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THERMOELASTIC OSCILLATIONS OF
ANISOTROPIC BODIES

LoTHAR JENTSCH AND DAVID NATROSHVILI

Abstract The generalized radiation conditions at infinity of Sommerfeld—Kupra-
dze type are established in the theory of thermoelasticity of anisotropic bodies.
Applying the potential method and the theory of pseudodifferential equations on
manifolds the uniqueness and existence theorems of solutions to the basic three—
dimensional exterior boundary value problems are proved and representation
formulas of solutions by potential type integrals are obtained.

INTRODUCTION

Boundary value problems (BVPs) of the theory of thermoelasticity have a long
history. They encounter in many applications and mathematical models where the thermal
stresses appear (for exhaustive historical and bibliographical material see [12], [18]).

Three—dimensional problems of statics, pseudo—oscillations, general dynamics and
steady state oscillations of the thermoelasticity theory of isotropic elastic bodies are com-
pletely investigated by many authors (see, e.g., [7], [8], [9], [12], [18] and references therein).
In particular, exterior steady state oscillation problems have been studied on the bases of
Sommerfeld-Kupradze radiation conditions in the thermoelasticity and uniqueness theo-
rems were proved with the help of a well-known Rellich’s lemma, since components of a
displacement vector and a temperature in the isotropic case can be represented as a sum of
metaharmonic functions (for details see [12]).

Unfortunately the methods of investigation of thermoelastic steady oscillation prob-
lems developed for the isotropic case are not applicable in the case of general anisotropy. This
is stipulated by a very complicated form of the corresponding characteristic equation which
plays a significant role in the study of the far field behaviour of solutions to the oscillation
equations (cf. [15], [19]).

We note that the basic and crack type BVPs for the pseudo—oscillation equations
of the thermoelasticity theory (the anisotropic case) are considered in [3], [14].

To the best of the author’s knowledge the problems of thermoelastic steady oscil-
lations for anisotropic bodies have not been treated in the scientific literature.
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In the present paper we will formulate thermoelastic radiation conditions for an
anisotropic medium (the generalized Sommerfeld-Kupradze type radiation conditions) and
prove the uniqueness theorems in the corresponding spaces. Afterwards the existence of
solutions to the basic BVPs will be studied by the potential method and the theory of pseu-
dodifferential equations (VDEs) on manifolds and representation formulas of the solutions
by potential type integrals will be obtained.

1 CHARACTERISTIC EQUATION

1.1. The system of equations of linear thermoelastodynamics of homogeneous
anisotropic elastic medium reads (see [18], Ch. V)

ijququUp(I,t) + Xk(.ﬁ(f,t) = QD?Uk(ZL’,t) + 6ijjU4(SL’,t),
ApgDpDqua(w,t) — coDyua(z,t) — Tofp DiDyug(z,t) = —Q(x, 1), (1.1)

where cpjpg = Cpgkj = Cjkpq are elastic constants, A\,, = Ay are heat conductivity coefficients,
co is the thermal capacity, Tj is the temperature of the medium in the natural state, 3, = 54
are expressed in terms of the thermal and elastic constants, o is the density of the medium;
u = (uy,us,uz)' is the displacement vector, uy is the temperature, X = (X1, X5, X3) " is the
bulk force, @ is the heat source; x = (1, x2, 23) denotes the spatial variable, while ¢ is the
time variable; D, = D, = 0/0x,, D, = 0/0t; here and in what follows the summation over
repeated indices is meant from 1 to 3, unless otherwise stated; the superscript T denotes
transposition.

In the sequel we consider the homogeneous version of equations (1.1), i.e., we assume
X =0, Q = 0. In addition, without any restriction of generality o = 1 is assumed as well.

In (1.1) the term —748,,D:Dyu,(z,t) describes the coupling between the tempera-
ture and strain fields. It vanishes only for a stationary heat flow. In that case or if this term
is neglected, we have the uncoupled thermoelasticity.

In the thermoelasticity theory the stress tensor {oy;}, the strain tensor {e4;} and
the temperature field uy are related by Duhamel-Neumann law

Okj = ChipgEpq — Prjtia, exj =27 (Dyuj + Djuy), k,j=1,2,3;

the k—th component of the vector of thermostresses, acting on a surface element with the
unit normal vector n = (ny,ny,n3), is calculated by the formula

OkjNj = ClkjpgEpqTtj — ﬂkjnjwl = CkjpqTtj unp - 6kjnju4, k= 1, 2, 3. (12)

The formal Laplace transform of equations (1.1) (with respect to t) leads to the
so—called pseudo-oscillation equations of the thermoelasticity theory

Chipg DjDqup(x, T) = TPug (e, ) + BrjDjua(, 7),
ApgDpDyug(z, ) — corug(z, 7) — 710 Bpg Dpuig(z, 7) = 0; (1.3)

here 7 = 0 — iw is a complex parameter, w € IR and o € IR\ {0}.
If all data involved in (1.1) are harmonic time dependent, i.e.,

ug(z,t) :11% (x) cos wt+ 12% (x)sinwt, k=1,2,3,4, w € IR,
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then we get the so—called steady state oscillation equations of the theory of thermoelasticity

CrjpgDjDyup(w) = —wup(w) + Brj Dyua(2),
ApgDpDgua(z) + iwcous(z) 4+ iwToBpg Dpug(z) = 0, (1.4)
where the following notation u(z) =iy, (x) +1i o (), k=1,2,3,4, is employed.
It is evident that system (1.4) formally can be obtained from (1.3) provided o = 0,

but this similarity is a very formal one and it will become apparent later on.
1.2. In order to rewrite the above equations in the matrix form, let us set

U= (ula Uz, u3>u4)T - (U, u4)T> U= (ula Uz, u3)Ta

C(D) = ||Crp(D)llsxs, Cip(D) = Crjpg DDy, (1.5)

A(D) - )\pq Dqu, D - V = (D1> Dg, Dg) (16)

For the sake of simplicity sometimes we will use also the notation either [A],,x, or
[Akplmxn for the m x n matrix A = || Agpl|mxn-

Now we can represent equations (1.3) and (1.4) in the following form, respectively:
AD,7)U(z,T) =0, (1.7)
A(D, —iw)U(z) =0, (1.8)

where

AD. 1) = [C(D) — 11 Is]sxs  [=Bk;Djlsx ’ (1.9)

[=uToBrjDjlixs  A(D) — pco

4x4
I, = ||0k;||mxm stands for the unit m x m matrix, dx; is Kronecker’s symbol.
Clearly, u = 7 = 0 — iw corresponds to the pseudo-oscillations, while p = —iw

corresponds to the steady oscillations.
Further we introduce the classical stress operator

T(D,n) = |[Tip(D, n)||sx3 = |Ckjpg 5 Dgllsx3 (1.10)
and the thermoelastic stress operator

P(D,n) = |[[T(D,n)]sxs, [=Bkjnjlsxillsxa.
From (1.2) it follows that

[P(D,n)U]y = ogjn; = [T(D,n)uly — Brjn;us, k=1,2,3.

1.3. Let QT C IR?® be a bounded domain with a C?*—smooth connected boundary
S =00t QF = QT U S and O~ = IR\ QF. We assume that QF () is occupied by
a homogeneous anisotropic medium with the elastic and thermal characteristics described
above.

From the physical considerations it follows that (see [6], [18]):
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a) the matrix [|Ay,||3x3 is positive definite, i.e.,
A(€) = N\py&ply = 00 €17, € € IR?, &y = const > 0; (1.11)

b) Crjpg€rj€pg 1s a positive definite quadratic form in the real symmetric variables
exj = €, which implies positive definiteness of the matrix C(¢), £ € IR* \ {0}, defined by
(1.5), i.e.,

Cri (&, > 51|§|2|n|2, ¢,m € IR®, 5, = const > 0. (1.12)

Inequalities (1.11) and (1.12) together with the symmetry properties of the matrices ||A,,]|
and C(§) yield:

C(&)n-n= Cr;(E)mme = 01lEf* nf*, € € IR?, (1.13)
Aol > Goln|?, (1.14)

for an arbitrary complex vector n € @'3; a-b = 1", apb, denotes the scalar product of two
vectors in @' and upper bar denotes complex conjugate.

Let us note here that throughout of this paper we will use the following notations
(when no confusion can be caused by this):

a) if all elements of a vector v = (vy, ..., v,) (matrix a = ||a;||mxn) belong to one
and the same space X, we will write v € X (a € X)) instead of v € [X]" (a € [X]mxn);
DY If K : Xy X X Xy = YiX oo X Vpand Xy == Xy, Vi = - = Y,, we

will write K : X — Y instead of K : [X]|™ — [Y]™.
1.4. Our main goal is to investigate the basic BVPs for the equation (1.8). We will
consider the following boundary conditions on S

Problem (ng)i:
[W* = f=(fi,fa f5)", (1.15)
[wa® = fa, (1.16)
i.e., the dicplacement vector and the temperature are prescribed on S;
Problem (ﬁg)ii
[W* = f=(fi,fa f5)", (1.17)
[Opud]™ = f1, Op = A\pgnp Dy = MDD, n), (1.18)

i.e., the dicplacement vector and the heat flux through the surface S are given on S (the
case [0,uq)* = 0 describes a thermal insulation over the surface bounding the body);

Problem (ﬁg)ii
[P(D,n)UJ* = f, (1.19)

[us]™ = fu, (1.20)



i.e., the vector of thermal stresses and the temperature are prescribed on S;
Problem (]%)i:
[P(D,n)U* = f, (1.21)
[Onua]™ = fu, (1.22)

i.e., the vector of thermal stresses and the heat flux are prescribed on S; here and throughout
of this paper n(x) denotes the exterior unit normal vector of S at the point x € S; the symbols
[-]* denote limits on S from Q*.

Let us introduce matrix boundary operators corresponding to the above stated
boundary conditions:

I 055
BY(D,n) = I = |8ksllixa, BO(Dyn) = || Ol1 ,
[0]1><3 8n 4x4
B(g)(D,n): [T(Dun)]3><3 [_ﬂkjnj]gxl |
[O]lxs 1 s
T(D, < — Brinilax
BOD.n) = BD.n) = || L Prlaxs [Fgmslaa || o

[0]1x3 On,

4x4

Clearly, the boundary condition
[B(k)(Dm)U]i = (f1, f2, [3, f4)T

corresponds to Problem (}U;k)jE The similar problems for equation (1.7) will be denoted by
(Pe)™

It is well-known that in the case of unbounded domain (of type Q) the following
conditions at infinity (as |z| — +00)

o(1) for p=0,
ug(x) = (1.24)
O(|z|N) for Reu=0>0, k=1,2,3,4,

with an arbitrary fixed positive IV, are sufficient for the uniqueness of solutions to the BVPs.
In fact it can be proved that, if u is a solution of the corresponding homogeneous equation,
then condition (1.24) implies

O(|lz|~71°hy  fo =0,
DPuy(z) = (I ) dor (1.25)
O(|x|™) for Rep=0>0, k=1,2,3,4,

where v is an arbitrary positive number, § = (1, 02, f3) is an arbitrary multi-index and

B8] = B1 + B2 + B3 (see [1], [11], [15]).



Concerning the case of steady oscillations (i.e., p = —iw) to select the classes of
uniqueness one needs special conditions at infinity which are essentialy connected with the
characteristic surfaces of the operator A(D, —iw). Properties of these surfaces are analysed
in subsections 1.6-1.8 below.

1.5 We note that the operator A(D, u) defined by (1.9) is not formally self-adjoint.
Denote by A*(D, p1) the formally adjoint operator to A(D, )

AND ) = AT D) = AT(-D.7) =
[C(D) — i 13)3x3  [T00kiDjlaxa
[Br;Djlixs AD)=fico |,

Let U = (uy,us,uz,ug)’, V = (v1,v9,03,04)" € C*(QF) N CHOT) (i.e., U and
V' are regular vectors in Q%) and A(D,u)U, A*(D, )V € Li(2F). Then the following
equations hold for arbitrary p € @ (cf. [3], [15]):

/A(D,M)U~de:/[B(D,n)U]+ V]t dS — /E(U, V) d,

[{AD.wu-v —u- 2D, u)V}dx—/{ (D, n)U]* - [V]* —

_[U] '[Q(D’nmu) ] }dS> (1'26)

/{ (D, W)U kuk+—T0[A(D,u)U]4u4}dx:

/{ijpq pg Dily + p |u|2 + Iu—)\k] Dyug Djty + |U4| }dx +
Ot

+ [ABOUR ] + = ]} d5, (1.27)
5
where B(D,n) is defined by (1.23), while

[T'(D,n)]3xs  [WT08km;]3x1
013 On

: (1.28)

4x4

Q(D,n,p) =

E(U,V) = ijpg Dytig DiTj + 11wy, — Bjtus Dpy, + Apg Dyua D4 +
"—Co/J,U4@4 + /J/T(]F46pq Dpuq.

The similar formulas hold valid also for the domain 2~ when p = 0 or Rey > 0 and

the components of U and V satisfy conditions (1.25) (the superscript “+” must be changed

by superscript “—” and the sign “+” in front of the surface integrals must be changed by the
sign “~"). The case p = —iw will be considered later on.
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1.6. Let us introduce the characteristic polynomial of the operator A(D, 1)

M€, 1) = det A(—i€, p). (1.29)
Denote by N(—i¢, z1) the adjoint matrix to A(—i&, ), ie.,

A€, )N (=€, 1) = N (1€, p) A€ p) = M(E, p) s (1.30)
Therefore

ATH =g p) = [M(& )] TN (1€, o). (1.31)

Equations (1.29), (1.9) and (1.5) yield

_ 2 P
M(&, 1) = det [=C€) = 1" Islsxs hﬁk]&]]i’ml +
[iTo Bri6 )13 — o ™
| O Bl Bl ||
[0]1><3 —A(f) 4x4
- — 12 Na
= A(S) det[C(S) + Mz I3] — pTy det [=C(&) = 1" Ll [/ijgy]iﬁxl _
[Bri&ilix3 coTy! ™

= A(€) det[C(&) + p* I3] —
[—C(&) — 1? Is]sxs — [co " ToBki&i Bpalalsxs  [Bri&ilax
[0]1x3 coTy i
= A(€) det[C(€) + p® I3] + pcy det[C(€) + p2 L],  (1.32)
where C/(€) and A(€) are defined by (1.5) and (1.6), respectively, and
C(€) = 1Crp()llaxs = C(€) + llcg ToBr; Bpaial laxa, (1.33)

ékp(g) = (ijpq + Cngoﬂkjﬂpq)gqua k,p=1,2,3.

—/LTO det

Now let
W(E, p) = det[C(€) + p? Is], (1.34)
W(E, ) = det[C(&) + p? Is). (1.35)

The relations (1.33) and (1.13) imply that the matrix C/(€) for any & € IR?\ {0} is
positive definite and we have

C(En-n=CE)n-n+ cg " To|Bri&ml* = 011 n|? (1.36)

with an arbitrary n € @'® and the same 4; as in (1.13).



Thus we have

M (& 1) = AET(E, p) + peoW (€, p). (1.37)

It is evident that, if |u| < po with some positive pg, then there exists a positive
number gy such that

(W) > 1, [U(E )| =1, | M(Ep)|>1, (1.38)

for |£] > 00; ©0 depends on py and the thermoelastic constants.

LEMMA 1.1 Let 7 =0 —iw, Rer =0 > 0 and £ € IR®.
Then M(&,7) # 0 for any w € IR.

Proof. Let us suppose that the assertion of the lemma is false, i.e., M (&, 7) = 0.
Then the homogeneous system of linear algebraic equations

A(=i&, 1) a=0 (1.39)

has some non-trivial solution a = (ay,---,a4)" € C*\ {0}.
Multiplying the k—th equation of (1.39) by @ and summing the first three equations
we get
—Crjpa€i&qQpTr — T25kpap6k +iB;& a4y = 0,
iTTQﬁkjgjaka4 — qu§p§q|a4|2 — TC()|CL4|2 = 0.

Deviding the latter equation by 77j, taking the complex conjugate and adding to
the first one, we arrive at

ChjpgSiSqpar + Traxly + T[|T‘2T0]_l)‘pq£p£q|a4|2 + 60T0_1|a4|2 =0.

Due to (1.13) we deduce by separating the real and imaginary parts

C(§)a-a+ (0% —w?)af® + ol|TPTo] ' A()]as® + Ty Haa* = 0,
w{20al* + [I7[PTo] 7 A(§)|asl*} = 0,

with @ = (ay, ag,as3)’.
From this system and (1.11) it follows that a; = -+ = a4 = 0, for any £ € IR3,
w € IR and o > 0. This contradiction completes the proof. [

1.7. Now we will analyse the characteristic polynomial M (£, —iw) of the operator
A(D, —iw). It is evident that (see (1.34), (1.35), (1.37))

M€, —iw) = A(§)D(¢,w) — iwep® (€, w) (1.40)
with

(€, w) = det[C(€) — W Is) = W(&, —iw), (1.41)

B(€,w) = det[C(€) — W Is) = W(€, —iw). (1.42)
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Characteristic surfaces of the operator A(D, —iw) are defined by the equation
M(¢, —iw) =0, &€ IR?, (1.43)

which in turn, due to (1.40), is equivalent to the following sysytem

{ (€, w) = 0,

1.44
O(¢w) =0, ¢cR. .

Passing on the spherical co—ordinates

&1 =pcospsing, & =psinpsing, & = o cosb,
0<p<+4o00, 0<p<2m, 0<O< T,

and, taking into account formulas (1.41), (1.42), (1.13) and (1.36), we conclude that each
equation of the system (1.44) has three positive roots with respect to 0®. These roots are
proportional to w? and polynomials ®(¢,w) and ® (¢, w) can be represented in the form:

D&, w) = D(n,0) [0* — w0 (0, 9)][0* — w030, )] [0° — w03(0, ©)), (1.45)
&)(57 w) = &)(nv O) [Q2 - u)2@%(9, @)][Q2 - w2§§(97 @)] [92 - w2@§(97 @)]7

where n = £/o, €] = 0, ®(1,0) = detC(n) > 0, ®(n,0) = detC(n) > 0; here {27(6, )},
and {02(0,p)}3_; do not depend on w and are solutions of the following equations (with
respect to 0?):

®(£,1) = D(n,0)0° + @ (n)o* + @M (n)o* — 1 =0, (1.46)
O(£,1) = (n,0)0° + @ (n)o* + @M (n)o* — 1 =0, (1.47)

where ®)(n) and ®U)(n) are even, homogeneous functions of order 2j in n (see (1.41),
(1.42)).

We assume the following conditions to be fulfilled (cf. [15], [19]):

I°. VO(E,w) # 0 at real zeros of the polynomial ®(€,w);

I1°. Full curvature of the surface, defined by the real zeros of the polynomial (£, w),
does not vanish anywhere.

From the above conditions I° — I1 it follows that the real zeros of the polynomial
¢ (¢, w) form non-self-intersecting, closed, convex two—dimensional surfaces S]Q, 7 =1,2,3,
enveloping the origin of co—ordinates. For an arbitrary vector z € IR?\ {0} there exist
exactly two points on each Sj, namely & = ( 71.6).€)) and & = —¢7, at which the exterior
unit normal is parallel to the vector z. We provide that at &’ the normal vector n(&7) and
x have the same direction, while at &/ they are opposite directed. Note that, if & € S]Q and
€% € SY correspond to the same vector z, then (due to the convexity property of the above
surfaces)

(€ 2) # (6" 2) for k# ).

In the sequel the & € SJQ will be referred to as the point which corresponds to the
vector z (i.e., to the direction x/|z|).



Clearly,
0= ‘w| Qk(eu (P) > 07 k= 172737

represent the equations of the surfaces SY in the spherical co-ordinates.

The set of points in IR® defined by the system of equations (1.44) may have a
very complicated geometric form. Among these forms we single out and study the following
regular case: The system (1.44) is either inconsistent in IR? (i.e., it defines the empty set) or
it defines a two—dimensional manifold, i.e., equations (1.46) and (1.47) have m (1 < m < 3)
common roots and, if 1 < m < 3, the remaining two groups of roots form disjoint sets
for arbitrary values of # and ¢. We denote these common roots by v1(0,¢), -, vy, (0, @)
(1 <m < 3) and without loss of generality assume that

0<01(6,0) <0200,0) <03(0,0), 0<11(0,0) < <vp(d,p). (1.48)

Thus in this case the characteristic equation (1.43) (i.e., the system (1.44)) defines
analytic (characteristic) surfaces Sy, - -, S, whose equations in the spherical co-ordinates
read

0=lw| v(0,0) >0, k=1,---,m.

The exterior BVPs corresponding to the case m = 0 turned out to be very similar
to those of the pseudo-oscillation ones (see Remark 2.7) and therefore in what follows we
will mainly consider the case 1 < m < 3.

1.8. From the above arguments it follows that

W(E, 1) = B(n,0) [0° + 1?0; (0, )][0* + 1 03(0, 9)][0* + 12030, ¢)], (1.49)
(&, p) = D(n,0) [0° + 12070, 9)[0® + 12030, ) [0® + 1*55(0, )], (1.50)

for any £ € IR and p € @'.
Consequently, according to (1.37) we have
M(&, 1) = ®(n,0) M) [¢* + 1201 (0, )" + 1703(0, 9)][e” + 7050, )] +
+ico ©(n,0) [6° + 12310, ))[0° + 17 55(0, 9)][0* + 17 83(0, )] =

= qu(Qaev %u) Wm(@a&%@ﬂ)a (151)
where
(0,0, 05 11) = P (&, 1) = Pru( =&, 1) = @€, —p) =
= (=)™ [&* + 1Pvi(0,9)] - - - [0 + 1PV (0, 9)], (1.52)

Ui (0,0, 0511) = V(& 1) = Wn( =€, 1) =
= (=1)" {®(n,0) A(&) [¢" + ©*M(0, )] - [0" + 1A, (0, )] +
+pco D(1,0) [0° + 12AT(0, )] - - [0° + A3 (6, 0)]; (1.53)
here A2(6, ) and X?(@, ) denote different (non-common) roots of the equations (1.46) and

(1.47), respectively. Note that formulas (1.49), (1.50), (1.51), (1.52) and (1.53) are valid for
arbitrary £ € IR® and p € @'.
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The multiplier (—1)™ in (1.52) ensures the inequality
®,,,(0, —iw) > 0, (1.54)
which will be employed later on.

REMARK 1.2 Note that the polynomial ®,,(0, 6, p; —iw) in o vanishes on S;,
j=1---,m (i.e., when o = |w|v;(0,0)) while the other one ¥,,(po, 6, p; —iw) is different
from zero for any real o and w. Therefore there exists a positive number o such that

(W (0,0, ;)] >0

for |Imp| < gy and |Reu| < g, where o = o +10", p =0 —iw and |g| < 209 with arbitrary
w and gy fized.

Now from equations (1.51) and (1.52) it follows that, if |Reu| = |o| < e and
lov;(0,¢)| < €0, then the complex numbers £ (w +i0)v;(6, p) = £ipv;(8,), 5 =1,---,m
are the only zeros of the polynomial (1.51) with respect to o in the strip |Imp| = |0"| < &o.
As a consequence we have: M (&, 1) # 0 for £ € IR? and 0 < |o| = |Repu| < &.

2 FUNDAMENTAL MATRICES

In this section we will construct maximally decreasing fundamental matrices of the
steady state oscillation operator by limiting absorption principle (cf. [15]).

Denote by I'(z, 7) a fundamental matrix of the operator A(D,7): A(D,7)['(z,7) =
I46(z), 7= 0 —iw, 0 # 0, where §(x) is Dirac’s distribution.

Let 0 < |Rer| = |o| < g9 with g9 > 0 from Remark 1.2. Then due to representation
(1.51), Remark 1.2 and equation (1.31) we have

M(€7 T) 7& 0, 5 € 1RS7 A_l(_i€7 T) € LQ(ZR?))’
and we can represent I'(z, 7) by Fourier integral [16]
F(SL’, T) = fg_—lm[A_l(_lgv T)] (21)

By F,—¢ and ]—“{_{x we denote the generalized Fourier and inverse Fourier transforms
which for summable functions are defined as follows

fz—»&[f] = /f(x) eim§ dx, fg_—l»x[g] = (2m)™" / 9() e—im§ d¢.

Rn

Let h be a cutoff function with properties
h(€) = h(=¢€), he C¥(IR?), h(&) =1 for [¢] < e,
h(§) =0 for [€]> 20 (2.2)

with gg from (1.38).
Now we decompose (2.1) into two parts

P(x,7) = TW(z,7) + T®(x,7),
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I (2, 7) = F 2, [(1 = h(§) AT (=i€, 7)), (2.3)

MO, 7) = F2MOA (6, m)] = 2m) [ hOAT(-ig e e (24)
1€1<2e0
The main result of this section will follow from two lemmas which we now present.

Let T (z) be the homogeneous (of order —1) fundamental matrix of the operator
C(D) (see [14], [13]

2

PO(2) = FLL [0 (i) = (=smla)) ™! [ €' (an) i,

r € IR\ {0}, a = [|akj||sx3 is an orthogonal matrix with property a'z" = (0,0, |z|)7,
n = (cosg,sing,0)", and v(z) be the homogeneous (of order —1) fundamental function
of the operator A(D) (see [13])

YO (@) = FLIATH(i9)] = —[4m L[V (L7 e - )27,
L = |[Apgllaxa; |L| = detL.

LEMMA 2.1 The entries of the matriz TW(z,7) belong to C*(IR®\ {0}) and
for an arbitrary o € [—eg,e0] together with all derivatives decrease more rapidly than any
negative power of |z| as |x| — +o0.

The limit

lim DPTW (2, 0 —iw) = DPTW (2, —iw)

exists uniformly for |z| > § with an arbitrary § and in the neigbourhood of the origin
(|z] < 1/2) the following inequalities

IDET) (2,0 — iw) — DIT) (2, —iw)| < |o| cofs(2),

1 ki
IDETY) (2w, 7) — DIy ()] < cols (@),

hold, where ¢ = const > 0 does not depend on o,

[F(O) ($)]3x3 [0]3x1

I'(z) =
[0]1x3 7O ()

Y

4x4
w0 (@) =1, (@) = ~Infa], o (x) =[], 1>2,

for1 <k, j<3andk=7j=4;
o (2) = o8 (2) = —In|z|, ¥ (2) = oW (z) = |2|7™, m > 1,

for k=1,2,3; 3 is an arbitrary multi-indez.

12



Proof. Tt is quite similar to the proof of Lemma 3.1 of [15]. [

Now we will analyse properties of the matrix I'®(z, 7).
Going to the spherical co-ordinates in the integral (2.4) we get

Iz, 7) = (27r)—3/ d, {7)+ 70} h(E) A~ (—ig, T)e 1€ 02 dp, (2.5)

where Y, is the unit sphere in IR? centered at the origin.

Taking into account Remark 1.2 and the analyticity of the integrand with respect
to ¢ in the interval (0, g9) and introducing the complex g = ¢’ + i¢” plane we can rewrite
(2.5) by Cauchy theorem as follows

T (2, 7) = (27)" /dEl /A i, r)e 2 dot

200
+/h(§)A—1(—i§,T) ot 2d9} (2.6)
©o
where I = [0, |w|tn — ] U lfé U [|w|ry + 6, |w]re — 0] U lziﬁ Ut s U [[wlvm + 6, 00],
6 > 0 is a sufficiently small number, IJ;[I75] is a semicircle in the upper [lower] half-plane
centered at |w|v; and radius § oriented clockwise [counter—clockwise|; in (2.6) the contour
I5 [lg] corresponds to the case ow < 0 [ow > 0].

Now passing to the limit in (2.6) as 0 — 0+ we get

ow>0: lmT®(z,0—iw)=(21)" / d> /A (—i&, —iw) —lag 0 do+

g—

200

+/ H(—ig, —iw)e 1€ ZdQ} I (z, —iw),  (27)

ow<0: lImI®(z,0—iw)=(21)" / d> /A 1905 >do+

o—

200

+ / (i€, —iw)e 17t 2d9} (e, —iw), (2.8)

These limits exist uniformly for |z| < Ry with an arbitrary Ry.
Such type of integrals have been studied in [15]. Applying the arguments quite
similar to that of [15] we arrive to the formulas

FS_E)(% —iw) = (27T)_3 lim / h(ﬁ)A_l(—ig’ —iw)e_iwf d¢ +

§—0

| ®m|>8
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, (2.9)

N(—i, —1w) _1“”59
imZ/{@/@g@ (0.0, ;=) Wn(0,0, 01 =) | _ s
Q:UJVJ'

where ®,, and ¥, are defined by (1.52) and (1.53), respectively.
We need to go over to the integrals over S; in the last summand of (2.9). To this
end let us note that the exterior unit normal of S; is defined by equation

n(€) — V&‘P (5 )

since due to (1.52), (1.48) and(1.54)

(_I)J[a/aQq)m(ga _iw)]g:|w|uj > 0, ] = 1> ey TN (210)
Further

>§€Sja]_1

Q2|V(I)m (€> _iw)|

o=|wlv;
Therefore (2.9) implies
I (2, —iw) = V.P. / h(€) AN (—i€, —iw)e™ 176 e +

ix§

L —i§, —iw)e~
im;( /|v<1> (& i) [0 (&, =) %

: (2.11)

VP [ hOAT (i€ —iw)e g =l [ R(©AT (g, —iw)e " de.
L | D (€,—1w)[ >0
Existence and asymptotic behaviour of similar integrals are investigated in [5], [20].

Namely, in [20] there are analysed the following functions (n—dimensional version of the case
in question)

1x§
/|V<I> ds;, j=1,..m, (2.12)
—V.P. f M n> 2
> 2, (2.13)
Rn

where
i) diam(supp f) < o0; f, P, € C*(IR"),
ii) the equation ®,,(¢) =0, & € IR", defines (n — 1)—dimensional closed non-self-

intersecting surfaces S;, 7 = 1,...,m, with a full curvature different from zero everywhere;
Vb,(€) 0 for & € S

14



iii) for an arbitrary unit vector n the system

(I)m(g) =0,
Ve, (0)[VP(E) = +n,

(2.14)

has only a finite number of solutions with respect to &.
Clearly, in the case under consideration the above conditions for the functions
occured in (2.11) are fulfilled due to (2.2) and I° — IT°. Moreover,

(I)m(gv _iw> = (I)m(f, 1(“)) = (I)m(_gv 1(“))

and the corresponding system of type (2.14) defines 2m points £&7 € S; j = 1,...,m (the
so—called stationary points); we emphasize also that the unit exterior normal vector n(&7)
has the same direction as 7, while n(—¢7) is opposite directed.

We assume the function ®,,(£) from (2.12), (2.13) to possess the analogous sym-
metry property with respect to &.

Now let |z| be sufficiently large, n = x/|z| and let £&7 € S;, j = 1,...,m, be the
stationary points corresponding to n: n(&7) = n, n(—&7) = —n(&?) = —n. Then according to
the results [5], [20] we have the following asymptotic formulas for the functions I; and J:

Ii(z) = [ajeiwfj 4 &je‘iw] |x‘—(n—1)/2 + O(|x‘—(n+1)/2>’

J(x) = S byt + bie 5] 2| =02 4 O (||~ HD/2), (2.15)
j=1
where
() = (9 (n-n2_ L f&) ity
b= s = O e e
1 F(=€)  in—tyesm

s = a:(—&) = (27)(n=1)/2 e
R ey .

b; = ira;sgn(n - V®,,(&7)) = ir(—1)ay,
b; = imd;sgn(n - V& (—¢')) = —ir(~1)7a;, (2.16)
x(€) is the full curvature at the point £ € 5.

The asymptotic formulas (2.15) can be differentiated any times with respect to x.
It is easy to see that the symmetry properties of .S; imply

R(E) = K(=E), VO (=¢) = =Vu(S), (2.17)

forany (€S, j=1,...,m.
By virtue of (2.12), (2.13) and (2.15) we get

J(x) + Ajz’zjl im(—1)7 1 (x) =

= 5 im(= DI+ Ve — (1= Naze ] |20/ 4 O[] ~+D2)(2.18)
j=1

with a; and a@; defined by (2.16) and an arbitrary A.
Now we can prove the following
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LEMMA 2.2 Entries of matrices (2.11) belong to C®(IR®) and for sufficiently
large |z| the asymptotic formulas

m

'Y (2, —iw) Z D eloe 3= L O (|| 72) (2.19)

hold, where the point & corresponds to x (i.e., n(&7) = z/|x|) and

U) — ) N : 1 N(ig, —iw)
) =€, —iw) = (1) 27 [ (E)] V2 |V B (€7, —iw)| U (€7, —iw)
D = ng)(gjv —iw) = (—1) . N, i) ; (2.20)

27[K(§)]V2 |V, (&7, —iw) | W (&7, —iw)
(2.19) can be differentiated any times with respect to x.

Proof. The first part of the lemma is evident due to (2.2) and I° — I'1°. To prove
the asymptotic formulas (2.19) we first perform a change of variable £ by —¢ in (2.11) and
afterwards rewrite it as follows

' (z, —iw) = (27)*[J(z) + im (2.21)
j=1
where [;(z) and J(z) are given by (2.12) and (2.13), respectively, with n = 3,
hE)N (i€, —i
f(&) = (i) (élg_i;;u ), (2.22)

h(§) defined by (2.2), ®,,(¢, —iw) and ¥,, (&, —iw) defined by (1.52) and (1.53); here we have
used the fact that h, ®,, and ¥,, are even functions in &.
Now (2.19) follows from (2.21), (2.18), (2.17), (2.22) and (2.16). [

Thus we have proved that there exist one sided limits of the matrix (2.1) as
Rer=0—-0%.

Let us set
ow>0: lmI(z,0—iw) =T (@, —iw) + T (@, —iw) = [(z,w, 1), (2.23)
ow<0: lim F(a: 0 —iw) =TW(z, —iw) + F(_2)(x, —iw) =I'(z,w, 2), (2.24)

O'—)

where 'V, Ff) and T'® are given by (2.3), (2.7) and (2.8), respectively.
Uniting the two latter formulas we have

D, w,r) = F L [(1 = h(€)A™H(=i€, —iw)] +
+(2m) VP, / h(€) A~ (=i, —iw)e € dg 4

r+1 ir & —i€, —iw)e~ lag o
(- 2:: /|V<I> AT (2.25)

Now we will formulate the main result of this section.
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THEOREM 2.3 The matriz—functions I'(z,w,r), r = 1,2, defined by (2.25), are
fundamental matrices of the operator A(D, —iw) and satisfy the following conditions:
i) T'(z,w,r) € C*(IR*\ {0}) and in a neighbourhood of the origin (x| < 1/2)
|DPT (2, w,7) — DPTy(2)] < cgofgf)( ), c=const >0, k,j=1,...,4,
where I'y;(x), w‘(gf), c = const > 0 and (8 are the same as in Lemma 2.1;
ii) for sufficiently large |x|

[Nz —y,w,r) Z , —iw) e(_l)rﬂi(x_y)gj lz|™t + O(|z| ™), (2.26)

where ) are defined by (2.20), &7 € S; corresponds to the vector x and the variable y varies
in a bounded subset of IR®; the equation (2.26) can be differentiated any times with respect
to x and y.

Proof. 1t follows directly from Lemmas 2.1 and 2.2. [}
REMARK 2.4 Note that, if in (2.26) the vector (x —y) is replaced by —(x —y),
then the point & is to be changed by —&7, simultaneously, since to the vector —x there

corresponds the point —&7 € S; (—x/|z| = n(—¢&%)). As a result the exponential factor in
(2.26) will not be changed.

REMARK 2.5 The fundamental matriz of the adjoint operator A*(D, 1), clearly,
has the form

I(z,7) = F L {A (—ig, )} ' = FLL H{AT (7)Y =
= FHATEE Y = 2 [[AT (=g, 7)) el dg =

RS

=0T (—2,7), T=0—iw, 0 #0, (2.27)

where U'(x, 7) is given by (2.1).
Therefore there exist limits similar to (2.23) and (2.24)

M(z,w,r) = lin% (z,7) = lir% I'(—z,7)=TT(-z,w,r), r=1,2, (2.28)

where (—1)"tow > 0 is assumed.

The entries of matriz (2.27) and their derivatives decrease more rapidly then any
negative power of |z| as |x| — 400 if 0 < |o| < &g (see Remark 1.2 ).

Concerning to the asymptotic formulas for T*(xz,w,r), from (2.28) and Theorem
2.3, we get

(x,w,7r) Z &l —1)rieg’ 2|~ 4+ O(|z]|72),
where || is sufficiently large, & € S; corresponds to x, and
&) = [e (&7, —iw)]"
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with 9 defined by (2.20).

From Lemmas 2.1, 2.2 and Theorem 2.3 together with the equations (2.27) and
(2.28) it follows that the matrices I'(x, 1), I'(x,w,r), I*(x,7) and I''(z,w,r) have the same
matriz I'(x) as the principal singular part in a neighbourhood of the origin, since I'(x) is a
real, symmetric matriz with entries which are homogeneous (of order —1) and even functions
inx:

(z) =T(z) =T"(2) =(—x), T(tx) =t"'T(z), t > 0.

REMARK 2.6 FEquation (2.26) implies the following representation

™ (4)
F(x—y,w,r)zz [ (xr—y,w,r),

=1

<

where for sufficiently large |x|
() - T 1 i
I (@ —y,w,r) = 9 V@D 3171 O (2] ),
() . - (4) _
Dxp r (ZIZ' - y,w,r) + 1(_1)7’ 6;; r (ZIZ' - y,w,r) = O(|ZIZ’| 2)7
j=1L..m, p=1,23 r=1,2,

&9 € S; corresponds to x and y varies again in a bounded subset of IR®.

REMARK 2.7 If the system of equations (1.44) is inconsistent in IR? for some
w >0, then M (&, —iw) = detA(—i&, —iw) # 0 for arbitrary & € IR? and w € IR, and

[(x, —iw) = F L [AT(—1€, —iw)] € C*(IR*\ {0}) (2.29)

is a fundamental matriz of the operator A(D, —iw) whose entries together with all derivatives
decrease more rapidly than any negative power of |x| as |x| — +o0.

The main singular part of (2.29) in a neighbourhood of the origin is again the matriz
I'(z). Therefore this case is very similar to the pseudo-oscillation one [16].

3 RADIATION CONDITIONS AND INTEGRAL REPRESENTATIONS

3.1. Let us introduce the classes SK™ on an unbounded domain of type {2~ (which
is the complement to a compact set QF in IR3).

A function (vector, matrix) u belongs to the class SK(Q27), r = 1,2, if it is
C'—smooth in Q= and for sufficiently large |z| the following relations hold (no summation
over j in the last equation)

@) =Y W@, @ w=0g),
D, % (@) +i(-1e W (@) =0z ™), p=1,23, j=1,..m, (3.1)

where & € S; corresponds to the vector z.
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Clearly, this definition is essentially related to the operator A(D, —iw) and its char-
acteristic equation (1.43). The conditions (3.1) will be referred to as generalized Sommerfeld-
Kupradze type radiation conditions in anisotropic thermoelasticity (cf. [12]).

A four-dimensional vector U = (uy,...,u4)", satisfying conditions (3.1), will be
called (m, r)—thermo-radiating vector.

Remark 2.6 implies that I'(z,w,r) € SK™(IR?\ {0}).

In the isotropic case m = 1 and S; is defined by the equation ¢* = k? with
k¥ = w?u~! (pu is the Lamé constant and w is the oscillation parameter). Therefore the
point &' € ), which corresponds to the given direction (vector) z, is given by &' = kyn,
n = z/|z|, and conditions (3.1) are equivalent to the well-known thermoelastic radiation
conditions (see, e.g., [12], Ch. III).

3.2. Let U be a regular vector in QF, ie., U € C*(Q*) N CHOQF).

In addition let A(D, 1)U € L;(9*) and conditions (1.25) be satisfied (in the case of
the domain Q7). If we assume that either 0 < |Rer| = |o| < g9 or o > 0 and use the identity
(1.26), by standard arguments we obtain the following integral representation formulas

[ T =y, 7) AD,7)U(y) dy + /{ n(y), I (2 =y, ] U @) -
[@E=
N U(z), z¢€*,
Iz =y, D)B(Dy, n(y)U (y)] }dsy{ (3.2
0, r e QF,

where boundary operators B and @) are given by (1.23) and (1.28), respectively, and the
fundamental matrix I'(x, 7) is defined by (2.1) (see [3], [14]); n(y) is the outward unit normal
vector of S at the point y € S and S is a C?—smooth surface.

Due to Theorem 2.3 and equalities (2.23), (2.24) analogous representation formulas
can be written by means of the fundamental matrices I'(x,w,r) in the case of the domain
Q7F. One needs only to replace A(D, 1) and I'(z,7) by A(D, —iw) and T'(z,w, ), respectively.
Concerning the domain 2~ we will prove the following

THEOREM 3.1 Let 90~ = S be C*—smooth boundary and U be a reqular
(m, 7)—thermo-radiating vector in Q™ : U € C*(Q7)NCHQ)NSK™(Q7). Let, in addition,
A(D, —iw)U € L1(Q7) and have a compact support. Then

/F —y,w,r) A(D,, —iw)U(y) dy +

+ / {D(a = y,w.7)[B(D, n(y))U(y)]~ -
5
—[Q(Dy, n(y), —iw)T " (z =y, w,7)] [U(y)] "} dS,, v € Q7 (3.3)
here B, Q and n are the same as in (3.2).

Proof. Let R be a sufficiently large positive number and QF C By = {z € IR? :
|z] < R}. We assume also that supp A(D, —iw)U C Bg. Denote Q2 = Q~ N Bi and
0Bpr = Y. Then for the regular vector U in {25, we have the following integral representation
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(cf. (3.2))

/T —y,w,r) A(Dy, —iw)U(y) dy +

+ {/ /} Q(Dy, n(y), —iw)I' " (z — y,w,r)] " [U(y)] —

Lz =y, w,r)[B(Dy, n(y))U(y)]} dSy, = € O, (3-4)

where n(y) is the exterior normal on the both surfaces S and Xg; clearly, n(y) = y/R for
y € Y. Note that in the first integral (2 can be replaced by Q™.

Our goal is to show that the integral over ¥ tends to zero as R — +oc.

To this end denote the right-hand side expression in (3.3) by 7[U]. Then by
integrating of (3.4) from v to 2v with respect to R and deviding the result by v, we get

Ulz) = T[UJ(x) + X (v),

where

- %/ R /{[Q(Dy,n, —iw)l' T (2 — y,w,m)] " [U(y)] —

—T'(z —y,w,7)[B(Dy,n)U(y)|} dXr, n=n(y) =y/R.

Let us prove that X(v) — 0 as v — +o0.
It can be done by applying arguments similar to that of [19]. In fact, for definiteness,
let r = 1. Then due to (3.1)
UL (')
B(Dy,n Z (i) U (y) + O(R™?),

where &7 € S; corresponds to the vector 1.

According to Remarks 2.4, 2.6 and Theorem 2.3 analogous formulas hold also for
[Q(Dy,n, —iw)['M(x — y,w,1)]" and T'(z — y,w, 1) (note that z is some fixed point in Q).
Terms, corresponding to O(R™2) in the expression of X (v), decay as O(v~') and therefore
there remain only terms of the type

vl / af / () g,(R) hu(Fn) 2 4,

where 1» € C™(X1), n € ¥, gs and by (1 < s,t < m) are smooth functions satisfying the
following inequalities

0 ] _2
aRQs(Rﬁ) 1/~Ls(n>gs(R7])| <cR ,

|hi(Rn)| < ¢R™Y, |—ht( n) — i (n)hi(Rn)| < ¢ R72,

l9s(Rn)| < cR™",

¢ = const >0, p;(n) =(n-&)>0,
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due to (3.1).
The latter inequality is a consequence of (2.10), since

(1€ = () ) = (17 (L Eg ey 5]‘) -

|
e o
= V@, )] L’ﬂfl )]

Now we proceed as follows

£=¢

2v

1 vin) L
v (V) = ;V/ dRZ/lm[ws(ﬁ) gs(Rn) hy(Rn) +

+95(Rn) ipe(n) he(Rn)] R? dS; =

/ / {us +ut )%[Qs(Rmht(Rﬁ)HO(R‘?’)} R*dR =

—i —w(n) v)? v vn) — v2q.(v vn) —
= v/ us(n)+ut(n){(2 )79s(2vn) hy(2vn) gs(vn) he(vn)

= [ gu(Rn) hulRy) 2R AR} 451 + O(v™") = O(w ™).

Thus X (v) — 0 as v — +oo which completes the proof. [

REMARK 3.2 From the above proof it follows: if U satisfies the conditions of

Theorem 3.1 and R is a sufficiently large positive number such that supp A(D, —iw)U C Bkg,
then

JHQDy, n(y), )T (& = y,w,1)] [0 ()]~

(& —y,w,r)[B(Dy, n(y))U(y)]} dXr = 0

for an arbitrary x € Bp N Q™.

COROLLARY 3.3 Let U be the same as in Theorem 3.1. Then DPU is a
(m, r)—thermo-radiating vector for an arbitrary multi-index B and the asymptotic repre-

sentation of DPU at infinity can be obtained from the asymptotic formula of U by the direct
differentiation.

COROLLARY 3.4 Let A(D,—iw)U(z) = 0 in IR® and U € SK™(IR®). Then
U =0 in IR3.

COROLLARY 3.5 Let F = (Fy,....Fy)" € C'(IR®) and diamsupp F < +oo.
Then the equation

A(D, —iw)U(z) = F(z), =€ IR?
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has a unique solution in the class C*(IR*)NSK™(IR®) and it is representable by a convolution
type integral

U(x):/F(x—y,w,r)F(y)dy, z € IR

4 UNIQUENESS THEOREMS

4.1. First we will establish some auxiliary results concerning the coefficients of
asymptotic formulas (2.26) and ascertain the structure of the matrix functions (2.20).
We recall that

N(i§, —iw) = || Ni; (i€, —iw)[|axs (4.1)

is the adjoint matrix to

(W2 Iy — C(O]sxs  [—10k& 5%

A(ig, —iw) =
[—wTbBri€ilixs  —A(§) + iweo

(4.2)

where C(&) and A(§) are defined by (1.5) and (1.6), respectively, while Ny; (i€, —iw) denotes
the cofactor of the element A, (i€, —iw) of the matrix (4.2) (cf. (1.30), (1.31)).
Let us set

C¢,w) = I = C(¢), C¢w) =’ I — C(¢), (4.3)

where C(€) is given by (1.33). Denote by C*(¢,w) and C*(£,w) the corresponding adjoint
matrices.
Due to (1.41) and (1.42) we have

0(57 w) C*(gv w) = —(I)(f, w) ]37 é’(gv w) é*(gv w) = _&)(57 w) ]3- (44>

From the condition I° (see Subsection 1.7) it follows that rankC'(¢,w) = 2 and,
consequently, rankC*(£,w) = 1 for an arbitrary & € SP. Moreover (for the same & € SP)
there exists an orthogonal real matrix G(&,w) such that

A 00 1 00
GT (57 w) C*(é-v w)G(£7 w) = 0 00 = >‘1:Z-07 IO = 000 ) (45)
0 00 000

where the real value Ay = \(§,w) # 0 is an eigenvalue of the matrix C*(§,w) (two other
eigenvalues are equal to zero; for details see [15]).

Further let d(&,w) = —weo[A(€)]7! and
d(&,w)GT (6, w) O (€ w)G(E w) = [|bry (€, W) laxs- (4.6)
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LEMMA 4.1 Let{ € S;, j =1,...,m, where S; are characteristic surfaces defined
in Subsection 1.7. Then the matrix N has the following structure

[N(faw)]?,x?, [0]3x1
[0]1x3 0

Y

N (i€, —iw) =

4x4

where N'(§,w) = —A(&)[1 + ib11 (&, w) AT (&, w)]C* (&, w).

Proof. Let & € Sj be an arbitrary point (1 < j < m). Clearly, £ belongs to some
surface S, 1 <1 < 3, as well (see Subsection 1.7). Therefore

Ny (Fi€, —iw) = —®(&,w) = 0, (4.7)

due to (1.44).
By direct calculations we get

Nia(i€, —iw) = —iwTy Ny (i€, —iw), k =1,2,3, (4.8)

Npg (i€, —iw) = =A(€)Cp (&, w) + iweeCry(€,w), 1 < p,g < 3. (4.9)
The condition I° implies

VM(E, —iw) = A(§)VE(E, w) — iweg VO (€, w) # 0,

since A(§) # 0 on S;.
The latter relation together with the equations (1.29), (1.30), (1.32) and

det A(—i¢’, —iw) = det A(i¢, —iw) = M(—¢', —iw) = M(¢, —iw), ¢ € IR?,
yield
rankA (i, —iw) = 3, rankN(if, —iw) = 1, (4.10)

i.e., any two columns (rows) of the matrix (4.1) are linearly dependent.
Taking into account the symmetry property (4.8) and equation (4.7) it can be easily
proved that

Npa(i€, —iw) =0, Ny (i€, —iw) =0, k=1,2,3.

Thus we have obtained the following representation

(0)
Vit —iw) = || IV & @l Dl
[0]1><3 0 »
with
NO(& w) = || Nyg (i€, —iw)||3x3, (4.11)

where N, (i€, —iw) = Ny, (i€, —iw) are defined by (4.9).
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Now from (4.9) and (4.11) together with (4.5) and (4.6) it follows
NO(g,w) = =AEC™(E w) + iwerC™ (¢, w),

GT(€7 (U) N(O) (5) W)G(ga C&J) = _~A(€)>\1(€7 w)IO +
HwepG (€, w) C* (€ w)G (&, w) =

)\1(5, u)) + ibll iblg ib13

= —A(¢) ib12 ibya  1bog ||+ (4.12)
ibi3 ibgg b33
where b, are real functions defined by (4.6).
By virtue of (4.10) rankN© (¢, —iw) = 1, and, consequently,
rank (G (£, w) N (&, w)G (&, w)] = 1,

since G is an orthogonal matrix. This in turn implies that the matrix (4.12) has only one
linearly independent column (row). Inasmuch as \; # 0, we conclude: there exist complex
numbers o = a; + iy and 8 = (3 + if,, such that

b1 A1+ ibyy iblg A1 +ib1q
ib22 = ibl2 ) ibgg = ﬁ iblg . (413)
ibo3 ib3 ibss ibi3

Equating the corresponding elements and separating the real and imaginary parts
lead to the equations

(af +a3)h =0, (87 +B3)\ =0,
i.e., « = # = 0. But then from (4.13), (4.12) and (4.5) it follows

NO(E w) = =AM (&, W)G(Ew) TG (€, w) + b1 (§, w)G (&, w) TG (€, w)} =
= _A(g)[)\l(ga (.U) + ibll(éﬂa w)]G(Sa w)I()GT(f, w) =
= —A(E)[1 4+ IATHE, w)bn (&, W) CH (€, w),

which completes the proof. [

REMARK 4.2 Due to equation (2.20) and Lemma 4.1 we get (for arbitrary
€esS;, j=1,...,m,andr=1,2)

[C*(f, w)]3><3 [O]3><1

ng)(gv _iw> = dj (57 _iw>
[0]1><3 0

(4.14)

with
e iy — oy MO NG w)bu(€ w)]
48 =) = () PN (e, =) W& )]

24



LEMMA 4.3 Let U = (u,uy)" be a regular vector in Q= of the class SK™(27)
and let A(D, —iw)U have a compact support.
Then for sufficiently large |x|
Z 1 d; (7, —iw)e D 1 O (e w)b(el) + O] ), (4.15)
ug(z) = O(|z ), (4.16)

with the same d; as in Remark 4.2; here C*(§,w) is the adjoint matriz to C(§,w), b =
(b1, ba, b3) " (see (4.18)), and the point & € S; corresponds to the vector z/|x|.

Proof. Denote by Q the support of A(D,—iw)U. Then by Theorems 2.3, 3.1 and
Remark 2.6 we have (for sufficiently large |z|)

i{ / 2 el D, i) [A(D,, —iw)U(y) dy+

[ ol D €, i) (B(D, ) U )] S, —

= [l e (1) (). i) (€ —iw)]T}T[Uw)rdsy} +
S

O(|jz|™*) = i | ) (€, —iw)b(e?) + O(fe[ ), (4.17)

where
bE) = (&), () = [ eI LA(D,, i) U (y)] dy +
/( " B(D,,n(y)U(y)] dS, —
= [V QT((<1yiE n(y), —iw) U ()] dS,, (4.18)
S

&’ corresponds to the vector x/|x|.
Now (4.15) and (4.16) follow immediately from (4.17) and (4.14). Note that the
vector b(£7) is represented explicitly by (4.18). ]

REMARK 4.4 From (4.15) with the help of equation (4.5) we get the following
equivalent asymptotic formula for u

Zml DI (61, 0)GE, W) TG (€, w)a (€, w) + O(J2] ™), (4.19)
where
a9 (€7, w) = d; (&7, —iw)b(€), (4.20)
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d; and b are the same as in Lemma 4.3.
Note that due to (4.5)

TG a9 = ([GT aY]1,0,0)7. (4.21)

4.2. In this subsection we assume S = 92~ to be a connected C!—regular surface
and prove the following uniqueness theorem.

THEOREM 4.5 Let U be a regular solution to the homogeneous exterior Problem

(ﬁk)_ (k=1,...4) and U € SK™(Q2™) withr =1 forw >0 and r =2 for w < 0.
Then U =0 in Q™.

Proof. Let R, Br, X and (1 be the same as in the proof of Theorem 3.1. Since

U satisfies the homogeneous conditions of Problem (}U;k)_, from (1.27) (with QF = Qf and
1 = —iw) it follows that

[ Ackspg Dy Ditiy = 0 ful? = i(To) "Ny Dyt Dy + col(To) s} d =
O
i
= [{IBO.U)k ] = — ] [0uT0]} 4
Yr wio

where B(D,n) and 0, are defined by (1.23) and (1.18).
Owing the fact that cyjpq Dpuy Dyt and A Dyug D4 are non-negative real quan-
tities, from the latter equation (by separating the imaginary part) we get

I { JABO. U@ fn(z) - —us(e)] Byma(a)) dzR} -

+— /)\kj Dyug(x) Djuy(z) de =0, (4.22)

where 7 = x/|z| is the unit outward normal at the point z € 3.
Due to Lemma 4.3 it is easily seen that

Qx Q-
[ (@) ()] d8n = O(R™2), - [ Jus(e) wule)| dSa = O(R),

as R — 400 (k=1,2,3).
Taking into account (1.23) and applying the above relations to (4.22) we obtain

Im { /[T(Dx, n)u]k [Uk] dZR} + (UL% Q/ )\kj Diua Djﬂ4 dr = O(R_l), (423)

2R
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where T'(D,n) is the stress operator of elastostatics defined by (1.10).
By the same way as in the proof of Theorem 3.1 (by integrating with respect to R
from v to 2v and deviding the result by v) from (4.23) we arrive to

2v
1 1
Im{ [ 1.,y md dszR} + w—ToQ/ N Dyus Dyt dz = O(w™"),  (4.24)

where v is large enough.
Now by Lemma 4.3 the first summand in the left-hand side of (4.24) can be trans-

formed as follows
{ // (D)l [@e] dERdR}

vV ¥R
Im{l/ i[i(—l)’"“R_ldj(Sj,—iw)e( T (e, ) (€, w)b(E) ]k

X f:[R—ldl(gl, —iw)e“l)*ixflc* (€', w)b(EN)]x dERr dR + 0(;/-1)} =

) { TS (€~ T ) )€

Eljl 1

X[C*(gl,W)m]k (/ )r+11R[M ]dR) dzl} —l—O(I/_l), (4'25>

v

where 1i(n) = (n-&’) and & corresponds to the vector z/|z|.
It can be easily proved that 1;(n) # p(n) if j # [ (see Subsection 1.7). Therefore,
if 7 # [, clearly,

2v

/ilR[ug Ml JR = O(1),

v

and (4.25) implies

F(r)=R { T“Z/T? )C* (€7, w)al ~C*(§j,w)a(j)d21}+0(ul) (4.26)

1= 121

with a\) defined by (4.20).
In view of the symmetry property of C*(&,n) and equality T (&,n) = T(n,£) we
have from (4.26)

Py = CE S [ 0@ )@ ) + T, €)1 w)a - a0 azs +
Jj= 121

+O(v™h.  (4.27)
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Now passing to the limit in (4.24) as v — +oo and bearing in mind (4.25), (4.27) we get

r+1 m

Z/E (€, w)dS) =0 (4.28)

wTO / e Diis Dty e +

with

Ei(¢,w) = C*(&,w)[T(&,n) + T(n,&)]C* (¢, w)a" - o, (4.29)

where &7 € S; corresponds to 7, i.e., n(&) = 1.

In what follows we claim that the integral in the second term of (4.28) is a non—
negative function for all &7 € S;.

To this end let us note that

0 0
where n = n(§), 9/0n(&) = ng(§) Dy is a directional derivative, C'(§) and C'(§,w) are defined
by (1.5) and (4.3), respectively.
We recall that in Subsection 1.7 we introduced the two sets of surfaces {5;}72, and
{S 013 defined by equations (1.44) and by the first equation of the same system, respectively.
Therefore each S; coincides with some S 0 for some p = p(j). Let us fix this correspondence,
ie., S; = SO

Further we proceed as follows. It is obvious that

-|erte0) (g ctem) €| = - goslc €t et =

(g, w)] C*(&,w) (4.30)

for all £ =¢7 € S (see (4.4)).
With the help of (4.5), (4.30) and (4.29) we deduce
R 1 - <j>_(j>} _
EJ(& 7w) { [an(g)q)(g?(‘U) C (ng)a a i

={[ 0 <1><s,w>] A1<s,w>IoGT<f,w>a<f’>-GT<s,w>a<j>} _

an(&) £=¢
= 0 w W (€, w)a?]
{5350 niew) [[" | }52@. (4.31)
Now we show that the function
0O = |55 ®6 )| iew), e, (432

is strictly positive.
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Since A\;(&,w) is the only non—zero eigenvalue of the matrix C*(§,w) for

£esS;= SS, we have

{)\1(& w)}gesj = {Sp C*(€> w)}gesj = {Cikl(ga w) + C§2(§a w) + C§3(§a w)}gesj =

1

5 wz—Cn(f) —C12(€) _C13(€)

=35 70| “Ce© Wt Cm(e) —Cu(©) B

—013(5) —C53(8) w? — Cs3(8)
1

fESj

£esy

= ®(¢, O)w4{91(9p — 03)(0) — 063) + 05 (02 — 07) (0} — 03) +

el = i~ ) = 0 (g e |-
= (- )p+1‘{)\1(£ w)}eeso| (4:33)

where ¢ = £/|€|, ((,0) > 0; here we used the representation (1.45).
It is easily checked that the exterior unit normal vector on SI? is calculated by the

following equality

Therefore

{ana(g)q)(ﬁ,w)}gesj B {(_1)”1% ' V@(g,w)} b )

p+1 V(I)(g
;w)|

, £€8S.

= {yrve Wi, - (4.34)

which together with (4.33) implies
Y(€) = [VO(&,w)| |M(&,w)| >0 for {€5) =05 (4.35)
Hence by virtue of (4.31)—(4.35) we get

E(gh.w) = { Vo€ 0l InE ) 676w [} =0 (4.36)

§=¢

Now from (4.28) it follows that

Aij Drug(z) Djuy(z) =

if (=1)""w > 0.
A'pplymg (1.14), (4
and [GT (¢, w)a (¢, w)]y =

s Z’EQ_, Ej(fj,W):O, 565]',

5), (4.36) and (4.19)—(4.21) we conclude that uy(z) = 0in Q-
, Le.,

DPu(z) = O(|z]™?) as |z| — +o0 (4.37)
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for an arbitrary multi-index (.
Thus we have obtained that u is a solution to the steady state oscillation equations
of elasticity theory

C(D)u(z) +w?u(z) =0, z€Q,

satisfying a homogeneous boundary condition on S (either [u]~ = 0 or [Tu]” = 0; see
(1.15)—(1.22)) and the decay condition (4.37) at infinity.

Then due to the results of [10] (Lemma 3.4), [15] (Section 4) we have u(z) = 0 in
), which completes the proof. [}

5 PROPERTIES OF POTENTIALS AND BOUNDARY OPERATORS

5.1. Now we introduce the following generalized single- and double layer potentials
constructed by the fundamental solution (2.25)

/P —y,w,m)g(y)dS,, x € IR*\ S, (5.1)
W(g)(x) = /[Q(Dy,n(y% —iw)l'"(z —y,w,m)]"g(y) dS,, =€ IR*\S, (5.2)
s

where S = 0%, g = (91, ..,94)" = (3,94)", § = (91, 92,93)"; the operator @ is defined by
(1.28) with p = —iw.

To investigate the existence of solutions to the non—homogeneous BVPs posed in
Subsection 1.4 we need special mapping properties of the above potentials and boundary
integral (pseudodifferential) operators generated by them.

Let
/r —y,w,r)g(y)dS, z €S8, (5.3)
Kiglz) = / [B(D., n(2))T(z — y,w,r)] g(y) dS,, = € 5, (5.4)
K29(2) = / Dy n(y), )T (2 — y.w,)| T g(y) dS,. =€ 8. (5.5)
£Eg(z) = lim _ B(Dyn(z)W(g)(x), =€ 5. (5.6)

In the sequel the two positive numbers v and +' are chosen as follows 0 < v <+ < 1.

LEMMA 5.1 Let k > 0 be an integer and S € CF1+7".

Then for an arbitrary summable g the potentials V (g) and W (g) are C=(Q*)—
smooth solutions to the equation (1.8) in QF and belong to the class SK™(Q7).

The following formulas

V()" =V(9)(2)]” =Hy(2), g€CS), (5.7)

30



[B(D,n)V(g)(2)]F = (F27 Ls + K1)g(2), g € C(9), (5.8)
(W(9)(2)]F = (£27 i + Ka)g(2), g€ C(S), (5.9)

hold and the operators

H o CFI(S) = CHIH(9), (5.10)
Ky, Ky @ CM(S) — CF(S), (5.11)
Voo CHP(S) — CRTI(QF), (5.12)
W . CFY(S) — CFY(OF), (5.13)

are bounded.

Proof. The first part of the lemma follows immediately from the properties of the
fundamental matrix I'(x — y,w, r) and is trivial.

To prove the second part we proceed as follows.

From equations (1.23), (1.28) and Theorem 2.3 we have

Nz —y,wr)=0—y) + D@ —y w,r), (5.14)
B(D,n) = By(D,n) — B(n), (5.15)
Q(D,n, —iw) = By(D,n) — iwTyB(n), (5.16)

where | DTy (x,w, )| < cgpfg‘j)(x), k,j=1,...4,

[T(D,n)]3x3 [0]3x1
[0]1x3 On,

[0]3x3 [6kjnj]3><1

4x4 4x4

with the same I'(x), 3, ¢ and @fgf) as in Lemma 2.1.
Therefore we can separate the principal singular terms in the above potentials and
represent them in the form

V(g)(x) = Volg)(z) + V(g)(x), (5.17)
W(g)(x) = Wol9)(@) + W (g) (=), (5.18)
B(D,n)V(g)(x) = Bo(D,n)Vo(g)(x) + R(g)(x),

where

Vo(g)(@) = [ T(x =) g(y) dS,,
S
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/ Bo Dy> nly (1' - y)]TQ(y) dSy'
S

The kernels of the potentials f/(g), W (g) and R(g) have singularities of type O(|z — y|™)
as |z — y| — 0. Therefore V, W and R are continuous vectors in IR? provided g €C(S5).
It is easy to see that

Volg) = (0 9), v (9))". Wolg) = w®(3),w)” (92))"
By(D,n)Va(g) = (T(D,n)v (), 8,08 (9)) 7,

where v (§) and w(®)(§) are single- and double layer potentials of elastostatics (correspond-
ing to the operator C(D)) constructed by the fundamental matrix ' (z):

() = [T~ y)3(y) ds,,
S

WO G)() = [IT(Dy, )Py — )] 5ly) dS,. (5.19)

while v4 ( g4) and w4 ( g4) are potentials of the same type (corresponding to the homogeneous
operator A(D)) constructed by the fundamental function v (z):

= [19 ~ y) gu(w) d,,
S

7) = [ 0y y — ) ay) dS,, (5.20)

(see Lemma 2.1).

The properties of the latter potentials and boundary integral operators on S, gener-
ated by them, are studied in detail for regular function spaces in [2], [13], [14], [16], [17]. The
results mentioned together with the representation formulas (5.17), (5.18), yield equations
(5.7)—(5.9) and mapping properties (5.10)—(5.13). [

For a pseudodifferential operator (¥DO) P on S we denote by (P)o and
O(P)(x,€) (x € S, € € IR?) the principal singular part and the principal homogeneous
symbol, respectively.

LEMMA 5.2 Operators H, +£27'1, + K, and £27'1, + Ky are elliptic YDOs of

order —1, 0 and 0, respectively, with index equal to zero.

Proof. From equations (5.14), (5.15), (5.16) together with (5.3), (5.4), (5.5) it
follows that

[HOT3.5  [0]3x1

(H)o = s Hflo)

: (5.21)

4x4
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(2715 + KOl5,3 031
+2717 = 22
( 4 + ICl)O [O] i2—1[ + IC(O) 9 (5 )
1x3 1 1 ]
(12711, + K)o = [+27 I3+ K @)sss [0]351 (5.23)
4 2)o = . ; :
013 27+ K ||,

where

() = [T =) ds,, 1 () = [106: =y o) dS,
S

K gu(z / Ono " (= = y) ga(y) dS,.
0 94 / n(y - Z) g4(y) dS?J
S

Due to the general theory of WDOs (see, e.g., [4]) we have to show that the principal
symbol matrices of the operators (5.21), (5.22) and (5.23) are non-singular and that the
indices of these operators are equal to Zero.

It is ev1dent that KO [IC ] and C © [IC 40)] are mutually adjoint singular integral
operators while H©) [H4 ] is a formally self-adjoint integral operator with a weakly singular
kernel.

For the principal symbols we have (see [14], [17])

+00
OH") =~ / O~ L(a€) des = _/ O~ (a€) dts, (5.24)
O (£27 1y + KO / T(a&,n)C~Y(ag) dés = [O(£2- s+ K O], (5.25)
“+oo
o(HY) = / A~V (ag) dés = / A~Y(ag) dés, (5.26)
o(+271, + K / Mag,n)A " (af) d&s = o (2 I+ & ), (5.27)
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where £ = (£,&), € = (€1,&) € IR?, A(€,n) is defined by (1.18), a(z) is an orthogonal

matrix

I = (l1,l2,13)", m = (my,ma,m3)" and n = (ny,n9,n3)" is a triple of orthogonal vectors at
z € S (I and m lie in the tangent plane at € S and n is the exterior unit normal), I~ (I)
is a closed clockwise (counter—clockwise) oriented contour in the lower (upper) complex
half-plane & = & + i€l enclosing all roots of the equations

det C'(a&) =0, A(a&) =0,

with respect to & with negative (positive) imaginary parts.

The entries of the matrices (5.25) [(5.24)] and functions (5.27) [(5.26)] are homoge-
neous of order 0 [~1] in é € IR?. Moreover all the above principal symbols are non-singular
for |£| = 1, the corresponding integral operators are elliptic WDOs of order 0 and —1, re-
spectively, and their indices are equal to zero (for details see [3], [10], [14], [17]).

Now (5.21), (5.22) and (5.23) imply

[0 (H)]3x5  [0]351

O(H) =
[0]1x3 o(H)

4x4

[O-(:l:2_1[3 + IC(O))]3><3 [O]3><1
[0]1><3 O-(:l:2_1[1 -+ ]Cz(lo)) i
= [0(i2_1f4 + ICQ)]T,

which together with equations (5.21), (5.22), (5.23) and the above mentioned results com-
pletes the proof. [

O(F27' L+ K)) =

REMARK 5.3 More subtle analyse of the fundamental solution I'(z,w,r) shows
that in a vicinity of the origin the following representation

D(z,w,7) =T(z) +il'(z) — wTH[['(z)] " + T (z,w, ), (5.28)

O0]3x3  [Tha(2)]ax1
[0]1><3 O

I'(z) =

Y

4x4

holds, where I'(x) is the same as in Lemma 2.1 and I, (z) is independent of w; first order
derivatives of Il ,(x) are homogeneous functions of order —1 and

T k
ID°Tha(@)] < el ()

with the same <p‘(§|4) (x) as in Lemma 2.1, the second order derivatives of entries of the matriz

I"(z,w,r) have singularities of the type O(|z|™).
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REMARK 5.4 Note that the operator —H®) [—HEP)] 1s a positive operator which
implies that the corresponding principal symbol is a positive definite matriz [is a positive
function] (see [14]).

5.2. Now we turn our attention to the equation (5.6). To prove the existence of
limits (5.6) and to study properties of the operators £* we need some auxiliary results which
are now presented.

LEMMA 5.5 Let U = (u,uy)' be a regular solution of the homogeneous inte-

rior Problem (Py)*. Then us(x) = 0 in Q% and u is a solution to the following interior
homogeneous BVP of steady state oscillations of the elasticity theory

C(D)u(z) +w?u(z) =0 in QF, (5.29)
[u(z)]F =0 on S. (5.30)

Proof. The equation uy(z) = 0 in QF follows from the identity (1.27) if we look
at the imaginary part. Then we obtain the BVP (5.29)—(5.30) for the vector u due to the
conditions (1.8), (1.15) and (1.16) (where fr, =0, k =1, ..., 4, are provided). ]

By Z[(ﬁl)ﬂ we denote the spectral set corresponding to Problem (ﬁl)Jr (i.e., the set

of values of parameter w for which the homogeneous Problem (ng)Jr possesses a non-trivial
solution). Now Lemma 5.5 implies (see [14])

COROLLARY 5.6 The set E[(ng)ﬂ is either finite or countable (with the only
possible accumulation point at infinity).

LEMMA 5.7 Let S € C** and g € C**(S). Then limits (5.6) exist and
LTg(z) =L g(z)=Lg(z), z€S. (5.31)
Moreover the operator
L CHIF(8) = CH(8), S e ChET (5.32)

is a bounded singular integro—differential operator with non—singular (positive definite) prin-
cipal symbol matriz and index equal to zero.

Proof. First we prove the existence of limits (5.6). With the help of equations
(5.15), (5.16) and (5.28) we deduce

B(D:w n(l’z)[Q(Dw n(y)> —1w)Ft(x —Y,w, r)]T = {%3($7 Yy, r — y) +
+[Ky(z,y,x —y) + wTo Ky (z,y, 2 — y)] + Ki(2,y, 2 — y;w), (5.33)

where

Ks(x,y,x —y) = Bo(Dy,n(x))[Bo(Dy,n(y))L(y — z)] " =
[T(Dq, n(2))[T(Dy, n(y))L(y — 2)]|3x3  [0]sx1
[O]1><3 an(ac)an(y)')/(o) (y - ZL’)

4x4
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is a hypersingular kernel with entries of type O(|z —y|™®) as |z — y| — 0,
Ki(w,y,x = y) = iBo(Da, n(2)) {Bo(Dy, n(y)) [ (z — )] "} =
—B(n(x))[Bo(Dy, n(y)T(z — y)]
and
K3 (x,y,2 = y) = = Bo(Da, n(2)[Bo(Dy, n(y))"(z — )] " —
~i[By(Dy, n(x))L(z — y)]B " (n(y))
are singular kernels on S with entries of type O(|z — y|™?) as |z — y| — 0, and entries of
the matrix K;(x,y,z — y;w) have singularities of type O(|x — y|™!); here either x € QO or
xe Q.
In turn (5.33) implies
B(Dy, n(2))W (9)(x) = (T(Da, n())w® (§)(x), neywi” (92) ()" +

+/ Ly, x — y) + TR (2, — y)] gly) dS, +
+/KKL%x—ymﬁﬂwd%, (5.34)

where w(®(§) and w!’ (g4) are defined by (5.19) and (5.20), respectively. In [3], [14], [17] it
is proved that the limits

ool T(Dy,n(x))w®(9)(x) = L75(2), (5.35)
Qialirilzesa"(x)w‘(lm(g‘l)( 7) = L3 0:(2), (5.36)

exist for any g, €C'*7(S), k = 1,...,4, and the operators £ and Eflo) are non-negative,
formally self-adjoint singular integro—differential operators with positive definite principal
symbols

a(LO) / T(a&,n)C~ (a&)T " (at,n) dés, (5.37)

o (L") / N2(ag, n) A"V (af) dés. (5.38)

Here the contours (T are the same as in formulas (5.24)—(5.27).

The operators £© and [,flo) are elliptic WDOs of order 1 with index equal to zero
and they possess mapping property (5.32) (for details see [3]).

Further, Remark 5.3 yields that there exist limits on S from QF of the second term
in the right-hand side expression of (5.34)

im (IR @y 2~ y) + @R (2,0~ y)] 9(y) dS, =
OTSx—2€8

= [oi(2) + wThall(2)]g(2) + K 9(2) + wTo K5 9(2),
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where K, and K are singular integral operators with singular kernels K} and K, respec-
tively; o/, and o/, are some smooth matrices independent of w.

The existence of the limits on S (from QF) of the third term in the right-hand
side of (5.34) is evident. It is also obvious that these limits are the same and the boundary
operator K; generated by this term is a weakly singular integral operator (DO of order
s < —1).

Thus the existence of the operators £* is proved in the space C'™(S) and we have

[5(0) g(z>]3><3 [O]3x1 n
[0]1x3 Cé(lo) 94(2) s
Hal(2) + wly oL (2)]g(2) + Kb g(2) + wTy K g(2) + K1 g(2). (5.39)

L g(z) =

We also see that operators (5.39) possess the mapping property (5.32).
It remains to show LT = L™,
The integral representation formulas (3.2) and (3.3) of a regular vector U we rewrite
as follows
U(z) = H{W([U]F)(z) = V([BUFF)(2)}, =€ Q¥ (5.40)

provided A(D, —iw)U(z) = 0 in QF and U € SK™(27); here W and V are double- and
single layer potentials (see (5.1) and (5.2)).
Due to Lemma 5.1 from (5.40) we have
(=27 + K)[UT = H[BU]T, (27'I4+ Ky)[U]” = H[BU]™,

where the operators H and ICy are defined by (5.3) and (5.5), respectively.
If in the latter equations we substitute U(x) = W (g)(x) with an arbitrary

g €C17(S), apply the same Lemma 5.1 and the above results concerning the limits (5.6),
we arrive to the following relations

(—2_114 + ICQ)(2_1[4 + ICQ) g = H£+ qg,

(2_114 -+ Kg)(—2_1[4 + ICQ) g = HE_ g.
Whence

H(LYg— L g)=0. (5.41)
By (5.39) we have L g — L~ g = h € C?(S) and therefore V (k) is a regular vector in Q.

Now, from one side, (5.41) yields that V' (h) is a regular solution of the homogeneous

Problem (]‘51)_ and we conclude V' (h)(z) =0, x € Q~, due to Theorem 4.5.
On the other side, the same equation (5.41) implies that V (k) is a regular solution of

the homogeneous Problem (ng)Jr as well and by Corollary 5.6 we get V(h)(x) =0, z€QF,
provided w & X[(P)*].
The above equations imply h = [BV'(h)]” — [BV(h)]T =0

Thus we have proved that £+ g = L™ g for all g € C'*7(9), if w § E[(ng)ﬂ, which
according to (5.39) leads to the equation

[0, (2) — & (2)]g(2) + wTp[e/f (2) — o’ (2)]g(z) = 0.

37



Consequently, o/, (2) = o/ (2), «/[(2) = a”(z), and (5.31) holds for an arbitrary
value of the parameter w.

It is also evident that the principal singular part (£)o of the operator £ and the
corresponding principal symbol matrix read

(E)O _ [ﬁ(o)]gxi’» [O]Z,xl 7 (542>
01 £ 4x4
(L) = [O(LO)]5,5 [0]32) (5.43)
[0)1xs L) ],
(see (5.35), (5.36), (5.37), (5.38)) from which positive definiteness of the matrix (5.43) and
formally self-adjointness of the operator (5.42) follow immediately. [}

6 EXISTENCE THEOREMS

6.1. First we present two lemmas which will essentially be used in the proof of
existence theorems.

LEMMA 6.1 Let g € C'*(S), S e C* and
Uz) =W(g)(x) +poV(g)(x), =€ R*\S, §=00%, (6.1)
po=p1+ip2, p1 >0, pasgnw <0, (6.2)

where V and W are single- and double layer potentials defined by (5.1) and (5.2), respectively,
while w is the oscillation (frequency) parameter.
If the vector U vanishes in 2™, then the density g =0 on S.

Proof. Due to Lemmas 5.1 and 5.7, we clearly have

g=1[UI"=[U]"=[U]", —pog=[BU]" —[BU]” = [BU]", (6.3)
whence

[BU]" = —po [U]* on S (6.4)
follows.

Since U is a regular vector in QF we can apply the identity (1.27). Taking into
account (6.4) and separating the imaginary part, we arrive to the equation
1

7 />\kg DkU4 Djﬂ4 dx — D2 /|[U]+\2d5+ & ‘[U4]+‘2d5 =0.
wTO Q+ S w

Th s
In view of (1.14), (1.23), (6.2) and (6.4) from the latter equality it follows that

[U]*™ =0 and by (6.3) we get g = 0. N
In the sequel we fix the complex number p, as follows
po=1—1lw. (6.5)

The next lemma is well-known from the theory of harmonic functions (see, e.g.,

[4])-
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LEMMA 6.2 The scalar operator

1 /
RA(z) = 5 /|z —y[ "V h(y)dS,, z€8, SeC, (6.6)
S

generated by the harmonic single layer potential, is a formally self-adjoint, equivalent lifting
WDO of order —1 (Rh = 0 implies h = 0) with the principal symbol equal to 1 on the unit
circle (i.e., O(R)(z,&) =1, x € S, || =1).

REMARK 6.3 The latter lemma yields that LR and RL are singular integral
operators of normal type with index equal to zero.

6.2. Problem (ng)_. We look for a solution of the problem in the form (6.1) with
po defined by (6.5). By virtue of the boundary conditions (1.15), (1.16) and Lemma 5.1, we
get the following WDE on S for the unknown density vector g

NMg=(2"L+Ky+poH)g = f (6.7)

with f = (f1, ..., fa) .

LEMMA 6.4 Let k > 0 be an integer and S € CF2+7".
Then the YW DO

Ni=-2"" 4+ Ko+ poH : CF(S) = CH(S), 0<I<k+]1, (6.8)

s an isomorphism.
The inverse operator to (6.8) is a singular integral operator of normal type with
index equal to zero.

Proof. First let us note that the operator NV is a singular integral operator of normal
type with index equal to zero and possesses the mapping property (6.8) due to Lemmas 5.1
and 5.2. Therefore it remains to prove that

Nig=0 (6.9)

has only the trivial solution in C7(S).

Let g be some solution of (6.9) and construct the vector U by formula (6.1). Ap-
plying the emmbeding theorems for solutions to a singular integral equation (SIE) of normal
type on closed smooth manifold we infer that g € CF™%7(S) (see, e.g., [12], Ch. 4). This im-
plies that U is a regular vector in Q. Now the equation (6.9) yields that [U]~ = 0 on S, and,
consequently, U(z) = 0 in 2~ follows immediately by Theorem 4.5, since U € SK™(Q7).
But then g = 0 by Lemma 6.1. Therefore (6.8) is a one-to—one correspondence and due to
the general theory of SIE the inverse operator possesses all properties stated in the above
lemma. |

The material collected until now is enough to prove the existence theorem.

THEOREM 6.5 Let S € C*2 k>0 and f; € CHH(S) (5 =1,...,4).
Then Problem (ng)_ has a unique reqular solution of the class C*™+7(Q=) N
NSK™(Q7) and it is representable in the form (6.1) with the density g defined by the uniquely

solvable SIE (6.7).
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Proof. Tt follows from Lemmas 5.1, 6.4 and Theorem 4.5. ]

REMARK 6.6 We note that the special representation (6.1) reduces the BVP

(P1)~ to the equivalent boundary integral equation (6.7) for an arbitrary value of the frequency
parameter w. If one seeks the solution in the form of either single or double layer potentials
then such equivalency will be violated in general (for details see [15], Remark 5.7).

6.3. Problem (1%)_. We look for a solution again in the form (6.1). Then the
boundary conditions (1.17) and (1.18) lead to the following system of WDEs on S for the
unknown density g = (§,g4)"

Naog = {BP(D,n)[W(9) +poV(9)]}~ = f,
ie.,
{(—27'"Ii+ Ko+ poH] g}q = for  a=1,2,3, (6.10)
{[L+po 2" L+ K1)]g}a = fu. (6.11)
Therefore the operator N is represented as
{=27"14 + Ky + poH}gilsxa
HL +po (27 L + K1) Farlixa

q=1,2,3, l=1,..,4,

Ny = = (Ma)o +/\~/27

4x4

where (N3)p is the main singular part of A;. Due to (5.23), (5.42) and Lemma 5.1 we have

[—271 I3+ /*C O3x3  [0]3x1

(6.12)
[0]1x3 5510)

(N2)o =

4x4

The entries of the first three rows of the matrix N, are weakly singular integral operators

(WDOs of order s < —1) while the fourth row contains singular integral operators (VDOs of

order s < 0). It is easy to see that (6.12) is a WDO elliptic in the sense of Douglis-Nirenberg.
Now it is also evident that the operator

[I5]3x3  [Olsx1
[0]1><3 R

Ry =

4x4

with R defined by (6.6), is an equivalent lifting operator, which reduces the system (6.10)-
(6.11) to the equivalent system of singular integral equations

RoNs g = (f1, fa, [3, 7zf4)T-

For the principal symbol matrix (homogeneous of order 0) we have

O-(RQNQ) ==

(O(=27 5+ K Dsus [0
[0]1x3 o(RLY)

4x4

which is non—singular due to Lemmas 5.2, 5.7 and 6.2.
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LEMMA 6.7 Let S € CF2 k> 0.
Then the VDO

Ny o [CHIFY(9)]* — [CHFFY(9)]P x C(S), 0 <1<k, (6.13)
s an isomorphism.

Proof. The mapping property (6.13) of the operator N5 is an easy consequence of
Lemmas 5.1 and 5.7. Clearly, the invertibility of the operator (6.13) is equivalent to the
invertibility of the operator

RoNy : CHIH(S) — CHIF1(S), 0 <1<k, (6.14)

according to Lemma 6.2.

Now from Lemmas 5.2, 5.7 and 6.2 it follows that RN, is a singular integral
operator of normal type with index equal to zero. By the arguments applied in the proof of
Lemma 6.4 we can show that the homogeneous equation Nog =0, g € C7(S), has only the
trivial solution ¢ = 0. Further by Lemma 6.2, we conclude that the same is also valid for
the equation RoNog = 0, which completes the proof. [

THEOREM 6.8 Let S € C*2 |k > 0, and f, € C*1(9), ¢ = 1,2,3,
fi € CFHY(S).

Then Problem (Py)~ has a unique regular solution of the class C*77(Q~) N
NSK™(Q™) and it is representable in the form (6.1) with the density g defined by the uniquely
solvable WDFEs (6.10), (6.11).

Proof. Tt is a ready consequence of Lemmas 5.1, 6.7 and Theorem 4.5. [

6.4. Problem (ﬁg)_. We use the same representation (6.1) of a solution. Then the
boundary conditions (1.19) and (1.20) imply the following system of WDEs for the unknown
density g on S:

Ny g = {BY(D,n)[W(9) +poV(9)]}™ = f,
{IL+po2 i+ Ki)lghg = fo, =123, (6.15)

{27 s + Ko + poHlg}a = fa- (6.16)

Clearly, N3 is representable in the form

L4 po(27 ', + K « .
/\/3 _ [{ Po( 4 1)}qz]3 4 _ (/\/},)o—l—/\/},,

[{=27114 + Ka) + poH }ar)1xa

4x4

q=1,2,3, l=1,..,4,
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where

(L5305 [0]351

(N3)o = .
[0]1x3 27+ K io)

4x4

is the main singular part of N3 due to (5.23) and (5.42); as to the operator Nj it contains
WDOs of order s < 0 in the first three rows and WYDOs of order s < —1 in the fourth row.
Obviously Nj is again an elliptic DO in the sense of Douglis—Nirenberg.

The following diagonal operator

[I5R]3x3  [0]3x1
[0]1 3 I

4x4

with R defined by (6.6), is an equivalent lifting operator, which reduces the system (6.15)-
(6.16) to the equivalent system of singular integral equations

RsNs g = (Rf1, Rfa, Rfs, f1) .

The principal symbol matrix (homogeneous of order 0) of the operator R3N3 reads

O (RsN3) = [O(RLsxs [0l |

[0]1x3 o2+ k) i

and is non-singular according to the results of Section 5.
Now by the same way as in the previous subsection we can prove the following
assertions.

LEMMA 6.9 Let S € CF2 k>0,
Then the W DO

./\/:g . [Cl+1+fy(5)]4 N [CH’Y(S)]‘% % Cl—l—l—l—’y(g)7 0<1< ]{:,
18 an isomorphism.

THEOREM 6.10 Let S € C2+7 k>0, and f, € C*(S), ¢ =1,2,3,
f4 c Ck+l+’Y(S>'

Then Problem (lgg)_ has a unique reqular solution of the class CF7(Q=) N
NSK™(2™) and it is representable in the form (6.1) with the density g defined by the uniquely
solvable WDEs (6.15), (6.16).

6.5. Problem (é)_. The representation (6.1) of a solution and the boundary
conditions (1.21), (1.22) reduce the BVP under consideration to the system of YDEs on S

Nig=[L+po(27 Ly +Ky)lg = f. (6.17)

For the principal singular part we have the following elliptic ¥DO (of order 1) (Ny)o = (£)o,
where (L)g is given by (5.42). It is easy to check that the diagonal operator Ry = I4/R with
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R defined by (6.6), is a lifting operator, which reduces equivalently the equations (6.17) to
the following system of singular integral equations of normal type with index equal to zero:

RuNig=TRuf.

The proofs of the next lemma and theorem are quite similar to that proofs of
Lemma 6.4 and Theorem 6.5. Therefore we confine ourselves by formulation of the final
results.

LEMMA 6.11 Let S € CF2 k> 0.
Then the Y DO

N = CHFH(S) = ¢ (S), 0< 1<k,
18 an isomorphism.

THEOREM 6.12 Let S € C*2% k>0, and f; € C*H(S), j=1,...,4.

Then Problem (1054)_ has a unique reqular solution of the class CFT'7(Q=) N
NSK(Q27) and it is representable in the form (6.1) with the density g defined by the uniquely
solvable VDE (6.17).
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