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ABSTRACT 

Quantifying soil organic carbon (SOC) in complex terrain is challenging due to its 

high spatial variability. Generally, limited discrete observations of SOC data are used to 

develop spatially distributed maps of SOC by developing quantitative relationships 

between SOC and available spatially distributed variables. In many ecosystems, remotely 

sensed information on aboveground vegetation can be used to predict belowground 

carbon stocks. In this research, we developed maps of SOC across a semi-arid watershed 

based on discrete field observations and modeling using a suite of variables inclusive of 

hyperspectral and lidar datasets; these observations provide insights into the controls on 

soil carbon in this environment. The Reynolds Creek Experimental Watershed (RCEW), 

in SW Idaho, has a strong elevation gradient that controls precipitation and vegetation. 

Soil samples were collected to 30 cm depth using a nested sampling approach, across the 

watershed (samples, 279 data points, in 28 plots, discretized with depth, total n=1344) 

and analyzed for SOC content.  Point SOC data was combined with a suite of predictor 

variables from traditional, lidar and hyperspectral datasets to calibrate Random Forest 

and Stepwise Multiple Linear Regression models that predict SOC distribution across 

RCEW. In this study, SOC generally increased along the precipitation-elevation gradient 

corresponding with an increase in the diversity and abundance of vegetation. We found 

that variable soil bulk densities and areas of high rock content strongly influenced 

mass/unit area SOC values. Interestingly, rock content was also negatively correlated 

with percent SOC.  Local variability of SOC in this study was high with the variability at 
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the plot scale about 1/3 of that observed at the watershed scale. Our research suggests that 

vegetation indices calculated from spectral data are the best predictors of SOC storage in 

this system. Roughly 60% of the variance in SOC data is explained using Normalized 

Difference Vegetation Index while two hyperspectral vegetation indices, Modified Red 

Edge Simple Ratio and Modified Red Edge Normalized Difference Vegetation Index 

explain over 70%. The addition of Lidar variables modestly improved SOC prediction, 

explaining 75% of variability in SOC. 
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INTRODUCTION 

Soil organic carbon (SOC) is a large, dynamic carbon reservoir that stores more 

carbon than both the atmosphere and vegetation globally (Schlesinger, 1997; Lal, 2004). 

Constraining the distribution, and associated controls, on SOC storage is the first step to 

evaluating the potential positive and negative feedbacks with atmospheric composition 

and climate change (Raich, 1995; Trumbore, 1996; Woodwell, 1998; Jobbagy, 2000; 

Kulmatiski, 2004). The response of the SOC pool to current and projected changes in 

climate is one of the largest sources of uncertainty in climate and carbon cycling models 

(Minasny, 2013). 

One of the most significant obstacles in constraining SOC distribution is the high 

spatial variability and associated uncertainty (Minasny, 2013). In recent years, modeling 

approaches have been developed that combine point SOC data observations with spatially 

distributed predictor variables to provide spatially distributed estimates of SOC 

distribution (Moore, 1993; McBratney, 2003; Simbahan, 2006; Gomez, 2008; Minasny, 

2013). However, significant uncertainty remains regarding best the modeling 

methodology and environmental covariates, both of which may vary with scale and 

ecological system. 

Estimating Soil Organic Carbon Storage in Semi-Arid Ecosystems 

Interaction between climate, topography and vegetation in semi-arid mountainous 

regions produces high spatial heterogeneity in the processes influencing soil organic 

carbon accumulation, making estimating SOC storage especially difficult (Joggaby, 
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2000; Kulmatski, 2004; Kunkel, 2011; Hoffmann, 2014). These influences over water, 

energy and carbon flux create spatial heterogeneity across the landscape. This is 

especially evident at the hillslope scale as topographic alteration of the water and energy 

balance controls vegetation and SOC distribution (Kunkel, 2011; Smith, 2011; Hoffman, 

2014; Patton, 2016). In addition, proportions of soil (< 2 mm) to coarse material (> 2 

mm) and soil bulk density that are also highly variable in space (Hoffmann, 2014; Patton, 

2016) influence the amount of SOC at a location.  In semi-arid regions, vegetation is 

often a proxy for climate conditions and SOC contents tend to follow trends in 

aboveground vegetation. Our research focuses on mapping soil organic carbon 

distribution in a semi-arid, mountainous watershed by utilizing a suite of spatially 

distributed environmental covariates that represent vegetation, topography and climate. 

This approach is likely to provide more accurate estimates of the size and distribution of 

the SOC reservoir while revealing controlling mechanisms and constraining global and 

local biogeochemical models. 

Statistical Approaches for Creating Distributed Maps of SOC Using Point Data 

Field measurements of soil properties, including SOC, are typically collected at 

discrete locations. While the resulting data can provide useful information regarding how 

SOC is spatially distributed, field sample density is often not sufficient to create accurate 

maps of SOC across the landscape. For this reason, mapping of SOC often involves 

modeling its distribution using spatially distributed variables that are correlated to SOC.

 Previous researchers have developed spatially distributed maps of SOC using a 

variety of statistical modeling approaches and environmental predictor variables. Some of 

the most commonly used modeling approaches include: linear regression/multiple linear 
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regression (LR/MLR) (Gessler, 2000; Mueller, 2003; Thompson, 2005; Selige, 2006; 

Kunkel, 2011), partial least squares regression (PLSR) (Gomez, 2008; Stevens, 2010; 

Bartholomeus, 2011), random forests (RF) (Grimm, 2008; Wiesmeier, 2011), artificial 

neural networks (ANN) (Minasny, 2006; Malone, 2009) and Kriging/regression kriging 

(Simbahan, 2006; Vasques, 2010; Kunkel, 2011). 

Environmental Covariates 

The most common environmental covariates for SOC mapping are terrain 

attributes (Mueller, 2003; Thompson, 2005; Minasny, 2006; Grimm, 2008; Malone, 

2009) and variables derived from Landsat imagery, such as NDVI (Normalized 

Difference Vegetation Index) (Minasny, 2006; Malone, 2009; Vasques 2010; Kunkel, 

2011). Past studies on SOC mapping have utilized both spectral information and terrain 

attributes at a variety of scales and ecosystems (Minasny, 2013). In addition, many 

studies have used geologic and soil maps (McKenzie, 1999; Simbahan, 2006; Grimm, 

2008; Wiesmeier, 2011), land cover/use aerial imagery (Mora-Vallejo, 2008, Wiesmeier, 

2011) and climate and meteorological data (McKenzie, 1999; Mishra, 2010; Martin, 

2011). 

More recently, researchers have utilized hyperspectral (Selige, 2006; Gomez, 

2008; Stevens, 2010; Bartholomeus, 2011) and Lidar (or high-resolution field studies that 

mimic Lidar) (Gessler, 1995; Gessler, 2000; Mueller, 2003; Thompson, 2005; Grimm, 

2008; Mulder, 2011; Lacoste, 2014) datasets for SOC prediction. A previous study in this 

region have observed strong relationships between SOC and NDVI (Kunkel, 2011). One 

of the goals of this research is to improve the accuracy of our SOC model by 
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incorporating variables from higher resolution, hyperspectral (AVIRIS-ng) and LIDAR 

datasets. 

Hyperspectral data has been used extensively for mapping vegetation 

characteristics (Vogelmann, 1993; Gitelson, 1994; Curran, 1995; Datt, 1999; Daughtry, 

2000; Broge, 2000; Sims, 2002; Haboudane, 2004). But, somewhat less research has 

focused on mapping SOC with hyperspectral data (Gomez, 2008; Stevens, 2010; 

Bartholomeus, 2011). Utilization of hyperspectral data for SOC mapping is relatively 

new and methodologies vary between studies. Many studies have focused on the spectral 

information of the soils to determine the SOC contents of soils (Bartholomeus, 2011; 

Peng, 2014). In several of these studies, the SOC contents of soil samples are determined 

using spectroscopy in field and laboratory environments (Bartholomeus, 2008; Gomez, 

2008; Peng, 2014). 

 A common issue with airborne hyperspectral data is spectral mixing or mixed 

pixels, which occur when pixels include spectral information from soils and vegetation 

(Selige, 2006; Gomez, 2008). Many studies employ spectral un-mixing approaches to 

isolate soil signatures from vegetation (Stevens, 2010; Bartholomeus, 2011). Another 

approach for isolating vegetation signatures is to utilize narrowband indices, calculated 

over a five-nanometer window, allowing for detection of subtle differences in vegetation 

reflectance. While, other studies utilize vegetation changes to map SOC, by calculating 

vegetation indices similar to NDVI, or using spectra from airborne hyperspectral data to 

calibrate a PLSR model (Selige, 2006). 

Much of the previous research involving SOC mapping with airborne 

hyperspectral data was conducted at smaller geographic scales and focused on precision 
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agriculture applications (Gomez, 2008; Hbirkou, 2012). In semi-arid regions, spectra 

from airborne hyperspectral data are heavily influenced by soil reflectance in low cover 

environments whereas spectra in higher biomass ecosystems are dominated by 

vegetation. For this reason, determination of soil spectral characteristics via airborne 

hyperspectral is difficult in high biomass ecosystems. 

Mapping studies focused on hyperspectral data also vary with regard to how they 

use the large number of correlated bands as a tool for prediction. Some researchers use 

methods for reducing the dimensionality of hyperspectral data. The most common 

approaches are PCA (Principle Component Analysis) and MNF (Minimum Noise 

Fraction) transforms which are both used for a range of applications (Chang, 2001; 

Williams, 2002; Datt, 2003). Utilizing highly correlated and high dimension datasets such 

as hyperspectral often requires more advanced quantitative methods for model calibration 

and prediction. Previous studies using hyperspectral, often use Partial Least Squares 

Regression for variable selection and prediction but other approaches such as random 

forest, kriging, neural networks and SVMR.  

Many SOC studies use Lidar or detailed field surveys to create high resolution 

DEMs that can be used to create topographic attributes of the land surface such as 

elevation, aspect, slope, curvature and topographic position (Gessler, 1995; Gessler, 

2000; Mueller, 2003; Thompson, 2005; Grimm, 2008; Mulder, 2011; Lacoste, 2014). 

Lidar can also be used to model vegetation characteristics such as height, cover, LAI and 

biomass (Ni-Meister, 2010; Li et al, 2015) but these variables are rarely used for SOC 

prediction. Much of the research on SOC mapping with Lidar is conducted at smaller 

spatial scales in the absence of large climate gradients. In this research, we explore the 
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predictive capability of both Lidar vegetation and Lidar topographic variables at larger 

scales where strong climate gradients exert considerable influence on SOC. 

Limitations of Previous Research 

More recently, researchers have incorporated hyperspectral and Lidar data for 

SOC prediction. But, little work has been done with these data types at larger scales in 

semi-arid complex terrain in the presence of strong climate gradients. Many SOC 

mapping studies do not provide uncertainty estimates and some have no external 

validation of the model used (Minasny, 2013).We argue that validation methodology and 

uncertainty become increasingly important when mapping a variable like SOC in 

complex terrain where high spatial variability and low sample density increases the 

likelihood of a biased sample distribution. For this reason, it is important to utilize robust 

modeling approaches that employ cross-validation (CV) or bootstrap sampling, especially 

when using high-resolution datasets that provide an abundance of potential predictors.  

The research described in this paper has 3 goals: 

1.  To identify spatially distributed variables (traditional, as well as Lidar and 

hyperspectral) that predict soil carbon distribution;  

2. To develop spatially distributed maps of SOC while evaluating the influence of 

the modeling approach Random Forests (RF) v. Stepwise Multiple Linear 

Regression (SMLR) and attempting to provide a framework for evaluating 

multiple models in the context of variable selection, model calibration and 

validation approaches, and accuracy and uncertainty;  

3. To provide insight into the controls on SOC distribution in semi-arid mountainous 

landscapes. 
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METHODS 

Site Description 

We conducted this study at the Reynolds Creek Experimental Watershed 

(RCEW), a semi-arid watershed (239 km2), located in the Owyhee Mountains of 

southwest Idaho (Figure 1). There is a strong elevation gradient in the watershed (1099-

2144m) and precipitation is highly correlated with more precipitation input at higher 

elevations (250-1100 mm. /yr. precipitation). Lower elevation ecosystems are hot, dry, 

and rain-dominated. In contrast, higher elevation ecosystems are cold and wet, and the 

majority of precipitation occurs during the winter months as snow. Vegetation type and 

abundance closely follows the elevation gradient with sagebrush-dominated ecosystems 

in the lowlands and a mix of sagebrush species and trees at higher elevations (Seyfried, 

2001). RCEW contains a diverse range of soil parent materials including granite 

(Cretaceous), basalt (Miocene), rhyolite (Miocene), welded tuff, loess, and alluvial 

deposits. Soil orders found in the watershed include aridisols, inceptisols, andisols, 

vertisols and mollisols. 

Field Methods 

Site Selection 

We collected soil samples along an elevation gradient, with site selection focused 

on representing all of the dominant vegetation functional groups present in the watershed. 

The primary vegetation functional groups are Wyoming Sage (Artemisia tridentate subsp. 

Wyomingensis), Mountain Sage (Artemisia Tridentate subsp. Vaseyana), Low Sage 
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(Artemisia arbuscula), Bitterbrush (Purshia stansburyana), Greasewood, Juniper 

(Juniperus occidentalis), Aspen (Populus tremuloides) and Conifer (Douglas fir 

(Pseudolsuga menziesii glauca) and alpine fir (abies lasiocarpa)). We also considered 

proximity to long-term climate stations and accessibility when selecting soil sampling 

sites. We collected field soil samples during the 2014 and 2015 field seasons. 

Due to the high spatial variability in SOC, we utilized a stratified sampling 

approach (Figure A1). Our field sampling design involved sampling at 28 sites, with 10 

sample locations at each of the sites. At each site, we dug one soil pit and extracted nine 

soil cores. Due to heterogeneous vegetation distribution, we used a paired sampling 

scheme. We paired the sample locations according to whether they were in the vegetation 

canopy or in the interspace. At each site, we sampled five canopy locations and five 

interspace locations with paired samples being within a meter of each other. 

We randomly selected the sample locations relative to the pit, which was located 

in the center of the site or plot. Relative to the pit in the center, we determined core 

sampling locations by randomly generating distances (5-30 meters) and orientations (0-

360°) relative to the pit. If a sample location is in the canopy, it was paired with the 

nearest interspace location and vice versa. 

Field Sampling 

We collected soil samples in the field using primarily a soil knife and sand auger. 

We collected soil samples according to the following depth increments, 0-5, 5-10, 10-20 

and 20-30 cm. We collected soil cores to a depth of 30 cm, while pits range from 30 cm 

to 1 m depending on soil depth at the site. In addition, we sampled soil pits on three sides 

to evaluate uncertainty at a point. 
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We also collected samples for bulk density analysis from the pit at each site. We 

collected these samples from three walls of the pit and at 1-3 depths (depending on soil 

depth within the pit). We extracted the bulk density samples by inserting a hammer core, 

perpendicular to the pit wall. 

We also analyzed soil samples from one wall of each pit for soil pH and texture 

(sand, silt and clay percentages) according to the depth increments above. At each site, 

we also took soil descriptions, and pictures of soil pits, site setting, and bird’s eye view 

images of sample locations prior to sampling. 

We also collected GPS coordinates at all sample location (pits and cores).  

However, only 200 of 279 samples have RTK (Real Time Kinematic, 0.5-meter 

horizontal accuracy) coordinates. If we were unable to obtain coordinates using RTK 

GPS, we collected coordinates with handheld GPS (5-meter horizontal accuracy). 

Laboratory Analysis of Soils 

Sample Preparation 

After collection, we stored samples at low temperatures until we could begin 

laboratory processing. First, we dried soil samples in an oven for 24 hours at 50 degrees 

C. Then, we sieved soil samples using the #10 (2 mm) sieve and removed the coarse 

fraction (CF) (gravel, cobbles,> 2mm diameter) as well as roots and particulate organic 

material. We also weighed each soil sample and the removed coarse fraction and roots.  

We then split soil samples using a riffle splitter until we achieved a desired mass of 50-

100 g. Then, we stored the remaining sample in our archive.  
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Methodology for Obtaining Soil Carbon and Nitrogen Data 

Next, we thoroughly mixed and homogenized the split samples, and then 

collected a 5-gram subsample. We then completely removed any roots and particulate 

organic material (>2 mm length) in the subsample. Then, we powdered the sample on a 

ball mill for 48 hours. We then dried ground soil samples again to remove moisture that 

accumulated during processing. Then, we packed roughly 60 mg of powdered soil was 

into 5x9 mm aluminum tins. We analyzed these soil samples for percent carbon and 

percent nitrogen by mass using a Thermo Electron Flash EA 1112 CN analyzer (CE 

Elantech, Inc., Lakewood, NJ). 

Quantification of Uncertainty in Soil C and N Data 

We quantified instrument uncertainty by running triplicates every tenth sample as 

well as a soil standard and aspartic acid. We calculated instrument uncertainty to be 

1.72% for Aspartic acid, 1.8% for soil standard and 2.17% for triplicates (equivalent to 

RSD of 2 for standards and 8 for triplicates)(Table A5a).  

Removal of Soil Inorganic Carbon (Sic) 

A portion of samples in our study contained SIC (Soil Inorganic Carbon), which 

we determined by reaction with Hydrochloric acid (HCl). Some of these samples went 

through a carbonate removal process where we mixed samples with 10% HCl, 

centrifuged, and rinsed for several iterations (McCorkle, 2015). We determined SIC 

contents of the remaining samples, using the methods described in Stanbery (2016).  
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Methodology for Other Datasets 

Calculation of Soil Bulk Density in the Lab 

Reasonably accurate soil bulk densities are critical when converting soil carbon 

concentrations (percent SOC by mass) to an estimate of carbon stored per unit area (SOC 

(kg/m2)) on the land surface. In the following section, we describe calculations and 

laboratory processing for soil bulk density. However, we describe collection of bulk 

density samples in the field sampling section above. 

While, bulk density samples collected in the field include both soil and coarse 

material, only fine fraction (< 2 mm) bulk density is required for SOC calculations. 

However, we need the density of the total sample (𝑩𝑫𝒕) and/or the density of the coarse 

material (𝑩𝑫𝒓) to calculate fine fraction soil bulk density(𝑩𝑫𝒔).  

The first step for quantifying soil bulk density from field samples is to measure 

the mass of coarse material (𝒎𝒓) and soil (𝒎𝒔). Then, the volume of coarse material (𝒗𝒓) 

can be calculated using the mass of rock (𝒎𝒓) and the density of rock (𝒅𝒓) in Eq. 1. 

 

𝑬𝒒.  𝟏:  𝒗𝒓 =
𝒎𝒓

𝒅𝒓
 

𝒗𝒓:  𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑜𝑐𝑘 

𝒎𝒓:  𝑚𝑎𝑠𝑠 𝑜𝑓 𝑐𝑜𝑎𝑟𝑠𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙,  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝑙𝑎𝑏(> 2 𝑚𝑚 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟) 

𝒅𝒓:  𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑎𝑟𝑠𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙,  𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 2800 𝑘𝑔 ∗ 𝑚 − 3 

 

Once, a volume of rock (𝒗𝒓) is calculated using Eq.1, the volume of soil can be 

calculated using the known volume of the hammer core (𝒗𝒕) and the estimated volume of 

the coarse material (𝒗𝒓) using Eq. 2. 
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𝑬𝒒.  𝟐:        𝒗𝒔 = 𝒗𝒕 − 𝒗𝒓 

𝒗𝒔 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑜𝑖𝑙 
𝒗𝒓 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑟𝑜𝑐𝑘,  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝐸𝑞.  1 

𝒗𝒕 = 𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒,  𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 ℎ𝑎𝑚𝑚𝑒𝑟 𝑐𝑜𝑟𝑒 (𝑘𝑛𝑜𝑤𝑛) 

 

 

Once the volume of soil (𝒗𝒔) is calculated using Eq.2, soil bulk density (𝑩𝑫𝒔) can 

be calculated using Eq.3 which also requires the mass of soil (𝒎𝒔), which we measured 

in the lab. In addition to soil bulk density, the density of the field sample (𝑩𝑫𝒕) as well as 

just the coarse material (𝑩𝑫𝒓) can be calculated using Eq. 3a and Eq. 3b.  

𝑬𝒒.  𝟑:        𝑩𝑫𝒔 =  
𝒎𝒔

𝒗𝒔
 

𝑩𝑫𝒔 = 𝑠𝑜𝑖𝑙 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (< 2 mm fraction) 

𝒎𝒔 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝑙𝑎𝑏,  𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑚𝑡 − 𝑚𝑟 

𝒗𝒔 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑜𝑖𝑙,  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝐸𝑞.  2 

 

𝑬𝒒.  𝟑𝒂:  𝑩𝑫𝒕 =
𝒎𝒕

𝒗𝒕
 

𝑩𝑫𝒕 = 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑓𝑖𝑒𝑙𝑑 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (< 𝑎𝑛𝑑 > 2 𝑚𝑚 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)  

𝒎𝒕 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒,  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝑙𝑎𝑏,  𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 

𝒗𝒕 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒,  𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 ℎ𝑎𝑚𝑚𝑒𝑟 𝑐𝑜𝑟𝑒 

 

𝑬𝒒.  𝟑𝒃: 𝑩𝑫𝒓 =
𝒎𝒓

𝒗𝒓
 

𝑩𝑫𝒓 = (𝑏𝑢𝑙𝑘) 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑟𝑜𝑐𝑘 (> 2 𝑚𝑚 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛) 

𝒎𝒓 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑟𝑜𝑐𝑘,  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝑙𝑎𝑏 

𝒗𝒓 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑜𝑐𝑘 𝑓𝑟𝑜𝑚 𝐸𝑞.  1 

 

Soil Bulk Density Modeling 

In this study, we observed considerable variability and uncertainty in our soil bulk 

density data. For this reason, we used our soil bulk density data, along with other samples 
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from RCEW, to calibrate a statistical model that predicts soil bulk density using SOC 

concentrations (percent SOC) and soil parent material. Other studies have observed 

strong relationships between soil organic material and soil bulk density (Perie, 2008; 

Patton, 2016). In addition to organic material, soil parent material exerts an important but 

secondary influence on soil bulk density, which Patton 2016 describes in detail. 

The model, developed by Patton, 2016, allowed for distributed soil bulk density 

data instead of extrapolating limited soil bulk density data in pits to adjacent core 

samples. There was generally good agreement between bulk density estimates from the 

field and modeled values. However, there is a likely a considerable amount of error 

involved in estimating the soil bulk density of some soils, especially those with more 

rock. 

Below, we show the statistical models developed by Patton in (Eq.4, Eq. 5). 

There is also a figure in the appendix that shows SOC plotted with BD for felsic and 

mafic parent materials (Figure A2). For a small number of samples, we used the mean of 

felsic and mafic bulk densities (Eq. 6) since parent material was neither felsic or mafic. 

𝑬𝒒.  𝟒:  𝒎𝑩𝑫𝒇𝒆𝒍𝒔𝒊𝒄 = 1.4178 × 𝑆𝑂𝐶−0.148  

𝑬𝒒.  𝟓: 𝒎𝑩𝑫𝒎𝒂𝒇𝒊𝒄 = 1.0322 × 𝑆𝑂𝐶−0.324 

𝑬𝒒.  𝟔: 𝒎𝑩𝑫𝒐𝒕𝒉𝒆𝒓 =
𝑚𝐵𝐷𝑚𝑎𝑓𝑖𝑐 + 𝑚𝐵𝐷𝑓𝑒𝑙𝑠𝑖𝑐

2
 

 

 

𝑀𝑏𝑑 = 𝑚𝑜𝑑𝑒𝑙𝑒𝑑 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

𝑚𝑎𝑓𝑖𝑐 = 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝑠𝑜𝑖𝑙𝑠 𝑜𝑓 𝑚𝑎𝑓𝑖𝑐 𝑝𝑎𝑟𝑒𝑛𝑡 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
𝑓𝑒𝑙𝑠𝑖𝑐 = 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝑠𝑜𝑖𝑙𝑠 𝑜𝑓 𝑓𝑒𝑙𝑠𝑖𝑐 𝑝𝑎𝑟𝑒𝑛𝑡 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
𝑜𝑡ℎ𝑒𝑟 = 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝑠𝑜𝑖𝑙𝑠 𝑜𝑓 𝑛𝑒𝑖𝑡ℎ𝑒𝑟 𝑚𝑎𝑓𝑖𝑐 𝑜𝑟 𝑓𝑒𝑙𝑠𝑖𝑐 𝑝𝑎𝑟𝑒𝑛𝑡 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
𝑆𝑂𝐶 = 𝑠𝑜𝑖𝑙 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑐𝑎𝑟𝑏𝑜𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛,  𝑠𝑎𝑚𝑒 𝑎𝑠 %𝑆𝑂𝐶 

*note: soil bulk density data in Table A2a, note2: all soil parent materials indicated in Table A2b 
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Once, bulk densities were calculated for every sample in this study, SOC (kg*m-2 

was calculated using (Eq.7) which also includes percent SOC, CF and depth. 

𝑬𝒒.  𝟕:         𝑺𝑶𝑪𝒌𝒈∗𝒎−𝟐 = (%𝑺𝑶𝑪 ∗ 𝒃𝒖𝒍𝒌 𝒅𝒆𝒏𝒔𝒊𝒕𝒚𝒔𝒐𝒊𝒍 ∗ 𝒅𝒆𝒑𝒕𝒉𝒎) ∗ (𝟏 − 𝑪𝑭) 

%𝑺𝑶𝑪 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑠𝑜𝑖𝑙 𝑐𝑎𝑟𝑏𝑜𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑚𝑒𝑡ℎ𝑜𝑑𝑠 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑖𝑛 2.3.2) 

𝒃𝒖𝒍𝒌 𝒅𝒆𝒏𝒔𝒊𝒕𝒚𝒔𝒐𝒊𝒍 = 𝑓𝑟𝑜𝑚 𝐸𝑞.  3 (𝑓𝑖𝑒𝑙𝑑) 𝑜𝑟 4 − 6 (𝑚𝑜𝑑𝑒𝑙) 

𝑪𝑭 =
𝑚𝑎𝑠𝑠𝑟𝑜𝑐𝑘

𝑚𝑎𝑠𝑠𝑡𝑜𝑡𝑎𝑙

,  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑓𝑟𝑜𝑚 𝑓𝑖𝑒𝑙𝑑 𝑆𝑂𝐶 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

𝒅𝒆𝒑𝒕𝒉 = 𝑑𝑒𝑝𝑡ℎ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑏𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑖𝑒.  0 − 5 𝑐𝑚 = 0.05 𝑚) 

 

 

Soil Bulk Density and Percent Coarse Fraction (Cf) 

We quantified percent coarse fraction (CF) as the ratio of coarse material relative 

to the total mass of sample collected. The coarse fraction includes both large 

rocks/cobbles as well as gravels. The resulting data is percent soil (equal to 1- percent 

CF) and percent CF.  

pH 

We determined the soil pH of our samples using a 1:1 soil to water mix with 25 g 

of each. Prior to analysis, we thoroughly mixed samples then left them to sit for an hour. 

Soil pH was then measured using a probe for three trials, where measurements were 

repeated if deviation was greater than 0.1 (units of pH) between the three trials. Then, we 

took the mean pH of three trials, which was utilized as the pH data for that each sample.  

Soil Texture 

We also measured soil texture, proportions of sand, silt and clay using a 

hydrometer method (McCorkle, 2015). We combined soil samples with Sodium 

hexametaphosphate (SHMP) and left the mixture to sit overnight. We then took triplicate 

readings of the hydrometer at zero and seven hours. Then, we wet sieved the mixture 

using a 0.05 mm sieve, which allows silt and clay to pass through while retaining the 
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sand-sized particles. We then took the sand-sized particles left from wet sieving and put 

them into muffle furnace for 8 hours at 450 degrees C. We took the mass of these 

samples before and after their time in the muffle furnace and calculated the difference.

 The combustion step of texture analysis is for removing organic material that does 

not factor into soil texture analysis. Hydrometer readings of the sample allow for 

determination of relative proportions of silt and clay sized particles, which we calculated 

using Stoke’s Law. While, the wet sieving and combustion allows us to calculate a mass 

of sand. 

SOC Mapping and Modeling 

We created distributed maps of SOC by generating statistical models based on our 

SOC dataset and a suite of predictor variables from hyperspectral, lidar and traditional 

datasets. In an attempt to quantify increases in prediction provided by LiDAR and 

hyperspectral, we added sets of variables sequentially (Figure A3, Table A1). The 

resulting predictor variables were split into three groups (traditional, traditional and lidar 

and traditional, lidar and hyperspectral variables) to evaluate the increase in predictive 

capability provided by the inclusion of lidar and hyperspectral variables. 

We used each set of predictor variables to calibrate a model for two SOC datasets 

(percent SOC and SOC (kg/m2)) and two modeling approaches Random Forest (RF) 

(http://www.salford-systems.com) and Stepwise Multiple Linear Regression (SMLR) 

(MATLAB R2016a)). Upon providing calibration SOC dataset and suite of predictor 

variables, RF and SMLR perform a variable selection exercise that chooses the variables 

that predict SOC with the greatest accuracy. Although, the methodology for 
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determination of model accuracy and a variables predictive ability differ substantially, 

both were successful in selecting predictor variables with high predictive capacity. 

Datasets 

Hyperspectral and LiDAR Data Collection 

The BCAL research group collected the airborne hyperspectral dataset utilized in 

this study in the spring of 2015 (AVIRIS-ng, spatial resolution: 2.5/1 meters, spectral 

range: 400-2500 nanometers, spectral sampling: five nanometers). The BCAL research 

group also collected the airborne lidar data used in this study in 2014 (Ilangakoon, 2016).  

Other Datasets (base set of variables (non-LiDAR/non-hyperspectral) 

In this section, we describes the sources of our other datasets, which we call the 

base set of variables, which we define as variables not derived from LiDAR or 

hyperspectral. We obtained estimates of annual and monthly precipitation for RCEW 

from the PRISM Precipitation model (PRISM Climate Group). Development of the 

PRISM precipitation model involved some of the climate and meteorological data from 

RCEW. We used an NDVI (Web Enabled Landsat Data (WELD)) dataset as a 

comparison for the hyperspectral vegetation indices. The WELD NDVI dataset is the 

maximum NDVI at each 30 m Landsat pixel for the entire year (2012). Also in the base 

set of variables is a 30-meter DEM, provided by USGS, which we used as a comparison 

for the high-resolution lidar DEM.  

Spatial Data Preparation 

We used the .las files from the lidar data with the BCAL Lidar tools in ENVI 

(BCAL Lidar Tools) to calculate a suite of variables that represent vegetation structural 

parameters such as height and cover (Table A1c). We calculated lidar topographic 
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variables using the BCAL Lidar DEM (Illangakoon, 2016) and the SAGA GIS 2.2.5 

Basic Terrain Analysis Module (Table A1b). We used the AVIRIS-ng hyperspectral data 

from 2015 to calculate a suite of vegetation indices, detailed on Harris Geospatial (Table 

A1d). 

Once we created the distributed datasets described above, we extracted data 

values for each variable at each plot (60-meter diameter) using the ROI tool in ENVI 

Classic 5.3. Then, we calculated the mean of all pixels within the plot to obtain one value 

for each predictor variable at each site. We used a spatial resolution of 2.5-meters for the 

hyperspectral data and 3-meter for the lidar variables. This decision was based on the 

spatial resolution of the source datasets but variables were resampled to 3-meter if both 

lidar and hyperspectral were included in an SOC model.  

Modeling Approach 

Rf Variable Selection and Accuracy Assessment 

We conducted RF model calibration using the program, Salford Systems 

Predictive Modeler (http://www.salford-systems.com). Using this program, we imported 

SOC data and predictor variables as a spreadsheet (.csv). Then, the GUI (Graphical User 

Interface) allows the user to set parameters for RF model simulations. During RF model 

calibration, SOC data and predictors variables are randomly selected over one thousand 

iterations in a process known as, bootstrap sampling. After 1000 simulations, Salford 

Systems calculates an out-of-bag error (OOB) based on left out samples through the 

simulations. These error estimates provide the metrics, R2 and RMSE along with a metric 

that measures a variables predictive ability, known as variable importance.  
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Rf Imputation 

Once, we determined the most predictive variables, we aggregated them using the 

layer stack function in ENVI. This stack of .tiff files from ENVI was provided to the R 

wrapper, yaImpute (Crookston, 2007), which uses the random forest machine learning 

algorithm to produce spatially distributed maps of SOC using the point SOC data which 

is in a spreadsheet with data values for selected predictors, along with maps of the 

selected predictors in the layer stack. 

Stepwise Multiple Linear Regression (SMLR) Variable Selection and Accuracy 

Assessment 

We also developed maps of SOC using a Stepwise Multiple Linear Regression 

(SMLR) approach in MATLAB. We developing these maps by providing SOC data and 

our suite of predictor variables to the MATLAB function, ‘stepwisefit’ (Draper, 1998), 

which selects the most predictive variables and calculates regression coefficients for 

selected variables. 

For variable selection, SMLR uses a methodology where inclusion of a variable in 

a model is dependent on the result of an f-test, which calculates a p-value for each 

predictor provided. The results of the f-test are based on a variables fit with the variable 

of interest, in this case, SOC. If the p-value for a variable is above/below a certain 

threshold, the variable will be included in the model. In this study, we calibrated SMLR 

models using the entire calibration dataset. For this reason, the error metrics we 

calculated for SMLR models are from the models fit with the entire field dataset. This is 

in contrast to the error metrics calculated by RF that are calculated from the left out 
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samples over one thousand simulations. For this reason, we cannot use the error metrics 

R2 and RMSE to compare between RF and SMLR models. 

SMLR Imputation 

To Impute the SMLR models, we arranged selected variables in a layer stack in 

ENVI. Then, we used the band math function to calculate SOC distribution using data 

values for predictor variables and calculated regression coefficients from MATLAB.   

Additional Considerations Regarding SMLR Models 

In this study, SMLR models appear to over fit field data due to inclusion of entire 

calibration SOC dataset and lack of bootstrap sampling. However, SMLR models could 

be modified to include bootstrap sampling. This would offset the influence of overfitting 

field data and it is likely the preferred approach if SMLR models are used for mapping 

SOC. 

Overfitting was also evident in the selection of variables in SMLR models. SMLR 

models will continue to select variables as long as the fit between modeled SOC and field 

data improves. In this study, we limited SMLR models to five variables since increases in 

predictive ability were negligible and adding additional variables appeared to increase 

likelihood of overfitting. To limit overfitting, we attempted to select variables using the 

AIC (Akaike Information Criterion), which penalizes models for adding additional 

variables. However, this approach was ineffective as the selected variables were the same 

as the SMLR models where variable selection is determined by the p-values calculated 

during the f-test.
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RESULTS 

Introduction to Results 

Review of Methods 

This project developed maps of shallow soil carbon (30 cm depth) across the 

Reynolds Creek Experimental Watershed (RCEW), in SW Idaho, where a gradient in 

elevation and precipitation produces dramatic differences in vegetation across the 

watershed. We collected soil samples to 30 cm depth along this gradient using a nested 

sampling approach, (1344 samples, 279 data points, in 28 plots, discretized with depth) 

and analyzed the samples for SOC content.  Using this large soil carbon dataset, we first 

evaluated a suite of spatially distributed variables (including traditional, as well as lidar 

and hyperspectral) for their capacity to predict soil carbon distribution. Then, we used 

those identified predictor variables to produce spatially distributed maps (using both RF 

and SMLR) of SOC across the watershed. Finally, based on field data and mapping 

products, we made a number of observations of key variables and trends that influence 

the soil carbon mapping effort.  

Note: The datasets and products described in this document are available for download; for more 

information, find the citation, Will, 2017 in the references section. 

 

Summary of Results 

In this study, SOC generally increased along the precipitation-elevation gradient 

where there is an increase in the diversity and abundance of vegetation. Our research 

suggests that vegetation indices calculated from spectral data are the best predictors of 

SOC storage in semi-arid mountainous regions. Landsat NDVI explained roughly 60% of 
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the variance in SOC data and two hyperspectral vegetation indices, MRESR and 

MRENDVI, individually explain over 70%. SOC models that include both lidar and 

hyperspectral can explain up to 75% of variability in SOC but lidar alone is less effective 

without spectral vegetation information. 

Dataset Summary 

SOC data in this study ranged from 1.4-7.8 kg*m-2 in the top 30 cm with a mean 

of 3.35 kg*m-2 and a standard deviation of 1.94 kg*m-2. SOC concentrations ranged 

from 0.4%-4.9% with a mean of 1.79% and a standard deviation of 1.46%. Coarse 

fraction had a range of 7.1-61 with a mean of 27.5 and a standard deviation of 14.4. Soil 

bulk density ranged from 471-1641 kg*m-3 with a mean of 997 kg*m-3 and a standard 

deviation of 322 kg*m-3 (Figure 2). 

 Soil bulk density as well as coarse fraction (CF) vary dramatically across the 

watershed, strongly influencing mass/unit area SOC values. We also observed a negative 

correlation between coarse fraction and percent SOC at higher elevations. 

The scale of observation illustrates how soil carbon varies at multiple scales. Plot 

scale variability (60 meter diameter, n=10) of SOC in this study was equal to roughly 1/3 

of the variability in SOC observed at the watershed scale. In many cases, highly 

predictive variables of SOC at the watershed scale were not predictive at the plot scale. 

Random Forest and Multiple Linear Regression Variable Identification 

We analyzed a suite of traditionally used predictor variables (i.e. slope, aspect, 

precipitation, NDVI) as well parameters derived from airborne LIDAR and Hyperspectral 

analysis (Table A1). We conducted this analysis using both Random Forest (RF) and 
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Simple Multiple Linear Regression (SMLR) to predict SOC as mass per unit area 

(kg/m2) as well as concentration (mass %).  

While a range of variables in all categories were predictive, hyperspectral 

vegetation indices were most predictive, significantly improving models of both percent 

SOC and SOC (kg/m2) (Table 1). RF R2 increased from 0.69 to 0.75 for percent SOC 

and from 0.65 to 0.75 for predicting SOC when the hyperspectral indices were included. 

Similar increases were observed in SMLR models when hyperspectral variables were 

introduced (R2=0.61 to 0.89 for SOC and from R2=0.8-0.94 for percent SOC). In the 

absence of hyperspectral data, NDVI was universally selected as the best predictor of 

SOC. Only four different highly correlated vegetation indices (Table A6) were selected 

as the best predictor of SOC through the 12 model calibration efforts. While, lidar 

variables were never selected as best predictors of SOC, several of the best models 

included lidar topographic and/or vegetation predictor variables. 

 While multiple variables commonly identified as good predictors, there were 

differences between both selection methods (RF vs SMLR) as well as target (SOC vs 

percent SOC). These differences in variable selection between RF and SMLR arise from 

the methodology of the statistical approaches, while differences between SOC and 

percent SOC are a result of differences in the distribution of the two SOC datasets. The 

best predictor of SOC and percent SOC in SMLR models was MRESR but RF selected 

the two variables, MRENDVI and PSRI. Topographic position index was also only 

selected by SMLR models while aspect was only selected in RF model calibration. 
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Linear Regression Analysis 

Simple linear regression analysis for SOC found vegetation indices most 

predictive, but also identified elevation and precipitation as useful predictors (Figure 3, 

Table A1). NDVI had an R2 of 0.56 and 0.71 for %SOC and SOC while MRESR 

(hyperspectral) explained 88% of the variability in percent SOC and 71% in SOC. 

Relationships are not as strong for elevation (R2= 0.30 for SOC, 0.59 for %SOC) and 

precipitation (R2= 0.31 for SOC and 0.60 for %SOC). Topographic variables are even 

less effective at the watershed scale with R2 of 0.22, 0.16, 0.06 and 0.02 for aspect 

(northness), aspect (eastness), slope and insolation respectively. 

Resulting Maps 

The SOC maps generated with Random forest and stepwise multiple linear 

regression approaches produced maps that have many similarities (Figure 4). All maps 

exhibit an increase in SOC with increasing elevation and vegetation abundance. 

Similarly, all maps also show highest soil carbon in areas with heavy vegetation cover 

(conifer, aspen, juniper, high biomass sage). 

The most significant difference between maps at the watershed scale is the rates of 

SOC increase and contrast between high and low SOC environments (gradual v. sharp). 

Some models produced a consistent, gradual change in SOC moving up the elevation 

gradient while others produced a sharp change in SOC when moving from sagebrush 

dominated to forested ecosystems. The degree of homogenization or heterogeneity in 

high and low SOC environments also varies between maps. Some models produced an 

abundance of high SOC values at high elevations, producing a relatively homogenous 
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SOC distribution while variability in high SOC environments can be observed in other 

maps. 

Maps do, however, exhibit different patterns in soil carbon that relate to how 

different predictor variables represent SOC variability at smaller scales (Figure 4, Figure 

5).  One major difference is how SOC maps represent topographic differences in SOC. 

Strong aspect related differences in SOC are observed in maps where aspect was selected 

as a predictor while maps where topographic position index was selected show more 

influence from the proximity to channels and valleys versus ridges. Although, datasets 

with high spatial resolution (lidar and hyperspectral), provide increases in model 

accuracy, maps created using these datasets are more susceptible to extreme values, 

speckled characteristics or artifacts. 

Composite and Standard deviation maps 

Composite and difference maps were created to evaluate similarities and 

differences between models (Figure 6). SOC data values from all of the SOC and %SOC 

models were averaged to create composite maps. These composite maps including many 

of the same trends as the maps in Figure 4 while smoothing out differences between SOC 

and percent SOC maps. 

 The composite maps for SOC and percent SOC differ slightly, mostly at higher 

elevations where topographic influences on SOC vary depending on which variable was 

included in the model. Differences between models of both SOC and percent SOC are 

most significant at intermediate to high elevations while lower elevation and lower SOC 

portions of the watershed are relatively similar between models. The difference maps for 

SOC have more consistent variation at high elevations. However, the most significant 
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differences in percent SOC models appear to be driven by proximity to channels and 

valley bottoms. These trends are related to the selection of aspect and TPI (Topographic 

Position Index) as predictors as the SOC difference map is responding to aspect related 

differences in SOC while the percent SOC difference map is responding to differences in 

SOC concentrations caused by topographic position.  

Spatial distribution of error in SOC model outputs 

Generally, the spatial distribution of error in SOC models is dominated by a few 

outliers (Figure 7). Although, relatively high error was observed at a few low 

elevation/low SOC sites, error is generally greater at high elevations.  While, error in 

%SOC models is relatively consistent at high elevations, many of the highest errors in 

SOC were at high elevation sites with high CF and often shallow soils. In several SOC 

model residual maps, alternating under and over estimates are evident, suggesting 

topographic controls are especially important at intermediate to high elevations. The 

largest differences between modeled and measured for both SOC and percent SOC occur 

at high elevations where SOC storage is also the greatest. In addition to high error, SOC 

models are producing a larger range of values in these high SOC environments. 

Distribution of SOC data values from model outputs 

The relative distribution of values (histograms) as well as the minimum, maximum, 

mean and median values of SOC and percent SOC varies between models (Figure 8, 

Table 2). While, all of the distributions for percent SOC and SOC models display a 

decreased proportion of pixels at high SOC values. The relative proportions of low and 

high SOC values varies as does the rate of decrease in proportion moving from low SOC 

values to higher SOC values. However, these differences in the distribution of SOC and 
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percent SOC model outputs generally lead to relatively small differences in total SOC at 

the watershed scale. 

The distribution of output SOC values may be effective for highlighting differences 

between models but are unlikely to lead to the preference of a particular model. Since, the 

distribution of calibration data are influenced by the distribution of sample locations, 

which has its own biases. 

Bulk density and percent coarse fragment are important variables 

Soil bulk density and the fraction coarse fragment fraction are highly variable 

across the watershed; this high variability strongly influences calculated mass/unit area 

SOC values (Figure 9). We calculated SOC (kg/m2) using percent SOC, percent soil (1-

CF) and soil bulk density (kg/m3), which is described in the laboratory processing 

portion of the methods section. Soil bulk density has a strong inverse relationship with 

percent SOC and elevation; where soils with high SOC content have much lower BD due 

to the increase in SOM relative to mineral soil that has much greater density. The spatial 

variability of CF is complex but proportions of coarse fragment tend to increase with 

elevation where SOC concentrations are also the highest. Interestingly, there is also a 

negative correlation between CF and percent SOC at high elevations. 

Scales of SOC spatial variability 

 SOC has a high degree of spatial variability at multiple scales (Figure 9, Table 3). 

When we evaluate point data at the watershed scale, SOC concentrations (percent SOC) 

range from 0.2-8.2% while values for SOC range from 0.45-11.4 kg/m2 SOC. When we 

average point data by the plot, the range of percent SOC by site is 0.4-4.9% while the 

range of plot averaged SOC is 1.4-7.8 kg/m2. Standard deviations at the watershed scale 
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are 1.46 percent SOC and 1.94 kg/m2 for SOC. When the point SOC data is averaged by 

site, standard deviations decrease to 0.5 for percent SOC and 0.82 for SOC. At the 

watershed scale, relative standard deviation (RSD, equal to standard deviation/mean) in 

percent SOC is greater than SOC with RSDs of 82 and 58 for percent SOC and SOC 

respectively. 

The RSD in percent SOC at the plot scale is roughly one third of the variability 

observed in the entire watershed, with RSD of 28 and 24 for percent SOC and SOC 

respectively. However, both absolute (standard deviation) and relative variability 

(relative standard deviation) at the plot scale varies considerably. Plot scale standard 

deviations range from 0.13-2.23 for percent SOC and 0.18-2.34 for SOC in kg/m2, while 

relative variability at the plot scale ranges from 6-93 for percent SOC and 11-59 for SOC. 

Variability at the pit scale is slightly less than plot scale variability with RSDs of 

19 for the pit scale and 28 for plot scale. The mean uncertainty in SOC at a point, 

calculated from pits, was 0.22 in units of percent SOC and 0.37 kg/m2, which is equal to 

RSD of 19 for percent SOC and 15 for SOC. However, pit scale variability varies 

considerably across the watershed with SDs ranging from 0.02-0.97 kg/m2 SOC or 0.02-

0.98 in units of percent SOC. 

Laboratory uncertainty is less than uncertainty in SOC concentrations at a point, 

with RSD of 19 for uncertainty at a point and 9 for laboratory uncertainty. Propagation of 

laboratory uncertainty in SOC concentrations leads to a laboratory uncertainty equal to 

0.05 kg/m2 for SOC. Lab uncertainty in SOC concentrations is greater than instrument 

uncertainty, with RSD of 9 for laboratory uncertainty and 2(aspartic acid)/3(m soil and 

triplicates) for instrument uncertainty. 
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Mapping SOC at the plot scale 

SOC variability at the plot scale appears to be controlled by a variety of factors. 

Although, none of the predictors consistently explain plot scale SOC variability. In some 

cases, fine scale SOC variability can be modeled with remote sensing datasets (Figure 11, 

Table 5). RF models predicted SOC at the plot scale with a mean R2 of 0.53 while SMLR 

models predicted SOC at the plot scale with a mean R2 of 0.70/0.75. Individually, 

predictors evaluated in this research have a mean R2 at the plot scale near 0.2 when all 

sites are considered. However, a variety of predictors have R2 ranging from 0.6-0.9 for 

individual sites at the plot scale. Also, there appears to be a slight increase in the selection 

of topographic variables at this scale relative to watershed scale. 

SOC depth relationships 

SOC concentrations are generally highest at the surface but SOC depth 

relationships are highly variable throughout the watershed (Figure 12, Figure A1).  

Generally, variability in SOC is greatest near the surface where differences in SOC 

between canopy and interspace are also the greatest (Table A4D-F, Table 8). 

 Correlation between SOC and predictors also varies a bit with depth as higher R2 

for SOC and vegetation indices are observed near the surface (Figure 13). The 

hyperspectral vegetation indice, MRESR explains 91% of the variability in SOC 

concentrations in the top 10 cm. However, MRESR is also very effective when predicting 

SOC to 50 cm depth with an R2 of 0.71. Elevation and precipitation display a slight 

increase in predictive capability with depth, shown by higher R2 for SOC below 10 cm.
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DISCUSSION 

Which Variables Were Most Predictive and Why 

Spectral vegetation indices, such as NDVI or MRESR, have a stronger 

relationship with SOC than the other traditional (non-lidar and non-hyperspectral, 

detailed in Table A1a) and lidar derived predictors evaluated in this research. 

Hyperspectral vegetation indices were also modestly better as predictors than LANDSAT 

NDVI. We attribute the increase in predictive capability of hyperspectral vegetation 

indices to a combination of factors including but not limited to continuous coverage of 

EM spectrum and finer spectral sampling, timing of data collection and finer spatial 

resolution. 

Wavelength selection and spectral sampling 

Hyperspectral data provides a suite of different vegetation indices, many of which 

are highly predictive of soil carbon (Table A1d). The predictive differences are small and 

these indices are often highly correlated. Of the 52 hyperspectral vegetation indices 

evaluated, 26 had higher R2 for both SOC and %SOC compared with LANDSAT NDVI. 

Similarly, 18 indices had an R2 greater than 0.8 for percent SOC and seven indices had 

an R2 greater than 0.65 for SOC. 

In this study, the best predictors of SOC used reflectance in the visible and NIR 

portion of the EM spectrum. The correlation between SOC and reflectance peaks near the 

red edge (700-750 nm) and indices calculated using reflectance data near these 

wavelengths, like MRESR and MRENDVI (calculated using reflectance at 445, 705 and 
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750 nm) had the highest correlation with SOC (Figure 14, Figure 15). However, there 

was an abundance of good predictors calculated using a variety of wavelengths and 

spectral sampling densities. This suggests that these factors can modestly improve models 

but are not solely responsible for the observed increases in SOC prediction accuracy 

provided by hyperspectral datasets relative to LANDSAT. 

What are we measuring with hyperspectral vegetation indices? 

In this study, we utilized relationships between SOC and spectral vegetation data 

to produce maps of SOC. However, the relationship between SOC and aboveground 

vegetation is complex and determining the vegetation characteristics responsible for these 

correlations is difficult. There are several important processes and physical characteristics 

of vegetation that can be measured using reflectance data in the visible and NIR portion 

of the EM spectrum. Many of the indices that were most predictive of SOC utilize 

reflectance data from this portion of the EM spectrum. 

One important characteristic of vegetation reflectance data is the red edge (700-

750 nm) which separates the EM spectrum into wavelengths that are dominated by 

absorption (< 700 nm) and wavelengths that are dominated by reflectance (>750 nm) in 

vegetation (Figure 16). The visible portion of the EM spectrum is heavily influenced by 

absorption features, which are present when photosynthesis is actively occurring, as 

shown in Figure 16. Vegetation indices in this portion of the spectrum may be used to 

estimate concentrations of photosynthetically active leaf pigments like chlorophyll a and 

b and carentoids (VREI2, PSRI, MCARI) (Figure 15). These wavelengths may also be 

indicative of water stress and the timing and duration of photosynthesis (MRENDVI, 

PSRI). The near-IR portion of the EM spectrum is dominated by reflectance 
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characteristics that are most closely related to metrics like LAI and leaf water content 

(MRESR, MRENDVI, MCARI2, MSI). 

In this study, SOC was more highly correlated with absorption features (R2=0.53) 

relative to reflectance features (R2 = 0.3) (Figure 14). However, the most predictive 

vegetation indices generally use both absorption and reflectance features. The higher 

correlation for SOC in absorption-dominated wavelengths suggests that metrics related to 

the absorption of incoming solar radiation such as NPP are closely related to SOC. 

However, there is likely a strong correlation between the strength of absorption features 

in the visible and reflectance in the near-infrared. For example, greater rates of absorption 

or photosynthesis are observed in trees relative to sagebrush and trees also have greater 

leaf area and stronger reflectance features (Figure 16). Although absorption and 

reflectance is closely related to vegetation species, it likely varies within species as well 

as throughout the growing season. 

The results of this analysis suggest that SOC is an ecosystem property, closely 

linked to water and energy fluxes and the associated vegetation response (carbon flux). 

The strength of these relationships suggest that other important metrics related to 

ecosystem fluxes could be estimated or spatially distributed using these vegetation 

indices or other variables from hyperspectral data.  

Timing of Spectral Data Collection 

In semi-arid regions, vegetation absorption and reflectance vary seasonally in 

response to growing season and loss of biomass as water limitation begins in summer. 

When the growing season ends, leaves begin to change color and reflectance 

characteristics may become less representative of the peak aboveground vegetation. 
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However, the timing of peak greenness and growing season length vary in both space and 

time. The peak in the growing season occurs in spring at low elevations and migrates up 

elevation, occurring in mid-summer at high elevations (Figure 17). This suggests the 

potential value of using different timed data for different elevations  

These seasonal fluctuations in vegetation reflectance have a significant impact on 

the quality of vegetation indices and their ability to predict SOC. Vegetation indices 

collected near the peak in the growing season have a strong relationship with SOC. In 

contrast, spectral datasets collected outside of the growing season are generally 

ineffective. Figure 18 shows a comparison of three NDVI datasets. Both NDVI WELD 

(max NDVI of year) and hyperspectral NDVI collected in May were effective predictors 

with R2 of 0.71 and 0.75 respectively, but NDVI collected in September was much less 

effective with R2 of 0.34. 

Resolution of remote sensing datasets and field observations 

The scales of both the predictor variables and the field observations matter. 

Higher resolution spatial (spectral) datasets tend to have a stronger relationship with 

SOC. The increased predictive capability provided by high resolution datasets likely 

relates to improved characterization of sample plots by limiting influence from portions 

of pixels located outside of the plot. 

Interestingly, the predictive capacity of remote sensing datasets and SOC declines 

when applied to individual points (cores and pit data) compared to plot-averaged values 

for SOC and predictors (Table 5). This observation suggests that the benefit of having 

more confidence in data points by taking the mean of multiple samples outweighs the 

potential benefit of representing SOC variability at a higher resolution. 
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Limitations of spectral data for predicting SOC at the watershed scale 

Vegetation indices were very effective for predicting SOC at the watershed scale 

in this study (Table 1). However, there are limitations in their ability to predict the 

distribution of SOC (Figure 19, Figure 20). SOC varies in response to many interrelated 

factors that in some cases are not represented by trends in aboveground vegetation 

(Doetterl, 2015). Vegetation indices had a stronger relationship with percent SOC than 

SOC. Interestingly, Lidar topographic variables were only selected by models predicting 

SOC (percent SOC) concentrations. This is surprising considering that SOC (in kg/m2), 

appears to be more influenced by topography, which appears to be closely related to 

coarse fraction (percent CF).  

Models calibrated with spectral vegetation data may have the tendency to 

over/under estimate soils in certain types of ecosystems (Figure 20). In forested areas, we 

observe a range of SOC and %SOC contents, yet vegetation indices consistently predict 

high SOC values. Similarly, species differences appear to produce SOC differences not 

captured by vegetation indices. Specifically, Aspen and conifer ecosystems produce 

similar values for vegetation indices but SOC storage tends to be higher in aspen 

ecosystems. Sagebrush ecosystems produce a range of values for vegetation indices but 

they are consistently lower than forested areas. In some cases, sagebrush sites stored 

more carbon than forested areas and were underestimated by models. In addition, 

Bitterbrush-dominated sites store relatively little SOC relative to sage brush, but have 

similar vegetation indices, causing overestimation of SOC. These vegetation trends 

appear to explain many of the mapped areas with elevated error. 
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Comparison of SOC Maps 

All of the maps display a general increase in SOC moving up the elevation 

gradient, consistent with increases in aboveground biomass at high elevations. This trend 

is driven within the map modelling by spectral vegetation indices being selected as the 

best predictor. However, there are noticeable differences between the maps. 

Some of these most visible differences between maps can be attributed to 

variables were selected as 2nd and 3rd best predictor. Perhaps the most striking 

difference between maps is driven by the selection of topographic related variables like 

aspect, elevation and/or topographic position (Figure 4). Selection of aspect as a predictor 

created blocky slopes with sharp aspect related differences in SOC while models that 

selected topographic position tend to be veiny with proximity to valleys and ridges 

controlling SOC at the hillslope scale. 

Topographic variables are likely good predictors because the terrain modulates 

the energy and water balance and, by extension the generation and consumption of SOC. 

For example, in water limited environments, north-facing slopes typically have more 

SOC because these slopes often store more water (Kunkel, 2011; Patton, 2016). 

Similarly, slope position dictates insolation intensity and often is a good indicator of soil 

thickness, both important variables governing water availability. While, variables such as 

slope, aspect and topographic position, influence these processes, they do not uniquely 

capture them. This is further complicated by the fact that the influence of topographic 

alteration of water energy balance varies across the watershed in response to the gradients 

in the energy and moisture flux. For example, at higher elevations water limitation may 

be less influential than at lower elevations. Similarly, specific vegetation types are likely 
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to have distinct responses to the water-energy balance. For this reason, topographical 

variables are likely to be better predictors when energy and water flux is held constant. 

For example, at a fixed elevation in the watershed where climatic influences are more 

constant, these variables are likely to be effective predictors of differences in SOC. 

Comparison of Random Forest and Stepwise Multiple Linear Regression Ii Approaches 

In recent years, SOC and soil mapping research has focused increasingly on 

uncertainty and validation approaches, which is one of the limitations of early SOC 

mapping studies (Minasny; 2013). While, both random forest (RF) and stepwise multiple 

linear regression (SMLR) utilize environmental covariates to distribute point data and 

provide a mechanism for evaluating large quantities of highly correlated environmental 

covariates. The methodology for selecting variables and developing a model varies 

between the two approaches.  Due to the robust modeling approach provided by bootstrap 

sampling, we would argue the RF is likely the preferred approach, especially when using 

data-rich datasets like hyperspectral imagery. This is in agreement with many other 

recent studies that have focused on soil mapping with hyperspectral and lidar datasets, 

which have used more robust modeling approaches (Minasny, 2006; Gomez, 2008; 

Grimm, 2008; Wiesmeier, 2011; LaCoste 2014). 

 During RF model calibration, field SOC data is randomly split into calibration 

and validation datasets while random combinations of predictor variables are also 

selected over thousands of iterations (Breiman, 2001). This approach is applied during 

model calibration (known as bootstrap sampling), allowing all of the field SOC data to be 

used for both calibration and validation.  This approach improves confidence in model 

accuracy metrics and variable selection while limiting overfitting. In the more traditional 
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SMLR approach, the f-test (p-value) determines whether the addition of a variable 

improves an SMLR model. In this study, model accuracy and variable selection were 

based solely on the fit of regression equation with field data. The SMLR approach could 

be modified to include bootstrap sampling, which would decrease the likelihood of 

overfitting. 

Controls on SOC in Semi-Arid Complex Terrain 

The SOC content, both mass per unit area (SOC) and mass per soil mass (SOC%) 

varies dramatically over the Reynolds Creek Watershed (Table 6). Similarly, the controls 

on the generation and consumption (photosynthesis and respiration) of SOC vary, often 

with complex relationships with climate, topography and vegetation. Our mapping 

exercise was not explicitly designed to identify controls of SOC distribution. However, 

the richness of the observational data does provide some insight into the processes that 

control SOC in this semi-arid, mountainous watershed. 

Scale and Ecosystem Controls on SOC 

In this study, SOC generally increased moving up the elevation gradient from 

hot/dry low elevation ecosystems to higher elevation ecosystems with lower temperatures 

and more precipitation. The complexity of SOC variability can be observed in varying 

predictive capability (R2) for predictors depending on both scale and ecosystem of 

interest (Table 6, Table A4). 

Importance of Water Availability 

Water availability is a primary control on ecosystem processes in semi-arid 

regions (Noy-Meir, 1973; McFadden, 2013) and, by extension, exerts a strong influence 

on SOC distribution. High rates of insolation often lead to water stress (Kunkel, 2011) as 
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water availability limits rates of photosynthesis for the many intermediate and low 

elevation sagebrush ecosystems (PET>PPT, WUE=90-5%) (Fellows, 2016). In semi-arid 

regions, moisture availability sets a limit on the potential for C flux and storage on an 

annual basis and increases in moisture generally lead to increased rates of photosynthesis 

and an associated increase in SOC. This observation suggests that photosynthesis is more 

responsive to moisture availability than respiration in this ecosystem; a trend hinted at by 

previous researchers (Schlesinger, 1977; Schlesinger, 1997; Joggaby, 2000). Carbon 

input to soil via photosynthesis is also more likely to exhibit response to not just amount, 

but also timing of moisture availability (Smith, 2011). 

SOC follows similar trends to modeled NPP data (Figure 21) but correlations 

between SOC and NPP are not particularly strong (Figure 22). There is likely a stronger 

correlation between these two variables than what is observed in Figure 21. But, there is 

significant hillslope scale variability in NPP (Adams, 2014; Swetnam, 2017), which is 

not captured by coarse resolution data (250 meter pixel size). 

Topography Exerts More Control on SOC at High Elevations 

While SOC has a strong relationship with precipitation at low elevations, the 

interplay between climate, topography and vegetation is more complex at high elevations. 

At higher elevations, SOC moisture relationships are not captured by measured 

precipitation data and SOC storage appears to be more heavily influenced by topographic 

and geomorphic controls. 

 This trend is illustrated in Table 6, where precipitation data explains 2% of the 

variability in SOC above 1800 m, while CF explains 90% of variability in SOC (kg/m2) 
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and 41% of SOC concentrations. In addition, topographical position index (TPI) can 

predict 60% of the variability in SOC and 55% of variability in CF. 

 The strong relationships between SOC and topography at high elevations likely 

relate to increased importance of snow as a source of moisture. Snow (re)distribution and 

residence time into the summer season is strongly influenced by topography (Stephenson, 

1965; Winstral, 2002; Williams, 2009). Field observations from this study are consistent 

with other studies that have observed shallower soils (In this study, all pits shallower than 

50 cm depth were at high elevations or local topographic high points) and more coarse 

material at higher elevations and/or higher topographic positions (Schimel, 1985; 

Hoffmann, 2014) (Figure 9). 

 These topographic and geomorphic controls on moisture availability create 

significant differences in SOC at the hillslope scale (Kunkel, 2011; Patton, 2016) (Figure 

23 and Figure 24). Soils on ridges and some slopes tend to be erosive environments with 

less SOC, more coarse material and shallower soils, while soils on lower topographic 

positions are more likely to be depositional environments characterized by deeper, finer 

grained soils with moisture and SOC (Stephenson, 1965). Where soils are thinner, limited 

soil moisture storage, likely results in soil moisture deficits earlier in the season (Smith, 

2011).  It is likely that photosynthesis is more strongly influenced by moisture limitation 

in these environments, depressing SOC production. 

The controls on SOC in valley environments are quite different. These thicker 

soils can store more moisture and also experience increased moisture flux since saturated 

soils upslope are likely sources of moisture for soils at lower topographic positions 

(Stephenson, 1965). In addition, topographic controls on the redistribution of snow may 
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also lead to increased moisture storage in valleys relative to ridges. This is probably most 

dramatically evident by the strong tendency for aspen to grow on the leeward, and more 

northern facing sides of ridges where large snow drifts generally accumulate in the winter 

and soils are often disproportionately thick and fine-grained (Stephenson, 1965). 

 The above observations illustrate the positive feedback between the soil 

hydrologic characteristics and aboveground vegetation (Table 7, Figure 25 and Figure 26) 

The high predictive capability of hyperspectral data, which is measuring vegetation 

differences, also appears to capture the influence of soil properties (Ballabio, 2012), in 

particular soil moisture availability. Rates of photosynthesis over longer time scales are 

heavily influenced by the composition of vegetation communities which vary in terms of 

their ability to generate fluxes of C (Schlesinger, 1997). Areas with more moisture are 

more likely to support vegetation communities that increase potential for greater net gains 

in C over time and for this reason SOC storage is greater in these environments. 

Importance of Soil Texture and Parent Material Controls on SOC 

Soil texture and amount of coarse material strongly influence SOC in the RCEW. 

This influence is illustrated in Figure 27, where soil texture appears to be regulated by 

parent material. Relative to felsic soils, soils with mafic parent material are generally 

have more coarse material (CF for mafic sites= 33%, felsic=21%.), lower soil bulk 

densities (BD for mafic sites= 0.94 g/cm3, felsic=1.12 g/cm3) (Patton, 2016) and finer 

soil textures. These soil parent material characteristics are also related to differences in 

weathering rates as well as the particle size and mineralogy of weathering products 

(Aguilar 1988). These soil characteristics in turn affect soil hydrologic characteristics 

(like water holding capacity), which alter the composition of associated vegetation 
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communities (Low sage is found mostly on mafic soils while bitterbrush and juniper 

appear to have an affinity for coarser grained felsic soils) as well as SOC contents 

(Aguilar 1988). 

It is worth noting that this study was not designed to evaluate differences in SOC 

caused by parent material. For this reason, the distribution of felsic and mafic sites may 

be biased. Areas of potential bias in this analysis are the distribution of felsic and mafic 

sites with respect to elevation (Mean elevation=1660 meters for mafic sites and 1509 

meters for felsic sites), precipitation (584 mm/yr. for mafic sites and 501 mm/yr. for 

felsic sites) and NDVI (3975 for mafic sites and 3780 for felsic sites). 

Importance of Soil Conditions and Covariation with SOC 

Several other key soil parameters have strong relationships with SOC (Table A2). 

Soil nitrogen was correlated with SOC to an R2 of 0.97. While, C: N ratios were also 

highly correlated with SOC as higher SOC soils had a higher ratio of carbon to nitrogen, 

with an R2 of 0.71. In addition, strong relationships were observed between SOC and pH 

as more acidic soils were found in high SOC soils while lower SOC soils, often 

containing SIC (soil inorganic carbon) have basic or neutral pH. SOC concentrations 

explained roughly 51% of the variability in soil pH. 

Trends in Plot Scale SOC Data 

Biota is responsible for much of the nutrient cycling in arid and semi-arid regions. 

In these ecosystems, widespread roots systems accumulate nutrients, which are 

concentrated near vegetation (Schlesinger, 1996; Titus 2002). The results of this study 

appear to be consistent with this observation. In this study, proximity to vegetation, as 

measured by paired sampling in canopy and interspace, showed the greatest differences 
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in SOC in the hottest/driest ecosystems, primarily composed of Wyoming sagebrush 

(Table 8). However, juniper ecosystems also displayed significant differences in SOC 

between interspace and canopy. These types of ecosystems with less continuous 

vegetation cover and more bare ground have the greatest plot scale SOC variability and 

localized C input heavily influences fine scale SOC variability. 

Higher moisture environments, usually at higher elevations, tend to have less 

variability and canopy/interspace differences in SOC are not as pronounced. This likely 

occurs because ecosystems with more moisture often support more interspace vegetation 

which appears to reduce SOC plot-scale variability. In some cases, large vegetation 

canopies spread detritus over larger areas or across an entire site and proximity to 

individual trees is less significant. Although, the relative difference in plot scale SOC is 

lower at higher elevations, higher SOC contents in these ecosystems may lead to greater 

absolute differences in SOC contents at the plot scale. 

Discussion of Plot Scale SOC Mapping Results 

Trends in aboveground biomass have strong relationships with SOC at the 

watershed scale but these relationships often breakdown at the plot scale. In some cases, 

SOC variability at the plot scale can be modeled using high-resolution lidar and 

hyperspectral datasets (Figure 28). However, at many sites, SOC distribution at the plot 

scale is not well predicted (Table 4, Figure 11). 

In general, applying the approach we used at the watershed to map SOC at the 

plot scale was not particularly effective; we attribute this failure to three reasons. First, 

the controls at the plot scale are often observed at the scale of individual plants (often 

sub-meter). The resolution of remote sensing data is not always able to capture vegetation 
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with sufficient accuracy to capture SOC variability. Second, plant distribution at the plot 

scale is not driven by stationary climatic variables and likely varies in time. Soil carbon 

residence times are often longer than most plant lifetimes, so SOC contents are likely the 

influenced by prior vegetation distributions. This signal is not measured by current 

vegetation distribution. Third, plot scale prediction is likely hampered by data limitations. 

The influence of decreased sample size relative to predictor variables is evident in several 

places. The difference in R2 and RMSE between RF and SMLR models is greater at the 

plot scale than the watershed scale (Table 4). In addition, a greater range of R2 and 

RMSE was observed for RF models. This variability in SOC models shows the sensitivity 

of model accuracy metrics to sample size as individual samples have more influence on 

selection of predictors and model accuracy. 

Heterogeneous ecosystems with larger vegetation such as conifers or juniper, are 

the most likely to be mapped with accuracy at fine scales considering the size of 

vegetation relative to the spatial resolution of remote sensing datasets. In low elevation 

sagebrush ecosystems, SOC generally increases near sagebrush, but distributing SOC 

data is complicated by the influence of soil reflectance and scale/resolution issues. At low 

elevations, bare soil has considerable influence on reflectance spectra and differences in 

vegetation reflectance are less pronounced. In addition, sagebrush are smaller than the 

resolution of remote sensing datasets, making it difficult to distribute SOC data based on 

proximity to vegetation. In contrast, at many high elevation sites, vegetation cover is 

relatively continuous and differences in vegetation reflectance are less significant, yet 

SOC varies below the canopy, illustrating the limitations of hyperspectral data as a SOC 

predictor in these settings. 
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Implications for SOC Modeling 

While this work confirms the value of hyperspectral remote sensing data for 

predicting SOC in semi-arid environments, we have also identified influences on SOC 

distribution that are unlikely to be captured by hyperspectral data alone. Of particular 

importance are soil bulk density and rock content, which strongly influence SOC in the 

Reynolds Creek watershed. These variables, along with soil thickness, are more likely to 

be captured by topographical variables, highlighting the value of a hybrid approach. 

Identification of spatially distributed datasets that capture rock content could also 

improve predictive capacity. The strong influence of water availability on vegetation 

distribution in semi-arid systems and the high correlations between vegetation and SOC 

in this work, suggest that it could also be productive to explore use of soil moisture, or 

evapotranspiration, parameters to directly predict SOC distribution. 

Sensitivity of SOC and Ecosystem C Flux to Projected Changes in Climate 

Some of the observations above may assist in understanding the sensitivity of 

SOC storage in projected climate scenarios. Since the beginning of the 20th century, the 

Earth’s mean surface temperature has increased by about 1°C. (IPCC, 2007). This is 

consistent with research from RCEW which states that the mean surface temperature in 

western North America has increased by 1–3°C over the last 50 years (Nayak, 2010), 

with rates of temperature increase being even greater in mountainous regions (Lemke, 

2007). The influence of increasing temperatures can also be observed in research from 

RCEW which shows movement of the rain snow transition over the last 50 years (Klos, 

2014).  
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The carbon balance and SOC storage are in dynamic equilibrium with ecosystem 

energy and water balance and changes in SOC will likely be apparent in shifting 

vegetation patterns (Ballabio, 2012). Examples of vegetation trends in the Great Basin 

that are potentially affecting ecosystem carbon dynamics are the expansion of juniper 

(Rau, 2011a; Kormos, 2016), and the decrease in cold temperature species like Douglas 

fir and Alpine fir (Beedlow, 2013; Restaino, 2016). In addition, more frequent fires and 

larger fires (Westerling, 2006), increase the probability of net C loss through ignition and 

natives being replaced by an invasive such as cheatgrass which generally store less SOC 

(Rau, 2011b; Austreng 2012).  

Importance of high elevation ecosystems 

In this research, error in SOC models and differences between SOC models were 

the greatest at high elevations where SOC contents are also the highest. Much of this is 

due to the complexity of these ecosystems, difficulty with scale and the abundance of 

related topographic variables, such as aspect, curvature and topographic position, which 

all relate to energy and water related controls on SOC as well as geomorphic controls, 

while not explicitly representing them. 

Although, much research has went into understanding SOC variability at the 

hillslope scale (Schimel, 1985; Kunkel, 2011; Bameri, 2015; Patton, 2016), there is still 

considerable uncertainty regarding this issue. Topographically-induced hillslope scale 

variability in SOC is likely one of the largest source of uncertainty in SOC estimates 

currently. It may also be one of the most important to improve since ecosystems in 

arid/semi-arid regions and/or complex terrain are the most sensitive to alterations to water 

and energy balance (Hoffmann, 2014). 
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These ecosystems also appear to have greater potential to be sources of C to 

atmosphere given the high SOC contents and hydro climatic setting of these 

environments relative to lower-precipitation sagebrush ecosystems that have lower SOC 

contents and soil nutrient and climatic conditions that do not favor high rates of 

respiration. The changes in NPP in lower elevation ecosystems are also likely to be less 

sensitive to warming since rates of SOC accumulation and NPP are already severely 

water-limited in these ecosystems. 

SOC uncertainty in complex terrain  

The spatial variability of SOC, operating at multiple scales is often the largest 

source of uncertainty in SOC estimates (Minasny, 2013).  This is especially true in 

complex terrain where significant changes in soil forming factors over short distances 

leads to uncertainty in SOC (Hoffmann, 2014). Efforts to understand SOC variability are 

often complicated by issues of scale (Wang, 2009; Miller, 2015) and feedbacks (Ballabio, 

2012) which make it difficult to establish relationships between SOC and environmental 

covariates. 

These complex influences on SOC necessitate evaluation of bias. Robust 

modeling approaches that employ bootstrap sampling allow for detailed uncertainty 

analysis and may be the best approach for evaluating bias. This is an important 

consideration in terms of model quality since bias in SOC and predictor variable datasets 

may lead to flawed interpretation of SOC controls. 

 Considering the issues of scale and uncertainty described in this research, it may 

be useful to employ non-quantitative analysis of model options. We attempt to provide a 

simple framework for evaluating tradeoffs between multiple models in the context of 
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these issues with Figures 5-7. Figure 5 shows where models are similar as well as where 

they are different in space, highlighting areas of high sensitivity to model choice and 

potential uncertainty. Figure 6 shows the spatial distribution of error based on field data 

fit, allowing for highlighting areas where models are less effective in SOC prediction. 

These figures could be used for selection of a particular model if it is more important to 

be accurate in certain areas. In addition, a study by (Weismeier, 2011), suggested using 

the spatial distribution of error to improve models with regression kriging based 

approaches. Figure 7 shows the distributions of model outputs and how much total SOC 

varies between models, which could be useful for determining how sensitive watershed 

or regional estimates are to selection of a particular model or to evaluate the distribution 

to see if it matches field data or expected results of the modeling effort. Although, this 

framework may not lead to the selection of a model, it may be useful for evaluating the 

pros and cons of different models, understanding the error and bias and determining how 

to potentially improve to the models.  
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CONCLUSIONS 

Our research suggests that, the best predictors of SOC storage are vegetation 

indices calculated from spectral data. NDVI explains roughly 60% of the variance in 

SOC data while two hyperspectral vegetation indices, MRESR and MRENDVI explain 

over 70%. SOC models that include both lidar and hyperspectral can explain up to 75% 

of variability in SOC but the Lidar-derived variables evaluated in this study are less 

effective without spectral vegetation information. 

In semi-arid mountainous Reynolds Creek Watershed, SOC has high degree of 

spatial variability at multiple scales. Local variability of SOC in this study was quite high 

with roughly 1/3 the variability in the watershed observed at the plot scale. At the plot 

scale, the large-scale climatic drivers that control SOC at the watershed scale are absent 

and the degree of variability and its controls are more complex. The amount of SOC at a 

location is heavily influenced by BD (soil bulk density) and CF (coarse fraction) that are 

also highly variable in space in complex terrain. The interactions of these variables make 

SOC (kg/m2) harder to predict than percent SOC. Coarse fraction exerts even more 

influence on SOC distribution at high elevations where SOC contents tend to be the 

highest 

SOC has a strong, positive, relationship with the watershed-scale variables of 

elevation and precipitation. However, trends in vegetation abundance at the hillslope 

scale, as estimated from remote sensing datasets, is a better predictor of SOC distribution. 

This observed relationship between SOC and aboveground biomass likely reflects the 
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fact that vegetation is the primary source of C input to soil, suggesting that inputs 

(photosynthesis), rather than outputs (respiration) may more strongly influence soil 

carbon accumulation in this environment. Although, precipitation was less effective as a 

predictor of SOC, there is evidence that moisture is a primary influence on SOC 

distribution. In this study, locations with higher soil moisture (north-facing and thicker 

soils) have higher vegetation densities and generally store the most SOC. In the rain-

snow transition, the relationship between SOC and precipitation is complex and measured 

precipitation is not always representative of available moisture. 
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APPENDIX (FIGURES AND TABLES) 

 
Figure 1a. Location of RCEW within Idaho. b. Close-up of RCEW location in 

Idaho.  
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Figure 1c. Map of elevation (meters) for RCEW with sites numbered. d. Map of 

precipitation for RCEW with sites shown.  e. Map of vegetation species for RCEW 

with sites shown. f. Map of surface geology for RCEW with sites shown. 
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Figure 2. Summary of SOC and percent SOC data, soil bulk density and coarse 

fraction 
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Table 1. Error metrics and selected predictors for every model and their 

associated map. For Random Forest (RF) models, both field data fit and internal 

accuracy assessment (bootstrap sampling) metrics were provided 

Map# Data Approach Datasets R2 RMSE Variables 

1 SOC RF T 0.65 1.01 NDVI, aspect (by class) 

2 SOC RF TL 0.57 1.12 NDVI, curvature 

minimum  

3 SOC RF ALL 0.75 0.8 MRENDVI, 

PRI, %V1_2.5m 

4 SOC SMLR T/TL 0.58 1.15 NDVI 

5 SOC SMLR ALL 0.79 0.81 MRESR, NLI, 

elevation, V%2.5_10, 

vegetation density 

6 %SOC RF T 0.68 0.77 NDVI, aspect (by class) 

7 %SOC RF TL 0.69 0.77 NDVI, elevation, 

vegetation height 

kurtosis 

8 %SOC RF ALL 0.75 0.63 PSRI 

9 %SOC SMLR T 0.69 0.79 NDVI 

10 %SOC SMLR TL 0.8 0.63 NDVI, TPI  

11 %SOC SMLR ALL 0.88 0.44 MRESR, TPI, PSRI, 

V%1_2.5 

Note 1: Bold and italic: hyperspectral, Bold: LiDAR topographic, Italic: LiDAR vegetation. If not 

specified, the variable is considered traditional.                                                                                                                               

Note 2: Spatial resolution of predictor variables: Traditional datasets: 30-100 m, LiDAR and hyperspectral: 

3 m.  Note 3: Map 4 represents both the traditional and traditional + LiDAR approaches since LiDAR 

variables were not selected when provided. 
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Figure 3. 1:1 Linear Regression plots of SOC and the predictors (precipitation 

(a), NDVI (b) and MRESR (c)). Data for this figure was generated using site 

averaged values for SOC and predictors at each site. 
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Figure 4a. Map 1 (SOC) was created using only traditional predictor variables in 

a Random Forest model. b. Map 2 (SOC) was created using traditional and LiDAR-

derived predictor variables in a Random Forest model. c. Map 3 (SOC) was created 

using traditional, LiDAR-derived and hyperspectral predictor variables in a 

Random Forest model. d. Map 4 (SOC) was created using traditional variables in a 

Stepwise Multiple Linear Regression model (LiDAR-derived variables provided but 

not selected). e. Map 5 (SOC) was created using traditional, LiDAR-derived and 

hyperspectral predictor variables in a Stepwise Multiple Linear Regression model. 
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Figure 4f. Map 6 (%SOC) was created using only traditional predictor variables 

in a Random Forest model. g. Map 7 (%SOC) was created using traditional and 

LiDAR-derived predictor variables in a Random Forest model. h. Map 8 (%SOC) 

was created using traditional, LiDAR-derived and hyperspectral predictor variables 

in a Random Forest model. i. Map 9 (%SOC) was created using traditional 

variables in a Stepwise Multiple Linear Regression model. j. Map 10 (%SOC) was 

created using traditional and LiDAR-derived predictor variables in a Stepwise 

Multiple Linear Regression model. k. Map 11 (%SOC) was created using traditional 

and LiDAR-derived predictor variables in a Stepwise Multiple Linear Regression 

model. 
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Figure 5a. Extent of close-ups shown in Figure 4b-f. b. Close up of Map 1 (SOC) 

where aspect was selected as a predictor. c. Close up of Map 2 (SOC) where 

minimum curvature was selected as a predictor. d. Close up of Map 3 (SOC) where 

no topographic variables were selected. e. Close up of Map 7 (%SOC) where 

elevation was selected as a predictor. f. Close up of Map 11 (%SOC) where 

topographic position index was selected as a predictor. 
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Figure 6a. Composite map for SOC, created by averaging the model outputs of 

all the SOC models. b. Composite map for %SOC, created by averaging the model 

outputs of all the %SOC models.  c. Standard deviation map for SOC, created by 

calculating the standard deviation of all of the SOC models. d. Standard deviation 

map for %SOC, created by calculating the standard deviation of all of the %SOC 

models.   
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Figure 7a. %Error (absolute value of (Modeled SOC-Measured SOC/Measured 

SOC)*100) map for Map 1. b. %Error map for Map 2. C. %Error map for Map 3. 

d. %Error map for Map 4. e. %Error map for Map 5 
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Figure 7f. Residual map (observed SOC-predicted SOC) for Map 1 (positive 

(red) = underestimation, negative (green) = overestimation). g. Residual map for 

Map 2. h. Residual map for Map 3. i. Residual map for Map 4. j. Residual map for 

Map 5. k. Residual map for Map 5 with vegetation species labeled at sites with 

considerable over and underestimation 
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Figure 7l. %Error (absolute value of (Modeled %SOC-Measured 

%SOC/Measured %SOC)*100) map for Map 6. m. %Error map for Map 7. n. 

%Error map for Map 8. o. %Error map for Map 9. p. %Error map for Map 10. q. 

%Error map for Map 11 
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Figure 7r. Residual map (observed %SOC-predicted %SOC) for Map 6 (positive 

(red) =underestimation, negative (green) =overestimation). s. Residual map for Map 

7. t. Residual map for Map 8. u. Residual map for Map 9. v. Residual map for Map 

10. w. Residual map for Map 11. 
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Figure 8a. Histogram of modeled SOC data from Map 1. b. Histogram of 

modeled SOC data from Map 2. c. Histogram of modeled SOC data from Map 3. d. 

Histogram of modeled SOC data from Map 4. e. Histogram of modeled SOC data 

from Map 5. 
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Figure 8f. Histogram of modeled %SOC data from Map 6. Figure 7g. Histogram 

of modeled %SOC data from Map 7. h. Histogram of modeled %SOC data from 

Map 8. i. Histogram of modeled %SOC data from Map 9. j. Histogram of 

modeled %SOC data from Map 10. k. Histogram of modeled %SOC data from 

Map 11. 

 

  



64 

 

 

Table 2. The minimum, maximum, median, median and total C of each model 

Map# Min Max Median Mean Sum 

1 1.36 7.8 2.99 3.4 8.99E+05 

2 1.36 7.8 2.99 3.51 9.29E+05 

3 1.36 7.8 2.81 3.16 7.26E+05 

4 0.0027 7.9 3.25 3.44 9.10E+05 

5 1.36 7.8 2.99 3.57 9.44E+05 

6 1.60E-04 5.71 1.72 1.89 N/A 

7 0.41 4.88 1.58 1.91 N/A 

8 4.70E-07 6 1.74 1.92 N/A 

9 2.00E-04 5.71 1.72 1.89 N/A 

10 2.40E-07 6 1.82 2.08 N/A 

11 2.40E-07 6 1.82 2.08 N/A 

Note: Data for maps 1-5 is SOC (in kg*m-2). Data for maps 6-11 is percent (%SOC). 
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Figure 9.  Soil bulk density and %CF measured at each of the sites in this study 

on an elevation gradient. 
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Table 3. Several metrics that illustrate the scales of SOC variability.  

Scale  SOC 

(kg/m2) 

 %SOC 

Watershed Range 0.45-11.4 0.2-8.2 

 Mean 3.35 1.79 

 Median 2.81 1.24 

 SD 1.94 1.46 

 RSD 58 82 

Plot Range of Means 1.4-7.8 0.4-4.9 

 Range of SD 0.18-2.34 0.13-2.23 

 Range of RSD 11-59 6-93 

 Mean SD 0.82 0.50 

 Mean RSD 24 28 

Point SD 0.37 0.22 

 RSD 15 19 

 Mean 2.88 1.44 

Note: At a point is defined as all of the cores and pits (mean SOC of 3 pit walls) (n=279) in this study. 

Uncertainty at a point is equal to the standard deviation in SOC calculated using samples from three 

adjacent pit walls less than 1 m apart. Plot averaged is equal to the mean of all 10 points at each site (n=28). 

The representative scales for each group are: point=1 m2, plot=3600 m2, watershed= 2.4e8 m2. 
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Figure 10. Box plots comparing variability (standard deviations) in SOC and 

%SOC between cores and pit walls (10 cores vs. 3 sides of pit) (above) with data 

from all 28 sites. The boxplot below show how SOC data (average of 10 data points 

vs. 279 individual data points)  
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Figure 11. 1:1 relationships for SOC/%SOC and predictor variables at the plot 

scale and the mean and maximum R2 for each predictor at the plot scale. 
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Table 4. Error metrics and selected variables for plot scale RF and SMLR 

models, where 10 SOC data points were used to calibrate model using LiDAR and 

hyperspectral predictor variables. 

 SOC   %SOC   

site R2 RMSE Variables R2 RMSE Variables 

1 0.70 0.51 eastness 0.63 0.20 eastness 

2 N/A  N/A 0.49 0.08 H: 25P 

3 0.45 1.84 %: 2.5-10 N/A  N/A 

4 0.43 0.26 elev 0.59 0.15 H: AAD 

5 0.68 0.21 long_curv N/A  N/A 

6 0.96 0.38 tpi, wvii 1.00 0.03 H: MAD, TPI, MTVI2, CR 

7 0.69 0.24 TVI 0.57 0.14 TVI 

8 N/A  N/A N/A  N/A 

9 0.73 0.47 gen_curv 0.58 0.15 long_curv 

12 0.41 0.48 tot_curv N/A  N/A 

13 0.83 0.19 NDWI 0.70 0.09 NDWI 

14 0.97 0.17 H: 95P, TPI, DVI 0.90 0.15 H: 90P, #: LGR 

15 0.56 0.52 insolation 0.54 0.27 slope 

16 0.90 0.22 H: 75P, NMDI, 

WVSI 

0.85 0.07 gen_curv, NMDI 

18 N/A  N/A 0.81 0.28 H: 5P, min_curv 

20 N/A  N/A 0.48 0.21 DVI 

23 0.89 0.43 H: 10P, %: GR 0.68 0.31 %: GR 

24 0.56 0.50 gen_curv 0.55 0.14 gen_curv 

25 0.97 0.29 H: 75P, CAI, 

GARI 

0.92 0.10 min_curv, CAI 

26 0.58 1.10 NDNI 0.61 0.46 northness 

27 0.98 0.30 tan_curv, slope, 

plan_curv 

0.97 0.23 H: range, H: 10P, elev 

28 0.61 0.24 #: LR 0.65 0.39 MNLI 
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Figure 12. Mean SOC plus or minus one standard deviation as a function of 

depth, calculated using SOC data at all 279 cores. 
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Figure 13. The predictive capability (R2) of selected predictor variables with 

%SOC (a) and SOC (b) varies as a function of depth. 
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Figure 14. Relationship (R2) between SOC and reflectance at every wavelength 

in the spectrum, plotted with the best predictor (MRESR) in this study. 
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Figure 15. Some of the most predictive hyperspectral vegetation indices and 

what physical characteristics of vegetation they were designed to measure 
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Figure 16. Spectral information for each site in this study grouped by dominant 

vegetation type. The plot below shows the location of the red edge on the 

electromagnetic spectrum, as well as the areas where the EM spectrum is heavily 

influenced by vegetation absorption and reflectance.  
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Figure 17. The timing of maximum NDVI varies in space. 
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Figure 18. The predictive capability of NDVI datasets for predicting SOC varies 

depending on timing of data collection. As shown by 3 different NDVI datasets, 

Hyperspectral NDVI 2014 (collected in September), Hyperspectral NDVI 2015 

(collected in June) and NDVI WELD (Web-enabled LANDSAT) (max NDVI of 

entire year).  
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Table 5. R2 varies for SOC and predictors, depending on whether data is 

averaged over the plot or as individual points 

 SOC  %SOC  

 plot cores plot cores 

Elev. 0.3 0.23 0.6 0.5 

PPT 0.31 0.24 0.61 0.52 

NDVI 0.61 0.44 0.71 0.59 

MRESR 0.71 0.42 0.87 0.64 

MRENDVI 0.7 0.45 0.85 0.65 
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Figure 19. Rock content, also known as CF, has considerable influence on SOC 

storage and is not well represented by hyperspectral vegetation indices, leading to 

error in even the most accurate SOC models from this study 
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Figure 20. SOC models based on hyperspectral vegetation indices have the 

tendency to over/under estimate SOC in certain types of ecosystems 
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Table 6. SOC contents and SOC-predictor variable relationships vary 

depending on the scale and ecosystem of interest. Table shows R2 values for 1:1 fit 

between percent SOC and the predictor variables, precipitation (PPT), NDVI, 

MRESR, Insolation and coarse fraction (CF). 

  PPT NDVI MRESR Insolation TPI CF 

Low SOC 0.66 0.83 0.84 0.59 0 0.06 

Low %SOC 0.82 0.75 0.89 0.73 0.02 0.19 

Mid SOC 0.39 0.72 0.89 0.17 0.25 0.3 

Mid %SOC 0.03 0.27 0.51 0.17 0.03 0.03 

High SOC 0 0.24 0.5 0.55 0.61 0.91 

High %SOC 0.04 0.31 0.47 0.59 0.29 0.4 

ALL SOC 0.31 0.61 0.71 0.06 0.02 0.04 

ALL %SOC 0.61 0.71 0.87 0.02 0.06 0.06 
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Figure 21. Spatial distribution of Net Primary Productivity (NPP) in RCEW 

(Credit: Poulos) 
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Figure 22. Relationship between SOC and NPP (data from Figure 20) 
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Figure 23. Hillslope hydrology influences on vegetation and SOC (conceptual 

diagram) 
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Figure 24. Transect of modeled SOC concentrations plotted with aspect, 

elevation and topographic position (TPI) (left side of x-axis= site 28, right side of x-

axis= site 3) 
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Table 7. SOC, spectral vegetation and ecosystem characteristics 

 SOC %SOC NDVI MRESR Vegetation/ ecosystem characteristics 

Wyoming 

Sage 

 

1.96 0.67 2326 1.29 Dominant below 4,500 ft. 

Bitterbrush 3.45 1.08 4138 1.75 Found at all elevations, often with other 

species, most common on coarse-grained 

grantic soils 

 

Low Sage 2.42 1.37 2846 1.52 Dominant above 4,500 ft., S/W facing 

slopes, poorly drained soils, high wind 

limits snow acccumulation (15 in), super 

saturated by mid winter 

 

Mountain 

Sage 

5.13 3.24 4604 2.12 Above 6,000 ft., N/E facing slopes, high 

snow accumulation (>5ft) which persists 

into late spring. Soils are well drained 

and commonly deep 

 

Juniper 4.27 1.73 3716 1.71 Actively expanding range, 1400-2000 m 

elev., primarily granitic soils that are too 

dry for mtn. sage or other tree species 

(field ob.) 

 

Conifer 3.99 3.26 5961 2.52 Found mostly on N/E facing slopes, 

6,000 ft.: closed canopy, douglas fir 

above aspen. 6,500 ft: alpine fir above 

aspen, 7,000 ft.: dense stands of alpine 

fir exclude all other major species since 

only they can withstand cold soil temp. 

and short growing season 

 

Aspen 7.21 4.58 5823 2.93 N/E facing slopes, convex valleys often 

below large snow drifts, very deep fine 

grained soils 
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Figure 25. Distribution of vegetation species and their relation to elevation and 

SOC. 
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Figure 26. SOC and ecosystem carbon storage is influenced by a myriad of 

interrelated climatic and topographic controls  
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Figure 27. Soil texture data, grouped by soil parent material. Color of site 

number indicates soil parent material (red = felsic, black = mafic, blue = other) 
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Figure 28. Plot scale SOC maps for selected sites a. Site 13. b. Site 23. c. Site 26. 

d. Site 27  
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Table 8. SOC variability at the plot scale is influenced by proximity to 

vegetation and the influence of proximity to vegetation varies depending on the 

dominant species at a site. 

 30cm 30cm 10cm 10cm 

 %increase %SOC %increase %SOC 

Wyoming Sage 43.47 0.18 71.21 0.38 

Bitterbrush 12.12 0.11 22.32 0.23 

Low Sage 11.40 0.15 21.65 0.34 

Mountain Sage 5.36 0.44 5.04 0.52 

Juniper 29.17 0.44 55.74 1.02 

Conifer 14.34 0.25 19.23 0.32 

Aspen 4.04 0.12 9.88 0.58 
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Figure A1. Field sampling design schematic 
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Figure A2. Patton 2016 soil bulk density model 
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Table A1a. Suite of predictor variables: Traditional 

Predictor 

Variable 

R2 

SOC 

R2 

%SOC 

Description Ref. 

NDVI 0.61 0.71 Normalized Difference Vegetation Index. 640-670nm 

(red), 850-880nm (NIR) 

1 

Annual Precip. 0.31 0.61 Annual Precipitation (mm/yr.) 2 

Elevation 0.3 0.59 Land surface elevation (m) 3 

Aspect 

(northness) 

0.01 0.06 SIN(aspect) (in radians) 4 

Aspect 

(eastness) 

0.40 0.22 COS(aspect) (in radians) 4 

Slope 0.02 0.07 degrees 4 

Insolation 0.05 0.02 Potential insolation (yearly (by month?) 4 

ARS veg N/A N/A Vegetation species 5 

ARS soils N/A N/A Non-NRCS soil classification 5 

ARS geology N/A N/A Parent material 5 

Note 1: source: WELD NDVI 

Note 2: source: PRISM precipitation model 

Note 3: USGS DEM 

Note 4: calculated from USGS DEM using spatial analyst tools in ArcMap 

Note 5: source: ARS soils, geology, veg 
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Table A1b. Suite of predictor variables: LiDAR topographic 

Predictor R2 

SOC 

R2 %SOC Description Ref. 

Elevation 0.30 0.60  6 

C_total 0.02 0.00 C= 

curvature 

7 

C_tangential 0.01 0.05  7 

C_profile 0.00 0.00  7 

C_plan 0.00 0.01  7 

C_minimum 0.07 0.01  7 

C_maximal 0.03 0.00  7 

C_longitudinal 0.00 0.01  7 

C_general 0.00 0.03  7 

C_flowline 0.00 0.02  7 

C_cross-sectional 0.01 0.05  7 

Topographic 

Position index 

0.02 0.06  7 

slope 0.02 0.00  7 

Aspect (northness) 0.22 0.25  7 

Aspect (eastness) 0.16 0.05  7 

Insolation 0.06 0.02  8 

Note 6: source= BCAL LiDAR DEM 

Note 7: calculated using BCAL LiDAR DEM in SAGA GIS Terrain Analysis Module 

Note 8: calculated using BCAL LiDAR DEM in ArcMap using solar radiation tool 
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Table A1c. Suite of predictor variables: LiDAR vegetation 

Predictor R2 SOC R2 %SOC Description 

minimum height 0.02 0.08 H_min 

maximum height 0.20 0.24 H_max 

height range 0.21 0.24 H_range 

mean height 0.17 0.23 H_mean 

mad 0.24 0.29  

aad 0.25 0.26  

variance 0.15 0.18  

std dev 0.24 0.25  

skewness 0.08 0.30  

kurtosis 0.16 0.28  

interquartile range 0.26 0.28  

coefficient of variation 0.08 0.00  

0.05 0.03 0.09 H_5th percentile 

0.1 0.04 0.11  

0.25 0.06 0.13  

0.5 0.15 0.22  

0.75 0.21 0.25  

0.9 0.21 0.24  

0.95 0.21 0.24  

lidar returns 0.05 0.00  

lidar vegetation returns 0.01 0.08  

lidar ground returns 0.10 0.10  

total vegetation density 0.03 0.15  

vegetation  cover 0.15 0.19  

% of ground returns 0.04 0.15  

% 0-1m 0.32 0.32 % of veg returns between 0 and 

1 m 

%1-2.5m 0.30 0.25  

%2.5-10m 0.30 0.30  

%10-20m 0.06 0.10  

%20-30m 0.03 0.08  

%>30m N/A N/A  

crr 0.05 0.26  

texture of heights 0.04 0.02  

Note: calculated using BCAL LiDAR tools and .las files from BCAL 
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Table A1d. Suite of predictor variables: Hyperspectral vegetation 

Type Predictor R2 

SOC 

R2 

%SOC 

Description Wavelengths 

used 

BBG ARVI 0.62 0.84 Atmospherically Resistant 

Vegetation Index 

NIR, Red, Blue 

BBG DVI 0.59 0.70 Difference Vegetation Index NIR, Red 

BBG EVI 0.64 0.78 Enhanced Vegetation Index NIR, Red, Blue 

BBG GARI 0.63 0.78 Green Atmospherically Resistant 

Index 

NIR, red, blue, 

green 

BBG GDVI 0.51 0.59 Green Difference Vegetation 

Index 

NIR, green 

BBG GNDVI 0.55 0.75 Green Normalized Difference 

Vegetation Index 

NIR, green 

BBG GRVI 0.45 0.69 Green Ratio Vegetation Index NIR, green 

BBG IPVI 0.63 0.84 Infrared Percentage Vegetation 

Index 

NIR, Red 

BBG LAI 0.64 0.78 Leaf Area Index NIR, Red, Blue 

BBG MNLI 0.59 0.73 Modified Non-Linear Index NIR, Red 

BBG MSR 0.61 0.82 Modified Simple Ratio NIR, Red 

BBG NLI 0.62 0.81 Non-Linear Index NIR, Red 

BBG NDVI 0.64 0.86 Normalized Difference 

Vegetation Index 

NIR, Red 

BBG OSAVI 0.64 0.82 Optimized Soil Adjusted 

Vegetation Index 

NIR, Red 

BBG RDVI 0.64 0.80 Renormalized Difference 

Vegetation Index 

NIR, Red 

BBG SAVI 0.63 0.77 Soil Adjusted Vegetation Index NIR, Red 

BBG SR 0.58 0.79 Simple Ratio NIR, Red 

BBG SGI 0.35 0.51 Sum Green Index green 

BBG TDVI 0.63 0.84 Transformed Difference 

Vegetation Index 

NIR, Red 

BBG VARI 0.68 0.79 Visible Atmospherically Resistant 

Index 

Green, red, blue 

NB MCARI 0.59 0.78 Modified Chlorophyll Absorption 

Ratio Index 

550, 670, 700 nm 

NB MCARI2 0.65 0.82 Modified Chlorophyll Absorption 

Ratio Index Improved 

550, 670, 800 nm 

NB MRENDVI 0.70 0.85 Modified Red Edge Normalized 

Difference Vegetation Index 

445, 705, 750 nm 

NB MRESR 0.71 0.87 Modified Red Edge Simple Ratio 445, 705, 750 nm 

NB MTVI 0.64 0.78 Modified Triangular Vegetation 

Index 

550, 670, 800 nm 

NB MTVI2 0.65 0.83 Modified Triangular Vegetation 

Index - Improved 

550, 670, 800 nm 

NB RENDVI 0.67 0.86 Red Edge Normalized Difference 

Vegetation Index 

705, 750 nm 

NB TCARI 0.59 0.78 Transformed Chlorophyll 

Absorption Reflectance Index 

550, 670, 700 nm 

NB TVI 0.64 0.79 Triangular Vegetation Index 550, 670, 750 nm  

NB VREI1 0.66 0.86 Vogelmann Red Edge Index 1 720, 740 nm 
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Type Predictor R2 

SOC 

R2 

%SOC 

Description Wavelengths 

used 

NB VREI2 0.63 0.83 Vogelmann Red Edge Index 2 715, 726, 734, 

747 nm 

LUE PRI 0.30 0.23 Photochemical Reflectance Index 531, 570 nm 

LUE SIPI 0.57 0.68 Structure Insensitive Pigment 

Index 

445, 680, 800 nm 

LUE RGR 0.62 0.73 Red Green Ratio Index 600-699 (red), 

500-599(green) 

nm 

CN NDNI 0.59 0.61 Normalized Difference Nitrogen 

Index 

1510, 1680 nm 

DSC NDLI 0.61 0.77 Normalized Difference Lignin 

Index 

1680, 1754 nm 

DSC CAI 0.30 0.49 Cellulose Absorption Index 2000, 2100, 2200 

nm 

DSC PSRI 0.64 0.80 Plant Senescence Reflectance 

Index 

500, 680, 750 nm 

LP ARI1 0.09 0.21 Anthocyanin Reflectance Index 1 550, 700 nm 

LP ARI2 0.31 0.54 Anthocyanin Reflectance Index 2 550, 700, 800 nm 

LP CRI1 0.18 0.33 Carotenoid Reflectance Index 1 510, 550 nm 

LP CRI2 0.17 0.32 Carotenoid Reflectance Index 2 510, 700 nm 

CWC MSI 0.55 0.81 Moisture Stress Index 819, 1599 nm 

CWC NDII 0.54 0.80 Normalized Difference Infrared 

Index 

819, 1649 nm 

CWC NDWI 0.51 0.74 Normalized Difference Water 

Index 

857, 1241 nm 

CWC NMDI 0.02 0.06 Normalized Multi-band Drought 

Index 

860, 1640, 2130 

nm 

CWC WBI 0.51 0.74 Water Band Index 900, 970 nm 

Note: source data is AVIRIS hyperspectral 2015 data from BCAL 

Note 2: Vegetation indices from Harris Geospatial were calculated using this data in MATLAB and ENVI 

Band Math 

BBG: Broadband Greenness                   

NB: Narrowband Greenness                                

LUE: Light Use Efficiency                                  

CN: Canopy Nitrogen                                                          

DSC: Dry or Senescent Carbon                                  

LP: Leaf Pigments              

CWC: Canopy Water Content 
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Figure A3. Schematic of SOC modeling iterations 
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Table A2a. Watershed SOC Summary 

 SOC (kg/m2)  %SOC  %CF BD (kg/m3) 

Site 10 cm 30 cm 50 cm 10 cm 30 cm 30 cm 30 cm 

1 1.04 2.25 2.62 1.08 0.76 24.3 1211 

2 1.29 3.00 3.74 1.19 0.92 26.1 1194 

3 3.00 6.61 10.45 6.45 4.63 18.7 543 

4 0.94 2.02 2.78 1.27 1.03 36.3 935 

5 1.10 2.53 2.53 1.62 1.23 27.5 929 

6 1.82 4.51 5.87 3.01 2.08 42.2 1001 

7 0.62 1.36 1.86 0.67 0.50 28.5 1576 

8 0.61 1.37 1.92 0.59 0.41 20.6 1594 

9 0.80 1.92 2.37 0.63 0.46 17.2 1641 

10 0.96 2.20 3.14 0.71 0.51 7.1 1185 

11 0.86 1.83 2.10 0.69 0.51 16.4 828 

12 1.69 3.58 4.77 2.29 1.65 43.9 1148 

13 0.82 1.94 2.60 0.94 0.60 9.2 1416 

14 1.33 2.81 3.97 1.45 1.20 17.9 925 

15 2.01 4.72 6.30 5.44 4.88 47.4 790 

16 1.05 2.56 2.56 1.10 0.77 23.8 1258 

17 0.66 1.45 2.08 0.81 0.63 34.7 1035 

18 1.37 3.06 4.02 3.91 2.50 45.5 1049 

19 2.03 4.87 7.51 5.76 3.80 33.9 503 

20 1.81 4.80 5.36 2.52 1.56 23.5 1235 

21 1.04 2.35 2.35 1.18 0.94 40.6 941 

22 1.95 4.11 5.72 4.12 2.98 33.2 759 

23 2.51 5.32 5.32 4.17 3.56 27.6 550 

24 2.82 6.58 8.77 2.65 1.85 7.9 1081 

25 1.64 4.02 5.53 1.89 1.38 31.7 992 

26 1.15 2.69 2.86 3.88 3.18 59.5 580 

27 3.55 7.80 11.41 7.25 4.53 9.6 472 

28 0.71 1.55 1.62 2.02 1.58 60.8 919 
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Table A2b. Watershed SOC site info 

Site Vegetation Species Parent 

Material 

C:N %N Ph Soil depth Texture 

1 Wyoming sage Alluvium 12.5 0.08 7.4 90 cm Silt loam 

2 Bitterbrush Felsic 10.7 0.09 6.6 95 cm Sandy loam 

3 Aspen Mafic 12.2 0.36 6.0 > 50 cm Silt loam 

4 Low Sage Mafic 9.2 0.11 7.5 90 cm Clay loam 

5 Low Sage Mafic 9.1 0.13 6.9 30 cm Silt loam 

6 Juniper Felsic 11.8 0.17 6.1 75 cm Silt loam 

7 Wyoming sage Mafic 7.5 0.07 7.8 100 cm Sandy Loam 

8 Wyoming sage Mafic 6 0.07 7.9 60 cm Sandy Loam 

9 Wyoming sage Felsic 7.5 0.06 7.7 80 cm Silt loam 

10 Wyoming sage Felsic 7.6 0.07 8.4 > 1m Silt loam 

11 Greasewood Alluvium 8.1 0.07 9.7 > 1m N/A 

12 Low Sage Welded tuff 9 0.18 6.6 1 m Silt loam 

13 Wyoming sage Mafic 6.8 0.09 8.1 1 m Sandy loam 

14 Wyoming sage Mafic 8.5 0.14 7.5 1 m Silt loam 

15 Mountain Sage Mafic 11.6 0.42 n/a >50 cm N/A 

16 Bitterbrush Felsic 7.6 0.1 7.0 30 cm Loamy sand 

17 Wyoming sage Mafic 7.7 0.1 7.2 >50 cm Silt loam 

18 Conifer Mafic 10.7 0.23 5.8 >50 cm Silt loam 

19 Conifer Mafic 13.4 0.27 5.7 >50 cm Silt loam 

20 Bitterbrush Felsic 9.6 0.15 6.7 40 cm Sandy loam 

21 Wyoming sage Felsic 8.5 0.12 7.0 30 cm Clay 

22 Mountain Sage Mafic 10.3 0.29 6.5 > 50 cm Silt loam 

23 Conifer Mafic 10.5 0.34 n/a 40 cm Silt loam 

24 Mountain Sage Felsic 10.2 0.18 6.5 >50 cm Sandy loam 

25 Juniper Felsic 8.4 0.16 6.7 >50 cm Sandy loam 

26 Conifer Mafic 10.3 0.31 6.1 40 cm Silt loam 

27 Aspen Felsic 12.1 0.37 6.5 >50 cm Silty clay 

loam 

28 Low Sage Mafic 9.7 0.16 6.9 40 cm Silt loam 
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Table A2c. Values for relevant predictors 

 Elev. (m) PPT NDVI MRESR Eastness Northness aspect slope 

1 1238 274 2041 1.27 -0.84 -0.18 W/SW 4.8 

2 1310 360 3782 1.57 0.65 -0.16 E/SE 7.3 

3 1866 518 5614 2.89 -0.27 0.92 N 15.5 

4 1623 388 2774 1.46 -0.90 -0.43 W/SW 10.8 

5 1556 363 2513 1.39 1.00 0.00 E 15.7 

6 1938 716 3532 1.62 -0.60 -0.64 S/SW 8.1 

7 1340 276 2060 1.25 -0.96 -0.19 W/SW 5.7 

8 1292 263 2043 1.27 -0.94 -0.31 W/SW 5.8 

9 1160 252 2304 1.24 -0.72 0.64 NW/N 4.6 

10 1191 259 2061 1.26 -0.78 0.14 E/NE 9.6 

11 1152 262 2209 1.35 -0.04 -0.96 S 8.0 

12 1619 372 3283 1.71 -0.11 0.99 N 4.6 

13 1291 263 2488 1.36 -0.73 0.56 W/NW 10.8 

14 1424 314 2818 1.38 0.29 0.95 N 6.3 

15 2111 1067 4511 2.11 -0.48 0.87 N 7.2 

16 1629 575 3837 1.65 0.93 -0.34 E/SE 22.6 

17 1218 333 2278 1.24 -0.54 -0.84 S 12.2 

18 2089 1026 6165 2.64 -0.44 0.89 N 6.2 

19 2038 932 6218 2.58 -0.34 0.36 NW 7.1 

20 1583 564 4796 2.04 -0.05 -0.94 S 8.5 

21 1370 360 2849 1.34 -0.09 -0.97 S 14.5 

22 1389 476 4519 2.00 -0.05 1.00 N 22.3 

23 2163 1149 5947 2.67 0.46 0.87 N 7.6 

24 1588 584 4784 2.27 0.71 0.66 N 14.7 

25 1512 507 3900 1.80 0.70 -0.50 SE 14.1 

26 1800 879 5515 2.18 0.76 -0.49 SE 8.9 

27 1701 694 6033 2.98 0.62 0.65 N 7.9 

28 1870 513 2816 1.53 -0.20 -0.98 S 7.0 
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Table A3a. Plot scale SOC 

Metric Standard deviations Relative standard deviation 

Variables SOC %SOC %CF SOC %SOC  %CF 

Depth 10 30 10 30 30 10 30 10 30 30 

1 0.53 0.89 0.64 0.34 7.94 51 40 58 45 33 

2 0.17 0.39 0.19 0.14 8.14 13 13 16 15 30 

3 1.24 2.34 3.47 2.23 13.24 41 35 55 48 67 

4 0.26 0.33 0.50 0.29 9.60 27 16 38 28 26 

5 0.18 0.35 0.32 0.18 10.25 16 14 19 15 35 

6 1.21 1.59 1.76 1.03 12.43 66 35 57 50 29 

7 0.26 0.41 0.44 0.26 8.82 41 30 66 52 31 

8 0.16 0.18 0.23 0.13 10.51 26 13 38 31 55 

9 0.47 0.85 0.29 0.23 17.65 58 44 46 50 96 

10 0.30 0.70 0.34 0.48 5.00 31 32 34 93 68 

11 0.30 0.66 0.31 0.24 11.02 35 36 45 48 73 

12 0.30 0.59 0.45 0.26 13.81 18 17 18 16 32 

13 0.26 0.43 0.38 0.20 7.01 32 22 36 33 78 

14 0.42 0.75 0.79 0.47 9.70 32 27 54 39 51 

15 0.37 0.74 0.91 0.73 7.34 18 16 15 15 15 

16 0.38 0.56 0.41 0.23 12.01 36 22 35 30 47 

17 0.21 0.29 0.26 0.18 13.72 32 20 32 29 40 

18 0.35 0.43 1.24 0.64 5.70 25 14 32 25 13 

19 0.60 0.98 2.45 1.16 5.41 29 20 43 31 16 

20 0.68 0.74 0.77 0.38 6.13 38 15 29 25 25 

21 0.42 1.01 0.51 0.30 27.33 40 43 41 32 67 

22 0.56 0.99 0.95 0.95 21.79 29 24 23 32 66 

23 0.46 1.13 0.88 0.60 12.93 18 21 21 17 46 

24 0.33 0.71 0.37 0.26 4.63 12 11 16 14 57 

25 0.61 1.28 0.58 0.39 14.86 37 32 36 28 51 

26 0.53 1.59 1.04 0.70 24.63 46 59 26 22 41 

27 0.91 1.63 0.30 0.29 8.28 26 21 30 06 126 

28 0.11 0.36 1.20 0.65 15.94 16 23 60 41 27 
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Table A3b. Canopy/Interspace controls on SOC 

 C SOC I SOC C-I C SOC I SOC C-I 

depth 30 cm 30 cm 30 cm 10 cm 10 cm 10 cm 

1 0.8 0.7 0.2 1.3 0.9 0.4 

2 1 0.9 0.1 1.3 1.1 0.2 

3 4.8 4.5 0.3 7.4 5.5 1.9 

4 1 1.1 -0.1 1.1 1.4 -0.3 

5 1.2 1.2 0 1.7 1.5 0.2 

6 2.4 1.8 0.6 3.8 2.3 1.5 

7 0.5 0.5 0.1 0.8 0.6 0.2 

8 0.5 0.3 0.1 0.8 0.4 0.3 

9 0.6 0.4 0.2 0.8 0.4 0.4 

10 0.6 0.4 0.1 0.8 0.7 0.1 

11 0.6 0.4 0.2 0.9 0.5 0.4 

12 1.7 1.6 0.1 2.5 2.1 0.4 

13 0.7 0.5 0.1 1.1 0.8 0.4 

14 1.4 1.1 0.3 1.8 1.1 0.7 

15 5 4.7 0.3 6.2 5.9 0.3 

16 0.8 0.8 0 1.2 1 0.2 

17 0.7 0.6 0.1 1 0.6 0.4 

18 2.5 2.5 0.1 4 3.8 0.2 

19 3.7 3.7 0 5.6 5.9 -0.4 

20 1.7 1.5 0.2 2.7 2.3 0.4 

21 1.1 0.4 0.6 1.5 0.6 0.9 

22 2.9 3.1 -0.2 4.1 4.2 -0.1 

23 3.8 3.3 0.4 4.5 3.9 0.6 

24 2 1.7 0.2 2.7 2.6 0.2 

25 1.5 1.3 0.3 2.2 1.6 0.6 

26 3.3 3 0.3 4.3 3.4 0.9 

27 4.5 4.6 -0.1 6.9 7.6 -0.7 

28 1.9 1.3 0.6 2.5 1.5 1 

mu 1.9 1.7 0.2 2.7 2.3 0.4 

std dev 1.4 1.4 0.2 2 2 0.5 

RSD 70 80 110 70 90 130 

C SOC: SOC for canopy samples                                                    

I SOC: SOC for interspace samples                                                                      

C-I: SOC (canopy samples) – SOC (interspace samples) 
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Table A3c. Canopy/interspace controls II 

 (C-I)/SOC (C-

I)/SOC 

(C-

I)/STD. 

DEV 

(C-

I)/STD. 

DEV 

C std. 

dev 

I std. 

dev 

C std. 

dev 

I std. 

dev 

 30 cm 10 cm 30 cm 10 cm 30 cm 30 cm 10 cm 10 cm 

1 0.2 0.4 0.5 0.6 0.4 0.3 0.7 0.6 

2 0.1 0.1 0.6 0.8 0.2 0.1 0.2 0.1 

3 0.1 0.3 0.1 0.5 2 0.9 4.7 1.6 

4 -0.1 -0.2 -0.3 -0.5 0.3 0.3 0.4 0.6 

5 0 0.1 -0.1 0.6 0.2 0.1 0.4 0.2 

6 0.3 0.5 0.6 0.8 1.3 0.6 2.2 0.9 

7 0.1 0.3 0.2 0.5 0.3 0.3 0.6 0.3 

8 0.3 0.6 1.1 1.4 0.1 0.1 0.2 0.1 

9 0.5 0.6 0.9 1.3 0.2 0.2 0.3 0.2 

10 0.3 0.1 0.3 0.2 0.3 0.1 0.3 0.2 

11 0.3 0.5 0.7 1.1 0.2 0.2 0.3 0.3 

12 0.1 0.2 0.5 0.9 0.3 0.2 0.5 0.3 

13 0.2 0.4 0.6 1 0.2 0.1 0.4 0.2 

14 0.2 0.5 0.6 0.9 0.6 0.3 1 0.2 

15 0.1 0.1 0.4 0.4 0.7 0.8 0.8 1.1 

16 0.1 0.2 0.2 0.4 0.2 0.3 0.3 0.5 

17 0.2 0.5 0.7 1.4 0.2 0.2 0.2 0.2 

18 0 0 0.1 0.1 0.6 0.8 0.9 1.6 

19 0 -0.1 0 -0.1 0.8 1.5 1.3 3.4 

20 0.1 0.2 0.5 0.5 0.4 0.4 0.7 0.9 

21 0.7 0.7 2 1.7 0.3 0.2 0.5 0.3 

22 -0.1 0 -0.2 -0.1 0.9 1.1 0.9 1.1 

23 0.1 0.1 0.7 0.6 0.6 0.5 1 0.8 

24 0.1 0.1 0.9 0.4 0.2 0.3 0.3 0.5 

25 0.2 0.3 0.7 1 0.4 0.3 0.6 0.4 

26 0.1 0.2 0.4 0.9 0.6 0.8 1 0.9 

27 0 -0.1 -0.3 -2.3 1.4 1.3 2.3 2.2 

28 0.4 0.5 0.9 0.8 0.8 0.2 1.5 0.5 

mu 0.2 0.3 0.5 0.6 0.5 0.5 0.9 0.7 

std dev 0.2 0.2 0.5 0.8 0.4 0.4 0.9 0.8 

RSD 100 90 100 130 90 90 110 100 

C-I/SOC: (SOC (canopy samples) – SOC (interspace samples))/ site SOC                             

C-I/Std. dev.: (SOC (canopy samples) – SOC (interspace samples))/ site SOC std. dev. 

C std. dev: SOC standard deviations for canopy samples 

I std. dev.: SOC standard deviations for interspace samples 
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Table A3d. Canopy/Interspace by pair 

 %increase units of SOC 

 10cm 30cm 10cm 30cm 

 Min Max Mean Min Max Mean Min Max Mean Min Max Mean 

1 -15 256 73 -10 154 39 -0.3 1.5 0.4 -0.1 0.7 0.2 

2 -10 36 15 -13 35 10 -0.1 0.4 0.2 -0.1 0.3 0.1 

3 -16 91 28 -34 66 9 -0.9 7.3 1.9 -2.2 3.3 0.3 

4 -54 69 -9 -29 19 -5 -1.1 0.7 -0.3 -0.4 0.2 -0.1 

5 -25 36 14 -22 15 0 -0.5 0.6 0.2 -0.3 0.2 0.0 

6 4 185 75 -14 107 36 0.1 4.8 1.5 -0.3 2.1 0.6 

7 -55 309 94 -46 159 43 -0.6 1.0 0.2 -0.4 0.4 0.1 

8 2 170 86 19 65 42 0.0 0.5 0.3 0.1 0.2 0.1 

9 42 151 94 35 105 77 0.2 0.5 0.4 0.1 0.4 0.2 

10 -32 63 13 -26 88 31 -0.2 0.4 0.1 -0.1 0.4 0.1 

11 23 207 85 -6 128 55 0.2 0.6 0.4 0.0 0.5 0.2 

12 -17 53 21 -6 33 10 -0.4 1.1 0.4 -0.1 0.5 0.1 

13 13 115 48 -7 57 22 0.1 0.8 0.4 0.0 0.3 0.1 

14 13 182 63 -1 69 25 0.1 2.2 0.7 0.0 0.9 0.3 

15 -24 21 5 -6 15 4 -1.7 6.9 1.5 -0.3 5.4 1.3 

16 -33 78 30 -8 31 12 -0.6 0.5 0.2 -0.1 0.2 0.1 

17 20 172 71 -4 67 30 0.1 0.8 0.4 0.0 0.3 0.1 

18 -26 43 12 -12 32 6 -1.7 1.2 0.2 -0.5 0.6 0.1 

19 -55 127 18 -48 65 16 -6.5 4.2 -0.4 -2.9 1.7 0.0 

20 -11 63 22 -5 51 14 -0.4 1.4 0.4 -0.1 0.7 0.2 

21 12 365 97 2 310 82 0.1 1.6 0.6 0.0 0.9 0.3 

22 -26 37 2 -21 23 -3 -1.4 1.2 -0.1 -1.0 0.6 -0.2 

23 4 23 14 6 18 13 0.2 1.0 0.6 0.2 0.7 0.4 

24 -12 49 8 1 37 14 -0.4 1.0 0.2 0.0 0.6 0.2 

25 6 78 36 -9 57 23 0.1 1.2 0.6 -0.1 0.6 0.3 

26 -16 81 34 -16 48 23 -0.8 2.6 0.9 -0.7 1.2 0.5 

27 -30 16 -9 -14 5 -1 -2.3 1.4 -0.7 -0.7 0.3 -0.1 

28 8 168 60 -4 110 41 0.1 3.0 1.0 -0.1 1.6 0.6 

Note: All metrics relate to increase in SOC for canopy samples relative to interspace. 
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Table A4. SOC Data and variability by elevation 

Elevation class SOC Data Mean SD RSD 

Low SOC 2.16 0.81 37 

Low %SOC 0.84 0.73 87 

Mid SOC 3.16 1.5 42 

Mid %SOC 1.33 0.35 26 

High SOC 4.57 1.94 43 

High %SOC 3.42 1.18 34 

ALL SOC 3.35 1.94 58 

ALL %SOC 1.79 1.46 82 
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Table A5a. Instrument uncertainty was quantified using the standards, aspartic 

acid and M soil, as well as triplicates on every tenth sample. 

 Aspartic Acid M Soil Triplicates 

True value 36.09 1.55 N/A 

SD 0.86 0.03 0.03 

RSD 2 3 3 

SE 0.19 0.01 0.01 

mean %error 1.72 1.80 2.17 
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Table A5b. Laboratory uncertainty was calculated by running 3 subsamples of 

the exact same sample through the entire laboratory process and this was repeated 

for 3 trials.  

Metric SOC (kg/m2) %SOC 

SD 0.05 0.11 

RSD 5 9 

Mean 0.98 2.84 
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Table A6. Correlation (R2) between predictors (vegetation indices) 

 NDVI %1-2.5m %2.5-10m NLI MRENDVI MRESR PSRI 

NDVI(max) 1.00 0.23 0.41 0.81 0.95 0.92 0.90 

%1-2.5m 0.23 1.00 0.58 0.27 0.27 0.30 0.23 

%2.5-10m 0.41 0.58 1.00 0.40 0.39 0.40 0.33 

NLI 0.81 0.27 0.40 1.00 0.80 0.84 0.70 

MRENDVI 0.95 0.27 0.39 0.80 1.00 0.98 0.95 

MRESR 0.92 0.30 0.40 0.84 0.98 1.00 0.90 

PSRI 0.90 0.23 0.33 0.70 0.95 0.90 1.00 
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