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Abstract: Aquaporins (AQPs) are known to facilitate water and solute fluxes across barrier
membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and
water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2,
AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophila
melanogaster DmBIB) were expressed in Xenopus oocytes and examined in chelator-buffered salines
to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+) on ionic conductances.
AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed
differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was
AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+

caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+

(AtPIP2;1 and AtPIP2;2) showed a distinctive relief of the Ca2+ block by co-application of excess
Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent
cations may enable the discovery of other classes of AQP ion channels, and facilitate the development
of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse
applications including improving salinity tolerance in plants, controlling vector-borne diseases, and
intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular
or renal dysfunction.

Keywords: water channel; aquaporin; Arabidopsis; Drosophila; vertebrates; invertebrates; regulation;
divalent cations

1. Introduction

Maintaining water homeostasis in living organisms is fundamental for survival. Aquaporins
(AQPs) in the Major Intrinsic Protein (MIP) family facilitate the transport of water and other solutes
across biological membranes [1], including urea, glycerol, nonpolar gases, hydrogen peroxide, and
metalloids [2]. AQPs are expressed in bacteria, protists, plants, invertebrates and vertebrates [3].
Ion channel function has been demonstrated for a subset of members of the MIP family, with examples
including both anion- and cation-selective channels. Anion-selective channels characterized to date
include mammalian AQP0 (lens MIP), which is regulated by pH [4–6] and essential for maintaining
the optical clarity of the lens [7], and mammalian AQP6, associated with intracellular vesicles and
activated by low pH [8].
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Cation-selective aquaporin ion channels include mammalian AQP1 gated by cyclic
guanosine monophosphate (cGMP) [9,10], Drosophila big brain (DmBIB) modulated by tyrosine
phosphorylation [11,12], and Arabidopsis Plant membrane Intrinsic Protein PIP2;1 sensitive to pH
and calcium [13]. AQP cation channels have been linked to diverse functional roles. Mammalian
AQP1 expression has been associated with migration and metastasis in aggressive cancers including
colon, melanoma and breast cancers, astrocytoma and glioblastoma [14–18]. An arylsulfonamide
inhibitor of the AQP1 ion channel, AqB011, significantly impaired migration in the AQP1-expressing
colon cancer cell line HT29 [19]. The AQP1 and AQP4 water channel blocker AqB013 also slowed
cancer cell migration [20,21], suggesting that both AQP1 water and ion channel functions are involved
in facilitating cell mobility. Two medicinal plant components, bacopaside I and bacopaside II from
Bacopa monnieri, blocked AQP1 water channels and also inhibited the migration of AQP1-expressing
colon cancer cells [22]. Drosophila Big Brain (BIB) is important in the early development of the fly
nervous system [23]; inherited mutations in bib, one of the neurogenic genes, result in impaired
lateral inhibition and the overproduction of neuroblasts [24]. The model plant Arabidopsis thaliana has
35 AQP isoforms [25], with the plasma membrane intrinsic proteins AtPIP2;1, AtPIP2;2 and AtPIP2;7
being among the most highly expressed in the roots [26]. All three aquaporins are important for the
regulation of water flow through plants and AtPIP2;1 is also implicated in signaling for stomatal
closure [27,28]. Both AtPIP2;1 and AtPIP2;7 are regulated by salt stress [29,30] making the modulation
of different AQPs by divalent cations an important consideration in understanding function.

Direct modulation of many types of ion channels and receptors by divalent cations is a ubiquitous
component of cellular signal transduction and regulatory transport mechanisms [31–36]. Voltage-sensitive
relief of Mg2+ block of excitatory NMDA (N-methyl-D-aspartate) receptors, for example, is essential
for the establishment of neuronal long-term potentiation [37]. Voltage-sensitive unblocking of Mg2+ in
inwardly rectifying Kir potassium channels enables differential control of repolarization as a function
of membrane potential in diverse types of excitable cells [38]. Many classes of K+, Ca2+, Cl− and Na+

channels are activated by intracellular calcium or Ca2+-dependent kinases that govern solute transport
across membranes, baseline excitability and action potential duration and frequency.

Accumulating evidence suggests that AQP channels from across phyla are similarly modulated by
divalent cations. Prior work showed the mammalian AQP1 ion conductance is blocked by Cd2+ [39],
the insect BIB channel shows voltage-sensitive block by Ca2+ and Ba2+ [12], and both water and ion
channel activities of Arabidopsis PIP2;1 are blocked by Ca2+ [13,40]. Discovering the Ca2+ sensitivity
was the key step needed for uncovering the ionic conductance property of the AtPIP2;1 channel [13],
identifying a molecular mechanism for an undefined cationic current previously associated with root
adaptation responses to environmental factors [41].

Work here compares the dose-dependent blocking effects of divalent cations across a diverse array
of AQP channels. As well, results here are the first to define a new AQP ion channel from Arabidopsis,
AtPIP2;2, with high sensitivity to inhibition by Ca2+. In summary, our comparative analysis shows
that the block of AQP ion channels by divalent cations is a regulatory mechanism that is common
across diverse classes of AQP channels. Understanding the mechanisms that regulate AQP ion channel
function is essential for the continuing discovery of new members of AQP ion channel group, and for
defining the diverse physiological roles and value of AQPs as targets for intervention in health care,
disease vector management, and agricultural translational applications.

2. Results

2.1. Expression of Aquaporin (AQP) Channels in Xenopus Oocytes

To confirm successful heterologous expression of the different classes of AQP channels in
Xenopus oocytes, swelling assays in 50% hypotonic saline were performed for AtPIP2;7, AtPIP2;2,
AtPIP2;1, RnAQP4, RnAQP5, and HsAQP1 copy-RNA-injected oocytes (Figure 1). The osmotic
water permeability was significantly greater in oocytes expressing AtPIP2;7, AtPIP2;2, AtPIP2;1,
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RnAQP4, RnAQP5, or HsAQP1 than in non-AQP-expressing control oocytes, confirming the expression
of functional channels in the oocyte membrane (Figure 1A). Compiled data for osmotic water
permeabilities are summarized in a box plot (Figure 1B). DmBIB channels do not show appreciable
osmotic water permeability [11]; thus the expression of DmBIB channels on oocyte plasma membranes
was confirmed by immunostaining and confocal microscopy (Figure 1C). The DmBIB channels used
here are hemagglutinin-epitope-tagged BIB, which is the same construct that was referred to as HA-BIB
in the work by Yanochko and colleagues previously [11].
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hypotonic saline for aquaporins (AQP)-expressing oocytes as compared with non-AQP-expressing 
control oocytes. Data are mean ± SEM; n = 6 per treatment group. (B) Box plots of swelling rates for 
the data shown in (A). ANOVA and post hoc Bonferroni test; ** (p < 0.01) as compared with control; 
n = 6 per group. (C) Confocal image of immuno-labeled oocytes confirming BIB protein expression in 
the oocyte plasma membrane, as described previously [11]. 

2.2. Differential Sensitivity of AQP Ion Currents to Block by Ca2+ 

AQP ion channel currents were measured in oocytes using a voltage clamp (Figure 2). HsAQP1-
expressing oocytes were activated by bath application of a membrane-permeable cyclic GMP analog 
at 10 μM (see Methods), as per established protocols [9]. Ionic conductances in AtPIP2;1 [13], AtPIP2;2 
and DmBIB [11] expressing oocytes were evident when the recording electrodes were inserted into 
the oocytes, suggesting that, in the batches of oocytes tested, these channels were already active in 

Figure 1. Confirmation of the expression of AQP1, AQP4, AQP5, PIP2;7, PIP2;2, PIP2;1, and BIB
channels in Xenopus oocyte membranes. (A) Osmotic swelling responses as a function of time in 50%
hypotonic saline for aquaporins (AQP)-expressing oocytes as compared with non-AQP-expressing
control oocytes. Data are mean ± SEM; n = 6 per treatment group. (B) Box plots of swelling rates for
the data shown in (A). ANOVA and post hoc Bonferroni test; ** (p < 0.01) as compared with control;
n = 6 per group. (C) Confocal image of immuno-labeled oocytes confirming BIB protein expression in
the oocyte plasma membrane, as described previously [11].

2.2. Differential Sensitivity of AQP Ion Currents to Block by Ca2+

AQP ion channel currents were measured in oocytes using a voltage clamp (Figure 2).
HsAQP1-expressing oocytes were activated by bath application of a membrane-permeable cyclic GMP
analog at 10 µM (see Methods), as per established protocols [9]. Ionic conductances in AtPIP2;1 [13],
AtPIP2;2 and DmBIB [11] expressing oocytes were evident when the recording electrodes were inserted
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into the oocytes, suggesting that, in the batches of oocytes tested, these channels were already active
in the expression system (Figure 2A). In contrast, non-AQP-expressing control oocytes and oocytes
expressing AtPIP2;7 showed no ionic conductance responses during 30-min recording sessions.

As shown in Figure 2A, current traces were recorded for control and AQP-expressing oocytes after
maximal activation in divalent-free saline (left); after perfusion of bath saline with Mg2+ (middle); and
after washout and application of EGTA-buffered Ca2+ saline for the same oocytes (right). AtPIP2;2
and AtPIP2;1 currents were reduced slightly by Mg2+ at 1 mM. All four classes of AQP ion channels
were sensitive to Ca2+. In AtPIP2;2-expressing oocytes, 10 µM calculated free Ca2+ conferred maximum
inhibition. In oocytes expressing AtPIP2;1 maximum inhibition was observed at 100 µM free Ca2+.
HsAQP1-expressing oocytes showed little effect of Mg2+, and moderate inhibition by Ca2+ at 1 mM.
Similarly, the ion conductance in DmBIB-expressing oocytes was not blocked by Mg2+; and was inhibited
by 1 mM extracellular Ca2+.

Int. J. Mol. Sci. 2017, 18, 2323 4 of 18 

 

the expression system (Figure 2A). In contrast, non-AQP-expressing control oocytes and oocytes 
expressing AtPIP2;7 showed no ionic conductance responses during 30-min recording sessions.  

As shown in Figure 2A, current traces were recorded for control and AQP-expressing oocytes 
after maximal activation in divalent-free saline (left); after perfusion of bath saline with Mg2+ 
(middle); and after washout and application of EGTA-buffered Ca2+ saline for the same oocytes 
(right). AtPIP2;2 and AtPIP2;1 currents were reduced slightly by Mg2+ at 1 mM. All four classes of 
AQP ion channels were sensitive to Ca2+. In AtPIP2;2-expressing oocytes, 10 μM calculated free Ca2+ 
conferred maximum inhibition. In oocytes expressing AtPIP2;1 maximum inhibition was observed at 
100 μM free Ca2+. HsAQP1-expressing oocytes showed little effect of Mg2+, and moderate inhibition 
by Ca2+ at 1 mM. Similarly, the ion conductance in DmBIB-expressing oocytes was not blocked by 
Mg2+; and was inhibited by 1 mM extracellular Ca2+.  

  

 

Figure 2. Cont.



Int. J. Mol. Sci. 2017, 18, 2323 5 of 19

Int. J. Mol. Sci. 2017, 18, 2323 5 of 18 

 

 
Figure 2. Effects of Mg2+ and Ca2+ divalent cations on ionic current responses in oocytes expressing 
different classes of AQPs. (A) Superimposed currents as a function of time measured by voltage clamp 
(steps from −110 to +60 mV, from a holding potential of −40 mV) at maximal activation in divalent-
free saline (left), after application of Mg2+ (middle), and after application of Ca2+ (right). Control and 
PIP2;7-expressing oocytes lacked appreciable conductances. (B) Current-voltage relationships for the 
traces illustrated in (A). (C) Na+ concentrations in oocytes expressing PIP2;2 as compared with control 
oocytes after incubation in Frog Ringers containing 96 mM NaCl for three days. Data are from four 
replicates; each replicate contained five oocytes. (D) Box plot summary of compiled data for the 
conductances. Free Ca2+ concentrations are given in μM. **** (p < 0.0001); *** (p < 0.001); ** (p < 0.01);  
* (p < 0.05); NS (not significant); using ANOVA with post-hoc Bonferroni tests. n values are in italics 
below the x-axis.  
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(Figure 2C). Compiled conductance data are summarized in a box plot (Figure 2D). The ion 
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in oocytes expressing AtPIP2;1, AtPIP2;2, HsAQP1 or DmBIB channels (Figure 3). After Ba2+ 

Figure 2. Effects of Mg2+ and Ca2+ divalent cations on ionic current responses in oocytes expressing
different classes of AQPs. (A) Superimposed currents as a function of time measured by voltage clamp
(steps from−110 to +60 mV, from a holding potential of−40 mV) at maximal activation in divalent-free
saline (left), after application of Mg2+ (middle), and after application of Ca2+ (right). Control and
PIP2;7-expressing oocytes lacked appreciable conductances. (B) Current-voltage relationships for
the traces illustrated in (A). (C) Na+ concentrations in oocytes expressing PIP2;2 as compared with
control oocytes after incubation in Frog Ringers containing 96 mM NaCl for three days. Data are from
four replicates; each replicate contained five oocytes. (D) Box plot summary of compiled data for the
conductances. Free Ca2+ concentrations are given in µM. **** (p < 0.0001); *** (p < 0.001); ** (p < 0.01);
* (p < 0.05); NS (not significant); using ANOVA with post-hoc Bonferroni tests. n values are in italics
below the x-axis.

Current-voltage relationships for traces in panel A are shown in Figure 2B. Current-voltage
relationships were approximately linear in Ca2+ and Mg2+ salines. Measurement of the accumulation
of Na+ in control and AtPIP2;2-expressing oocytes after three days in Frog Ringers saline (containing
96 mM NaCl) indicated that AtPIP2;2 expression was associated with an increased oocyte Na+ content
(Figure 2C). Compiled conductance data are summarized in a box plot (Figure 2D). The ion conducting
AQP channels showed block by Ca2+, with an order of sensitivity PIP2;2 > PIP2;1 > BIB > AQP1.
The low baseline ionic conductance levels seen for non-AQP-expressing control oocytes and oocytes
expressing AtPIP2;7 were not substantially altered by Ca2+ or Mg2+ application.

2.3. Voltage-Sensitive Block of AQP Ion Channels by Ba2+

BaCl2 (1 mM) applied extracellularly induced outward rectification of the ion currents recorded in
oocytes expressing AtPIP2;1, AtPIP2;2, HsAQP1 or DmBIB channels (Figure 3). After Ba2+ application,
the AtPIP2;1 and AtPIP2;2 ion channels showed an overall decrease in current amplitude consistent
with inhibition, as well as a change in the kinetics of the outward current that was consistent with a
process of time- and voltage-sensitive unblocking (Figure 3A). Currents recorded for the HsAQP1 and
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DmBIB expressing oocytes showed comparable unblocking of the outward currents, but the unblocked
currents reached peak amplitudes that were not significantly different from the corresponding initial
currents measured without Ba2+.
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current traces as a function of time measured by voltage clamp at maximal activation in divalent-free
saline (upper row) and after perfusion with bath saline containing 1 mM BaCl2 (lower). (B)
Current-voltage relationships in Ba2+ for traces presented in (A). (C) Box plot summary of compiled
data for AQP1, PIP2;1, PIP2;2 and BIB channels before and after 1 mM Ba2+ application. (D) Histogram
showing the relative outward rectification values (I+60/I−80) as mean ± SEM. Ratios were calculated as
amplitude of outward (+60 mV) to inward (−80 mV) currents. **** (p < 0.0001); ** (p < 0.001); * (p <
0.01); NS (not significant); using ANOVA with post-hoc Bonferroni tests. n values are near the x-axis.

Figure 3B illustrates current-voltage relationships in Ba2+ for traces shown in Figure 3A.
A summary of the conductance values for outward currents (measured before and after Ba2+

application) is shown in the box plot (Figure 3C). Figure 3D shows relative outward rectification ratios
(I+60/I−80) for HsAQP1, DmBIB, AtPIP2;1 and AtPIP2;2, confirming significant outward rectification
of currents in saline with 1 mM Ba2+.
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2.4. Inhibition of AQP Ion Channels by Cd2+

Ion conducting AQPs were blocked by extracellular application of Cd2+ (Figure 4). After
establishing maximal ionic conductance responses in divalent-free saline (initial), perfusion with
bath saline containing 1 mM CdCl2 resulted in inhibition of the ion currents in HsAQP1, DmBIB,
AtPIP2;1 and AtPIP2;2 expressing oocytes (Figure 4A). Mammalian AQP4 and AQP5 failed to show
any ionic conductance responses, with or without application of CPT-cGMP, and showed no effect
of Cd2+, remaining comparable to non-AQP-expressing control oocytes. Figure 4B illustrates the
current-voltage relationships for traces in panel A. Figure 4C shows the rate of onset of inhibition
(within minutes) after application of saline with 1 mM Cd2+. Figure 4D shows compiled data in
a box plot summarizing the effects of 1 mM CdCl2 on conductances recorded in HsAQP1, DmBIB,
AtPIP2;1 and AtPIP2;2 expressing oocytes. Figure 4E illustrates the relative outward rectification values
(I+60/I-80) measured in the absence and presence of extracellular Cd2+, with ratio values increased 3- to
4-fold in Cd2+ saline.

2.5. Relief of Ca2+ Inhibition by Addition of Ba2+

Cumulative application of Ca2+ followed by Ba2+ was used to investigate possible competitive
interactions between divalent cation blockers (Figure 5). After recording initial activated responses in
Ca2+ free saline (Figure 5A, left), salines containing the optimal concentrations of free Ca2+ needed for
inhibition were perfused into the recording chamber. Final concentrations of 1 mM CaCl2 were used
for HsAQP1 and DmBIB-expressing oocytes, 100 µM was used for AtPIP2;1 and 10 µM for AtPIP2;2
expressing oocytes, and responses were recorded (Figure 5A, middle).

Subsequent application of 1 mM BaCl2 in the continuing presence of the same concentration
of CaCl2 resulting in a distinctive voltage-sensitive recovery of outward currents in AtPIP2;1 and
AtPIP2;2 expressing oocytes (Figure 5A, right). Similar recovery was not evident in HsAQP1 and
DmBIB expressing oocytes (but Ba2+ was not present in 10- to 100-fold excess for DmBIB and HsAQP1,
as it was for the AtPIP channels). Figure 5B illustrates the current-voltage relationship for traces shown
in Figure 5A. Results are summarized in a box plot (Figure 5C).

2.6. Pharmacological Effects of the AQP Ion Channel Blocker, AqB011

The arylsulfonamide AqB011 was previously shown to inhibit human AQP1 ion channels [19].
Given the overlap in sensitivity to inhibition by divalent cations reported here for diverse classes
of cation-selective AQPs, the possible use of AqB011 as a blocker of multiple classes of AQP
cation-selective channels was evaluated (Figure 6). Oocytes expressing HsAQP1 were activated
by CPT-cGMP to establish an initial responses, and then incubated for 2 h in divalent-free saline with
or without 20 µM AqB011 and re-tested for activation by CPT-cGMP, following standard protocols [19].
Results confirmed the expected inhibition of the HsAQP1 ion channel by AqB011 (Figure 6A). AtPIP2;1
and AtPIP2;2 expressing oocytes were recorded in initial normal saline, then incubated for 2 h with 100
µM AqB011, and recorded again. In contrast to HsAQP1, no effect of AqB011 treatment was observed
for AtPIP2;1 and AtPIP2;2 expressing oocytes. There were no differences in ionic conductance observed
for oocytes expressing AtPIP2;1 and AtPIP2;2 with or without 100 µM AqB011 treatment, indicating
that among the channels tested, the agent shows selectivity for the mammalian AQP1 ion channel.
Non-AQP-expressing control oocytes treated with vehicle dimethylsulfoxide (DMSO) showed minimal
baseline conductance, and no effect of incubation with AqB011 (2 h, 100 µM). Data for conductance
values with and without AqB011 treatment are summarized in a box plot (Figure 6B).
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plot summary of compiled data for control, AQP4, AQP5, AQP1, PIP2;1, PIP2;2 and BIB expressing 
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Figure 4. Effects of Cd2+ on ion current responses in oocytes expressing different classes of AQPs.
(A) Superimposed current traces under voltage clamp recorded at maximal activation (if present)
in divalent-free saline (left) and after perfusion with bath saline containing 1 mM CdCl2 (right).
(B) Current-voltage relationships for data presented in (A). (C) Rates of onset of block after perfusion
of bath saline containing 1 mM Cd2+, as measured using repeated voltage steps to +40 mV. (D) Box plot
summary of compiled data for control, AQP4, AQP5, AQP1, PIP2;1, PIP2;2 and BIB expressing oocytes
before and after Cd2+ application. n values are below the x-axis. (E) Histogram showing relative
outward rectification values (mean ± SEM), calculated as the ratio of outward to inward currents at
+60 and −80 mV (I+60/I-80). **** (p < 0.0001); *** (p < 0.005); NS (not significant); using ANOVA with
post-hoc Bonferroni tests; n values are shown above the histogram bars.
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showing the maximal responses of AtPIP2;2, AtPIP2;1, HsAQP1 and DmBIB expressing oocytes
recorded in divalent-free saline (left), after perfusion of saline containing the indicated amount of
free Ca2+ (middle), and after application of Ba2+ in the continuing presence of the same concentration
of Ca2+ (right). (B) Current-voltage relationships for traces shown in (A). (C) Summary box plot
of conductance values for AtPIP2;2, AtPIP2;1, HsAQP1 and DmBIB expressing oocytes in different
divalent cation salines. *** (p < 0.001); ** (p < 0.01); * (p < 0.05); NS (not significant); using ANOVA with
post hoc Bonferroni tests; n values are below the x-axis.
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channels also enhanced Na+ transport, as measured by increased accumulation of Na+ in AtPIP2;2 
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Figure 6. Effects of the arylsulfonamide compound AqB011 on ionic current responses in oocytes
expressing different classes of AQPs. (A) Responses were recorded for control (DMSO vehicle), and
AtPIP2;1, AtPIP2;2, and HsAQP1 expressing oocytes before (left) and after 2 h incubation (right) in
AqB011 at the indicated doses. HsAQP1 was blocked by 20 µM AqB011; AtPIP2;1 and AtPIP2;2 currents
were not affected by 100 µM AqB011. (B) Box plot summary of the conductance levels before and after
treatment with AqB011. **** (p < 0.0001); NS (not significant); using ANOVA with post hoc Bonferroni
tests; n values are below the x-axis.

3. Discussion

Only a subset of AQPs is at present known to have ion channel function. Fifteen mammalian
aquaporin genes have been identified (AQP0–AQP14) [42,43], three of which are ion channels (AQPs 0,
1 and 6). Ionic conductances have not been observed in oocytes expressing mammalian AQP4 or
AQP5. HsAQP1 is thought to be activated via cGMP interaction with arginine residues in the loop D
domain, and influenced by tyrosine phosphorylation in the carboxyl terminus [9,10,44]. Plants have a
substantial number of AQP loci, divided into five subfamilies. One of the model plants, Arabidopsis,
for example has 35 aquaporin genes [25]. The plant subfamily of Plasma membrane Intrinsic Proteins
(PIPs) is divided into two groups, PIP1 and PIP2, with five and eight members, respectively. Results
here are the first to show that the plant AQP AtPIP2;2 from Arabidopsis conducts an ion current when
expressed in Xenopus oocytes in low Ca2+ saline. An ionic conductance was not observed for AtPIP2;7
expressing oocytes in the same conditions. AtPIP2;1 [13] and the soybean Nodulin 26 [45] also have
ion channel activity.

Osmotic water permeability assays or confocal microscopy confirmed that the diverse classes of
AQPs (AtPIP2;7, AtPIP2;2, AtPIP2;1, RnAQP4, RnAQP5, HsAQP1 and DmBIB) were expressed and
trafficked to the oocyte plasma membrane (Figure 1). Two electrode voltage clamp assays demonstrated
the ion conducting properties of AtPIP2;2, AtPIP2;1, HsAQP1 and DmBIB expressing oocytes (Figure 2),
which were distinct from control, and from oocytes expressing AtPIP2;7, RnAQP4 or RnAQP5 channels.
Previously we demonstrated that AtPIP2;1 expression in oocytes enhanced the transport of Na+,
as quantified by measuring internal Na+ accumulation and by measuring Na+ fluxes with external ion
sensitive electrodes; these findings were corroborated by results with AtPIP2;1 expressing yeast, which
also showed increased intracellular Na+ [13]. Here we report that AtPIP2;2 channels also enhanced
Na+ transport, as measured by increased accumulation of Na+ in AtPIP2;2 expressing oocytes relative
to control (Figure 2C). Low baseline currents recorded in non-AQP expressing control oocytes were



Int. J. Mol. Sci. 2017, 18, 2323 12 of 19

similar to those in RnAQP4, RnAQP5, and AtPIP2;7 expressing oocytes, indicating these AQPs are
unlikely to function as ion channels under the conditions tested.

The lack of ionic conductance responses in oocytes expressing RnAQP4, RnAQP5 and AtPIP2;7
provide a valuable benchmark. These results indicate that it is unlikely that the ionic conductances
observed for AtPIP2;2, AtPIP2;1, HsAQP1 and DmBIB were simply due to indirect mechanisms
(such as activation of native oocyte channels by heterologous protein trafficking, osmotic water stress,
or removal of extracellular divalent cations during recording sessions), since all of these parameters
would have been replicated in oocytes expressing the non-ion conducting AQPs; however, no currents
above baseline were observed for RnAQP4, RnAQP5 or AtPIP2;7. Possible contributions of the native
oocyte Cl− current activated by intracellular Ca2+ [46,47] were minimized by using a holding potential
of −40 mV for the voltage-clamp recordings, which results in inactivation of the native voltage-gated
Ca2+ channels, in accord with our standard practice for experiments on AQP ion channels.

Further research is needed to define the specific interaction sites for divalent cations as blockers
of AQP channels. Pairs of negatively charged amino acids are characteristic of calcium binding sites in
other channels [48]. Alignments of amino acid sequences (as illustrated in Figure 7) can offer testable
predictions of candidate sites for further evaluation. Results here showed that application of Ca2+

inhibited the HsAQP1, DmBIB, AtPIP2;1 and AtPIP2;2 ionic conductances, with AtPIP2;1 and AtPIP2;2
channels showing the highest sensitivity, as well as relief of inhibition by the co-application of excess
Ba2+. A number of possible sites have been implicated in AQP interactions with divalent cations,
associated with both intracellular and extracellular domains of AQP channels. For example, wild
type DmBIB is not blocked by Mg2+; however, mutation of glutamate (E71) to aspartate created a
gain-of-function sensitivity to inhibition by Mg2+ [12]. The E71 residue is modeled from homologous
crystal structures as being in the cytoplasmic half of the first transmembrane domain (M1). Data
here showed that HsAQP1, DmBIB, AtPIP2;1 and AtPIP2;2 currents were blocked by Cd2+. In the
spinach (Spinacia oleracea) SoPIP2;1 channel, Cd2+ interacts with negatively charged aspartate (D28)
and glutamate (E31) residues located in the intracellular amino terminus, in a region suggested to
anchor the loop D gating domain [49]; homologous residues are found in AtPIP2;1 (D28 and E31) and
AtPIP2;2 (D26 and E29). Residues at E31, R124 and H199 in AtPIP2;1 also have been identified (based on
site-directed mutagenesis to alanine) that resulted in changes in sensitivity of the AQP water channel
function to divalent ions Ca2+ and Cd2+ [40]. The first known blocker of mammalian AQP1 water
permeability was extracellularly applied Hg2+ which covalently binds to a cysteine (C189 in human
AQP1) in the loop E domain, part of the extracellular water pore vestibule [50]. Mutation of this
cysteine to serine or alanine had no effect on Cd2+-induced inhibition of ion currents in HsAQP1
expressing oocytes indicating that this cysteine is not involved in the reversible blocking effects of
divalent cations described here.

The HsAQP1, DmBIB, AtPIP2;1, and AtPIP2;2 channels showed voltage-sensitive inhibition by
Ba2+ and Cd2+, and time- and voltage-dependent unblocking of the outward currents at positive
potentials. The voltage-sensitivity of block suggests that the site of action of divalent cations for AQP
cation channels is within the membrane electrical field. Although the observed outward rectification
would be consistent with exit of the positively charged blocker towards the extracellular side of
the channel during depolarization, the time required for onset of Cd2+ inhibition (over minutes)
suggests that divalent ion permeation to a site on the intracellular side of the electrical field cannot
be ruled out. DmBIB channels showed an increase in current amplitude after Ba2+ as compared with
divalent-free saline, suggesting possible unblocking of the ion channel from a steady state level of
inhibition perhaps involving an intracellular divalent cation. The competitive displacement of Ca2+ by
excess Ba2+ (seen most dramatically in AtPIP2;1 and AtPIP2;2 ion channels) suggests that: (i) these
divalent ions use the same site to inhibit function, (ii) the affinity for Ca2+ is greater than that for Ba2+,
and (iii) the inhibitory effect is likely to be mediated by direct interaction rather than indirectly through
Ca2+-dependent kinases.
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Figure 7. Amino acid sequence alignment of HsAQP1, RnAQP4, RnAQP5, AtPIP2;1, AtPIP2;2, AtPIP2;7
and DmBIB. Sequences from the NCBI Protein Database were aligned using Clustal Omega software
(Available online: http://www.ebi.ac.uk/Tools/msa/clustalo/; accessed on 18 October 2017). HsAQP1
protein topology was from the Topology Data Bank of Transmembrane Proteins (TOPDB). Symbols:
asterisk (*) identical residues across all sequences; colon (:) highly conserved residue; period (.)
semi-conserved residue. Hyphens (-) show gaps; black vertical lines separate predicted domains, as
labelled. Colors illustrate chemical properties: positive charged (magenta), negative charged (blue),
polar (green), hydrophobic (red). Highlighted in yellow are NPA (Asn-Pro-Ala) signature motifs
located in loops B and E, conserved in most aquaporins. The carboxy terminus of DmBIB was truncated
for this figure.
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4. Materials and Methods

4.1. Preparation and Injection of Xenopus laevis Oocytes

The use of animals in this study was done in accord with the Guide for the Care and Use of
Laboratory Animals, licensed under the South Australian Animal Welfare Act 1985, with protocols
approved by the University of Adelaide Animal Ethics Committee (approval number M-2013-167,
20 September 2013). Oocytes were obtained from adult female Xenopus laevis frogs kept at the University
of Adelaide Animal Laboratory Services. Oocytes were defoliculated using collagenase (type 1A,
1 mg/mL; Sigma-Aldrich, St. Louis, MO, USA) with trypsin inhibitor (0.05 mg/mL; Sigma-Aldrich)
in calcium free saline containing 96 mM NaCl, 2 mM KCl, 5 mM MgCl2, penicillin 100 units/mL
streptomycin 0.1 mg/mL, and 5 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) at
pH 7.6, for 1 to 1.5 h. Oocytes were kept at 16 ◦C in standard Frog Ringers saline consisting of 96 mM
NaCl, 2 mM KCl, 5 mM MgCl2, 0.6 mM CaCl2, 5 mM HEPES buffer, horse serum (5%; Sigma-Aldrich),
penicillin 100 units/mL streptomycin 0.1 mg/mL, and tetracycline 0.5 mg/mL, pH 7.6.

Aquaporin cDNAs were linearized and transcribed in vitro using published methods [9,11,13,51].
NCBI Protein Accession Numbers for the cDNA constructs used in the study are: AAA66221.1 (RnAQP5,
Rattus norvegicus); AAC52152.1 (RnAQP4, R. norvegicus); NP_932766.1 (HsAQP1, Homo sapiens);
NP_001030851.1 (AtPIP2;1, Arabidopsis thaliana); NP_181254.1 (AtPIP2;2, A. thaliana); NP_001190920.1
(AtPIP2;7, A. thaliana); P23645.2 (DmBIB, Drosophila melanogaster). The DmBIB cDNA sequence used
here was modified as described previously to incorporate a hemagglutinin-epitope tag which did not
impair channel expression or function [11].

Stage V–VI oocytes were selected and injected with 50 nL of sterile water (RNase free) containing
1 ng of HsAQP1, RnAQP4, or RnAQP5 cRNAs; 12 ng of AtPIP2;7, AtPIP2;2 or AtPIP2;1 cRNAs; or
20 ng of Drosophila BIB cRNA using a manual oocyte microinjection pipette (Drummond Scientific,
Broomall, PA, USA). Oocytes injected with 50 nL of sterile water served as non-AQP-expressing
(sham) controls. During the incubation post-injection to allow protein expression, oocytes injected
with HsAQP1 or DmBIB cRNAs were maintained in standard Frog Ringers saline (2–5 days). Oocytes
injected with AtPIP2;7, AtPIP2;2 or AtPIP2;1 cRNA were maintained in high potassium Frog Ringers
saline (62 mM NaCl, 36 mM KCl, 5 mM MgCl2, 0.6 mM CaCl2, 5 mM HEPES buffer, horse serum
5%, penicillin 100 units/mL, streptomycin 0.1 mg/mL, and tetracycline 0.5 mg/mL, pH 7.6) for 1 to
1.5 days. Maintenance in high potassium Frog Ringers enhanced viability and extended the useful
life of the AtPIP-expressing oocytes. Prior to experiments, all sham controls and AQP-expressing
oocytes were rinsed in divalent-free saline for 10 min. To confirm successful expression, osmotic
swelling assays were used for oocytes expressing AtPIP2;7, AtPIP2;2, AtPIP2;1, RnAQP4, or RnAQP5
or HsAQP1 channels, and by confocal immunostaining for oocytes expressing hemagglutinin-epitope
tagged DmBIB channels, as per published methods [9,11,13,51].

4.2. Osmotic Swelling Assays

Control and AQP-expressing oocytes were rinsed in calcium free saline for 10 min. Swelling
assays were performed in 50% hypotonic saline (calcium-free saline diluted with equal volume of
water). Changes in the cross-sectional area of oocytes membranes were imaged using a grayscale
camera device (Cohu, San Diego, CA, USA) mounted on a dissecting microscope (Olympus SZ-PT;
Olympus, Macquarie Park, Australia). Images were captured at 0.5 per second for 60 s. Swelling
responses of the oocytes were assessed with Image J software (National Institutes of Health, Bethesda,
MD, USA) (Available online: http://rsbweb.nih.gov/ij/; accessed on 31 October 2017). Swelling rates
were measured as slope values of the linear regression fits of relative volume as a function of time
using Prism (GraphPad Software Inc., San Diego, CA, USA).

http://rsbweb.nih.gov/ij/
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4.3. Two Electrode Voltage Clamp Recordings

Two-electrode voltage clamp recordings were used to record currents from AQP-expressing and
control oocytes at room temperature. Capillary glass electrodes (1–3 MΩ) were filled with 1 M KCl.
Recordings were performed in isotonic saline containing 100 mM NaCl, 2 mM KCl, 5 mM HEPES,
and calculated amounts of CaCl2 buffered with 20 mM EGTA (ethylene glycol-bis(β-aminoethyl
ether)-N,N,N′,N′-tetraacetic acid) to achieve the desired final concentration of free calcium, calculated
using the online application (Available online: http://maxchelator.stanford.edu/CaEGTA-NIST.
htm, accessed on 31 October 2017). The membrane permeable cyclic GMP analog, CPT-cGMP
((Rp)-8-(para-chlorophenylthio)-cGMP; Sigma-Aldrich) was applied as a bolus into the extracellular
bath to achieve a final concentration of 10 µM. Conductance responses were monitored through the
experiments by repeated steps to +40mV (800-ms duration) every 6 s from a holding potential of
−40 mV, using a GeneClamp amplifier and Clampex 9.0 software (pClamp 9.0 Molecular Devices,
Sunnyvale, CA, USA). Data were filtered at 2 kHz and stored to a hard disk for analysis. Quantitative
values of the magnitude of relative outward rectification were calculated by standardizing outward
current amplitude (at +60 mV) to inward current amplitude (at −80 mV). The AQP1 ion channel
blocker AqB011 was custom synthesized by Gary Flynn (Spacefill Enterprises, Bozeman, MT, USA) as
described previously [19]. Statistical analyses were done with one-way ANOVA with Bonferroni post
hoc tests; p values are indicated in the figure legends.

4.4. Measurement of Oocyte Na+ Accumulation

The moles of Na+ in control and AtPIP2;2 expressing oocytes were measured three days after
injection of sterile water or cRNA. Oocytes were incubated in Frog Ringers containing 96 mM NaCl.
Five oocytes per sample were homogenized in 1 mL of 1% nitric acid and incubated at 75 ◦C for
1 h. Twenty control and 20 AtPIP2;2 expressing oocytes were included in the experiment, with five
oocytes per sample and four replicate samples used. Aliquots were diluted in 1% nitric acid and the
moles of Na+ in the oocytes were measured relative to known standards using a flame photometer
(M410, Corning, NY, USA) following methods published previously [52].

4.5. Bath Application of Divalent Cations

The effects of divalent cations Ca2+, Mg2+, Ba2+ and Cd2+ were tested in oocytes expressing
HsAQP1, AtPIP2;7, AtPIP2;2, AtPIP2,1 and DmBIB channels. Oocytes were placed in EGTA-buffered
divalent-free saline for the initial electrophysiological recordings. Oocytes expressing HsAQP1 were
treated with CPT-cGMP and monitored for 30 min to allow currents to reach maximal activation. Only 2
to 3 min were needed for oocytes expressing DmBIB, AtPIP2;1 and AtPIP2;2 to allow stabilization of the
current response since these channels showed activation from the time the recording electrodes were
placed in the oocyte membrane. After recording the initial activated responses, the bath saline was
perfused with test salines containing Ca2+, Mg2+ or Ba2+ as described in the experiments; new steady
state response levels were established within 1–2 min. The conductance responses were measured at
6 min steady state. Washout was done by perfusing the bath with divalent-free saline.

5. Conclusions

Differential inhibition by divalent cations could be utilized by cells as a gating mechanism for
adjusting AQP ion channel functionality in signal processing, volume control and fluid homeostasis
processes. The regulation of AtPIP2;1, and AtPIP2;2 channels by Ca2+ is important for generating
adaptive responses to environmental stressors [32]. AtPIP2;1 modulation by Ca2+ and pH may
enable control of volume and turgor in guard cells and other cell types [53–55] but AtPIP2;1 is also
permeable to H2O2, which is a component of signaling for guard cell closure [28]. AtPIP2;2 channels
are abundantly expressed in roots, and essential for maintaining transmembrane water transport under
osmotic stress conditions [27]. Non-Selective Cation Channels (NSCC) found in epidermal protoplast

http://maxchelator.stanford.edu/CaEGTA-NIST.htm
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membranes of Arabidopsis thaliana roots are inhibited by Ca2+ and pH [41]; Byrt and colleagues [13]
have hypothesized that AtPIP2;1 may be a molecular candidate for the identity of the NSCC channels.
With the discovery here that AtPIP2;2 also can conduct ions, the number of molecular candidates for
the NSCC is increasing.

Inhibition of ion channel function by AqB011 was confirmed for HsAQP1, but was not observed
in oocytes expressing AtPIP2;1 or AtPIP2;2 channels. Based on in silico modelling, AqB011 previously
was predicted to act at the intracellular side of the AQP1 channel at the loop D gating domain [19],
specifically at a pair of arginine residues (the first two) within a series of four arginines that is highly
conserved among vertebrate AQP1 channels, and also implicated in cGMP-mediated activation of
the ionic conductance [10]. Interestingly, this pair of arginines is not present in AtPIP2;1 or AtPIP2;2
sequences, which instead have a proline residue as the first residue in the loop D series (Figure 7).
These data are consistent with the idea that the loop D domain could be the target for the AqB011
interaction, and support the idea that AQP pharmacological agents can be expected to exhibit subtype
selectivity based on differences in amino acid sequence in key functional domains of AQP channels.
Understanding the pharmacological and physiological regulation of AQP ion channels is essential for
defining their diverse array of functional properties and translational roles in living organisms across
the kingdoms of life.
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