (Ω1) , W 1
p,loc(Ω

2)∩SKm
r (Ω2)) (with the parameters r and ω as in (15.3))

and the solution is representable by formulae (18.32)-(18.33), where F , f 0, and ϕ are given
by (18.99), (18.108) and (18.109), respectively, and (ϕl, ϕm)⊤ is the unique solution of the
ΨDE (18.121).

THEOREM 18.15 Let the conditions (18.98), (18.100), (18.102), and (16.23) be fulfilled,
and let the pair (U (1), U (2)) ∈ (W 1

p (Ω1) , W 1
p,loc(Ω

2)∩SKm
r (Ω2)) be the unique solution to the

problem (C − G)ω.
In addition to (18.98), (18.100), (18.102),
i) if

f4 ∈ Bs+1
t,t (S), F4 ∈ Bs

t,t(S), Φ̃
(±)
l , Φ̃(±)

m , F̃ (2)
n ∈ Bs

t,t(S2), f̃
(2)
n ∈ Bs+1

t,t (S2),

f̃ (1) ∈ [Bs+1
t,t (S1)]

3, F̃ (1) ∈ [Bs
t,t(S1)]

3, F ∈ [Bs
t,t(S)]4, f̃n ∈ Bs+1

t,t (S),
(18.124)

then there holds the inclusion (18.22);
ii) if

f4 ∈ Bs+1
t,q (S), F4 ∈ Bs

t,q(S), Φ̃
(±)
l , Φ̃(±)

m , F̃ (2)
n ∈ Bs

t,q(S2), f̃
(2)
n ∈ Bs+1

t,q (S2),

f̃ (1) ∈ [Bs+1
t,q (S1)]

3, F̃ (1) ∈ [Bs
t,q(S1)]

3, F ∈ [Bs
t,q(S)]4, f̃n ∈ Bs+1

t,q (S),
(18.125)

then there holds the inclusion (18.24);
iii) if

f4 ∈ Cα(S), F4 ∈ Bα−1
∞,∞(S), Φ̃

(±)
l , Φ̃(±)

m , F̃ (2)
n ∈ Bα−1

∞,∞(S2), f̃
(2)
n ∈ Cα(S2),

f̃ (1) ∈ [Cα(S1)]
3, F̃ (1) ∈ [Bα−1

∞,∞(S1)]
3, F ∈ [Bα−1

∞,∞(S)]4, f̃n ∈ Cα(S),
(18.126)

for some α > 0, then there holds the inclusion (18.26).

18.6. Problem (C−H)ω. Again we start with the reformulation of the original interface
conditions (see Subsection 7.2):

[u
(1)
4 ]+ − [u

(2)
4 ]− = f4, [λ(1)(D, n)u

(1)
4 ]+ − [λ(2)(D, n)u

(2)
4 ]− = F4 on S, (18.127)

[u(1)]+ − [u(2)]− = f̃ (1), [P (1)(D, n)U (1)]+ − [P (2)(D, n)U (2)]− = F̃ (1) on S1, (18.128)

[u(1) · n]+ − [u(2) · n]− = f̃ (2)
n ,

[P (1)(D, n)U (1) · n]+ − [P (2)(D, n)U (2) · n]− = F̃ (2)
n ,

[u(1) · l]+ = ϕ̃
(+)
l , [u(1) ·m]+ = ϕ̃(+)

m ,

[u(2) · l]− = ϕ̃
(−)
l , [u(2) ·m]− = ϕ̃(−)

m ,





on S2, (18.129)
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where

f̃ (1) = (f
(1)
1 , f

(1)
2 , f

(1)
3 )⊤ ∈ [B1−1/p

p,p (S1)]
3, f4 ∈ B1−1/p

p,p (S),

F̃ (1) = (F
(1)
1 , F

(1)
2 , F

(1)
3 )⊤ ∈ [B−1/p

p,p (S1)]
3, F4 ∈ B−1/p

p,p (S),

ϕ̃
(±)
l , ϕ̃(±)

m , f̃ (2)
n ∈ B1−1/p

p,p (S2), F̃
(2)
n ∈ B−1/p

p,p (S2).

(18.130)

The the vector function

f :=





(f̃ (1), f4)
⊤ on S1,

(
[ϕ̃

(+)
l − ϕ̃

(−)
l ] l + [ϕ̃(+)

m − ϕ̃(−)
m ]m+ f̃ (2)

n n, f4

)⊤
on S2,

(18.131)

represents the difference [U (1)]+ − [U (2)]− on the interface S, and, therefore, we require the
natural compatibility condition (cf. (7.28))

f = (f1, · · · , f4)
⊤ ∈ [B1−1/p

p,p (S)]4. (18.132)

Moreover, the function

F̃n :=




F̃ (1) · n on S1,

F̃ (2)
n on S2,

(18.133)

corresponds to the difference [P (1)(D, n)U (1) ·n]+ − [P (2)(D, n)U (2) ·n]− on S, and, we again
assume the natural compatibility condition

F̃n ∈ B−1/p
p,p (S). (18.134)

Next, let us represent the boundary vector functions F̃ (1) in the form

F̃ (1) = F̃
(1)
l l + F̃ (1)

m m+ F̃ (1)
n n on S1, (18.135)

where

F̃
(1)
l = F̃ (1) · l, F̃ (1)

m = F̃ (1) ·m, F̃ (1)
n = F̃ (1) · n. (18.136)

Denote by F̃
(0)
l and F̃ (0)

m some fixed extensions of the functions F̃
(1)
l and F̃ (1)

m from S1 onto
S2 preserving the functional space. Arbitrary extensions then can be represented as

F̃l = F̃
(0)
l + ϕl, F̃m = F̃ (0)

m + ϕm, (18.137)

where

F̃l, F̃
(0)
l , F̃m, F̃

(0)
m ∈ B−1/p

p,p (S), ϕl, ϕm ∈ B̃−1/p
p,p (S2),

F̃l|S1 = F̃
(0)
l |S1 = F̃

(1)
l , F̃m|S1 = F̃ (0)

m |S1 = F̃ (1)
m .

(18.138)

Obviously, here ϕl and ϕm are arbitrary functions from B̃−1/p
p,p (S2).

Further, we set

F = (F1, · · · , F4)
⊤ := F 0 + ϕ ∈ [B−1/p

p,p (S)]4, F̃ = (F1, F2, F3)
⊤, (18.139)
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where F4 is the same function as above, while

F 0 := (F̃
(0)
l l + F̃ (0)

m m+ F̃n n, F4)
⊤ ∈ [B−1/p

p,p (S)]4 (18.140)

with

ϕ = ϕl l
∗ + ϕmm

∗ = (ϕl l + ϕmm, 0)⊤ ∈ [B̃−1/p
p,p (S2)]

4. (18.141)

Moreover, F̃ (0) = F̃
(0)
l l+F̃ (0)

m m+F̃n n, the function F̃n is given by (18.133), and the 4-vectors
l∗, m∗, and n∗ are defined by (14.48).

We note that (see (18.135))

F̃ |S1 = F̃ (0)|S1 = F̃ (1) on S1, F̃ · n|S2 = F̃ (0) · n|S2 = F̃n = F̃ (2)
n on S2. (18.142)

Now we can easily see that the original interface conditions (18.127)-(18.129) are equiv-
alent to the equations:

[U (1)]+ − [U (2)]− = f on S, (18.143)

[B(1)(D, n)U (1)]+4 − [B(2)(D, n)U (2)]−4 = F4 on S, (18.144)

[B(1)(D, n)U (1)]+k − [B(2)(D, n)U (2)]−k = Fk on S1, k = 1, 2, 3, (18.145)

[B(1)(D, n)U (1) · n∗]+ − [B(2)(D, n)U (2) · n∗]− = F · n∗ on S2, (18.146)

[U (1) · l∗]+ + [U (2) · l∗]− = ϕ̃
(+)
l + ϕ̃

(−)
l ,

[U (1) ·m∗]+ + [U (2) ·m∗]− = ϕ̃(+)
m + ϕ̃(−)

m ,





on S2, (18.147)

where f and F are given by (18.131) and (18.139), respectively.
Let us look for the solution of the reformulated problem in the form (18.9)-(18.10), where

now f , F 0, and ϕ are defined by (18.131), (18.140), and (18.141). These representation
formulae imply

[U (1)]+ − [U (2)]− = f, [B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F 0 + ϕ,

which show that the conditions (18.143)-(18.146) are satisfied automatically.
The remaining conditions (18.147) yield the following system of ΨDEs on S2 for the

unknown scalar functions ϕl and ϕm (see (18.11))

rS2 Φ1 Ψϕ · l∗ = ql,

rS2 Φ1 Ψϕ · m∗ = qm,





on S2, (18.148)

where

ql = 2−1(ϕ
(+)
l + ϕ

(−)
l ) − rS2 {Φ1 ΨF 0 − [Φ1 Ψ Ψ2Φ

−1
2 + 2−1I] f} · l∗,

qm = 2−1(ϕ(+)
m + ϕ(−)

m ) − rS2 {Φ1 ΨF 0 − [Φ1 Ψ Ψ2Φ
−1
2 + 2−1I] f} ·m∗.

(18.149)

In accordance with the formula (15.104) this system can be written also as

rS2 MH h = g on S2, (18.150)
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where g = (ql, qm)⊤ ∈ [B1−1/p
p,p (S2)]

2 is the given vector on S2, and h = (ϕl, ϕm)⊤ ∈

[B̃−1/p
p,p (S2)]

2 is the unknown vector.
By virtue of Lemma 15.4 the principal homogeneous symbol matrix of the ΨDO MH is

positive definite which together with Theorem 9.12 and Lemma 16.1 implies the following
existence and regularity results.

LEMMA 18.16 The operators

rS2 MH : [B̃s
p,q(S2)]

2 → [Bs+1
p,q (S2)]

2, (18.151)

: [H̃s
p(S2)]

2 → [Hs+1
p (S2)]

2, (18.152)

are bounded for any s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
These operators are invertible if the condition (16.15) holds.

THEOREM 18.17 Let 4/3 < p < 4 and let the conditions (18.130), (18.132), and (18.134)
be fulfilled. Then the nonhomogeneous problem (C −H)ω is uniquely solvable in the class of
vector functions (W 1

p (Ω1) , W 1
p,loc(Ω

2)∩SKm
r (Ω2)) (with the parameters r and ω as in (15.3))

and the solution is representable by formulae (18.9)-(18.10), where f , F 0, and ϕ are given
by (18.131), (18.140), and (18.141), respectively, and (ϕl, ϕm)⊤ is the unique solution of the
ΨDE (18.150).

THEOREM 18.18 Let the conditions (18.130), (18.132), (18.134), and (16.23) be fulfilled,
and let the pair (U (1), U (2)) ∈ (W 1

p (Ω1) , W 1
p,loc(Ω

2)∩SKm
r (Ω2)) be the unique solution to the

problem (C − H)ω.
In addition to (18.130), (18.132), (18.134),
i) if

f4 ∈ Bs+1
t,t (S), F4 ∈ Bs

t,t(S), ϕ̃
(±)
l , ϕ̃(±)

m , f̃ (2)
n ∈ Bs+1

t,t (S2), F̃
(2)
n ∈ Bs

t,t(S2),

f̃ (1) ∈ [Bs+1
t,t (S1)]

3, F̃ (1) ∈ [Bs
t,t(S1)]

3, f ∈ [Bs+1
t,t (S)]4, F̃n ∈ Bs

t,t(S),
(18.153)

then there holds the inclusion (18.22);
ii) if

f4 ∈ Bs+1
t,q (S), F4 ∈ Bs

t,q(S), ϕ̃
(±)
l , ϕ̃(±)

m , f̃ (2)
n ∈ Bs+1

t,q (S2), F̃
(2)
n ∈ Bs

t,q(S2),

f̃ (1) ∈ [Bs+1
t,q (S1)]

3, F̃ (1) ∈ [Bs
t,q(S1)]

3, f ∈ [Bs+1
t,q (S)]4, F̃n ∈ Bs

t,q(S),
(18.154)

then there holds the inclusion (18.24);
iii) if

f4 ∈ Cα(S), F4 ∈ Bα−1
∞,∞(S), ϕ̃

(±)
l , ϕ̃(±)

m , f̃ (2)
n ∈ Cα(S2), F̃

(2)
n ∈ Bα−1

∞,∞(S2),

f̃ (1) ∈ [Cα(S1)]
3, F̃ (1) ∈ [Bα−1

∞,∞(S1)]
3, f ∈ [Cα(S)]4, F̃n ∈ Bα−1

∞,∞(S),
(18.155)

for some α > 0, then there holds the inclusion (18.26).
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19 Mixed Interface Problems of Pseudo-Oscillations

The mixed interface problems for the system of pseudo-oscillation equations are investi-
gated by the approach developed in the previous section. In this case we have to apply
the ”explicit” representation formulae (14.24)-(14.25), obtained for the solution of the basic
interface problem (C)τ , to reduce the mixed interface problems to the corresponding ΨDEs.
For illustration of the method in this section we consider only the problems (C − DD)τ
and (C − NN )τ . The other mixed problems of pseudo-oscillations can be studied quite
analogously.

19.1. Problem (C − DD)τ . Let S, S1, and S2, be the same as in Section 18. The
original formulation of the problem (C −DD)τ is the following (see Section 7): Find the pair
of vector-functions (U (1), U (2)) ∈ (W 1

p (Ω1) , W 1
p (Ω2)) satisfying the differential equations

A(µ)(D, τ)U (µ) = 0 in Ω(µ), µ = 1, 2, (19.1)

and the mixed interface conditions on S

[U (1)]+ − [U (2)]− = f (1), [B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F (1) on S1, (19.2)

[U (1)]+ = ϕ(+), [U (2)]− = ϕ(−) on S2; (19.3)

moreover, U (2) satisfies the decay condition (1.30) at infinity.
Here p > 1 and

f (1) = (f
(1)
1 , · · · , f (1)

4 )⊤ ∈ B1−1/p
p,p (S1), F

(1) = (F
(1)
1 , · · · , F (1)

4 )⊤ ∈ B−1/p
p,p (S1), (19.4)

ϕ(±) = (ϕ
(±)
1 , · · · , ϕ(±)

4 )⊤ ∈ B1−1/p
p,p (S2). (19.5)

Further, we assume that the vector function

f :=




f (1) on S1,

ϕ(+) − ϕ(−) on S2,
(19.6)

meets the necessray compatibility condition

f ∈ B1−1/p
p,p (S). (19.7)

Next, denote by F 0 ∈ B−1/p
p,p (S) some fixed extension of the vector function F (1) from the

submanifold S1 onto the whole surface S (i.e., F 0|S1 = F (1) on S1).
Evidently, an arbitrary extension (preserving the functional space) can be then repre-

sented as

F = F 0 + ϕ ∈ B−1/p
p,p (S), (19.8)

where ϕ = (ϕ1, · · · , ϕ4)
⊤ ∈ B̃−1/p

p,p (S2) is an arbitrary function supported on S2.
Now we can reformulate the interface conditions (19.2)-(19.3) in the following equivalent

form:

[U (1)]+ − [U (2)]− = f on S, (19.9)
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[B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F on S1, (19.10)

[U (1)]+ + [U (2)]− = ϕ(+) + ϕ(−) on S2, (19.11)

where B(µ)(D, n) is defined again by (1.25), and f and F are given by (19.6) and (19.8),
respectively.

Let us now look for the solution (U (1), U (2)) to the problem (C − DD)τ as follows (cf.
(14.24)-(14.25))

U (1)(x) = V (1)
τ

(
(H(1)

τ )−1 N−1
τ [(F 0 + ϕ) + N2,τ f ]

)
(x), x ∈ Ω1, (19.12)

U (2)(x) = V (2)
τ

(
(H(2)

τ )−1 N−1
τ [(F 0 + ϕ) −N1,τ f ]

)
(x), x ∈ Ω2, (19.13)

where ϕ ∈ B̃−1/p
p,p (S2) is the unknown vector function, W (µ)

τ and V (µ)
τ are the double and single

layer potentials of pseudo-oscillations (see (11.1)-(11.2)), the boundary operators H(µ)
τ , Nτ ,

N1,τ , and N2,τ are the same as in Section 14 (see (14.12)). Note that here and in what
follows we keep all notations of Sections 11 and 14.

One can easily check that the inerface conditions (19.9) and (19.10) are satisfied auto-
matically, since (19.12) and (19.13) together with (14.12) imply

[U (1)]+ − [U (2)]− = f, [B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F 0 + ϕ on S. (19.14)

It remains only to fulfil the condition (19.11) which yield the ΨDE for the unknown vector
function ϕ

rS2 N
−1
τ ϕ = q on S2, (19.15)

where rS2 is again the restriction operator on S2, the right-hand side vector q is given by

q = 2−1(ϕ(+) + ϕ(−)) − rS2 [N−1
τ F 0 + 2−1N−1

τ (N2,τ −N1,τ) f ] ∈ B1−1/p
p,p (S2).

The operator rS2 N
−1
τ possesses the following properties.

LEMMA 19.1 The operators

rS2 N
−1
τ : [B̃s

p,q(S2)]
4 → [Bs+1

p,q (S2)]
4, (19.16)

: [H̃s
p(S2)]

4 → [Hs+1
p (S2)]

4, (19.17)

are bounded for any s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
These operators are invertible if the condition (16.15) holds.

Proof. Due to Theorem 11.3 and Lemma 14.2 we conclude that the mappings (19.16)-(19.17)
are bounded and that their Fredholm indices equal zero, since the principal homogeneous
symbol matrix of the operator N−1

τ is positive definite for arbitrary x ∈ S and ξ̃ ∈ IR2 \ {0}.
It remains to prove that the corresponding null-spaces are trivial, i.e., we have to show that
the homogeneous equation

rS2 N
−1
τ ϕ = 0 on S2 (19.18)

has only the trivial solution in the spaces B̃s
p,q(S2) and H̃s

p(S2) with s and p satisfying the
inequalities (16.15). We again consider the particular case s = −1/2 and p = q = 2 for
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which the condition (16.15) is fulfilled. Further, let ϕ ∈ B̃
−1/2
2,2 (S2) = H̃

−1/2
2 (S2) be some

solution to the equation (19.18), and construct the potentials:

U (1)(x) = V (1)
τ

(
(H(1)

τ )−1 N−1
τ ϕ

)
(x), x ∈ Ω1, (19.19)

U (2)(x) = V (2)
τ

(
(H(2)

τ )−1 N−1
τ ϕ

)
(x), x ∈ Ω2. (19.20)

Theorem 11.3 implies that the pair (U (1), U (2)) represents a solution to the homogeneous
problem (C − DD)τ of the space (W 1

2 (Ω1) , W 1
2 (Ω2)). By Theorem 8.6 we then conclude

U (µ) = 0 in Ωµ, µ = 1, 2, whence [B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = ϕ = 0 fol-
lows. Therefore, the above homogeneous equation has no nontrivial solutions in the space
B̃

−1/2
2,2 (S2). Now Lemma 16.1 completes the proof.

THEOREM 19.2 Let 4/3 < p < 4 and let the conditions (19.4), (19.5), and (19.7) be
fulfilled. Then the problem (C − DD)τ is uniquely solvable in the class (W 1

p (Ω1) , W 1
p (Ω2))

and the solution is representable in the form (19.12)-(19.13), where ϕ is the unique solution
of the ΨDE (19.15).

Proof. First we note that the condition (16.15) with s = −1/p implies the inequality 4/3 <
p < 4. Next, Lemma 19.1, with s = −1/p and 4/3 < p < 4, shows that the ΨDE (19.15)
is uniquely solvable. This together with the representation formulae (19.12)-(19.13) yields
the solvability of the nonhomogeneous problem (C − DD)τ in the sapace indicated in the
theorem.

It remains to prove the uniqueness of solution for 4/3 < p < 4. Let (U (1), U (2)) ∈
(W 1

p (Ω1) , W 1
p (Ω2)) be some solution of the homogeneous problem (C −DD)τ . Clearly, then

[U (1)]+, [U (2)]− ∈ B1−1/p
p,p (S) and [B(1)(D, n)U (1)]+, [B(2)(D, n)U (2)]− ∈ B−1/p

p,p (S). In addi-

tion, f := [U (1)]+ − [U (2)]− = 0 on S and F := [B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = 0 on
S1. Therefore, F ∈ B̃−1/p

p,p (S2). Due to Theorem 14.6, such solution is uniquely representable
by formulae (14.24)-(14.25) which in the case in question read as

U (µ)(x) = V (µ)
τ

(
(H(µ)

τ )−1 N−1
τ F

)
(x), x ∈ Ωµ, µ = 1, 2, (19.21)

with F ∈ B̃−1/p
p,p (S2).

The homogeneous versions of the conditions (19.2)-(19.3) (i.e., (19.9)-(19.11)) then shows
that F has to satisfy the equation

rS2 N
−1
τ F = 0 on S2,

from which F = 0 on S2 follows for arbitrary p ∈ (4/3, 4) due to Lemma 19.1. Therefore,
U (µ) = 0 in Ωµ (µ = 1, 2) in view of (19.21). This completes the proof.

The next theorem deals with the smoothness of solutions to the mixed interface problem
(C − DD)τ .

THEOREM 19.3 Let the conditions (19.4), (19.5), (19.7), and (16.23) be fulfilled, and let
the pair (U (1), U (2)) = (W 1

p (Ω1) , W 1
p,(Ω

2)) be the unique solution to the problem (C −DD)τ .
In addition to (19.4), (19.5), (19.7),
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i) if conditions (18.21) are satisfied, then

(U (1), U (2)) ∈ (H
s+1+1/t
t (Ω1) , H

s+1+1/t
t (Ω2));

ii) if conditions (18.23) are satisfied, then

(U (1), U (2)) ∈ (B
s+1+1/t
t,q (Ω1) , B

s+1+1/t
t,q (Ω2));

iii) if conditions (18.25) are satisfied for some α > 0, then

(U (1), U (2)) ∈ (Cν(Ω1) , Cν(Ω2))

with any ν ∈ (0, α0), α0 := min{α, 1/2}.

Proof. It is verbatim the proof of Theorem 16.5.

19.2. Problem (C−NN )τ . The original interface conditions for the problem (C−NN )τ
read as

[U (1)]+ − [U (2)]− = f (1), [B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F (1) on S1, (19.22)

[B(1)(D, n)U (1)]+ = Φ(+), [B(2)(D, n)U (2)]− = Φ(−) on S2, (19.23)

where

f (1) ∈ B1−1/p
p,p (S1), F

(1) ∈ B−1/p
p,p (S1), Φ(±) = (Φ

(±)
1 , · · · ,Φ(±)

4 )⊤ ∈ B−1/p
p,p (S2). (19.24)

We require that the vector function

F :=




F (1) on S1,

Φ(+) − Φ(−) on S2.
(19.25)

satisfies the necessary compatibility condition

F ∈ B−1/p
p,p (S). (19.26)

Denote by f 0 ∈ B1−1/p
p,p (S) some fixed extension of the vector function f (1) from the sub-

manifold S1 onto the whole surface S. Then an arbitrary extension preserving the functional
space is represented by formula

f = f 0 + ϕ ∈ B1−1/p
p,p (S), (19.27)

where ϕ ∈ B̃1−1/p
p,p (S2).

Next, we again reduce the above original interface conditions (19.22)-(19.23) to the equva-
lent equations:

[B(1)(D, n)U (1)]+ − [B(2)(D, n)U (2)]− = F on S, (19.28)

[U (1)]+ − [U (2)]− = f on S1, (19.29)

[B(1)(D, n)U (1)]+ + [B(2)(D, n)U (2)]− = Φ(+) + Φ(−) on S2, (19.30)
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where F and f are given by (19.25) and (19.27), respectively.
Further, we look for the solution (U (1), U (2)) to the problem (C −NN )τ in the form (cf.

(14.24)-(14.25))

U (1)(x) = V (1)
τ

(
(H(1)

τ )−1 N−1
τ [F + N2,τ (f 0 + ϕ)]

)
(x), x ∈ Ω1, (19.31)

U (2)(x) = V (2)
τ

(
(H(2)

τ )−1 N−1
τ [F −N1,τ (f 0 + ϕ)]

)
(x), x ∈ Ω2, (19.32)

where f 0 and F are the given vector functions on S and ϕ ∈ B̃1−1/p
p,p (S2) is the unknown

vector function.
The conditions (19.28) and (19.29) are then satisfied automatically, while the condition

(19.30) leads to the ΨDE for the unknown vector ϕ

rS2 [N1,τ N
−1
τ N2,τ ϕ] = q on S2, (19.33)

where the right-hand side vector q ∈ B−1/p
p,p (S2) reads as

q = 2−1(Φ(+) + Φ(−)) − rS2 [2−1(N2,τ −N1,τ)N
−1
τ F −N1,τ N

−1
τ N2,τ f

0]. (19.34)

In the proof of Lemma 14.8 it has been shown that the principal homogeneous symbol
matrix of the ΨDO N1,τ N

−1
τ N2,τ is positive definite. Therefore, by the arguments employed

above one can prove the following assertion (see the proof of Lemma 19.1).

LEMMA 19.4 The operators

rS2 N1,τ N
−1
τ N2,τ : [B̃s+1

p,q (S2)]
4 → [Bs

p,q(S2)]
4, (19.35)

: [H̃s+1
p (S2)]

4 → [Hs
p(S2)]

4, (19.36)

are bounded for any s ∈ IR, 1 < p <∞, 1 ≤ q ≤ ∞.
These operators are invertible if the condition (16.15) holds.

This lemma implies the existence and regularity results quite in the same way as in the
previous subsection.

THEOREM 19.5 Let 4/3 < p < 4 and let the conditions (19.24)and (19.26) be fulfilled.
Then the nonhomogeneous problem (C − NN )τ is uniquely solvable in the class of vector
functions (W 1

p (Ω1) , W 1
p (Ω2)) and the solution is representable in the form (19.31)-(19.32),

where ϕ is the unique solution of the ΨDE (19.33).

THEOREM 19.6 Let the conditions (19.24), (19.26), and (16.23) be fulfilled, and let the
pair (U (1), U (2)) ∈ (W 1

p (Ω1) , W 1
p (Ω2)) be the unique solution to the problem (C − NN )τ .

In addition to (19.24), (19.26),
i) if conditions (18.39) hold, then

(U (1), U (2)) ∈ (H
s+1+1/t
t (Ω1) , H

s+1+1/t
t (Ω2));

ii) if conditions (18.40) hold, then

(U (1), U (2)) ∈ (B
s+1+1/t
t,q (Ω1) , B

s+1+1/t
t,q (Ω2));

iii) if conditions (18.41) hold for some α > 0, then

(U (1), U (2)) ∈ (Cν(Ω1) , Cν(Ω2))

with any ν ∈ (0, α0), α0 := min{α, 1/2}.
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[29] Jentsch, L., ‘Stationäre thermoelastische Schwingungen in stückweise homogenen
Körpern infolge zeitlich periodischer Außentemperatur’, Math. Nachr., 69, 15-37 (1975).

[30] Jentsch, L., ‘Verallgemeinerte thermoelastische Schwingungen in Körpern mit gleiten-
den Einschlüssen aus anderem Material’, In: Jentsch, L. und Maul, J., Mathematical
Research, Bd. 4, Akademie-Verlag Berlin, 1980.

159
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