
Synchronised firing patterns in a random network of adaptive exponential

integrate-and-fire neuron model

F. S. Borges1, P. R. Protachevicz2, E. L. Lameu2, R. C. Bonetti2, K. C. Iarosz1,3,∗, I. L. Caldas1, M. S. Baptista3, A.
M. Batista1,2,3,4,∗

1Instituto de F́ısica, Universidade de São Paulo, São Paulo, SP, Brazil.

2Pós-Graduação em Ciências/F́ısica, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil.

3Institute for Complex Systems and Mathematical Biology, Aberdeen, SUPA, UK.
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Abstract

We have studied neuronal synchronisation in a random network of adaptive exponential integrate-and-fire neurons. We
study how spiking or bursting synchronous behaviour appears as a function of the coupling strength and the probability
of connections, by constructing parameter spaces that identify these synchronous behaviours from measurements of the
inter-spike interval and the calculation of the order parameter. Moreover, we verify the robustness of synchronisation by
applying an external perturbation to each neuron. The simulations show that bursting synchronisation is more robust
than spike synchronisation.
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1. Introduction

The concept of synchronisation is based on the adjust-
ment of rhythms of oscillating systems due to their interac-
tion (Pikovsky et al., 2001). Synchronisation phenomenon
was recognised by Huygens in the 17th century, time when
he performed experiments to understand this phenomenon
(Bennet et al., 2002). To date, several kinds of synchroni-
sation among coupled systems were reported, such as com-
plete (Li & Li, 2016), phase (Pereira et al., 2007; Batista et
al., 2010), lag (Huang et al., 2014), and collective almost
synchronisation (Baptista et al., 2012).

Neuronal synchronous rhythms have been observed in a
wide range of researches about cognitive functions (Wang,
2010; Hutcheon & Yarom, 2000). Electroencephalogra-
phy and magnetoencephalography studies have been sug-
gested that neuronal synchronisation in the gamma fre-
quency plays a functional role for memories in humans
(Axmacher et al., 2006; Fell & Axmacher, 2011). Stein-
metz et al. (Steinmetz et al., 2000) investigated the syn-
chronous behaviour of pairs of neurons in the secondary
somatosensory cortex of monkey. They found that atten-
tion modulates oscillatory neuronal synchronisation in the
somatosensory cortex. Moreover, in the literature it has
been proposed that there is a relationship between con-
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scious perception and synchronisation of neuronal activity
(Hipp et al., 2011).

We study spiking and bursting synchronisation betwe-
en neuron in a neuronal network model. A spike refers to
the action potential generated by a neuron that rapidly
rises and falls (de Lange & Hasler, 2008), while bursting
refers to a sequence of spikes that are followed by a qui-
escent time (Wu et al., 2012). It was demonstrated that
spiking synchronisation is relevant to olfactory bulb (Davi-
son et al., 2001) and is involved in motor cortical functions
(Riehle et al., 1997). The characteristics and mechanisms
of bursting synchronisation were studied in cultured corti-
cal neurons by means of planar electrode array (Maeda et
al., 1995). Jefferys & Haas (Jefferys & Haas, 1982) discov-
ered synchronised bursting of CA1 hippocampal pyramidal
cells.

There is a wide range of mathematical models used to
describe neuronal activity, such as the cellular automa-
ton (Viana et al., 2014), the Rulkov map (Rulkov, 2001),
and differential equations (Hodgkin & Huxley, 1952; Hind-
marsh & Rose, 1984). One of the simplest mathemati-
cal models and that is widely used to depict neuronal be-
haviour is the integrate-and-fire (Lapicque, 1907), which is
governed by a linear differential equation. A more realistic
version of it is the adaptive exponential integrate-and-fire
(aEIF) model which we consider in this work as the local
neuronal activity of neurons in the network. The aEIF is
a two-dimensional integrate-and-fire model introduced by
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Brette & Gerstner (Brette & Gerstner, 2005). This model
has an exponential spike mechanism with an adaptation
current. Touboul & Brette (Touboul & Brette, 2008) stud-
ied the bifurcation diagram of the aEIF. They showed the
existence of the Andronov-Hopf bifurcation and saddle-
node bifurcations. The aEIF model can generate multi-
ple firing patterns depending on the parameter and which
fit experimental data from cortical neurons under current
stimulation (Naud et al., 2008).

In this work, we focus on the synchronisation phe-
nomenon in a randomly connected network. This kind of
network, also called Erdös-Rényi network (Erdös & Rényi,
1959), has nodes where each pair is connected according to
a probability. The random neuronal network was utilised
to study oscillations in cortico-thalamic circuits (Gelenbe
& Cramer, 1998) and dynamics of network with synaptic
depression (Senn et al., 1996). We built a random neu-
ronal network with unidirectional connections that repre-
sent chemical synapses.

We show that there are clearly separated ranges of pa-
rameters that lead to spiking or bursting synchronisation.
In addition, we analyse the robustness to external per-
turbation of the synchronisation. We verify that bursting
synchronisation is more robustness than spiking synchroni-
sation. However, bursting synchronisation requires larger
chemical synaptic strengths, and larger voltage potential
relaxation reset to appear than those required for spiking
synchronisation.

This paper is organised as follows: in Section II we
present the adaptive exponential integrate-and-fire model.
In Section III, we introduce the neuronal network with ran-
dom features. In Section IV, we analyse the behaviour of
spiking and bursting synchronisation. In the last Section,
we draw our conclusions.

2. Adaptive exponential integrate-and-fire

As a local dynamics of the neuronal network, we con-
sider the adaptive exponential integrate-and-fire (aEIF)
model that consists of a system of two differential equa-
tions (Brette & Gerstner, 2005) given by

C
dV

dt
= −gL(V − EL) + gL∆T exp

(

V − VT
∆T

)

+I − w,

τw
dw

dt
= a(V − EL)− w, (1)

where V (t) is the membrane potential when a current I(t)
is injected, C is the membrane capacitance, gL is the leak
conductance, EL is the resting potential, ∆T is the slope
factor, VT is the threshold potential, w is an adaptation
variable, τw is the time constant, and a is the level of
subthreshold adaptation. The parameter ∆T controls the
sharpness of the initial phase of the spike (Badel et al.,
2008) and in the limit ∆T → 0 the neuron model becomes
a standard leaky integrate-and-fire neuron model (Clopath

et al., 2007). If V (t) reaches the threshold Vpeak, a reset
condition is applied: V → Vr and w → wr = w+ b. In our
simulations, we consider C = 200.0pF, gL = 12.0nS, EL =
−70.0mV, ∆T = 2.0mV, VT = −50.0mV, I = 509.7pA,
τw = 300.0ms, a = 2.0nS, and Vpeak = 20.0mV (Naud et
al., 2008).

The firing pattern depends on the reset parameters Vr
and b. Table 1 exhibits some values that generate five
different firing patterns (Fig. 1). In Fig. 1 we represent
each firing pattern with a different colour in the parameter
space b×Vr: adaptation in red, tonic spiking in blue, initial
bursting in green, regular bursting in yellow, and irregular
in black. In Figs. 1(a), 1(b), and 1(c) we observe adapta-
tion, tonic spiking, and initial burst pattern, respectively,
due to a step current stimulation. Adaptation pattern has
increasing inter-spike interval during a sustained stimulus,
tonic spiking pattern is the simplest regular discharge of
the action potential, and the initial bursting pattern starts
with a group of spikes presenting a frequency larger than
the steady state frequency. The membrane potential evo-
lution with regular bursting is showed in Fig. 1(d), while
Fig. 1(e) displays irregular pattern.

Table 1: Reset parameters.

Firing patterns Fig. b (pA) Vr (mV) Layout
adaptation 1(a) 60.0 -68.0 red
tonic spiking 1(b) 5.0 -65.0 blue
initial burst 1(c) 35.0 -48.8 green

regular bursting 1(d) 40.0 -45.0 yellow
irregular 1(e) 41.2 -47.4 black
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Figure 1: (Colour online) Parameter space for the firing patterns as
a function of the reset parameters Vr and b. (a) Adaptation in red,
(b) tonic spiking in blue, (c) initial bursting in green, (d) regular
bursting in yellow, and (e) irregular in black.
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As we have interest in spiking and bursting synchro-
nisation, we separate the parameter space into a region
with spike and another with bursting patterns (Fig. 2).
To identify these two regions of interest, we use the coeffi-
cient of variation (CV) of the neuronal inter-spike interval
(ISI), that is given by

CV =
σISI

ISI
, (2)

where σISI is the standard deviation of the ISI normalised
by the mean ISI (Gabbiani & Koch, 1998). Spiking pat-
terns produce CV < 0.5. Parameter regions that represent
the neurons firing with spiking pattern are denoted by gray
colour in Fig. 2. Whereas, the black region represents the
bursting patterns, which results in CV ≥ 0.5.
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Figure 2: Parameter space for the firing patterns as a function of
the reset parameters Vr and b. Spike pattern in region I (CV < 0.5)
and bursting pattern in region II (CV ≥ 0.5) are separated by white
circles.

3. Spiking or bursting synchronisation

In this work, we constructed a network where the neu-
rons are randomly connected (Erdös & Rényi, 1959). Our
network is given by

C
dVi
dt

= −gL(Vi − EL) + gL∆T exp

(

Vi − VT
∆T

)

+Ii − wi + gs(VREV − Vi)
N
∑

j=1

Aijsj

+Γi,

τw
dwi

dt
= ai(Vi − EL)− wi,

τs
dsi
dt

= −si. (3)

where Vi is the membrane potential of the neuron i, gs
is the synaptic conductance, VREV is the synaptic rever-
sal potential, τs is the synaptic time constant, si is the
synaptic weight, Aij is the adjacency matrix, Γi is the ex-
ternal perturbation, and ai is randomly distributed in the

interval [1.9, 2.1] to simulate a network composed by neu-
rons with different parameters. We consider Ii = 509.7pA,
VREV = 0mV (excitatory) or VREV = −80mV (inhibitory),
τs = 2.728ms, and N = 100. For this Ii value, when the
neurons are uncoupled (gs = 0), they spike with a fre-
quency of about 9.2Hz. In addition, Ii is a control param-
eter that can avoid large firing rate. The synaptic conduc-
tance gs represent the strength of the excitatory (gex) or
inhibitory (gin) connections. The time-step of integration
is 10−2.

We consider a neuronal network model where each neu-
ron is randomly linked to other neurons with a proba-
bility p by means of directed connections. When p is
equal to 1, the neuronal network becomes an all-to-all net-
work. A network with this topology was used by Borges
et al. (Borges et al., 2016) to study the effects of the spike
timing-dependent plasticity on the synchronisation in a
Hodgkin-Huxley neuronal network.

A useful diagnostic tool to determine synchronous be-
haviour is the complex phase order parameter defined as
(Kuramoto, 2003)

z(t) = R(t) exp(iΦ(t)) ≡
1

N

N
∑

j=1

exp(iψj), (4)

where R and Φ are the amplitude and angle of a centroid
phase vector, respectively, and the phase is given by

ψj(t) = 2πm+ 2π
t− tj,m

tj,m+1 − tj,m
, (5)

where tj,m corresponds to the time when a spike m (m =
0, 1, 2, . . .) of a neuron j happens (tj,m < t < tj,m+1).
We have considered the beginning of the spike when Vj >
−20mV. The value of the order parameter magnitude goes
to 1 in a totally synchronised state. To study the neu-
ronal synchronisation of the network, we have calculated
the time-average order-parameter, that is given by

R =
1

tfin − tini

tfin
∑

tini

R(t), (6)

where tfin − tini is the time window for calculating R̄. We
consider a time window equal to 104ms and one trial to
compute R̄ due to the fact that the results do not have
any qualitative dependence on the initial conditions.

Figures 3(a), 3(b), and 3(c) show the raster plots of
the excitatory neuronal network for gex = 0.02nS, gex =
0.19nS, and gex = 0.45nS, respectively, considering Vr =
−58mV, p = 0.5, and b = 70pA, where the dots corre-
spond to the spiking activities generated by neurons. For
gex = 0.02nS (Fig. 3(a)) the network displays a desynchro-
nised state, and as a result, the order parameter values are
very small (black line in Fig. 3(d)). Increasing the synap-
tic conductance for gex = 0.19nS, the neuronal network
exhibits spike synchronisation (Fig. 3(b)) and the order
parameter values are near unity (red line in Fig. 3(d)).
When the network presents bursting synchronisation (Fig.
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3(c)), the order parameter values vary between R ≈ 1 and
R ≪ 1 (blue line in Fig. 3(d)). R ≪ 1 to the time when
the neuron are firing.
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Figure 3: (Colour online) Raster plot of the excitatory neuronal
network for (a) gex = 0.02nS, (b) gex = 0.19nS, and (c) gex = 0.45nS,
considering Vr = −58mV, p = 0.5, and b = 70pA. In (d) the order
parameter is computed for gex = 0.02nS (black line), gex = 0.19nS
(red line), and gex = 0.45nS (blue line).

In Fig. 4(a) we show R̄ as a function of gex of the exci-
tatory neuronal network for p = 0.5, b = 50pA (black line),
b = 60pA (red line), and b = 70pA (blue line). The three
results exhibit strong synchronous behaviour (R̄ > 0.9)
for many values of gex when gex & 0.4nS . However, for
gex . 0.4nS, it is possible to see synchronous behaviour
only for b = 70pA in the range 0.15nS < gex < 0.25nS.
The curves have a bimodal nature, the minimal point hap-
pening due to the fact of the transition between spiking
and bursting synchronisation occurs by means of a pro-
cess of desynchronisation. In addition, we calculate the
coefficient of variation (CV) to determine the range in gex
where the neurons of the network have spiking or burst-
ing behaviour (Fig. 4(b)). We consider that for CV< 0.5
(black dashed line) the neurons exhibit spiking behaviour,
while for CV≥ 0.5 the neurons present bursting behaviour.
We observe that in the range 0.15nS < gex < 0.25nS for
b = 70pA there is spiking synchronisation, and bursting

synchronisation for gex & 0.4nS.
When gex is small, our neuronal network is like weakly

coupled oscillators (WCO). The theory of WCO can be
utilised not only to predict phase locking, but also to re-
duce the dynamics to a set of phase equations (Hoppen-
steadt & Izhikevich, 1997). Hansel et al. (Hansel et al,
1993) studied Hodgkin-Huxley neurons coupled by weak
excitatory interactions. They showed that excitatory cou-
pling may have significant consequences in the firing rates
between the neurons. In fact, we observe that when aEIF
neurons are weakly connected (gex < 0.1) by excitatory
connections, neurons present significant levels of spiking
synchronisation.
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Figure 4: (Colour online) (a) Time-average order parameter and (b)
CV of the excitatory neuronal network for Vr = −58mV, p = 0.5,
b = 50pA (black line), b = 60pA (red line), and b = 70pA (blue line).

Ostojic (Ostojic, 2014) studied asynchronous activity
in balanced networks of excitatory and inhibitory neu-
rons in integrate-and-fire (LIF). We study the influence
of the contribution of the relative inhibitory and excita-
tory strength on the firing patterns. Figures 5(a) and
5(b) exhibit R̄ and CV, respectively, for the neuronal net-
work with 80% of excitatory and 20% of inhibitory con-
nections. Comparing the results of Fig. 5 for gin/gex = 1
with Fig. 4 (blue line), we find similar behaviour in both
cases, namely spiking and bursting synchronisation with
a transition region. However, when gin/gex = 4 the over-
all synchronous level, measured by the order parameter
(Fig. 5(a)), decreases. Moreover we verify desynchronised
spikes for 0 < gex . 1.6, as well as desynchronised spikes
and bursts for gex & 1.6 (Fig. 5(b)). The increase of the
relative inhibition strength suppresses the synchronisation.

4. Parameter space of synchronisation

The synchronous behaviour depends on the synaptic
conductance and the probability of connections. In this
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Figure 5: (Colour online) (a) Time-average order parameter and (b)
CV of the excitatory-inhibitory neuronal network for Vr = −58mV,
p = 0.5, b = 70pA, Vr = −58mV, and Ii = 509.7pA, where we
consider gin/gex = 1 (black line) and gin/gex = 4 (red line).

Section, we analyse the parameter space of synchronisa-
tion of the excitatory neuronal network. Figure 6 exhibits
the time-averaged order parameter in colour scale as a
function of gex and p. We verify a large parameter re-
gion where spiking and bursting synchronisation is strong,
characterised by R̄ > 0.9. The regions I and II correspond
to spiking and bursting patterns, respectively, and these
regions are separated by a white line with circles. We ob-
tain the regions by means of the coefficient of variation
(CV). There is a transition between region I and region
II, where neurons initially synchronous in the spike, loose
spiking synchronicity to give place to a neuronal network
with a regime of bursting synchronisation.
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Figure 6: (Colour online) Excitatory synaptic conductance gex as a
function of the probability p for Vr = −58mV and b = 70pA, where
the colour bar represents the time-average order parameter. The
regions I (spike patterns) and II (bursting patterns) are separated
by the white line with circles.

We investigate the dependence of spiking and burst-
ing synchronisation on the control parameters b and Vr.
To do that, we use the time average order parameter and
the coefficient of variation. Figure 7 shows that the spike
patterns region (region I) decreases when gex increases.
This way, the region I for b < 100pA and Vr = −49mV
of parameters leading to no synchronous behaviour (Fig.
7(a)), becomes a region of parameters that promote syn-
chronised bursting (Fig. 7(b) and 7(c)). However, a large
region of desynchronised bursting appears for gex = 0.25nS
about Vr = −45mV and b > 100pA in the region II (Fig.
7(b)). For gex = 0.5nS, we see, in Fig. 7(c), three re-
gions of desynchronous behaviour, one in the region I for
b < 100pA, other in region II for b < 200pA, and another
one is located around the border (white line with circles)
between regions I and II for b > 200pA.
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Figure 7: (Colour online) Parameter space b× Vr for p = 0.5, γ = 0
(a) gex = 0.05nS, (b) gex = 0.25nS, and (c) gex = 0.5nS, where
the colour bar represents the time-average order parameter. The
regions I (spike patterns) and II (bursting patterns) are separated
by white circles. The white triangle corresponds to b = 86pA and
Vr = −43mV.

Figure 7 shows multiple regions of asynchronous be-
haviour in II. In this region, we observe the existence of
not only bursting behaviour happening for long time in-
tervals, but also happening for short time intervals such as
shown in Fig. 8(a). Figs. 8(a) and 8(b) exhibit the action
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potential and the raster plot, respectively, for parameters
in the region II shown in Fig. 7(a) with a white trian-
gle. In general, CV > 0.5 characterises a network with
neurons presenting irregular spikes. More specifically, we
have verified in our neuronal network model that CV > 0.5
characterise a network with a bursting pattern. The sig-
nal, shown in Fig. 8, R̄ is equal to 0.54 and CV is equal
to 2.96.
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Figure 8: (Colour online) (a) Action potential for two neurons and
(b) raster plot for p = 0.5, b = 86pA, Vr = −43mV, gex = 0.05nS
and Ii = 509.7pA.

It has been found that external perturbations on neu-
ronal networks not only can induce synchronous behaviour
(Baptista et al., 2006; Zhang et al., 2015), but also can
suppress synchronisation (Lameu et al., 2016). Aiming to
study the robustness to perturbations of the synchronous
behaviour, we consider an external perturbation Γi in Eq.
(3) described by a uniform discrete random process which
takes values at each integration step within the interval
[0, 1]. It is applied on each neuron i with an average time
interval of about 10ms and with a constant intensity γ
during 1ms. We also study how this external perturbation
disturbs a neuronal network. We initially set an unper-
turbed neuronal network for parameters that leads to syn-
chronous behaviour. When synchronisation is achieved,
we turn the external perturbation on.

Figure 9 shows the plots gex×p for γ > 0, where the re-
gions I and II correspond to spiking and bursting patterns,
respectively, separated by white line with circles, and the
colour bar indicates the time-average order parameter val-
ues. In this Figure, we consider Vr = −58mV, b = 70pA,
(a) γ = 250pA, (b) γ = 500pA, and (c) γ = 1000pA. For
γ = 250pA (Fig. 9(a)) the perturbation does not sup-
press spike synchronisation, whereas for γ = 500pA the
synchronisation is completely suppressed in region I (Fig.
9(b)). In Fig. 9(c), we see that increasing further the

constant intensity for γ = 1000pA, the external perturba-
tion suppresses also bursting synchronisation in region II.
Therefore,the synchronous behaviour in region II is more
robust to perturbations than in the region I, due to the
fact that the region II is in a range with high gex and p
values, namely strong coupling and high connectivity.
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Figure 9: (Colour online) Excitatory synaptic conductance gex as
a function of the probability p for Vr = −58mV, b = 70pA, (a)
γ = 250pA, (b) γ = 500pA, and (c) γ = 1000pA.

In order to understand the perturbation effect on the
spike and bursting patterns, we consider the same values
of gex and p as Fig. 7(a). Figure 10 exhibits the space
parameter b × Vr, where γ is equal to 500pA. The exter-
nal perturbation suppresses synchronisation in the region
I, whereas we observe synchronisation in region II. The
synchronous behaviour in region II can be suppressed if
the constant intensity γ is increased. Therefore, bursting
synchronisation is more robust to perturbations than spike
synchronisation.

5. Conclusion

In this paper, we studied the spiking and bursting syn-
chronous behaviour in a random neuronal network where
the local dynamics of the neurons is given by the adaptive
exponential integrate-and-fire (aEIF) model. The aEIF
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model can exhibit different firing patterns, such as adap-
tation, tonic spiking, initial burst, regular bursting, and
irregular bursting.

In our network, the neurons are randomly connected
according to a probability. The larger the probability of
connection, and the strength of the synaptic connection,
the more likely is to find bursting synchronisation.

It is possible to suppress synchronous behaviour by
means of an external perturbation. However, synchronous
behaviour with higher values of gex and p, which typi-
cally promotes bursting synchronisation, are more robust
to perturbations, then spike synchronous behaviour ap-
pearing for smaller values of these parameters. Moreover,
we have verified that bursting synchronisation is more ro-
bust not only to larger γ values, but also for different ex-
ternal perturbation frequencies. The synchronised region
in gex×p depends on the external perturbation amplitude
and frequency. We concluded that bursting synchronisa-
tion provides a good environment to transmit information
when neurons are strongly perturbed (large Γ).

The neurons desynchronise near the border between
regions I to II. The dynamical fundamentals for this tran-
sition to occur are still unclear to us and require further
investigation. However, giving the alignment of the bor-
der along the vertical coordinates b, this phenomenon is
critically dependent on the resetting potential Vr in that
for larger values it induces bursting behaviour.

Acknowledgements

This study was possible by partial financial support
from the following Brazilian government agencies: CNPq
(433782/2016-1), CAPES, and FAPESP (2011/19296-1,
2015/07311-7 and 2016/16148-5). We also wish thank
Newton Fund and COFAP.

Axmacher, N., Mormann, F., Fernández, G., Elger, C. E. & Fell,
J. (2006). Memory formation by neuronal synchronization. Brain
Research Reviews, 52 (1), 170-182.

Badel, L., Lefort, S., Brette, R., Petersen, C. C. H., Gerstner, W.
& Richardson, M. J. E. (2008). Dynamic I-V curves are reliable
predictors of naturalistic pyramidal-neuron voltage traces. Journal
of Neurophysiology, 99, 656-666.

Batista, C. A. S., Lopes, S. R., Viana, R. L. & Batista, A. M. (2010).
Delayed feedback control of bursting synchronization in a scale-
free neuronal network. Neural Networks, 23, 114-124.

Baptista, M. S., Zhou, C. & Kurths, J. (2006). Information transmis-
sion in phase synchronous chaotic arrays. Chinese Physics Letters,
23 (3), 560-563.

Baptista, M. S., Ren, H.-P., Swarts, J. C. M., Carareto, R., Nijmeijer,
H. & Grebogi, C. (2012). Collective Almost Synchronisation in
Complex Networks. Plos One, 7, e48118.

Bennet, M., Schatz, M. F., Rockwood, H. & Wiesenfeld, K. (2002).
Huygens’s clocks. Proceedings: Mathematical, Physical and Engi-
neering Sciences, 458, 563-579.

Borges, R. R., Borges, F. S., Lameu, E. L., Batista, A. M., Iarosz, K.
C., Caldas, I. L., Viana, R. L. & Sanjuán, M. A. F. (2016). Effects
of the spike timing-dependent plasticity on the synchronisation in
a random Hodgkin-Huxley neuronal network. Communications in
Nonlinear Science & Numerical Simulation, 34, 12-22.

Brette, R. & Gerstner, W. (2005). Adaptive exponential integrate-
and-fire model as an effective description of neuronal activity.
Journal of Neurophysiology, 94, 3637-3642.

Clopath, C., Jolivet, R., Rauch, A., Lüscher, H.-R. & Gerstner, W.
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