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NOMENCLATURE

Unless otherwise Stated the symbols have the following meaning:

A

at
ct

b

br

d
d
D

DPN

E

ep

ep 25

F

"fn
GPa

h

HV
Hz

I
I
I

m

m

nt

P

ps

rpm

se nt

SEM

SS

ssp

sspp

sspp ps

SSS

sssp

area in mm squared

alpha-titanium
length or distance

breadth

beta-titanium

diameter

the length of the diagonal of a square in micrometers

length of the diagonal in millimetres

Diamond Pyramidal Hardness Number

elastic modulus (or Young's modulus)

electropolished

electropolished for 25 seconds

measured load

frequency of vibration .

Giga Pascal

height

Vickers hardness number

hertz (cycles per second)

moment of inertia

second moment of area

distance

MASS

metres

nickel-titanium

applied load

pulse straightened

revolutions per minute

superelastic nickel-titanium

scanning electron microscoPe

stainless steel

stainless steel premium

stainless steel premium Plus

stainless steel premium plus, pulse straightened

stainless steel suPreme

stainless steel special Plus
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TEM

TMA

TTR

v

v
YS

Dimensions

o

t
t
p

transmission electron microscope

titanium molybdenum alloY

transition temperature range

velocity
extension
yield strength

stress

strain

maximum flexibility
density
micrometre

microsecond

pm

ps

018 = O.O18" (O.45mm)

Note: Some orthodontic wires are supplied in imperial units but all

scientific studies should use metric.
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SUMMARY

ln orthodontics a light, continuous force is thought to be most desirable

as it results in maximum tooth movement and minimum patient

discomfort and damage to the supporting tissues. W¡th an increasingly

large selection of wires on the market, selecting the most appropriate

archwire for a given clinical situation is difficult. Choice may be based on

the feel of the wire, clinical impression or from standard mechanical test

data.

of these, the modulus of elasticity is of primary importance since ¡t

determines the stiffness of an archwire, which in turn governs the force

delivered by an appliance. The elastic modulus of a material has been

thought to be a constant value for a particular material. lt was therefore

surprising, to find such a wide range of elastic modulus values quoted in

the literature.

The principal aim of this study was to evaluate available experimental

techniques for the determination of Young's modulus. Tensile, bend,

resonance and speed of sound tests were performed. Elastic modulus

values were calculated from the data acquired, allowing the different

testing methods to be comPared.

Emphasis was placed on stainless steel wires as fundamental questions

remain, despite their long history of use. ln addition some of the newer

archwires such as nickel-titanium, alpha-titanium and beta-titanium were

tested.

It has been proposed that stiffness appeared to be affected when a wire

was electropolished. For this reason, wires were tested in the as-received

condition and after electropolishing, to ascertain whether elastic modulus

was affected.

Elastic modulus values both in the as-received state and after

electropolishing were lower than the textbook quoted values, and were

difficult to reproduce. Electropolishing did not appear to have a

consistent effect on elastic modulus.
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It was proposed that these heavily drawn wires exhibited anisotropic

behaviour and that this may account for the low elastic modulus values.

Wires were annealed to reduce the anisotropic behaviour prior to testing.

This had a varied effect on elastic modulus with values for some wires

increasing while others decreased.

A wire's surface may be more heavily cold worked than the central

region. Wire specimens were embedded in Bakelite and polished to allow

the maximum wire diameter to be microhardness tested. Microhardness

tests did not detect differences between the surface layer and inner core.

lf a surface difference is present it is very small.

The surface appearance of wires was also assessed in the SEM, in the

as-received state and after electropolishing. As-received wires showed a

very elongated grain structure giving a fibrous appearance typical of a

heavily cold worked structure. The striations were removed with

electropolishing, leaving a smooth surface (apart from occasionäl deep

gouges).

To enable any textural differences between the wire surface and inner

core to be assessed, wires were deliberately maltreated to the point of

fracture. Fractured surfaces were then assessed in the SEM'

It is important to remember that it is the microstructure and in turn the

chemical composition and thermomechanical processing during

manufacture, that determines the mechanical properties of wires. For

these reasonS, assessment of the m¡crostructure in the TEM was

attempted. Specimen preparation proved difficult and no suitable foils

were produced. Ability to assess the microstructure would improve our

understanding of these materials and assist with the development of

more advanced materials.
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