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Introduction

Boundary value problems (BVPs) of the theory of thermoelasticity have a long history.
They encounter in many physical, mechanical, and engineering applications where the ther-
mal stresses appear. Therefore, the mathematical model of thermoelasticity have received
considerable attention in the scientific literature (for exhaustive historical and bibliographical
material see [43], [61]).

Without trying to discuss the history in detail we note that three-dimensional regular
problems of statics, pseudo-oscillations, steady state oscillations, and general dynamics of
the thermoelasticity theory of homogeneous isotropic elastic bodies are completely investi-
gated by many authors (see, for example, [43], [8], [24], [61], [28]-[30] and references therein).
The main mathematical tools applied for the investigation of various aspects of the above
problems are variational and functional methods ([14], [61]), the potential methods and the
direct and indirect boundary integral equations (BIE) methods ([43], [28]-[30]), different ver-
sions of the Bubnov-Galerkin methods and the method of generalized Fourier series (method
of regular sources) ([43]).

To the best of the authors’ knowledge the problems of thermoelastic pseudo-oscillations
and steady state oscillations for anisotropic bodies have not been treated systematically in
the scientific literature (cf. [32]).

In the present memoir we undertake to examine a wide class of the basic regular, mixed,
and crack type boundary value and interface problems for the systems of differential equa-
tions of pseudo-oscillations and steady state oscillations of the thermoelasticity theory of
homogeneous anisotropic bodies. We develope the potential method to prove the existence
and uniqueness theorems in various functional spaces and to establish the almost best regu-
larity properties of solutions. We note that many problems considered in this memoir have
not been treated even in the isotropic thermoelasticity.

It should be mentioned that the methods, developed for the isotropic case in the above
cited references, unfortunately, are not always applicable in the case of general anisotropy. It
concerns, especially, the steady state oscillation problems where quite new ideas are required.
In particular, the exterior BVPs of steady state thermoelastic oscillations in the isotropic
case have been studied on the basis of the classical Sommerfeld-Kupradze thermo-radiation
conditions and the uniqueness theorems were proved with the help of the well-known Rellich’s
lemma, since components of the displacement vector and the temperature in the isotropic
case can be represented as a sum of metaharmonic functions (for details see [43]).

In the anisotropic case we need a nontrivial generalization of the thermo-radiation con-
ditions at infinity. We notice that the basic difficulties in dealing with the steady state
oscillation problems are connected with a very complicated geometrical form of the corre-
sponding characteristic surfaces which play a significant role in the study of the far field
behaviour of solutions (cf. [77], [53]).

The monograph consists of six chapters and is organized as follows.

In the first chapter there are constructed the matrices of fundamental solutions to the
systems of pseudo-oscillation and steady state oscillation equations of thermoelasticity theory
by Fourier transform and limiting absorption principle, and their asymptotic properties at
infinity and in a vicinity of the origin are studied.



On the basis of the results obtained the generalized Sommerfeld-Kupradze type thermo-
radiation conditions are formulated and the Somigliana type integral representation formulae
for bounded and unbounded domains (with compact boundaries) are derived.

We emphasize that the above mentioned fundamental matricies are not represented ex-
plicitly in terms of elementary functions. This essentially complicates the investigation of
corresponding integral operators.

The second chapter deals with the detail formulation of boundary value and interface
problems for homogeneous and peacewise homogeneous (composed) anisotropic bodies. Be-
sides the usual classical setting in C**-continuous Holder functional spaces here is given
a weak formulation of the problems in the Sobolev W, (W},,.) spaces with 1 < p < oo.
The weak setting relies upon the definition of generalized boundary trace functionals in
the Besov B, , spaces which are introduced and broadly discussed in Section 4. Note that
crack type and mixed problems, in general, do not admit C%continuous solutions (with
a > 1/2) in closed domains even for C*-regular boundary data. Therefore, these problems
are formulated only in the natural weak setting.

In the third chapter there are proved uniqueness theorems of solutions to the regular and
mixed homogeneous boundary value and interface problems in the appropriate functional
spaces. Here the crucial moment is selection of the functional classes where the homogeneous
steady state oscillation problems in unbounded domain admit only the trivial solution. This
is done with the help of the above mentioned generalized Sommerfeld-Kupradze type thermo-
radiation conditions.

Chapter 1V is entirely devoted to the study of single and double layer potential type
operators and boundary integral (pseudodifferential) operators generated by them. These
results are the main tools used in the subsequent chapters.

The existence theorems of solutions to the regular nonhomogeneous boundary value and
interface problems are proved in the fifth chapter. By the potential method these problems
are reduced to the equivalent systems of pseudodifferential equations on the boundary of
the elastic body (or on the interface of the composed body) under considereation . It is
established that these BIEs are elliptic systems (in general, in the sense of Douglis-Nirenberg)
with trivial null-spaces and zero indices. The general theory of pseudodifferential equations
on closed smooth manifold and corresponding embedding theorems then immediately lead
to the existence results for the above indicated nonhomogeneous problems in C* functional
spaces with integer £ > 1 and 0 < a < 1 in the case of classical setting or in WI} (Wp{loc)
spaces with 1 < p < oo in the case of weak setting (provided the boundary data belong to
appropriate natural spaces).

Finally, in the last sixth chapter the existence theorems of solutions to the nonhomoge-
neous mixed and crack type boundary value problems and to the mixed interface problems
are proved again by the potential method. These problems are reduced to the equivalent
pseudodifferential equations on some proper subset of the boundary (or of the interface).
The investigation of these equations is carried out with the help of the theory of VDEs on
manifold with boundary. The BIEs are again elliptic systems of WDEs (in general, in the
sense of Douglis-Nirenberg) with positive definite principal homogeneous symbol matricies,
trivial null-spaces and indices equal to zero. Making use of these results the existence of so-
lutions to the problems indicated above are proved in the Sobolev I/Vp1 (T/I/;}JOC ) spaces with
4/3 < p < 4. Applying the corresponding embedding theorems it is shown that the solutions



possess C%-smoothness (with arbitrary o < 1/2) at the crack edges (in crack problems) and
at the collision curves of changing boundary conditions (in mixed problems) provided again
that the boundary data belong to appropriate natural spaces.

The authors like to appreciate very much the financial support of the Deutsche For-
schungsgemeinschaft under grants number 436 GEO 17/2/95, 436 GEO 17/4/96, 436 GEO
17/2/97.



CHAPTER I

BASIC EQUATIONS. FUNDAMENTAL MATRICES.
THERMO-RADIATING CONDITIONS

In this chapter first we construct exponentially decreasing fundamental solution to the system
of pseudo-oscillation equations of the thermoelasticity theory of anisotropic bodies and then
by the limiting absorption principle we obtain two fundamental matrices for the system
of steady state oscillation equations. Further, we derive the asymptotic formulae for the
entries of these matrices and formulate the generalized Sommerfeld-Kupradze type radiation
conditions in anisotropic thermoelasticity.

1 Basic Differential Equations of Thermoelasticity

In this section we collect an auxiliary material concerning the governing equations and the
basic mechanical and physical concepts of the thermoelasticity theory (for details we refer
to [61], [43]).

1.1. The system of equations of coupled linear thermoelastodynamics of homogeneous
anisotropic elastic medium reads (see [61], Ch. V)

Crjpg DiDyup(@,t) + Xp(,t) = oDjup(x,t) + By Djua(z,t),
ApqDpDgua(@, t) — coDyus(w,t) — ToBp DiDpug(a,t) = —Q(x,1), (1.1)

where cjpg = Cpgkj = Cjkpq are elastic constants, \,, = Ay, are heat conductivity coefficients,
co > 0 is the thermal capacity, Ty > 0 is the temperature of the medium in the natural state,
Bpg = Bqp are expressed in terms of the thermal and elastic constants, o =const> 0 is the
density of the medium; u = (u1, up, u3)' is the displacement vector, uy4 is the temperature,
X = (X1, X5, X3) " is the bulk force, Q is the heat source; z = (1, 7o, ¥3) denotes the spatial
variable, while ¢ is the time variable; here and in what follows the summation over repeated
indices is meant from 1 to 3, unless otherwise stated; the superscript T denotes transposition
and D, = D, :=0/0x,, D,:=0/0t.

In the sequel, we usually consider the homogeneous version of equations (1.1), i.e., we
assume X = 0, @ = 0. In addition, without any restriction of generality p = 1 is assumed
as well.

In (1.1) the term —TyB,,D:Dyuy(z,t) describes the coupling between the temperature
and strain fields. It vanishes only for a stationary heat flow. In that case or if this term is
neglected, we have the so-called decoupled thermoelasticity theory.



In the thermoelasticity theory the stress tensor {oy;}, the strain tensor {ey;} and the
temperature field uy are related by Duhamel-Neumann law

Okj = ChjpgEpq — Prjtia, exj =27 (Dguj + Djuy), k,j=1,2,3;

the k—th component of the vector of thermostresses, acting on a surface element with the
unit normal vector n = (ny,ny,n3), is calculated by the formula

TkjNj = ChipgEpgTi — BrjNjta = Cijpgj Doty — Brinua, k=1,2,3. (1.2)

The formal Laplace transform of the equations (1.1) (with respect to t) leads to the
so-called pseudo-oscillation equations of the thermoelasticity theory

Chipg DiDgtiy(x) = T2 ug(2) + Bi; Djus(),
ApaDpDgua(z) — Teous(x) — 710 8pq Dpug(x) = 0; (1.3)

here 7 = 0 — iw is a complex parameter with w € IR and o € IR\ {0}.
If all data involved in (1.1) are harmonic time dependent, i.e.,

ug(z,t) :11% (x) cos wt+ 12% (x)sinwt, k=1,2,3,4, w € IR,
then we get the so-called steady state oscillation equations of the theory of thermoelasticity

Crjpg DjDyup(t) = —w*ug(w) + Brj Djua(z),
MpgDpDgua(z) + iwcous () 4+ iwToBpg Dpug(x) = 0, (1.4)

where the following notation wuy(x) :11% (r) +1 12% (x), k=1,2,3,4, is employed.

It is evident that system (1.4) formally can be obtained from (1.3) provided o = 0, but
this similarity is a very formal one and it will become apparent later on.

Finally, let us note that, if the displacement vector and the temperature do not de-
pend on the time variable ¢, then from (1.1) we obtain equations of the so-called decoupled
thermoelastostatics

Ckjpq DJunp(x) = 6k]DJu4('r)7 k= 17 27 37 (15)
ApgDpDgua(z) = 0.

In this monograph we shall not systematically treat the equations of decoupled thermoe-
lastostatics (1.5)-(1.6), since in this case all the boundary value and interface problems, we
intend to consider, are also completely decoupled into two independent problems for the
temperature field and the dicplacement field. The corresponding problems of elastostatics of
anisotropic bodies for the system (1.5) have been studied in [8], [54], while the problems for
the stationary distribution of the temperature field which, in fact, are BVPs for the second
order scalar elliptic differential equation (1.6) can be found, for example, in [50].

1.2. In order to rewrite the above equations in the matrix form, let us set

U= (ula Uz, u37u4)T - (U, u4)T7 U= (ula Uz, u3)Ta

C(D) = [Crp(D)]ax3, Cip(D) = crjpg DiDy, (1.7)



A(D) = Mg DpDy, D=V = (D1, Dy, Ds). (1.8)

For the sake of simplicity we shall use also the notation either [A],,xn or [Akp|mxn for the
m X n matrix A.
Now we can represent equations (1.3) and (1.4) in the following form, respectively,

A(D,T)U(z) =0, (1.9)

A(D, —iw)U(z) =0, (1.10)

AD | CP) = s 0D s | e

[—=5ToBkiDjlixs  A(D) — sco

Iy, = [0kjlm=m stands for the identity m x m matrix, J;; is Kronecker’s symbol.
Clearly, » = 7 = 0 — iw corresponds to the pseudo—oscillations, while » = —iw corre-
sponds to the steady state oscillations, and » = 0 to the decoupled thermoelastostatics.
Further we introduce the classical stress operator

T(D,n) = [Tip(D,n)]3x3 = [Crjpg1j Dylsxs, (1.12)
and the thermoelastic stress operator
P(D,n) = [[T(D,n)lax3, [=0kjn;laxilyyy - (1.13)
Due to (1.2) we have
[P(D,n)U]y = ogjn; = [T(D,n)uly — Brjnsus, k=1,2,3.
1.3. From the physical considerations it follow that (see [22], [61]):

a) the matrix [A,|sx3 is positive definite, i.e.,
A(E) = Mp&ply = 00 €7, € € IRP, 6y = const > 0; (1.14)

b) the quadratic form ¢y p.exj€pq is positive definite in the real symmetric variables ey; =
€k,

ChjpaChi€pq = O €rjer;, 0 = const > 0; (1.15)
which implies positive definiteness of the matrix C(&), ¢ € IR\ {0}, defined by (1.7), i.e.,
Cri(©)myme > 0ilEPI?, €,n € IR®, &) = const > 0. (1.16)

Inequalities (1.14) and (1.16) together with the symmetry properties of the matrices [\,
and C'(&) yield

C(&)n-n = Cr(Enmw = &€ ?, € € R, (1.17)

Aol > dol1|?, (1.18)



for an arbitrary complex vector € @'3. Here a - b = 7" azby, denotes the usual scalar
product of the two complex vectors a = (ay,--,a,) and b = (by,---,by) in @™, while
upper bar denotes complex conjugate. We shall also employ the following notation (”real”
scalar product of complex vectors)

(a,b) => apby, a,be @™ (1.19)

k=1

1.5 We emphasize that the differential operator A(D, 5) defined by (1.11) is not formally
self-adjoint. Denote by A*(D, ») the operator formally adjoint to A(D), )

A(D,») = AT(~=D,») = AT(-D,%) =
_ | [C(D) =# Lslsxs Bk Djlaxa (1.20)
[Br; Djlixs AD) ==zco |

Let us note here that throughout this memoir we shall use the following notations (when no
confusion can be caused by this):

a) if all elements of a vector v = (vy, ..., vp,) (matrix a = [ay;|mxn) belong to one and the
same space X, we shall write v € X (a € X) instead of v € [X]™ (a € [X]mxn);

b)it K : Xy x- - xX,, =-YVix---xY,and X;=---=X,, =X, Vi=---=Y, =Y,
we shall write K : X — Y rather than K : [X]|™ — [Y]™.

Let QF C IR? be a bounded domain with a C?>—smooth connected boundary S = 9O,
QFf = QT U S and Q° = IR?\ OQF. We assume that QF () is filled by a homogeneous
anisotropic medium with the elastic and thermal characteristics described above.

Now we present the so-called Green formulae for the operator A(D), ») which will be used
many times in the sequel.

Let U = (u1,ug, us,ug) ', V = (v1,v2,v3,04)" € C?(Q7) N CHQT) (ie., U and V are
regular vectors in Q) and A(D, »)U, A*(D, »)V € L(Q2%). Then the following equations
hold for arbitrary » € @ (cf. [55], [53], [16]):

[ A(D.)U -V de = [[B(D,m)UJ* - [V]*dS — [ E(U,V)dr, (1.21)
QE{A(D,%)U -V = U-Z*(D,%)V} dx = g{[B(DQ, n)U]* - [V]T—
~[U)" - [Q(D,n,)V]*} ds. (1.22)
I {IAD, Ui, + 2 [AD, )0 ws} da =

QO+
_ - 21,12 4 1 - 2
=— f+ {ckqu Dpuq Dyt + 5 |[ul” + = Akj Dyua Dty + 32wl } dx +
o

+/ {[BD,n)U [m@)* + 2 [ua]*[0,7] T} dS, (1.23)

where

On = A(D,n) := \pyynp, Dy, (1.24)



T(D, —Brin;
B(D,n) = TDymlsxs [=Brinalser | (1.25)
[0]1x3 AD,n) et
T(D,n ToBkin;
QDo) = [T(D,n)]sxs [#T00kinj|3x1 | (1.26)
[0]1x3 AD,n) i
E(U,V) = ckjpg Dptig DiT; + 5wy — Brjtia DTy + Apg Dyuia D04 +
+CoxUsVy + %T0@4ﬂpq Dpuq. (127)

Here and in what follows n(z) denotes the exterior unit normal vector of S at the point
x € S. The symbols [ - |* denote limits on S from Q*.

Note that, if we consider the first three components of the U as the displacement vector
and the fourth one as the temperature, then the vector B(D,n)U has the following thermo-
mechanical sense: the first three components of the B(D,n)U represent the corresponding
vector of thermal stresses (see (1.13)), while the fourth component describes the heat flux
through the surface S.

The similar formulae hold valid also for the domain 2~, when s = 0 or Resx > 0, with the
following changes (related to the choice of direction of the normal vector): the superscript
”+” must be replaced everywhere by the superscript ”—" and in front of the surface integrals
the sign ”—" is to be put.

In this case the vectors U and V have to satisfy the conditions

U,V e Q)N CY ), A(D,:)U, A(D, )V € Li(Q), (1.28)

A(D, »)U and A*(D, »)V have compact supports and, in addition, U and V have the fol-
lowing asymptotic behaviour at infinity

{ o(1) for =0,

U(z), Vi(x) = (1.29)

O(|z|N) for Rex=0>0, k=1,2,3,4,

with an arbitrary fixed positive number N. In fact, it can be proved that, if U and V are
solutions of the corresponding homogeneous equations , then the conditions (1.29) imply

O(|z|7*7181) ~ for =0,
DUy (x), DV (z) = (1.30)
O(|z|™) for Rex=0>0, k=1,2,3,4,

where v is an arbitrary positive number, § = (1, (2, 33) is an arbitrary multi-index and
18] = 51+ B2 + B3 (see, for example, [7], [42], [54].

The principal remark here is that for solutions U and V' of the steady state oscillation
equation (1.10) (i.e., when » = —iw) the Green formulae, similar to (1.21)-(1.23), are not
valid any more for the unbounded domain 7.
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1.5. In this subsection, before starting the construction of the fundamental matrices,
we shall analyse the so-called characteristic matrices corresponding to the above differential
operators of the thermoelasticity theory. They will play a fundamental role in the sequel.

Let us introduce the characteristic polynomial of the operator A(D, )

M(€, ») = det A(—i€, ). (1.31)
Denote by N(—i€, ») the matrix adjoint to A(—i¢, »), i.e.,

A(—E, ) N (1€, 32) = N (&, 30) A(—E, ) = M (€, ) Lu. (1.32)
Clearly, we have

[A(1E, )] 71 = [M(&, )] T N (=i, ), (1.33)

where [A(—i&, »)]7! is the matrix inverse to A(—i, »). Equations (1.31), (1.11), and (1.7)
yield

M(E, 5) = det

[15¢T0Bk;&5)1x3 — ()

[—C(&) — 5 I3]sxs  [18k&jlaxa ] N
4x4

et | 7O = Lalas [mkjgj]?,XII )
[0]1><3 —A(f) Axd
- - %2 L.
_A(E) det[C(E) + 2 Ty] — Ty det | | C &) T Felaa Bigllaa
[Bri&ilixs coTyt ™

— A(§) det[C(€) + 52 ] -

T d [_C(£> - %2 I3]3><3 - [Co_lToﬂkjgjﬁpng]iixii [ﬁkj&j]:&xl .
—uxly et =
[0]1x3 Ty ol
= A(€) det[C(&) + 52 I3] + scy det[C(€) + 52 ], (1.34)
where C'(£) and A(§) are defined by (1.7) and (1.8), respectively, and
C(€) = [Crp(©)axs = C(€) + [ ToBrsBpaialaxs, (1.35)

Cip(€) = (Chjpg + €5 " ToBriBog) s ko =1,2,3.

Next, we set
W(E, ) = det[C(€) + 5 I3, (1.36)
U (€, ) = det[C(€) + 52 I). (1.37)

The relations (1.35) and (1.17) imply that the matrix C'(€) for any £ € IR\ {0} is positive
definite and, therefore,

C(&)n-n=CEn n+ g " To|Bi&ml* = 61/¢%|n|> (1.38)
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for an arbitrary n € @'® and the same §; as in (1.17).
Thus, we have

M (&, %) = AE)U(E, ) + scoU (€, ). (1.39)

It is evident that, if || < s with some positive s, then there exists a positive number
0o such that

(W(E, ) > 1, |[U(E )| =1, |M(& )| >1, (1.40)

for [£] > po; here gy depends on s and the thermoelastic constants.

LEMMA 1.1 LetTt =0—iw, Rer =0 >0 and & € IR3. Then M(&,7) # 0 for any w € IR.
Moreover, [A(—i&, 7)]7' € Ly(IR?).

Proof. Let us suppose that the assertion of the lemma is false, i.e., M(&,7) = 0. Then
the homogeneous system of linear algebraic equations

A(=i&,7)a=0 (1.41)

has some nontrivial solution a = (ay,---,a4)" € 4\ {0}.
Multiplying the k—th equation of (1.41) by @, and summing the first three equations we
get

—Chjpg§iSqapr — T25kpapak +16y;&aqa, = 0,
1710 Bk arts — qugpgq‘adz - 7'CO‘CL4|2 =0.

Deviding the latter equation by 77, taking the complex conjugate and adding to the
first one, we obtain

Crjpa€iqpTn + T ay, + 7'[|7'|2T0]_1)‘1m1§p§q|@4|2 + C0T0_1|@4|2 = 0.

Due to (1.17) we deduce by separating the real and imaginary parts

C(§)a-a+ (0% —w)af® + of|rPTo] ' A(©)]as® + Ty Haa* = 0,
w{20al* + [|7PTo] 7 A(€)|asl*} = 0,

where @ = (a1, as, a3)".

From this system and the inequality (1.14) it follows that a; = -+ = a4 = 0, for any
€€ IR?, w € IR, and o > 0. This contradiction proves the first part of the lemma.

The second part of the lemma is a consequence of the inequality

[A(—ig, 7)) < 1jfa|é)“|2 for ¢ € IR?,

where the positive constant ¢(o) does not depend on ¢ (it depends on ¢ and on the ther-
moelastic constants of the medium in question). [
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1.6. Now we shall analyse the characteristic polynomial M (¢, —iw) of the operator
A(D, —iw). It can be easily shown that (see (1.36), (1.37), (1.39))

M(€, —iw) = A(&)P(£,w) — iwey® (€, w) (1.42)
where

(&, w) = det[C(€) — w? I3] = V(E, —iw), (1.43)

D€, w) = det[C(€) — w? I5) = (€, —iw). (1.44)

Characteristic surfaces of the operator A(D, —iw) are defined by the equation
M(¢,—iw) =0, &€ IR, (1.45)

which, in turn, due to (1.42), is equivalent to the following system

{ (¢, w) =0,

1.46
O(¢w) =0, ¢cR. A0

Passing on the spherical co-ordinates
§1=o0cospsinf, & = psinpsinf, £ = o cosb,
0<p<+4o00, 0<p<2r, 0<O0< T,

and, taking into account formulae (1.43), (1.44), (1.17) and (1.38), we conclude that each
equation of the system (1.46) has three positive roots with respect to 0®. These roots are
proportional to w?, and polynomials ® (£, w) and ®(&,w) can be represented in the form:

®(§,w) = (1, 0) [¢* — o1 (0, @)][e" — w?o5(0, ©)ll0” — w’e5(0, )], (1.47)
B(&,w) = (1,0 [¢* — w’al(0, 9)][0* — WG (0, 9)][0* — 830, )],

where 7 = £/0, 0 = [¢], ®(n,0) = detC(n) > 0, &(n,0) = detC(y) > 0; here {0} (6, )},
and {0%(0,)}3_, do not depend on w and are solutions of the following equations (with
respect to 0?):

(£, 1) = (n,0)0° + 2P ()" + @M (n)o* — 1 =0, (1.48)
D(£,1) = (1, 0)0° + @ (n)o" + &M (n)e* — 1 =0, (1.49)

where ®U) (1) and ®U)(n) are even, homogeneous functions of order 2j in 7 (see (1.43),
(1.44)).

In what follows we consider the so-called regular case, i.e., we assume the following
conditions to be fulfilled (cf. [53], [77]):

I°. V@ (&, w) # 0 at real zeros of the polynomial (&, w);
I1°. Gaussian curvature of the manifold, defined by the real zeros of the polynomial

®(&,w), does not vanish anywhere.
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From the above conditions I° — I'T° it follows that the real zeros of the polynomial ® (&, w)
form nonselfintersecting, closed, convex two-dimensional surfaces Sjo», 7 =1,2 3, enveloping
the origin of co-ordinates. For an arbitrary vector z € IR*\ {0} there exist exactly two
points on each S7, namely & = ( 71.6).6)) and & = —¢&I_ at which the exterior unit normal
is parallel to the vector x. We provide that at & the normal vector n(&7) and x have the
same direction, while at &/ they are opposite directed. Note that, if £/ € SJQ and &8 € SY
correspond to the same vector z, then (due to the convexity property of the above surfaces)
(¢ -2) # (€5 a) for k#3.

In the sequel, the &/ € S]Q will be referred to as the point which corresponds to the vector
x (i.e., to the direction z/|z|).

Clearly,

0= lw| ox(0,p) >0, k=1,23,

represent the equations of the surfaces S? in the spherical co-ordinates.

The set of points in IR® defined by the system of equations (1.46) may have a very
complicated geometric form. Among these forms we single out and study the following
reqular case: The system (1.46) is either inconsistent in IR? (i.e., it defines the empty set) or
it defines a two-dimensional manifold, i.e., equations (1.48) and (1.49) have m (1 < m < 3)
common roots and, if 1 < m < 3, the remaining two groups of the roots form disjoint sets
for arbitrary values of § and ¢. We denote these common roots by v1(0, ), -, vy, (0, @)
(1 <m < 3) and without loss of generality assume that

0<01(6,0) < 0200,0) <03(0,0), 0<11(0,0) < <vp(d, p). (1.50)

Thus, in this case the characteristic equation (1.45) (i.e., the system (1.46)) defines

analytic (characteristic) surfaces SY,---,S¢, whose equations in the spherical co-ordinates
read as

Q:‘u)| Vk(e,ﬁp)>0, k=1,---,m.

The BVPs corresponding to the case m = 0 turned out to be very similar to those of
the pseudo-oscillation ones (see Remark 2.7) and therefore in what follows we shall mainly
consider the case 1 < m < 3.

1.7. From the above arguments it follows that

W(E, ) = @(n, 0) [o" + 5" 01(0, ©)][e” + 5" 030, )] [e” + > 05(0, )], (1.51)

W(E, ) = @(n, 0) [o" + 5°01(0, ©)][e” + 5030, )] [e” + " 05(0, )], (1.52)

for any € € IR® and » € ('.
Consequently, according to (1.39) we have

M(E, ) = D(n,0) A€) [0* + 01 (6, )l[0* + 5" 050, ¥)][0” + 030, )] +

+3c0 ®(n, 0) [0% + 5203 (0, 0)][0* + 5 03(0, )]|[0* + *03(6, )] =
= (I)m(g>9>gp7 %) \Ifm(g,é’, 907 %)? (153)
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where

(I)m(9>9>()05 %) :(I)m(ga ) (I)M( £, ) (€> %):
= (=)™ [0® + #2010, 9)] - - - [0® + 22,0, 0)], (1.54)

\Ifm(Q, 97 907 %) = \Ijm(€> %) = \I’m(—f, %) =
= (=1)"{2(n,0) A(§) [0* + #*A1(0, ©)] - - [0* + NS, (0, )] +
+ ey &)(nv O) [Q2 + %2;‘%(97 @)] o [92 + %2;‘§—m(97 @)]7 (155)

here \3(6, ) and X?(H, ¢) denote the different (non-common) roots of the equations (1.48)
and (1.49), respectively. Note that formulae (1.51), (1.52), (1.53), (1.54) and (1.55) are valid
for arbitrary ¢ € IR® and » € .

The multiplier (—1)™ in (1.54) ensures the inequality

®,,(0, —iw) >0 (1.56)
which will be employed later on.

REMARK 1.2 Note that the polynomial ®,,(0,0, ¢; —iw) in o vanishes on S,
j=1,---,m (i.e., when o = |w|v;(0, 0)) while V,,(p,0, ; —iw) is different from zero for any
real 0 and w. Therefore, there exists a positive number g such that

|\Ilm( 7 7%07 )| >O

for |Im g| < eg and |Re x| < &g, where o = ¢ + 10", » = 0 — iw and |o| < 209 with arbitrary
w and gy fized.

Now from equations (1.53) and (1.54) it follows that, if |Re »| = \a| < g and|ov;(0, )| <
€0, then the complex numbers + (w+io)v;(0, @) = £iv;(0, ), j = 1,---,m, are the only ze-
ros of the polynomial (1.53) with respect to o in the strip |Im g| = |0"| < €. As a consequence
we have that M (&, ») # 0 for £ € IR? and 0 < |o| = |Re »| < &0.
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2 Fundamental Matrices

In this section with the help of the fundamental matrix of the pseudo-oscillation equations
we will construct maximally decreasing fundamental matrices of the steady state oscillation
operator by limiting absorption principle (cf. [53]).

Denote by I'(xz,7) a fundamental matrix of the operator A(D,7): A(D,7)I'(z,7) =
I,6(x), 7 =0 —iw, 0 # 0, where §(z) is Dirac’s distribution.

Let 0 < |Ret| = |o| < g¢ with g9 > 0 from Remark 1.2. Then due to the representation
(1.53), Remark 1.2, and equation (1.33) we have

M, 1) #0, ¢ € IR, [A(=ig, 7)) € Lo(IR°). (2.1)
Therefore, we can represent I'(z, 7) by the Fourier integral [55]

D(z,7) = Fel, (A6, 7)) ™) = (2m)7% lim [ [A(=i, 7))t em€ de. (2.2)

By F,—¢ and ]—"5__1)1, we denote the generalized Fourier and inverse Fourier transforms
which for summable functions are defined as follows (see, e.g., [20])

Fouelf] = [ flx) e dr,  Felilg) = (2m)™ [ g(€) e de.

From the conditions o # 0 and (2.1), and properties of the Fourier transform it easily
follows that the entries of the matrix I'(x,7) together with all derivatives decrease more
rapidly than any negative power of |z| as || — +o0o. The behaviour of this matrix in a
neighbourhood of the origin will be established below (see Lemma 2.1) (cf. [23]).

Let h be a cut off function with properties

h(€) = h(=¢), he CO(R®), h(§) =1 for [¢]< oo,
h(E)=0 for |€] > 200 (2.3)

with gy from (1.40).
Now we decompose (2.2) into the two parts

D(,7) =TW(x,7) +T®(x,7),

where
P (z,7) = Fol, (L= W] [A(=ig, 7)) ' (2.4)
@ (2, 7) = FL, (ME) [A(=ig, 7)) = (27T)_3|§|<f29 h(&) [A(—iE, 7))~ e dg. (2.5)

The main result of this section will follow from two the lemmata which we now present.
Let I'®(x) be the homogeneous (of order —1) fundamental matrix of the operator C'(D)
(see [53], [54])

MO() = 2, (O] = (=82lal) ™ [C(an)] ™ do, 2.
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where z € IR*\ {0}, a = [as;]3x3 is an orthogonal matrix with property a" =" = (0,0, |z|)T,
n = (cosip,sinp,0)". Further, let 7% (x) be the homogeneous (of order —1) fundamental
function of the operator A(D) (see [50])

YO @) = Fl, (M=i9)] ™) = —[4n |L[V*(L 7"z - 2)' /) (2.7)
with L = [Ayglsxs, |L| = detL.

LEMMA 2.1 The entries of the matriz T (2, 1) belong to C(IR*\ {0}) and for an ar-
bitrary o € [—eo,e0| together with all derivatives decrease more rapidly than any negative
power of |z| as |x| — 400.

The limit

lin% DPTW (2,0 —iw) = DPTW (2, —iw)

exists uniformly for |z| > § with an arbitrary § > 0 and in a neigbourhood of the origin
( say |x| < 1/2) the following inequalities

1 k
IDIT) (2,0 — iw) — DIT() (2, —iw)| < |o] el (2),

1 . k
|DITY) (2,0 — iw) — DITyi(2)| < cofs(2),

hold, where ¢ = const > 0 does not depend on o,

TO@)ses Ol } | (2.8)

P(z) =
{ [0]1x3 7O ()

p0 (@) =1, 917 (2) = ~lnle], ¢ (2) = 2|, 122,
for1<k,j<3andk=j=4

2o (@) = ob" (2) = ~Infal, V(@) = (@) = o m 21,
for k=1,2,3; 3 is an arbitrary multi-indez.

Proof. Note that the relations

DPIA(=i€, 7)) = O([L + [¢]] 7>,

and

[OU€1™lsxs [0S )32

ey — | CC o Dl ]+ _ _
O O™

0] [A(=ig)] ™

hold for sufficiently large ||.

Now the proof follows from Lemma 1.1, equations (2.6), (2.7), and properties of the
Fourier transform of homogeneous functions (see, for example, [20], [52]-Lemma 2.17, [53]-
Lemma 3.1). [
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Now we analyse properties of the matrix I'® (z, 7).
Going to the spherical co-ordinates in the integral (2.5) we get

3

r®(2,7) = (27)7 [ d%, {f+ f} h(€)[A(—i€, 7)) e 12 g2 dy, (2.9)

where Y, is the unit sphere in IR? centered at the origin.
Taking into account Remark 1.2, the analyticity of the integrand with respect to o, and
introducing the complex ¢ = ¢’ +i¢” plane we can rewrite (2.9) by Cauchy theorem as follows

0G0, 7) = (20)7 1 a5 { JIAGiE D] g do

li
+ T hE) (A ) e dg} , (2.10)

where I = [0, |w|vy — 0] Ui U [Jwlvy 46, |wlve — 0] Ulys U+ - Ul s U [[w|vm + 6, 0], 6 > 0 is
a sufficiently small number, 5 [I75] is the semicircle in the upper [lower] half-plane centered
at |w|v; and radius ¢ oriented clockwise [counter-clockwise]; in (2.10) the contour T [I~]
corresponds to the case cw < 0 [ow > 0].

Now passing to the limit in (2.10) as 0 — 0+ we get

ow>0: lir% I'(z,0 —iw) = (2m)72 [ d%, { [[A(=i€, —iw)] =176 92 gt
200

1 () [A(i, —iw)] 1 eintg? dg} = T, —iw), (2.11)

ow<0: lmT® (0 —iw) = (2n) f dzl{ [TA(=i€, —iw)] ™ e76? do+
g —> 21 l+

200

+ Qf h(€) [A(=i€, —iw)] ! 1ot 2 dg} = T¥(z, —iw), (2.12)

These limits exist uniformly for |z| < Ry with an arbitrary Ry.
Such type of integrals have been studied in [53]. Applying the arguments quite similar
to that of [53] we arrive at the formulae

I'?(z, —iw) = (2r)~* [lim [ h(€) [A(—i€, —iw)] L e lz6 ¢ &+

=019, |>6

25, | 10/00®m(08.0-1w)] U (0,0, 05—1w) ) (2.13)

Lir > | {[ NCigloe t? } ds;
o=lwlv;

where ®,, and U, are defined by (1.54) and (1.55), respectively.
We need to go over to the integrals over S in the last summand of (2.13). To this end
let us note that the exterior unit normal of S¥ is defined by the equation

J vfcbm(ga —i(U)
V@ (&, —iw)]

n(§) = (=1)

L EESs j=1,.m,
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since due to (1.54), (1.50) and(1.56)

(=1)7[0/00® (&, —iw)] oy, >0, j=1,...,m. (2.14)
Further,
_ €/l -n(é‘)] e -lf?/é’g@m(&,—iw)] ¢
dy, = | ds¢ = (—1)’ dse.
! l 0 o=lwlv; Sj =) Vo, (€, —iw)| o=|w|v; SJ

Therefore, (2.13) implies

'Y (e, —iw) = (2m) lV.P. ] 1) (A=, —iw)] eix€ g &

N _ N(— 1§ lwe Lag c
:l:m-]gl( b’ f V@ (6, 10) [V (€, 1) dS] (2.15)
where
VP [ () [A(=i¢, —iw)] e 8 dg = lim [ A(&) [A(—ig, —iw)] T el dE.
R3 5—>O‘cl>m(£7_iw)‘>(S

Existence and asymptotic behaviour of integrals similar to the above ones are investigated
in [21], [78], [79]. Namely, in [78] there are analysed the following functions (n-dimensional
version of the case in question)

ele c i
Li(z)= | |J;(§>)m(§)| dss, j=1,..m, (2.16)

5

J(z) =

(2.17)

where

i) diam(supp f) < oo; f, P, € C°(IR"),

ii) the equation ®,,(§) = 0, & € IR", defines (n—1)-dimensional closed nonselfintersecting
surfaces S7, j = 1,...,m, with the full curvature different from zero everywhere; moreover,

Vo, (&) #0for £ € S

iii) for an arbitrary unit vector 7 the system

{ (&) =0, (2.18)

V@, (§) VP (§)| 7 = £,

has only a finite number of solutions with respect to &.
Clearly, in the case under consideration the above conditions for the functions occured
n (2.15) are fulfilled due to (2.3) and I° — I1°. Moreover,

(I)m(gv _i(‘U) = (I)m<£7 MU) = (I)m(_gv iw),

and the corresponding system of type (2.18) defines 2m points +&7 € ¢ j = 1,...,m (the
so—called stationary points); we emphasize also that the unit exterior normal vector n(&7)
has the same direction as 7, while n(—¢7) is opposite directed.
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We assume the function ®,,(§) in (2.16) and (2.17) to possess the analogous symmetry
property with respect to €.

Now let |z| be sufficiently large, n = x/|z|, and let +&/ € S¢,j = 1,..,m, be the
stationary points corresponding to 7, i.e., n(&?) = n, n(=&) = —n(&) = —n.

According to the results in references [21], [78], we have then the following asymptotic
formulae for the functions I; and J:

(w) = lajel"® + aje =€ |a|~0-0/2 4 Offa| D)
_ i b, B +5j6—ix£j] || ~O=D/2 4 Oz~ +D/2), (2.19)
j=1
where
5 = a€l) = (2 S h L e,
a; = a;(—¢) = (2)(n—1)/2 1 f(=€) I(n—1)m/4

TR Ve, (o) "
,sz = ira;sgn(n - V&,,(¢7)) = ir(-1)a,,

b; = imd;sgn(n - VO,,(=¢&)) = —in(-1)a;, (2.20)

k(&) is the Gaussian curvature at the point £ € SY.
The asymptotic formulae (2.19) can be differentiated any times with respect to x.
It is easy to see that the symmetry properties of S7 imply

K’(g) = "{(_5)7 V(I)m(_g) = —V(I)m(f), (221)
forany § € 55 j=1,...m
By virtue of (2.16), (2.17), and (2.19) we derive
J(@) + A S in(—1)L(z) =

=1

= 3 im(=1P[(1+ Nagel€ — (1= Nage ] 2] =12 4 O(|a-D/2) (2.22)
j=1

with a; and @; defined by (2.20) and an arbitrary .
Now we prove the following proposition.

LEMMA 2.2 Entries of matrices (2.15) belong to C*(IR?) and for sufficiently large |z| the
asymptotic formulae

m

'Y (z, —iw) Z W) e 2|71 4 O(|z|2) (2.23)

hold, where the point &7 € S§ corresponds to x (i.e., n(§7) = x/|z|) and

G) — (g i) e (1YL N, —iw)
cy =c¢q (5 ,—1w) —( 1) 27r[/{(€j)]1/2 |V<I>m(§j,—iw)|\lfm(§j,—iw)’
1 N(_1£]7_1w>

G) — Wed 5o (1) .
== O S O Vo @, e el 1) 220

moreover, (2.23) can be differentiated any times with respect to x.
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Proof. The first part of the lemma is evident due to (2.3) and I° — IT°. To prove the
asymptotic formulae (2.23), we first perform the change of variable £ by —¢ in (2.15) and
afterwards rewrite it as follows

'z, —iw) = (27 )+ Zm (2.25)
=
where I;(z) and J(x) are given by (2.16) and (2.17), respectively, with n = 3; moreover,
MEN (L, —iw)
= 2.2

h(§), ®,,(&, —iw), and ¥, (£, —iw) are defined by (2.3), (1.54), and (1.55), respectively; here
we have used the fact that h, ®,,, and ¥, are even functions in &.
Now (2.23) follows from (2.25), (2.22), (2.21), (2.26), and (2.20). ]

Thus, we have proved that there exist one sided limits of the matrix (2.2) as
Rer=0—0%£.

Let us set
ow>0: limI(r,0—iw) =T (z,—iw) + I (z, —iw) = T'(z,w, 1), (2.27)
ow<0: limD(z,0—iw) =Tz, —iw) + TP (z, —iw) = [(z,w,2), (2.28)

o—0

where 'V, Ff) and T'® are given by (2.4), (2.11) and (2.12), respectively.
Combining the two latter formulae we have
D(z,w,r) = F_L[(1 = h(€)A™ (i€, —iw)] +
+(27) 3 V.P. g h(€)A~Y(—i, —iw)e‘ix5 de +

m

r+1 17r N(-1¢,— c _
D) e 2 (C f S 08 r=12 (2.29)

Now we formulate the main result of this section.

THEOREM 2.3 The matriz—functions I'(z,w,r), r = 1,2, defined by (2.29), are funda-
mental matrices of the operator A(D, —iw) and satisfy the following conditions:

i) I'(z,w,r) € C*(R3\ {0}) and in a neighbourhood of the origin (|z| < 1/2)
|DITy(z,w,7) — DETy(2)] < cols(x), ¢ =const >0, k,j=1,...4,

(k3)

where L'y;(x), @151, ¢ =const >0 and [ are the same as in Lemma 2.1;

ii) for sufficiently large |x|

Iz —y,w,r) Z , —iw) e(—l)r+1i(x—y)§j lz| ™' + O(|z] %), (2.30)

where ¢ are defined by (2.24), & € S% corresponds to the vector x and a range of the
variable y is a bounded subset of IR?; the equation (2.30) can be differentiated any times with
respect to x and y.
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Proof. Tt follows immediately from Lemmata 2.1 and 2.2. [}

REMARK 2.4 Note that, if in (2.30) the vector (x — y) is replaced by —(x — y), then the
point & is to be changed by —&7, simultaneously, since to the vector —x there corresponds
the point —&7 € S5 (—x/|x| = n(—¢7)). As a result the exponential factor in (2.30) will not
be changed.

REMARK 2.5 The fundamental matrixz of the adjoint operator A*(D, ), clearly, has the
form

I*(z,7) = F_L[{A (-6, )} = FLLHAT(E, 1)} =
= F L {AT(HE )} = (27T)_3Rf3[AT(—i§,T)]‘1 elre d¢ =

=0T (—-2,7), T=0—iw, 0 #0, (2.31)

where U'(x, T) is given by (2.2).
Therefore, there exist limits similar to (2.27) and (2.28)

M(z,w,r) = lin% M(z,7) =lm I (—z,7) =TT (—z,w,7), r=1,2, (2.32)

o—

where (—1)"ow > 0 is assumed.

The entries of matriz (2.31) and their derivatives decrease more rapidly then any negative
power of |x| as || — 400 if 0 < |o| < g (see Remark 1.2 ).

The asymptotic formulae for IT*(x,w,r) follow from (2.32) and Theorem 2.3

(2, w,7) Z eV 5171 O (|72,

where || is sufficiently large, §& € S§ corresponds to x, and
&) = [ (~¢1, —iw)]"

with ) defined by (2.24).
From Lemmata 2.1, 2.2, and Theorem 2.3 together with the equations (2.31), (2.32), and

I(z) =T(z) =T"(2) =(—x), T(tx) =t"'T(z), t >0,

we infer that the matrices I'(x, 1), I'(x,w,r), I'(x,7), and I'*(x,w,r) have the matriz I'(x)
as the dominant singular part in a neighbourhood of the origin.

REMARK 2.6 FEquation (2.30) implies the following representation
)
Nz —y,w,r) = ZF (x —y,w,r),

Jj=1
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where for sufficiently large |x|

(4)
I (
() , Q) .
r (l’—y,w,?")—'—l(—l)r g]]) I (x—y,w,r) = O(|.T‘ )7
i7=1...m, p=123 r=1,2,

v = yow,7) = ) U TEDE o O[] 2),

D,

P

&e S% corresponds to x and a range of y is again a bounded subset of IR3; here the matrices
c9) are given by (2.24).

REMARK 2.7 If the system of equations (1.46) is inconsistent in IR® for some w > 0,
then M (&, —iw) = det A(—i&, —iw) # 0 for arbitrary € € IR? and w € IR, and

Dz, —iw) = F L, ([A(=i§, —iw)] 1) € C®(IR*\ {0}) (2.33)

is a fundamental matriz of the operator A(D, —iw) whose entries together with all derivatives
decrease more rapidly than any negative power of |z| as |x| — +o00.

The main singular part of (2.33) in a neighbourhood of the origin is again the matriz
I'(z). Therefore this case is very similar to the pseudo-oscillation one [55].
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3 Thermo-Radiation Conditions. Somigliana Type
Integral Representations

In this section we formulate the generalized Sommerfeld-Kupradze type radiation conditions
in the thermoelasticity theory of anisotropic bodies and derive Somigliana type integral
representation formulae.

3.1. Let us introduce the classes SK"(Q27) of vector-functions defined on an unbounded
domain of type Q= (which is the complement to a compact region QF in IR?).

A vector-function U = (U, Us, Us, Uy) " belongs to the class SK”(Q7), r = 1,2, if it is
C'-smooth in ~, and for sufficiently large |z| the following relations hold (no summation
over the repeated index j in the last equation)

() (9) (4) (4)
U(ZE)ZZ U (ZL’), U (x):(U1>"'7U4)T:O(|x|_l)a
j=1
() W) . ‘
D, U (x) +i(=1)"¢ U (x) =0(|z[ ), p=1,2,3, j=1,....m, (3.1)

where &7 € S5 corresponds to the vector z.

Clearly, this definition is essentially related to the operator A(D,—iw) and its charac-
teristic equation (1.45). The conditions (3.1) will be referred to as generalized Sommerfeld-
Kupradze type radiation conditions in the thermoelasticity theory of anisotropic bodies(cf.
12])

A four-dimensional vector U = (Uy,---,U,)", satisfying conditions (3.1), will also be
referred to as (m,r)—thermo-radiating vector. We say that a 4 x 4 matrix belongs to the
class SK"(27) if each column of the matrix is a (m, r)—thermo-radiating vector.

Remark 2.6 implies that I'(z,w,r) € SK™(IR?\ {0}).

In the isotropic case m = 1 and S is defined by the equation ¢? = k? with k% = w?u~" (u
is the Lamé constant and w is the oscillation parameter). Therefore the point &' € S, which
corresponds to the given direction (vector) z, is given by &' = kyin, n = x/|z|, and conditions
(3.1) are equivalent to the well-known thermoelastic radiation conditions (see, e.g., [12], Ch.
I11).

3.2. Let U = (Uy,---,Uy) " be aregular vector-function in QF i.e., U € C*(QF)NCH(QF).

In addition, let A(D,7)U € L;(2*) and conditions (1.30) be satisfied (in the case of the
domain Q7). If we assume that either 0 < |Rer| = |o| < gy or o > 0, and use the identity
(1.22), by standard arguments we obtain the following integral representation formulae (see,
for example, [54], [16])

J L@ —y.7) ADy, 1)U (y) dy g{[Q(Dy,n(y)J)FT(x —y, D U=

U(z), z€O*,
—T(z =y, 7)[B(Dy, n(y))U(y)*} dS, = (3.2)
0, r e QF,

where boundary operators B and @) are given by (1.25) and (1.26), respectively, and the
fundamental matrix I'(x, 7) is defined by (2.2); n(y) is the outward unit normal vector of S
at the point y € S and S is a C%-smooth surface.
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From the representation formula (3.2) it follows that any solution of equation (1.9),
satisfying the condition (1.29) with o > 0, actually, is a C*®-regular in Q* vector-function
which decrease, together with all derivatives, more rapidly than any negative power of |z|
as |x| — +oo.

Due to Theorem 2.3 and equalities (2.27), (2.28) analogous representation formulae can
be written by means of the fundamental matrices I'(z, w, r) in the case of the domain Q7. One
needs only to replace A(D,7) and I'(z, 7) in (3.2) by A(D, —iw) and I'(z,w, 1), respectively.
Concerning the domain 2~ we will prove the following proposition.

THEOREM 3.1 Let 90~ = S be a C*-smooth surface and U be a reqular
(m, r)—thermo-radiating vector in Q, i.e., U € C*(Q7) N CH Q™) NSK™(Q7). Let, in addi-
tion, A(D, —iw)U have a compact support and belong to the space L1(27). Then

Ulz) = J [(z — y,w,7) A(Dy, —iw)U(y) dy +
+ [ {0 = g0 1) By, n(y) U )] =
~[Q(Dy, n(y), =) T (&~ y,w. N UW)" } dS,, v € (3.3)
here B, Q and n are the same as in (3.2).

Proof. Let R be a sufficiently large positive number and QF C By := {z € IR® : |z| < R}.
We assume also that supp A(D, —iw)U C Bg. Denote Q = Q~ N Bg and 0B = Xg.
Then the vector-function U is regular in (2. Therefore, we can write the following integral
representation (cf. (3.2))

Ux) = fo I'(z —y,w, ) A(Dy, —iw)U(y) dy +

. {Ef - g} {1Q(Dy, n(y), —)T (& — w0, 1)U ()] —
I(e — gy, 1) B(Dy n(y)U ()]} dS, @ € . (3.4

where n(y) is the exterior normal on the both surfaces S and Yg; clearly, n(y) = y/R
for y € Xi. Note that in the first integral the domain 2 can be replaced by 27, since
A(D,, —iw)U has a compact support.

Our goal is to show that the integral over ¥ tends to zero as R — +oc.

To this end, denote the right-hand side expression in (3.3) by 7[U]. Then by integrating
of (3.4) from v to 2v with respect to R and deviding the result by v, we get

Ulz) = T[UJ(x) + X (v),

X(v) =1 ?f dR Ef {IQ(Dy,n, —iw)I' (z — y,w, )] [U(y)] —
—I(z —y,w,7)[B(Dy,n)U(y)]} dXr, n=n(y)=y/R.

Next we prove that X (v) — 0 as v — +o0.
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It can be done by applying the arguments similar to that of [77]. In fact, for definiteness,
let r = 1. Then due to the thermo-radiation conditions (3.1)
mo ) ~
B(Dy,nU(y) =>_BG&,n) U (y) + O(R™?),

where &7 € S5 corresponds to the vector .

According to Remarks 2.4, 2.6, and Theorem 2.3 analogous formulae hold also for
[Q(Dy,n, —iw)['"(x — y,w,1)]" and T'(z — y,w, 1) (note that z is some fixed point in Q).
The terms corresponding to O(R™?) in the expression of X (v) decay as O(v~!), while the
all other summands have the following structure

valv) = 4 [ 4R J (o) g,(Rn) ho(Fn) R4S,

where ¢ € C*(X;), n € ¥4, gs and h; (s,t = 1,---,m) are smooth functions satisfying the
following inequalities

lg5(Bn)| < cR™'. [gRgs(Bn) — ips(n)gs(Rn)| < c R,
(Rl < e R™Y, |ggha(Rn) — ip(n)hi(Rn)| < ¢ R72,
pi(n) = (n-&) >0, ¢=const>0,

due to (3.1).
The last inequality is a consequence of (2.14), since

(- §) = (n(€) - &) = (-1 (PaniEeh . ) =
_ j l€7] _0_ _
B (_I)chpm(gj,_iwn [8| Iq) (&, 1w)}§:§j > 0.
Now we proceed as follows

vg(v) = fo s [ip1 (1) gs( R) hu(Rip) +
+9s(R77) Wt( )ht(Rﬁ)] R*d%, =

=3 J @ (s low(Ba) hu(Ro)] + O(R)} B2 dR =

— & ] {200 2om) (2om) — g (o) )
2v
— [ 9s(Rn) hy(Rn) 2RdR} d¥, + O(v™') = O(v1).
Thus, X(v) — 0 as ¥ — 400 which completes the proof. [

REMARK 3.2 From the above proof it follows that, if U satisfies the assumptions of The-
orem 3.1 and R is a sufficiently large positive number such that supp A(D,—iw)U C Bg,
then

J {[Q(Dy, n(y), —iw)I' T (z — y,w, )] "[U(y)] —
(@ =y, w,7)[B(Dy, n(y))U(y)]} dXr = 0

for an arbitrary x € B N Q™.
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COROLLARY 3.3 Let U be the same as in Theorem 3.1. Then the derivatives DU are
again (m,r)—thermo-radiating vectors for an arbitrary multi-index [ and the asymptotic
representation of DU at infinity can be obtained by the direct differentiation from the cor-
responding asymptotic formula of U.

COROLLARY 3.4 Let A(D,—iw)U(x) = 0 in IR?* and U € SK"(IR?). Then U = 0 in
IR3.

COROLLARY 3.5 Let F = (F,....,Fy)" € C'(IR?) and diamsupp F' < +oc. Then the

equation
A(D, —iw)U(z) = F(z), =€ IR?

is uniquely solvable in the class C*(IR*) N SK™(IR?) and the solution is representable by the
following convolution type integral

U(x)z%F(x—y,w,r)F(y)dy, x € IR3.
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CHAPTER II

FORMULATION OF BOUNDARY VALUE AND INTERFACE PROBLEMS

Here we present the classical and weak formulations of the boundary value and interface
problems of the thermoelasticity theory which will be investigated in the subsequent chapters.

4 Functional Spaces

In this section we introduce some functional spaces which will be needed in the formulation
of boundary value and interface problems. We recall here some properties of these spaces
and for details refer to, for example, [75], [76], [47], [45], [1].

Let QF, Q7, and S be the same as in Subsection 1.5.

By CF(Q*), CH*(QF), C*(S), and CH(QF), CF*(QF), CH(S), with integer & > 0 and
0 < a < 1, we denote the usual k-smooth and Hélder (k, «)-smooth function spaces. Note
that here we assume S to be a C**-smooth manifold. Further, Coomp(§27) stands for the
class of C*-regular functions with compact supports in Q~, C(QF) and C(S) denote the
spaces of continuous functions in Q* and S, respectively, and C* := C%* for 0 < o < 1.
By W, (F), W)1,.(QF), and W, ... (QF) we denote the usual Sobolev spaces, i.e., spaces
of measurable, in general, complex-valued functions that together with their first order gener-
alized derivatives are p-integrable, locally p-integrable, and compactly supported p-integrable
functions, respectively, in corresponding domains. Further, L,(Q%), Ly 10¢(Q2F), Ly comp(Q2F),
and L,(S) denote the usual (Lebesgue) measurable function spaces.

Let s € R, 1 < p < o0, 1<q< o0, andS € C® Then B (QF), B, 1,.(F),
Bs (S), and H(QF), HE . (QF), H3(S), stand for the Besov and the Bessel-potential spaces,
respectively.

Next, let S7 be a submanifold of S with a C*-smooth boundary 0S;. We introduce the

following spaces on Si:
By (51) ={fls = F € B, (5)} Hy(S1) ={fls, : f e H(S)},
By (S1) = {f € B, ,(S) : supp f € Su},  Hp(S1) = {f € Hy(S) : supp f € S},

where f|s, denotes the restriction of f to S, and s, p, and ¢ are as above. The appearance
of the Besov and Bessel-potential spaces with p # 2 and ¢ # 2 is not only of mathematical
interest. The case is that for particular mixed and crack type boundary value and interface
problems with specific geometry studied in mathematical physics and mechanics it is well
known that, in general, solutions or their derivatives have singularities at the collision curves
of changing boundary conditions or edge points of cracks and they do not belong to the class
of C'-regular functions in closed domains (see,e.g., [71], [81]).

28



Because of this fact and in order to allow a wide class of boundary data, on one side,
and to establish optimal regularity properties of the solutions, on the other hand, we state
the basic and mixed interface (transmission) problems in Sobolev spaces with p > 1. If we
invoke that u € W}(QF) [W}l,.(Q7)] implies uopqs € B H?(09%), then the need of Besov
spaces in formulation of our BVPs and interface problems becomes transparent. Clearly,
here u|g is defined in the trace sense.

We recall that H; = W5 = Bj,, W! = B!, and HY = W}, for any s € IR, for any
positive and non-integer ¢, and for any non-negative integer k.

It is evident that first order derivatives of functions from W, (Q%) and [IW,,,.(27)] be-
long to L,(Q7) and Ly, 0c(€27), respectively, and, in general, they have no traces on S.
However, for vector-functions U € W (QF) [W)} (7)), satisfying, in addition, A(D, »)U €
Ly(Q%) [Lpoc(€27)] the functionals [P(D, n)UJg € [B, 1/7(S)]* and [A\(D, n)Uis € B, Y7(S5),
i.e., the functional [B(D, n)U|S € [B;}/7(S)]* (see (1.25)), can be defined correctly by means

of the Green formulae (1.21). "
To this end, let us set
(BD,mU§, VI§)s:= [ EWUV)dz+ | AD,=)U-Vdx (4.1)
o+ o+
([B(D,n)Ulg, [Vlg)s == [ E(U,V)dz — [ A(D,»)U-Vdzx|, (4.2)
0- o-
where E(U,V) is given by (1.27), and
1 1
VeWy(Q) [VeW, om(Q)], 5 + 5= 1.

Clearly, by the trace theorem [V]$ € B;,T pl/ P /(S ).

It is easy to see that the right-hand side expression in (4.1) [(4.2)] gives the same value
for arbitrary vector-functions V€ W (") [V € W, np(€27)] having the same traces on
S (provided U is fixed). This in turn shows, that the functionals defined by the above
equations are, actually, supported on S. We also note that, if U € C*(QF) [U € C1(Q27)]
and A(D,sx)U € Li(27) [L110c(€27) ], then the above introduced functionals correspond to
the usual boundary values [B(D,n)U|t and [B(D,n)U]", respectively. Therefore, we can
consider (-, - )s in (4.1) and (4.2) as dualities between the spaces B, 1/7(S) and B;,/’I;,(S).
Note that

<f,g>s=g<f,g>d5=§1fjgjds

for the smooth vector functions f = (fi, -+, f1)" and g = (g1,---,94)", i.e., the above
duality extends the usual "real” Ls-scalar product.

Throuhgout this monograph all boundary and interface conditions for the displacement
vector and temperature always are understood in the trace sense, while for the stress vector
and heat flux they are to be concidered in the above duality sense, i.e., in the sense of
continuous linear functionals.

REMARK 4.1 Let us note the following two simple things. Firstly, the condition
[B(D,n)U]" =F on S,
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where U € [WHQN]*, AD,)U € [L(QN)]*, and F € [B,}/?(S)]*, means in the above

p,p
functional sense that

[ EUV)dr+ [ AD,»)U-Vdr=(F,[V]{)s
o+ 0+

for arbitrary V e [W, ()]
Secondly, let
U e WHQO AD.AU € L), Fe (Bl
where S1 a submanifold of the surface S as described above. Then the condition
[B(D,n)U]" = F on S,
is understood as follows

Qf+ EU,V)dz +Qf+ A(D,s)U -Vdz = (F, [V]{)s = (F, [V]§ )s

(4.3)

(4.4)

for arbitrary V- € [Wy(Q")]* whose trace [V]§ is supported on Sy, i.e., [V]§g, = 0. Bui-
dfntly, Vg, € [B;,{g/(&)]‘l. Here (-, - )sg, is the duality between the spaces B, }/?(S1)]* and
[B;,/f,,(Sl)]‘l. Boundary conditions for the exterior domain 2~ are understood quite analo-

gously. We have only to change the sign "+ 7 by the sign "—" in front of the volume integrals
in the left-hand sides of (4.3) and (4.4), and the superscript "+ 7 is to be replaced by the su-

perscript "—"

same type of Sobolev spaces as above but now with a compact support in 2.
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5 Formulation of the Basic and Mixed BVPs

In this section and in what follows boundary value and interface problems for the pseudo-
oscillation and steady state oscillation equations will be marked by the subscripts 7 and
w, respectively (unless otherwise stated). We note that in the pseudo-oscillation problems
T=0 —iw with ¢ > 0 and w € IR.

We start by the formulation of the so-called basic and mixed boundary value problems
for the bounded domain Q" and its unbounded complement Q. As above, we assume that
S = 00* is a C*-smooth manifold. Moreover, U = (u,u;)" is again a four-dimensional
vector-function whose first three components correspond to the displacement vector, while
the fourth component describes the temperature field.

We consider the following BV Ps.

Find a solution U to the system of differential equations (1.9) [(1.10)] in QF satisfying
one of the boundary conditions on S:

Problem (P1)E [(P1)Z]:
W =Ff, f=(ftfo k), (5.1)
[wal* = fa, (5.2)

i.e., the dicplacement vector and the temperature are prescribed on S.

Problem (P2)E [(P2)3E]:
[wl* = f, (5.3)
[)\(D,TL) U4]:t = F4, (54)

i.e., the dicplacement vector and the heat flux through the surface S are given on S. Here
A(D,n) = 0, is given by (1.24). The case [9,u4]* = 0 describes a thermal insulation over
the surface bounding the body.

Problem (Ps3)E [(Ps)2]:
[P(D,n)Ur =F, F=(F,F,F;)", (5.5)
[ua® = fi, (5.6)

i.e., the vector of thermal stresses and the temperature are given on S. Here P(D,n) is
defined by (1.13).

Problem (Py)E [(Py)2]:
[P(D>n)U]i = ﬁ> (57)
MDD, n) ug* = Fy, (5.8)

i.e., the vector of thermal stresses and the heat flux are prescribed on S.
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Problem (Pumiz)E [(Pomiz)E):
) = 7 and [w]* = f{" on S, fO = (A" 4 1), (5.9)
[P(D,n)U)F = F® and [A(D,n)us* = F? on Sy, F® = (F? F® F)T, (5.10)

where S1USy =S, S1NSy =0, S; # 0, j = 1,2; we assume here that the common boundary
of 5] = 05, is also a smooth curve.

The functions fi, Fj, 151) and F,f) are given functions and in the sequel they will be
referred as boundary data of the BVPs.

Let us introduce the matrix boundary operators

I3 [0]3x1
B(D(D,’ﬂ) = [4 = [5kj]4><47 B(Q)(D,n) = y
Olixs AD;n) |, |
Buy(D,n) := B(D,n), Bg(D,n) = [OT](D’”)]M’ [1_6 ilaa | (5.11)
1x3 Axd

where T'(D,n) and B(D,n) are given by formulae (1.12) and (1.25), respectively. The
boundary conditions corresponding to the above problems (Py,)E [(Px)Z] can be then written
as follows

(B (D, n)U* =g, k=1,2,3,4, (5.12)

where the four-dimensional vector g is constructed by the boundary data of the corresponding
problem.

By a solution of the interior BVPs (Px)f and (Py) we understand a vector U from the
space either C'(QF) N C*(Q) or WHQT) with p > 1.

The mixed BVPs (Ppiz)f and (Ppig)f will be considered only in the space W} (Q%) since,
in general, they have no solutions in the space of smooth functions C*(Q¥).

Clearly, in the case of the Sobolev spaces W, (Q") the differential equations (1.9) and
(1.10) are to be considered in the distributional (weak) sense, while the boundary conditions
are to be understood in the functional-trace sense described in the previous section.

Moreover, in the exterior BVPs for the domain {2~ we provide that a solution to the
pseudo-oscillation equations (1.9) has to satisfy the conditions (1.29) at infinity (i.e., (1.30)),
while a solution to the steady state oscillation equations (1.10) has to meet the generalized
Sommerfeld-Kupradze type (m, r)—thermo-radiation conditions (3.1). It is also evident that
in the exterior problems for the homogeneous pseudo-oscillation equations we may assume
U e Wpl(Q_) (due to the required asymptotic behaviour at infinity), while in the exterior
problems for the homogeneous steady state oscillation equations we have to look for solution
in the space W),,.(Q7).

We remark that every solution to the homogeneous elliptic equations with constant co-
efficients (1.9) and (1.10) is C*™-regular in Q% and Q. Therefore, we have to control the
smoothness of the solutions only near the boundary S.
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Concerning the boundary data in the above formulated problems we note that the pre-
cised functional spaces for them will be given below when we start the systematic study of
the existence of solutions to the nonhomogeneous BVPs (see Chapter V).

However, we mention here only some necessary (compatibility) conditions. Namely, when
we look for a solution U € C'(QF), then the boundary functions f, and Fy, (k = 1,---,4)
have to belong to some subspaces of C'(S) and C°(S), respectively, while the following
natural conditions f, € B. '/P(S) and F, € B;/P(S) must be satisfied when we seek a
solution U in the space W, (Q*) [W} ) .(2F)]. Analogously, in the mixed BVPs we have to
require the natural restrictions f{" € B P (Sy) and F? e B, /P (Sy).

We note here that in the elasticity theory of isotropic bodies the basic BVPs in the
classical setting by potential methods have been exaustively investigated in [43], while the
mixed BVPs have been studied in [48], [13], [72], [73] (L2-setting) (see also references therein).
The same problems of the elasticity theory of anisotropic bodies are considered in [54], [8],
[57] (classical and L,-setting).
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6 Formulation of Crack Type Problems

This type of problems appear when the elastic body under consideration has interior cracks
of the form of two-dimensional open manifolds. We consider the case when these crack
surfaces are disjoint and do not hit the boundary of the body.

We deal with the following model problems.

Let S; be an open, two-dimensional, C*-regular, two-sided, connected manifold with
C*-regular boundary 05;. Moreover, we assume S; to be a subset of some closed C*-
regular surface S surrounding a bounded domain, say QF. Further, let IR = IR®\ S,
S1 = S1 U8y, and as usual, Q- = IR?*\ QF. We choose that direction of the unit normal
vector on S; which corresponds to the outward normal vector on S (with respect to Q).
Due to this choice, the symbols [-]* denote again limits on S; from Q* either in the usual
classical-trace sense or in the functional-trace sense described in Section 5.

Let the whole unbounded domain IR?S%1 be filled up by an anisotropic elastic material with
thermoelastic characteristics introduced in Section 1.

The crack type problems in the thermoelasticity theory are formulated as follows (cf.
16)).

Find a solution U = (u,us)’ € W), (IRE), p > 1, to the system of steady state
oscillation equation (1.10) in IRY satisfying the generalized Sommerfeld-Kupradze type
(m, r)—thermo-radiation conditions at infinity (3.1) and one of the following boundary con-
ditions on Si:

Problem (CR.D),,:

o] = £, and [ul” = 17, (6.1)

] = £, wa] ™= f17,

where J?i:<f1:tvf2ivf§t)—rv fi:(fl:tv"'vff)—r;
Problem (CR.N).:

[P(D,m)UL* = F, [P(D,m)U]- = F©),
and (6.2)
ND,myus]* = F}, ND,myus)™ = Fy7,
where F’i: (Fl:t>F2i>F3i)T> Fi: (Fl:taaFf)T
The boundary data f;f and i belong again to the natural spaces
feeBYP(S), FfeB,)/P(S), k=1,-.4. (6.3)
Moreover, we assume
= foeBYP(S), Ef—F; €B2P(S)), k=1, 4, (6.4)

which is stipulated by the fact that an arbitrary solution U to the equation (1.10) is C*-
regular in IR} and, obviously,

U" = [U]" =0 and [B(D,n)U]" —[B(D,n)U]” =0, on S\S;. (6.5)
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The formulation of crack type BVPs for the pseudo-oscillation equations are similar to
the above ones.

In this case we look for a solution U = (u,us)" € WE(IRY), p > 1, to the system
of equations (1.9) in IR, satisfying the decay conditions (1.30) at infinity, and either the
boundary conditions (6.1) (in Problem (CR.D),) or the boundary conditions (6.2) (in Prob-
lem (CR.N),) on S;. The boundary data f;- and F* are supposed again to meet embeddings
(6.3) and (6.4).

If one considers the crack type problems for the domains QF with the interior cut S,
then to the above boundary conditions (6.1) and (6.2) on Si, clearly, one has to add one
of the basic boundary conditions on S corresponding to the BVPs (Py)E [(Pr)E]. As it
becomes transparent later on, these type of BVPs can be investigated by slight and evident
modifications of our analysis developed in the next chapters. Therefore, we confine ourselves
to deal with only the above formulated model problems.

We remark that analogous problems of elastostatics of isotropic and anisotropic bodies
have been investigated in [13], [17], [18] (see also references therein). The above formulated
crack problems for the pseudo-oscillation equations of the thermoelasticity theory in the
general anisotropic case have been treated in [16].
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7 Basic and Mixed Interface Problems

In this section we formulate the basic and mixed interface problems of the thermoelasticity
theory for piecewise homogeneous anisotropic bodies. In the scientific literature the mixed
interface problems are called also as interface crack problems.

The most general case of the structure of a piecewise homogeneous elastic body un-
der consideration can be mathematicaly described as follows. In three-dimensional Eu-
clidean space IR? we have some closed, smooth, connected, nonselfintersecting surfaces
S1,8y,..., 5, (S NS, =0, j+# k). By these surfaces the whole space IR? is devided into sev-
eral connected domains €2y, ..., €);. Each domain is supposed to be filled up by an anisotropic
material with corresponding, in general, different thermoelastic coefficients.

Common boundaries of the two distinct materials are called interfaces or contact surfaces
of the piecewise homogeneous elastic body. If some domains represent empty inclusions, then
corresponding to them surrounding surfaces are called boundary surfaces of the composed
elastic body in question. Such type of piecewise homogeneous structures encounter in many
physical, mechanical and engineering applications. Therefore, besides the theoretical impor-
tance of the transmission problems we intend to study, this interest is also motivated by
their fundamental applications to many areas of science and technology.

7.1. For illustration of the method suggested we consider the following model problems.
We assume that the piecewise homogeneous composed anisotropic body consists of two
elastic components occupying bounded domain Q' = QF and its unbounded complement
D2 =0 = IRA\QF; 00T =8, Qv = Q*U S, u = 1,2. Thus, the whole space IR® can be
considered as a piecewise homogeneous anisotropic body with the single contact (interface)
surface S.

Let a smooth, connected, nonselfintersecting curve [ C S devide the contact surface S
into two open parts Sy and Sp: S =S, US, UL, S=5NS=0,5;=5;Ul, j=1,2.

We treat the two groups of interface conditions:

I. Basic interface problems. On the whole contact surface S there are given

a) jumps of the displacement vector, the temperature, the vector of thermal stresses, and
the heat flux (Problem (C)) or

b) jumps of the temperature, the heat flux, and the normal components of the displace-
ment and the stress vectors; in addition to these conditions, the limits of either the tangent
components of the stress vectors (Problem (G)) or the tangent components of the displace-
ment vectors (Problem (H)) are given from both sides of the interface (cf. [43],[28],[31],[33]).

II. Mized interface problems. On the submanifold S; the conditions of Problem (C) are
prescribed, while on Sy there are given:

a) the conditions of Problem (G) (Problem (C — G)) or

b) the conditions of Problem (H) (Problem (C — H)) or

c) the displacement vector and the temperature (on the both sides of Sy) (Problem
(C—DD)) or

d) the thermal stresses and the heat flux (on the both sides of Sy) (Problem (C — NN))
or

e) the displacement [stress] vector (on the both sides of S3) and the jumps of the tem-
perature and the heat flux (Problem (C — DC) [Problem (C — NC)]) (cf. [56], [32], [34], [39],
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[38]).

The analogous basic interface problems in the classical elasticity and thermoelasticity of
isotropic bodies have been studied by the potential and variational methods in [43], [31],
[64], [81] (see also [72], [59], [60]). In anisotropic elasticity the basic interface problems have
been considered in [33], [39], [22], while the mixed interface problems have been investigated
in [34], [56], [64], [39], [9].

7.2. Before we start the mathematical formulation of the above interface problems let
us introduce some notations.

We assume that the domain Q* (u = 1,
moelastic constants are c,g’;;q, )\I(,’;), ﬁl(,’;), c(()” ), with the same properties as in Section 1. The
displacement vector and the temperature in 2* are denoted by u® and uff‘ ), respectively.
All operators and thermo-mechanical characteristics corresponding to the elastic material
occupying the domain Q* we mark with the superscript u. For example, the basic equations
of pseudo-oscillations and steady state oscillations now read as (see (1.7)-(1.11))

2) is filled up by elastic material whose ther-

AWD, UM () =0 in Q~ (7.1)
AW(D, —iw) UM () =0 in QO (7.2)

The symbols 7" (D, n), P# (D, n), and A (D, n) stand now for the corresponding classical
stress operator, thermo-stress operator, and heat flux operator, respectively (see (1.11),
(1.13), (1.24)).

First we formulate the basic interface problems for the steady state oscillation equations
of thermoelasticity.

Find vector functions U™ (p = 1,2) that solve the equations (7.2) in * and that satisfy
the following interface (transmission) conditions on S:

Problem (C),:

O = W) = o [T =[] = (7.3)
[~P<1>(D,n)U<1>]+ —N[P@)(D,n)U(?)]‘ = F, 74
AD(D, m) g1t = XD, m)[uf?]~ = F,

where
f=U " F=nhaf), F=(FF)T, F=(RFF)
Problem (G).:
(PO(D, ) UV .t = FP . [PO(D,n)UY - m]*t = FH, (7.5)
(PO(D,n)U? |- = EO, [PO(D,n)U? .|~ = FL), (7.6)

w0t —[w® 0" = f,, [POD,n)UY . nt —[PP(D,n)U? -n]~ =F,, (7.7)
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)" = W) = fi. DOD ] = DO (D, n)ul”)” = Fu (7.8)

Problem (H),: conditions (7.7), (7.8), and

[u(1> AT = ﬁ(+)’ [u(l) m]t = fg)’ (7.9)
w07 =7, [ m) = 5. (7.10)

Here and in what follows we denote by n(z) again the outward (to Q%) unit normal vector
at the point x € S, and by I(x) and m(z) orthogonal unit vectors in the tangent plane. The
orthogonal local co-ordinate system n, [, and m at z € S is orientated as follows: [ x m = n,
where - X - denotes the vector product of two vectors.

The conditions (7.5)-(7.6) and (7.9)-(7.10), in fact, represent limits on S of the tangent
components of the thermo-stress vector and the displacement vector, respectively, while the
second equation in (7.4) represents the jump of the heat flux on S.

The conditions (7.3) and (7.4) can be written then as follows:

U] —[UP]" =f on S, (7.11)
[BY(D,n) UV — [BP(D,n)UP]"=F on &, (7.12)

where B (D, n) is defined by (1.25).

Next, we recall that S; and S, are the two disjoint submanifolds of S such that S;US, =
S, and formulate the mixed interface problems.

Find vector functions U (u = 1,2) that solve the equations (7.2) in Q* and that satisfy
one of the following mixed interface conditions on S

Problem (C — DD).,:

UMW)+ — U]~ = fO
on S, (7.13)
[BYO(D,n)UM)+ — [BA(D,n) U]~ = FD)
U] =™ [UP]" =) on S, (7.14)

Iy 1 7 1 1 1
fO =0T T =R BT
FO = (FO.F) FO = (FY B RV

-~ + ~ + + +
e = (D, oINT, 3® = (1, 5, TN

Problem (C — NN),: conditions (7.13) on S; and

[B(l)(D,n)U(l)]+=<I>(+), [B(z)(D,n)U@)]‘ =3 on Sy, (7.15)
¢® = (85, 6{NT, & = (2", 817, @),
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Problem (C — DC),,: condition (7.8) on S and

L) = [w?]” = O, [PO(D,n) UV - [PP(D,n)UP]" =FY on S, (7.16)

WO =™, w®)m =3 on S, (7.17)

Problem (C — NC),: conditions (7.8) on S, (7.16) on S;, and
POD, ) UV =0F) [PO(D,n)UP]” =0 on S,. (7.18)

Problem (C — G),,: conditions (7.8) on S, (7.16) on S, and

[u(l) . n]"" J— [u(2) . n]_ — ﬂ?)

on S, 7.19
[PO(D,n)UDY -]t — [PA(D,n)UP -n]~ = F i (719

—~

2)

POD, ) UD -t =0 [PO(D,n)UD . m]*t =) on S,

m

(POD, U .1~ =87, [POD,n)U® - m]” =8> on Ss.

m

Problem (C — 'H),,: conditions (7.8) on S, (7.16) on S1, (7.19) on S, and
W4T =3, =g on S,
w? " =37, [w? -m]"=3%) on S,

In the all above steady state oscillation problems we require that the vector function U?)
satisfies the (m, r)—thermo-radiation conditions at infinity.

Moreover, by a solution to the above interface problems we understand a pair of vector-
functions (UM, U®) satisfying the conditions of the corresponding problem.

We note that the basic interface problems formulated above will be studied in both the
regular (C'(Q1), C'(Q?)) and the Sobolev (W2(Q2'), W ,..(©22)) spaces.

Therefore, the given data of the interface problems belong to the corresponding natural
functional spaces, and the transmission conditions are to be understood in the classical sense
and in the functional-trace sense, respectively.

Particularly, in the regular case, all data corresponding to the displacement vector and
the temperature are embedded in Cl(S ) space, while the data corresponding to the thermo-
stress vector and the heat flux are embedded in C°(S) space. In the case of weak setting (in
Sobolev spaces), these data are in B!-1/7(S) and B, }/?(S) spaces, respectively.

The above mixed type interface problems will be treated only in the weak setting, i.e.,
in this case we look for the unknown vector functions U and U® in the Sobolev spaces

v ewl(Q) and U®ew,

Jloc

(Q*)NSK™M(Q?) 1< p < oo. (7.20)

This implies that the data of the mixed interface problems have to meet the following
natural restrictions caused by (7.20):
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fre BIYP(S), Fye B/P(S), (7.21)
W e BIL(S), FY e B (S, o FP,6, ¢ e Bl 1(S),

n ? m

oY ED ) ) € BI1r(S,), k=14 (7.22)

Moreover, the inclusions (7.20) lead also to the following necessary (compatibility) condi-

tions:
a) in the problem (C — DD),;:

M on Si,
=47 v el ) (7.3
) — ) on Sy, ’
b) in the problem (C — NN),;:
F® on S,
F = F e [B,)/P(9))% (7.24)
) — o) on Sy,
¢) in the problem (C — DC),:
- L) on Si, -~
F={7 v Fel ) (729
g =) on Sy, ’
d) in the problem (C — NC).,:
_ | FO on Si, -~ . 5
F={ ~ F e [B, /()] (7.26)
) —d) on S, 7
e) in the problem (C — G),:
_ fO.n on S, -
fn = f ~ ' fn € Bl_l/p(5)7 (727)
p,p
@ on S,
_ | FO on Si, -~ 1 3
F={ N N ~ ~ Fe BP9 (7.28)
(@) — &N+ [ — 3N m + FPn on S,
f) in the problem (C —H),:
~ F1) on Si, -
S ] Y FeBLOP. (129
2 =@ N+ @5 = 5 Im+ fPn on Sy,
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N FO.n on S, - .
F, = ~ F, € B, 1/P(9). (7.30)
F® on S,

In the sequel all these conditions are supposed to be fulfilled. Note that the conditions
(7.23), (7.25), (7.27), (7.29), and (7.24), (7.26), (7.28) and (7.30), hold for arbitrary functions
satisfying (7.21) with 1 < p < 2 and 2 < p < oo, respectively. This follows from the
multiplication properties of Besov spaces (see [76], Ch. 3, Section 3.3.2).

Finally, we note that for the domains of general structure, described in the beginning of
the section, the basic and mixed transmission problems mathematically could be formulated
quite similarly: on the contact surfaces the conditions one of the interface problems stated
above are assigned, while on the boundary of the composed body the conditions of the basic
(or mixed) boundary value problemes are given. We observe that the all principal difficulties
arising in the study of problems for the composed bodies of general structure are presented
in the above model problems as well.

7.3 The basic and mixed interface problems for the pseudo-oscillation case are formulated
in the same way. The only difference is that a solution U® to the equation (7.2) in Q2 has
to satisfy the natural decay condition (1.30) at infinity. Therefore, in the weak setting, we
look for solutions in the spaces

1 1.0l 2 1702
U()GWP(Q) and U()EWP(Q), 1 <p<oo. (7.31)

These problems, due to the above agreement, we denote by symbols (C),, (G),, (H),,
(C—DD),, (C—NN),, (C—DC),, (C—NC),, (C—G),, (C—H),, respectively.

The interface condtions on S in the regular and weak setting of these problems read again
as in the steady state oscillation case.
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CHAPTER III

UNIQUENESS THEOREMS

In this chapter we study the homogeneous versions of the above problems and prove
the corresponding uniqueness theorems. The problems in the classical formulation will be
analyzed completely, while the problems in the weak setting will be treated only partially.
Namely, we consider here the case p = 2. The general case (p > 1) will be considered later
together with the existence questions.

8 Uniqueness Theorems for Pseudo-Oscillation Prob-
lems

8.1. Let us begin with the consideration of the basic BVPs of pseudo-oscillations.

THEOREM 8.1 The homogeneous versions of the problems (P_k)jf, k=1,2,3,4, have only
the trivial solutions in the class of reqular vector functions C*(QF).

Proof. Let U = (u,uy)" € CH(QF)NC>®(QF) be a solution to one of the homogeneous BVPs
indicated in the theorem. Making use of the identity (1.23) with » = 7 = ¢ — iw, where
o >0 and w € IR, we get

f+ {ckquDpqukuj + 72 |ul® + = Apg Dyua Dyus + ;—g|u4|2} dz =0, (8.1)
Q
since the two other integrals in (1.23) vanish due to the homogeneity of the differential equa-

tion (1.9) and the boundary conditions (see (5.1)-(5.8)). Separating the real and imaginary
parts leads to the system of equations

Qf+ {ijqupqukUj + (0 — w?)|ul* + 7z AwaDgtta Dpuia + :‘;—g|u4|2} dr =0, (8.2)
w [ {200u? + iz Ap Dgts Dpia } da = 0. (8.3)
O+
Hence, by (1.14) and (1.15), we infer that u =0 and us = 0 in Q. ]

THEOREM 8.2 Let U = (u,uy)" € Wi(Q2F) be a solution to one of the homogeneous
BVPs (Py)t, k=1,2,3,4. Then U =0 in QF.

Proof. We prove the theorem for the problem (P,)F. The other problems can be treated
analogously.
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In the case under cosideration the homogeneous boundary conditions (5.7) and (5.8)
(with F' = 0) are understood in the functional-trace sense described in Section 4. Invoking
the definition (4.1) with » = 7, and noting that A(D,7)U(x) =0 in QF, we conclude

(IBO.mU. [V)s = [ E(U.V)da. (34)

where V = (v,v,)", with v = (vy,v9,v3)", is an arbitrary vector function of the space
(WHOQT)], and E(U, V) is given by (1.27). Clearly, (8.4) implies

([P(D,m)U]§, [0]§)s = f {ijpq DypugDyv; + 72,7, — /quu4Dpvq} dz, (8.5)
(D, m)ul§, ild)s = | {MoaDgtta Dyvs + corua®i + 718 Dyuig | dz, — (8.6)
0
where v = (v1,v2,v3)" and vy are arbitrary elements of the spaces [W3(Q1)]? and W} (QF),
respectively.

Multiplying (8.6) by (77p) !, taking its complex conjugate, and adding the result term-
wise to the (8.5) lead then us to the equation

([P(D.U]s, [0]§ )s + = (MDD, n)uals , [va]§ )s =

= Qf; {ijqupqukUj + T2upv_p — BpgluaDpvy — vaDyugl+

+_T ApgDyuaDyvy + £ u4v4} dx, (8.7)

It is evident that, if U is a solution to the homogeneous BVP (P,)1, then the left-hand side
expression in (8. 7) vanishes. Whence

j; {ijqupqukUj + T2y Ty — Bpglta Dyvy — vaDpuig)+
Q
+_T ApgDgusDyvy + & u4v4} dx =0, (8.8)

For arbitrary v; € W3 (QT), j = 1,4. Since we are allowed to put here v; = u; and apply
the arguments of the proof of Theorem 8.1, we get u; =0 (j = 1,4) in Q.

Now we make some remarks concerning the other homogeneous boundary value problems.
First of all we note that the starting point to prove the uniqueness of solutions in Sobolev
spaces always is the formula (8.4). For example, let us consider the homogeneous problems
(P1)F, and let some vector-function U € W} (QT) be its soluton. Due to the homogeneity
of the problem, obviousely, [U]" = 0 on S in the usual trace sense. Next, let us calculate
the corresponding thermo-stress vector and the heat flux on S, i.e., the vector [B(D,n)U]§
which is understood in the functional sense. To this end we have to apply the definition
(4.1) which in the case in question reads as (8.4). Surely, we may substitute the solution
U € Wy () in the place of the vector-function V' € Wy (") in the equations (8.4)-(8.8).
Since the trace [U]§ vanishes on S, we again arrive at the equations (8.2) and (8.3). Whence
U =0in Q" follows. n

THEOREM 8.3 The homogeneous mized BVP (Ppi)T in the class W4 (QT) has only the
trivial solution.
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Proof. Denote by U = (u,us)" € W3 (Q27) an arbitrary solution of the homogeneous mixed

problem (P, )f. Clearly, [U]3, = 0 in the usual trace sense and, therefore, [U]§, € E%/;(SQ),

since U € B217/22(S ). Further, let us note that the homogeneous boundary conditions for the

vector U on S5, due to Remark 4.1, imply
Qf+ E(U,V)dz = ([B(D,n)U]3,, [V]§,)s, =0 (8.9)

for arbitrary V € W;(Q%) with the property [V, € E;’/;(SQ). Clearly, the equation (8.9)
is equivalent to (8.8), where we may again substitute the vector-function U in the place of
V', since the U satisfies the restrictions required above for V in (8.9). Therefore, with the
help of the arguments in the proof of Theorems 8.1 and 8.2 we easily conclude that u; = 0
(j=1,4) in QF. n

The uniqueness theorems for the exterior basic BVPs for the pseudo-oscillation equations
can be proved quite analogously.

THEOREM 8.4 The homogeneous BVPs (Py);, k =1,2,3,4, and (Ppiz); have only the
trivial solutions in the space W3 (£27).

Proof. We will prove the theorem only for the problem (P, )-, since for the other problems
it is verbatim.

Let U = (u,uy)" € W4 (27)NC™(27) be an arbitrary solution to the mixed homogeneous
BVP for the pseudo-oscillation equations. Then, in addition, the U satisfies the decay
condition (1.30) at infinity. Due to Remark 4.1 and the homogeneity of the boundary
conditions for stresses on Sy the following equation

(BD;mUls,, [V]s,)s = —Q[ E(U,V)dz =0, (8.10)

holds for arbitrary V'€ Wy o, (Q7) with [V]g, € §217/22(52), ie., [V]g, =0.
As in the proof of Theorem 8.2 we can easily show that (8.10) yields

J {ijqupqukUj + T2y T, — Bpg[uaDyvy — vaDpug)+
o
+%>\quqU4DPU4 + ;—gu_4@4} dr = 0. (811)

Note that C*™-regular vector functions having compact supports in Q~ and with zero traces
on S are densely embedded in the space {U € W3(Q7) : [U]g, = 0}. Thus, we can choose
a sequence {V™ € C, (Q7) : [VW]5 = 0} which converges to the vector function U in
the W, (Q7)-norm. Therefore, simple limiting arguments yield that we may substitute uy in

the place of vy, in (8.11). As a result we finally obtain

J {ijqupqukUj + 7 |ul? + 2 Apg Dgua Dyug + ;—g|u4|2} dz =0, (8.12)
which completes the proof (see the proof of Theorem 8.1). [

8.2. Now we consider the crack type problems.

THEOREM 8.5 The homogeneous problems (CR.D), and (CR.N). have only the trivial
solutions in the space W3 (IR% ).
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Proof. Let U € W, (IR%) be some solution to the homogeneous problem (CR.D),. Clearly,
[U]¢, = 0 and [U]g, = 0 in the usual trace sense. Recall that S; C S, where S = 9Q* for
some bounded domain QF. Next, let us calculte the functional traces [B(D,n)U]$. Note

that [B(D, 7”L)U]§\S1 exist in the usual trace sense and [B(D, n)U]S\S [B(D, n)U]S\S— since

U e C"’O(IR:;—l). We apply again the definitions (4.1) and (4.2) to write the equations

([BD,n)US, [V]§)s =1 EU,V)dx, (8.13)
([B(D,n)Ug . V|5 )s = - EU, V") dz, (8.14)
where
V= (v,00)" € Wy(QF), V'=(0,0))" € W eoump(),

v = (vi,v9,03)", v = (v}, vy, vh)".

Making again use of the limiting arguments from the proof of Theorem 8.4, we easily conclude
by virtue of (8.13) and (8.14)

S BUV)dr + [ E(UV')dz =
<[B(D nUg, [VI§)s = ([B(D,n)Uls . [V']5)s (8.15)

for arbitrary V' € [W; (Q7)]* and arbitrary V' € [Wy o, (7))
By the same manipulations as in the proof of Theorem 8.2, we derive from (8.15)

Qf+ {ijqupqukUj + 72upv_p — Bpg[uaDypvg — vaDpug|+

+2=Apg DguaDyvs + 2750, } da +

+ / {ckquDpqukv§» + T2up0] — Bpgusa Dy, — vj Dyug]+

= Apg Dgtta Dyt + Ou_wjt} dx =

= ([P(D,n)U]§, [0]§ )s + s (IMD, n)wal , [0]§ )s —
—([P(D,n)U]s , [V]5 )s — = { [MD. n)uds , [vis )s- (8.16)

We may substitute in this equation V' = Ulg+ and V' = Ulqg-, where U|g+ denotes the

restriction of U onto QF. Taking into account the equalities [U]5, = 0, [B(D,n)U]%, aE =

[B(D,n)U];\S , and [U]S\S = [U];\S—l, we easily see that (see also Remark 4.1)
([P(D,n)U§ , [@3)s + = (MD, n)ua]§ , [w]§ )s —
—([P(D,n)U]s , [Els )s — s { MD, n)udls , [Ws )s =
— (PO UT} 5 [l st + 2 (NDo )l - [l Vv —
(PO 5 [l 5 ) sy — o (D Wl g s [T Do = O
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Therefore, (8.16) implies

f {ijqupqukuj + 7'2|U|2 + %)\quqU4DpU4 + %|U4|2} dr = 0.

3
RS1

Whence U = 0 in IRY follows. B

8.3. To prove the uniqueness theorems for the basic and mixed homogeneous interface
problems, one has to apply the arguments quite similar to the above ones to derive the
following basic equation for solutions of the indicated homogeneous problems

Zﬁ%i{ﬁ)DwyU%¢M+¢%MWP+?%A D" Dult+

rq
(u)
Ll |}dx:O. (8.17)

For regular solutions this formula can be obtained from the following Green identities for Q*
(:u =1, 2)

J {[AW(D, 1)U} ul)y + L[AW (D, 1)U uf”} do =

Qu

= (=1 [ { B DU P9+ ]ORN (D, [0} d -

71o

M)
- f {Ck]pq Dyul) Dyu® ; + 72|u |2 4 ?}OAM Dyult) Dul + %—O|ui“)\2} dz, (8.18)

where [ =[] and [[|® = []5.

For solutions of the homogeneous problems in the Sobolev spaces Wy () formula (8.17)
follows from the definitions of functional traces given in Section 4.

Now we formulate the uniqueness results for the interface problems of thermoelastic
pseudo-oscillations.

THEOREM 8.6 The homogeneous basic and mized interface problems (C)., (G)., (H).,
(C—DD),, (C—-NN),, (C—DC),, (C—NC),, (C—G),, (C—H),, have only the trivial
solutions in the corresponding Sobolev spaces, i.e., if (U, U?) € (WH(Q), W} (Q?)) solves
one of the above homogeneous problems, then U™ =0 in Q*, =1, 2.

Proof. By the reasonings similar to the already applied ones in the previous subsection, we
can easily conclude that for the pair of vector functions (U, U?) € (W}(Q), W} (Q?)), which
is solution to one of the homogeneous problems indicated in the theorem, the formula (8.17)
holds. Whence the proof follows. [ |

We remark that the regular case (i.e., when (UM, U®)) € (CH(Q), C1(02))) is coverd by
this theorem.
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9 Uniqueness Theorems for the Steady State Oscilla-
tion Problems

9.1. First we shall establish some auxiliary results concerning the coefficients of asymptotic
formulae (2.30) and ascertain the structure of the matrix functions (2.24).
We recall that

N(—i§, —iw) = [Ny;(—i€, —iw)]axa (9.1)

is the adjoint matrix to

Al —iw) = [W? I3 = C(€)]axs  [10k;€5]3x1 | 9.2)

[WT0 8] 1x3 —A(€) + iwey

where C'(§) and A(§) are defined by (1.7) and (1.8), respectively, while Nj;(—i, —iw) denotes
the cofactor of the element A, (—if, —iw) of the matrix (9.2) (cf. (1.32), (1.33)).
Let us set

C(¢,w) = I = C(¢), C¢w) =’ I - C(¢), (9-3)

where C(€) is given by (1.35). Denote by C*(¢,w) and C*(£,w) the corresponding adjoint
matrices.
Due to (1.43) and (1.44) we have

C(f, w) C*(f, w) = —(I)(f, w) [3> é(€> (U) é*(€> (U) = —é(f, w) [3~ (94)

From the condition I° (see Subsection 1.6) it follows that rankC(¢,w) = 2 and, conse-
quently, rankC*(£,w) = 1 for an arbitrary & € SP. Moreover (for the same & € SP) there
exists an orthogonal real matrix G(§,w) such that

A 00 10 0
GTE W) CEWGEW =10 00| =ML, Zo=|0 0 0|, (9.5)
0 00 00 0

where the real value A\; = A\(§,w) # 0 is an eigenvalue of the matrix C*({,w) (two other

eigenvalues are equal to zero; for details see [53]).
Further, let d(¢,w) = —wcy[A(€)]™! and

d(f, W)GT(ga (U) é*(€> w)G(€> (U) = [bkj(ga w)]3><3' (96)

LEMMA 9.1 Let £ € S5, j = 1,...,m, where S§ are the characteristic surfaces defined in
Subsection 1.6. Then the matriz N has the following structure

[N(£7w>]3><3 [O]3x1 ]

N(+i¢, —iw) = {
[0]1><3 0

where N'(€,w) = —A(E)[1 4 ib11 (€, W)AT (€, w)]C* (&, w).
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Proof. Let £ € S§ be an arbitrary point (1 < j < m). Clearly, £ belongs to some surface Sy,

1 <1< 3, as well (see Subsection 1.6). Therefore,
N44(j:i§a _lw) = _(I)(gaw) = 07

due to (1.46).
By direct calculations we get

Ny (=i, —iw) = —iwTy Ny (—i€, —iw), k=1,2,3,

Npq(_i€> —I(U) = _A(g)czq(ga w) + iwcoé;q(fa w) = Npq(i€> —i(U), 1 S P, q S 3.

The condition I° of Subsection 1.6 implies
VM(&) _lw) = A(g)v(b(€> w) - ichVé(ga w) 7é 0,

since A(§) # 0 on S5.
This relation together with the equations (1.31), (1.32), (1.34), and

det A(—i¢', —iw) = det A(i¢’, —iw) = M (=€, —iw) = M (¢, —iw), ¢ € IR?,
yields
rankA (i€, —iw) = 3, rankN(if, —iw) = 1,

i.e., any two columns (rows) of the matrix (9.1) are linearly dependent.
Taking into account the equations (9.8) and (9.7) it can be easily proved that

Npa(—i€, —iw) =0, Ny (—i§, —iw) =0, k=1,2,3.

Thus, we have obtained the following representation

N (i€, —iw) =

INOE w)lss Oler ]
[0]1x3 0 4x4
with

NO(E w) = [Nyg(i&, —iw)]sxs,

where N, (i€, —iw) = Ny, (i€, —iw) are defined by (9.9).
Now from (9.9) and (9.11) together with (9.5) and (9.6) it follows

NO(E w) = —A(6)C*(€,w) + iwegC*(€,w) ,

(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

GT(&w) NO(Ew)G (& w) = =AM (& w) Ty + iwegGT (&, w) C*(§,w)G(€,w) =

M (& w) +ibyy by ibig
:_A(g) ibyo by ibas |

iblg ibgg ib33

where b, are real functions defined by (9.6).
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By virtue of (9.10) we have rankN® (¢, —iw) = 1, and, consequently,
rank [GT (€, w) N (€, w)G(€,w)] = 1,

since GG is an orthogonal matrix. This, in turn, implies that the matrix (9.12) has only
one linearly independent column (row). Inasmuch as A\; # 0, there exist complex numbers
a = aq +iag and § = () + i3, such that

iblg )\1 + ibll iblg )\1 + ibll
ibyy | = ib12 ) iy | =0 ib1o . (9.13)
ibos ib3 ibss ibi3

Equating the corresponding elements and separating the real and imaginary parts lead
to the equations

(01 + a3)A =0, (B} + )M\ =0,
i.e., « = # = 0. But then from (9.13), (9.12), and (9.5) we derive
N(O) (67 (.U) = _A(g){)‘l(ga w)G(f, w)IOGT (57 (.U) + ibll(ga w)G(f, w)IOGT (57 (.U)} =

- _A(S) [)\1(§a w) + ibll(ga w)]G(Sa w)IOGT (57 (.U) -
= —AO[1 +iIN (€ w)bi (€, w)]C*(E, w),

which completes the proof. ]

REMARK 9.2 Due to equation (2.24) and Lemma 4.1 we get (for arbitrary
£€85, j=1,...,m,andr =1,2)

(€, —iw) = d; (&, —iw) (9.14)

[0]1 3 0

[C*(57 W)]3x3 [O]3x1 }

with
AR +NT(Ew)bn (€ w)]
27 (K(E))V2 IV Py (&, —iw) W (€, —iw)]
LEMMA 9.3 Let U = (u,uy4)" be a regular vector in Q= of the class SK*(27), and let

A(D, —iw)U have a compact support.
Then for sufficiently large |x|

d;(§, —iw) = (=1

u(z) = i 2] 7L, (€7, —iw)e ™V 0% (¢, w)B(E7) + O(J| ), (9.15)
us(z) = O(|z[7?), (9.16)

with the same d; as in Remark 9.2; here C*(&,w) is the adjoint matriz to C(€,w), b =
(by, by, b3) " is uniquely determined by the vector U (see below (9.18)), and the point & € S¢
corresponds to the vector x/|x|.
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Proof. Denote by €2 the support of A(D, —iw)U. Then by Theorems 2.3, 3.1 and Remark
2.6 we have (for sufficiently large |z|)

JOED> { [l el O, —iw) A(Dy, —iw)Uy)] dy+

i=1

+ [ ]GO @0 O (¢, —iw)[B(Dy, n(y))U (y)]~ dS, —
S

=[] eIEDHQU1)E (), —iw) (€, —w)] T} ()] dsy} +
F0(a]) = £ lal e (@, —i) W) + O ), (917)
where
bE) = (B(E),balE)) T = [ TV WE[A(Dy, —iw)U ()] dy +
[ TVBEB(D,, n(y))U(y)]" dS, ~

~ [ VBEQT(-1)ig n(y). ) U ()] dS, (9.18)

here &’ corresponds to the vector x/|x|.
Now (9.15) and (9.16) follow immediately from (9.17) and (9.14). Note that the vector
b(&7) is represented explicitly by (9.18). ]

REMARK 9.4 From (9.15) with the help of equation (9.5) we get the following equivalent
asymptotic formula for u

u(r) = i | e N (6 0)G(E, W) TG (€, w)aP (¢, w) + O(|2] ), (9.19)
j=1

where
(g, w) = d;(¢’, —iw) b(&), (9-20)

d; and b are the same as in Lemma 9.3.
Note that due to (9.5)

TG aY = ([GTaY]1,0,0)7. (9.21)

9.2. In this subsection we assume S = 92~ to be a connected C'-regular surface and
prove the following uniqueness theorem.

THEOREM 9.5 Let U be a regular solution to the homogeneous exterior problem (Py).,
(k=1,..,4) and U € SK*(27) withr =1 forw >0 and r =2 for w < 0.
Then U =0 in .
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Proof. Let R, Br, ¥ and () be the same as in the proof of Theorem 3.1. Since U satisfies
the homogeneous conditions of the problem (Py)_ , from (1.23) (with Q" = Qp and p = —iw)
it follows that
f {ijpq Dpuq Dkﬂj —w? |u|2 — i(u)To)_lkkj Diuy Djﬂ4 + Co(To)_l‘U4|2} dr =
Qg
— [ {IBO, U [m] — i [ua] (Ba71]} dSa,

2R
where B(D,n) and 0, are defined by (1.25) and (1.24), respectively.
Owing the fact that cyjpq Dpug Di@; and Ay; Dyug DTy are non-negative real quantities,
from the last equation by separating the imaginary part we get

tn{ f (B U@ )] ~ o] B (o)l an} +

R
Qg
where n = x/|z| is the unit outward normal at the point z € 3.
Due to Lemma 9.3 it is easily seen that

f )\kj DkU4(LL’) Djﬂ4(l’) dr = Qf )\kj DkU4(LL’) Djﬂ4($lf) dx + O(R_l),
Qy -
J |ua(x) Oyua(w)| dXp = O(R7?), J () ()| d2R = O(RrR™),

as R — +oo (k=1,2,3). Clearly, 0, = 0, on Xp.
Taking into account (1.25) and applying the above relations in (9.22) we obtain

Im{ f [T(Dm, T])U]k [ﬂk] dZR} + w_'}o Qj; >\kj Dyuy Djﬂ4 dr = O(R_l), (923)

YR
where T'(D,n) is the stress operator of elastostatics defined by (1.12).
In the same way as in the proof of Theorem 3.1 (by integrating with respect to R from
v to 2v and deviding the result by v) from (9.23) we derive

2v
m {% f f [T(Dm, T])U]k [ﬂk] dZR dR} + WLTO f >\kj DkU4 Djﬂ4 dr = O(I/_l), (924)
vV ¥R Q-
where v is large enough.
Further, by Lemma 9.3 the first summand in the left-hand side of (9.24) can be trans-
formed as follows

F(v) = Im {5 T (D n)ul ] dSn dR} _

vV YR

:Im{%f S (=) R, —iw)eD BT (¢ ) O (€, w)b(E)]k
vV YgRpJ
X

3[R d(E, —w)el =B Ol W)€ dEr dR + O ) | =

= Re{ U 88 061, E T, O e ¥

X [C* (€1, w)b(EY)], <2fe< 1) R ()= ()] dR) le} +0(™), (9.25)
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where p;(n) = (n-&7) and & corresponds to the vector z/|z|.
It can be easily proved that p;(n) # (n) if j # | (see Subsection 1.6). Therefore, if
j # 1, clearly,

j‘ +1R[pu; (n Ml dR = O(1),

v

and (9.25) implies
F(v) = Re{( 1)+t Z_: f T(&,n)C* (&, w)aV) - C* (&7, w)al) le} +O(r=1) (9.26)

with a\) defined by (9.20).
In view of the symmetry property of C*(£,n) and equality T (£,1) = T(n,£) we have
from (9.26)

F(v) = 42 88 1 O e wIT(E ) + T, )]0 (¢, w)a - dEy +
+O(vY). (9.27)

Now passing to the limit in (9.24) as ¥ — 400 and bearing in mind (9.25) and (9.27) we
arrive at the equation

S5 [ M Dgus Dyt da + e gl J (€)% =0 (9.28)
with
Ej(¢,w) = CH (&, w)[T(&,n) + T(n, &))C*(¢,w)aP - aV, (9.29)

where &7 € S¢ corresponds again to 7, i.e., n(&) =n.

In what follows we claim that the integral in the second term of (9.28) is a non-negative
function for all ¢/ € S5.

To see this, let us note that

where n = n(§), 9/0n(€) = ng(§) Dy is a directional derivative, C'(§) and C'(§,w) are defined
by (1.7) and (9.3), respectively.

We recall that in Subsection 1.6 we introduced the two sets of surfaces {S$}7.; and
{S 013_ defined by equations (1.46) and by the first equation of the same system, respectively.
Therefore each S¥ coincides with some SO for some p = p(j). Let us fix this correspondence,

L Of = SO

Further, We proceed as follows. Note that

—[C*(&w) (27 C (6 w)) C*(€,w)] = =550 (6, w) O w) O (€, w)] =
= [5:Z50(6 w)] C*(€,w) (9.30)

for all £ = &7 € S5 (see (9.4)).
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With the help of (9.5), (9.30), and (9.29) we deduce
Ej(¢.w) = {[srg @€ w)| C* (€ w)a -} =
= { [ (@) M(EWITGET(Ew)a? - GT(Ew)aD} =

- {[%@)@(@w)} (€, w) HGT(g,w)a<j>H2} . (9.31)

¢=¢i
Now we show that the function
¥(€) = [525®(6 w)| M(6w), E€ S5, (9.32)

is strictly positive.
Since A;(§,w) is the only nonzero eigenvalue of the matrix C*(§,w) for £ €S§= S}, we
have

{)‘1(& w)}geS]@ = {Sp C*(€> w)}gesjc. = {Cikl (€> (.U) + C;2(€> (.U) + C§3(€> w)}gesjc. =

w? — 011(5) _012(5) _013(5)
= % a% —C12(8) w? — (&) —Co3(8) -
—C15(8) —C93(&) w? — Cs3(€)

=i {dee e} = - {EeE e, -
= ®(C,0)w*{0f (02 — 03)(02 — 03) + 03(02 — 01) (02 — 03) +
+a3(g2 — )02 — )} = ()P { e b€, w) |
= (1" (6 w) beess

where ¢ = £/|€|, ((,0) > 0; here we employed the representation (1.47).
It is easy to check that the exterior unit normal vector of SI? is calculated by the following
formula

n() = (~1yH T € e sy,

o=|w|op

: (9.33)

[Ve(Ew)l|’
Therefore,
_ 1 VO(Lw) _
{ae@ @)}l ={C R Ve o, -
= {(=1)"" V() }eesy (9.34)
which together with (9.33) yields
$(&) = VP, w)| [\ w) >0 for €5y =55. (9.35)
Hence by virtue of (9.31)-(9.35) we get
, N2
B,(€4) = {IVe€.w)| ) [[€TEwa] [} >0 (930
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Now from (9.28) it follows that
Mij Drua(z) Djug(x) =0, 2 € Q7, E;j(¢,w)=0, € S5,

if (—1)"w > 0.
Applying (1 18), (9.3 ) (9 36), and (9.19)-(9.21) we conclude that uy(x) = 0 in Q- and
[GT(&7,w)aP (¢, w)] =
DPu(z) = O(|z]™?) as |z| — +o0 (9.37)

for an arbitrary multi-index .
Thus, we have obtained that u is a solution to the steady state oscillation equations of
elasticity theory

C(D)u(z) +w?u(z) =0, z€Q,

satisfying the homogeneous boundary condition either [u]” = 0 or [Tu|” = 0 on S (see
(5.1)-(5.8)) and the decay condition (9.37) at infinity.

Due to Lemma 3.4 in [39] (see also [53], Section 4) we then have u(z) = 0 in 2~, which
completes the proof. B

9.3 In this subsection we consider the same basic BVPs (Py); (k = 1, 4) together with the
mixed BVP (Pi;);, in the weak setting in the Sobolev space W3 ,,.(£27). Here the principal
difference in comparison with the pseudo-oscillation case is that the steady state oscillation
equations do not admit nontrivial square integrable in 2~ solutions, as it can be seen from
the previous subsection (see the corresponding results for the Helmholtz equation and for
the elastic oscillation equations, for example, in [10], [11], [77], [80], [43]).

As it is evident from the proof of Theorem 8.5, one of the central moments to establish the
uniqueness of solutions to the homogeneous steady state oscillation problems is the derivation
of formula (9.22) which follows from the corresponding Green identities for regular functions.
In the sequel we shall show that the same type formula can be derived for weak solutions as
well.

THEOREM 9.6 The homogeneous exterior BVPs (Py), (k = 1,...,4) and (Pmiz), have
only the trivial solutions in the class W 1,.(27) NSK(Q7) with r =1 for w > 0 and r = 2
for w < 0.

Proof. For definiteness, let U € Wy,,.(27) N SK*(227) be a solution of the homogeneous
problem (P,);.

Due to the definition (4.2) the homogeneous boundary condition [B(D,n)U|~ = 0, which
is understood in the functional sense, is equivalent to the equation

([B(D,n)Ulg, [V]g)s = —Qj: EU,V)dx =0, (9.38)

where V € W

COm])(
)

27) is an arbitrary vector function and E(U, V) is defined by (1.27) with
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Applying the standard manipulations we easily derive from (9.38)

([P(D, U5, [0l5)s — = (ND, njudls , [l )s = (9-39)

= — [ {ckjpg Dptiq DiTj — w*uy 0y, — Bpqltua DyTg — vaDyly]—
oo
— ot Mg Dgis Dyos + 2740, dee = 0. (9.40)
Further, let hg(z) be a real cut off function with the following properties:
hr € C(IR?), hg(z) =1 for |z| < R, hg(z) =0 for |z| > 2R, (9.41)

where R > 0 is an arbitrary real number such that the open ball By centered at the origin
and the radius R contains the closed domain Q7 as a proper subset. Recall that B =: 3x.

Next, we set Vg(x) := hg(x)U(z). Clearly, Vr(z) € W3 0, (27) NC>(Q27). Substitution
of this vector function in (9.39) in the place of V' implies

E+ & =0, (9.42)
where

&= {Chipg Dyttg Dyl — w?|ul? — Xy Dyl Dyua + L Jugf?} dz,  (9.43)
R

& = { {ijpq Dyu, Dk(hRﬂj) - W2hR|u|2 - ﬁpq[wl Dp(hRﬂq) - hRu4DpUq]_
Bar\BRr

— Xy Dytia D) + L hplual?} da (9.44)

here Qp = Q™ N Bp.
The differentiation by parts in (9.44) leads to the equation

E=— [ [AD, —iw)Ulyurhgdr + %To [ JA(D, —iw)U]ushg dx —
BQR\BR B2R\BR

= J[P(D U} dSp + wi%f D, n)ualus dSg =
R

R

= J {IP(D.n) U — Z=TND, nyualua} dSp, (9.45)

since A(D, —iw)U in Q= and n =7 on 2.
Therefore, (9.42), (9.43), and (9.44), due to the formulae (1.13) and (1.25), yield

Im {21‘ {1B(D, n)Ulym — Z=TN(D, n)ualus } dSp+

o J ququmedx} =0 (9.46)
o

R

for arbitrary solution U € W3,,.(27) to the homogeneous problem (P;).
Thus, we have obtained again the relation (9.22). This formula can be derived in the
same way for weak solutions of the other basic and mixed BVPs indicated in the theorem.
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Now applying the same analysis as in the proof of Theorem 9.5 we can show that U = 0 in
Q. [

9.4. The uniqueness theorems for the homogeneous crack type problems of thermoelastic
oscillations can be proved by quite the same approach as above. To avoid the repetition of
the arguments outlined in the previous subsections, we only note here that with the help of
the identity (9.46) these problems by the analysis given in the proof of Theorem 9.5 are again
reduced to the corresponding homogeneous BVPs of steady state oscillations of the elasticity
theory with the displacement vector which behaves like O(|x|72) at infinity. Therefore, due
to the results in [53], [54], [17], [39], such a displacement vector identically vanishes in the
domain of analyticity. This finally leads to the corresponding uniqueness results for the above
mentioned homogeneous crack type problems of the steady state thermoelastic oscillations.
As a consequence we have the following uniqueness theorem.

THEOREM 9.7 The homogeneous crack type BVPs (CR.D),, and (CR.N'), have only the
trivial solutions in the class Wy,,.(IRS) N SK'(IRE,) with r = 1 for w > 0 and v = 2 for
w < 0.

9.5. For the homogeneous basic and mixed interface problems of the steady state ther-
moelastic oscillations we have a different situation since not all of them have only the trivial
solution.

Let us first consider the basic homogeneous problem (C),, (see (7.3), (7.4)).

THEOREM 9.8 The homogeneous problem (C)w has only the trivial solution in the class
(CHQ), CHQ2) N SK™(Q?)) withr =1 for w >0 and r =2 for w < 0.

Proof. Let (UW, U®)) be a solution of the homogeneous problem (C),, from the class indicated
in the theorem. Further, let R, Bg, X, and Q5 =: Q% be the same as in the proof of Theorem
9.6. By the Green formula (1.23) then we have

1 1 (1)
Qj; {c]glj)qupugl)Dkug»l) — VP — = >\p%1 D Dyl + CTO—O\u(l)\Z} dr =
. g{[B(l)(D,n)U(”];[Wk]* — L DO (D, n)ul, ]+ } ds, (9.47)

2 RS
I { D Dl — AP = DD Dl + GO o =
R

= = [{BOD MU [P — o) O D, muP- |} s+

+ J {BOD mUBLET] ~ I (D, nu] | (9.48)

Whence

(1)
J {Ckaqu u(l)Dku( ' — )2 - leo)‘(l Dyt Dy + +F Iu(1)|2}
Ol dx +

— — @
+ f {ckm pqu)Dku§2) — wu®? - wTo>\ )Dul? Dyul + %—O\U(Z)\Z} dr =

- {[B@ (D, W)U [a®,] — 1 [N (D, n)u® ]} i, (9.49)

wTo
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due to the homogeneity of the transmission conditions.
In turn (9.49) implies (if we look at the imaginary part)

t{ J {[B(D UL - (D, | dat

YR

) AY D) DyuPde + f A2 Dl Dpuf)dx} = 0. (9.50)
From this equation, as in the proof of Theorem 9.5, we can show that ufll) =0 in Q1 uf) =0
in 02, and u® = 0in Q2 with r = 1 for w > 0 and r = 2 for w < 0.

Next, the homogeneous interface conditions (7.3) and (7.4) imply that [UM]* = 0 and
[BY(D,n)UM]* =0 on S, which together with the following general integral representation
formula of the solution U™ in Q!

U(l)(z) = f {[Q(l)(D> n, —iw)[r(l)(:ﬁ - y)> W r)]T]T [U(l)]+_

S
T (2 — y,w,7) [BOD,m)UD*}dS, z € Q! (9.51)
completes the proof. 5

It is evident that in the case of the homogeneous problems (G),, and (H),, we again obtain
the equation (9.50) with the same conclusion as above:

UP(@x)=0 in Q2 (9.52)
W) =0 in QL. (9.53)

From these equations and the corresponding homogeneous transmission conditions we con-
clude:

i) In the case of the homogeneous problem (G),, the displacement vector u(!) solves the
following BVP

CO(DYuD () + W(x) =0

(D)uD(z) +w?ul(z) in Q! (9.54)
ﬁ,%)Dkugl)(:B) =0
TY(D,n)uM]" =0 and [ -n]T=0 on S. (9.55)

i) In the case of the homogeneous problem (H),, the displacement vector u™) solves the
following BVP

CODYD(2) + w2 D (2) = 0

(D)) ) - 9.56)
Brj Druj " (x) =0
W] =0 and [TW(D,n)u™ -n]" =0 on S. (9.57)

These homogeneous problems for the elastic field have not, in general, the only trivial solu-
tions.
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Denote by Jg(02') and J(Q'), respectively, the set of values of the frequency parameter
w for which the above problems (9.54)-(9.55) and (9.56)-(9.57) admit nontrivial solutions.
Obviously, Jg(Q2') is the intersection of the spectral sets of the so-called second and third
interior BVPs of the theory of steady state elastic oscillations (in terms of the monograph
[43]), while J(Q') is the intersection of the spectral sets of the first and fourth interior
BVPs.

Such frequencies are called also Jones eigenfrequencies, while the corresponding nontrivial
solutions are referred to as Jones modes. Spectral problems similar to (9.54)-(9.55) encounter
also in the fluid-structure interaction problems (see, e.g., [26], [27], [46], [35], [37], and
references therein).

Clearly, Jg(2!) and Jx(92!) are at most denumarable and to each Jones eigenfrequency
there corresponds only finitely many linearly independent Jones modes (cf. [54]). In general,
Jg(Q') and Jx(Q') are not empty (see [43], [40]), hoewer there exist domains for which they
are empty sets (for details see [43], [25], [36]).

The above arguments easily lead to the following proposition.

THEOREM 9.9 The homogeneous problems (G)., and (H)., have only the trivial solutions
in the class (C1(Q1), CH(Q2)NSK™(22)) withr =1 forw > 0 and r = 2 for w < 0, provided
that w is not a corresponding Jones eigenfrequency.

Analogous uniqueness theorems hold valid also in the case of the weak formulation of the
basic steady state oscillation interface problems.

THEOREM 9.10 The homogeneous interface problem (C),, has only the trivial solution in
the class (Wy (Q'), Wy1o.(Q%) NSK](Q?)) with r =1 for w > 0 and r =2 for w < 0.

THEOREM 9.11 The homogeneous interface problems (G)., and (H),, have only the trivial
solutions in the class (W3 (Q'), W31,.(2%) N SK(Q?)) with r = 1 for w > 0 and r = 2 for
w < 0, provided that w is not a corresponding Jones eigenfrequency.

The proofs of these assertions are quite similar to the proof of Theorem 9.6.
The uiqueness theorems for the homogeneous mixed interface problems requires some
new ideas which will be presented below.

THEOREM 9.12 The homogeneous mized interface problems (C — DD),, (C — NN).,,
(C —DC)y,, (C—-NC)y, (C— G, (C—H)w, have only the trivial solutions in the class
(W (), W310.(Q3) NSKM(Q?)) with v =1 for w >0 and r =2 for w < 0.

Proof. We demonstrate the proof for the problem (C — DD), since it is verbatim for the
other problems.

Let (UM, U®) be an arbitrary solution of the homogeneous interface problem (C —DD),,
of the class indicated in the theorem. By the same analysis as in the proof of Theorems 9.6
and 9.8 we again arrive at the equations (9.52) and (9.53). To see this, one has to apply
the identities (9.47) and (9.48) where the surface integrals over S should be replaced by
the appropriate duality relations, in accordance with the definitions of functional traces,
and afterwards to take into account the homogeneity of the corresponding transmission and
boundary conditions of the problem in question (see (7.13), (7.14)).
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As a result we obtain that the vector function UM = (u™,0)T € W} (Q') has to satisfy
the conditions:

AV(D, i) UM (z) =0 in Q) (9.58)
[UW]F =0 on S=35,U8S,, (9.59)
BY(D,n)UVF =0 on 8. (9.60)

Note that we may apply the representation (9.51) for the vector-function U under consid-
eration (see Theorem 10.8, item ii) in Section 10). Therefore, we have

UN(z) = [T (z —y,w,r) [BY(D,n)UD*AS, =€ Q (9.61)
So
where [BW (D, n) UM+ ¢ B;%M(Sg) due to the condition (9.60).
It is evident that we can extend the vector function UM from Q' onto the whole IR%,
by the same formula (9.61) since the right-hand side integral is defined in IR% . Denote this

extension by the symbol U
From the above representation it follows that (cf. Theorem 10.8)

U € Wy (IRE,) N SK]' (RS, (9.62)
D] =0 and [UY]" =0 on S, (9.63)
AD(D, —iw)UWD(z) =0 in IRY. (9.64)

The second equation in (9.63) is a consequence of the ”continuity” property of the so-called
single layer integral operator (9.61) (see below Theorem 10.8).

Thus, we have established that the vector function U given by the integral (9.61) solves
the homogeneous crack type problem (9.62)-(9.64) in the sapce W3, (IR%,) N SK]"(IR,)

where r and w are as in Theorem 9.12. Due to Theorem 9.7 we then conclude that UM
vanishes in ]R?éw which completes the proof. [

We note that properties of surface potentials similar to (9.61) and boundary integral
operators corresponding to them will be studied in detail in various functional spaces in the
next chapter.
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CHAPTER IV

POTENTIALS AND BOUNDARY INTEGRAL OPERATORS

In this chapter we introduce and study the generalized single and double layer potentials
of the thermoelastisity theory of anisotropic bodies. We investigate their smoothness prop-
erties in the closed domains, asymtotic behaviour at infinity and establish jump relations on
the surface of integration. We analyse also boundary integral (pseudodifferential) operators
generated by these potentials and consider their mapping properties in various functional
spaces. Note that the analogous questions for the potential type operators in the elasticity
theory of isotropic and anisotropic bodies have been exaustively studied in [43], [8], [33],
(34], [57], [17], [39], [13], [54], [31].

In Section 10 we examine in detail properties of the thermoelastic steady state oscillation
potentials and afterwards, in Section 11, we breafly treat the same topics for the pseudo-
oscillation potentials.

10 Thermoelastic Steady State Oscillation Potentials

10.1. Let us introduce the following generalized single and double layer steady state oscil-
lation potentials constructed by the fundamental solution (2.29)

V(g)(x) := gf‘(x —y,w,7)g(y)dS,, ze€IR*\S, (10.1)
W(g)(z) := g[Q(Dy,n(y), —iw)l (2 —y,w,7)]" g(y) dS,, =€ IR*\S, (10.2)

where S = 00Q%, g = (91,..,94) " = (3,94)7, = (g1, 92,93) "; the operator Q(D,n, —iw) is
defined by (1.26) with » = —iw.

Note that here and in what follows, for simplicity of the notations, we do not mark with
the subscript w the steady state oscillation potentials and the integral operators correspond-
ing to them.

To investigate the existence of solutions to the nonhomogeneous BVPs posed in Chapter
IT we need special mapping properties of the above potentials and the boundary integral
(pseudodifferential) operators generated by them.

Let
Ho(z) = [T(z = y.w.r) g(y) Sy, = €S, (10.3)
Kig(z) = J1B (Dz,n( Nz =y 0.7 g(y) dSy, 2 €5, (10.4)
K29(2) = [[Q(Dy, nly), -iw)I (z =y, w, 1)) g(y) dS), 2 €5, (10.5)
ﬁig(z) = lim B(D,n(2)W(g)(z), z€S5, (10.6)

Qfsr—z€S
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where the boundary differential operator B(D, n) is given by (1.25). Here the integrals (10.4)
and (10.5) are understood in the Cauchy principal value sense.

In the sequel everywhere the two positive numbers o and o' are subjected to the inequal-
itles 0 < a < o/ < 1.

LEMMA 10.1 Let k > 0 be an integer and S € CF*4" . Then for an arbitrary summable
g the potentials V(g) and W (g) are C®-smooth solutions to the equation (1.10) in QF and
belong to the class SKI"(£27).

The following formulae

V(g)(2)]" = [V(9)(2)]” =Hg(2), g€ CS), (10.7)
[B(D,n)V(9)(2)]* = (727 i + K1) g(2), g€ C(9), (10.8)
(W(g)(2)]F = (£27' s + KGs) g(2), g € C¥(9), (10.9)

hold and the operators

H o Ch(S) — CHhe(S), (10.10)
K1, Ky @ Ch(S) — Ch(9), (10.11)
Vo Ch(S) — O (OF), (10.12)
W Che(S) — Ch(QF), (10.13)

where 0 < [ < k, are bounded.

Proof. The first part of the lemma follows immediately from the properties of the funda-
mental matrix I'(z — y,w,r) and is trivial, since the columns of I'(x — y,w, r) are solutions
of the homogeneous equation (1.10) for = # y.

To prove the second part, we proceed as follows.

From equations (1.25), (1.26), and Theorem 2.3 we have

Ne —y,w,r)—T(x—y)=T(r—y,w,r), (10.14)
B(D,n) = By(D,n) — B(n), (10.15)
Q(D,n, —iw) = By(D,n) — iwTyB(n), (10.16)

where | DTy (x,w, )| < cgpfg‘j)(x), k,j=1,...,4, in a vicinity of the origin,

BQ D,?’L =
| ) [0]1x3 On [0]1x3 O

[T(D,m)as [O]M} o [[om [ﬁkjnj]gxl} |

here I'(x), 3, ¢ and gofg‘j) are as in Lemma 2.1.
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Therefore, we can single out the dominant singular terms in the above potentials and
represent them in the form

+ , (10.17)
W(g)(x) = Wo(g)(z) + W(g)(x), (10.18)

The kernels of the potentials XZ(g), W (g) and R(g) have singularities of type O(|z — y|™)
as |x — y| — 0. Therefore, V, W, and R are continuous vectors in IR? provided g €C(S).
It is easy to see that

Volg) = (0(3), 0" (92))T, Wolg) = (w9 (g),w)” (92))7,
By(D,n)Va(g) = (T(D,n)v (), 8,08 (9)) 7,

where v (§) and w(® (§) are single and double layer potentials of elastostatics (corresponding
to the operator C'(D)) constructed by the fundamental matrix ' (z):

vO(g)(z) = fF(O) (z —y) g(y) dSy, (10.19)

w®(g)(z) : = JIT(D, )Ty — 2)]" §(y) dSy, (10.20)

while vio) (g94) and wflo) (g4) are potentials of the same type (corresponding to the homogeneous
operator A(D)) constructed by the fundamental function v (z):

v (g4) () = [10(@ = ) gi(y) dS,, (10.21)

Wi (g2) () = [ Buiyy O (y — ) ga(y) dS,, (10.22)

(see Lemma 2.1).

The properties of the latter potentials and boundary integral operators on S, generated by
them, are studied in detail for regular function spaces in [8], [50], [54], [55], [57]. The results
in the above mentioned references together with the representation formulae (10.17)-(10.18)
yield equations (10.7)-(10.9) and mapping properties (10.10)-(10.13). [

For a pseudodifferential operator (?DO) K on S we denote by (K)o and 0 (K)(z, €)
(z € S, € € IR?\ {0}) the dominant singular part and the principal homogeneous symbol,
respectively. As usual, if no confusion arises, in the sequel the arguments x and E will be
omitted.

LEMMA 10.2 The operators H, +27'I,+K;, and £27 1, +Ky are elliptic VDOs of order
—1, 0, and 0, respectively, with index equal to zero.
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Proof. From equations (10.14)-(10.16) and (10.3)-(10.5) it follows that

(H)o = M3 [l , (10.23)
[0]1x3 Hé(l()) i
(271, + K)o = 27+ KO%ixs (Ol , (10.24)
BUEE +2717, + K ™
(271, + K)o = 27t KOs [ . , (10.25)
I [0]1x3 +27 1+ /Cio) it
where
HOG(z) = [TO( = ) 5y) dS,. 1 94(2) = [0z = 9) aaly) dS,,
/C( g(z) = g’[ (D, n(2))TO(z - )] d(y) dsS,,
KO () g[ (Dy, n(y))TO(y — 2)]" gy) dS,,
ga(z) = fan(z 0 (2 —y) gay) dS,,
z*c§0>g4<> [ 001y = 2) 91(y) dS,. (10.26)

Due to the general theory of WDOs (see, e.g., [74], [20]) we have to show that the principal
symbol matrices of the operators (10.23), (10.24), and (10.25) are nonsingular and that the
indices of these operators are equal to zero.

It is evident that K© [K\”] and K © [I*C 7 are mutually adjoint singular integral
operators while H© [Hio)] is a formally self-adjoint integral operator with a weakly singular
kernel of the type O(|z — y|™1).

For the principal symbols we have (see [54], [57], [37])

(M) =~ [[C@)] da =~ [ [C(a)) ! des (10.27)

—00

O(+275+KO) = % [ T(aé,n) [C(a€)] " d&; = [0 (X2 I+ K O))T,  (10.28)
1+

OTHY) = — L [[A()] " des = — & [ [Aa€)] " des <0, (10.29)

I+ —00

*

o2 + KY) = f Aa&,n) [Mad)] 1 des = O(£2- 1+ K V) = +271,(10.30)

where & = (£,6), €= (61.&) € IR?\ {0}, A€, n) is defined by (1.24),
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is an orthogonal matrix with deta(z) = +1, I = (l1,ly,l3)", m = (my,mg,m3)" and n =
(n1,m2,n3)" is a triple of orthogonal vectors at z € S (I and m lie in the tangent plane
at € S and n is again the exterior unit normal), [~ (I*) is a closed clockwise (counter-
clockwise) oriented contour in the lower (upper) complex half-plane &3 = & + &4 enclosing
all roots of the equations

det C'(a&) =0, A(a&) =0,

with respect to & with negative (positive) imaginary parts. The last equation in (10.30)

follows due to the fact that the kernel-function of the integral operators ICELO) and I*C io) have
weak singularities of type O(|x — y|727®") on a C'*'-smooth manifold.

The entries of the matrices (10.28) are homogeneous functions of order 0, while (10.27)
and (10.29) are homogeneous functions of order —1 in §. Moreover, all the above principal
homogeneous symbols are nonsingular for |£] = 1, the corresponding integral operators are
elliptic WDOs of order 0 and —1, respectively, and their indices are equal to zero (for details
see [54], [57], [39], [16]).

Now (10.23), (10.24), and (10.25) imply

O(H) = 0(Hlsxs [Dlsx , (10.31)

[O]1x3 O-(HELO)) A4
0-(:|:2_lf4 -+ ]Cl) = [O(i2_1[4 + ]C2>]T =
(0(£27 T + K)ass [0]5x1

= » o : (10.32)
[0]1X3 O-(j:2 Il ‘l— ’C4 )

4x4

which together with equations (10.23), (10.24), and (10.25) completes the proof. ]

REMARK 10.3 More subtle analysis of the fundamental solution I'(x,w,r) shows that in
a vicinity of the origin the following representation

D(z,w,7) =T(z) +il'(z) — wTH[['(2)]" + T (z,w,7), (10.33)

f'(m): [03x3  [Dha(@)]3x1 ’

0]1x3 O

4x4

holds, where I'(x) is the same as in Lemma 2.1 and T, () is independent of w; first order
derivatives of Il ,(x) are homogeneous functions of order —1 and

T k
ID°Th(@)] < el ()

with the same <p‘(§|4) () as in Lemma 2.1; the second order derivatives of the entries of the

matriz T (z,w,r) have singularities of the type O(|z|™").
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REMARK 10.4 Note that the operator —H [—Hflo)] s a positive operator which implies
that the corresponding principal homogeneous symbol is a positive definite matriz [is a positive
function] (see [54]). Therefore, the principal homogeneous symbol matriz O (—H) is also
positive definite due to the equation (10.31) and the inequality (10.29).

10.2. Now we turn our attention to the equation (10.6). To prove the existence of limits
(10.6) and to study properties of the operators £* we need some auxiliary results which are
now presented.

LEMMA 10.5 Let U = (u,uy)" be a regular solution of the homogeneous interior problem
(P1)L. Then us(x) = 0 in QT and u is a solution to the following interior homogeneous
BVP of steady state oscillations of the elasticity theory

C(D)u(z) +w?u(z) =0 in QF, (10.34)
[u(z)]F =0 on S, (10.35)
satisfying, in addition, the equation By;Djuy =0 in Q.

Proof. The equation uy(z) = 0 in QF follows from the identity (1.23), if we look at the
imaginary part. Then we obtain the BVP (10.34)-(10.35) for the displacement vector u with
the additional equation indicated in the lemma due to the homogeneous conditions of the
problem (P;)}. ]

By X[(P1)7] we denote the spectral set corresponding to the problem (Py)} (i.e., the set
of values of the parameter w for which the homogeneous problem (P;)7 possesses a nontrivial
solution). Note that the spectral set corresponding to the problem (10.34)-(10.35) is at most
countable. Therefore, Lemma 10.5 implies the following proposition (cf. [54]).

COROLLARY 10.6 The set X[(P1)}] is either finite or countable (with the only possible
accumulation point at infinity).

Now we are redy to examine the properties of the hypersingular operators £*.
LEMMA 10.7 Let S € C** and g € C**(S). Then limits (10.6) exist and
LTg(z) =L g(z)=:Lg(z), z€8. (10.36)
Moreover, the operator
L CHe(8) — Ch(S), Se k2 k>0, 0<I<k, (10.37)

s a bounded singular integro-differential operator with nonsingular positive definite principal
homogeneous symbol matrixz and with index equal to zero.

Proof. First we prove the existence of limits (10.6). With the help of equations (10.15),
(10.16), and (10.33) we deduce

B(Dq,n())[Q(Dy, n(y), —iw)T T (z — y,w,r)]" = Ks(z,y,2 — y) +
Ky, y, @ — y) + T Ky (2, y, @ — y)] + Ki (2,5, 7 — y;w), (10.38)
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where
Ks(,y,2 — y) = Bo(Dy,n(x))[Bo(Dy, n(y))T(y — z)]" =
[T(Dy,n(x))[T(Dy, n(y))T(y — )] axs  [0]x1
[0]1x3 an(vﬂ)an(yw(o)(y — )

4x4
is a hypersingular kernel with the entries of the type O(|x — y|™3) as |z — y| — 0, while

Kj(,y, @ —y) = iBo(Da, n(2)){ Bo(Dy, n(y)) [ (& — )] T} —
—B(n(x))[Bo(Dy, n(y))T(x — y)]"

and

Kj(w,y.@ —y) = —Bo(Dx, n(a))[Bo(Dy, n(y))"(x )] " -
—i[Bo(Dy, n(x))L(z — y)]BT (n(y))

are singular kernels on S with the entries of the type O(|z — y|™?) as |z — y| — 0,, and the
entries of the matrix Ki(z,y,z —y;w) have singularities of the type O(|x —y|™!). Note that
here either z € QT or x € Q™.

In turn, (10.38) implies

B(Dy, n(a))W (g) (@) = (T(Da, () )w®(§)(x), neywf” (92) ()T +

_I—g[Ké(l'ayvx - y) + WTOEél(l'ayax - y)] g(y) dSy +

+S[K1(x, y,x —y;w) g(y) dSy, (10.39)

where w(®)(§) and wy )(g4) are defined by (10.20) and (10.22), respectively. It can be shown
(see [54], [57], [16], [37]) that the limits

ool T(Dg, n(x))w®(9)(x) = £L75(2), (10.40)
Qialyilzesa”(z)w‘(lm(g‘l)( 1) = £g4(2), (10.41)

exist for any g, €C*(S), k =1, ...,4, and that the operators £ and Eflo) are non-negative,
formally self-adjoint singular integro-differential operators with positive definite principal
symbols

O(LO) = —2L [T(ag&,n)C7(a&)T (a&, n) dés, (10.42)
¥
O (L) =~ [ X(a€,n)A (a€) d&s = ~[4 T (H)] (10.43)
[F

Here the contours [T are the same as in formulae (10.27)-(10.30).

The operators £ and Eio) are elliptic ¥DOs of order 1 with index equal to zero and
they possess mapping property (10.37) (for details see [16]).
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Further, Remark 10.3 yields that there exist limits on S from QF of the second term in
the right-hand side expression of (10.39)

lim  [[K)(z,y, 2 —y) +wIo Ky (z,y,x —y)| g(y) dS, =

Q*>zr—2€8g

= [ (2) + wTpali(2)]g(2) + Ky g(2) + Ty K4 (=),

where 16’2 and 16’2’ are singular integral operators with singular kernels Ké and Kg , respec-
tively; o/, and o/ are some smooth matrices independent of w (we do not need their explicit
expressions for our purposes).

The existence of the limits on S (from OQF) of the third term in the right-hand side of
(10.39) is evident. It is also obvious that these limits are equal to each other and that the
boundary operator K;, generated by this term, is a weakly singular integral operator (DO
of order s < —1).

Thus, the existence of the operators £* is proved in the space C1%(S) and we have

gz = | 79 Nx Dl .

[0]1xs £ ga(2) et
ol (2) + wTp L (2)]g(z) + Kb g(2) + wTo KY g(2) + K1 g(2). (10.44)
We also see that the operators (10.44) possess the mapping property (10.37).
It remains to show £t = L.

The integral representation formulae (3.2) and (3.3) of a regular vector U we rewrite as
follows

Uz) = £{W([U)(x) - V(BU)(@)}, = €0, (10.45)

provided A(D, —iw)U(z) = 0 in QF and U € SK*(27); here W and V are double and single
layer potentials operators (see (10.1) and (10.2)).
Due to Lemma 10.1 from (10.45) we have

(=27 L+ Ky)[U" =H[BUI*, (27'Li+ K2)[U]” = H[BU]",

where the operators H and ICy are defined by (10.3) and (10.5), respectively.

If in these equations we substitute U(x) = W (g)(x) with an arbitrary g eC*(S), apply
the same Lemma 10.1 and the above results concerning the limits (10.6), we arrive at the
following relations

(—2_114 + ICQ)(2_1[4 + ICQ) g = H£+ qg,

Q'+ ) (-2 L+ Ky) g=HL g. (10.46)
Whence
H(LTg—L g)=0. (10.47)

By (10.44) we have LT g— L~ g =: h € C*(S) and, therefore, V'(h) is a regular vector in QF.
Now, on one side, (10.47) yields that V(h) is a regular solution to the homogeneous
roblem (P;); and we conclude V' (h)(z) =0, xz € Q~, due to Theorem 9.5.
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On the other side, the same equation (10.47) implies that V' (h) is a regular solution to the
homogeneous problem (P;)} as well, and, by Corollary 10.6, we get V(h)(z) =0, x € QT,
provided w & X[(P1)}].

The above equations imply h = [BV (k)] — [BV(h)]T = 0.

Thus, we have proved that LT g = L™ g for all g € C"*(9) if w ¢ [(P1)}], which
according to (10.44) leads to the equation

[0y (2) — & (2)]g(2) + wTlal(z) — aZ(2)]g(z) = 0.
Consequently, o/, (2) = o’ (2), o/ (2) =a”(z), and (10.36) holds for an arbitrary value
of the parameter w
It is also evident that the dominant singular part (L), of the operator £ and the corre-
sponding principal homogeneous symbol matrix read

L33 [0]351
(Lo = . O : (10.48)
o(L) = (O£ e [l (10.49)
[0]1x3 oL i

(see (10.40), (10.41), (10.42), (10.43)). Whence the positive definiteness of the matrix (10.49)
and the formally self-adjointness of the operator (10.48) follow immediately, since the matrix
O (L) is positive definite and, as formulae (10.46), (10.29), and (10.30) show

oLy = —[4o(H) " > 0. (10.50)

The proof is completed. [ |
10.3. In this subsection we collect the known results concerning some properties of the
above introduced single and double layer potentials in Besov and Bessel-potential spaces.
The proof of the theorem below is, in fact, the same as proof of analogous theorem in the
elasticity theory (or even in the theory of harmonic functions). One has to relay on the fact
that regular function spaces are densely embedded in Besov and Bessel-potential functional

spaces, and apply the usual limiting extension procedure together with the duality and
interpolation principles (for details we refer to, for example, [16], [17], [13], [51]).

THEOREM 10.8 The operators (10.12), (10.13), (10.10), (10.11), and (10.37) can be ex-
tended by continuity to the following bounded operators

Vo1 B3 (S) — HyPHP(QF) By (S) — HyloMP(Q7) MSK(Q)),
B; (S) — Byt (@) (B3, (S) = Byl nSK Q)
W B3, (S) = Hyt/P(QY) (B, (S) — HipolP(Q7) N SK(Q)],
B; () = BWP(QF)  [Bg,(8) — Byii(7) nSK Q)
H oo H(S) — H3H(S) [B,(S) — ByH(S)),
K1, Ko+ Hy(S) — H(S) [B5,(S) = B3,(S)],
L HHY(S) — H3(S) [B3EY(S) — B ,(9)],

[@))
oo



for arbitrary s € IR, 1 < p < 00, 1 < q < 00, provided S € C™.
Moreover,

i) for these extended operators the formulae (10.7), (10.8), (10.9), and (10.36) remain
valid in the corresponding spaces;

ii) the integral representation formula (3.3) remains valid for U € W, (€7) N SK"(Q7)
with A(D, —iw)U = 0 in Q; the integral representation formula (3.2) in Q remains valid
for U e W () with 7 = —iw and A(D, —iw)U =0 in QY.
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11 Thermoelastic Pseudo-Oscillation Potentials

In this section we deal with the single and double layer pseudo-oscillation potentials which
are defined as follows

Vo(g)(x) = éT(x —y,7)g(y)dS,, =€ IR*\S, (11.1)
W-(g)(x) := g[Q(Dy, n(y), )L (z—y,7)]" g(y)dS,, =eIR*\S, (11.2)

where I'(z — y,7) is the fundamental matrix defined by (2.2), S = 00%, g = (g1,...,94) ' =
(9,94)7, 3= (91,92, 93) "; the operator Q(D,n,7) is defined by (1.26) with » = 7.

Due to the results of Section 2 it is evident that the mapping properties and the jump
relations of the above pseudo-oscillation potentials and the steady state oscillation potentials
(10.1)-(10.2) are the same. It is also obvious that the asymptotic behaviour of the potentials
(11.1)-(11.2) at infinity is quite similar to the asymptotic behaviour of the fundamental
matrix ['(x — y, 7) since S is a compact surface.

Next, we introduce the boundary integral (pseudodifferential) operators generated by the
pseudo-oscillation potentials

(9(:) = [T =y, ) 9(w) S, =€ (113)
Kirg(z) = g[sz,n( D=~y 1) glv)dS, =€, (11.4)
K2 9(2) = [Q(D,,n(v), I (: = 9. 1) T 9(w) S, = € S, (11.5)

fge) = Jim__B(Den(2)Wo(g)(w), =€ 5 (11.6)

where the boundary differential operator B(D,n) is given again by (1.25), and the integrals
(11.4) and (11.5) are understood in the Cauchy principal value sense.

The properties of the above introduced operators are described by the following propo-
sitions.

THEOREM 11.1 Let k > 0 be an integer and S € CFYY. Then for an arbitrary
summable g the potentials V.(g) and W.(g) are C*-smooth solutions to the equation (1.9)
in QF and together with all derivatives they decrease more rapidly then any negative power
of |z| as |x| — 4o0.

Moreover, if 0 <1 <k, then

i) the operators

V, : Ch(8) — CHe(QF), (11.7)

W, : Ch(8) — Ch(QF), (11.8)
are bounded, and

Va(9)(2)]" = [Va(9)(2)]” = H-g(2), g € C(9), (11.9)

[B(D,n)V:(9)(2)]* = (F27' s + K1,7) 9(2), g € C*(S), (11.10)
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(We(9)(2)]F = (£27 i+ Ksr) 9(2), g € C(9), (11.11)
LYrg=L-g=L,g, geC"9), k>1; (11.12)

ii) the operators

H, : Ch(S) — CMh(g), (11.13)
Kir Kor 0 CH(8) — CH(S), (11.14)
L, . CHLe8) - Chv(9), (11.15)

are bounded.

THEOREM 11.2 The operators H,, +27 1y + K1, £27'1, + Ko, and L, are elliptic
W DOs of order —1, 0, 0, and 1, respectively, with index equal to zero. Moreover, the principal
homogeneous symbol matrices of the operators —H, and L, are positive definite.

THEOREM 11.3 The operators (11.7), (11.8), and (11.13)-(11.15) can be extended by
continuity to the following bounded operators

Ve By (S) — HyPHUn(QF) (B (S) — B (Q),
W, op(S) = HyFP(QF) - [By ,(S) — BygtP(QF)],
M.+ Hy(S) — Hy(S) [By.4(8) = By ()],
Kz Kor o Hy(S) = Hy(S5) [B;q(5) = By (9)],
[

L, : H3Y(S)— H(S) Bt (S) — Bs (S)],
for arbitrary s € IR, 1 < p < 00, 1 < q < 00, provided S € C*.

Moreover,

i) for these extended operators the formulae (11.9)-(11.12) remain valid in the correspond-
mg spaces;

i) the integral representation formula (3.2) remains valid for U € W) (QF) with A(D, T)U
= 0 in QF, provided that U satisfies the decay condition (1.30) at infinity in the case of the
domain 2.

Clearly, the proofs of these theorems are verbatim the proofs of the analogous propositions
in the previous section and, therefore, we omit them (for details see [16]).

We note here that the formula similar to (10.46) holds also for the pseudo-oscillation
operators and read as

(=27 + Ko ) (27 Ly + Kay) = HAL, (11.16)

From the general integral representation formula (3.2) we can also easily derive the fol-
lowing identity

(2" L+ K1) L+ Ki,) = LA, (11.17)
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REMARK 11.4 The results of Section 2 imply that the dominant singular parts and the
principal homogeneous symbol matrices of the operators H,, £2711, + K1z, +271, + Ko.r,
and L, read as (cf. (10.23)-(10.25), (10.48), (10.31), (10.32), (10.49))

HONso 5 [0]55
1x3 4 Ax4
2= | 2 e O (11.19)
4 1,7)0 — ! '
(0], +2-17 4+ K
L 4x4
27 4 I O]ans (03
(F27' L+ Kor)o = | ’ s Ol (0 ’ (11.20)
[0]15 271+ K 51)
L 4x4
L3 [0]55
(L) — (L3 [ ]g o (11.21)
[0]1><3 Ez(l)
4x4
and
O*27 L+ Ky ) = [0(£27T + Ky p)) | =
B [0(i2_1]3 + ]C(O))]3><3 [0]3><1 (11 22)
[0]1x3 o271 + Ky 4><4’
[0 (H)] [0]
O’('HT) _ 3x3 3x1 ’ (11.23)
[O]1><3 O-(Hé(l())>
4x4
(e, = | [TEDsxs [ (11.24)
[0]1><3 O-(‘CELO)> A4

The matrices (11.22)-(11.24), as it has been shown in the previous section, are nonsin-
gular. Moreover, O(—H,) and O (L;) are positive definite.
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CHAPTER V

REGULAR BOUNDARY VALUE AND INTERFACE PROBLEMS

Here we consider the nonhomogeneous regular basic bondary value and interface problems
formulated in Chapter II for the pseudo-oscillation and steady state oscillation equations of
the thermoelasticity theory of anisotropic bodies. The existence theorems will be proved in
the Holder continuous and Sobolev functional spaces with the help of the boundary integral
equation method.

12 Basic BVPs of Pseudo-Oscillations

12.1. Let us first consider the regular problem (P;)1 (see (5.1) and (5.2)) where we assume
that S € C>*'
We look for a solution in the form of the double layer potential (see (11.2))

Uz) =W:(g)(z), ze€QT, (12.1)

where g = (g1,---,94)" € C"*(S) is the unknown density. As above, here and in what
follows we again provide that 0 < o < o/ < 1.

Applying the jump formula for a double layer potential (see Theorem 11.1, item i)) and
taking into account the boundary conditions of the problem in question we arrive at the
boundary integral equation (BIE)

o) =27 L+ Ka ] g(z) = GW(z), z€S, (12.2)

where G = (fy,---, f1)T € CH*(S) is the given vector function on S (see (5.1)-(5.2)), and
ICo. - is defined by (11.5).

Due to Theorem 11.2 the singular integral operator in the left-hand side of (12.2) is an
elliptic YDO with zero index.

Further, we show that the homogeneous version of the equation (12.2) (i.e., when f = 0)
has only the trivial solution. Let gy € C"*(S) be an arbitrary solution of the equation

27+ Kyr]g(z) =0, x€S8. (12.3)
It is evident that the vector function
Up(x) = Wo(go)(z) € CH*(QF) (12.4)

represents then a regular solution of the homogeneous problem (P;)F due to (12.3). There-
fore, by the uniqueness Theorem 8.1 we conclude Up(x) = 0 in QF which, in turn, implies

[B(D,n)Uy]" =L,90=0 on S,
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where £, = £F is defined by (11.6).
In accordance with equation (11.12) we get

[B(D,n)Up]” =0 on S, (12.5)

where Uy is given again by (12.4) in Q™.
Thus, we have obtained that the vector function

Uo(z) = Wr(go)(z) € C(Q27) (12.6)

represents a regular solution to the problem (P;);. Therefore, Up(z) = 0 in Q= due to
Theorem 8.1.
As a result we have for arbitrary x € S

[Uo ()] = [Us()]™ = [Wr(g0) ()] — [Wr(g0)(2)]” = g0 =0

which proves that the equation (12.3) has only the trivial solution.

According to the general theory of singular integral equations (see, e.g., [49], [43], Ch.IV),
the nonhomogeneous equation (12.2) is solvable for an arbitrary right-hand side. Moreover,
the corresponding embedding theorems for the solution of SIE on closed manifold yield that,
if S € CH1 and f e CH(S), then g € CF(9).

Finally, we arrive at the following existence theorem.

THEOREM 12.1 Let S € CHY gnd fi € CH(S) where j = 1,4 and k > 1 is an
arbitrary integer. Then the problem (P1)+ (i.e., (1.9), (5.1), (5.2)) is uniquelly solvable in
the space CH*(QXF) and the solution is representable in the form (12.1), where g € CH(S)
solves the BIE (12.2).

REMARK 12.2 Note that, if one looks for a reqular solution to the BVP problem (Py)F
in the form of a single layer potential (see (11.1))

U(z) = V.(h)(z), zeQT, (12.7)
then one gets the VDE
H.h(z) = GY(z), z€S8, (12.8)

due to Theorem 11.1 (see (11.9)).

Applying again the uniqueness Theorem 8.1 and properties of a single layer potential, by
the arguments similar to the above ones it can be easily shown that ker H, is trivial. Note that
—H., is an elliptic WDO of order —1 (with positive definite principal homogeneous symbol
matriz) and its index equals zero. Invoking the general theory of WDO on closed smooth
manifolds (see,e.g., [T4]) we conclude that the operator

H, : Ch(S) = CIFbe(s), SeCh 0<i<k—-1, k>1, (12.9)

is an isomorphism. Therefore, the equation (12.8) is uniquely solvable in the space C*¥1%(9)
provided that S € C** and f € CH(S) (k > 1). As a result we obtain that the solution
of the problem (Py)f can also be uniquely represented as a single layer potential (12.7),
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where h € Ck_l’o‘(S_) is the unique solution of the equation (12.8). Clearly, we again have
U = V,(h) € CF(QF).
We remark that applying the equation (11.17) one can show that, in fact, the operator

H7L L Ce(S) — Ch(S), SeCh 0<i<k-—1, k>1, (12.10)

which is inverse to the operator (12.9), is a singular integro-differential operator (i.e., a WDO
of order 1). Obviously, the principal homogeneous symbol matriz of the operator —H-' is
also positive definite.

It should be noted that to prove the existence of a reqular solution by the single layer
approach, as it is evident from the above arguments, C* -smoothness of the boundary surface

OOt = S is sufficient, while by the double layer approach we need S € C**

12.2. Let us look for a regular solution of the problem (Py)1 (see (5.3)-(5.4)) again in
the form (12.1). The boundary conditions of the problem in question and the properties of
the duble layer potential lead to the following system of equations for the unknown density
gon S

{27 11+ Koo g(2)}; = fi(2), J=1,2,3, (12.11)
{£: g(2)}a = Fu(z). (12.12)

Note that the operators involved in the first three equations are singular integral operators
(SIO), i.e., ¥DOs of zero order, while in the fourth equation we have singular integro-
differential operators, i.e., YDOs of order 1.

In order to rewrite these equations in the matrix form we set

27 4 Kot )palsx
N = (27 L+ Kac)palaa (12.13)

[(L£7)ag)1x4

4x4
with p=1,2,3, and ¢ = 1, 4.
Clearly, then (12.11) and (12.12) are equvalent to the equation
N g(x) =GP(2), €S G¥=(fi,fo fs Fi)'. (12.14)
We assume that G € [CH(S)]® x [CF1(9)], i.e.,
S e ke’ fie Ch(s), j=1,2,3, F, e CFhe(9), (12.15)

where £ > 1, 0 < a < o/ < 1. Moreover, we seek the unknown density vector ¢ in the space
[CEe(9))*.

The system of WDEs (12.13) is elliptic in the sense of Douglis-Nirenberg (cf.[3], [2], [82])
and its principal symbol matrix

—1 (0)
ONT) = (O s+ K7 )]sxs  [0]3x1 (12.16)
7 [0]1x3 oLy

4x4
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is nonsingular for arbitrary z € S and |€] = 1 (see Remark 11.4, the formulae (10.26),
(10.28), (10.41), (10.43), and the proofs of Lemmata 10.2 and 10.7).

The index of the operator {T equals to zero, since the index of the corresponding
dominant singular part is zero.

Next, we show that the system (12.11)-(12.12) (i.e., (12.14)) can be equivalently reduced
to the system of singular integral equations (SIEs). To this end we formulate the following
lemma which will be frequently used in the sequel (see, e.g., [58], [20]).

LEMMA 12.3 The scalar operator
Rh(z) =+ [|z—y|'h(y)dS,, z€S, SeC", (12.17)
5

generated by the harmonic single layer potential, is a formally self-adjoint, equivalent smooth-
ing lifting WDO of order —1, (i.e., Rh = 0 implies h = 0) with the principal homogeneous
symbol equal to |€|7! (ie., O(R)(z,€&) = [£]7Y, z € S, £ € IR?\ {0}).

Due to this lemma it is evident that the system (12.11)-(12.12) is equivalent to the system
of SIEs on S

{27 11+ Koo g(2)}; = fi(2), j=1,2,3, (12.18)
R{L; g(z)}s = REF4(z), (12.19)

which can also be written as

RaNG g(x) = G2, (12.20)
where
R, — [I3]3x3  [0]3x1 (12.21)
0lixs R s
and
GP = (f1, fa, f3, RFy) . (12.22)

Clearly, (12.20) is an elliptic SIE with index zero.

Further, we prove that the nonhomogeneous system (12.11)-(12.12) (i.e., (12.14) and
(12.20)) is uniquely solvable. Invoking again the theory of SIEs on smooth manifolds ([49],
[43]), we have to show that the homogeneous version of the system (12.11)-(12.12) admits
only the trivial solution. It is an easy consequence of the corresponding uniqueness theorem
and the jump relations of a double layer potential, and can be shown by the same arguments
as in the previous subsection. These results imply that the equation (12.20) is uniquely
solvable for arbitrary G2 € Ck*(S) in the space g € C**(S) which immediately leads to
the following assertion.

THEOREM 12.4 Let conditions (12.15) be fulfilled. Then the problem (Ps)t ( i.e., (1.9),
(5.3), (5.4)) is uniquely solvable in the space C**(QF) and the solution is representable in
the form (12.1), where g € C**(S) solves the system of BIEs (12.11)-(12.12) ( i.e., (12.20)).
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Let us note here that the single layer aproach is again applicable and leads to the existence
results described in Theorem 12.4 (cf. Remark 12.2).

12.3. In this subsection we consider the nonhomogeneous problem (P3)f (see (5.5),
(5.6)). We look for a regular solution U again in the form (12.1) which yields the following
system of BIEs on S:

{Lr9(x)}; = Fj(x), j=1,2,3, (12.23)

{27 L+ Kol g(2)}a = fulw), (12.24)
where we provide

S e Ok’ e Chh(S), j=1,2,3, fi€ Ch(9) (12.25)

with the same k, o/, and « as in (12.15). The unknown density g is again assumed to belong
to the class CH*(S).
We set

[(2_1[4 + ’C2,7’)4q]1><4

with p=1,2,3, and ¢ = 1,4.
The equations (12.23)-(12.24) can be then written in the matrix form as

5 9(x)=G(2), v€S, G¥ = (R, R, F,f)" € [CF(9)]° x Ch(S). (12.27)

N [ (ol ] 1220

The operator N3, is elliptic (again in the sense of Douglis-Nirenberg) with the nonsingular
principal symbol matrix

TNy, = (O£ )]s (O] (12.28)

[0]15 o2 +KY)

4x4

(see Section 10 and Remark 11.4) and the index equal to zero.
Introduce the matrix operator

(12.29)

[I5R]3x3  [0]3x1
O L |,

where R is the equivalent lifting operator (12.17).
Now it can be easily seen that

Rg ;:TQ(SL’) = GS), GS) = (RFI,RFQ,RF3, f4)T S Ck’a(S), (1230)

is an elliptic system of SIEs equivalent to (12.23)-(12.24), due to Lemma 12.3.

As in the previous subsection we can easily establish that the homogeneous version of
the system (12.23)-(12.24) admits only the trivial solution. Therefore, the nonhomogeneous
system (12.30) and, consequently, (12.23)-(12.24) are uniquely solvable in the class C*(S) if
the boundary data meet the conditions (12.25). Thus, we have proved the following existence
result.
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THEOREM 12.5 Let conditions (12.25) be fulfilled. Then the problem (Ps)f ( i.e., (1.9),
(5.5), (5.6)) is uniquely solvable in the space CH*(QF) and the solution is representable in
the form (12.1), where g € C**(S) solves the system of BIEs (12.23)-(12.24) ( i.e., (12.30)).

We emphasize that the single layer aproach is again applicable and lead to the same
existence results.

12.4. Here we consider the nonhomogeneous boundary value problem (P4)1 (see (5.7),
(5.8)). We look for a regular solution U again in the form (12.1) which now leads to the
hypersingular BIE (VDE of order +1) on S

L g(0) = Lo gla) = GV (@), G = (- )T e [CFe ()" (12.31)

Due to Remark 11.4 the dominant singular part and the principal homogeneous positive

definite symbol matrix of the singular integro-differential operator N, := L, are given by

formulae (11.21) and (11.24), respectively. Moreover, the index of L, is equal to zero.
The WDE (12.31) is equivalent to the elliptic system of SIEs

R4 44,_7' g(flf) = G>(k4)7 G>(k4) = (RFD Ty RF4>T S Ckﬂ(S)? (1232>
where
Ry = [IiR]axa (12.33)

with R defined by (12.17).

Applying uniqueness Theorem 8.1 and formula (11.12) we conclude that the homogeneous
version of equation (12.31) has only the trivial solution. Therefore, the nonhomogeneous
systems (12.32) and (12.31) are uniquely solvable in the space C**(S). This implies the
following proposition.

THEOREM 12.6 Let S € C1 and F e [CF12(S)]* with the same k, o/, and o as in
(12.15). Then the problem (Py)t ( i.e., (1.9), (5.7), (5.8)) is uniquely solvable in the space
Ch(QF) and the solution is representable in the form (12.1), where g € C*%(S) solves the
system of BIEs (12.31) ( i.e., (12.32)).

REMARK 12.7 The classical single layer approach for the problem (P (see (12.7))
reduces the BVP to the system of SIEs on S € C* (k > 1)

(=27 '+ Ky ) h(z) =GW, GW = (Fy,---, F,)T € CF12(9). (12.34)

The SIO in the left-hand side is elliptic with index zero. Moreover, Theorems 8.1 and 11.1,
item 1) imply ker(—2711y + K1 ;) = {0}. Therefore, the mapping

— 27+ Ky s CE(S) = CM(S), 0<I<k—1, (12.35)

18 an isomorphism.

These arguments show that the equation (12.34) is always solvable in the space h €
CF=Y(8). This, in turn, proves that the the unique solution to the BVP (Py)t is repre-
sentable also in the form of a single layer potential

U(x) = V;(h)(z) € C*(QF),
where h € CF1%(S) solves the SIE (12.34).
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12.5. The existence theorems of solutions to the basic exterior BVPs for the pseudo-
oscillation equations of thermoelasticity theory can be proved by the word for word repetition
of the arguments outlined in the previous subsections. Therefore, we confine oureselves by
formulation the final results.

THEOREM 12.8 The basic exterior nonhomogeneous BVPs (P,)- (n =1,4), formulated
in Section 5 (see (5.1)-(5.8)) are uniquely solvable in the space C**(Q~) provided that

S c Ck‘-i-loz fj Ck‘ Ol( )7 Fj c Ck_lva(S)7 ,] — m’ (1236)

where 0 < a < o <1 and k > 1 is an arbitrary integer. The solutions are representable in
the form of a double layer potential

Ulz) = Wr(g)(z), ze€Q, (12.37)

where g € C*(8) solves the elliptic (in general, in the sense of Douglis-Nirenberg) system
of boundary integral (pseudodifferential) equation on S

N, g(z) = G™(z). (12.38)
Here the BIOs are defined as follows
N17— =2 1[4+IC27'? N4_,7' = ‘Cﬂ (1239)

[(_2_114 + ICQ,T)pq]3><4
[(L7)agl1xa

[(ﬁr)pq]3x4

N2_,T =
(=271 4+ Kor)aglixa

: /\fs[ } (12.40)

4x4

where p=1,3, ¢ = 1,4, and Ky, and L. are given by (11.5) and (11.6), respectively.
The right-hand side vector functions G™ in (12.38) are constructed by the boundary data
of the BVPs under consideration and read as

GW = (fi,--+ fa)T € [CP9),

G® = (f1, f, f3, Fy)T e [Ch(9) x Crhe(s),

G® = (F\, Fy, F3, f1)" € [CF5(9)]? x ke (9),

GW = (F, -, Fy)" e[CF o9 (12.41)

Note that the mappings

Ny, RS S, 0<i<h,
Ny, o (G [C(S)P x Ce(s), 1<i<k,
Ny, o (G = [ x O (s), 1<i<k,
Ny, o [CS) - [C @), 1<I<k,

are again isomorphisms. Moreover, the equations (12.38) (n=2,3,4) can be equivalently
reduced to the corresponding elliptic SIEs by the same lifting procedure as above with the
help of the lifting operators R,,.
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Finally, we remark that one can apply the single layer approach in the all above exterior
BVPs to prove the existence theorems and obtain the results described in Theorem 12.8.

12.6. In this subsection we shall study the above considered problems in the weak setting.
Let us first treat the problems (P;)F. We again look for the solutions U € W} (QF), 1 <p <
00, in the form of double layer potentials (12.1) and (12.37). Now the unknown density vector
function g should be found in the natural space B! '/?(S) since W, : BL YP(S) — WH(QF)
(see Theorem 11.3 and Section 4).

In what follows, for simplicity, we ilustrate our approach for the case S € C*, and at
the same time notice that, actually, some finite smoothness is sufficient for our purposes (for
details see [57]).

Applying again Theorem 11.3 and taking into account the boundary conditions (5.1)-(5.2)
we arrive at the BIEs on S

Nig(a) = 27 L + Kol g(2) = GW(2), GY = (fi,--, f)T, (12.42)
which formally coincide with the equations (12.2) and (12.38) (for n = 1). But now here

G e B, 1P (S) (12.43)
and we look for the unknown vector function ¢ in the same space, i.e.,

g€ BVP(S), 1<p<oo. (12.44)

Now we prove the following proposition.

LEMMA 12.9 The operators

N, 2 (B ()] = B, ()] (12.45)
are isomorphisms for arbitrary s € IR, 1 <p < o0, and 1 < g < 0.

Proof. We outline the proof for the operator Ni,. For N7 it is verbatim.

The mapping property (12.45) follows from Theorem 11.3. Since ffT is an elliptic YDO
on closed smooth manifold S, the null-space ker. f} and the index in ffT are the same
for arbitrary two pairs (s1,p1) and (s2,p2), where sq,s2 € IR and py,p € (1,00), and for
arbitrary 1 < ¢ < oo (see [4], [41], [74], Ch.2). Let s = 0 and p = ¢ = 2, and prove that in
this particular case the null-space of the operator ./\/’f} is trivial and the index equals zero.
In fact, let gy € BY,(S) = L2(S) be some solution to the homogeneous equation Ny, go = 0.
The embedding theorems for solutions of elliptic SIEs (see, e.g., [43], Ch.4) imply that,
actually, go € C**(S) for any & > 0, due to the smoothness of the boundary surface S
and the right-hand side of the homogeneous SIE in question. The double layer potential
Uo(xz) = W-(go)(z) represents then a regular vector function of the class C'*(QF) which
solves the homogeneous BVP (P;)f. Therefore, in the same way as above (see Subsection
12.1) we conclude that gy = 0 on S, which proves that kerN", is trivial in L,(S). According
to the above remark it then follows that kerN;, is trivial also in the space Bj (S) for
arbitrary s € IR, 1 < p < 00, and 1 < ¢q < oo.

Finally we note that the equality in ffT = 0 follows from Theorem 11.2 which completes
the proof. [}

This lemma yields the following existence results.
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THEOREM 12.10 Let the boundary data meet the condition (12.43). Then the BVP (Py);
[(P1);] is uniquelly solvable in the Sobolev space W, () [W)(Q7)] with 1 < p < co and
the solution is representable in the form of a double layer potential (12.1) [(12.37)] with the
density g € BL,'/P(S) which solves the corresponding SIE (12.42)

Proof. Solvability of the problems (P;)F is a ready consequence of Lemma 12.9 (for s =
1—1/p and q = p).

Now let us prove that the homogeneous BVP (P;)1 has no nontrivial solutions in the
space W;(Q*) for 1 < p < oco. Obviously, this implies that the corresponding nonhomoge-
neous problem is unquely solvable in the same space. Note that the case p = 2 has already
been considered in Section 8.

We proceed as follows. Let U € WPI(QJF) be some solution to the homogeneous problem
(Py)F. Then by Theorem 11.3, item ii), U can be represented as (cf. (3.2))

Ux) = W, ([U]")(@) — V([B(D,m)UT*) () = =Vy ([B(D,n)U]") (), « € QF, (12.46)

since by assumption [U]" =0 on S.
On the other hand the same homogeneous boundary condition and the representation
(12.46) together with Theorem 11.3, item i) imply

U]" = —H,([B(D,n)U]") =0 on S, (12.47)

where [B(D,n)U]" € B, 1/?(S).

Noting that —H, : B (S) — Bs:'(S) is an elliptic WDO on the closed smooth surface S
(with the positive definite principal homogeneous symbol matrix) we conclude that the null-
space kerH. and the index ind’H in the spaces B} (S) do not depend on s € IR, 1 < p < oo,
and 1 < ¢ < oo, and are the same as, for example, in the sapce B;;/2(S) = Hz_l/z(S).
Applying the embeding theorem for the solution of the elliptic WDEs on closed smooth
manifold (see, e.g., [74], Ch.2) we easily show that kerH, is trivial in B, 4 ?(S). Further,
we observe that the operator —H, : B;ép(S) — B;g(S) and its adjoint —H? have the
same mapping properties, i.e., —H; : By 21/ %(8) — B;g(S). Since the dominant singular
part of the operator H; is self-adjoint we conclude that indH, = 0 in B, 21/ 2(5 ). Therefore,
the equation (12.47) has only the trivial solution in the space B, 1/?(S) for arbitrary p > 1.
Thus, [B(D,n)U]" = 0, which shows that U = 0 in Q* due to (12.46).

The proof for the BVP (P;); is verbatim. ]

The analogous theorems hold valid for the problems (P,)-, n = 2,3, 4. The proofs relay
on the following assertions which can be proved by the arguments quite similar to that ones
applied in the proof of Lemma 12.9.

LEMMA 1211 Letse€ IR, 1 <p< oo, and 1 < q < 0.
Then the mappings
Niw + By () — [By (S) x By 1(S),
Nio o (B (9] — [B ' (S)F x B; (S5),
4:|,:7' : [B;,q(s)]4 - [B;,le(s)rl?

are isomorphisms.
Here N3, N5, Ni. are defined as in Subsections 12.1-12.4.
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Proof. One needs only to apply the equivalent lifting operator R,, defined by formulae
(12.21), (12.29), and (12.33), to the operators N;> and show that the mappings

Rn‘/\/’ri:'r : [B;,q(s)]4 - [B;,q(s)rl? n = 273747

are isomorphisms. Since the operators Rn/\fj; are elliptic singular operators (i.e., WDOs of
order 0) on the closed smooth manifold S, we can use the same arguments as in the proof
of Lemma 12.9 to see that kerR, N3, = {0} and indR, N, = 0 in the space [B; (S)]".
Whence ker/\f,fT = {0} and ind/\f,fT = 0 (in the corresponding functional space) follow
immediately. [}

This lemma (for s = 1 —1/p and ¢ = p) together with Theorem 8.2 implies the following
existence theorem.

THEOREM 12.12 Let1 < p < oo and the boundary data in (5.3)-(5.8) meet the conditions
£, € BW(S), Fye By, j=Ta. (12.48)
Then the BVP (P,)F (n = 2,3,4) are uniquelly solvable in the Sobolev spaces W, (Q*) and

the solutions are representable in the form of double layer potentials (12.1) and (12.37) with
the density g € B;;l/p(S) which solves the corresponding VDE on S
NE

,T

g=G". (12.49)
Here N;f. are the same as in Theorem 12.8.

Proof. For illustration of the method we outline the proof in the case of BVP (Py)-. For
the other problems it is quite analogous.

Let us look for a solution in the form of a double layer potential (12.37), where g belongs
to the natural space B, ;/p(S). Then due to Theorem 11.3 and the boundary conditions
(5.7)-(5.8) we get the following WDE on S for the unknown density g

Nivg = Lo g(x) = G, (12.50)

where GW := (Fy, -+, Fy)T € B, 1/P(9).

By Lemma 12.11 (for s = 1 — 1/p and ¢ = p) the equation (12.50) is uniquely solvable
in the space g € By Y?(S). Whence W-(g) € Hy(Q7) = B! (27) = W} (Q") by Theorem
11.3. Moreover, W, (g) represents a solution of the BVP in question due to (12.50). Now by
virtue of Theorems 8.2 and 11.3, and the arguments in the final part of the proof of Theorem
12.10, we conclude that the vector function U(x) = W-(g) € W, (€2") is a unique solution of
the problem (P,)- which completes the proof. [

REMARK 12.13 It is evident that one can apply a single layer approach to obtain the
same existense results in the Sobolev spaces W, () (see Remarks 12.2 and 12.7).

We illustrate this alternative approach for the problem (Py)E. We look for a solution in
the form of a single layer potential (12.7) where the density h is to be found in the appropriate
space B, Y/P(S). We recall that V. : B, 1/P(S) — W (Q*) (see Theorem 11.3). Taking into
account the boundary conditions (5.1)-(5.2) and applying the trace properties of a single layer
potential, we arrive at the elliptic BIE (elliptic WDE of order —1)

H.h=GW, (12.51)
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where

G = f=(fi,~, f1)T € B,'P(S). (12.52)
By the same arguments as above we can easily show that the mapping

—H, : B;(S)— B9, (12.53)

where s € IR, 1 < p < o0, and 1 < g < 00, is an isomorphism.

Therefore, there exists the unique solution h € B, L/?(S) of the equation (12.51) with the
right-hand side (12.52). Further, invoking Theorem 8.2 it can be established that the single
layer potential U(x) = V,(h)(x) represents the unique solution to the problems (Py)E in the
space W, (OF).

We note that the ellipti VDO of order +1 (cf. (2.11))

—H ' BIN(S) — B (9), (12.54)

s a singular integro-differential operator with a positive definite principal homogeneous sym-
bol matiz. Here H-' stands for the inverse of H,, and s € IR, 1 <p < o0, and 1 < q < 0.
A ready consequence of the above results is that every solution U € Wpl(Qi), 1<p<oo,

of the homogeneous equation (1.9) can be uniquely represented in the form of the single layer
potential

Ux) = Vo(H ' [UF)(2), =€ QF, (12.55)

where [U) are the traces of the solution U on S from QF.
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13 Basic exterior BV Ps of Steady Steady Oscillations

In this section we shall investigate the basic exterior BVPs for steady state oscillation equa-
tions of thermoelasticity theory. In what follows we provide that » =1 for w > 0 and r = 2
for w < 0.

13.1. First we present the following lemma which will essentially be used below in the
proof of existence theorems.

LEMMA 13.1 Let g € C+(S), S e C*, and
U(z) =W(g)(x) +poV(g)(z), =€ R\S, §=00% (13.1)
po=p1+1ip2, p1 20, pasgnw <0, (13.2)

where V- and W are single and double layer potentials defined by (10.1) and (10.2), respec-
tively, while w is the frequency parameter.
If the vector U vanishes in 2™, then the density g =0 on S.

Proof. Due to Lemmata 10.1 and 10.7 we have

g=[U]"=U]"=[U]", —pog=I[B(D,n)U]" = [B(D,n)U]" = [B(D,n)U]", (13.3)
whence

[B(D,n)U]" = —po [U]* on S (13.4)

follows.
Since U is a regular vector in Q7 we can apply the identity (1.23). Taking into account
(13.4) and separating the imaginary part, we arrive at the equation

WLTO Qer )\kj DkU4 Djﬂ4 dl’ — P2 £|[u]+|2d5+ wp_Yl“o £|[U4]+|2d5 =0.

In view of (1.18), (13.2), and (13.4) from this equality it follows that [U]"™ = 0 and by

(13.3) we get g = 0. ]
In the sequel we fix the complex number py as follows
po=1—-1w. (13.5)

REMARK 13.2 In what follows we shall use the representation (13.1) to prove the ex-
istence of solutions to the exterior BVPs for the steady state oscillation equations of the
thermoelasticity theory. The similar representation for the Helmholtz equation has been first
applied in the papers [6], [62], [44]. This type of representation of solutions proved to be very
useful since it reduces the exterior BV Ps to the uniquely solvable BIEs for arbitrary values
of the frequency parameter w (for details see below).

REMARK 13.3 In contrast to the pseudo-oscillation case the classical single layer or dou-
ble layer approach reduces the exterior BVPs of steady state oscillations to the BIEs which
for a countable set of the so-called exeptional values of the frequency parameter w are not
solvable for arbitrary boundary data (see [80], [43], [10], [11]). To investigate the solvability of
these BIEs one needs to find explicitly all eigenvalues and eigenfunctions of the corresponding
boundary integral operators and their adjoint ones (for details see [80], [43]).
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13.2. We start with the problem (P;);. We look for a solution of the problem in the
form (13.1) with py defined by (13.5). By virtue of the boundary conditions (5.1)-(5.2) and
Lemma 10.1, we get the following WDE on S for the unknown density vector g

N g =24+ Ks+poH) g = GY (13.6)
with GO = (fy, ..., fa)| € CF*(S).
LEMMA 13.4 Let

S e CFLe with integer k>1 and 0 <a <o <1. (13.7)
Then the WDE (13.6) is an elliptic SIO with index zero, while the mapping

Ny = =27, + Ky +poH - CH(S) — CH(S), 0<I<E, (13.8)
18 an isomorphism.

Proof. First let us note that the operator Ny is an elliptic singular integral operator with
index equal to zero and possesses the mapping property (13.8) due to Lemmata 10.1 and
10.2. Therefore, it remains to prove that

N7g=0 (13.9)

has only the trivial solution in C"*(S).

Let g be some solution of (13.9) and construct the vector U by formula (13.1). Applying
the emmbeding theorems for solutions to a singular integral equation of normal type on
closed smooth manifold we infer that g € C**(S) (see, e.g., [43], Ch. 4). This implies
that U is a regular vector in QF. Now the equation (13.9) yields that [U]~ = 0 on S, and,
consequently, U(z) = 0 in Q- follows immediately by Theorem 9.5, since U € SK"(27).
Then g = 0 by Lemma 13.1. Therefore (13.8) is a one-to-one correspondence and N~ is
invertible. ]

The material collected until now is enough to prove the existence theorem.

THEOREM 13.5 Let S, k, o, and o be as in (13.7) and let f; € CF*(S) (j =1, ...,4).
Then Problem (P1); has a unique regular solution of the class C**(Q~) N SK™(Q7) and
the solution is representable in the form (13.1) with the density g € C**(S) defined by the
uniquely solvable SIE (13.6).

Proof. Tt follows from Lemmata 10.1, 13.4, and Theorem 9.5. ]

REMARK 13.6 We note that the special representation (13.1) reduces the BVP (Py),
to the equivalent boundary integral equation (13.6) for an arbitrary value of the frequency
parameter w. If one seeks the solution in the form of either single or double layer potential
then such equivalence will be, in general, violated (see Remark 13.3).
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13.3. We look for a regular solution to the problem (Ps), again in the form (13.1). Then
the boundary conditions (5.3) and (5.4) lead to the following system of WDEs on S for the
unknown density g

Ny g = {Bu(D,n)W(9) +po V(9)]}~ =GP, G® = (fi, fo, fo, Fa) ",

ie.
{[-27' L+ Ko+ poH] g}y = f1y a=1,2,3, (13.10)
{[£+po (27 L+ K1)] g} = Fu, (13.11)
where
f, € CHS), FyeCF12(S), ¢=1,2,3. (13.12)

Therefore, the operator N5 is represented as

{=27114 + Ko + poH } )34

N, =
{L+po (27 s + K1) Ya)ixa

] = (N7 )o+ N5, (13.13)

q=1,2,3, Il=1,..,4,

where (N5 )g is the dominant singular part of N5 . Due to (10.25), (10.48), and Lemma 10.1
we have

[—271 I3+ /*C Osx3 [0]3x1

(13.14)
[0]1x3 cy

(N2_)0 = {

4x4

The entries of the first three rows of the matrix NQ_ are weakly singular integral operators
(UDOs of order s < —1), while the fourth row contains singular integral operators (VDOs of
order s < 0). It is easy to see that (13.14) is a WDO elliptic in the sense of Douglis-Nirenberg.

Now it is also evident that the operator R,, defined by (12.21), is an equivalent lift-
ing operator which reduces the system (13.10)-(13.11) to the equivalent system of singular
integral equations

R2N2_g = G>(1<2)7 G>(k2) = (f17f27f37RF4)T-

For the principal homogeneous symbol matrix we have

(O(=27 L+ K )sws [0t

O'(RQNQ_) = [0]1X3 O’(Rﬁio))

4x4

which is nonsingular due to Lemmata 10.2, 10.7, and 12.3.
LEMMA 13.7 Let conditions (13.7) be fulfilled. Then the W DO
Ny o [CH(9)]* — [CH(9)]? x CHh(8), 1 <1<k, (13.15)

s an isomorphism.
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Proof. The mapping property (13.15) of the operator N is an easy consequence of Lem-
mata 10.1 and 10.7. Clearly, the invertibility of the operator (13.15) is equivalent to the
invertibility of the operator

RoNy = [CH(9)]* — [CH(9], 0< 1<k, (13.16)

according to Lemma 12.3.

Now from Lemmata 10.2, 10.7, and 12.3 it follows that RoN5 is an elliptic singular
integral operator with index zero. By the arguments applied in the proof of Lemma 13.4 we
can show that the homogeneous equation N g = 0, where g € C*(S), has only the trivial
solution ¢ = 0. Further, by Lemma 12.3 we conclude that the null-space of the operator
RoNy in Ch*(S) is trivial, which completes the proof. ]

THEOREM 13.8 Let conditions (13.7) and (13.12) be fulfilled. Then the problem (Pa),
has a unique regular solution of the class CH*(Q~) N SK™(Q™) and the solution is repre-
sentable in the form (13.1) with the density g € C**(S) defined by the uniquely solvable
UDEs (13.10)-(13.11).

Proof. 1t is a ready consequence of Lemmata 10.1, 13.7 and Theorem 9.5. |

6.4. Here we consider the problem (P3);. Applying again the same representation
formula (13.1) and taking into account the boundary conditions (5.7) and (5.8), we arrive
at the following system of WDEs for the unknown density g on S:

Ny g = {B)(D,n)[W(g) +poV(g)]}  =G®, G® = (F, Fy, Fy, fa)",

ie.,
{[L+p "L+ K] gl =F, a=1,2,3, (13.17)
{[-27'1, + Ky + poH] g}a = fu, (13.18)
where
E, e CF1(8), f,€CP(S), ¢=1,2,3. (13.19)

Clearly, N3 is representable in the form

_ {L +po(27' Iy + K1) Y] 3xa _ —
Ny = L ! = (N3 )o+ N5, (13.20)
{—27"1s+ Ks) + poH }ar)ixa .
g=1,2,3, [=1,...4,
where
(D) (L33 [0]351
3 /)0 —
[0]1x3 27"+ K 4(10) ™




is the dominant singular part of N~ due to (10.25) and (10.48); the operator A contains
WDOs of order s < 0 in the first three rows and WYDOs of order s < —1 in the fourth row.
Obviously, Ny is again an elliptic DO in the sense of Douglis-Nirenberg.

The diagonal operator R, defined by (12.29), is an equivalent lifting operator which
reduces (13.17)-(13.18) to the equivalent system of singular integral equations

RNy g=GY, G = (RF,RE,RFs, f1) .

The principal homogeneous symbol matrix of the operator R3N; reads

[O(RLO)]3x5  [0]351

o [0]1x3 o2+ Kk )

4x4

and is nonsingular according to the results of Section 10.
Now in the same way as in the previous subsection we can prove the following assertions.

LEMMA 13.9 Let the conditions (13.7) be fulfilled.
Then the ¥ DO

Ny 2 [CH(9)) — [CTH(S)P x Ch(S), 1< I <k,
18 an isomorphism.

THEOREM 13.10 Let the conditions (13.7) and (13.19) be fulfilled. Then the problem
(Ps); has a unique regular solution of the class C**(Q7) N SK™(Q™) and the solution is
representable in the form (13.1) with the density g € C¥*(S) defined by the uniquely solvable
UDEs (13.17)-(13.18).

6.5. The representation (13.1) of a regular solution and the boundary conditions (5.7),
(5.8) reduce the BVP (P,); to the system of WDEs on S

N4_ g = [£ + p0(2_114 + Kl)] g = G(4), G(4) = (Fl, Ty, F4)T. (1321)

For the dominant singular part we have the following elliptic WDO (of order 1) (N, )o = (£)o,
where (L) is given by (10.48). It is easy to check that the diagonal operator Ry = I, R with
R defined by (12.17), is a lifting operator, which reduces equivalently the equations (13.21)
to the following elliptic system of singular integral equations with index equal to zero

R4N4_g:G>(¢<4)7 G>(c<4) :(RF17"'7RF4)T-

The proofs of the next lemma and theorem are quite similar to the proofs of Lemma 13.4
and Theorem 13.5.

LEMMA 13.11 Let the conditions (13.7) be fulfilled.
Then the ¥ DO

Ny 2 Cho(S) — ¢le(s), 1< 1<k,

18 an isomorphism.
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THEOREM 13.12 Let the conditions (13.7) be fulfilled and F; € C*1(S), j = 1,4.
Then the problem (Py), has a unique regular solution of the class Ch(Q7) NSK™(Q™) and
the solution is representable in the form (13.1) with the density g € C**(S) defined by the
uniquely solvable VDE (13.21).

13.5. In this subsection we consider the problems (P,); (n = 1,4) in the Sobolev
space WI},IOC(Q_). The corresponding existence theorems can be proved with the help of the
following lemma (cf. Lemmata 12.9 and 12.11).

LEMMA 13.13 Let S be a C*-reqular surface and let s € IR, 1 < p < 00, 1 < g < 0.
Then the mappings

Ny o (B (S = By ()]
Ny o (B (S = [B; (9))* x By, H(9),
Ny o (B (S = [By (S)]) x B ,(9),
N 1By () = B ()]

are isomorphisms.
Here the WDOs N7, Ny, N5 ,and N are given by formulae (13.8), (13.13), (13.20),
and (13.21), respectively.

Proof. The mapping properties indicated in the lemma follow from Lemma 10.8. The
operators N, (n = 1,4) have zero indices since N, — ./\/'nf . are compact operators in the
corresponding functional spaces due to the results of Section 2 and since ind./\/,; . =0(n=
1,4) (see Lemmata 12.9 and 12.11). Here the operators N, are the same as in Section 12.

It remains to prove that kerV~ is trivial. To see this, let us consider the homogeneous
equations N~ g = 0 which are equivalent to the SIEs R, N, g = 0, where R,, (n = 1,4)
are the same invertible lifting operators as in Section 12 and g € B; (S). Bearing in maind
that RN, (n = 1,4) are elliptic SIOs on the closed smooth manifold S we infer that any
solution g € Ly(S) to the above SIEs, actually, belongs to the space C"*(S) due to the
embedding theorems. Moreover, by the above mentioned equivalence we get N~ g = 0.
These relations imply that the linear combination of the double and single layer potentials
W(g)(x) + po V(g)(z) constructed by the density g € C**(S) and p, given by (13.5), belong
to the class C**(Q~) N SK™(Q2~) and solves the homogeneous exterior BVP (P,);. By the
uniqueness theorems (see Section 9) W(g)(z) + po V(g)(x) = 0 in @~ whence g = 0 on S
follows by Lemma 13.1. Thus, kerR, N,  is trivial in the space Ly(S). It is then trivial aslo
in the space By (S) for arbitrary s € IR, 1 < p < 0o, and 1 < ¢ < 0o (see the reasonings
in the proof of Lemma 12.9). Terefore, kerR,, N,- = {0} again due to the invertibility of the
operator R,, (n = 1,4) which completes the proof. [

This lemma implies the following existence results.

THEOREM 13.14 Let 1 < p < oo and the boundary data in (5.1)-(5.8) satisfy the condi-
tions

f; € BYP(S), Fje B P(S), j=T1.4.
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Then the BVP (Py); (n = 1,4) are uniquely solvable in the class W,,.(Q27) NSK(Q7) and

the solutions are representable in the form (13.1), where the density g € B;;,l/p(S) solves
the corresponding WDFE on S

N7g=G" n=T74
Here G™ are boundary data given by (12.41).

Proof. Tt is quite similar to the proof of Theorems 12.10 and 12.12. Indeed, the solvability
of the BVPs indicated in the theorem follows from Lemma 13.13. To prove the uniqueness
of solutions in the class W, ,.(27) N SK"(Q7), we can again apply the general integral
representation formula (see Theorem 10.8, item ii)) and show that all solutions to the ho-
mogeneous BVPs (P, of this class, actually, belong to the class of regular vector functions
CH(Q)NSK™(Q27) due to the ellipticity of the corresponding WDEs on closed smooth surface
S. This completes the proof. [

90



14 Basic Interface Problems of Pseudo-Oscillations

In this section we shall construct an ”explicit” solution to the basic nonhomogeneous interface
problem (C), which will essentially be employed afterwards in the study of the other regular
and mixed interface problems.

14.1. Let us consider the problem (C),, i.e., we look for four-dimensional vector functions

vl = (u(l),ufll))T e CHQ1) and U? = (u(z),uf))T € C'(92) which are solutions of the
pseudo-oscillation equations

AVD HUD(z)=0 in QY (14.1)
AP(D, U@ (x)=0 in Q2 (14.2)
and satisfy the transmission conditions on the interface S

W) = W@ = f, w7 - () = fa (14.3)

[POD,m) U — [PPUD,n)U]~ = F,

(14.4)
MO(D,n)uT+ — NO(D, n)ul]” = Fy,

where P®(D,n) and A®(D,n) are the thermostress and heat flux operators defined by
(1.13) and (1.24), respectively. Here

S e Ck—H’a/, fj € Ck,a(s)’ Fj € Ck_La(S)a J= 1747 (145)

f:(.fla"'>f4)T> F:(Fla"'>F4)T?

where as above k > 1 is an integer and 0 < o < o < 1.
Making use of the notation (1.25) the above transmission conditions can be written as
follows

W - U@ =, (14.6)
[BY(D,n) UV — [BP(D,n)UP]” = F. (14.7)

We look for a solution to the problem (C), in the form of single layer potentials

U0 (z) = VIO[(H) gV )(), @€ 2, (14.8)
U (x) = VI(HE) g (x), = €?, (14.9)

where g® = (g0, gfNT, g = (g% g8 gYNT = 1,2, are unknown densities and

(HM)~! is the operator inverse to HW (see Remark 12.2). Here and in what follows the
superscript ¢ (4 = 1,2) denotes that the corresponding operator is constructed by the
thermoelastic characteristics of the elastic material occupying the domain Q*.
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Due to Theorem 11.1, the transmission conditions (14.3) and (14.4), i.e., (14.6) and
(14.7), lead to the following system of boundary equations on S:

gD —g®— (14.10)
(=27 L+ Ki)(HD) gD — 27 L+ K (HP) 7@ = F, (14.11)
where KW, = 1,2, are defined by (11.4).
Let
Nip = (=27 K ()™ Nor = =(27 L+ ) (),
N‘r :Nl,'r +N2,7'- (1412)
Then equations (14.10) and (14.11) yield:
gD = f+g®, (14.13)
Ny g® =F - Ny, f. (14.14)

Now we will study properties of the boundary operators Ny ,, Ao, and N,.

LEMMA 14.1 Let S be as in (14.5). Then
Ny N, CH(S) — Che(s), =12, 1<I<k, (14.15)

are bounded operators with the trivial null-spaces.
Operators Ny, N, j = 1,2, defined by (14.15), are isomorphisms.

Proof. The mapping property (14.15) is an easy consequence of Theorem 11.1, item ii), since
the operator (H)~! . C**(S) — C*~1*(S) is an isomorphism due to Remark 12.2.

From Remark 12.7 it follows also that the equations N . h = 0 (j = 1,2) have only the
trivial solutions. Therefore, the operators N ., (j = 1,2) defined by (14.12), (14.15) are
invertible and their inverses are bounded.

It remains to prove that the null-space of the operator N; is trivial as well. Let h =
(h1,...hq) T € C"*(S) be an arbitrary solution of the equation Ny h = 0, i.e., N1, h+ N, h =
0. Then it can be easily seen that the vectors UM (z) = VIW[(HW)~1h](z), » € Q! and
U (x) = VA[(HD)~1h](x), z € O2, are regular and they solve the homogeneous problem
(C);, since gV = h and g = h solve the homogeneous version of the system of equations
(14.10), (14.11). Therefore, by Theorem 8.6 we have UV = 0 in Q! and U® = 0 in Q2
whence h = 0 on S follows immediately. [}

LEMMA 14.2 The principal homogeneous symbol matrices of the operators N1, N, and
N, are positive definite.

Proof. Here again 0 (K)(x,€) with 2 € S and € € IR?\{0} denotes the principal homogeneous
symbol of the pseudodifferential operator .
Equations (14.12) imply

O-(NT) = O-(Nl,r) + O-(Nl'r)a
ONi-) = 0(=27' L+ K1) [o(HW)]
ONoy) = =02+ K2 [0 (HE)) L (14.16)



In the same way as in the proof of Lemma 10.2 we can easily show that
O(HY) = O((HW)), O (KY) = O((K™)o).
where (H®™)y and (K®)y are 4 x 4 matrix boundary operators on S:
(H" o g(x) = [TW (@ —y)g(y) Sy, @ € 5,

(K)o g(z) = S{[Bé”wx, n(x))TW (z - y)] g(y) dS,, = € S,

with ¢ = (§,94)" and § = (g1, g2, g3) "; here T™(z) is given by (2.8) and

[TW(D,n)]sxs  [0]sx1

B{(D,n) =
[0]1x3 WD) |,
Therefore,
HEO, o 05y |
(HW), = [ Jxs - 10ls 01 : (14.17)
[0]1x3 Ha(lu’ )
d4x4
KED5 5 [0]54
(K)o = [ Jxs | ]301 , (14.18)
(O3 ]C‘(l% ) daxa

where H®0) K0 and Hi“ ’0), ICE{L 9 are 3 x 3 matrix and scalar operators, respectively,
generated by the single layer potentials constructed by the fundamental matrix I'*-%) (z) and
the fundamental function v*%(z)] (see (2.6), (2.7), (10.19)-(10.22), (10.26)):

H0) G(z) = gr(wm(gg — ) G(y) dS,, HP” ga(x) = / Y10z —y) ga(y) dS,, (14.19)

0 (a) = [ [T9(Ds, ()T (@ = 1)) 3(y) dS,

L ga(2) = A (Dey ()7 #0 (= ) ga(y) dS),

Taking into account the structure of the matrices (14.17) and (14.18) we get from (14.16)

T(Ni7) =0 (=271 + (KW)) [0 (HD)o)] ! = (14.20)
B {0<_2—1[3 + ]C(l,O))[O'(H(l,O))]—l}gxg [0]3x1 ]
[0)1x5 o=+ KoM |
O(Nay) = =0 (271s + (K@) [O(HP)o)] ! = (14.21)
o [0-(2_1]3 +IC(270))[O(H(270))]—1}3X3 [0]3x1 }
(013 oL+ KD e M
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Next, let us note that the followmg Green formulae hold for regular solutlons to the system of

classical elastostatics C*)(D)u™ = 0 and to the elliptic scalar equation )\k] DyD; u =0
in Q*:
[ B, uVyde = [ [w®]FTOD, n)u]* ds,
ol a0
[ By (u® u®)dr = — [ [u®?]7[T(D, n)u)" ds,
02 002
SN Dl Dyl dae = J [ TENO(D, ml ] d,
fA DY) Diu? dz = — [ W] [N@(D, n)ul) ds, (14.22)
002
where EJ (u® @) = c,(j]‘;quug”) D;ul"” > 0 (see (1.15)), the classical stress operator

TW(D,n) and the co-normal derivative (the heat flux operator) A" (D,n) are given by
(1.12) and (1.24), respectively; moreover, u'? = o(1) and u) = o(1) at infinity.

Further, 1f we substitute in these formulae the corresponding smgle layer potentials
v®0) and v{"? (see (10.19), (10.21)) with densities (H®9)~1g and (HY"”)~1g4, respec-

tively, in the place of u® and u{”, we can show that (—2~ 113 + KE0)(HEL9)=1 and
—(27 3 + K2O)(HZ) =1 are non-negative 3 x 3 matrix pseudodifferential operators with
positive definite principal symbol matrices, while (—217; + K (H?) =1 and — (2711, +
KO (HP?) 1 are non-negative scalar WDOs with positive principal symbol functions (for
details see [55], Lemma 4.2).

Therefore, the equations (14.20) and (14.21) together with (14.16) yield that O (N ,),
O (Na,), and O (N,) are positive definite matrices for arbitrary z € S and £ € IR*\{0}. n

COROLLARY 14.3 Let S, k, o/, and o be as in (14.5). Then the operator N1, inverse
to the operator N defined by (14.15), is an isomorphism; consequently,

N7 CPhe(9) = che(s), 1<I1<k,
1 a bounded operator.

Applying the above results we get from (14.13) and (14.14):
g(l) = NT_l(F +N2,T f)a 9(2) = NT_l(F - Nl,r f) (1423)

Clearly, g € C**(S), (1 = 1,2) if conditions (14.5) are fulfilled. Now we are ready to
formulate the following existence results.

THEOREM 14.4 Let S, k, /, o, f and F meet the conditions (14.5).
Then the nonhomogeneous problem (C), is uniquely solvable, and the solution is repre-
sentable in the form of potentials

U (z) = VO [(HO)INTHF + Ny £)| (2), 2 €, (14.24)
U (z) = VO [(HO)NHF =Ny )] (@), o€ (14.25)
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Moreover,

U e che@Qn), p=1,2, (14.26)
and

10 @) < Co [I1fllsika) + [1Fll(si-r) |, Co = const >0, (14.27)
where || - ||(mr.a) denotes the norm in the space CH*(M).
Proof. 1t follows from (14.8), (14.9), (14.23), Corollary 14.3 and Remark 12.2. ]

14.2. In this subsection we assume S € C*, and establish the existence results for the
problem (C), in the weak setting with 1 < p < 0.
First we prove the following statement.

LEMMA 14.5 The operators (14.15) can be extended by continuity to the folloving bounded
elliptic WDOs (of order —1)

Ny, Njr o HPU(S) — H3(S) [BiEN(S) — B: (9] (14.28)

for arbitrary s € IR, 1 < p < 0o, 1 < q < co. Moreover, the operator N, defined by (14.28)
15 invertible.

Proof. The boundedness, ellipticity, and mapping properties (14.28) of the operators N, and
N, easily follow from Lemmata 13.3 and 14.2.

The invertibility of the operator N, is a consequense of the embedding theorems for
solutions of elliptic pseudodifferential equations on closed smooth manifold (see the proof
of the analogous assertions in Section 12). In fact, any solution h € H3*'(S) [B5t1(S)] of
the homogeneous pseudodifferential equation N;h = 0, belongs also to the space C’““(S),
where k > 1 is an arbitrary integer and 0 < o < 1. Therefore, we can derive h = 0 on
S, due to Corollary 14.3. From the fact that kerA, = {0} it follows ind N, = 0, since
the principal homogeneous symbol matrix of N, is positive definite. These results imply
the unique solvability of the nonhomogeneous equation N.h = f in the spaces H;“(S)
[B5H1(S)] for the arbitrary right-hand side vector f € H3(S) [Bs (S)]. ]

Now we are able to prove the existence theorem.
THEOREM 14.6 Let
SeC™, feBVP(S), FeB/*S), j=14, 1<p<oo. (14.29)

p,p

Then the problem (C), is uniquely solvable in the space (W, (Q'), W (Q%)) and the solution
is representable by formulae (14.24)-(14.25).

Proof. Let conditions (14.29) be fulfilled. Then Lemma 14.5 and Theorem 11.3 imply that
the pair of vectors (UM, U®)) defined by (14.24) and (14.25) represent a solution to the
problem (C), of the class (W, (Q"), W, (2?)).

Next we show the uniqueness of solution to the problem (C), in the Sobolev spaces
(WHQY), WA(02)).

95



Let (UM, U@) € (W), WH(Q?)) be some solution to the homogeneous problem (C),.
)-

We recall that U € COO(Q“ Then Lemma 11.3, item ii) yield

UV (z) = WO (U)) (@) = v ([BOD,n)UV]*) (2), =€ Q' (14.30)
UP(z) = —W2 ([UP]7) (2) + Vi@ (B2(D,n)U]") (2), = € @, (14.31)

[UW)F, [U@) € BLY(S),
[BW(D,n)UWTT, [B@ (D, n)UP]™ € B, 1/7(S).

The homogeneous transmission conditions read as (see (14.6), (14.7))

W) =[UP], [BY(D, UV = [BA(D,n)UP]". (14.32)
Denote
U0 = g, [BY(D,n)UV]F =: h. (14.33)

Then (14.32) along with (14.30), (14.31), and Lemma 11.3 implies that the vector functions
h and g solve the homogeneous system of boundary WDEs:

—(HW +H2) h+ (KS) + K8 g =0, (14.34)
—(KN ) b+ (LD + £B) g = 0. (14.35)

T

From the positive definiteness of the principal symbol matrices —0 (HW), 0 (LM) (see

Lemma 11.2), and the equation O'(lCé“T)) = [O'(IC%‘T))]T, it follows that the system of WDEs
(14.34) and (14.35) is strongly elliptic in the sense of Douglis-Nirenberg. Therefore, by
the embedding theorems we conclude that h and ¢ are smooth vector functions on S, i.e.
h € CF1(S) and g € CH**(S) for any k > 1 and 0 < a < 1. But then the vectors
UM, 1 =1,2, given by (14.30) and (14.31), are regular due to the representation formulae
(14.32), (14.33), and Lemma 11.1. Now the conditions (14.32) and Theorem 8.6 complete
the proof. [

REMARK 14.7 Using the representation formulae (14.30) and (14.31) we can solve the
problem (C), by the so-called direct boundary integral equation method. This method re-
duces the transmission problem in question to the strongly elliptic (in the sense of Douglis-
Nirenberg) system of WDEs on S

G = Q, (14.36)

where ¢ = (Y, ") 7 is the unknown vector with ' = [BW(D,n)UW]* and ¢" = [UD]*;
the matrixz operator G is given by formula

[~ HO — H s (K5 + K axa
fT]4x4 (LY + L] 14

|
A
=
S
A

8%x8
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while the given on S right hand-side 8-vector ) reads as
-
Q= (@ '"L+KE)fF-HOF, LOf+ @' L-KP)F)
Actually, in the proof of Theorem 14.3 we have shown that the operators

Gr o [CFL(S)) x [CR(S)]! — [CH(S)]! x [C ()]t
(H(S))* x [H ()] — [ (S x [H(S))"
[B;, ()] % (B3 ()] — B (S)) % (B (S)]*

are invertible.

Therefore, the unique solution to the problem (C), can be represented also in the form

U (@) = W) (@) = VO () ),
U (@) = —WEW — )(x) + VO - F)(a)

where 1 solves the system of WDEs (14.36).

(14.37)

Note that the conclusions of Theorems 14.4 and 14.6 remain valid for the vectors defined

by (14.37) if the conditions (14.5) and (14.29) are fulfilled.

14.3. In this subsection we investigate the problem (G),.

First let us rewrite the transmission conditions (7.5)-(7.8) in the following equivalent

form

(D, ) UD | + [POD,n)UD - 1]” = B + 7,
(D, n)UD - m)* 4+ [PP(D,n)UP -m]” = FH + )

PO(D,n)UD . )] — [PD(D,n)UP - 1]~ = F) — F),
(D, n)UWY -]t — [PO(D, n)UP .m]” = EH) — F),

u® )t —[w® ] = f,,

PYOD, n)UWD . p)* — [PA(D,n)UP -n]” = F,,

G = W) = fr, DD T~ AP (D] = F.

Clearly, due to (14.40), (14.41), (14.43), and (14.44), the vector
[BY(D,n)UVF — [BH(D,n)UP]” = F
is a given vector on S with
F=((FD ~ EO)V+ (B — EQ)ym+ Fan, Fy)
Denote

WD = [w® 0 =y, W m)T = [P m]T =y,

(14.38)
(14.39)
(14.40)
(14.41)
(14.42)
(14.43)
(14.44)

(14.45)

(14.46)

where 1)1 and 15 are the unknown scalar functions. Equations (14.42), (14.44), and the first

equation in (14.46) imply
U =09 =,
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where

f= @il +vom+ fan, f1)". (14.47)

Now let us look for a solution to the problem (G), in the form (14.24) and (14.25), where
F and f are given by (14.45) and (14.47), respectively. Then from the results of the previ-
ous subsection it follows that the transmission conditions (14.40)-(14.44) are automatically
satisfied. It remains to satisfy only the conditions (14.38) and (14.39). Taking into account
Lemma 11.1 and the equations (14.12), we get from (14.24) and (14.25):

[BY(D,n) UV = [(PM(D,n)UD, XD (D, n)us) "] = Ny NTHEF + Nao f),
[B(D,n) U]~ = [(PP(D,n)UP XD (D, n)uy) "]~ = —No NHF — N1, f).

Further, we put
I =1(1,0) Taxa, m™ = [(m,0) Jasr, 0" =[(n,0) Jux1, (14.48)

where [, m and n are again the tangent and the normal vectors introduced in Subsection 7.2.
Conditions (14.38) and (14.39) then imply

[PY(D,n)UN - 1I)" + [PO(D,n)U® - 1]~ =
= [BY(D,n)UY - I*|* + [BP(D,n)U? - 1"]” =
=(Nir — No ) NTIF 1 4 2Ny NN f -1 = B 4 B,
(PO(D,n)UY - m]* + [P<2>(D,n)U<2 m]” =
= [BY(D,n)UY - m*|t + [BP(D,n)U? . m*]~ =
=Ny — No )NTIF - m* + 2N NOIW L f -mi = FSD 4+ B, (14.49)

since No, NN}, = N1 NN, By virtue of (14.47) from (14.49) we have the following
system of WDEs for the unknown functions ¢y and s:

ki [(No NZ N (1 + amy) [l = a1, (14.50)
23: (Na e NN )iy (Y1 + bomy)my, = o, (14.51)
where
a = 27HE + B = (Wi = No)NTIF 17} -
- ]i[(N2,TNT_1N1,T)k4f4]lk - kil[(/\fzﬁf\ff/\fm)kj(fnnj)]lk,
@ = 27YEW £ FO (N, — /\’;z,_T)N;lF-m*}—
R ;KNQ’TNT_W“)M il = kil[W%N "N )i (g, (14.52)
= e

are given functions on S.
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Now let
lk(N2,TN7—_1N1,T>kjlj lk(N2,TNT_1N1,T)kjmj

MG,T =
mi(No NN ily me(No NN ) kgmy

2x2
We recall that the summation over repeated indices is meant from 1 to 3. Clearly, (14.50)
and (14.51) can be written in the matrix form as

Mer =1 (14.53)

with the unknown vector ¢ = (¢1,%)" and the right-hand side ¢* = (qi,¢2)" given by
formulae (14.52).

LEMMA 14.8 The operator Mg . is an elliptic VDO of order 1 with a positive definite
principal homogeneous symbol matriz and the index equal to zero.

Proof. The equations (14.12), (14.20), and (14.21) imply that Mg, is a YDO of order 1
with the principal homogeneous symbol matrix

lklekj lkijkj

O(Mg) = = E\EE], (14.54)

mklekj mkijkj 952

where

L, L, I3, 0
Elz 1 2 3 ’

my, Mg, M3, 0 9% 4

E = OWNyNTWi ) = O(Noyp)O(NTHO (N ;) =
= OWN2)[OWNL) + TN )] PO (N
Due to Lemma 14.2 the matrices O(N;,), j = 1,2, are positive definite for arbitrary

z €S and € € IR?\0 (see (14.20), (14.21)). Therefore, the matrix E is positive definite as
well. Next, for arbitrary n = (11,7,)" € @'? we have

O(Me)n-n= (E\EE)n-n=E(E[n) - (Eln) =
= E(I'm 4+ m*na) - (Fm + m*n2) > clé] [ml* + nom*[? = c ] (|m]* + [n2]?), ¢ >0,

whence the positive definiteness of the matrix (14.54) follows. In turn, from this fact we
conclude that the dominant singular part of the operator Mg ; is formally self-adjoint. This
implies that the index of the operator Mg . is equal to zero. [

LEMMA 14.9 Let S, k, «, and o be as in (14.5). Then the operator
Mg, : CH(8) — C7h(8), 1<I<Ek, (14.55)

18 an isomorphism.
If S € C*, then (14.55) can be extended by continuity to the following bounded, invertible,
elliptic WDO (of order 1)

M- HSPY(S) — H3(S) [BsHH(S) — B (9)],

selR, 1<p<oo, 1<q< 0.
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Proof. 1t is quite similar to the proofs of Lemmata 14.1 and 14.5. [

The above results yield the following existence theorems.

THEOREM 14.10 Let S, k, o/, and « be as in (14.5), and let
F’l(i)> F;S@i)a F’na F4 € Ck_l@(s% fm f4 € Ck7a(S)'

Then the problem (G), is uniquelly solvable, and the solution is representable in the form
(14.24) — (14.25) with F and f given by (14.45) and (14.47), where ¢y, ¥y € C**(S) are
defined by the system of WDEs (14.50) and (14.51) (i.e., (14.53)). Moreover, the embedding
(14.26) and the inequality (14.27) hold.

THEOREM 14.11 Let S € C* and
EF E®, F,, Fie BlP(S), fa, f1eBSYP(S).

Then the problem (G), is uniquely solvable in the space (W, ('), W} (Q)), and the solutions
are representable by the formulae (14.24)—(14.25) with F' and f given by (14.45) and (14.47),
where 1, 1y € By YP(S) are defined by the system of WDEs (14.50) and (14.51) (i.e.,
(14.53)).

The proof of these theorems are quite similar (in fact, verbatim) to the proofs of Theorems
14.4 and 14.6. [ |

14.4. In this subsection we shall study the problem (H),. As in the previous subsection
let us rewrite the transmission conditions of the problem (see Subsection 7.2) in the equivalent
form

w® -t 4+ W@ = 5+ £, (14.56)
[w® - m]* + [u(2 m)” = fiD 4 f5), (14.57)
w® -t — [w® . = f - fl— , (14.58)
w® - m)t = [w® - m)” = f5 - f (14.59)
WD ]t — W 0] = f, (14.60)
(PO(D,n)UW . n)t — [PD(D,n)UP -n]~ = E,, (14.61)
WiVt = W) = £, POD, )] = DD, 0] = Ry (14.62)
Equations (14.58)-(14.60) imply
U —[UP) = f,
where f is a given vector on S
F= (G = TV GO = BD0)ym+ fam, 1) (14.63)

It is also evident that

[BY(D,n)UV — [BH(D,n)UP]” = F
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with
= (Ol + pam + Fun, Fy) T, (14.64)
where ﬁ’n and F} are given functions on S, while
P = [P(l)(D,n)U(l) - [P(Q)(D,n)U@) i
and
¢ = [POD U ] = (PO(D, U ]

are yet unknown scalar functions.

We look for a solution to the problem (H), again in the form (14.24)-(14.25), with F' and
f defined by (14.63) and (14.64), respectively. It can be easily checked that the transmission
conditions (14.58)-(14.62) are then automatically satisfied, while the equations (14.56) and
(14.57) lead to the following system of WDEs for the unknown vector ¢ = (¢1,1,)" on S:

Myt = ", (14.65)

where

LNl LN~ m.
MH,T _ k(NT )k] J k(NT )k]m] ’ (1466)
(N7 Diily mie (N7 im;

2X2

and where the right hand-side vector ¢* = (q1, ¢2) " is defined by formulae:

a = 274+ 1T = NS (W — N f - )
— [(NT i (F nm — [N )i,
¢ = 27D+ ) — N Noy — N f - mi])

[N (Famg) Iy, — (N7 kaFalms

here [* and m* are given by (14.48).
By quite the same arguments as in Subsection 14.3 we can easily show that My . is an
elliptic invertible DO of order —1 with a positive definite principal symbol matrix.
Therefore the operators

My, o CEFLo(8) — Cbe(g), S e okt
H3(S) — HSH( ), SeC=,
B (S) — B3HH(S), SeC™,
are isomorphisms.
These results lead us to the following existence theorems.

THEOREM 14.12 Let S, k, a, and o' be as in (14.5) and let

2 F, fay fre C(S),  E,, Fye C1o(S).

Then the problem (H), has the unique solution representable in the form (14.24)-(14.25)
with f and F given by (14.63) and (14.64), where 11, 1, € CF75%(S) in (14.64) are defined
by the system of YW DEs (14.65).
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THEOREM 14.13 Let S € C* and

R 5, fuy fre BLYP(S),  F,, Fye By YP(S).

Then the problem (H), is uniquely solvable in the space (W, ('), W(Q?)), and the solution
is representable by the formulae (14.24) and (14.25) with f and F given by (14.63) and
(14.64), where 1y, 19 € Bp‘;,/p(S) in (14.64) are defined by the system of WDEs (14.65).

Again proofs are verbatim the proofs of Theorems 14.4 and 14.6. gx
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15 Basic Inteface Problems of Steady State Oscilla-
tions

In this section we deal with the basic interface problems (C),, (G)., and (H), of steady
state thermoelastic oscillations formulated in Section 7. In contrast to the pseudo-oscillation
case, one can not here apply the single layer approach to obtain the ”explicit” solution to
the basic interface problem (C), for an arbitrary value of the frequency parameter w, since
the integral operator H is not invertible for the so-called exceptional values of w. Therefore,
we offer another approach which relays on the representation of a solution in the form of a
complex linear combination of the single and double layer potentials (see Section 13).

15.1. Here we again assume that the conditions (14.5) are fulfilled and look for the
solution to the nonhomogeneous interface problem (C), (see (7.3)-(7.4) or (7.11)-(7.12)) in
the following form

UD(z) = WO (gW)(z), =€l (15.1)
U (z) = WO (g®)(@) + po VP (¢?)(2), =€ (15.2)

where W® and V) are the double and single layer potentials constructed by the funda-
mental solution T (z — y,w,r) (see (10.1)-(10.2)), ¢® = (g%, -+ g¥T (u = 1,2) are
unknown densities, and py is given by (13.5). Moreover, in the sequel we again provide that

r=1 for w>0 and r=2 for w<D0. (15.3)

Taking into account the properties of the above potentials and inserting the representa-
tions (15.1)-(15.2) into the transmission conditions (7.11)-(7.12), we get the system of WDEs
on S for g (u=1,2):

27, + K3 g — 27 + K+ peH®) g@ = (15.4)
£V gV —[£® 4 po(27 Ly + K)] g = T, (15.5)

where H®, K", K and £® (i = 1,2) are defined by (10.3), (10.4), (10.5), and (10.6),
respectively.

To investigate the solvability of the above system of WDEs we first prove the following
lemma.

LEMMA 15.1 Let g € CY*(S) (u = 1,2) and let the vector functions, represented by
(15.1)-(15.2), vanish in Q' and Q?, respectively.
Then g™ =0 (u=1,2) on S.

Proof. Obviously, the regular vector function UM, defined by (15.1), can be extended by
the same formula from the domain Q' into 2. Denote the extended vector function again
by UM, By Lemmata 10.1 and 10.7 then we have

UV = —¢® and [BY(D,n)UY]" =0 on S, (15.6)
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in accordance with the assumption U®) = 0 in Q'. Since UWY is a (m,r)—thermo-radiating
regular vector function, we deduce by virtue of Theorem 9.5 and the second equation in
(15.6) that UM = 0 in 92, whence g =0 on S follows.

The assertion for ¢(® is a ready consequence of Lemma 13.1. [}
In the matrix form the system (15.4)-(15.5) reads
Mg =@, (15.7)

where g = (¢, g®)", Q = (f,F)", and

211, + KV 21, — K — pyH®
Mg — [ 4 2 ]4><4 [ 4 2 Po ]4><4 ‘ (15.8)

(LD 44 [—£® — po(27 Ly + K axa -

Next, let us introduce the following operators

&, =211, + kY, Uy = L0, (15.9)
By 1= =27 I+ K+ poH®, W= L0 4 po(27 s + K), (15.10)

and rewrite the system (15.4)-(15.5) as

0y g — Dy g = f, (15.11)
Uy gV — Wy g?@ = F (15.12)

Note that the mappings

Dy : ChS) = Ch(S), 0<I<E, (15.13)
Ty - Ch(S) = Ch(8), 1<I<k, (15.14)

are isomorphisms due to Lemmata 13.4 and 13. 11. Therefore, (15.11)-(15.12) equivalently
can be reduced to the system

g =0 &y gV — @y f, (15.15)
(U — Uy &1 D] gV = F — T, &, £ (15.16)

REMARK 15.2 Note that the system (15.4)-(15.5) (i.e., (15.11)-(15.12)) is equivalent to
the following system of SIEs

Oy g — Py g =, (15.17)
RiWi g — Ry Uy g® =Ry F, (15.18)

where the equivalent lifting matriz operator Ry is given by (12.33).

LEMMA 15.3 The operator M 1is elliptic in the sense of Douglis-Nirenberg with index
equal to zero. The mapping

Me o [CH(9)]E — [CHSO)* x [CE (9], 1<I<E, (15.19)

18 isomorphism.
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Proof. First we show that M is an elliptic ¥DO in the sense of Douglis-Nirenberg. To
this end let us remark that, due to the results of Section 10 (see (10.23)-(10.30), (10.48),
(10.49)), for the principal homogeneous symbol matrices of the operators (15.9) and (15.10)
we have the following expressions:

1 1) [K M35 [0]351
O(®)=0(2 ', +K57)0) =: . D) : (15.20)
1 ) [KP]3x5 [0]351
O(Py) =0(—27"I,+ K37)o) = o ) : (15.21)
O (U,) =0 ((LM)) (L% Ol : (15.22)

[0]1x3 Lz(li)

L d4x4

O (V) = O((L2),) =: L3 [0l , (15.23)

0)ixs LY

L 44x4

where (K)o denotes again the dominant singular part of the operator IC; here we employed
the notations:

i« (1,0)
KV =0g@ 'L+ K ) =[0@ L+ KE0)|T, (15.24)
* (270) T

K® =0(-27"3+ K ) =[0(-2"1+ K@), (15.25)
(L)1

Kil =02 ' it Ky ) =35, (15.26)

_ * (270) 1

K =02+ K, )= —5 (15.27)

LY = o (£t j=1,2, (15.28)

LY =o(LdV) =~ >0, j=1,2, (15.29)
,0)

where by I*C(MO), JCw0) I*Ci KO £00) and £8Y are denoted again the operatos (10.26),
(10.40), and (10.41) corresponding to the thermo-elastic characteristics of the medium oc-
cupying the domain Q* (cf. (14.19)).

In Lemma 3.3 of the reference [39] it has been proved that

[K(l)]3><3 _[K(z)]3x3
[LOV)3x3  [~LP]3x3

O, = det

] £ 0 (15.30)
6x6
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for arbitrary € S and € € IR*\ {0}.
Let us now consider the symbol matrix of the operator M¢

(M) = (15.31)

8x8

and show that the corresponding determinant does not vanish for arbitrary z € S and
¢ € IR? \ {0}, which in turn implies the usual ellipticity of the system (15.17)-(15.18) (or
the ellipticity of the system (15.4)-(15.5) in the sense of Douglis-Nirenberg). By virtue of
formulae (15.20)-(15.29) we get from (15.31) after some simple rearrangements

— [KW]sxs [0]sx1 —[K@]s3xs  [0]3x1 _
det O'(Me) = det Oixs K4y Oixs  —K§7 _
[LM]sxs [0]sx1 [—L® 53 [0]5x1
| [Oixs Ly [0]1x3 ~LY L ans
= det [KW]5us —[K P35 ] det : : _ —
[LW]sxs [~LP]3xs Ly I | b
=— (LW +1) 0. #£0, (15.32)

due to (15.29) and (15.30).
Next we show that the index of the operator M equals zero. To see this, let us note that
the index does not depend on a compact pertubation, and consider the following operator

Iy MPixa [MEasa (15.33)
c= N ~ ; .
MPixa M |
where
B « (1,0)
=) 27 34+ K Jsxs [0]3%1
MC = 1 % (1,0) )
i [0]1x3 27 L+ Ky ™
B « (2,0)
MO 27— K —{HZV}5s [0]3x1 ]
c - x (2,0) )
L [O]lxi% 2_111_ IC4 _{H‘(1270)} Axd
M(g) - [£(170)]3X3 [0]3><1
Tl e 0]
L 1x3 4 Axd
i [ = L0 — {271 + KO3 [0]3x1
o=
_ [0]1x3 —LP0 — {27+ KO} |
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Clearly, the dominant singular parts (Mc)e and (M) coinside. Indeed, these dominant
singular parts in the both cases can be represented in the form (15.33) where the summands
in curly brackets are removed. -

The corresponding formally adjoint operator to M reads as

. M‘“(l)* " M‘“@)* "
Mg = [Ng)]‘* ! [NZ)*]“ N (15.34)
[Mc ]4><4 [Mc ]4><4

8x8
where
s _ 2715 + K105, [0]3%1
¢ - _ 1,0 ’
_ [0]13 27+ K|
e (L8355 [0]3x1
c )
Olies L5
L 4x4
M(g)* o [2_1]3 - K& — 7_{(2’0)]3><3 [0]3><1
© [0]1x3 2711, — KPO PO |
L x 4 4 4x4
[ [ ceo o ) 0]
M/(4)* o 3 3x3 3x1 20
¢ 2,0 _ x (2,0
L [0]1x3 —L30 =27 K 4x4

We again recall that the operators involved in (15.33) and (15.34) are defined in Section
10. Moreover, here we have applied that the operators £#0), Eff"o), H#0)  and Hff"o) are
formally self-adjoint (see [33], [57]).

In what follows we prove that the homogeneous equations

Mop =0, =Mo", o0 = (- oI, j=1,2, (15.35)
and
MV*C¢ = 07 ’QZ) = (¢(1)>¢(2))T> w(]) = (w§])> o '7w4(1j))—|—’ ] = 1’2’ (1536)

have only the trivial solutions.

Due to the above established ellipticity we consider these equations in the regular space
of CY*-smooth vector functions.

Note that the system (15.35) can be decomposed into the following two independent
systems:

27 Iyt I*C 0130 — [~ 27 [+ I*C (20) 4 H20)] 5@ = 0,

15.37
L0 A —[£20 4 2711 4+ K20] 53 =0, ( )

271+ /*C4 (1’0)] 85511) —[-27'+ /*C4 20 4 Hf’o)] @512) =0,

(15.38)
£ 0 289 9 + K0 G o,
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where gU) = (o), 0§, GGNT, j = 1,2.

These systems are generated by the following interface problems for the equations of
elastostatics and the stationary distribution of temperature

CW(D)y™ =0 in Q, u® = (W, ¥ WINT, p=1,2
[wP)* — [w®]” =0 and [TO(D,n)uV]* - [T®(D,n)u®]~ =0 on S, (15.39)
u®(z) = o(1) as |z| — 400,

and
AW D, Dgu” =0 in Q¥ p=1,2,
[ui = W] =0 and DO(D,n)uf)F = NO(D,n)ufP)m =0 on S, ¢ (15.40)
uP (z) = o(1) as |z| — +o0,

where C") (D), TW (D, n), and A® (D, n) are given by (1.7), (1.12), and (1.24), respectively.

If one looks for solutions (u*), u(®) and (ufll), uf)) in the form of following potentials (see

(10.19)-(10.22) )

u® (@) = [[TO(Dy, nly))L(y = 2))T §O(y) dSy = w O (G (@), (1541)
() = (D, n()TEy — )T F(5) 05, +
+ [Ty 1) 60y) S, =5 ED(E0)(z) + 2 E0)(z), (15.42)
ui (@) = [ AV (Dy, n(y) "y — 2) 81 () S, = V(@) (@), (15.43)
u? (@) = AP Dy, ()1 By — ) &7 (y) S, +
+ [0 = ) 87 () dSy = wi V(@) (@) + v (21 (@), (15.44)

one arrives at the systems (15.37) and (15.38).

Using the usual Green identities (14.22) it can be easily shown that the homogeneous
problems (15.39) and (15.40) have only the trivial solutions.

These uniqueness results and standard arguments of the potential theory imply that the
systems (15.37) and (15.38) possess only the trivial solutions as well.

Indeed, let (oM, )T be some solution to the homogeneous system (15.37), and let
us construct by these densities the potentials (15.41) in Q! and (15.42) in Q2. Due to the
above uniqueness v (z) = 0 in Q*, u = 1,2. Applying the jump properties of the single and
double layer potentials of elastostatlcs (see [8], [33], [54]) we conclude that ™) = 2 =0
on S. For the system (15.38) the proof is verbatim. Thus, kerM¢ = {0}.

To prove that ker M = {0}, we decompose analogously the system (15.36) into the two
systems

21T, 4 K] G 4 £(10) @) —
271, 19 J 1515

[— 27 5 4+ KO+ HEO G 4 [£R0) 4 2114 ¢ 20] @) = 0,
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271 + K0 oM + 280 9 = o,

(2.0) | 7/(20) (1) (2,0 (2.0 72 _ (15.46)
(=270 + K80 + 1O D 4+ 1280 + 2+ ¢ PO = 0.

Denote by (™, 9®)T some solution of the homogeneous system (15.45) and by these den-
sities construct the vectors (see (15.41)-(15.44))

1wV (z) = v (GD)(2) + w0 () (z) in Q= Q2 (15.47)
u? (@) = vV (FO) (@) + w0 (F?)() in OF = Q" (15.48)

Obviously, CO(D)ul’ = 0in Q= = Q% and CP(D)u!? = 0 in QF = Q. It can be also
easily verified that the equations (15.45) correspond to the conditions

[T (D, n)uM]~ =0, (15.49)
[T®(D, n)uP]" + u?]* = 0. (15.50)

Therefore, ul? is a solution of the homogeneous exterior stress problem in 7, while ul?
represnts a solution to the Roben type problem in Q7. By unlqueness theorems, Wthh can
be established again with the help of (14.22), we conclude u =0in O, and ) = 0 in

QF. The jump relations then lead to the equations

) =39, [TOD, nul) = g,
WPt = =3, [TOD,nul] = g, (15.51)
whence

W)+ [?P] =0,
[T(D, n)uM]™ 4 [T (D, n)u?]~ = 0. (15.52)

Making use once again Green formulae (14.22) together with homogeneous conditions (15.52)
we obtain that v = 0 in Q* and ! = 0 in Q. Now (15.51) shows ¥ = ¢® =0 on
S. In the same way we can show that the system (15.46) has also only the trivial solution.
Thus, kerM% = {0} as well, and, therefore, indM¢ = 0, which proves the first part of the
lemma.

Next we prove that the mapping (15.19) is an isomorphism. Due to the first part of the
lemma it remains to check that the homogeneous equation M g = 0 admits only the trivial
solution. Let g = (¢, ¢®)T be an arbitrary solution of this equation. Then the potentials
(15.1) and (15.2) solve the homogeneous problem (C), and by Theorem 9.8 they vanish in
the corresponding domains. Now Lemma 15.1 completes the proof. [}

COROLLARY 15.4 Let S € C* and let s € IR, 1 < p < o0, 1 < q < oo. Then the
operators

Me o [Hy(S) — [Hy(9)]* = [Hy ' (9)]",
(B34 (SN = 1B, ()] x [By 1 ()],

are isomorphisms.
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Proof. 1t follows from the fact that, due to the general theory of elliptic WDEs on closed
smooth manifolds, the uniqueness of solution implies the corresponding existence results for
the nonhomogeneous equation (15.7) in the Besov B; (5) and the Bessel-potential H3(S)
spaces (see the proof of Lemma 12.9). |

We are now ready to present the solution of the system (15.4)-(15.5) (i.e., (15.17)-(15.18))
in terms of explicitly given boundary integral operators and their inverses. To this end we
need the following lemma.

LEMMA 15.5 Let S, k, and « be as in (14.5). Then the mapping
[Ty — Wy &1 @] ¢ [CH(9)] — x[CE(9)]Y, 1<I<E, (15.53)
s an elliptic invertible Y DO of order +1.

Proof. First we show the ellipticity of the principal homogeneous symbol matrix of the
operator in question. Due to the equations (15.20)-(15.29) we have

M =0V, — U, &1 d)) = O(V)) — O(0,y)[0(dy)] 'O (Py) =
={0(W)[0(21)]7! = O (L) [0(2:)] 7'} O (1) =

_ [LW]3y5 [0]35 [(KM)Ysss [0)3x1 B
[0]1 3 Lzﬁ) [0]1x3 2
[LP]3x5  [0]351

(K@) Y53 [0]3x1
015 LY

[0]1><3 —2
[0]13 2L + 2L

[KW]3y3  [0]3%1
[0]1><3 2_1

[LO(KO)= — LA (K@), 4 [0]3x1
[0]1><3 2_1

We used here that the matrix K1) defined by (15.24) is not singular (see, e.g., [33], [54])
and employed the following simple facts: if

X — [X]sx3 [O]3><1] nd V= [Y]3x3 [O]3X1] |
Olixs a4 Axd 0lix3  Yua s
then
XY = [XY]3><3 [0]3><1 [(X)_1]3><3 [O]gxl

] and X !'=
4x4

0]1x3  Z44yaa [0]1x3 (244)7"

4x4

where detX # 0 and z44 # 0 are assumed.

We recall that the matrices (15.24), (15.25), (15.28) are nonsingular. Moreover, by the
arguments applied in the proof of Lemma 14.2 we can show that the positive definiteness of
the quadratic form cg;p.expg (see (1.15)) and the jump formulae for double layer potentials
(14.29)-(14.32) imply that the matrices

LKW"t and  — L (K®)7! (15.55)
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are positive definite (for details see [39], [57], [33], [55]). Therefore, the matrix

LK1 _ 1) (2)-1 0
My — | T SRS (1[) b o | (15.56)
[0]1x3 2Lag +2L4g |,
is positive efinite. Consequently, the matrix M defined by (15.54), which represents the
principal homogeneous symbol matrix of the operator (15.53), is nonsingular. Thus, the
operator (15.53) is an elliptic YDO.

Further, from (15.54) it follows that the dominant singular part of the operator (15.53)
can be represented as the composition of two operators where the first one is the operator with
the positive definite principal symbol matrix (15.56), while the second one is the following
invertible operator

[2_lf3+ /*C 1’(0)]3><3 [0]31
[O]1x3 2_1

Y

4x4

which corresponds to the second matrix multiplyer in (15.54). These facts yield that the
index of the operator (15.53) equals zero.

Next we prove that the operator (15.53) has the trivial null-space . Let the homogeneous
equation

W) — Uy &' 0] g' =0, ¢ = (g5, .90, (15.57)

admit a nontrivial solution ¢’ # 0. Then the nontrivial vector (¢’, ®5* ®; ¢’)" # 0 solves the
system (15.11)-(15.12) (with f = 0, F' = 0). This contradicts to Lemma 15.3. Therefore,
(15.57) has only the trivial solution, which completes the proof. [

COROLLARY 15.6 Let S € C* and let s € IR, 1 < p < 00, 1 < q < oo. Then the
operators

Uy =@y ®y o [Hy(S)]' — [Hy7H(9)]
(B} (S)]* = (B, (S)]Y,
are elliptic invertible W DOs of order +1.

Proof. 1t is verbatim the proof of Corollary 15.4. [}
Let us introduce the following YDO of order —1

e [\Ill — \Ifg (1)2_1 (I)l]_l. (1558)

From Lemma 15.5 it follows that we can represent the solution of the system (15.7) ”explic-
itly” by formulae

gV =V F -0, ;! f, (15.59)

9P = PV EF — Oy (B, U U, D, + 1) f, (15.60)

111



where [ is again the identity operator.
Substituting (15.59) and (15.60) into (15.1) and (15.2) we obtain the following represen-
tation of solution of the problem (C),:

U (z) = WD (U F - 00, &, f) (x), (15.61)
U (z) = (W 4+ po V) (0,1 0y W F — ;1 [By W Wy &3 + 1) f) (2), (15.62)

where F' and f are the boundary data of the interface problem under consideration (see
(7.3)-(7.4) or (7.11)-(7.12)).

Now we are in the position to formulate the basic existence results in the form of the
following propositions.

THEOREM 15.7 Let conditions (14.5) be fulfilled. Then the formulae (15.61)-(15.62) de-
fine the unique regular solution to the problem (C),, of the class

(U, U®) € ([Cho@D)*, [CM(@2) nSKM Q)] (15.63)
(with r and w as in (15.3)).

Proof. 1t is a ready consequence of the uniqueness Theorem 9.5 and Lemmata 10.1, 15.1,
15.3, and 15.5. |

THEOREM 15.8 Let S € C™, 1 < p < 00, and
fe [B;;l/”(S)]‘l, F e [B;;/p(S)]‘l. (15.64)

Then the formulae (15.61)-(15.62) represent the unique solution to the problem (C), of the
class

(U, UP) e (W (Q)]", [Wy10(Q%) N SKT(Q)]) (15.65)
(with r and w as in (15.3)).

Proof. Solvability of the problem (C),, in the class indicated in the theorem is an immidiate
consequence of the formulae (15.61)-(15.62), and Theorem 10.8 (with s =1 —1/p).

To prove the uniqueness of solution to the problem (C), for arbitrary p € (1,00), we
have to repeate word for word the arguments of the proof of Theorem 14.6. The case is
that the key integral representation formulae similar to (14.30)-(14.31) we can also write for
a solution (UMW, UP) to the homogeneous problem (C),, of the class (15.65) (see Theorem
10.8, item ii)). ]

15.2. In this subsection we present the existence results for the problem (G),. First we

transform the interface conditions (7.5)-(7.8) to the equivalent equations on S (cf. Subsection
14.3):

[BY(D, n)UD* — [BP(D,n)UP]~ = F, (15.66)
[u® ]t = [u® )" = Fy [T = ) = fa (15.67)
[PO(D,n)UW - 1] + [PO(D,m)UD - 1]~ = F + F7, (15.68)
[PO(D,n)UY - m]* + [PO(D,n)U? .|~ = EC 4 PO, (15.69)
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where
- - ~ ~ - T
F=(FY = F)i+(FP - F)ym+Fon, Fi) (15.70)
and [, m, and n are as in Subsection 7.2.

We seek the solution of the problem (G),, in the form of potentials (15.61)-(15.62), where
F' is given by (15.70), and

f=(pl+vm+fun, f1)'. (15.71)

Here ¢ and 1 are unknown scalar functions of the space Che(S), while Fl(i), FW® E . Fy,
fn, and f,; are given functions on S. We assume that

F}(i)> F’r(n,:t)a ﬁna F4 S Ck_La(S)a ./?;Laf4 S Ck_La(S)a

, (15.72)
SeCHLY E>1 0<a<a <1.

From the results of the previous subsection it is evident that the vectors U and U®
given by (15.61) and (15.62) are regular solutions to the steady state oscillation equations
of thermoelasticity theory (7.2). Moreover, they automatically satisfy the conditions (15.66)
and (15.67). It remains to fulfil the conditions (15.68) and (15.69) by choosing the unknown
functions ¢ and v appropriately.

Due to the jump relations of the single and double layer potentials (see Lemmata 10.1
and 10.7) we have from (15.61)-(15.62) (see also (15.9), (15.10) and (15.58))

[BOD, n)UDF = LOW[F - Uy ®y' f]l = U U [F — Uy &y f] =

— U UF -0, 00,0, (pl+m+ fon, f1)T, (15.73)
[BO(D,n)UR]~ = [L® + po(27 'Ly + KP)] 07" [, U F —
(O @y + ) f] =0 @ [0 U F — (0 VW @y + 1) f] =

=W O Oy U F — U, By (D U, By + ) (pl+vm+ fon, f2)T. (15.74)

Now let I*, m*, and n*, be the 4-vectors defined by (14.48) and let
e* =(0,0,0,1)". (15.75)

Then

(gpl+wm+fnn, f4)T:<pl*+wm*+fnn*+f4e*. (15.76)

Next we set
G =Y UF— U ¥, d;* (J?nn* + fae€"),
=Ty 0 O UF — Uy &5 (B U W, 051 + I)(fon* + freb). (15.77)
Applying these notations in (15.73) and (15.74) we get
[BO(D, n)UD]+ = ({p(l)(pjn)U(D, )\(1)(D’n)u(1)4]+)—r —
= U U0, D (pl* +m*) + ¢, (15.78)
[BO(D,m)U®]~ = ([PO(D,n)U), A(2)(D,n)u<2>4]—)T _
= Uy &3 (D U U &5 + 1) (plI* +9pm*) + o =
= U U0, B (ol + pm®) + G, (15.79)
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since

— Wy O [ B U Uy Dyt I = —[Uy @y Dy U 4 [0, &, =
= (U @' Dy + Ty — U))T + [T, &, =
= —[-UU U )T, Oy = 0 U, B (15.80)

due to (15.58).
Substitution of the formulae (15.78)-(15.79) into the interface conditions (15.68)-(15.69)
leads to the following system of WDEs on S for the unknown functions ¢ and ):

— U U0 (ol m )+ @ =27 G+ G- 1), (15.81)
—U U, D (@l +m*) + @, m* =271 (G - m* + G - mb). (15.82)

This system can also be rewritten as
Meah =q, (15.83)

where h = (¢,1)" is the sought for 2-vector, ¢ = (q1,¢2) " is the given 2-vector,

=2 U +q@-1), @=2""(q -m" + ¢ -m"), (15.84)
(Ka)rili  (Kg)wim;

My el (Ke)rjm; (15.85)
mi(Ka)rily mu(Ke)rmy |,

Ko=—-U, U0, ot (15.86)

in (15.85) the summation over repeated indices k£ and j is meant from 1 to 3.
Note that g is a 4 x 4 matrix WDO of order 1. As in the proof of Lemma 15.5 we easily
derive that the principal homogeneous symbol matrix of the operator g reads as

0(Kg) = =0 (91)0 (V)0 (05)[0(9,)] " =

[LM]3y5  [0]3%1 [LP]3x5  [0]351

M—l
[0]1x3 Lz(é;) [0]1x3 Lzﬁ)

[(K(2))_1]3><3 [O]3><1
[0]1 3 —2

with the same M, KU, LO), and LY as in (15.54), due to formulae (15.20)-(15.29) and
(15.54). The last equation together with (15.56) implies

A 0
0 (Kg) = e (15.87)
0]ixs  Zaa et
where
Zu=2LY LY (LY + LY (15.88)
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is a positive function, while

7 = _L(l)(K(l))—l [L(l)(K(l))—l ( (2) ) ] (K(2)) 1_
= {—KP (L) LO (KO ( @)1 K (L(l) n-1 =
— [K(l)(L(”) 1_ (L(2) 1-1 (15.89)

is a positive definite 3 x 3 matrix (since the matrices (15.55) are positive definite). Whence
for arbitrary z € S, € € IR?\ {0}, and n € @3 there hold the inequalities

Zu(r,8) > &), Z(x,.En-n =" IE]Inl, (15.90)
with positive constants ¢’ and ¢”.

LEMMA 15.9 The principal homogeneous symbol matrices of the WDOs Ko amd Mg are
positive definite.

Proof. The positive definiteness of 0 (K¢) follows from the equations (15.87)-(15.89). In the
case of the matrix Mg, for arbitrary z € S, £ € IR?*\ {0}, and n € €%, we have

e — | HOU@IOKs  ()my(@)(o Kok {m | {m ] )
M@ @Ky m@m@ oKy |, | m ] | m
= ()l (2) Zigm + le(w)m; () Zegnaly + [m (@)1 () Ziegm + ma(z)m; (2) ZegnalTs =
= Zjlli (@) + my ()] [l ()7 + e (2)75] = Z[ml(x) + nem(@)] - [nl(x) + nem(z)] >
> €] [ml(z) +nam(z)]” = €] n?,
due to the second inequality in (15.90). Therefore, 0 (M) is a positive definite matrix as
well. .

COROLLARY 15.10 The dominant singular parts of the operators (15.85) and (15.86)
are formally self-adjoint elliptic W DOs of order 1 with indices equal to zero.

Next we recall that Jg(Q') denotes the set of Jones eigenfrequencies for the problem (G),,
and prove the following assertion.

LEMMA 15.11 Ifw & Jg(QY), then the operators
Mg [Cl’a(S)]2 — [Cl_l’a(S ] 1<I<k,
[H;(S)]2 — [H;_l( )P, SeC™® scR, 1<p<oo,
(B (S)? — [BSH(S)]?, SeC®, seR, 1<p<oo, 1<qg< o,
are isomorphisms.

Proof. Again due to the general theory of WDOs on closed smooth manifolds, it suffices to
show that the homogeneous version of equation (15.83) (¢ = 0) has only the trivial solution
in the space C"*(S). Let h = (p,%)" € [C*(S)]? be some solution of the homogeneous
equation and construct the vectors UM and U® by formulae (15.61)-(15.62), where F' = 0
and f = [*¢ + m*. Clearly, to the nontrivial pair (p,1)) there corresponds the nontrivial
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vector f since [* and m* are orthonormal (see (14.48)). On the other hand it is evident that
(UMD, U@ e (Ch(QT), CH*(Q%) N SK™(2?)) and they satisfy the homogeneous conditions
(15.66)-(15.69), which are equivalent to the homogeneous version of equations (7.5)-(7.8).
Therefore, by Theorem 9.9 we conclude U® = 0 in Q* (u = 1,2). Now, from the equation
[UD)F — [UP]~ = f =1"¢ +m* =0, it follows that ¢ = 1) = 0. ]

With quite the same arguments as in the previous subsection (see proofs of Theorems
15.7 and 15.8) we derive the following propositions.

THEOREM 15.12 Let w & Jo(QY) and conditions (15.72) be fulfilled. Then the problem
(@) is uniquely solvable in the class ([CH*(QD)])*, [CF*(Q2) N SK™(Q)]*) and the solution
is representable in the form of potentials (15.61)-(15.62), where F' and f are given by (15.70)
and (15.71), respectively, and where (,1)" € [CF*(8)]? is the unique solution of the system
of WDEs (15.83) with the right-hand side q € [CF~1*(S)]2.

THEOREM 15.13 Let w & J5(QY), S € C®, and
FP,ES E, Fy € ByYP(S), fa, fr € BLYP(S), 1< p< oo

Then the problem (G)., is uniquely solvable in the class ([W, (2)]*, [W,1,.(2%) NSK]"(Q%)])
and the solution is representable in the form of potentials (15.61)-(15.62), where F' and f are
given by (15.70) and (15.71), respectively, and where (@, )" € [BIZVP(S)]? is the unique
solution of the system of WDEs (15.83) with the right-hand side q € [B, }/?(S)]*.

15.3. Here we investigate the nonhomogeneous problem (H), applying the same ap-
proach as above. Again we start with the reformulation of the interface conditions (7.7)-
(7.10) to the equivalent equations

U0 — U] = £, POD,n)uf" = AP(D, )’ = Fy, (15.91)
[POD.mU® -l + [PO(D, U -] = F) (15.92)
W® 0+ W@ = FP 4 O WO mlt 4 @ m] = O 4 7O (15.93)

where
f= (T = TN + T m+ o, £ (15.94)

Next we set
F=(pl+ym+FDn F)" =l +¢ym* + FPn* + Fye, (15.95)

where ¢ and v are unknown scalar functions, while [*; m*, n*, and e* are the same 4-vectors
as in the previous subsection. Here we assume either

I 1505 B 1 €CRO(S), By Fy € C10(8), (15.96)
SeCH >1, 0<a<ad <1, |

or

D) fo, fo € BEVP(S), F,, Fy € BYP(S), S € C®, 1< p< oo. (15.97)

m
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Now we look for the solution to the the nonhomogeneous problem (H), in the form of
potentials (15.61)-(15.62), where f and F are defined by (15.94) and (15.95), respectively.

One can easily chack that the conditions (15.91) and (15.92) are automatically fulfilled.
It remains to satisfy conditions (15.93).

Note that
U =@ W (F — Uy &3 f) = &1 T (01" +m”) + G, (15.98)
U™ =0y (031 0, U F — ;1 [0, U, 0y + 1) f) =

— Oy (I + m") + G, (15.99)
where g3 and ¢ are given 4-vectors:
Gs = D1 U (Fyn* + fre*) — 0 U U, &5 f,
B= 0l (En o) — 0 U gy f (15.100)
Q=0 V(E,n"+ fre*) = [® WU, &, + 1] f.

Therefore, the interface conditions (15.93) lead to the system of WDEs for ¢ and ¢ on S:

Oy U (pl* +pm*) - 1* =27 g - I* + G4 - 1],

(15.101)
Oy U (pl* +pm*)-m* =27 g3 - m* + g4 - m*].
We rewrite these equations in matrix form
Muyh=¢, (15.102)
where h = (¢,1)" is the sought for 2-vector, ¢’ = (¢}, ¢3)" is the given 2-vector,
¢ =2 G U+ a1, ¢b=2" G -m"+q-mT, (15.103)
(Ke)eili  (Kg)pim;
My — e (mkily  1e(K)kgmy (15.104)
mE(Ka)kgly mu(Ku)wgmy |
Ky =, 0: (15.105)
here again the summation over repeated indices k£ and 7 is meant from 1 to 3.
By formulae (15.20)-(15.29) and (15.54) we get
X 0
O(Ky) = 0(0,)0(¥) = Klaxa (O : (15.106)
0ixs X i

where

X = KO ([L(l)(K(l))—l _ L(2)(K(2))_1]K(1))

-1

= [LW(EM)™ - LO(K@)=1=1 (15.107)
is a positive definite 3 x 3 matrix and
Xy = 2_1[[&(&1) + Lzﬁ)]_l >0

for arbitrary 2 € S and € € IR?\ {0}.
Now by the same reasonings as in the previous subsection one can prove the following
propositions.
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LEMMA 15.14 The principal homogeneous symbol matrices of the VDOs Ky amd Mg
are positive definite.

COROLLARY 15.15 The dominant singular parts of the operators (15.104) and (15.105)
are formally self-adjoint elliptic W DOs of order —1 with indices equal to zero.

LEMMA 15.16 Ifw & Jg(Q') (i.e., w is not Jones eigenfrequency of the problem (H).),
then the operators

My = [CM(S)2 — [CH(S)2, 1<1<F,
[Hy(S)? — [HyP ' (S)]?, SeC® selR, 1<p< oo,
(B (S)? — [BsHH(S)?, SeC® seR, 1<p<oo, 1 <q< o0,

are 1somorphisms.

THEOREM 15.17 Let w & Jy(Q'), S € C*, and conditions (15.96) [(15.97)] be fulfilled.
Then the nonhomogeneous problem (H),, is uniquely solvable in the class

(U, U®) € ([Ch@D)*, [Ch(@2) nSK(9)]")
[(UD,U®) € (W], [Wyh10e(2%) N SK(92)]Y)]

and the solution is representable in the form of potentials (15.61)-(15.62), where f and F
are given by (15.94) and (15.95), respectively, and where

(e, )" € [C*S) [(e.0)" € B, P(S)]]

is the unique solution to the system of WDEs (15.102).
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CHAPTER VI

MIXED AND CRACK TYPE PROBLEMS

In this chapter we study the basic mixed BVPs, the crack type problems, and the
mixed interface problems formulated in Chapter II. Applying the boundary integral equa-
tion method we prove the existence theorems in Sobolev spaces and establish the almost
best regularity results for solutions near the edges of cracks and at the collision curves of
changing boundary conditions.

Throughout this chapter the interface surfaces (.S), the collision curves and the crack
edges are assumed to be C*-smooth. Moreover, the parameters r and w in the steady state
oscillation problems are subjected to the requirement (15.3).

16 Basic Mixed BVPs

16.1 In this subsection we present some results from the theory of elliptic pseudodifferential
equations on manifolds with boundary in Bessel-potential and Besov spaces. They will be
the main tools for proving existence theorems for the above mentioned mixed and crack type
problems. All the results outlined below in this subsection can be found, for example, in [4],
[20], [41], [66], [15], [67], [68], [69].

Let § € C* be a compact n-dimensional manifold with the boundary S € C* and let
A be a strongly elliptic m x m matrix pseudodifferential operator of order x € IR on S.
Denote by O (A)(z,§) the principal homogeneous symbol matrix of the operator A in some
local coordinate system. Here x € S, £ € IR™ \ {0}. Consider the following m x m matrix
function

A (,€) = |70 (A) (w, €0, &), (16.1)
where ¢ = (&1, ...,&,-1) and 7 belongs to the unit sphere ©("2) in [R"~!.
It is known that the matrix A" in (16.1) admits the factorization
AP (,€) = A (2,6)D(n, 7, ) A7 (x,€) forz € S,

where [A (7, ¢ )£ and (A (7,§ )] are matrices, which are homogeneous of degree 0 in & and
admit analytic bounded continuations with respect to &, into the lower and upper complex
half-planes, respectively. Moreover, D(n,x,€) is a bounded lower triangular matrix with
entries of the form

gn - i|£/| 35 ()
(& +ie)

, J=1,..m,
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on the main diagonal; here
§j(z) = (2mi) 'nN\;(x), j=1,....,m,

where Ai(x), ..., Ay (2) are the eigenvalues of the matrix
A(x) = [0(A)(x,0,...0, —1)] [0 (A)(x,0, ..., 0, +1)].

The branch in the logarithmic function is chosen with regard to the inequality 1/p — 1 <
Red;(x) <1/p, j=1,..,m, p> 1. The numbers J;(z) do not depend on the choice of the
local co-ordinate system.

Note that, if O(A)(z,&) is a positive definite matrix for every x € S and ¢ € IR" \ {0},
then

Red;(z) =0 for j=1,..,m, (16.2)

since, in this case, the eigenvalues of the matrix A(z) are positive numbers for any r € S.
The Fredholm properties of such operators are characterized by the following lemma.

LEMMA 16.1 Let 1 < p < o0, s € IR, 1 < q < oo, and let A be a strongly elliptic
pseudodifferential operator having a positive definite principal homogeneous symbol matrix,
1.€.,
O(A)(z,8)C-¢>clC)? for zeS, € R with |§|=1, and ( € ™,
where ¢ is a positive constant.

Then the operators

A o HY(S) — HEX(S), (16.3)
B: (S) — B: . (S), (16.4)

are bounded Fredholm operators of index zero if and only if
1/p—1<s—k/2<1/p. (16.5)

Moreover, the null-spaces and indices of the operators (16.3),(16.4) are the same for all
values of the parameter q € [1,+0o0], and for all values of the parameters p € (1,00) and
s € IR satisfying the inequality (16.5).

16.2. First we consider the basic mixed BVP (P,,;,,); for the pseudo-oscillation equations
of thermoelasticity (see (5.9)-(5.10)).
We assume that the boundary data meet the following conditions

e BIoV(S), FY e BlR(S,), j=T.4, 1<p< oo, (16.6)
and look for the solution U in the space W (QF).

Let fo = (for, -, fo1)" € B;;,l/ P(S) be some fixed extention of the given vector function
O = (fY BT e By HP(S1) onto the whole surface S = 9Q. Then an arbitrary
extention, preserving the functional space, is represented as

f=fotee B (S, (16.7)

120



where ¢ € B;;,l/p(&). Clearly, fls, = fols, = V.
Let us seek the solution of the mixed BVP (P, )1 in the form of a single layer potential

Ulz) = V(K7 f)z), = €QF, (16.8)

where V; is given by (11.1), H! is the operator inverse to H, (see (11.1) and Remark 12.13),
and f is given by formula (16.7).

Applying Theorem 11.3 we can easily see that the conditions (5.9) are automatically
satisfied, while the conditions (5.10) lead to the WDE for the unknown vector function ¢

[B(D,n)U" = [-27' i+ K1 JH  (fo +¢) = YD on Sy, (16.9)
where fy and F) = (Fl(l), e F4(1))T € B;;/p(Sg) are given vector-functions, and where the
operator Ky , is defined by (11.4).

Let
e = [27 L+ Ky H (16.10)

Then the equation (16.9) is written as

5 Nmin® = g on Sa, (16.11)

where rg, is the restriction operator on Ss, and

g=FY —rg, N} i fo € B, )/P(S5). (16.12)

T,MIT

The properties of the operators /\f;r i and g, N

,MAT

are described by the following lemmata.

LEMMA 16.2 The principal homogeneous symbol matriz of the VDO N, .. is positive
definite for arbitrary x € S and £ € IR*\ {0}.

Proof. Tt is verbatim the proof of Lemma 14.2 for the operator N . ]

LEMMA 16.3 The operators
7’52 N:_

,MAT

(Bt (So)]* — (B2 ()], (16.13)
[H3 (S — [H3(S2)]Y, (16.14)

are bounded for any s € IR, 1 <p < o0, 1 < q < o0.
These operators are invertible if the condition

1/p—3/2<s<1/p—1/2 (16.15)
holds.

Proof. The boundedness and Fredholmity of the operators (16.13) and (16.14) under the
restriction (16.15) follow from Lemmata 16.2 and 16.1 with s + 1 and 1 in the place of s
and k. Due to Lemma 16.2 the dominant singular part of the operator J\/’fmm is formally
self-adjoint. Therefore, the Fredholm indices of the operators (16.13) and (16.14) equal zero.
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It remains to prove that the operators under consideration have the trivial null-spaces.
Obviously, if we are able to find two numbers s; € IR and p; € (1,00) satisfying the
inequalities (16.15) such that the homogeneous equation

re, N o =0 (16.16)

,MAT

has no nontrivial solutions in the space é;ipl(Sg) [ﬁ;ll(Sg)], then due to Lemma 16.1 we
can conclude that the null-spaces of the operators (16.13), (16.14) are trivial for all values
of the parameters s and p subjected to the condition (16.15).

To this end let us take

s1=-1/2, p=2, ¢q=2, (16.17)

which satisfy inequalities (16.15). We recall that E;;Q(Sg) = ﬁzil/z(Sg).
Let some vector function ¢y € E;’/;(Sg) solve the homogeneous equation (16.16) and let
us construct the single layer potential

Uo(z) = Va(H: o) (z), x e Qf. (16.18)
By Theorem 11.3 and Remark 12.13 we have
Us(z) € Hy(UT) = Wy (1), (16.19)

and, moreover, Uy satisfies the conditions corresponding to the homogeneous mixed BVP
(Pomiz )+ due to the the homogeneous equation (16.16) and the inclusion g € E;’/;(Sg). With
regard Theorem 8.3 we then infer that Uy = 0 in QF, and, consequently, [Uy]t = ¢y = 0.
This completes the proof. [

Now we can formulate the following existence result.

THEOREM 16.4 Let 4/3 < p < 4 and conditions (16.6) be fulfilled. Then the nonhomo-
geneous mized problem (P, )f is uniquely solvable in the space W, (Q%) and the solution is

representable in the form of the single layer potential (16.8), where the density f is given by
(16.7) and where ¢ is the unique solution of the VDE (16.11).

Proof. First we note that, in accordance with Lemma 16.3, the WVDE (16.11) is uniquely
solvable for s = —1/p and 4/3 < p < 4, where the last inequality follows from the condition
(16.15). This implies the solvability of the problem (Pp,); in the space W)} (Q") with p
as above. Next we show that this problem is uniquely solvable in the space W;(Q*) for
arbitrary p € (4/3,4) (for p = 2 it has been proved in Theorem 8.3).

We proceed as follows. Let U € Wpl(QJr) be some solution of the homogeneous problem

(Pmiz )+ . Clearly, then

[U]" € B, 7 (Ss). (16.20)
By Remark 12.13 we have the following representation for the vector U (see (12.55))

Ux) = Vo(H U (), x€Qf. (16.21)

Since U satisfies the homogeneous conditions (5.10), from (16.21) we get
75, N i [lU]T =0 on S, (16.22)
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Whence [U]* =0 on S follows due to the inclusion (16.20), Lemma 16.3, and the inequality
4/3 < p < 4. Therefore, U = 0 in Q7. [

Now we can prove the main regularity result for the solution to the mixed BVP (P;..)+.
THEOREM 16.5 Let the conditions (16.6) be fulfilled,
4/3<p<4, 1<t<oo, 1<qg<oo, 1/t—3/2<s<1/t—1/2, (16.23)

and let U € W} (Q") be the unique solution to the mized problem (Ppmiz)¥.
In addition to (16.6),

i) if
fY e Bif(S1), FY e B \(Ss), (16.24)
then
U e HTHa; (16.25)
i) if
fY e Bit(Sy), FY e B (Ss), (16.26)
then
U e B am; (16.27)
iii) if
fHecs,), FY ¢ B2 .(S2), for some a >0, (16.28)
then
U e C"(QF) with any v € (0,ap), ap:=min{a,1/2}. (16.29)

Proof. Theorem 11.3 and Remark 12.13 (see (12.53)) together with the conditions (16.24)
[(16.26)] imply g € B;,(S2) [B;,(S2)], where g is defined by (16.12). Note that fy € B;;'(S)
[Bfi(9)] is some extension of the vector f!) onto the whole of S.

Next, by Lemma 16.3 and conditions (16.23) we conclude that the equation (16.11) is
uniquely solvable in the space B;{'(S2) [B;i"(Ss)]. Therefore, we have that in the repres-
ntation (16.8) of the unique solution U to the problem (Pp,)7 in the space W, (QF) the
density vector f = fo + ¢ satisfies inclusion

f=fot+eeB(S) By (5)] (16.30)

as well (together with the embeding (16.7)).

Applying again Theorem 11.3 and Remark 12.13 concerning the mapping properties of
the single layer operator V, and the DO H; ' we find that (16.25) [(16.27)] holds.

For the last assertion (item iii)) we use the following embeddings (see, e.g., [75], [75])

CY(S) = B2 o(S) C B£(S) C BLE(S) C BYE(S) C Co=Mi(S), (16.31)
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where ¢ is an arbitrary small positive number, S C IR? is a compact k-dimensional (k = 2, 3)
smooth manifold with smooth boundary (see Subsection 6.1), 1 < ¢ < oo, 1 < t < o0,
a—¢e—Fk/t >0, « and a — € — k/t are not integer numbers. From the assumption iii) of
the theorem and the embeddings (16.31), it is easily seen that the condition (16.26) follows
with any s <o —e — 1.

Bearing in mind (16.23), and taking ¢ sufficiently large and e sufficiently small, we are
able to put s =a —e¢—1if

1/t—3/2<a—e—1<1/t—1/2, (16.32)
and s € (1/t —3/2,1/t —1/2) if
1/t—1/2<a—c—1. (16.33)

By (16.27) the solution U belongs then to Bf;rlﬂ/t(@*) with s+ 1+ 1/t =a—c—1/tif
there holds (16.32), and with s + 1+ 1/t € (2/t — 1/2,2/t + 1/2) if there holds (16.33).
In the last case we can take s + 1+ 1/t = 2/t + 1/2 — . Therefore, we have either U €
By M) or U e BIFTYPTE(QF) in accordance with inequalities (16.32) and (16.33).
Now the last embedding in (16.31) (with k = 3) yields that either U € C**~2/*(QF) or
U € CV27==14(QF), which lead to the inclusion

U € Coo—==2/(QF), (16.34)
where o := min{a, 1/2}. Since t is sufficiently large and ¢ is sufficiently small, the embedding

(16.34) completes the proof. B

16.3. The basic mixed exterior BVP (P,.)- (see (5.9)-(5.10)) can be considered by
applying quite the same approach and by the word for word arguments. Therefore, in this
subsection we formulate only the basic results concerning the existence and regularity of
solutions.

Let the boundary data f}l) and Fj(l) (j = 1,4) of the BVP (Pp,); satisfy the conditions
(16.6), and fy, f, and ¢ be as in the previous subsection. We again look for the solution in
the form of the single layer potential

Uz) =Va(H;' fiz), zeQ, (16.35)
where
f=fo+oeBVP(S), fo€B,MP(S), ¢ BVP(S,). (16.36)

As above f is the given vector function satisfying the condition fy|s, = f), while ¢ is the
unknown vector function which has to be defined by the YDE

8, Nomiz 0 = g on S, (16.37)

,MAT
where rg, is again the restriction operator on S;, and

N = 270 + Ky HE, (16.38)

T,MIT

g=FY —rg, N, i fo € B, )/P(S5). (16.39)

T
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LEMMA 16.6 The principal homogeneous symbol matriz of the WDO N ;. is positive
definite for arbitrary x € S and £ € IR*\ {0}.

LEMMA 16.7 The operators
TSy NT_,T)’LZLB : [éz,:l(sﬂ]ﬁt - [B;,q(SQ) 4>
[Hy 7 (S2)]" — [H(S2)),

are bounded for any s € IR, 1 < p < o0, 1 < q < o0.
These operators are invertible if the condition (16.15) holds.

THEOREM 16.8 Let 4/3 < p < 4 and let the conditions (16.6) be fulfilled. Then the
nonhomogeneous mized problem (Ppi.); s uniquely solvable in the space WPI(Q_) and the
solution is representable in the form (16.35), where the density f is given by (16.36) and
where @ is the unique solution of the WDE (16.37).

THEOREM 16.9 Let the conditions (16.6) and (16.23) be fulfilled, and let U € W (Q27)
be the unique solution to the mixed problem (Ppiz)s -

In addition to (16.6),

i) if there hold the inclusions (16.24), then

U e B0,
ii) if there hold the inclusions (16.26), then
Ue B ),
iii) if there hold the inclusions (16.28), then
U e C’(Q ) with any v € (0,ap), ap:=min{a,1/2}.

The proofs of these propositions are verbatim the proofs of Lemmata 16.2, 16.3, and Theo-
rems 16.4, 16.5.

16.4. In this subsection we shall study the basic mixed exterior BVP (P, ), for the
steady state oscillation equations of the thermoelasticity theory formulated in Section 5 (see
(5.9)-(5.10))). Again let fO, FU f, f and ¢ be the same as in Subsection 16.2.

We look for a solution to the BVP (P,,;,), in the form

Ulx) = (W +pV)NTEF)(z), 2€Q, (16.40)

where V' and W are the single and double layer potentials given by formulae (10.1) and
(10.2), respectively, pg is defined by (13.5),

f=foteeB"(S), foeBl(S), e BP9, (16.41)
and N[ ' is an elliptic SIO inverse to the operator (cf. (13.6))

Ny = =271 + Ky + poH. (16.42)
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Note that N7 ! is an elliptic SIO due to Lemma 10.2. Moreover, the mapping
N7 [B;’Q(S)]4 — [B;q(S)]‘l, l<p<oo, 1<qg<o0, s€IR, (16.43)

is an isomorphism according to Lemma 13.13.

Applying Theorem 10.8, item i), one can easily see that the vector U represented by
formula (16.40) automatically satisfies the boundary conditions (5.9) on S since [U]T = f
on S and f|s, = fols, = fY. It remains to fulfil the conditions (5.10) on Sy which lead to
the WDE for the unknown vector ¢

B(D, U™ = [£+po2 L+ KN (fo+¢) = FO on Sy, (16.44)

where £ is defined by (10.36) and (10.6), while C; is given by (10.4).
Next we set

Nz = =L+ po(27 Ly + )] NT, (16.45)
and rewrite the equation (16.44) as

78, Noniz ¢ = q 00 S, (16.46)

m

where 7g, is again the restriction operator on Ss, and
q=—F® + 15, N, fo € B, )7(S5). (16.47)

The inclusion (16.47) for the right-hand side vector function ¢ follows from Theorem 10.8
and the mapping property (16.43). Further, we present the properties of the operators N, ,,
and rg, N, ;.-

LEMMA 16.10 The principal homogeneous symbol matriz of the WDO N, is positive
definite for arbitrary v € S and £ € IR?\ {0}.

Proof. First we note that the principal homogeneous symbol matrix of the operator N, ..
reads as

ONiiw) = —O(L)T(NT) =
(O (L)]sxs [0 (0(=27 s+ K D)5y [0l
Ohs O£ 01 -2 ]

[— 0-(5(0))[0-(—2_1[3+ /*C (0))]_1]3x3 [0]351
(013 20 (L)

)

4x4

due to formulae (10.25), (10.30), (10.49). As we have already mentioned in the proof of
Lemma 15.5, the matrix [~ 0 (L©)[0 (=27 I3+ I*C (0)]7)3x3 is positive definite for arbitrary
r € S and £ € IR?\ {0} (for details see [57], [39], [33], [55]), while the function 20 (L") is
positive in accordance with the inequality (10.50). Hence 0 (N,,,) is positive definite. g
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LEMMA 16.11 The operators
TSszgim : [§221(52)]4_’ [B;,q(52)]47 (1648)
(371 (So)]* — [H3(S)), (16.49)

are bounded for any s € IR, 1 < p < oo, 1 < q < o0.
These operators are invertible if the condition (16.15) holds.

Proof. 1t is quite similar to the proof of Lemma 16.3. Indeed, the boundedness and Fred-
holmity of the operators in question follow from Lemma 16.10 and Lemma 16.1 with s + 1
and 1 in the place of s and &.

Further, due to Lemma 16.10 the dominant singular part of the operator N, . is formally
self-adjoint which shows that the Fredholm indices of the operators (16.48) and (16.49) equal
Z€ero.

To prove that their null-spaces are trivial, as in the proof of Lemma 16.3, we concider
the homogeneous YDE

78, Nopiz 9 = 0 on S, (16.50)

m

and prove that it has only the trivial solution in the space é;g(Sg) — H)/ ?(S,). It corre-
sponds to the particular values of the parameters s and p (and ¢) given by (16.17).

Let some vector function ¢, € B217/22(52) solve the equation (16.50), and construct the
vector

Us(z) = (W 4+ poV) (NT o) (z), 7€Q. (16.51)
By Theorem 10.8, Lemma 13.13 and the mapping property (16.43) we conclude
Up() € Wy (27) NSK (7). (16.52)

Moreover, Uy satisfies the boundary conditions of the homogeneous mixed BVP (P,,;,), due
to the homogeneous equation (16.50) and the inclusion ¢, € Bég(&). By virtue of the
uniqueness results (see Theorem 9.6) the vector function (16.51) then vanish in Q~, and,
consequently, [Up]~ = ¢o = 0 on S. The proof is completed. [

These lemmata imply the foolowing existence results.

THEOREM 16.12 Let 4/3 < p < 4 and let the conditions (16.6) be fulfilled. Then the
nonhomogeneous mized exterior problem (Ppiz ), is uniquely solvable in the class W, ,.(€27)N
SK"(27) and the solution is representable in the form (16.40), where the density f is given
by (16.41) and where ¢ is the unique solution of the VDE (16.46).

Proof. Again it is quite similar to the proof of Theorem 16.4. If we fix s = —1/p, then the
nonhomogeneous equation (16.46) is uniquely solvable in the space E;;l/ P(Sy) for arbitrary
p € (4/3,4) which follows from Lemma 16.11 and the inequality (16.15) (with s = —1/p).
This implies the solvability of the nonhomogeneous mixed exterior problem (P, ), in the
class W) 1,.(Q27) N SK*(Q7), indicated in the theorem.

Now we show that this problem is uniquely solvable for arbitrary p € (4/3,4) (for p = 2
it has already been proved in Theorem 9.6).
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To this end let us consider the homogeneous problem (Ppi,), in the class W,,.(27) N
SK"(Q27) with p € (4/3,4), and let a vector function U be its arbitrary solution. Since
[U]~ € BL,'/7(S) we conclude that U is uniquely representable in the form

Ux) = (W +pV) NTHUT ) (z), =€, (16.53)

due to Theorem 13.14.
Moreover, [U]~ € B} /?(S,) and
[B(D,n)Ulg, =rs, N,

Ul” =0 on Sy, (16.54)

inasmuch as U is a solution to the homogeneous problem (P;,),. Further, Lemma 16.11
together with the conditions s = —1/p and p € (4/3,4) implies that [U]~ = 0 on S. Now
the representation formula (16.53) completes the proof. [

Finally, we formulate the following regularity results.

THEOREM 16.13 Let the conditions (16.6) and (16.23) be fulfilled, and let the vector-
function U € W 1,.(7) N SK(Q7) be the unique solution to the mized problem (Ppiz)y -
In addition to (16.6),
i) if there hold the inclusions (16.24), then
U e Hi V(7)) nSKm(Q); (16.55)

Jloc

ii) if there hold the inclusions (16.26), then

U e B0 ) nSK™(Q7); (16.56)

t,q,loc

iii) if there hold the inclusions (16.28), then

UeC'(Q)NSK™(Q™) with any v € (0,p), ap:=min{c, 1/2}. (16.57)

The proof of these propositions is verbatim the proof of Theorem 16.5. We only emphasize
here that every solution of the equation (1.10) in 2~ in the distributional sence, actually,
is C*-regular in the domain 2. Therefore, the inclusions (16.55)-(16.56) should be estab-
lished in some compact (exterior) neighourhood of the boundary S where we can apply the
embeddings (16.31) and the arguments employed in the proof of Theorem 16.5.
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17 Crack Type Problems

In this section we shall investigate the crack type problems (CR.D),, and (CR.N), for the
steady state oscillation equations of the thermoelasticity theory formulated in Section 6. We
note that the crack type problems (CR.D), and (CR.N), for the pseudo-oscillation equations
of the thermoelasticity theory are considered in detail in the reference [16].

17.1. First we treat the problems (CR.D),, (see (6.1)). Let Sy, 0S;, f&), &), f}i)
(7 =1,4), be the same as in Section 6. Here we again assume that

7 € B sy, £ = £7 € Bp(s), i=T4, p>1. ary

We recall that S; is a submanifold of the closed C™-regular surface S surrounding the
bounded domain QF, IR} = IR*\ Sy, and Q™ = IR3\ QF.

Let U € W,,.(IR) N SKM(IRY,) be some solution to the steady state oscillation equa-
tions (1.10). Then U € C*(IR% ) N SK]"(IRE,) and, moreover,

Uls, = [Uls,, [B(D,n)UJ§, = [B(D,n)Ulg,, (17.2)
where S, = S\ 5.

Due to Theorem 10.8 and the representations (3.2)-(3.3) we have the following formulae

x) for ze€QF,
W (U1) (1) — v ([BD,m)U13) () = { Ule) tor e (173)
0 for x €O,

for ze€QT,
— W ([U1%) (@) +V (BD,n)UJ) () = { ’ = (17.4)
U(z) for z€Q,

since Ulg+ € W, (@) and Ulg- € W, 1,.(Q7)NSK" (™) and A(D, —iw)U = 0 in IRY . Here
V and W are single and double layer potentials defined by (10.1) and (10.2), respectively.

By adding these equations term by term and using the conditions (17.2), we obtain the
following general integral representation of the above vector function U:

Ux) = W(p)(z) = V() (z), =€ RS, (17.5)
where

v = U5, = [Uls, € B),'"(5Y), (17.6)

Y = [B(D,n)UJ§, — [B(D,n)Uls, € B,/*(Sh). (17.7)

We remark that the double and single layer potentials in (17.5) with densities (17.6) and
(17.7) are C*°-regular vector functions in IR}, and belong to the class W, . (IR%, )NSK]" (IR, )
in accordance with Theorem 10.8. Furthermore, if the representation (17.5) holds for some
vector function U € W}, (IR}, ) with ¢ € B1-V/?(S;) and ¢ € B, 1/?(S,), then automatically
U € SK"(IR%,), and the densities ¢ and ¢ are related to the vector U by the equations (17.6)
and (17.7) (which follow from the jump relations of the surface potentials involved in (17.5)).
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Next, we transform the boundary conditions of the problem (CR.D),, to the equivalent
equations on Si:

U, = U5, = £ = 1O, (17.8)
015, + Uls, = £ + 7. (17.9)

Now, we look for the solution in the form (17.5), where ¢ and 1 are unknown densi-
ties having the mechanical sense described by the equations (17.6)-(17.7) due to the above
remark.

It is evident that ¢ is then represented explicitly by formula

o =fH — e BVr(S) (17.10)

in accordance with (17.8), while the second boundary condition (17.9) leads to the WDE for
1 on Sy:

—rg, HY = g on Si; (17.11)
here the operator H is given by (10.3), rg, is the restriction operator to 57, and
g=2"(f + ) —rs, Ko (fP) = f)) € B VP(S0), (17.12)

where the SIO K, is defined by (10.5).
The inclusion (17.12) follows from Theorem 10.8.
The operator rg, H possesses the following properties.

LEMMA 17.1 The principal homogeneous symbol matriz of the pseudodifferential operator
H s positive definite for arbitrary x € Sy and £ € IR*\ {0}.

Proof. 1t follows from Remark 10.4. ]

LEMMA 17.2 The operators
rs Moz (B (0]t = [ByiH (S (17.13)
(Hy(S)J* — [H T (S, (17.14)

are bounded for any s € IR, 1 <p < oo, 1 < q < o0.
These operators are invertible if the condition (16.15) holds.

Proof. The mapping properties, boubdedness, and Fredholmity of the operators (17.13)-
(17.14) follow from Theorem 10.8 and Lemma 16.1 (with k = —1). Further, by Lemma 17.1
we conclude that the Fredholm indices of the operators in question equal zero.

To prove that the null-spaces are trivial, we take again s = —1/2 and p = ¢ = 2 (which
satisfy the inequalities (16.15)) and consider the homogeneous equation

—rgy HY =0 on 5 (17.15)

in the space Ei%/z(Sl) = ﬁ{1/2(51).
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Let vy € Ez_éﬂ(Sl) be some solution to the equation (17.15) and construct the vector
function

Up(z) = =V (iho)(z), =€ IRY. (17.16)

Obviously, Uy € W, ,.(IR%,) N SK" (IR, . Moreover, Uy solves the homogeneous crack prob-
lem (CR.D), in IR?gl due to the choice of the density 1y and the continuity of the single
layer potential (see Theorem 10.8). By Theorem 9.7 we then infer that Uy = 0 in ZR‘;, and,
consequently, by Theorem 10.8 we have [B(D,n)Upls, — [B(D,n)Upls, = —tbo = 0. This
shows that ker[rg, H] is trivial in Ez_é/z(Sl). Now by Lemma 16.1 we conclude that, if s
and p satisfy inequality (16.15), the operators (17.13) and (17.14) have thivial kernels and,

therefore, are invertible. [

This lemma implies the following existence theorem.

THEOREM 17.3 Let 4/3 < p < 4 and let the conditions (17.1) be fulfilled. Then the
nonhomogeneous crack type problem (CR.D),, is uniquely solvable in the class W, ,.(IRS ) N

SK]"(IR%,) and the solution is representable in the form (17.5), where ¢ is given by (17.10)
and v is the unique solution of the WDE (17.11).

Proof. 1f we set s = —1/p, then the condition (16.15) yields the inequalities for p: 4/3 < p <
4. Therefore, due to Lemma 17.2, the nonhomogeneous equation (17.11) with the right-hand
side ¢ given by (17.12) is uniquely solvable. This shows that the nonhomogeneous crack type
problem (CR.D), is solvable in the class W) ,.(IR%, ) N SK]"(IR%, ), and the vector U defined
by (17.5) represents a solution to the problem in question.

Next, we prove that the problem is uniquely solvable for arbitrary p € (4/3,4).

Let 4/3 < p < 4 and let U be any solution to the homogeneous problem (CR.D),, from the

class indicated in the theorem. Due to the above mentioned results, U is then representable
by the formula (17.5) where ¢ and ¢ are defined by (17.6) and (17.7). Therefore, ¢ = 0, and

U(z) = -V(@)(z), z € IR} . (17.17)
Further, the homogeneous boundary conditions on S; yield that
—rgy HY = 0 on 5, (17.18)

where 1) € B;ll,/p(Sl) with 4/3 < p < 4. From this equation by Lemma 16.2 it follows
that ¢ = 0 on S, since for s = —1/p and p € (4/3,4) the condition (16.15) holds and the
homogeneous equation (17.18) does not possess nontrivial solutions. Now by (17.17) we get
U =0 in IR}, which completes the proof. B

As in the case of the basic mixed BVPs here we have the following regularity results.

THEOREM 17.4 Let the conditions (17.1) and (16.23) be fulfilled, and let the vector func-
tion U € W), (IRE ) N SKM(IRY,) be the unique solution to the problem (CR.D).,.
In addition to (17.1),

i) if
f& e B (Sy), fO— e Bif(S), (17.19)
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then

U € Hyp MRS N SKM(IR, ); (17.20)
i) if
& e Bii(sy), fO— e B (S, (17.21)
then
U € B/ (IRS,) M SKI'(IRY, ); (17.22)
iii) if
fE e oSy, [fP — fOlys, =0, for some a > 0, (17.23)
then

Ulgr € C(QF),

Ulg= € C7(Q7) NSK'(27) with any v € (0, ), o := min{a, 1/2}.

(17.24)

Proof. 1t is again verbatim the proof of Theorem 16.5 (see also the remark after Theorem
16.13). [

17.2. In this subsection we consider the problem (CR.N),, (see (6.2)). The corresponding
boundary conditions (6.2) we transform to the equivalent equations on the crack surface Si:

[B(D,n)UJ§, — [B(D,n)U]g, = F — F), (17.25)
[B(D,n)UJ, + [B(D,n)Ug, = F™) + FO), (17.26)
where we assume that
F e lv(s), FY—FD e BlUr(S,), j=T4, p>1 (17.27)
We look for a solution
U e W, (IRS) NSKM(IRE,) (17.28)

in the form (17.5), where the densities ¢ and v are related to the sought for vector U again
by the realations (17.6) and (17.7). Therefore, we can define 1 explicitly

v =F" —F) e BUP(S), (17.29)

while the boundary condition (17.26) implies the WDE (of order 1) for the unknown vector-
function ¢

rs, Lo =g on Sy (17.30)
here the DO L is given by (10.6) and
g=2""(FD + FO) 4 rg Ky (F) — FO) e B UP(Sy), (17.31)

where the SIO K is defined by (10.4). Note that the inclusion (17.31) for the right-hand
side vector g follows again from Theorem 10.8 and conditions (17.27).

Now we show that the equation (17.30) is uniquely solvable in the space B;,;,l/p(Sl).
To this end we remark that the principal homogeneous symbol matrix of the operator £
is positive definite for arbitrary x € S; and £ € IR?\ {0} due to Lemma 10.7. The basic
invertibility property of the operator rg, £ is described by the following proposition.
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LEMMA 17.5 The operators
re, £ 1 [Byi(S)" — [By (ST, (17.32)
[Hy (S0 = [Hy(S)), (17.33)

are bounded for any s € IR, 1 < p < o0, 1 < q < o0.
These operators are invertible if the condition (16.15) holds.

Proof. 1t is quite similar to the proof of Lemma 17.2. [

With the help of this lemma and by the arguments employed in the proofs of Theo-
rems 17.3 and 16.5 one can easily derive the following existence and uniqueness results and
establish the regularity of solutions.

THEOREM 17.6 Let 4/3 < p < 4 and let the conditions (17.27) be fulfilled. Then the
nonhomogeneous crack type problem (CR.N),, is uniquely solvable in the class I/Vp1 (IR% )N

Jloc

SKI"(IR%)) and the solution is representable in the form (17.5), where 1 is given by (17.29)
and ¢ is the unique solution of the VDE (17.30).

THEOREM 17.7 Let the conditions (17.27) and (16.23) be fulfilled, and let the vector-
function U € W\ (IR% ) N SK"(IRE,) be the unique solution to the problem (CR.N).,.
In addition to (17.27),

i) if
F® e By (S,), F —F) e B (S),
then
U e Hi VRS, N SK™(IRY, );
i) if
F® e B; (S1), FY —FO e B; (S)),
then
Ue B (IR ) N SK™(IRY,);
iii) if
F® e BEL(S), F —F5) e BEL(S), for some a >0,
then
U|Q_+ S Cy(m%

Ulg= € C"(Q7) NSK'(27) with any v € (0, ), o := min{a, 1/2}.

REMARK 17.8 For an arbitrary solution U € W} (IR%)) of the pseudo-oscillation equation
(1.9) there also holds the representation formula by potential type integrals similar to (17.5)
with the densities ¢ and v related to the vector U by relations (17.6) and (17.7). Therefore,
for the crack type problems (CR.D), and (CR.N), the existence and uniqueness theorems,
and the regularity results analogous to the above ones can be proved with quite the same
arguments (for details see [16]).
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18 Mixed Interface Problems of Steady State Oscil-
lations

In this section first we shall prove the existence and uniqueness theorems for the mixed
interface problems for the steady state oscillation equations of the thermoelasticity theory
formulated in Section 7. Afterwards, as in the previous sections, we shall establish the
smoothness properties of solutions. Throughout this section we shall keep and employ the
notations of Section 15.

18.1. Problem (C — DD),. To examine the existence of solutions to the problem
in question (see (7.13)-(7.14)) we shell exploit the representation formulae (15.61)-(15.62),
and use again the Fredholm properties of YDOs on manifold with boundary described by
Lemma 16.1. First, let us note that the conditions (7.14) on Sy are equivalent to the following
equations

[U(l)]+ — [U(Q)]_ =) — ) [U(l)]+ + [U(2)]— =™ 4+ o) on S,
According to (7.21) and (7.23) we require that
fY e BIUVP(S)), P e BVP(S,), FY e BIMP(S)), (18.1)

and, moreover,

@) on S,
[U(1>]+ _ [U(2>]— = fe B;;l/P(S)’ where f = / ! (18.2)
o) — ) on S,.

Clearly, this last inclusion is the necessary compatibility condition for the problem (C—DD),,.
In view of the third embedding in (18.1), the vector F(!) can be extended from S; onto
Sy preserving the functional space B, ;/ P(S). Denote some fixed extension by F©,

F° e B, )/7(S), FOls, = FW. (18.3)

Evidently, any arbitrary extension F of F!) onto the whole of S which preservers the func-
tional space can be represented as

F=F"+¢eB,/"(S), where ¢ € B,)/?(S,). (18.4)

Now we can reformulate the interface problem (C — DD),, in the following equivalent form:
Find a pair of vector functions

(U, UP) = (W), w,

P Jloc

(%) N SK™(9?)) (18.5)

satisfying the differential equations (7.2) and the interface conditions

U —[UP)" = f on &, (18.6)
[BY(D, U = [B(D,n)UP)" = F on 8, (18.7)
(U] 4+ [UP]” = o) + o) on S, (18.8)
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where B (D, n) is defined by (1.25), f and F are given by (18.2) and (18.4), respectively.
Let us note that f and F° are considered now as the known vector functions on the whole
of S, while F' is given only on S; (F|s, = F°|s, = FY), and &) are given vector functions
on .

We look for the solution to the problem (C — DD), in the form (cf. (15.61)-(15.62))

U (z) = WO (U [F+ ] = W0, ;" f) (x), (18.9)

U (z) = (W 4+ po V) (0,1 0y W [FO+ o] — &, [0y W Wy @3 + 1) f) (z), (18.10)
where ¢ € EI; 11,/ P(Sy) is the unknown vector-function, and F° and f are as above. Further-
more, W® and V® are the double and single layer potentials of steady state oscillations,
the complex number p, and the boundary operators ¥, W¥;, ®; are defined by equations
(13.5) and (15.58), (15.9), (15.10).

It is easy to verify that the inerface conditions (18.6) and (18.7) are satisfied automati-
cally, since from (18.9) and (18.10) it follows that

OO - U] =, [BY(D,n) UM = [BA(D,n)UP]” = F'+¢ on S.
It remains only to satisfy the condition (18.8) which leads to the WDE for ¢

(U] + [UP]" =, U [FO+ ] — Dy U Wy &L f + &y U [FO + ] —
(@ T T &5t + I f =™+ on S, (18.11)

which can be rewritten as
TSQ [q)l \Il QO] = TSQ ]CH QO =q on 527 (1812)

where rg, is the restriction operator on Sy, the WDO (of order —1) Ky has been defined by
(15.105), while the given right-hand side g reads as follows

g =27 + o)) —rg, {@, W — [&, Uy &5 + 271 1) f} € BLVP(S,). (18.13)

Due to Lemma 15.14 the principal homogeneous symbol matrix of the operator Kz =
®, U is positive definite. Therefore, we can apply Lemma 16.1 to study the equation (18.12).

LEMMA 18.1 The operators

re, K o [Boo(So)]* — [Bit'(Ss)]%, (18.14)
[H3(S)]* — [HH(S2)), (18.15)

are bounded for any s € IR, 1 <p < oo, 1 < q < o0.
These operators are invertible if the condition (16.15) holds.

Proof. The mapping properties (18.14) and (18.15), boundedness and Fredholmity of the
above operators follow from equations Ky = & ¥, &; = 2711, + ICS), U= (¥ —
W, &5 ®,]71, and Corollary 15.6, Theorem 10.8 and Lemma 16.1 (with x = —1). From
the positive definiteness of the principal homogeneous symbol matrix O (Kg) it follows that
the Fredholm indices of the operators (18.14) and (18.15) equal zero.
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It remains to prove that the corresponding null-spaces are trivial. To this end, let us take
s = —1/2 and p = ¢ = 2, which meet inequalities (16.15), and show that the homogeneous
equation

rs, Kpp =0 on S (18.16)

has no nontrivial solutions in the space §2_721/2(52) = ﬁz_l/z(Sg).

Let ¢ € §£§/2(S2) be any solution to the equation (18.16) and construct the vector
functions

Us" (z) =W (W) (2), e, (18.17)
Ui (z) = (W +po V@) (0,1 2 W) (), x € Q2 (18.18)

Clearly, ¥ o € B;g(S) and &' d Vo € B217/22(S). Therefore, by Theorem 10.8 we have
(Us",U?) = (W3(Q"), W1 (22) N SKT(0?)). (18.19)

Moreover, these vectors satisfy homogeneous differential equations of steady state oscillations
(7.2) in the corresponding domains Q' and 02, and the homogeneous interface conditions of
the problem (C — DD), on S, since

Uot = [U)s. [BOD,n)ULTE, — [BA(D,n)UP 5, = ¢ls, =0,
[Uols, = [Uolg, =75, Kue =0 on Ss.

These conditions follow from the formulae (18.17), (18.18), definition of the operator ¥ (see
(15.58)) and the fact that ¢ solves the homogeneous equation (18.16).

Therefore, by Theorem 9.12 we conclude that UM = 0in Q' and U® = 0 in Q>. Whence
¢ = 0 on S follows. Thus, the null-spaces of the operators (18.14) and (18.15) are trivial
in the space 32_75/2(52) = 551/2(52). Now, Lemma 16.1 completes the proof for arbitrary p
and s satisfying the inequalities (16.15), and arbitrary ¢ € [1, o0]. ]

This lemma implies the following existence theorems.

THEOREM 18.2 Let4/3 < p < 4 and let the conditions (18.1)-(18.2) be fulfilled. Then the
nonhomogeneous problem (C —DD),, is uniquely solvable in the class (W, (Q'), W)1,.(2%) N

SKI™(Q?)) (with the parameters r and w as in (15.3)) and the solution is representable in the
form (18.9)-(18.10), where ¢ is the unique solution of the VDE (18.12).

Proof. First we observe that, if s = —1/p, then the inequality (16.15) yields 4/3 < p < 4.
Therefore, by Lemma 18.1 the nonhomogeneous WDE (18.12) with the right-hand side ¢ given
by (18.13) is uniquely solvable in the space f?zl,;,l/ P(S3). This shows that the nonhomogeneous
problem (C — DD), is solvable under the conditions indicated in the theorem, and the pair
(UM, UP)) defined by (18.9)-(18.10) represents a solution to the problem in question.

Further, we prove that the problem is uniquely solvable for any p € (4/3,4).

Let some pair (UM, U®)) € (WH(Q'), Wi, (Q%) NSK*(9?)) (with the parameters p, 7,
and w as in the theorem) represents a solution to the homogeneous problem (C — DD),. In
accordance with (18.6)-(18.7) then we have

UM~ U5 =0, [BOD,nUY — [BA(D,n)UP]5 = F € B, /(S,),

(18.20)
[UW]F — U]~ =0 on S,.
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Clearly, F' may differ from zero only on the submanifold S5 due to the homogeneous condition
(18.7).

Further, by Theorem 15.8 we conclude that the vector functions UM and U® are uniquely
representable in the form

UD(z) =W (U F)(z), =€,
U (z) = (W 4+ po V) (01 0, U F) (), z€Q?,

where F' is defined by the second equation in (18.20).
The third equation in (18.20) then yields

’/’SQICHF:O on Sg,
where F' € E;;/p(Sg) and p € (4/3,4). Therefore, ' = 0 on S due to Lemma 18.1 (with
s = —1/p) which implies U®) =0 in Q* (= 1,2). [

Now we can formulate the following regularity results.

THEOREM 18.3 Let the conditions (18.1), (18.2), and (16.23) be fulfilled, and let the
pair (U, U@) = (WHQY), W) ,.(Q2) N SK*(Q?)) be the unique solution to the problem
(C —DD)..

In addition to (18.1)-(18.2),

i) if
fY e BifY(S1), ©F € Bif(Sy), FW e B,(S1), f € BiH(9), (18.21)
then
(UM, U e (HPTNQY), HIT(O) N SK(©2); (18.22)
i) if
fY e BitY(Sh), ©F € Biit(Sy), FW e B (S)), fe€ Bii(S), (18.23)
then
(U, UP) e (B QY , Bipi (%) nSK(Q?); (18.24)
iii) 4f
fO e (Sh), ¢ € C¥(Sy), F e BLL(S)), feC(9), (18.25)

for some v > 0, then

UD UD) e (C(QL), CY(02) N SK™(Q?
(U, € (C* (), C*() NS () -
with any v € (0,ap), o :=min{e,1/2}.
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Proof. Here it is again verbatim the proof of Theorem 16.5 (see also the remark after Theorem
16.13). |

18.2. Problem (C — NN),. As in the previous subsection we start with the reformu-
lation of the problem. In particular, the conditions (7.13) and (7.15) are equivalent to the
following equations

[BY(D,n) UV — [BD(D,n)UP]" =F on 8, (18.27)
UOF ~[UP) = f on S, (18.28)
[B(l)(D,n)U(l)]+ + [3(2)(1)’”)(](2)]— = &) 4+ &) on Sy, (18.29)

where

Fi= { Z((: e Zz z: FeB;r(S), o ¢ Brlp(sy), (18.30)
f=1"+peBP(S), [eB(S), ¢e By P(S); (18.31)

here f0 is some fixed extension of the vector f( from S; onto S, preserving the functional
space: fO|s, = fO), and, therefore, f = f° + ¢ with ¢ as in (18.31), represents an arbitrary
extension of f(!) onto the whole of S: f|s, = f°|s, = V.

Obviously, the inclusion F' € B, Zl,/p (S) is the necessary compatibility condition for the

problem under consideration.
Let us now look for the solution to the problem (C — NN), in the form (cf. (15.61)-
(15.62))

U (z) = WD (U F =00, ;" [0+ ¢]) (x), (18.32)
U (z) = (W 4 py V) (071 0y W F — &3 [0 W Ty &30 + 1][f°+¢]) (2), (18.33)

where fO and F' are the given vector functions on S, while ¢ is the unknown vector function.
It can be easily seen that the conditions (18.27) and (18.28) are satisfied automatically,
since

UMD — (U] = 2+, [BOD,n)UY])T = [BO(D,n)UP]" =F on S.

due to the above representations.
It remains only to fulfil the condition (18.29) which yields the following WDE on S, for
the unknown vector ¢:

[BY(D,n) UV + [B(D,n)UP]” =T U F — U U0, &[0 + o] +
FU, O, O U F — Ty &5 [0 U, Byt 4 1] [0 4 ] = ) + 0, (18.34)

With the help of equations (15.9), (15.10), (15.58) we can simplify this equation:

Ts, [V U W, &y ] =75, Kgp = q on S, (18.35)
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where the UDE (of order +1) K¢ has been defined by (15.86), while the right-hand side
vector function ¢ reads as follows

q=2""(@M + ) — rg, {U, ¥ — 27| F + K¢ f°} € B, )/P(Ss). (18.36)

According to Lemma 15.9 the principal homogeneous symbol matrix of the operator g
is positive definite. Therefore, we can again apply Lemma 16.1 to examine the equation
(18.35), and employ the same arguments as in the previous section to prove the following
propositions.

LEMMA 18.4 The operators
ra Ko+ BENS) - [By, ()" (18.37)
[Hyt (S2)]" — [H(S2)]", (18.38)
are bounded for any s € IR, 1 < p < o0, 1 < q < o0.

These operators are invertible if the condition (16.15) holds.

THEOREM 18.5 Let 4/3 < p < 4 and let the conditions (18.30)-(18.31) be fulfilled. Then
the nonhomogeneous problem (C — NN'),, is uniquely solvable in the class of vector functions
(W (), W10 (Q2) NSK(Q?)) (with the parameters r and w as in (15.3)) and the solution

is representable in the form (18.32)-(18.33), where ¢ is the unique solution of the VDE
(18.35).

THEOREM 18.6 Let the conditions (18.30), (18.31), and (16.23) be fulfilled, and let the
pair (UMW, UP) e (WHQ), Wi, (9% N SK(Q?)) be the unique solution to the problem
(C— NN)..
In addition to (18.30)-(18.31),
i) if
fY e BifY(S1), FY e B, (S1), ®%) € B;,(S,), F € B;,(S), (18.39)
then there holds the inclusion (18.22);
i) if
fO e B (sy), FYe B (S), %) € B; (S:), F € B;,(9), (18.40)
then there holds the inclusion (18.24);
iii) if
fMec(Sy), FY e BLL(S), o) e B (Sy), Fe BLL(S), (18.41)

loc

for some o > 0, then there holds the inclusion (18.26).

The proofs of the above assertions are verbatim the proofs of Lemma 18.1 and Theorems
18.2 and 16.5.

18.3. Problem (C — DC),. In this case the interface conditions read as follows (see
Subsection 7.2):

(i) = () = fa, D@1 = DBD )] = Fion S, (18.42)

139



[u(1>]+ _ [u(2)]— — f(l), [P(l)(Djn)U(l)]-i- o [P(2)(D,n)U(2)]_ — O o Si,  (18.43)
[ =™, [w®)” =3 on 5, (18.44)
where

fre BISY(S), Fie Byr(S), ¢ = (o™, o5, 5™)T € [BISVP(S:)P,

/i (18.45)
FO = (A0 1Y 50T e B (SHP, FO = (Y, Y )T € (B (S

Let F° = (F°, F9, F9)T be some fixed extension of the vector F(") from S; onto Sy preserving
the functional space, i.e.,

FO e [BMP(S)?, FOls, = FO. (18.46)

Then an arbitrary extension of F) onto the whole of S preserving the functional space can
be written as follows

F=(F,FEFR) =F +¢c[BY(9)P, (18.47)

where ¢ is an arbitrary vector function with the support in Ss, i.e.,

&= (1,2, 3)" € [B,/P(S)]. (18.48)
Next we set
F=(F, -, F) =F +¢e[B P9 (18.49)
where
FO=(F° Fy)" € B 17(9)]" (18.50)

is the given vector function, and

o =(,0)"T € [B,}/P(Sy)]* (18.51)

with @ subjected to the condition (18.48).
It is easily seen that the conditions (18.42)-(18.44) are equivalent to the equations

UMW —[UP)" =f on 5, (18.52)
[BY(D,n) UV} — [BP(D,n)UP], =F, on S, k=1,2,3, (18.53)
[BY(D,n) UM} — [BP(D,n)UP]; = Fy on S, (18.54)
UOR + U] =l +¢i” on 8, k=1,2,3, (18.55)

where f is the given vector function

N(l) 4 T 517
f=Un ) = U f ) . (18.56)
(SO(J’_ f4) on 527
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satisfying the following necessary compatibility condition (cf.(7.25))
fe BP9, (18.57)

and Fj, and ¢ are as above.

After this reformulation of the problem in question let us look for the solution in the form
(18.9)-(18.10), where f, FY and ¢ are defined by formulae (18.56), (18.50), and (18.51),
respectively. These representations imply

OO = U = ¢, [BOD, UV — [BO(D,n)UP]” = FO + . (18.58)

Therefore, the conditions (18.52), (18.53), and (18.54) are satisfied automatically. It remains
to meet the conditions (18.55) which, by virtue of (18.11) and (18.12), lead to the system of
UDEs for the vector function ¢ = ($,0)" on Sy:

rs, [P1 Vol = 1s, [(Ku)kjpjl =q on Sy, k=1,2,3, (18.59)
where the summation over the repeated index j is meant from 1 to 3, and (see (18.13))
G =2t + o)) =1y {B1 W EC — (@ W W, Byt 271 ] f1y € BLYP(S,); (18.60)

here ICp is again the WDO of order —1 defined by (15.105) with properties described by
Lemmata 15.14 and 18.1.
Let

K= [(Kilaxs, k=123, 7:=(q.0.9)" (18.61)
Then (18.59) can be written in the matrix form as
ro K = g (18.62)

where ¢ = (1,2, 03)" € [B;;/p(SQH?’ is the sought for vector.

The following properties of the ¥DO Ky are immediate consequence Lemmata 15.14 and
18.1.

LEMMA 18.7 The principal homogeneous symbol matriz of the operator Ky is positive
definite for arbitrary x € S and £ € IR*\ {0}. The following operators

re, Ki o (B2 (Se)® — [Bit(Se))?, (18.63)
[H3(So)] — [H (S2)), (18.64)

are bounded for any s € IR, 1 < p < o0, 1 < q < o0.
These operators are invertible if the condition (16.15) holds.

Proof. The first assertion of the lemma follows from the proof of Lemma 15.14 (see (15.106)-
(15.107)), since 0 (Ky) = X, where X is the positive definite 3 x 3 matrix given by formula
(15.107) (for arbitrary x € S and ¢ € IR*\ {0}).

The boundedness of the operators (18.63)-(18.64) is a cosequence of Lemma 18.1.

It is evident that the Fredholm indices of these operators equal zero. This follows from
the positive definiteness of the principal symbol matrix O (l% 1). Therefore, to prove the last
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proposition of the lemma, we have to show that the corresponding null-spaces are trivial for
any s and p satisfying the inequalities (16.15).
Again, we take s = —1/p and p = ¢ = 2 to prove that the homogeneous WVDE

rs, Kud =0 (18.65)

has no nontrivial solutions. Let @y = (o1, P02, Po3) | € [f?];;/p(Sg)]?’ be any solution to the
equation (18.65) and using the formulae (18.17) and (18.18) construct the vector functions

Uél) and Uéz), where the density ¢ is represented as follows
o= (70,0)" € By (5"

Therefore, the embedding (18.19) remains valid, and, moreover, Uél) and Uéz) satisfy the
homogeneous interface conditions (18.52)-(18.55):

UV = U7 on S,

[BY(D, n)UME = [BP(D,n)UP]; = o on Sy, k=1,2,3,
[BY(D,n)UVIf = [BP(D,n)Us]; =0 on S,

UM =02 = [re, ®1 0 s = [re, Ku@le =0 on Sp, k=1,2,3.

Due to Theorem 9.12 we infer Ué”) in Q" (u = 1,2), which, in turn, yields that pg, = 0,
k = 1,2,3. Thus the null-spaces of the operators (18.63)-(18.64) are trivial in the spaces
_1/2(52) _1/2(52) Now Lemma 16.1 completes the proof. [

This lemma implies the following existence and regularity results.

THEOREM 18.8 Let 4/3 < p < 4 and let the conditions (18.45),(18.57) be fulfilled. Then
the nonhomogeneous problem (C — DC),, is uniquely solvable in the class of vector functions
(W (), W0 (Q2) NSK (%)) (with the parameters v and w as in (15.3)) and the solution
is representable by formulae (18.9)-(18.10), where f, F°, and o are given by (18.56), (18.50)
and (18.51), respectively, and @ is the unique solution of the VDE (18.62).

THEOREM 18.9 Let the conditions (18.45), (18.57), and (16.23) be fulfilled, and let the
pair (UMW, UP) € (WH(Q), Wi (Q%) N SK"(Q?)) be the unique solution to the problem
(C —DC).,.
In addition to (18.45),(18.57),
i) if
fr€ Bif'(S), Fie B}, (S), ¢%) €[Bi (S,
7O € B SP, FO e [Br(Sol, 1€ (B (9],

then there holds the inclusion (18.22);

(18.66)
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i) if

fr€ Big(S), Fi€ Biy(S), ¢ € [Bii(Sy)F,

t,q

- - (18.67)
FOe B ()P, FO e B (S)P, f € [Big'(S)",
then there holds the inclusion (18.24);
iii) if
€ C*(S), Fy€ BXL(S), ¢&F) € [C(Sy))?,

fOe[C s, FO e [BELS)P, felC (s
for some o > 0, then there holds the inclusion (18.26).

The proofs of these theorems are again verbatim the proofs of Theorems 18.2 and 16.5.

18.4. Problem (C—NC),. The investigation of this problem can be carried out by quite
the same approach as in the previous subsection. The interface conditions of the problem
now have the following form:

w1 = W) = £, DD, n)ul) = DD, )" = F on S, (18.69)

[t — (@] = fO [POD,n) UV — [PO(D,n)U?P]” =FY on Sy, (18.70)

(PO(D,n) UV =B [PO(D,n)UP]” =0, on Sy, (18.71)
where

J1 € BILVR(S), Fye Boin(s), @ = (@, @57, &)T € [B,}/7(S:)P,

/ N (18.72)
FO = (A7, 52 BT e BV S)E, FO = (FY, BV, BT € (B 7S

Let fO = (f2, 19, f9)T be some fixed extension of the vector fO) from S; onto S, preserving
the functional space, i.e.,

foeB S, fols, = FO. (18.73)

Again an arbitrary extension of f (1) onto the whole of S preserving the functional space can
be represented as the sum

F=f o) =P+ @€ BV, fls, = s, = [V, (18.74)
where @ is an arbitrary vector function supported on S,
&= (1,02, 903)" € [BI7(S))%. (18.75)
Further, let us introduce the notations
f=0f )= +eeBLP9) (18.76)
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where

_ - ~
=0 )" e BP9 (18.77)
is the given vector function, and
p = (3,0 €[B),"P(S)]" (18.78)

with ¢ subjected to the condition (18.75).
Next we reduce the conditions (18.69)-(18.71) to the following equivalent equations

n — n To= on .
[BO(D,n)UM* = [B®(D,n)UP]” = F on 5, (18.79)
[UW]F —[UP]; = f4 on S, (18.80)
(U] —[UP]; = fr, on Sy, k=1,2,3, (18.81)
[BO(D, n) UV + [BP(D,n)UD); =&Y + 07 on Sy, k=1,2,3, (18.82)
where F' is the given vector function
FO )T on S,
F= (Flv"'7F4)T = (~ 4,)v ! (1883)
(@) — @) F)T on Sy,
satisfying the necessary compatibility condition (cf.(7.26))
F e [B, P9, (18.84)

and f, and * are as above.

Now we look for a solution to the reformulated problem (18.79)-(18.82) in the form
(18.32)-(18.33), where the density vectors f°, F, and ¢ are defined by formulae (18.77),
(18.83), and (18.78), respectively. By virtue of these representations we have

UO) — U] = £+, [BOD, U} — [BO(D,n)U®)" = F (18.85)

Therefore, the conditions (18.79), (18.80), and (18.81) are fulfilled automatically. The re-
maining conditions (18.82), in accordance with the equation (18.34), lead to the system of
UDEs for the unknown vector function ¢ = ($,0)" on Sy:

s, [~U U Wy @1 ), =7, [(Ka)rj i) = g on Sa, k=1,2,3, (18.86)

where g = -V, ¥ U, <I>2_1 is the same DO of order +1 as in Subsection 16.2 (see also
(15.86)), the summation over the repeated index j is again meant from 1 to 3, and (see
(18.36))

g = 271D + L)) g, {[U W — 271 [ F 4+ K fO) € B /P(Sh), &k =1,2,3.(18.87)

Next we set

Ke = [(Ka)rjlsxs, k.j=1,2,3, G = (q1,92.93)"- (18.88)
The system (18.86) can be then rewritten in the matrix form as follows
rs, Ka@ = (18.89)

where @ = (01, 2, p3) T € [BIVP(S,)]? is the sought for vector function.
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LEMMA 18.10 The principal homogeneous symbol matriz of the operator Ke is positive
definite for arbitrary v € S and £ € IR?> \ {0}. The operators

rs,Ka t [Bit'(S2)]® — [By,(S2)P, (18.90)
[HEY(So)]P — [H3(S:)), (18.91)

are bounded for any s € IR, 1 < p < o0, 1 < q < o0.
These operators are invertible if the condition (16.15) holds.

Proof. 1t is quite similar to the proofs of Lemma 18.7 and follows from Lemmata 15.9, 18.4,
and 16.1. 1

With the help of this lemma one can easily derive the following exictence and regularity
results.

THEOREM 18.11 Let 4/3 < p < 4 and let the conditions (18.72) and (18.84) be fulfilled.
Then the nonhomogeneous problem (C — NC),, is uniquely solvable in the class of vector
functions (W ('), W1, .(%) N SK]"(Q%)) (with the parameters v and w as in (15.3)) and
the solution is representable by formulae (18.32)-(18.33), where F, f°, and ¢ are given by
(18.83), (18.77) and (18.78), respectively, and ¢ is the unique solution of the WDE (18.89).

THEOREM 18.12 Let the conditions (18.72), (18.84), and (16.23) be fulfilled, and let the
pair (UMW, UP) € (WHQ), Wi (Q%) N SK"(Q?)) be the unique solution to the problem
(C—=NC),.

In addition to (18.72),(18.84),

i) if

f4 € Bts,;fH(S)v Fye Bzf,t(S)v &)(i) S [Bf,t(52>]37

- - (18.92)
FOe B (S)P, FO e [By(S)P, Fe[B(9)]",
then there holds the inclusion (18.22);
i) if
f4 € Bts—(;l(S% F4 S Bzfq(S)7 (ﬂIi)(i) S [qu(s2)]37
y ’ . 7 ’ (18.93)
FOelBH(S)P, FU e [B (S)F, Fe[B:(9)",
then there holds the inclusion (18.24);
iii) if
€ C*(S), Fi€ BXL(S), ®® € By L(S)?,
f4 ( ) 4 oo,oo( ) [ oo,oo( 2)] (1894)

FOefC(s)P, FW e [BL (S, F e B9

for some o > 0, then there holds the inclusion (18.26).
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The proofs of these propositions are again word for word of the proofs of Theorems 18.2 and
16.5.

18.5. Problem (C —@G),. The interface conditions of the problem (C — G),, read as (see
Subsection 7.2):

Wi = () = o, D@1 = APD )] = Fioon S, (18.95)

L) — [w?]” = fO, [PO(D,n)UD] — [PP(D,n)UP]” = FY on S, (18.96)

[w® ]t = [u® . n] =[O,
(PO(D, Ul — [PE(D, U 0]~ = FP), s Osen
on So, .
POD,mU -1 = &, [POD,m)UD - m]* = b} 2
[PAD.nU 1)~ =&, [PD,n)U - m]” =)
where the boundary data belong to the following natural spaces
fO = (£, ST € [BILY(SOP, fa€ BLP(S),
FO = (FO F<1>, Fé”)T € (B }r(S1)]°, Fye BY(S), (18.98)
O, 8, F® € By1P(S,), f? e BLUP(S,),
These interface conditions imply that the vector function
poe ) EOE)T on Sy, (18.99)
o —~ —~ ~ —~ ~ T .
(1817 = &1+ (@) — D) m+ FPn, ) on S,

represents the difference [BM (D, n)UW ]|+ —[B® (D, n)UP]~ on S, and, therefore, we assume
the following natural compatibility condition (cf. (7.28))

F=(F, -, F)" €[B, P9 (18.100)

Analogously, the function

~ fO.n on S,
{ ! ' (18.101)

fn = -
f@ on Sy,

represents the difference [u) - n]* — [u® - n]~ on S, and, we again provide the natural
compatibility condition

fu € BLVP(S). (18.102)
Further, let us represent the boundary vector functions f 1) in the form
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where
fl(l) _ f(l) 1, fr(r}) — f(l) .m, fr(Ll) - f(l) ‘n. (18.104)

We denote by J’gl(o) and f© some fixed extensions of the functions fl(l) and f( from S; onto
S, preserving the functional space. Then arbitrary extensions can be represented as

=% ¢ fu=T9+ om, (18.105)
where

fr. 11, fon, 31 YP(S), @1, om € BISVP(S),

]2 fl f fm ( ) P, ¢ N D,p ( 2) (18106)

fl‘sl fl ‘51 fm‘sl (0)‘51 = frgml)

Clearly, here ¢; and ¢, are arbitrary scalar functions of the space é;;,l/” (S2).
Finally, let us set

F=0 ) =L +eeBLPE), F=(ffut) (18.107)

where f4 is the same function as in (18.95), while

=01+ FOm+ fun, f1)7 € [BLYP(S)], (18.108)
o= (pil+pnm, 0) €[B 178" (18.109)

here f© = fO 7+ fOp + F nand f, is given by (18.101).
It cab be easily seen that (see (18.101) and (18.103))

fls, = F s, = FO on 8, (18.110)
fenls,=fO nlg, = fo=f on S, (18.111)

Now we are able to reduce the interface conditions (18.95)-(18.97) to the following equiv-
alent equations in terms of the above introduced functions:

[BY(D, n)U<1] — [BP(D,n)UP]” = F on S, (18.112)
U] = U]y = fu on S (18.113)
UWE = [UP) = fi, k=1,2,3, on Sy, (18.114)
[ - n]* [u@) ]‘ = f non S, (18.115)
(PO(D,n) UV - 1]* + [PO(D,n)U? 1]~ =3 + 3 on S, (18.116)
[PY(D, )U(1 m]* + [PO(D,n)U® -]~ = &) + &) on S, (18.117)

where F, f, and f; are given by (18.99), (18.107)-(18.109).

After this reformulation we look for the solution of the problem under consideration in
the form (18.32)-(18.33), where now F and f° defined by (18.99) and (18.108) are the given
vector functions on .S, while the vector function ¢ given by (18.109) is unknown. We observe
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that the conditions (18.112), (18.113), (18.114), and (18.115) are satisfied automatically,
since the repesentations (18.32)-(18.33) yield

[UOT = [UD]" = 2+, [BY(D,n)UY]T - [BD(D,n)UP]|” = F. (18.118)
It remains only to meet conditions (18.116) and (18.117) which lead to the following system
of WDEs on S, for the unknown functions ¢; and ¢,, (see Subsection 15.2, formulae (15.73),
(15.74))
[PO(D,n)UY - 1]t + [PP(D,n)UP 1]~ =
= [BY(D,n)UY - I"]* + [BP(D,n)UP - I"]” =
= [0 UF -0 U0, (04 )] - 1F +
FU B By U F — Uy @y (B U W, &5 + 1)(f0 + )] - 1" = ) 4+ &)
[PY(D,n)UY - m]* + [PP(D,n)UP - m]~ =
= [BY(D,n)UY - m*]" + [B@D(D,n)U? - m*|” =
= [V, UF -0, U, o5 (O + )] -m* +
F[Uy B By U F — Uy &5 (B Uy & + 1) (O + )] - m* = 3D + ),
where I* = (I1,1y,13,0)" and m* = (my,my, ms3,0)" are the 4-vectors introduced in Section

14 (see (14.48)).
With the help of (15.80) we arrive at the system of equations

rs, K U+ @omm*) - 1" = q,
s Ko (o 4 ) B on S, (18.119)
s, Ko (@ul* + @mm™) -m* = g,
where the WVDE K¢ is defined by (15.86), and
=271 4+ o)) — g {U, U — 27U F + Kg f°} -1 € B;YP(S,),
@ (P 1) — s {W ] a '} oo T (S2) (18.120)

G =27H(@L) + @) — ro, {U1 U — 27| F + K¢ f°} - m* € B, }/P(5s).

Now, taking into account the formula (15.85), we can rewrite the above system in the
matrix form

rs, Mgh=g¢ on Sy, (18.121)

where ¢ = (q,qm)" € [B,;}/P(5:)]? is the given vector on Sy, and h = (¢, ¢m) €

[BL1/7(S,)]? is the unknown vector. Due to Lemma 15.9 the principal homogeneous symbol
matrix of the VDO My is positive definite. Therefore, by quite the same arguments as in
the previous subsections and invoking Theorem 9.12 and Lemma 16.1, one can prove the
following propositions.

LEMMA 18.13 The operators
re, Ma ¢ [Bitl(Se)]? — [B:(So))%, (18.122)
[HE1(S,)]? — [HE(S2)]%, (18.123)

are bounded for any s € IR, 1 < p < o0, 1 < q < o0.
These operators are invertible if the condition (16.15) holds.
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THEOREM 18.14 Let 4/3 < p < 4 and let the conditions (18.98), (18.100), and (18.102)
be fulfilled. Then the nonhomogeneous problem (C — G),, is uniquely solvable in the class of
vector functions (W, ('), W () NSK]™(Q?)) (with the parameters r and w as in (15.3))
and the solution is representable by formulae (18.32)-(18.33), where F, f°, and ¢ are given
by (18.99), (18.108) and (18.109), respectively, and (p;, pm)" is the unique solution of the

UDE (18.121).

THEOREM 18.15 Let the conditions (18.98), (18.100), (18.102), and (16.23) be fulfilled,
and let the pair (UM, U®) e (WHQ'), W), (92 NSK"(Q?)) be the unique solution to the
problem (C — G),,.

In addition to (18.98), (18.100), (18.102),

i) if

f4 S BS+1(S)7 Fy e Bf,t(S)v i)v &)g)v Fr(L2) < Bft(S2) J?(z) S BS+1(S2)7

d
_ (18.124)
fO e B (S0P, FU e By ()P, F e [B(S) fue Bif'(S),
then there holds the inclusion (18.22);
i) if
fr € BEJN(S), Fie By,(S). @, 9%, B € B (S). [ € Bij'(Sy), (18.125)
fO e B (), FW e (B, (S0P, Fe[B,(S)' f.e Bi'(9),
then there holds the inclusion (18.24);
iii) if
€ C(S), Fie BLL(S), o, 8, F® € BLL(S:), P e C(Sy),
f4 ( ) 4 oo,oo( ) n oo,oo( 2) fn ( 2) (18126)

FOefC (s, FW e [BLL(S)F, F e [BLLO)N, faeC(s),
for some a > 0, then there holds the inclusion (18.26).

18.6. Problem (C—"H),. Again we start with the reformulation of the original interface
conditions (see Subsection 7.2):

W) = W) = foo DO@u T = DD, )] = Fyoon S, (18.127)

WO — [wW®)" = fO, [PO(D,n)UDF — [PO(D, n)UP)~ = FO on 8, (18.128)

Doplt — u® . p]~ = f@

[

[PO(D,n)UD - n]* — [PO(D,n)UR -]~ = P, S 18.129
w® -1 =g m]t =g, o o
[

W@ - =37, w® . m] =)

m
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where
FO = (1Y, BV BT € [BLYP(S)), fi€ BILY(S),
FO = (FY, BV BT € [B,1P(S), Fie By P(S), (18.130)
P, P, FD e BIVR(S,), EP) e BLP(S,).

The the vector function

(f(1)7f4>—|— on Sl’

fi= B -
([SEl(Jr) _@(_)]ZWL (e — e m+ fPn, f4) on Sy,

(18.131)

represents the difference [UM]* — [U®)]~ on the interface S, and, therefore, we require the
natural compatibility condition (cf. (7.28))

f=fr, - f)" €B VP9 (18.132)

Moreover, the function

- FO.pn on 9,

F,=4¢ _ (18.133)
F®? on Sy,

corresponds to the difference [PY(D, n)UW - n]* — [P@ (D, n)U? -n]~ on S, and, we again

assume the natural compatibility condition

F, € B,,/"(9). (18.134)
Next, let us represent the boundary vector functions F® in the form
FO=FY 14+ FOm 4 FOpoon Sy, (18.135)
where
FY=FW . FO = pO) gy O = Oy, (18.136)

Denote by F’l(o) and F© some fixed extensions of the functions Fl(l) and F( from S; onto
Sy preserving the functional space. Arbitrary extensions then can be represented as

F = F’l(o) + @1, Fm = F’,%O) + ©Om, (18.137)
where

B, F° Fn O € BIP(S), ¢, om € By 17(Sy),

e " v (18.138)
Fls, = s, = F,  Fals, = F0s, = F{).
Obviously, here ¢; and ¢,, are arbitrary functions from Epf ;/p (S2).
Further, we set
F=(F, - F) =F +¢e[B P9 F=(FFLE), (18.139)
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where F} is the same function as above, while

FO= (B2 + EOm+ Fyn, F)T € [BYP(9))* (18.140)
with
o=@l +@u,m" = (pl+enm, 0)" € [B,17(S)]" (18.141)

Moreover, F(©) = ]5[(0) H—Z}#?) m+ E, n, the function F, is given by (18.133), and the 4-vectors
I*, m*, and n* are defined by (14.48).
We note that (see (18.135))

Flg, =F9|s, =F%Y on Sy, F-nlg,=F9 n|g,=F,=F? on S,. (18.142)

Now we can easily see that the original interface conditions (18.127)-(18.129) are equiv-
alent to the equations:

[UOF — [UP]~ = f on S, (18.143)
[BY(D,n)UVf — [BP(D,n)UP]; = F; on S, (18.144)
[BY(D,n) UV} — [BP(D,n)UP]; = F, on Sy, k=1,2,3, (18.145)
[BY(D,n)UY . n*]" — [BP(D,n)UP -n*]” = F-n* on S, (18.146)
UD 1+ 4 (U@ 4= =@ 4 )

[ el F=orra on S, (18.147)
OO m* |+ (U]~ = g0 + ),

where f and F are given by (18.131) and (18.139), respectively.

Let us look for the solution of the reformulated problem in the form (18.9)-(18.10), where
now f, FY and ¢ are defined by (18.131), (18.140), and (18.141). These representation
formulae imply

UM —[U®1 = £, [BY(D,n)UDT = [BP(D,n)UP)” = FO + ¢,

which show that the conditions (18.143)-(18.146) are satisfied automatically.
The remaining conditions (18.147) yield the following system of WDEs on Sy for the
unknown scalar functions ¢; and ¢, (see (18.11))

re, W - I = g,

s ELEY & on S, (18.148)
Trsy (I)l \I]SO -mt = dm,

where

a= 2 (e 4l ) = s, {0 WY [0, W Wyt 4 27 f) 1

(18.149)
G =27 (05 + 00 = 15, {QL W FO — [0 0 005" + 271 f} - m
In accordance with the formula (15.104) this system can be written also as
rs, Muh=g on Sy, (18.150)
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where g = (q,qn)" € [By,'/7(5:)]? is the given vector on Sy, and h = (¢, ¢m)" €
(B, 1/7(S,)]? is the unknown vector.

By virtue of Lemma 15.4 the principal homogeneous symbol matrix of the Y¥DO My is
positive definite which together with Theorem 9.12 and Lemma 16.1 implies the following
existence and regularity results.

LEMMA 18.16 The operators

re, M+ (B (S2)]* — [BiEH(So)]%, (18.151)
[H3(S)]? — [HiH (o)), (18.152)

are bounded for any s € IR, 1 < p < oo, 1 < q < o0.
These operators are invertible if the condition (16.15) holds.

THEOREM 18.17 Let4/3 < p < 4 and let the conditions (18.130), (18.132), and (18.134)
be fulfilled. Then the nonhomogeneous problem (C — H),, is uniquely solvable in the class of
vector functions (W, ('), W (Q*)NSK]"(Q?)) (with the parameters r and w as in (15.3))
and the solution is representable by formulae (18.9)-(18.10), where f, F°, and ¢ are given
by (18.131), (18.140), and (18.141), respectively, and (@1, o)’ is the unique solution of the
UDE (18.150).

THEOREM 18.18 Let the conditions (18.130), (18.132), (18.134), and (16.23) be fulfilled,
and let the pair (UM, U®) € (WHQ'), Wi, (22) NSK'(Q2)) be the unique solution to the
problem (C — H),.

In addition to (18.130), (18.132), (18.134),

Wi

fr€ BifU(S), Fie B;(S), &, ¢, [ e Bif'(S,), F® € B (Ss),

8 B 8 (18.153)
e B (S)P, FO e B (S)P, fe(Bif (9] Fue Biy(9),
then there holds the inclusion (18.22);
i) if
fu€ B (), Fie Biy(S). @ @), ) € B! (S). BY € Biy(Sa). (10

J?(l) c [B;ZI(Sl)]ga FO) ¢ [qu(sl)]i%’ fe [B;Zl(S)]47 E, € Bf’q(S)a

then there holds the inclusion (18.24);
iii) if

fieCU(S), Fie BELE), o o JD e sy, B € BLAS), o
O € [ (S, FO € [BL(S)I fe[C (9], Fy € BLL(S), |

for some a > 0, then there holds the inclusion (18.26).

152



19 Mixed Interface Problems of Pseudo-Oscillations

The mixed interface problems for the system of pseudo-oscillation equations are investi-
gated by the approach developed in the previous section. In this case we have to apply
the ”explicit” representation formulae (14.24)-(14.25), obtained for the solution of the basic
interface problem (C)., to reduce the mixed interface problems to the corresponding WDEs.
For illustration of the method in this section we consider only the problems (C — DD),
and (C — NN),. The other mixed problems of pseudo-oscillations can be studied quite
analogously.

19.1. Problem (C — DD),. Let S, S;, and Sy, be the same as in Section 18. The
original formulation of the problem (C —DD). is the following (see Section 7): Find the pair
of vector-functions (UM, U®P) e (WH(Q), W}(Q?)) satisfying the differential equations

AWD, 1) UMW =0 in QW p=1,2, (19.1)
and the mixed interface conditions on S

[UOF — (U@~ = O [BY(D,n) UV — [BP(D,n)UP]” = FY on S, (19.2)

[UO)F = o, [UP]" =) on Sy (19.3)

moreover, U?) satisfies the decay condition (1.30) at infinity.
Here p > 1 and

FO = (0 fIT e BIY(S), FO = (Y o FOYT e BoUP(S),  (19.4)
oM = (17, )T € B V(). (19.5)

Further, we assume that the vector function

(1) on S,
fi= d ' (19.6)
et — ) on Sy,

meets the necessray compatibility condition
feBiYP(s). (19.7)

Next, denote by F° € B, 1/7(S) some fixed extension of the vector function F) from the
submanifold S; onto the whole surface S (i.e., F°s, = F" on S)).

Evidently, an arbitrary extension (preserving the functional space) can be then repre-
sented as

_ 10 -1
F=F'+¢eB,l"09), (19.8)

where p = (¢1,-++,04)" € Ep_,;/p(Sg) is an arbitrary function supported on Sy,
Now we can reformulate the interface conditions (19.2)-(19.3) in the following equivalent
form:

U =[P =f on S, (19.9)
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[BO(D, n)UM* — [BP(D,n)UP]" = F on S, (19.10)
UM+ U] = oM + 6 on S, (19.11)

where BW (D, n) is defined again by (1.25), and f and F are given by (19.6) and (19.8),
respectively.

Let us now look for the solution (UM, U®) to the problem (C — DD), as follows (cf.
(14.24)-(14.25))

U (z) = VO (HO) T NT(FO + 9) + Moy f]) (), 7€ Q1 (19.12)
UO(@) = VO (HE) T NHE + 9) = Mip f]) (2), @ € @, (19.13)

where ¢ € EI; 11,/ P(Sy) is the unknown vector function, W and V. are the double and single
layer potentials of pseudo-oscillations (see (11.1)-(11.2)), the boundary operators H®, A,
Ni., and Ny, are the same as in Section 14 (see (14.12)). Note that here and in what
follows we keep all notations of Sections 11 and 14.

One can easily check that the inerface conditions (19.9) and (19.10) are satisfied auto-
matically, since (19.12) and (19.13) together with (14.12) imply

OO = [U@) =, [BOD,n)UD)T — [BA(D,n)UP]” = F'+ ¢ on S. (19.14)

It remains only to fulfil the condition (19.11) which yield the YDE for the unknown vector
function ¢

rs, N- 1o =¢q on Sy, (19.15)
where rg, is again the restriction operator on Sy, the right-hand side vector ¢ is given by
0= 27 (W + ) =1, NS PO+ 27 N (N — M) f] € BLSYR(S)).
The operator rg, N possesses the following properties.
LEMMA 19.1 The operators
re, NoUoo [Bs (So)]* — [BaEH(Sa))Y, (19.16)
[Hy(Sa)]' — [H (8], (19.17)

are bounded for any s € IR, 1 < p < o0, 1 < q < o0.
These operators are invertible if the condition (16.15) holds.

Proof. Due to Theorem 11.3 and Lemma 14.2 we conclude that the mappings (19.16)-(19.17)
are bounded and that their Fredholm indices equal zero, since the principal homogeneous
symbol matrix of the operator N 7! is positive definite for arbitrary x € S and £ € IR?\ {0}.
It remains to prove that the corresponding null-spaces are trivial, i.e., we have to show that
the homogeneous equation

rs, N- 1o =0 on S, (19.18)

has only the trivial solution in the spaces B;,q(Sg) and ﬁ; (S) with s and p satisfying the
inequalities (16.15). We again consider the particular case s = —1/2 and p = ¢ = 2 for
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which the condition (16.15) is fulfilled. Further, let ¢ € E;;/z(Sg) = ﬁz_l/z(Sg) be some
solution to the equation (19.18), and construct the potentials:

U (z) = VO (HO) TN o) (2), @ e (19.19)
U (z) =V (HO) N o) (2), z e (19.20)

Theorem 11.3 implies that the pair (UM, U®) represents a solution to the homogeneous
problem (C — DD), of the space (W5 (Q'), W5 (2?)). By Theorem 8.6 we then conclude

UW = 0in Q% pu = 1,2, whence [BY(D,n)UY]* — [BH(D,n)UP)]~ = ¢ = 0 fol-
lows. Therefore, the above homogeneous equation has no nontrivial solutions in the space
32_721/2(52). Now Lemma 16.1 completes the proof. ]

THEOREM 19.2 Let 4/3 < p < 4 and let the conditions (19.4), (19.5), and (19.7) be
fulfilled. Then the problem (C — DD), is uniquely solvable in the class (W, (), W} (Q?))

and the solution is representable in the form (19.12)-(19.13), where ¢ is the unique solution
of the VDE (19.15).

Proof. First we note that the condition (16.15) with s = —1/p implies the inequality 4/3 <
p < 4. Next, Lemma 19.1, with s = —1/p and 4/3 < p < 4, shows that the VDE (19.15)
is uniquely solvable. This together with the representation formulae (19.12)-(19.13) yields
the solvability of the nonhomogeneous problem (C — DD), in the sapace indicated in the
theorem.

It remains to prove the uniqueness of solution for 4/3 < p < 4. Let (UMW U®) ¢
(W, (), W, (€2?)) be some solution of the homogeneous problem (C — DD),. Clearly, then
[UW]F, U]~ € BLLYP(S) and [BO(D,n)UW]F, [BO(D,n)UP]~ € B, /P(S). In addi-
tion, f 1= [UMF —[UP]" =0o0n S and F := [BO(D,n) UM — [B@(D,n)UP]~ =0 on
S1. Therefore, F' € EI; ;/ P(Sy). Due to Theorem 14.6, such solution is uniquely representable
by formulae (14.24)-(14.25) which in the case in question read as

U () = VW (HUTINTVF ) (), €@, p=1,2, (19.21)

with F' € B, 1/7(S,).
The homogeneous versions of the conditions (19.2)-(19.3) (i.e., (19.9)-(19.11)) then shows
that F' has to satisfy the equation

rs, N-TF =0 on S,

from which F' = 0 on S follows for arbitrary p € (4/3,4) due to Lemma 19.1. Therefore,
UM =01in Q* (= 1,2) in view of (19.21). This completes the proof. [

The next theorem deals with the smoothness of solutions to the mixed interface problem
(C —DD),.

THEOREM 19.3 Let the conditions (19.4), (19.5), (19.7), and (16.23) be fulfilled, and let
the pair (UM, UP) = (WH(QY), W (Q?)) be the unique solution to the problem (C —DD),.
In addition to (19.4), (19.5), (19.7),
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i) if conditions (18.21) are satisfied, then
(UW, U@y e (7T QY BT OR);

ii) if conditions (18.23) are satisfied, then
U, U®) e (BQY , Brg T (9);

iii) if conditions (18.25) are satisfied for some o > 0, then
(UD,U?) e (C*(Q7), C"(22))

with any v € (0, ap), o := min{a,1/2}.

Proof. 1t is verbatim the proof of Theorem 16.5. ]
19.2. Problem (C—NN),. The original interface conditions for the problem (C—NN),
read as

W —U®) = O [ BY(D,n)UVT — [B@(D,n)UP]" = FY on Sy, (19.22)
[BY(D,n) UM = oD [BA(D,n)UP]” = d) on S, (19.23)
where
e BIWr(S), FU e B1P(S)), o® = (@,... o) € B 1/7(S,).  (19.24)
We require that the vector function
F on S,
F .= (19.25)
dH — o) on S,.
satisfies the necessary compatibility condition
F e B, \/7(6S). (19.26)

Denote by f° € By '/?(S) some fixed extension of the vector function f) from the sub-
manifold S; onto the whole surface S. Then an arbitrary extension preserving the functional
space is represented by formula

f=f"+peB P9, (19.27)

where ¢ € BL1/P(S,).
Next, we again reduce the above original interface conditions (19.22)-(19.23) to the equva-
lent equations:

[BY(D, UV = [BP(D,n)UP]” = F on S, (19.28)
W) = [UP] = f on 8, (19.29)
[BY(D,n)UV)* + [BP(D,n) U™ = &) + &) on S, (19.30)
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where F' and f are given by (19.25) and (19.27), respectively.
Further, we look for the solution (UM, U®)) to the problem (C — N'N), in the form (cf.
(14.24)-(14.25))

UO(@) = VO (HO) T NTHE + N (0 +9)]) (@), @€, (19.31)
U (z) = VO (HO) N E = M (0 +9)]) (2), o €@, (19.32)

where fO and F are the given vector functions on S and ¢ € ézl,g,l/p (S2) is the unknown
vector function.

The conditions (19.28) and (19.29) are then satisfied automatically, while the condition
(19.30) leads to the WDE for the unknown vector ¢

75, N NP Nosro] = g on Sy, (19.33)
where the right-hand side vector ¢ € B, 11,/ P(Sy) reads as
q=2"10" + 7)) — rg, 27 (Noy — NN E = N1 N NG O (19.34)

In the proof of Lemma 14.8 it has been shown that the principal homogeneous symbol
matrix of the WDO N} , Nt Ny, is positive definite. Therefore, by the arguments employed
above one can prove the following assertion (see the proof of Lemma 19.1).

LEMMA 19.4 The operators
P, Ni NTENg o [BEEH(So)]* — [Be,(S2)], (19.35)
[H(S2)]" — [Hy(S)]%, (19.36)

are bounded for any s € IR, 1 < p < o0, 1 < q < o0.
These operators are invertible if the condition (16.15) holds.

This lemma implies the existence and regularity results quite in the same way as in the
previous subsection.

THEOREM 19.5 Let 4/3 < p < 4 and let the conditions (19.24)and (19.26) be fulfilled.
Then the nonhomogeneous problem (C — NN, is uniquely solvable in the class of vector
functions (W, ('), W}(Q?)) and the solution is representable in the form (19.31)-(19.32),
where @ is the unique solution of the WDE (19.33).

THEOREM 19.6 Let the conditions (19.24), (19.26), and (16.23) be fulfilled, and let the
pair (UW, UP) e (W(Q), WHQ2)) be the unique solution to the problem (C — N'N)-.
In addition to (19.24), (19.26),
i) if conditions (18.39) hold, then

(UM, Uy e (HTTN QY HFTNQ?);
ii) if conditions (18.40) hold, then
(U, U®) € (B9, By (9);
iii) if conditions (18.41) hold for some o > 0, then
(UD,U?) e (C(QN), C"(22))
with any v € (0, ap), oo := min{a,1/2}.
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