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Abstract

Arsenic (As) and DDT have been intensively used in the dipping liquid to control

cattle tick (Boophilus microplas) in northern New South Wales, Australia. Concentrations of

total As and hexane extractable DDT in the surface (0-10 cm) soils from 11 dip sites ranged

from 34 to294l mg As kg-r and 2.9-7673)mg DDT kg-r soils, respectively.

High residual levels of As and DDT from such cattle dipping operations may have

adverse impact on soil microbes which are important for maintaining soil fertility and in

assisting soil remediation. Long-term effects of mixed As and DDT contaminants upon soil

microbial properties were examined by comparing polluted and unpolluted soils. Microbial

studies included the measurement of bacterial and fungal populations as well as microbial

biomass C and soil respiration. There was a highly significant difference between the

microbial properties of polluted and unpolluted sites (p<0.001). In comparison to unpolluted

soils, fungal counts, microbial biomass C and respiration were dramatically reduced

(p<0.05) in polluted soils. Generally, however the bacterial populations between polluted and

unpolluted soils were not different (p!0.05). The combined effects of As and DDT

contaminants resulted in an increased stress on soil microorganisms than a single compound.

The results of this study suggest that long-term contamination by As and DDT of soils

adjacent to former qattle dipping soils adversely affects soil microbial properties and alters

the microbial characteristics as shown by a reduction in fungal abundance and development

of selected resistant bacterial population.

Microbial conversion of As plays an essential role in the distribution and mobilisation

of As in soils and these mechanisms may remove As from polluted soils. Recently, it has
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been reported that microbial methylation of As with subsequent As volatilisation could

potentially be developed as a remediation strategy for As contaminated soils. Many studies

have investigated As volatilisation by microbes in As polluted soils, but no work has

examined this microbial transformation in soils containing additional contaminants of DDT.

This study was conducted to assess whether the addition of exogenous nutrients and

augmentation of arsenic (As) methylating organisms were able to accelerate the rates of As

volatilisation in soils containing mixed contaminants of As and DDT. Results showed that

the rates of As loss in long-term contaminated dip soils was stimulated by cow manure

amendments and basic environmental optimisation that favours aerobic microbial processes.

A minor rate of As loss was observed in control soils either in autoclaved or unautoclaved

(without nutrient addition) soils, indicating the process was mediated predominantly by

microorganisms. Increasing manure levels added resulted in a gleater amount of As release in

contaminated soils, following the order: 30o/o > l5yo > 5% (wlw) of manure > cow urine

amendment. Soil moisture affected the rates of As loss þ:0.05) and the yield was optimised

at75o/o of field capacity. The supplement of 30% (w/w) of manure at 75Yo of field capacity

soils exerted the greatest reduction of As concentrations (8.3% loss of initial total As

concentration) in a contaminated dip soil containing 1390 mg As kgr and 194 mgDDT kg-t

in 5 months. The rates of As loss and microbial respiration (CO2 production) were correlated

with added nutrient levels (pS0.05).

Screening of As and DDT resistant fungi for As methylating ability shows that 2

fungal isolates (Penicillium and Uocladium sp.) were the most active arsine producers

yielding 0.32 and 0.40 ¡rg of arsine, respectively in 7 days. These 2 fungal cultures were

observed to be able to grow on the contaminated environment of dip soils as indicated by
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distribution of fungal mycelia on the entire surface soil in the flask. The augmentation of

both fungi enhanced the arsine evolution rates either in field contaminated soils or freshly

As-added soils. The amounts of arsine dissipated in contaminated soils and As-spiked soils

were 3.7 and 8.3 fold respectively when compared to uninoculated soils. Moreover, an algal

species (Stichococcr.rs sp.) isolated from As contaminated dip soils was shown to be capable

of generating arsine on various As levels substrates. The algal culture produced arsine on the

media amended with 25, 50 and 100 pg As ml--r which yielded 0.08,0.14 and 0.11 pg of

arsine, respectively over 7 days. No arsine was trapped on the media added with 200 pg As

ml-r. The inoculation of this alga to either polluted or As-amended soils was able to

accelerate the rates of As volatilisation. Similar to fungal observation, a greater arsine

evolution rate was noticed in uncontaminated soils (spiked with 50 mg As kgr) than in

polluted soils. The results suggest that the presence of DDT in contaminated dip soils

possibly limits the As volatilisation rates by microbes.
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