(19-7-74) (19-7-74)

UNIVERSITY OF ADELAIDE

PHYSICS DEPARTMENT

THESIS FOR THE DEGREE OF MASTER OF SCIENCE

INFRARED ABSORPTION IN THIN METALLIC FILMS

K.C. Liddiard, B.Sc. (Hons) Research Scientist Australian Defence Scientific Service

WEAPONS RESEARCH ESTABLISHMENT, SALISBURY, SOUTH AUSTRALIA

1.	TNTR	ODUCTIO	TABLE OF CONTENTS	Page 1	
2.			PERTIES OF THIN METALLIC FILMS	5	
2,	2.1		l theory of a thin film infrared absorber	5 -	
		2.1.1		6 -	
		2.1.2	Absorbed radiant energy	7	
			Absorber geometry	7 -	
			The one-dimensional heat equation	8 -	
	2.2		l capacitance	10	
	2.2	2.2.1		10 -	
		2.2.2		10 -	
	2.3		ature rise due to absorbed radiation	12	
	2.5	2.3.1		12 -	
		2.3.2	Average temperature rise	12 -	
			Time dependent temperature rise	13	
	2.4		1 rise time	14 -	
	2.4			14 -	
			1 spread		
	2.6		on in plane polar coordinates	17 -	
		2.6.1	Maximum temperature rise	18 -	
			Temperature rise near the boundary	19 -	
	2.7		1 analysis of a typical thin film infrared absorber		
		2.7.1	Considerations in the selection of a suitable absorber element	20 -	22
		2.7.2	Incident infrared radiation	22 -	24
		2.7.3	Temperature rise for a small rectangular absorber element	24 -	27
		2.7.4	Temperature rise for a large absorber element	27 -	28
		2.7.5	Absorbers of circular area	28 -	29
3.	OPTI	CAL AND	ELECTRICAL PROPERTIES OF THIN METALLIC FILMS	29	
	3.1	Introd	uctory note on radiometry	29 -	30
	3.2		omagnetic theory of the optical properties of ing media	31 -	32

		3.2.1	Absorption in metals		ge No. - 34
	3.3	Therma	1 radiation sources		34
	3.4	Infrare	ed absorption in thin metallic films	35	- 36
		3.4.1	Dependence of absorption on angle of incidence		37
		3.4.2	Influence of the plastic substrate film	37	- 39
		3.4.3	Double metal film		39
	3.5	Electr	ical conduction in thin metallic films	39	- 40
		3.5.1	Theory of conduction in continuous metal films	40	- 43
4.		EATION A	AND GROWTH PROCESSES AND THE STRUCTURE OF THIN LMS		43
	4.1	Introdu	uctory concepts		43
		4.1.1	Adsorption of vapour atoms	43	- 45
		4.1.2	Initial nucleation	45	- 48
	4.2	Observe	ed nucleation and growth phenomena		48
		4.2.1	Adatom surface mobility and film agglomeration	48	- 49
		4.2.2	The growth sequence	49	- 50
		4.2.3	Film structure	50	- 51
		4.2.4	Substrate transition temperatures	51	- 53
	4.3	Electr	ical conduction		53
		4.3.1	Final film resistance	53	- 54
		4.3.2	Aging effects	54	- 56
		4.3.3	Electrostatic charge effects	56	- 57
	4.4	Select: absorb	ion of suitable metals for thin film infrared ers	57	- 59
		4.4.1	Gold films		59
		4.4.2	Platinum films	59	- 60
		4.4.3	Nickel films		60
		4.4.4	Alloy films	60	- 61
5.	PREP.	ARATION	OF METALLIC FILMS		61
	5.1	Vacuum	coating unit	61	- 62

			Day	ge No.
	5.1.1	Ancillary coating unit	1 aj	62
5.2	Deposi	tion control techniques	62	- 63
	5.2.1	Film resistance	63	- 64
	5.2.2	Deposition rate and film thickness	64	- 65
	5.2.3	Chamber pressure	65	- 66
	5.2.4	Deposition time		66
5.3	Substr	ates	66	- 67
	5.3.1	Resistance measurement	67	- 68
	5.3.2	Thickness monitor sensing head		68
	5.3.3	Thickness measurement		68
	5.3.4	Infrared measurements	68	- 69
	5.3.5	Electron microscopy		69
	5.3.6	Measurement of thermal properties		69
	5.3.7	Measurement of film resistance on plastic substrates		70
5.4	Prepar	ation of polymer film substrates	70	- 71
	5.4.1	Cellulose nitrate		71
	5.4.2	Polyvinyl formal		71
	5.4.3	Polyvinyl chloride	71	- 72
	5.4.4	Chlorinated PVC		72
	5.4.5	Polyvinylidene chloride - acrylonitrile copolymer		72
	5.4.6	Preparation of self-supporting films	72	- 73
	5.4.7	Selected polymer films	73	- 75
5.5	Cleani	ng and handling of substrates	75	- 76
5.6	Deposi	tion of gold films		76
5.7	Deposi	tion of chromium films	76	- 77
5.8	Deposi	tion of nichrome films		77
5.9	Deposi	tion of nickel films		77
	5.9.1	Filament vapour source deposition		78

			Page No.
		5.9.2 Electron beam deposition	78 - 81
6.	OPTIC	CAL MEASUREMENT TECHNIQUES	81
	6.1	Measurement of film thickness	81 - 82
		6.1.1 Tolansky interferometer	82 - 84
		6.1.2 Thickness measurements	85
	6.2	Measurement of spectral absorptance	85
		6.2.1 Infrared spectrophotometer	85 - 87
		6.2.2 Polymer substrates	87 - 88
		6.2.3 Spectral measurements	88 - 90
	6.3	Measurement of total emissivity	90
		6.3.1 Emissivity apparatus	90 - 93
7.	GOLD	FILMS	93
	7.1	Film deposition	93 - 94
	7.2	Electrical properties of gold films	94 - 96
	7.3	Infrared optical properties of gold films	96 - 97
8.	NICH	ROME FILMS	97
	8.1	Some reported properties of nichrome films	97 - 98
	8.2	Film deposition	98 - 99
	8.3	Electrical properties of nichrome films	99 - 100
	8.4	Infrared optical properties of nichrome films	100 - 101
9.	NICK	EL FILMS	101
	9.1	Film deposition	102 - 103
	9.2	Electrical properties of nickel films	103
		9.2.1 Electrical conductivity of nickel films	103 - 104
		9.2.2 Electrical aging	105
	9.3	Vacuum and oxidation	105 - 108
	9.4	Stress in nickel films	109 - 112
	9.5	Optical properties of nickel films	112 - 114

् क्षेत्र से शहर

				Page No.
		11.5.5 Nickel films		141 - 144
	11.6	Measurement of temperature r	ise	144 - 146
	11.7	Summary of thermal propertie	S	146 - 148
12.	CONCL	USIONS		148
13.	ACKNO	WLEDGEMENTS		150
	LIST	OF REFERENCES		

SYMBOL TABLE

LIST OF TABLES

1.	BULK THERMAL PROPERTIES OF SELECTED ABSORBER MATERIALS	22
2.	COMPUTED THERMAL PARAMETERS	26
3.	SELECTED POLYMER FILMS	74
4.	SPECIMENS FOR THERMAL MEASUREMENTS	128
5.	SUMMARY OF THERMAL RISE TIME MEASUREMENTS	135
6.	SUMMARY OF THERMAL SPREAD MEASUREMENTS	141
7.	TEMPERATURE RISE MEASUREMENTS	146

LIST OF FIGURES

1.	Steady state temperature rise. Selected metallic absorbers
2.	Time dependent temperature rise. Nickel absorber
3.	Time dependent average temperature rise. Selected metallic absorbers
4.	Time dependent temperature rise. Large area nickel absorber
5.	Steady state temperature rise for rectangular and circular absorber elements
6.	Blackbody radiation for three selected temperatures
7.	Infrared optical properties of a thin metallic film
8.	Dependence of infrared optical properties on angle of incidence
9.	Conductivity of thin films according to Fuchs-Sondhiemer theory
10.	Vacuum coating unit
11.	Deposition control instrumentation
12.	Monitor circuit schematic
13.	Substrate arrangement
14.	Apparatus for the preparation of polymer films
15.	Electron beam deposition source
16.	Tolansky multiple beam interferometer
17.	Tolansky fringe pattern
18.	Infrared spectrophotometer
19.	Spectral absorption of collodion substrates
20.	Emissivity test apparatus
21.	Chart recording of emissivity measurement
22.	Quartz crystal monitor calibration for gold films
23.	Emissivity of gold films
24.	Quartz crystal monitor calibration for nichrome films
25.	Resistance of nichrome films
26.	Quartz crystal monitor calibration for nickel films
27.	Resistance of nickel films on glass substrates
28.	Resistance of nickel films on collodion substrates

- 29. Emissivity of nickel films
- 30. Absorptance and transmittance of nickel films
- 31. Structure of formvar substrates
- 32. Structure of collodion substrates
- 33. Influence of collodion substrates in electron microscopy
- 34. Structure of gold films 1
- 35. Structure of gold films 2
- 36. Structure of nichrome films
- 37. Structure of nickel films
- 38. Stress in nickel film on formvar substrate
- 39. Thermal rise time measurement. Oscilloscope display
- 40. Thermal rise time for a gold absorber film
- 41. Thermal rise time for a nickel absorber film
- 42. Steady state temperature rise. Gold absorber film
- 43. Steady state temperature rise. Nickel absorber film

SUMMARY

This thesis describes research studies on the absorption of infrared radiation in thin metallic films. Thin films of nickel, gold and a nickelchromium alloy were vacuum deposited on to freely-supported polymer membrane substrates. It is intended that these films will comprise the radiation receiver element of high performance infrared detectors.

The research is broadly divided into two main areas of study. These are the infrared optical properties of the selected metal films, and thermal properties relevant to the absorption process such as temperature rise, thermal rise time and thermal spread in the plane of the film. The thermal characteristics are of fundamental importance in infrared detector research, because they determine sensitivity, speed of response and optical image quality.

The first part of the thesis is concerned with a theoretical analysis of the thermal and infrared optical properties of metallic absorber films, and includes a resume of nucleation and growth phenomenon in vacuum deposited metal films. This is followed by a description of measurement techniques and the apparatus used for the preparation of metal films, and then a detailed discussion of experimental results. Careful consideration was given to the influence of deposition parameters, and a study was made of the structure of the films using conventional bright field electron microscopy. Finally, the experimental results are compared with theoretical predictions.

In general, good agreement was found between the theoretical analysis and the measured optical and thermal properties of the selected metal absorber films. This encouraging result enables us to predict the most suitable metal, and the optimum deposition parameters, to satisfy specific requirements in infrared detector research.

STATEMENT

and the second second second

1001100

į

I herewith state that this thesis does not contain any material which has been accepted for the award of any other degree or diploma in any University and that, to the best of my knowledge and belief, the thesis contains no material previously published or written by any other person, except when due reference is made in the text of the thesis.