

METHODS OF TESTING THE MECHANICAL PROPERTIES OF ORTHODONTIC WIRES

A report submitted in partial fulfilment of the requirements for the degree of Master of Dental Surgery

BY

KATHERINE RUTH ALLEN B.D.S.

Department of Dentistry

Faculty of Dentistry

The University of Adelaide

South Australia

April 1994

Awarded 1995

TABLE OF CONTENTS

	NOMENCLATURE	•	vi
	LIST OF FIGURES	1	viii
	LIST OF TABLES		xii
	SUMMARY		xvi
	SIGNED STATEMENT		xviii
	ACKNOWLEDGEMENTS		xix
Chapter 1	INTRODUCTION		1
Chapter 2	LITERATURE REVIEW		3
	MECHANICAL PROPERTIES OF ORTHODONTIC TOOTH	2	3
	THE IDEAL ARCHWIRE		3
	TERMINOLOGY USED WHEN DISCUSSING THE MECHANICAL PROPERTIES OF WIRES		4
	PRODUCTION OF WIRES		11
	THE CRYSTALLIZATION OF MOLTEN METALS		11
	THE EFFECTS OF COLD WORKING AND ANNEALING ON THE CRYSTAL STRUCTURE		12
	HISTORY OF ORTHODONTIC WIRES		13
	THE CHEMICAL COMPOSITION AND MECHANICAL PROPERTIES OF SPECIFIC WIRES		15
	GOLD		15
	STAINLESS STEEL		15
	MULTIBRAIDED STAINLESS STEEL		19

ii

	CHROMIUM-COBALT	20
	NICKEL-TITANIUM	21
	BETA-TITANIUM	27
	ALPHA-TITANIUM	28
	SUMMARY	29
Chapter 3	AIMS OF THE INVESTIGATIONS	30
Chapter 4	MATERIALS AND METHODS	32
	CONVENTIONAL TENSILE TESTS	32
	BEND TESTS	32
	ELECTROPOLISHING	38
	CANTILEVER TESTS	40
	THREE POINT BEND TESTS	45
	USE OF LOAD AND UNLOAD DATA	47
	RESONANCE	48
	SPEED OF SOUND	50
	MICROHARDNESS TEST	52
	MACROHARDNESS TEST	54
	SURFACE APPEARANCE	54
	DETAILED MICROSTRUCTURAL DATA	56
Chapter 5	RESULTS AND DISCUSSION	67
	ELASTIC MODULUS VALUES	67
	CONVENTIONAL TENSILE TESTS	69
	BEND TESTS	75

iii

	ARCHFORM	75
12	CANTILEVER TESTS	82
	OTHER TECHNIQUES	87
	TESTING OF ANNEALED SPECIMENS	91
	OTHER WIRES	94
	RESONANCE	98
	VELOCITY OF SOUND	103
	SUMMARY OF ELASTIC MODULUS TESTS	108
	A COMPARISON OF ELASTIC MODULUS VALUES DERIVED	109
	FROM DIFFERENT TECHNIQUES USING LOAD DATA	
	EFFECT OF DIAMETER CHANGE ON ELASTIC MODULUS	111
	VALUE	
	THE EFFECT OF DATA MODIFICATION ON ELASTIC	111
	MODULUS VALUES	
	MICROHARDNESS TESTS	114
	MACROHARDNESS TESTS	116
	SURFACE APPEARANCE OF WIRES	117
	SURFACE EFFECTS OF PULSE STRAIGHTENING	117
	SURFACE CHANGES AFTER ELECTROPOLISHING	117
	FRACTOGRAPHY	120
	DETAILED MICROSTRUCTURAL DATA	127
Chapter 6	CONCLUSIONS	132
Chapter 7	FUTURE RESEARCH	135

iv

BIBLIOGRAPHY 137

APPENDICES

Vol II

NOMENCLATURE

Unless otherwise stated the symbols have the following meaning:

A	area in mm squared
at	alpha-titanium
а	length or distance
b	breadth
bt	beta-titanium
d	diameter
d	the length of the diagonal of a square in micrometers
D	length of the diagonal in millimetres
DPN	Diamond Pyramidal Hardness Number
Ε	elastic modulus (or Young's modulus)
ер	electropolished
ep 25	electropolished for 25 seconds
F	measured load
fn	frequency of vibration -
GPa	Giga Pascal
h	height
HV	Vickers hardness number
Hz	hertz (cycles per second)
Ι	moment of inertia
Ι	second moment of area
l	distance
т	mass
т	metres
nt	nickel-titanium
Р	applied load
ps	pulse straightened
rpm	revolutions per minute
se nt	superelastic nickel-titanium
SEM	scanning electron microscope
SS	stainless steel
ssp	stainless steel premium
sspp	stainless steel premium plus
sspp ps	stainless steel premium plus, pulse straightened
SSS	stainless steel supreme
sssp	stainless steel special plus

vi

TEM	transmission electron microscope
ТМА	titanium molybdenum alloy
TTR	transition temperature range
ν	velocity
у	extension
YS	yield strength

σ	stress
З	strain
з	maximum flexibility
ρ	density
μm	micrometre
μs	microsecond

Dimensions

 $018 \equiv 0.018$ " (0.45mm)

Note: Some orthodontic wires are supplied in imperial units but all scientific studies should use metric.

LIST OF FIGURES

FIGURE	SUBJECT	PAGE
1	Stress-strain curve illustrating proportional limit, yield strength, UTS, failure point, elastic modulus.	7
2	Stress-strain curve illustrating resilience and formability.	10
3	Stress-strain curve illustrating differences between stainless steel, nickel-titanium and superelastic nickel-titanium.	26
4	A universal Instron testing machine with an extensometer in position	33
5	A wire specimen wrapped around an aluminium casing prior to tensile testing	34
6	A milled brass wire holder in a stand allowing adjustments in the vertical plane	36
7	Steel holder glued to the Mettler 6100 pan with anterior section of archwire in a groove in steel support	37
8	Electropolishing unit (Rocky Mountain 700,USA)	39
9	A cantilever bend test using a knife edge to support the free end of the specimen	42
10	A 3-point bend test	46
11	Apparatus for resonance testing	49
12	Apparatus for measuring speed of sound along a wire	51
13	A photomicrograph of microhardness indentations near the edge of the specimen	53
14	Curing characteristics of G-1 Epoxy used for preparing TEM cross sections	58
15	Disc cutting and grinding for cross-sectional TEM specimen	58

16	Precision dimple grinder and polisher	59
17a	Magnified view of the grinding wheel and mount on dimple grinder	61
17b	Dimpled specimen	61
18a	lon milling of a cross-sectional specimen	62
18b	Effect of Octagun TM voltage on specimen thinning rate.	62
18c	Specimen current versus beam angle for argon milling of copper.	62
19	Preparation of a single wire specimen to minimise the epoxy	64
20	E.A.Fischione model 120-230 twin jet electropolishing unit	66
21	Diagramatic stress-strain curve illustrating tangents to the curve which may be chosen to calculate the elastic modulus.	73
22	Diameter changes with continuous electropolishing of sssp 020	79
23	Diameter changes with cumulative electropolishing of sssp 020	80
24	Wave forms as seen on oscilloscope screen in velocity of sound testing	104
25	Modification of stress-strain data to improve the fit of the straight line for load data	112
26	Modification of stress-strain data to improve the fit of the straight line for unload data	113
27	SEM micrograph (75x magnification) of as-received sspp 018 wire surface	118

ix

28	SEM micrograph (75x magnification) of as-received sspp ps 018 wire surface	118
29	SEM micrograph (75x magnification) of as-received sspp 020 wire surface	119
30	SEM micrograph (300x magnification) of as-received sspp 020 wire surface	119
31	SEM micrograph (75x magnification) of sspp 020 wire surface after 25" electropolishing	121
32	SEM micrograph (75x magnification) of sspp 020 wire surface after 50" electropolishing	121
33	SEM micrograph (75x magnification) of sspp 020 wire surface after 150" electropolishing	122
34	SEM micrograph (300x magnification) of sspp 020 wire - surface after 150" electropolishing	122
35	Number of bends possible until point of wire fracture	123
36	SEM micrograph showing "tag" formation after deliberate fracture of a wire specimen.	124
37	SEM micrograph showing variation in the extent of "tag" formation.	125
38	SEM micrograph showing variation in the extent of "tag" formation.	125
39	SEM micrograph of a fractured wire surface showing differences in the direction of the crack path.	126
40	SEM micrograph of a fractured specimen showing distinct steps on the surface.	126
41	SEM micrograph of a fractured wire illustrating a zone normal or possibly inclined in the opposite direction to the "tag".	128

х

- SEM micrograph of a fractured wire surface where a 128 42 pronounced crack separates the "tag" and zone normal to the wire surface. SEM micrograph of a fractured wire surface showing 129 43 steplike growth of a central crack. SEM of a "tag" showing the elongated grain structure. 129 44 SEM micrograph of a fractured wire surface showing 130 45 fine flat dimples typical of ductile fracture.
- 46 A printout of the ED analysis of a stainless steel wire. 130

LIST OF TABLES

TABLE	SUBJECT	PAGE
1	Elastic modulus values for as-received stainless steel wires from tensile tests of 016ss wires (Masson 1969)	69
2	Elastic modulus values for as-received stainless steel wires from tensile tests of ss wires (Twelftree 1974)	70
3	Elastic modulus values for as-received stainless steel wires from tensile tests of 010-020ss wires (Sokel 1984)	71
4	Elastic modulus values for as-received stainless steel wires from tensile and bend tests (Masson 1969)	74
5	Slopes of stess-strain curves for as-received stainless steel wires in arch form	76
6	Diameter change of stainless steel wires after continuous electropolishing	78
7	Diameter change of stainless steel wire after interrupted electropolishing	80
8	Slopes of stress-strain curves for stainless steel wires tested in arch form after electropolishing	81
9	Elastic modulus values for as-received stainless steel wires calculated from cantilever bend tests with the support at 18.5mm	83
10	Elastic modulus values for as-received stainless steel wires calculated from cantilever bend tests with the support at 20mm	83
11	Elastic modulus values for electropolished stainless steel wires calculated from cantilever bend tests with the support at 18.5mm	85

177

 $\sim -$

12	Elastic modulus values for electropolished stainless steel wires calculated from cantilever bend tests with the support at 20mm	86
13	Elastic modulus values for as-received stainless steel wires from cantilever tests with the support at 10mm	88
14	Elastic modulus values for electropolished stainless steel wires from cantilever tests with the support at 10mm	89
15	Elastic modulus values for stainless steel wires calculated from three-point bend tests	90
16	Elastic modulus values calculated for annealed stainless steel wires from bend tests with a support at 20mm	92
17	Elastic modulus values calculated for annealed and electropolished stainless steel wires from bend tests with a support at 20mm	93
18	Mean elastic modulus values calculated for annealed and electropolished specimens	94
19	Elastic modulus values for at and nt wires calculated from cantilever bend tests with the support at 18.5mm	95
20	Elastic modulus values for at, nt and sent wires calculated from bend tests with the support at 20mm	95
21	Elastic modulus values for nt wires calculated from bend tests with the support at 10mm	96
22	Elastic modulus values for at, bt and nt wires calculated from bend tests with the support at 20mm	96
23	Elastic modulus values for as-received stainless steel wires calculated from preliminary resonance tests	98
24	Elastic modulus values for electropolished stainless steel wires calculated from preliminary resonance tests	99

xiii

25	Elastic modulus values for nt and sent wires calculated from resonance tests	100
26	Elastic modulus values for as-received stainless steel wires calculated from resonance tests	101
27	Elastic modulus values for electropolished stainless steel wires calculated from resonance tests	102
28	Elastic modulus values for stainless steel wire calculated from speed of sound tests using the peaks as reference points	103
29	Elastic modulus values for stainless steel wire calculated from speed of sound tests using the troughs as reference points	105
30	Elastic modulus values for stainless steel wire calculated from speed of sound tests using the point of deviation from the horizontal as the reference point	106
31	Elastic modulus values for annealed stainless steel wire calculated from speed of sound tests using the point of deviation from the horizontal as the reference point	106
32	Elastic modulus values for new annealed stainless steel wire specimen calculated from speed of sound tests using the point of deviation from the horizontal as the reference point	107
33	A comparison of elastic modulus values derived from different techniques using load data.	109
34	The effect of wire diameter on elastic modulus values	111
35	The effect of data modification on the accuracy of the straight line fit for a sspp ps 018 wire	114
36	Effect of data modification on elastic modulus values for sspp ps 018	114

æ

э Т

xiv

37	Average values of diagonal measurements of	115
	microhardness test indentations	
38	Vickers hardness numbers for sspp 018	116

30

.

F²

¥4

.

SUMMARY

In orthodontics a light, continuous force is thought to be most desirable as it results in maximum tooth movement and minimum patient discomfort and damage to the supporting tissues. With an increasingly large selection of wires on the market, selecting the most appropriate archwire for a given clinical situation is difficult. Choice may be based on the feel of the wire, clinical impression or from standard mechanical test data.

Of these, the modulus of elasticity is of primary importance since it determines the stiffness of an archwire, which in turn governs the force delivered by an appliance. The elastic modulus of a material has been thought to be a constant value for a particular material. It was therefore surprising, to find such a wide range of elastic modulus values quoted in the literature.

The principal aim of this study was to evaluate available experimental techniques for the determination of Young's modulus. Tensile, bend, resonance and speed of sound tests were performed. Elastic modulus values were calculated from the data acquired, allowing the different testing methods to be compared.

Emphasis was placed on stainless steel wires as fundamental questions remain, despite their long history of use. In addition some of the newer archwires such as nickel-titanium, alpha-titanium and beta-titanium were tested.

It has been proposed that stiffness appeared to be affected when a wire was electropolished. For this reason, wires were tested in the as-received condition and after electropolishing, to ascertain whether elastic modulus was affected.

Elastic modulus values both in the as-received state and after electropolishing were lower than the textbook quoted values, and were difficult to reproduce. Electropolishing did not appear to have a consistent effect on elastic modulus. It was proposed that these heavily drawn wires exhibited anisotropic behaviour and that this may account for the low elastic modulus values. Wires were annealed to reduce the anisotropic behaviour prior to testing. This had a varied effect on elastic modulus with values for some wires increasing while others decreased.

A wire's surface may be more heavily cold worked than the central region. Wire specimens were embedded in Bakelite and polished to allow the maximum wire diameter to be microhardness tested. Microhardness tests did not detect differences between the surface layer and inner core. If a surface difference is present it is very small.

The surface appearance of wires was also assessed in the SEM, in the as-received state and after electropolishing. As-received wires showed a very elongated grain structure giving a fibrous appearance typical of a heavily cold worked structure. The striations were removed with electropolishing, leaving a smooth surface (apart from occasional deep gouges).

To enable any textural differences between the wire surface and inner core to be assessed, wires were deliberately maltreated to the point of fracture. Fractured surfaces were then assessed in the SEM.

It is important to remember that it is the microstructure and in turn the chemical composition and thermomechanical processing during manufacture, that determines the mechanical properties of wires. For these reasons, assessment of the microstructure in the TEM was attempted. Specimen preparation proved difficult and no suitable foils were produced. Ability to assess the microstructure would improve our understanding of these materials and assist with the development of more advanced materials.

xvii

SIGNED STATEMENT

This report contains no material which has been accepted for the award of any other degree or diploma in any university. To the best of my knowledge and belief, it contains no material previously published or written by another person, except where due reference is made in the text of the report.

KATHERINE R. ALLEN

I give consent to this copy of my thesis, when deposited in the University Library, being available for photocopying and loan.

ACKNOWLEDGEMENTS

I wish to express my appreciation to:

Dr. J.V. Bee, Senior Lecturer, Department of Mechanical Engineering, University of Adelaide, for his guidance, patience and humour

Dr. M. R. Sims, Professor of Orthodontics, Department of Dentistry, University of Sydney, for his advice

Mr. I. Brown, Department of Mechanical Engineering, for his technical assistance and support

and lastly my husband Paul Heijkoop who made this Masters degree possible. He worked full-time in private practice, cared for our eleven month old daughter Bridget, ran the house and gave advice to a computer illiterate wife even in the small hours of the morning.