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ABSTRACT 

Nanotechnology has grown exponentially since its inception in the early 1970’s. 

Since then, bionanotechnological devices and treatment options have significantly 

improved disease treatments and patient outcomes; however, this rapid growth in consumer 

related products has also prompted concern. Zinc oxide nanoparticles (nZnO), known for 

their inherent toxicity and prevalent global use in consumer products and medical 

applications, have received much of this attention. Significant research efforts have focused 

on both toxicity remediation through material property modification and the exploitation 

of these same factors to create potential cancer therapeutics. There is general agreement 

that the physicochemical properties of nZnO strongly contribute to NP-induced toxicity; 

however, inconsistencies in the material property characterization methods employed, and 

an understanding of how those properties influence cytotoxicity in mammalian cells has 

led to discrepancies in the literature. Additionally, more research is needed to connect the 

material properties of nZnO to downstream cellular responses. Here, a panel of variably 

synthesized nZnO was utilized to thoroughly investigate the material properties of the 

particles as they relate to cytotoxicity, oxidative stress, and transcriptome changes in 

different mammalian cell types. The goals of this study are three-fold: i) reduce NP 

agglomeration and sedimentation tendencies within complex media and achieve dispersion 

stability, ii) define which material property interactions have the greatest potential to affect 

cellular toxicity, and to iii) examine the preferential toxicity of nZnO towards Jurkat 

leukemic cells through genetic expression studies.  
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Chapter 2 highlights the importance of dispersion stability and the effect of fetal 

bovine serum (FBS) proteins on the dispersion stability, dosimetry and NP-induced 

cytotoxicity of nZnO in suspension and adherent in vitro cell culture models. The presence 

of surface adsorbed proteins from the FBS on the nZnO decreased agglomeration and 

sedimentation potential. Furthermore, FBS-stabilized nZnO dispersions resulted in toxicity 

increases in suspension cells when compared to unstable dispersions; however, toxicity 

was decreased in adherent cell models with stable dispersions. These observations indicate 

that improved dispersion stability leads to increased NP bioavailability for suspension cells 

and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro 

toxicity assessments.  

In Chapter 3, we utilized an expanded panel of nZnO synthesized through wet 

chemical and high temperature methods, followed by thorough characterization to examine 

the importance of material property changes in NP-induced toxicity. We found our diverse 

set of nZnO displayed significant differences in surface reactivity, dissolution potential and 

cytotoxicity towards cancerous and primary T cells. Additionally, principal component 

analysis (PCA) suggested that the synthesis procedure conferred unique material 

properties, and can be a determinant of cellular cytotoxicity. Furthermore, we showed that 

attributing NP-induced toxicity to one specific material property is shortsighted and that 

complex interactions between these properties needs to be considered.  

Finally, Chapter 4 introduces future work dedicated to investigating transcriptome 

changes in cancerous and primary T cells exposed to nZnO. Both cell types demonstrated 

significant up- and down-regulation of genes in a dose-dependent manner. Many 

significant differentially expressed genes (SDEGs) corresponded to proteins involved in 
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the sequestration and transport of ionic zinc confirming the importance of nZnO in the 

cytotoxic response. Additional analysis will focus on the importance of specific SDEGs 

involved in the regulation of oxidative stress pathways, cellular metabolism, inflammation, 

T cell activation, and protein misfolding in the NP-induced toxicity mechanism. 
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CHAPTER 1 INTRODUCTION 

 

Zinc Oxide Nanoparticles - Cancer Therapeutic or Environmental Health Crisis? 

Zinc oxide nanoparticles (nZnO) are used worldwide in numerous applications and 

have a market value estimated at approximately $2.1 billion. The nZnO market is 

forecasted to exceed $7.5 billion by 2022 [1]. Figure 1.1 illustrates the consumer usage by 

region and highlights the global distribution of nZnO. The industrial and research focus on 

nZnO encompasses nearly every consumer space and on any given day, the average person 

will likely interact with many of these products (Figure 1.2). Indeed, nZnO are ubiquitous 

in products which impact human health and lifestyle. Significant advancement in the 

research areas of biomedicine, electronic devices, and energy storage, along with the 

growing pharmaceutical and cosmetic industry currently drives the demand for the nearly 

105 tons of nZnO manufactured each year [1, 2].   

Some nanomaterials show promise as potential drug delivery agents or cancer 

therapeutics due to their small sizes (0-100 nm) and their ability to be functionalized to 

target cell receptors and improve cellular uptake. In cancer research, nZnO has garnered 

much attention due to its selective toxicity towards a wide range of malignant cell types 

when compared to primary cells of the same lineage [3-6]. In contrast, other works 

demonstrate that nZnO is equally toxic to primary cells lines and multiple organisms [7-

11]. Such disparate results leave the research world divided – is nZnO a promising cancer 

therapeutic or a toxic agent leading to a potential environmental health crisis? The ultimate 
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answer to both questions is most likely yes. Without extensive studies to elucidate the 

complex mechanisms that govern its inherent toxicity, nZnO could become an 

environmental problem. However, with an understanding of how to tailor nZnO fabrication 

to control its toxicity, potential therapeutic uses are possible. Achieving this endpoint will 

be a challenging endeavor. Interdisciplinary, collaborative efforts will be required to gain 

a better understanding of mechanisms of toxicity and the long-term consequences of direct 

exposure of cells to nZnO [12].  

nZnO Material Synthesis 

Since the inception of nanotechnology research in the 1970’s, considerable 

attention has been devoted to the development of novel NP fabrication methods [13] which 

can be grouped into three broad classifications (physical, liquid and gas) based primarily 

on the reaction phase of the method.(Table 1.1). Physical phase methods are typically top 

down approaches to NP fabrication. The one physical phase model in Table 1.1 is the 

mechanochemical method that breaks down bulk zinc oxide into smaller nanosized 

particles, and uses the addition of molecular and chemical compounds to influence the 

nZnO material properties [14-18]. In comparison, the remaining methods are bottom up 

approaches that form nanomaterials from the atomic level. 

Synthesis methods in the liquid phase offer the advantage of relatively inexpensive 

precursors and solvent systems without the need for expensive fabrication systems. The 

simplest of these is the precipitation method which involves a zinc precursor salt, such as 

Zn(NO3)2, dissolved in a basic solution (e.g. NaOH) [19-21]. These reactions normally 

proceed at low temperatures over extended periods of time. Surfactants or other organics 
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may be used to limit NP growth or modify the NP surface during the ripening stage of the 

nZnO fabrication [19-21].  

Another widely used method, sol-gel synthesis, involves the forced hydrolysis of 

zinc precursors such as metal halogens (M – Cl), alkoxides (M – OR) or weak acids (M – 

OOCCH3) to form a colloidal ZnO sol within the solvent system (Eq. 1.1). This is followed 

by the condensation (Eq. 1.2 & 1.3) of zinc hydroxide (Zn – OH) intermediates to produce 

Zn − O − Zn nuclei [22-27]. During the NP growth phase, these Zn − O − Zn building 

blocks combine to form gels in a continuous liquid phase. The final fate of the synthesis 

depends on the desired downstream application of the NPs as these gels can be precipitated 

to form particles or used to create thin films or ceramics [2]. 

𝑍𝑛 − 𝑂𝑅 +  𝐻2𝑂 → 𝑍𝑛 − 𝑂𝐻 + 𝑅𝑂𝐻     Eq, 1.1 

𝑍𝑛 − 𝑂𝐻 + 𝑂𝐻 − 𝑍𝑛 → 𝑍𝑛 − 𝑂 − 𝑍𝑛 +  𝐻2𝑂      Eq, 1.2 

𝑍𝑛 − 𝑂𝑅 + 𝑂𝐻 − 𝑍𝑛 → 𝑍𝑛 − 𝑂 − 𝑍𝑛 +  𝑅𝑂𝐻      Eq, 1.3  

Common variations of this method include the addition of LiOH to an ethanolic 

zinc acetate solution [28], or zinc acetate combined with a polyols such as diethyleneglycol 

(DEG) [29, 30]. In the first method, the basic addition of the LiOH facilitates the hydroxide 

formation followed by the condensation reaction. Afterwards, the resulting gel is aged in 

an alkane solvent such as n-heptane to precipitate the particles [28]. In the later synthesis, 

Caruntu et al. (2002) proposed that the zinc acetate precursor forms a complex with a DEG 

dianion prior to hydrolysis. The subsequent condensation reaction releases the dianion 

leaving the 𝑍𝑛 − 𝑂 − 𝑍𝑛 species. Nanoparticles made with this method then rapidly 

precipitate out of the gel in the polar environment of the DEG solvent [30].  
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Solvothermal techniques employ varying degrees of temperature (typically 

between 100 °C to 1000 °C) and pressure (normally between 1 atm and 10,000 atm) within 

reaction vessels to convert synthesis precursors to nZnO [2, 31-34]. When water is used as 

a solvent, the method is referred to as hydrothermal. Nanomaterials fabricated in this 

manner are favored for electronic and optical applications as they often possess 

thermodynamically stable and metastable states [2]. Finally, microemulsions are created 

by combining an aqueous layer, an oil layer and a surfactant to create stable, transparent 

isotropic liquids [2, 35-37]. When the synthesis precursor and solvent are added to this 

liquid, microemulsions form spontaneously with NP formation occurring when synthesis 

precursor and solvent exchange takes place within the droplets [35].  

The appeal of liquid phase methods is the ability to control the size and morphology 

of the nZnO through simple modifications in the synthesis method such as water addition, 

temperature and pressure control, capping agents or particle precipitation in organic 

solvents [22, 28-30, 38-42]. Additionally, these fabrication methods can result in defect 

states needed for effective photocatalysis [22, 43, 44]. The primary disadvantage is the low 

production yield of nanomaterial especially when compared to large scale industrial 

processes [22].  

Gas phase synthesis methods (i.e. inert gas condensation and flame spray pyrolysis) 

both result in the zinc precursor entering a gaseous phase prior to NP formation and 

collection [45]. During inert gas condensation, the synthesis precursor is vaporized in the 

presence of an inert gas using a high frequency induction coil [46]. Upon leaving the 

induction system, the gaseous precursor is carried by convection in the inert gas to a cooling 

tank where particle formation and collection occurs [46]. An alternative gas phase method 
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is high temperature flame spray pyrolysis. In this technique (Figure 1.3), the synthesis 

precursor immediately evaporates once it is injected into the high temperature flame. 

Following atomization, individual molecules participate in molecular collisions or 

nucleation driven events to initiate particle formation [47, 48]. In the lower temperature 

environment, further from the flame, formed particles undergo agglomeration followed by 

collection on a filter [49-51]. FSP is favored in industrial settings because of its simplistic 

methodology with fewer process steps, scalability, easy collection systems, high yield, and 

purity of the final product [47-52]. Varying the burner dimensions, precursor 

concentration, injection rate of the precursor, and composition of the carrier gas change the 

reaction dynamics in the FSP method and provide synthesis control to obtain the desired 

product [48, 50-52]. Additionally, silica vapor may be introduced during the coagulation 

phase to achieve silica (SiO2) coated nanomaterials [53, 54]. 

Electronic Structure and Surface Reactivity 

Intrinsic Surface Defects and Photocatalytic Activity 

In the electronic band structure of semiconductors, the highest occupied energy 

band is the valence band (VB) while the lowest occupied level is the conduction band (CB) 

with the difference between the VB top and the CB bottom defined as the electronic band 

gap (Eg) [55]. When nZnO is excited with an energy source greater than or equal to the Eg, 

four potential photophysical processes may occur (Figure 1.4). Process I occurs when an 

electron is excited from the VB to an energy level within the CB (Figure 1.4, gray arrows). 

This excitation results in valence band holes (hvb
+ ) and conduction bands electrons (ecb

− ). 

The ecb
−  are very unstable, however, and undergo relaxation and recombination with the 

hvb
+ . Additionally, ecb

−  can undergo non-radiative energy release (blue arrows) from higher 
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CB levels to the CB bottom followed by a radiative energy transfer to the top of the VB. 

This dissipation of light energy, termed the band −band photoluminescence process or 

process II (Figure 1.4, green arrow), produces the characteristic photoluminescence 

emission of nZnO at the Eg of ~3.3 eV [55]. In the excitonic photoluminescence process 

III (red arrow), a non-radiative transition from the CB bottom to a sub band, proceeds the 

radiative emission to VB top. It is generally believed that intrinsic defects can trap ecb
−  and 

contribute strongly to excitonic emissions [55]. Finally, process IV (blue arrows) refers to 

non-radiative energy transitions from the CB to the VB.  

Chemical catalysis utilizes the presence of a catalyst to intensify a catalytic 

reaction. This process depends on the ability of the catalyst to absorb the supplied energy 

and facilitate the desired reaction. By measuring how fast the catalysis proceeds, a kinetic 

constant can be determined to rate the efficiency of the catalyst. The band gap of nZnO 

(~3.3 eV) can be exceeded with UV radiation or ultrasonic energy making it an ideal 

catalyst. Photoexcitation employs the use of either UV-A or near ultraviolet (315 – 400 

nm) or UV-B or medium ultra violet (280 – 315 nm) irradiation [56, 57]. Sonoexcition 

involves the application of ultrasonic energy (20 kHz – 1GHz) to an aqueous suspension 

of the nZnO. This facilitates the formation and growth of acoustic cavitation microbubbles 

[58]. The inertia of the surrounding medium exerts high pressure and temperature on the 

microbubbles causing them to implode and emit picosecond bursts of sonoluminescent 

light [59]. Successive microbubble expansion and collapse (emission) result in sufficient 

energy to excite the semiconductor bandgap [59] (Figure 1.5). 

The valence band holes (hvb
+ ) and conduction band electrons (ecb

− ) produced upon 

excitation freely participate in redox reactions at the NP surface (Figure 1.5) [43, 60]. As 
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good reducers, ecb
−  react with adsorbed O2 to produce the anionic superoxide radical (O2

−), 

whereas hvb
+ , good oxidizers, will react with surface adsorbed hydroxide ions or water to 

produce hydroxyl radicals (OH) [43, 60, 61] . The superoxide radical (O2
−) further reacts 

to form hydrogen peroxide (H2O2). H2O2 can then be further reduced to produce additional 

stores of OH− and OH. Additionally, the superoxide (O2
−) can undergo oxidation to 

produce the perhydroxyl radical (OOH) which reacts with H+ and ecb
−  to produce more 

H2O2 [62].  

Nanomaterials with intrinsic defects often exhibit faster catalytic rates [43, 44, 55, 

60]. Metastable defects such as oxygen vacancies or interstitial oxygen are highly efficient 

at trapping photoelectrons observed in process III photoluminescence [55, 63]. Oxygen 

vacancies (VO
) can trap one or two electrons (Eq. 1.4), whereas interstitial oxygen anions 

(Oi
′′) combine with hvb

+  (Eq. 1.5) 

𝑉𝑂
 + 𝑒𝑐𝑏

−  →  𝑉𝑂
 + 𝑒𝑐𝑏

−  →  𝑉𝑂      Eq, 1.4 

𝑂𝑖
′′ +  ℎ𝑣𝑏

+  →  𝑂𝑖
′        Eq, 1.5 

The electrostatic forces between the surface state and photoelectrons reduce 

electron – hole recombination rates extending the lifetime of these excitons and improving 

their catalytic ability [43, 55, 64]. Moreover, acceptor (O2) and donor (𝑂𝐻−) molecules 

will chemically adsorbed to the defect states resulting in superoxide ( O2
−) and hydroxyl 

(OH) radicals (Eq. 1.6 & 1.7) [44, 63] 

𝑉𝑂
 +  𝑂2  →  𝑉𝑂

 +   𝑂2
−       Eq, 1.6  

𝑂𝑖
′ + 𝑂𝐻−  →  𝑂𝑖

′′ +   𝑂𝐻       Eq, 1.7  

Modifications to nZnO synthesis methods designed to improve their catalytic 

activity and antimicrobial properties has been an active area of interest [39-42, 65-70]. 
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Changing the overall synthesis method [40, 41, 69], solvent system [39, 42], precursor 

concentration [68] and synthesis temperature [68] have all been shown to significantly 

change the photo reactivity of nZnO and its microbial toxicity. Additionally, nanomaterials 

with multiple defect states have been shown to participate in abiotic ROS producing 

reactions at the NP surface without UV irradiation [43, 60, 61]. Even with antimicrobial 

studies demonstrating strong connections between NP-induced toxicity and photo 

reactivity, photocatalytic assays and defect state assessments are rarely performed in 

mammalian systems.  

Zeta Potential 

When fabricated on the nanoscale, ZnO develops high surface area to volume 

ratios, and NP surfaces become modified with charged ions or functional groups left behind 

from the synthesis. The addition of these groups and negatively charged surface defects 

modifies the overall charge density of the NPs. Once dispersed in an aqueous solution, 

adsorption of solvent ions and NP surface ionization creates an enhanced surface charge 

resulting in an electrical potential difference between the aqueous solution and the slipping 

plane surrounding the nanoparticle [43]. Often referred to as surface charge or zeta 

potential (ζ-potential), these measurements assess the electrophoretic mobility of nZnO 

within the dispersive media. Another useful measure is the isoelectric potential (IEP) or 

the pH at which the NPs will have a ζ-potential of zero. At the IEP, nZnO has neutral OH 

groups resulting in Zn−OH bonds. As the pH of the dispersive media increases above the 

IEP, adsorbed H+ ions will move into the media thus forming negatively charged Zn−O− 

surface bonds [43]. Below the IEP, H+ ions will transfer to the NP surface resulting in 
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Zn−OH2+ bonds and a positive surface charge. Since nZnO typically has an IEP at a pH 

between 8 and 10, the resulting ζ-potential will be positive at physiologic pH.  

Studies connecting NP-induced toxicity to electrophoretic mobility remain 

inconclusive. Cationic NPs have demonstrated the potential to interact strongly with 

anionic cell membranes causing increased hole formation [71], endocytosis [72, 73] , 

phagocytosis [74], membrane depolarization [75], and passive entry into the cells [71, 76]. 

Bhattacharjee et al. (2010) demonstrated this contention with differentially coated silica 

NPs resulting in positively (Si-NH2), neutrally (Si-N3) and negatively (Si-COOH) charged 

surfaces. The cationic silica NPs demonstrated more toxicity, intracellular ROS 

production, and phagocytosis in rat alveolar NR8383 macrophages with Si-NH2 > Si-N3 > 

Si-COOH for all measured variables [74]. In a similar study using a non-phagocytic cell 

line (SK-BR-3 breast cancer cells), positive charged gold NPs showed significantly 

increased amounts of membrane-association and endocytotic uptake when compared to 

neutral or negatively charged NPs [77].  

In contrast, Wingett et al. (2016) demonstrated that cellular toxicity increased with 

decreasing electrophoretic mobility (-9 mV ≈ -30 mV > +44 mV) [78]. Furthermore, 

modeling studies comparing the uptake of cationic and anionic NPs with neutral bilayers 

showed faster and more complete disruption of the bilayer with negatively charged NPs 

[72]. One limitation of many of these surface charge studies is the absence of experiments 

accessing NP dispersion and agglomeration behavior. Indeed, Wingett et al. (2016), 

demonstrated that their negatively charged NPs formed smaller agglomerates and 

decreased sedimentation when compared to the cationic NPs. Therefore, it is highly 

probable that this improved dispersion stability would increase cellular interactions of the 
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anionic NPs thereby increasing their toxicity by a mechanism that is unrelated to surface 

charge [78].  

Agglomeration Behavior  

Colloidal Stability 

The DLVO theory, named for Derjaguin, Landau, Verwey, and Overbeek, provides 

a mathematical model to describe the stability of colloidal suspensions (Figure 1.6). 

Dispersion stability depends upon the balance of two competing forces, electrostatic 

repulsion (blue dotted line) and van der Waals attraction (red dashed line). As two NPs 

draw close to one another, their ionic double layers will begin to overlap creating a 

repulsive force (VR). Meanwhile, attractive Van der Waal forces (VA) occur between the 

induced dipoles on the particles. The total potential energy of the dispersion (VT; solid 

purple line) represents the summation of these opposing forces. As seen in Figure 1.6, when 

the attractive force is greater than the repulsive force, a deep attractive well, termed the 

primary minimum, results. At larger distances, the repulsive force is larger than the 

attractive force creating a maximum positive energy barrier followed by a shallow 

secondary minimum [79].  

For NPs to agglomerate and sediment out of the colloid, the NPs must have 

sufficient kinetic energy to overcome the energy barrier. Colloidal stability can be lost 

through various mechanisms. First, if the NPs have enough kinetic energy to overcome the 

energy barrier, the NPs will irreversibly agglomerate due to net attractive forces, become 

trapped in the deep potential well and undergo precipitation [79]. If the energy barrier is 

sufficiently large due to strong repulsive forces, the particles rebound yet may remain in 

the secondary minimum. Here particles are held together by much weaker bonds and tend 



 

 

11 

 

 

 

to flocculate or form loosely packed NP agglomerates. Flocculation is reversible and can 

be overcome if enough dispersive energy is supplied. However, if flocculation becomes 

extensive the NPs could gain enough kinetic energy to overcome the barrier, due to their 

diffusion velocity and increasing mass, resulting  in irreversible agglomeration. [79]. 

Finding ways to improve repulsive forces between NPs while minimizing attractive 

forces can be challenging. One way to accomplish this task is to introduce a form of steric 

repulsion to the NP system by means of a surface coating (Figure 1.6). Surface coating 

improves colloidal stability by shielding reactive NP surfaces thus prohibiting Van der 

Waals forces or by increasing repulsive forces through surface charge modulation.  

Cho et al. (2011) highlighted the importance of dispersion stability by examining 

the relationship between diffusion and sedimentation velocity in NP colloids using an 

adherent cell model. In solution, NPs will move either by diffusion through the media in 

any direction or by sedimentation to the bottom of the cell well. Diffusion velocity (VD) is 

determined primary by the diffusion coefficient (D) which is inversely proportional to the 

hydrodynamic diameter (d(h)) (Eq. 1.8). Therefore, as the diameter increases the diffusion 

velocity decreases. The sedimentation velocity (VS) is also strongly influenced by the 

hydrodynamic diameter, but since this term is squared (d(h)
2 ), even small increases in 

hydrodynamic diameter will exponentially increase the rate of NP sedimentation (Eq. 1.9). 

By looking at the ratio of sedimentation to diffusion (Eq. 1.10), Cho et al. developed a 

quantitative measure of NP stability with smaller ratios representing more stable 

suspensions [80]. 

𝑉𝐷 =
2𝐷

𝑥
, where 𝐷 =

𝑘𝐵𝑇

3𝜋𝜂(𝑑(ℎ))
 and x = distance traveled by the NPs  Eq, 1.8 

𝑉𝑆 =
2𝑔(𝜌𝑍𝑛𝑂,𝑎−𝜌𝑚)𝑑(ℎ)

2

9𝜂
        Eq, 1.9 
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𝑉𝑆

𝑉𝐷
                   Eq, 1.10 

In their model, they evaluated coated and uncoated gold NP (AuNP) uptake in 

adherent cells grown in a traditional adherent model and cells grown on a glass slide that 

had been inverted within the cell well (Figure 1.7). They determined that NP suspensions 

with strong diffusion tendencies and low sedimentation (small VS/VD ratios) showed no 

appreciable differences in NP uptake between the two different cell culture models; 

however, for unstable dispersions, higher VS/VD ratios, the traditional model demonstrated 

significantly more NP uptake compared to the inverted model. Furthermore, polyethylene 

glycol (PEG) coating reduced the sedimentation velocity of the suspensions due to reduced 

attractive forces and increased steric repulsion [80].  

They hypothesized that the differences observed favoring the traditional adherent 

model were a result of excessive amounts of NPs in the unstable suspensions driven by 

sedimentation onto the cell layer resulting in significant increases in uptake (Figure 1.8) 

[80]. This same reasoning can be applied to a suspension cell model. Nanoparticles that are 

dominated by strong diffusion tendencies will be free to interact with the suspended cells. 

Unstable dispersions dominated by sedimentation will result in less NP bioavailability. 

Both potential outcomes, excessive NP sedimentation onto the adherent cell layer or less 

NP bioavailability in suspension cells, will result in inconsistent results.  

Strategies to Achieve Dispersion Stability 

During in vitro studies, the treatment condition must remain bioavailable to the 

treated cells over an extended period. For many drug or chemical treatments, this requires 

finding the appropriate solution to solubilize the therapeutic agent. Since NPs remain in 

particle form in suspension, the goal then becomes creating NP dispersions without 
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appreciable agglomeration or sedimentation. Achieving this requires management of the 

complex interplay between NP agglomerate and complex formation (hydrodynamic 

diameter) and their sedimentation behavior over time [81]. Factors that influence 

dispersion stability are numerous and include NP size [82, 83], surface structure [84, 85], 

capping agents [86], solution pH and ionic strength [79], organic and protein components 

[83, 85, 87], and free ions in the solution system [88]. To this end, numerous investigations 

have employed various coating materials, such as polyethylene glycol (PEG) [80], 

trinoctylphosphine oxide (TOPO) [86], silica (SiO2), and poly (acrylic acid) (PAA) [78], 

to increase steric stabilization of the NP surface.  

The drawback of this approach is that it changes the NP surface reactivity and adds 

a layer of complexity to NP-cell interactions. Therefore, it is necessary to find a means to 

stabilize particles that does not involve a chemical or physical change to the pristine NP 

surface and is compatible with cells. Additionally, any method developed should ideally 

be transferable to an in vivo model [85]. In most in vitro experiments, cells are treated in a 

culture medium to which NPs are introduced in a prepared dispersion. Once NPs are 

introduced, a biomolecular corona consisting of proteins and ionic complexes from the 

cellular media will quickly form [79, 88-92]. Biomolecular coronas appear to be 

multidimensional consisting of a tightly bound near monolayer called a hard corona 

underneath a dynamic and rapidly changing soft corona [90, 93]. Typically, protein 

components make up the bulk of the hard corona providing steric stabilization [94], while 

other molecular species comprise the soft corona and influence NP-cell interactions [83, 

88, 89].  
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Given this, it is probable that cellular media proteins such as fetal bovine serum 

(FBS), may provide a solution to dispersion instability with uncoated NPs. Indeed, studies 

have shown that NPs introduced to media without FBS develop highly ionic coronas and 

unstable colloids. However; suspending NPs in FBS prior to dispersion in the desired 

solution would provide steric stabilization and reduce agglomeration. Utilizing this 

approach could allow the use of ionic solutions such as PBS for NP stock solutions without 

unwanted dispersion instability.  

Dissolution Potential 

Once dispersed, nZnO will undergo dissolution and leach zinc ions into the 

dispersion media. Several solution-related factors including the ionic strength, pH, 

concentration, temperature and solvated constituent molecules influence the degree to 

which dissolution occurs [95, 96]. The presence and composition of these solvated 

molecules is a strong determinant of a solution’s ability to solubilize nZnO [97, 98]. ZnO 

NPs in media with low levels of phosphate (DMEM) appear to dissolve to a higher extent 

than those with high phosphate levels (RPMI). However, ionic zinc rapidly reacts with 

phosphate to form highly insoluble zinc phosphate that rapidly precipitates from the 

dispersion [99, 100] making nZnO dissolution comparisons across multiple solutions 

difficult. More recent research suggests that non-essential media additives significantly 

increase NP dissolution, alter the biomolecular corona composition and structure, and 

increase NP-induced toxicity [99]. Additionally, amino acid rich solutions can also increase 

dissolution whereas protein components, such as FBS or BSA, may decrease dissolution if 

sufficient NP coating results [95]. Given this complexity, the dissolution balance of NP 
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dispersions could be one of reduced solubility through protein stabilization of NP clusters 

or increased dissolution though ligand-mediated processes [95].  

The physicochemical properties of the nZnO can also alter their dissolution 

potential including size, shape, zeta potential and transition metal doping [10, 101-103]. 

Hydrodynamic size is perhaps the most important material property determinant of NP 

solubility. Indeed, David et al. (2012) demonstrated that NP dispersions eventually reach 

a steady state condition where the dissolution kinetic balance is entirely dependent upon 

the radius of the NP agglomerates and the concentration [104]. Furthermore, they assessed 

dissolution across multiple NP samples and concluded that any observed dissolution trends 

could be explained by their mathematical model [105]. Therefore, it remains imperative 

that NP studies characterize all material properties and media components that have the 

potential to influence agglomeration potential and thus NP dissolution.  

Introducing cells to a rapidly changing NP dispersion presents multiple challenges 

in determining the active ZnO species encountered by the cells. Once dispersed into 

cellular media, nZnO will leach ionic zinc and change the dynamics of the colloidal 

dispersion. The original mass of zinc now exists in both ionic and non-ionic forms (Figure 

1.9). Inevitably, some of this extracellular Zn2+ will enter cells to become intracellular free 

Zn2+ within the cytosol or endocytotic vesicles [106-108] (right side of Figure 1.9). 

Additionally, liberated Zn2+ reacts freely with carbonate and phosphate anions to produce 

partially insoluble molecular zinc carbonates and phosphates [109]. These insoluble 

species along with other media components, surface adsorb to large agglomerates of intact 

nZnO (i.e., nonionic zinc) to form amorphous complexes of encapsulated ZnO [107, 110, 

111] (left side of Figure 1.9). Zinc molecular species conversion and ZnO complex 
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formation is a dynamic process for up to 4 to 6-hours post-treatment and needs to be 

considered in comprehensive nanotoxicology studies. 

Inherent Toxicity of nZnO 

The cytotoxicity of nZnO has been extensively studied in multiple mammalian cell 

types representing nearly every major organ system [3, 4, 8, 11, 67, 112-123]. Additionally, 

nZnO toxicity has been observed in microbial systems [6, 41, 42, 67, 70, 124] , zebra fish 

[7, 125, 126], yeast [127, 128], nematodes [129], microalgae [130, 131], and crustaceans 

[132]. To this extent, the inherent toxicity of nZnO is well established; however, the 

underlying mechanism of nZnO toxicity remains elusive. Strong evidence suggests that 

nZnO-induced apoptotic cell death is secondary to processes such as cellular ROS 

formation, antioxidant systems imbalance, and overwhelming oxidative stress [3, 6, 43, 93, 

133-136]. Efforts to assign specific material properties or even underlying cellular 

processes to the increased ROS production have been inconclusive. Surface property 

studies suggest that abiotic ROS production and dissolution at reactive NP surfaces lead to 

lipid peroxidation and cell membrane disruptions [6, 11, 104, 137]. Alternatively, large 

influxes of ionic zinc from both extracellular and intracellular pools are known contributors 

to mitochondrial dysfunction and intracellular ROS production [102, 135, 138-141]. These 

seemingly opposing views of nZnO-induced cytotoxicity has resulted in a polarized 

research community. 

Surface Property Contributions to nZnO Toxicity and Oxidative Stress  

Several studies attribute nZnO toxicity to their capacity to generate either abiotic 

ROS at the NP surface or intracellular ROS resulting in oxidative stress leading to 

apoptosis and cell death. Several factors contribute to the surface reactivity and abiotic 
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ROS generation of nZnO. The narrow electronic band structure of nZnO allows for photo- 

or ultrasonic excitation to create hvb
+  and ecb

−  redox pairs capable of radical formation. 

Additionally, discontinuous crystal planes facilitate the adsorption of ionic functional 

groups [61]. Finally, altered electronic states secondary to crystal defect states contribute 

to redox cycling at the NP surface (Figure 1.10A) [61]. These unique surface characteristics 

have been shown to increase the concentration of free radicals in NP dispersions  capable 

of oxidizing lipids, proteins, DNA and other essential biomolecules [142].  

ROS-induced lipid peroxidation results in the loss of cell membrane integrity 

facilitating the uptake of ROS species, NPs and ionized zinc (Figure 1.10B) [6, 115, 143]. 

Additionally, ROS may be taken up by cells through aquaporins or chloride channels 

(Figure 1.10C) [144]. Internalized ROS will cause oxidative damage to cellular 

components or activate stress-induced signaling, such as Nox, which produces ROS as a 

byproduct (Figure 1.10D) [115, 134, 145]. Genotoxicity, verified through DNA damage 

and cell cycle arrest, has been observed in multiple studies [117, 146, 147]. Normally, 

oxidative DNA damage is attributed to ROS; however, evidence also suggests that 

malondialdehyde (MDA), a lipid peroxidation byproduct, [115, 148] or ionic zinc also 

contribute to DNA damage [117, 146, 147]. Finally, changes in the NP charge density due 

to surface adsorbed groups and defect states can increase electrostatic interactions between 

normally positively charged ZnO NPs and the negatively charged cellular membrane 

leading to membrane damage or induced NP uptake [149-151]. 

Dissolution Contributions to nZnO Toxicity and Oxidative Stress 

The solubility of nZnO in NP dispersions introduces multiple forms of ZnO and 

ionic zinc available for cellular interactions. Identifying toxicity mechanisms that consider 
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the balance of all these species has created considerable debate in the research community. 

One proposed mechanism is that large pools of ionic zinc are liberated within the 

extracellular environment and then taken up by the cell primarily through non-specific ion 

transporters (Figure 1.11A) or specialized zinc importers termed Zips (Figure 1.11B) [106-

108]. Song et al. (2010) demonstrated this connection by analyzing ZnCl2 and 

commercially available nZnO samples. They found ZnCl2 to be significantly more toxic 

than all the NP samples. Furthermore, they discovered that the supernatants isolated after 

24 hours from nZnO-treated cellular media were also toxic but to a lesser extent than the 

NP treated cells. As a result, they concluded that extracellular dissolution was primarily 

responsible for the NP-induced toxicity [106]. 

The alternative hypothesis suggests that NP-cell contact results in the active uptake 

of NP agglomerates in endocytotic vesicles (Figure 1.11C) followed by rapid dissolution 

of non-ionic zinc in the acidic endosome or through passive transport through the cellular 

membrane (Figure 1.11D) [23, 36, 39, 43]. Many of these studies are somewhat 

inconclusive as they have relied solely on endocytosis to explain the presence of 

intracellular zinc without offering direct evidence of the actual uptake mechanism or a 

comparative analysis of extracellular zinc studies. The strongest evidence for this model is 

observed in macrophage studies or other phagocytic cell types that can engulf large 

amounts of extracellular material through a variety of mechanisms [102, 141, 152, 153]. 

For example, Wang et al. (2014) used cellular uptake inhibitors to demonstrate that 

macrophages utilize both macropinocytosis and phagocytosis for NP uptake [141]. 

However, this mechanism would also result in the uptake of large nZnO agglomerates and 

extracellular Zn2+ making it difficult to attribute any intracellular zinc increases to one 
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specific zinc source. Furthermore, these results may not be indicative of NP uptake 

mechanisms in non-phagocytic cell types. As an illustration, Othman et al. (2016), 

demonstrated that bare nZnO was selectively taken up by breast cancer cells through 

clathrin-independent endocytosis which resulted in gradual time-dependent increases in 

intracellular zinc, eventually leading to cell death [140]. However, they found a similar 

trend in cells treated with ZnCl2. Thus, they could not differentiate between intracellular 

ionic zinc resulting from nZnO uptake or Zn2+ entering the cell from the extracellular 

environment.  

In non-phagocytic Jurkat cells, Buerki-Thurnherr et al. (2013) explored both 

dissolution models with bare and coated nZnO. They employed zinc chelators 

diethylenetriaminepentaacetic acid (DTPA) and N,N,N′,N′-tetrakis(2-pyridinylmethyl)-

1,2-ethanediamine (TPEN) for extracellular and intracellular zinc, respectively, while 

monitoring the corresponding ionic zinc levels and NP-induced toxicity. Both DTPA and 

TPEN chelation used independently completely abrogated NP-induced cytotoxicity. 

Similar results were obtained when cells were treated with equimolar concentrations of 

ZnCl2; however less toxicity was observed and significantly lower amounts of chelating 

agents were needed with the coated-nZnO. Ultimately, they concluded that NP-induced 

toxicity was primarily dependent upon extracellularly released zinc that induces cell death 

by apoptosis [12].  

Once internalized, ionic zinc will cause a vast number of cellular responses. 

Initially, cells will attempt to regulate ionic zinc excesses through various mechanisms 

such as zinc transport out of the cell or into zincosomes via zinc-specific efflux proteins 

(ZnTs) (Figure 1.11E), and through metallothionein protein sequestration (Figure 1.11F)  
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[154-159]. Inevitably, increasing ionic zinc levels will overwhelm the zinc homeostasis of 

the cells and cause toxic effects. Kao et al. (2011) established that increases in cytosolic 

zinc were systematically followed by elevated levels of mitochondrial zinc and collapse of 

the mitochondrial membrane potential (Figure 1.11G). Additional studies have also linked 

increased cytosolic zinc levels to mitochondrial swelling, mitochondrial membrane 

transition, impairment of inner membrane H+ conductance, impaired respiration, adenosine 

triphosphate (ATP) depletion and cytochrome c release to signal apoptosis [139, 152, 160, 

161]. Genotoxicity and organelle damage has also been linked to nZnO dissolution 

although it is unknown if this type of damage is a direct result of ionic zinc or related to 

substantial oxidative stress after mitochondrial dysfunction (Figure 1.11H). 

Cellular Regulation of and Response to Zinc and nZnO 

Maintaining Zinc Homeostasis  

Zinc is an essential metal for humans with zinc deficiencies being linked to growth 

retardation, poor immune system function, delayed wound healing, loss of appetite, 

impaired taste acuity, reproduction issues, and impaired insulin function and blood glucose 

regulation [162, 163]. As the only biologically essential transition metal that does not 

participate in redox activity, zinc is an ideal choice for use as a protein cofactor with 

approximately 10% or 2,800 human genes encoding for proteins with zinc -binding 

capability (Figure 1.12) [164]. It is estimated that the total amount of cellular regulated 

zinc is between 200 – 300 µM [165], yet steady state concentrations of free ionic zinc are 

consistently measured in the nanomolar to picomolar range with variably dependent upon 

the zinc reserves needed for cellular function. To function as an effective second 

messenger, labile zinc stores have to remain at concentrations sufficient for use during 
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signaling yet low enough to demonstrate the desired zinc level fluctuations without 

inhibition of other zinc-sensitive secondary messaging components [166]. For instance, 

skin (32 µg/g zinc) and blood (5-6 µg/g zinc) have strong immunological importance and 

low steady-state labile zinc; however, immune-privileged cells in the retina and prostate 

exhibit high useable zinc concentrations at 290 and 700 µg/g zinc, respectively [166]. 

Given the extensive involvement of zinc in cellular processes yet very low amounts of free 

zinc, tight cellular regulation is needed to ensure that sufficient amounts of zinc are 

available when needed.  

Managing both steady state and non-steady state (i.e., deficiencies and excesses) 

levels of cytosolic zinc is accomplished by a considerable network of proteins responsible 

for zinc sensing, binding and transport in and out of the cytosol. Steady state control of 

zinc levels or intracellular zinc buffering is managed by a group of cytosolic zinc-binding 

proteins including the zinc sensor, metal-responsive transcription factor-1 (MTF-1), 

metallothioneins (MT), and various cell signaling mechanisms [154, 164]. Research 

suggests that MTF-1 has an affinity for ionic zinc in the low nanomolar range and controls 

the upper limit of steady state zinc concentrations. MTF-1 binds excess zinc in the cytosol, 

and translocates to the nucleus where it regulates the transcription of both metallothioneins 

and zinc tranporter-1 (ZnT1) through the metal responsive element (MRE) [156, 167-169]. 

Zinc deficiencies and excesses (non-steady state Zn2+ levels) are managed through a 

process termed muffling which results in the redistribution of intracellular zinc through the 

use of zinc transporters [164]. 

Metallothioneins and Zinc Transporters 
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Metallothioneins (MTs) are small proteins whose cysteine-rich α and β domains 

can effectively coordinate up to seven zinc ions [159]. Four isoforms and additional sub-

isoforms exist in mammals, and differ in size, coordination ability, organism and tissue 

distribution [164]. In addition to zinc homeostasis, these proteins participate in metal 

detoxification and oxidative stress remediation. Heavy metal detoxification is mediated by 

MT’s ability to effectively coordinate all group 11 and 12 metals with preferential binding 

towards more toxic metal species such as mercury, lead and arsenic. In the absence of 

heavy metals, MTs bind mostly Zn2+ or to a lesser extent Cu2+ or  Zn2+/Cu2+ combinations 

[159]. When exposed to heavy metals, MTs release bound zinc triggering MTF-1 nuclear 

translocation and subsequent transcription of the MRE promoter. This results in increased 

transcription of the MT gene and upregulation of mRNA products.  

The mechanism by which MTs mediate oxidative stress remains unclear. It has been 

hypothesized that bound ATP and glutathione (GSH) are required for MT coordination of 

Zn2+ and that ATP and GSH release are subsequently needed for zinc release from the 

proteins [170]. GSH neutralizes ROS to become oxidized glutathione disulfide (GSSG) 

and the GSH/GSSG is often used to measure the oxidative stress of cells. Activated MTF-

1 along with other transcription factors upregulate MT expression through the antioxidant 

response element (ARE) promoter located on the MT gene [156, 159, 171]. The abundant 

cysteine content in metal free (apo-) MT proteins leads to their enhanced reactivity with 

the oxygen-rich ROS. The ability of MTs to mediate hydroxyl radical damage has actually 

been shown to be functionally similar to superoxide dismutase in yeast cells [167]. 

Restoration of zinc homeostasis following oxidative stress remediation is eventually 

achieved through MT replenishment from increased mRNA translation or GSH reduction 
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of the previously oxidized proteins [159]. While MTs assert many of their functions in the 

cytosolic space of cells, they can be imported into the mitochondrial intramembrane space 

and release zinc ions to inhibit mitochondrial respiration [164] (Figure 1.13).  

Zinc importers (SLC39) and exporters (SLC30), commonly referred to as Zip and 

ZnT proteins, respectively, are a part of the solute-linked carrier family of proteins and 

participate in muffling processes to manage non-steady state concentrations of cytosolic 

zinc (Figure 1.13). Zips are responsible for zinc transport into the cytoplasm from 

extracellular spaces or from cellular organelles [172]. Fourteen importers (Zip1 – Zip14) 

have been identified in the human genome and consist of approximately eight 

transmembrane domains, a histidine-rich loop region and an amphipathic channel to allow 

ion transport [172]. Studies have demonstrated that zinc transport with Zip1 (SLC39A1), 

Zip2 (SLC39A2), and Zip8 (SLC39A8) is energy independent and likely stimulated with 

bicarbonate anions indicating a possible zinc/bicarbonate symport mechanism [157, 172]. 

In addition to zinc responsiveness, most Zips also respond to other hormones and 

inflammatory cytokines [172]. ZnTs are responsible for zinc efflux to either the 

extracellular environment or endosomal compartments [157, 173]. The nine ZnTs 

(SLC30A1 – SLC 30A9) identified in humans have six or more transmembrane amphipathic 

domains that facilitate transport and are suspected to act as dimers and trimers [157]. ZnTs 

show strong sensitivity to dietary changes in zinc [157] and ZnT1 expression has been 

linked to changes in MT expression and MTF-1 [167]. 

Zinc Signaling and Influences on Zinc Homeostasis 

In addition to buffering and muffling actions, several signaling pathways rely on 

zinc as a second messenger and alter intracellular zinc accordingly. Zn signaling falls into 
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two broad categories termed early and late Zn signaling [174]. Early Zn signaling (Figure 

1.14A) occurs in response to an external stimulus, such as ligand binding to a receptor, that 

results in the subsequent release of ionic zinc into the cytosol from common zinc stores 

such as metallothioneins or the endoplasmic reticulum. Early zinc signaling is transcription 

independent and normally occurs within minutes after the external stimulus [174]. 

Released zinc then acts as a second messenger to facilitate the desired cellular response. 

Yamasaki et al. (2008) illustrated how mast cells utilize ionic zinc release to facilitate 

cytokine production and secretion. They found that engagement of antigen-bound 

immunoglobulin E (IgE) with the high-affinity IgE receptor (FcԑRI) in mast cells resulted 

in large Ca2+ and mitogen-activated protein kinase kinase (MAPKK) dependent increases 

of intracellular zinc originating from the perinuclear region of the cells within several 

minutes of FCԑRI stimulation [175]. Using the intracellular zinc chelators and calcium 

channel inhibitors, they demonstrated that this released zinc enhanced the NF-κβ binding 

of DNA needed for cytokine regulation [175, 176]. In T cells, intracellular zinc increases 

via plasma membrane localized Zip 6 within one minute of T cell activation and influences 

CD69 and CD25 expression [177].  

In contrast, late zinc signaling is transcription dependent and describes Zn-

facilitated cellular responses that occurs after the transcription of zinc transporters (Figure 

1.14B). Toll-like receptor four (TLC4) is activated by the bacterial endotoxin 

lipopolysaccharide (LPS) in dendritic cells (DC) and initiates myeloid differentiation factor 

88 (MyD88) and Toll/IL-1 receptor (TIR) domain-containing adapter inducing interferon 

β (TRIF)-mediated signaling to induce DC maturation [178]. MyD88- and TRIP-mediated 

signaling results in the transcription of major histocompatibility complex (MHC)-II, 
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upregulation of ZnT1, ZnT4 and ZnT6 and the suppressed transcription of Zip6 and Zip10 

[178]. The net result of the Zip downregulation and ZnT upregulation would be an increase 

in zinc efflux from the cell to reduce cytosolic zinc concentrations. Indeed, experiments 

with an ionic zinc surplus or Zip6 overexpression decreased MHC-II trafficking to the 

plasma membrane and DC maturation [178]. These results linking LPS-induced expression 

of zinc transport proteins to intracellular zinc decreases and DC activation highlight late 

zinc signaling in these processes.  

ZnO Nanoparticles and Genetic Expression 

Given the importance of zinc in cellular function, many researchers have sought to 

determine the genomic or proteomic consequences of excess ionic zinc or nZnO in 

mammalian cells [156, 179-184]. The observed genetic responses across these studies is 

widely variable, however, a few common themes exist. First, the differential expression of 

MTF-1, metallothioneins, and zinc responsive transport proteins was observed across 

numerous cell types, zinc concentration levels and time points underscoring the importance 

of these proteins in the regulation of steady-state zinc levels [158, 169, 173, 179-181, 183, 

185]. In addition, differentially expressed genes associated with stress response pathways 

outweigh contributions from other cellular processes. In immune cells, apoptotic and cell 

death pathway genes are consistently upregulated or downregulated depending on the cell 

type or time of treatment [181, 183], and these results confirmed through proteomic studies 

[182]. The significant upregulation of mRNA and translation of chaperones and other 

proteins involved in proteasome degradation indicate that nZnO can disrupt normal protein 

folding or function [181-183]. Cell cycle [183] and metabolic impairment are evident 

through the upregulation of G1 phase mediator cyclin-dependent kinase inhibitor 1 



 

 

26 

 

 

 

(CDKN1A) and increased enzymatic activity in the glycolysis pathways post nZnO 

treatment [182]. Furthermore, high levels of the metabolite pyruvate following nZnO 

treatment is believed to function as a survival factor against zinc-induced stress [182]. 

Finally, ionic zinc is capable of mimicking other signaling molecules including cytokines, 

growth factors, hormones and influencing various intracellular signaling pathways [174, 

186]. This could allow ionic zinc to directly bind to and alter the structure and biological 

function of several cytokines and growth factors [187].  

Moving Forward 

Controlling NP-induced toxicity is imperative for achieving safe and effective use 

of nZnO for either consumer or biomedical applications. To achieve this, a thorough 

understanding of the material properties that influence toxicity and a connection to 

observed cellular responses is required (Figure 1.15). Research has demonstrated that NP-

induced toxicity can be altered through material property modifications such as transition 

metal doping or surface coatings to a single nZnO sample. This formulation controlled 

approach has been instrumental in identifying how certain physicochemical modifications 

result in cellular damage. These types of modifications, however, can permanently alter the 

intrinsic nZnO core or surface structure and often fail to explain how comparable studies 

using similar NP-modifications but differently synthesized nZnO samples often result in 

different cytotoxic responses. 

To address these disparities, in 2012 the research community examined the 

importance of materials characterization and developed a minimal set of methods needed 

for every nanomaterial study. These characterizations included particle size and 

distribution, morphology, chemical composition and impurities, agglomeration tendencies, 
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surface chemistry, surface area, surface reactivity and persistence [188]. Schrurs and Lison 

(2012) examined 38 research studies on silica nanoparticles across six different parameters 

and discovered significant disparity in the reported results in relation to cytotoxicity, 

cellular uptake, agglomeration potential, surface reactivity and redox potential. Two of 

these properties, agglomeration potential and surface reactivity, were found to be woefully 

underrepresented in the literature. For agglomeration potential, 19 studies documented 

stability in cellular media, four studies examined agglomeration tendencies, two studies 

evaluated the impact of stability on cytotoxicity, and only 13 measured surface reactivity 

[189]. Additionally, they found that very few authors arrived at the same conclusions as to 

which material properties most influenced NP-induced toxicity. Similar recommendations 

have been made for downstream biological experiments and include cell death, oxidative 

stress, proliferation, DNA damage, cell adhesion, inflammatory potential, NP uptake, 

energy metabolism and genetic expression assays [190, 191]. However, more diversity is 

expected regarding these experiments as the anticipated cellular responses will vary with 

the biological model studied.  

These discrepancies have resulted in uncertainty as to which specific material 

properties within a very diverse set of nZnO formulations have the greatest influence on 

toxicity. As an illustration, two comparable studies, George et al. (2010) and Thurber et al. 

(2012), examined the effect of Fe-doping in nZnO on the NP-induced cytotoxicity in 

different mammalian cell types. Both studies employed small, spherical nZnO (<20 nm) 

and similar Fe-doping percentages (<10 %). However, one study found that Fe-doping 

decreased both the NP-induced cytotoxicity and oxidative stress responses when compared 

to the un-doped nZnO [10], whereas the other study found increasing cytotoxic trends with 
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the Fe-doping [5]. Interestingly, one major difference between the two studies was the 

nZnO synthesis method. Flame spray pyrolysis (FSP) was utilized in the first study [10], 

while a wet chemical method was employed for the later work [5]. This suggests that 

physicochemical differences between the two formulations may have been present before 

doping that could have potentially affected the outcome. Additionally, the characterization 

methods and cellular response assays differed between the two works which resulted in 

different conclusions as to the cause of the toxicity. Given these disparate results, it is 

difficult to make definitive conclusions regarding the effects of Fe-doping on NP-induced 

toxicity without first understanding how alterations in the synthesis method changed the 

underlying material properties of the nZnO.  

The inconsistencies observed in the literature indicate that a comprehensive 

investigation of the material properties that influence the toxicity of nZnO NP towards 

mammalian cells is needed. The overall objectives of the work presented here were to i) 

evaluate the physicochemical properties of differentially synthesized nZnO fabricated 

through both bottom-up and top-down methods and matched for size distribution, crystal 

structure and band gap, ii) reduce NP agglomeration tendencies within complex media and 

achieve dispersion stability, iii) define which material property interactions have the 

greatest potential to affect cellular toxicity, and to iv) examine the preferential toxicity of 

nZnO towards human leukemic cells through genetic expression studies. With this 

knowledge, it may be possible to systematically engineer and control the physicochemical 

properties of nZnO to maximize cell selectivity and cytotoxicity to achieve levels that are 

ideal for practical applications towards future biomedical use and environmental safety. 
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Tables and Figures 

 

 

 

Figure 1.1 Worldwide distribution of nZnO usage (data adapted from 

Kołodziejczak-Radzimska (2014). 
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Figure 1.2 Schematic representation of the application of nZnO 
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Table 1.1 Common liquid and gas phase chemical synthesis methods for nZnO including potential applications found in 

literature. 

Classification Synthesis Category Applications Reference 

Physical phase Mechanochemical process Photocatalyst and heterogenous catalyst [14-18] 

Liquid phase 

Precipitation process Photocatalysis, dielectrics and antimicrobial activity [19-21] 

Sol-gel Sarin degradation, cellular imaging and water treatment [22-27] 

Solvothermal, 

hydrothermal and 

microwave techniques 

Electronics, photocatalysis and gas sensing [31-34] 

Microemulsions Voltage surge devices, photocatalysis and gas sensing [35-37] 

Green synthesis Antimicrobial and antifungal treatments [41] 

Gas Phase 

Inert gas condensation Electrical, optical and magnetic application [46] 

Flame spray pyrolysis Aerosol treatment for in vivo studies and catalysts [49, 52-54] 
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Figure 1.3 Reaction steps in the formation of nZnO during flame spray pyrolysis. 
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Figure 1.4 The main photophysical processes of nZnO when excited by UV 

radiation where hv ≥ Eg. The four processes represent are: I) photo-excited process 

(gray arrows), II) band −band photoluminescence process (green arrow), III) 

excitonic process (red arrow), and IV) non-radiative transition process (blue arrows). 

The empty spheres in the valance band (VB) represent valance band holes (𝐡𝐯𝐛
+ ) and 

solid spheres in the conduction band (CB) denote conduction band electrons (𝐞𝐜𝐛
− ). 
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Figure 1.5 Sonocatalytic and photocatalysis reaction processes for nZnO including redox reactions, reactive intermediates, 

and reactive oxygen species. 
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Figure 1.6 DLVO graph depicting colloidal stability for a NP dispersion.  
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Figure 1.7 Schematic illustrating the transport dynamics of nanoparticles when 

introduced to adherent cell culture models in both the upright (left side) and inverted 

(right side) configurations. Cho article Figure 4. Reprinted by permission from 

Macmillan Publishers Ltd: Nature Nanotechnology (Cho, E. C.; Zhang, Q.; Xia, Y. 

The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. 

Nature Nanotechnology 2011, 6, 385-391.), copyright 2011. 
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Figure 1.8 Schematic illustrating dispersion dynamics within cell culture.  
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Figure 1.9 Schematic depicting the dissolution processes associated with nZno. 
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Figure 1.10 Schematic illustrating the various mechanisms by which (A) exogenous 

ROS generated at the nZnO surface and the nZnO particles themselves can induce 

cellular damage including (B) membrane disruption and lipid peroxidation. (C) 

Internalized ROS via membrane bound transporters will cause (D) oxidative damage 

to cellular components or activate stress-induced signaling. (E) Electrostatic 

interactions of NPs with cellular membranes will facilitate NP adsorption and cellular 

membrane damage. 
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Figure 1.11 Schematic illustrating the various mechanisms by which extracellular, 

intracellular free, and cell-associated zinc induce cellular damage. Extracellular free 

zinc can enter cells through (A) non-specific ion channels, and (B) specialized zinc 

importers (Zips). Intact NPs or amorphous complexes may be internalized through 

(C) active or (D) passive transport mechanisms. Elevated intracellular free zinc 

concentrations are remediated through sequestration into (E) zincosomes or by (F) 

metallothioneins. Disruption of zinc homeostasis can result in (G) mitochondrial and 

organelle damage or (H) genotoxicity.  
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Figure 1.12 The number of human genes encoding for proteins with a zinc-binding site.
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Figure 1.13 Schematic illustrating the cellular localization of the SLC39 (Zips) and SLC30 (ZnTs) families of zinc 

transporters. Zip proteins (blue) elevate cytosolic zinc levels by importing ionic zinc from the extracellular 

environment or cellular compartments. ZnT transporters lower cytosolic zinc through efflux into cellular 

compartments or out of the cell. Metallothioneins contribute to intracellular zinc level management by sequestering 

zinc ions. Hojya and Fukada article Figure 2. Reprinted by permission from Hindawi Publishers: Journal of 

Immunology Research (Shintaro Hojyo and Toshiyuki Fukada, “Roles of Zinc Signaling in the Immune System,” 

Journal of Immunology Research, vol. 2016, Article ID 6762343, 21 pages, 2016. doi:10.1155/2016/6762343), 

copyright 2016. 
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Figure 1.14 Early (A) and late (B) zinc signaling. 
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Figure 1.15 Schematic overview summarizing the toxic effect of nZnO. The key material factors implicated in NP- induced 

toxicity include particle size and shape, agglomeration potential, surface structure and reactivity, and NP dissolution. The 

observed cellular responses include disruption of zinc homeostasis, metallothionein and zinc transport regulation, zinc related 

cell signaling, and oxidative stress.
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Abstract 

Agglomeration and sedimentation of nanoparticles (NPs) within biological 

solutions is a major limitation in their use in many downstream applications. It has been 

proposed that serum proteins associate with the NP surface to form a protein corona that 

limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine 

serum (FBS) proteins on the dispersion stability, dosimetry and NP-induced cytotoxicity 

of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core 

size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were 

evaluated by comparing a (phosphate buffered saline PBS) nZnO dispersion (nZnO/PBS) 

and an FBS-stabilized PBS nZnO dispersion (nZnO – FBS/PBS). Surface interactions of 

FBS on nZnO were analyzed via spectroscopic and optical techniques. FTIR confirmed the 

adsorption of negatively charged protein components on the cationic nZnO surface through 

the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent 

detection of vibrational modes associated with the protein backbone of FBS-associated 

proteins. Further confirmation of these interactions was noted in the isoelectric point shift 

of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO – FBS/PBS 

dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long 

term improvements (>24 hours) to the nZnO dispersion stability. Furthermore, 

mathematical dosimetry models indicate that nZnO – FBS/PBS dispersions had consistent 

NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell 

models, the stable nZnO – FBS/PBS dispersion resulted in a ~33 % increase in the NP-

induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In 

contrast, the nZnO – FBS/PBS dispersion resulted in 49 % and 71 % reductions in the 
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cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer 

cells lines, respectively. Presence of FBS in the NP dispersions also increased the reactive 

oxygen species generation. These observations indicate that the improved dispersion 

stability leads to increased NP bioavailability for suspension cell models and reduced NP 

sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity 

assessments.  

Keywords 

Zinc oxide nanoparticles, dispersion stability, nanotoxicity, dosimetry 

Background 

When prepared in nanostructured form, many materials develop novel and unique 

physico-chemical properties leading to their use in nanotechnology applications such as 

quantum dots and MRI contrast agents for imaging [1], biosensors that use surface plasmon 

resonance [2], and nanomedicinal approaches that employ hyperthermia and photothermal 

therapy [3]. Efficient use of NPs and nanocarriers in biomedical applications, such as 

delivery of therapeutic and imaging agents into tumor sites and genetic materials into cells, 

has been successfully demonstrated in recent years [4-6]. Interestingly, cytotoxicity is a 

property that is inherent in many of these commonly used materials when they are 

synthesized with their crystallite size in the nanoscale range [7-9]. This has raised 

significant scientific and public concerns on the environmental and health effects of every 

nanomaterial before employing them in nanotechnology applications. It is therefore 

necessary to evaluate the cytotoxic response of nanomaterials and the underlying 

mechanisms of nanomaterial toxicity to accurately address the growing concerns about the 

impact of the unwanted cytotoxicity of nanomaterials.  
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Numerous studies reported in the literature have shown that NP-induced toxicity 

depends on the nanomaterial properties such as crystallite size [10, 11], shape [12], charge 

[13], and chemical phase [14]. Some studies have also shown that the toxic response of a 

given nanomaterial might vary with the specific cell/organism type such as prokaryotes vs. 

eukaryotes [15], gram positive bacteria versus gram negative bacteria, and normal cells 

versus cancerous cells [16]. These observations suggest that the role of organism-specific 

factors such as surface structure of cells [17, 18] and the proliferation status [10, 16] also 

influence the toxic response. Although the cytotoxicity of nanomaterials is an unfavorable 

feature for many applications, it could become very useful for certain therapeutic 

applications, if the toxicity is cell- or organism-specific. The cytotoxicity reported for most 

nanomaterials does not display a cell-specific or organism-specific behavior. However, 

many groups [16, 19, 20], including the authors, have demonstrated that certain ZnO NP 

formulations show a strong preferential cytotoxicity to cancer cells of identical lineage. For 

example, while resting primary human immune cells (T lymphocytes) showed no 

appreciable effect when treated with ≤ 5 mM concentrations of ZnO NPs, cancer cells of 

the same lineage showed significantly increased NP-induced toxicity resulting in 

approximately 28-35-fold increases in NP sensitivity [10, 16]. Thus, toxicity studies are 

extremely important both to assess the environmental and health impacts of NPs and to 

modify the nanomaterial design to make them safer, as well as to develop novel 

nanomedicinal approaches utilizing cell-specific cytotoxicity. 

Considering the large number and types of new nanomaterials being developed and 

coming to the market, in vitro studies are essential in assessing the toxicity in high-

throughput systems as they provide rapid and cost-effective screening. In most in vitro 



 

 

68 

 

 

 

 

cytotoxicity experiments, cells are cultured in a culture medium to which a prepared 

dispersion of the NPs in a suitable solution is introduced. In contrast, in vivo toxicology 

studies frequently employ NPs dispersed in a suitable medium that are subsequently 

injected into the blood vessels or tissues of the animal model. If successful, the dispersed 

NPs will reach tumor sites and achieve deep penetration and entrapment in the cancerous 

tissue by means of the enhanced permeability and retention (EPR) effect, characterized by 

increased vascular permeability and compressed lymphatic networks in solid tumors [21]. 

However, making highly stable and efficient dispersions of nanoparticles to achieve 

efficient nanoparticle delivery for both in vitro and in vivo applications has been a 

challenging task. A major difference that NPs possess compared to the well-studied 

conventional toxic chemicals (which are well soluble molecules and ions) is the difficulty 

in dispersing them in suitable solutions and culture media, and to maintain them as stable 

dispersions for sufficient durations [22]. For most in vitro studies, NP suspensions should 

remain stable at least for 24 hours while in vivo studies require stability for much longer 

durations [23]. Formation of large agglomerates and their sedimentation over longer 

periods often prevents a significant fraction of the NPs from participating in efficient 

interactions with the test cells and the resulting cytotoxic response.  

Nanoparticle dispersion stability is a complex interplay between the agglomerate 

size of NP complexes in dispersion (hydrodynamic size) and their sedimentation behavior 

over time [24]. Factors that affect NP stability include NP size [25, 26], surface structure 

[18, 27], capping agents [28], pH [29], ionic strength [29], organic and protein components 

[26, 27, 30], and free ions in the solution system [31]. Although it is now known that the 

physicochemical properties of the nanomaterial, the specific cell/organism type and the 
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membrane properties [10, 17, 18] of the test organism play a crucial role in the resulting 

cytotoxic response, very few studies have focused on the important role of NP dispersion 

characteristics and dispersion stability and the effects of NP agglomeration and 

sedimentation in the resulting toxicity [32, 33]. Furthermore, Cho et al. [34] have recently 

shown that the cellular uptake of gold NP in breast cancer cells measured using 

conventional upright in vitro cell culture configuration was significantly higher than that 

obtained when an inverted set-up was used, suggesting the effect of NP sedimentation and 

diffusion in the media play a significant role in the NP-cell interaction. In addition, 

suspension stability has been shown to directly influence effective administered dose of 

NPs to adherent cells grown in vitro [22, 32, 33].  

When NPs are introduced to biological fluids such as human plasma, a 

biomolecular corona consisting of proteins and small molecules rapidly forms on the NP 

surface [27, 35-37]. Since the blood circulatory system is the most probable treatment 

administration option for NPs into the human body, it is important to investigate how 

adsorption of blood proteins on NPs will affect the cellular response, and more importantly, 

the differential cytotoxicity of ZnO NPs between cancerous and normal cells. The effect of 

having serum in culture medium and/or adsorption of the serum proteins on some NP 

systems such as silica [38], carbon nanotubes [39], graphene oxide [40] and ZnO [41, 42] 

have been studied recently. In all these cases, the primary effects of serum addition 

included improved dispersion stability and a clear reduction of the NP-induced 

cytotoxicity. Interestingly, the above-mentioned studies were conducted using adherent 

cell models; therefore, comprehensive studies are needed to determine if similar responses 

are present for suspension cell models as well. Hypothetically, increases in the NP-induced 
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toxicity in suspension cell models would be observed as NP sedimentation decreases, 

thereby improving the bioavailability of the NPs to the cells.  

In this study, we investigated the use of FBS as a ZnO NP coating agent and the 

effects of this FBS coating the surface structure of the uncoated NPs, the dispersive stability 

of the NPs in solution and the effective dosimetry of the NPs in cellular toxicity assays. 

Since NP dispersion stability and dosimetry is highly dependent upon a balance of NP 

diffusion and sedimentation velocities within solution [32-34, 43, 44], the use of multiple 

suspension and adherent cell models was necessary to fully characterize any observations 

attributable to the addition of the FBS. A complete NP characterization profile was 

employed to fully interrogate NP-surface changes as a result of the FBS coating. In 

addition, we examined the agglomeration and sedimentation behavior of the FBS-coated 

ZnO NPs (nZnO-FBS) compared to uncoated ZnO NP (nZnO) in biologically relevant 

solutions. Finally, we investigated the effects that FBS coating would have on the solubility 

of the nZnO, the NP-induced toxicity and nZnO-induced reactive oxygen species 

production. As a whole, this work provides a comprehensive look at effects of FBS as a 

dispersion stabilizing agent in nanotoxicology studies. 

Methods 

Synthesis and Characterization of nZnO 

 The nZnO sample used in this study was produced using the forced hydrolysis of 

Zn acetate dehydrate precursor in diethylene glycol (DEG). The solution was held at 150 °C 

for 90 minutes. Nanopure water was added to the solution at 80 °C to obtain the desired 

crystallite size. This synthesis method allows for excellent control of the crystallite size by 

carefully regulating the temperature parameters and the hydrolysis ratio of the reaction 
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media [10]. Once cooled to room temperature, the nZnO were separated from solution via 

centrifuging at 20,000 rpm and subsequent washings with ethanol. A dried FBS-coated 

(nZnO – FBSdried) sample was prepared by sonicating the nZnO with FBS for 10 minutes. 

The resulting suspension was then centrifuged and the resulting pellet rinsed several times 

with nanopure water to remove any unbound FBS. The pellet was dried overnight at 60 ̊C 

to create a powdered nZnO – FBSdried form for materials characterization. Both NP samples 

were thoroughly characterized and investigated in detail using x-ray diffraction (XRD), 

transmission electron microscopy (TEM), zeta potential measurements, UV-vis 

spectrophotometry, and Fourier transformed infrared spectroscopy (FTIR). X-ray 

diffraction (XRD) spectra were recorded at room temperature on a Philips X’Pert x-ray 

diffractometer with a Cu K source ( = 1.5418 Å) in Bragg-Brentano geometry. The loose 

powder samples were leveled in the sample holder to ensure a smooth surface and mounted 

on a fixed horizontal sample plane. Lattice parameters and crystal size were analyzed with 

Rietveld refinement using Materials Analysis Using Diffraction (MAUD) software, 

corrected for instrumental broadening [45]. TEM and high-resolution TEM analysis was 

carried out using an FEI Tecnai and FEI Titan respectively. The operating voltage of the 

Tecnai microscope was 120 kV and 300 kV on the Titan. Image processing was carried out 

using the Digital Micrograph software from Gatan (Pleasant, California, USA). Room-

temperature optical spectra in the ultraviolet and visible light wavelength ranges were 

collected using a CARY 5000 spectrophotometer. Zeta potentials of the powdered samples 

of nZnO were measured in nanopure water as a function of pH with a Malvern Zetasizer 

NanoZS. The temperature was equilibrated to 25 °C, and the pH was varied in the 6 to 12 

range using 1.0 N HCl and 1.0 N NaOH prior to collecting the data. At least six data 
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collections per run were performed on three separate aliquots of the ZnO suspension for 

each sample. The Zetasizer unit was also used to measure the hydrodynamic size of nZnO 

aggregates dispersed in selected media. Several solution systems were used for NP stock 

preparation and analyzed during this experiment.  

NP Stock Preparation 

To achieve the most stable dispersion for each solution, the critical material specific 

delivered sonication energy (DSEcr) for the ZnO NPs was predetermined for the 

calorimetrically calibrated JSP Super-sonic bath sonication device employed for this study. 

A DSEcr of 181 J/mL was established through established protocols outlined by Taurozzi 

et al. (2011) [46] and employed in multiple dosimetry studies [33, 47]. To achieve the 

needed DSEcr, ZnO NPs were suspended at concentrations of 25 mM and sonicated in the 

bath sonicator delivering a power of 1.05 W for a total 30 minutes. Several biologically 

relevant solutions were prepared per manufacturer’s instructions unless otherwise defined. 

They include nanopure water, PBS, FBS, RPMI (RPMI 1640 buffered with sodium 

bicarbonate and HEPES, pH adjusted to 7.3), RPMI-based cellular media (RPMI 1640 

media supplemented with 10% FBS and 2 mM L-glutamine, 1.5 g/l sodium bicarbonate, 

4.5 g/l glucose, 10 mM HEPES, and 1.0 mM sodium pyruvate and penicillin-streptomycin) 

and DMEM-based cellular media.  

In addition to single solution NP dispersions, several NP stock dispersions were 

prepared with FBS. Based on most of the reported protocols found in the literature and our 

own preliminary data, 10% FBS addition was found to provide optimal results and was 

used to prepare these stock dispersions. The stock dispersions involved first suspending 

the desired quantity of NPs in a volume of FBS equivalent to 10 % of the final solution 
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volume and sonicating at 1.05 W for 10 minutes. After sonication, the FBS suspension was 

diluted to the calculated volume with the desired medium (90 % of the total volume) and 

re-sonicated at 1.05 W for an additional 20 minutes. These stock dispersions are referred 

to as either nZnO – FBS/water or nZnO – FBS/PBS for stocks prepared in nanopure water 

or PBS, respectively. Additionally, two nZnO - FBS formulations were created by 

removing the excess FBS prior to re-suspension and sonication in the appropriate solution. 

One formulation involved centrifuging the nZnO/FBS suspension after the initial 

sonication period followed by several washes with nanopure water to remove any unbound 

FBS. The remaining pellet was then re-suspended in the desired solution to the appropriate 

concentration to create nZnO – FBSwashed/water or nZnO – FBSwashed/PBS for nanopure 

water and PBS dispersions, respectively. Finally, stock dispersions for the dried sample, 

described in the previous section, are designated as nZnO – FBSdried/water and nZnO – 

FBSdried/PBS for nanopure and PBS dispersions, respectively.  

Extracellular Dissolution 

 For extracellular dissolution experiments, nZnO stock dispersions were prepared as 

previously described at 6 mM concentrations. To simulate cellular assay conditions, an 

aliquot of each stock dispersion was added to cellular media at a final nZnO concentration 

of 0.6 mM. All dispersions were stirred continuously to prevent nZnO sedimentation. At 

desired time points, an aliquot of the sample was removed and centrifuged at 5,000 x g for 

20 minutes using an Amicon™ Ultra-4 Centrifugal Filter Unit with a 3-Kd molecular 

weight cutoff (0.1 nm pore size) to remove any undissolved nZnO while allowing free zinc 

ions to pass through. Quantitative analysis of the dissolved Zn2+ ions was conducted on a 

Thermo X Series 2 quadrupole inductively-coupled plasma mass spectrometer (ICP-MS) 
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under normal operating conditions (i.e., no CCT) with the Xt cone set. Instrument 

performance was evaluated and optimized for each run. The instrument was calibrated 

using multi-element calibration standards containing Zn, Cr, Mn, Fe, Co and Ni in 2 % 

HNO3 at concentrations of approximately 1, 10, 100 and 1000 ppb. Instrument drift was 

monitored and corrected using 20 ppb indium as an internal standard introduced online.  

Dosimetry Analysis and Empirical Deposition Fractions 

Since NPs suspended in solution often form loosely packed agglomerates 

consisting of NP clusters and entrapped media, two empirical methods, the Harvard 

Volume Centrifugation Method (VCM) [32, 33] and the in vitro sedimentation, diffusion 

and dosimetry (ISDD) computational model [43] were employed to determine the effective 

NP density of the agglomerates (ρe, g/cm3), agglomerate porosity parameter (εagg, unitless), 

diffusion rate (D, cm2/s), sedimentation velocity (V, cm/s), deposition factor, (, h-1), and 

the deposition fraction curve [fD(t)]. Harvard VCM, which utilizes experimental methods 

to measure the effective volume of NP pellets (Vpellet), was employed to estimate the ρe of 

the NP agglomerates. To measure the Vpellet, NP suspensions were prepared at a 

concentration of 100 g/mL in nanopure water and sonicated with 1.05 W of power for 30 

minutes. The resulting stock dispersions were introduced to RPMI-based cellular media at 

a concentration of 1.25mM and then centrifuged at 2,000 × g for one hour in TPP (Techno 

Plastic Products, Trasadingen, Switzerland) packed cell volume tubes and the resulting NP 

pellets were measured utilizing the TPP "easy read" measuring device by the same 

manufacturer.  

Once the Vpellet for a NP dispersion was measured, the ρe of the NP agglomerates 

was then calculated using the following equation (DeLoid et al.) [32]: 
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𝜌𝑒 =  𝜌𝑚𝑒𝑑𝑖𝑎 +  [(
𝑀𝑍𝑛𝑂− 𝑀𝑍𝑛𝑂𝑆𝑜𝑙

𝑉𝑝𝑒𝑙𝑙𝑒𝑡𝑆𝐹
) (1 −

𝜌𝑚𝑒𝑑𝑖𝑎

𝜌𝑍𝑛𝑂
)]    (Eq 1) 

This calculation represents the ρe as a function of the media density (𝜌𝑚𝑒𝑑𝑖𝑎) and density 

represented by the NP material. Since ZnO is partially soluble in nanopure water, the mass 

of solubilized ZnO (𝑀𝑍𝑛𝑂𝑆𝑜𝑙) determined by ICP-MS as outlined above was subtracted 

from the original mass of ZnO (𝑀𝑍𝑛𝑂). A theoretical stacking factor (SF) of 0.634 to 

approximate random close stacking employed by many dosimetry models [32, 33] was 

utilized. The density value for ZnO NPs (𝜌𝑍𝑛𝑂) of 5.606 g/cm3 was used. The deposition 

factor, () [43], a function of the sedimentation velocity (V), diffusion rate (D), and height 

of the media in the cell well (L) 

𝛼 =  
𝐷

𝑉𝐿
         (Eq 2) 

was then utilized to generate deposition fraction curves [fD(t)]: 

𝑓𝐷(𝑡) = 1 −  𝑒−∝𝑡        (Eq 3) 

and time values needed to observe 90 % deposition of suspended NPs in solution (t90) [47]: 

𝑡 =
−ln (1− 𝑓𝐷(𝑡))

∝
        (Eq 4) 

To model dosimetry kinetics for suspension cell models, the curves representing the 

fraction of available NPs [fA(t)] were created using the following equation: 

𝑓𝐴(𝑡) = 𝑒−∝𝑡         (Eq 5) 

To determine the effective density, the in vitro sedimentation, diffusion and 

dosimetry (ISDD) computational model employs the unitless agglomerate porosity 

parameter (εagg)  
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𝜀𝑎𝑔𝑔 = 1 − (
𝑑𝐻

𝑑𝑋𝑅𝐷
)

𝐷𝐹−3

       (Eq 6) 

where 𝑑𝐻 represents the hydrodynamic size, 𝑑𝑋𝑅𝐷 refers to the NP crystalline size 

measured by XRD, and DF is the specific fractal dimension. A DF value of 2.3, often 

employed to model metal oxide suspensions [47], was used in this study. Once 𝜀𝑎𝑔𝑔 had 

been calculated, the 𝜌𝑒 was calculated utilizing equation 7 

𝜌𝑒 = (1 − 𝜀𝑎𝑔𝑔)𝜌𝑍𝑛𝑂 +  𝜀𝑎𝑔𝑔𝜌𝑚𝑒𝑑𝑖𝑎      (Eq 7) 

The 𝜌𝑒 value was then employed to calculate the sedimentation velocity (V, m/s) 

via equation 8 

𝑉 =
𝑔(𝜌𝑍𝑛𝑂 − 𝜌𝑚𝑒𝑑𝑖𝑎)𝑑𝐻

2

18𝜇
       (Eq 8) 

with g = 9.8 m/s2 and 𝜇 defined as the media viscosity (Pa·s). Finally, the diffusion rate 

(D, m2/s) was determined by 

𝐷 =  
𝑅𝑇

3𝑁𝐴𝜋𝜇𝑑𝐻
         (Eq 9) 

where R is the gas constant (L·kPa/K/mol), NA is Avogadro’s number and T (K) is the 

temperature.  

Cell Culture and Cytotoxicity Studies 

For cell cytotoxicity assays, Jurkat T cell leukemia, Hut-78 T cell lymphoma, T-

47D epithelial mammary gland carcinoma and the LNCaP epithelial prostate cancer cell 

line (ATCC, Rockville, MD) were cultured in cellular medium. Additionally, the T-47D 

media was supplemented with 0.2 units/mL bovine insulin. Cells were maintained in log 

phase at 37 °C and 5 % CO2, and seeded at a concentration of 5 x 105 cells/well in 96-well 

plates for Jurkat and Hut-78 cells. For the T-47D and LNCaP cells, the cells were first 
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trypsinized using 0.25 % trypsin/0.53 mM ethylenediaminetetraacetic acid (EDTA) (MP 

Biomedicals, LLC; Santa Ana, CA), re-suspended in fresh media and then seeded at a 

concentration of 2.5 x 105 cells/well in 24-well plates. The cells were then incubated 

overnight to allow the cells to re-adhere to the plate. Prior to treatment, the growth medium 

was gently aspirated from each well and replaced with 400 μL of fresh medium. Cells were 

subsequently treated with freshly sonicated (30-min) NPs reconstituted in the desired 

solution. Jurkat cells and Hut-78 cells were treated with NPs immediately after plating. For 

example, for a 2 mg/ml ZnO NP stock dispersion, 3.2 mg of NP were re-suspended in 1.58 

ml of solution medium and sonicated at 50 W for 30 minutes. Then working dilutions were 

prepared from the NP stock dispersion and added to 200 µl of cell suspensions in 96–well 

plates or 400 µl of cell suspensions in 24–well plates and cultured for 24 hours. After 24 

hours, the effects of the various NP stock dispersions on cell viability using two different 

viability assays, alamar blue and flow cytometry. The alamar blue metabolic assay was 

employed to assess viability based on the fluorogenic redox indicator dye resazurin being 

converted to the fluorescent resofurin upon reduction by mitochondrial enzymes in 

metabolically active cells. In this assay, cell populations were seeded into the desired plate 

at the concentrations indicated above, treated with NPs for 20 hours, and the incubated 

with alamar blue (10 % of total volume) for an additional 4 hours. Changes in fluorescence 

were evaluated spectrophotometrically using excitation/emission at 530/590 nm in a Biotek 

Synergy MX® plate reader (Winooski, VT).  

Flow cytometry was employed as an alternate viability assay to verify experimental 

results. NP treated cells were dually stained with a fluorescein isothiocyanate-labeled anti-

HLA ABC antibody and 50 µg/mL propidium iodide (PI) to monitor losses in membrane 
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integrity. Fluorescent CountBright counting beads (Invitrogen, Carlsbad, CA) were added 

to samples to enable determinations of absolute cell numbers, and changes in PI staining 

were used to quantify cell death. Nanoparticles were excluded from analysis based on 

absence of fluorescence signal and light forward scatter (FS) and side scatter (SSC) 

characteristics, and samples were analyzed using a BD FACS Caliber flow cytometer.  

For CD4+ T cell cytotoxicity experiments, written informed consent was obtained 

from all blood donors and the University Institutional Review Board approved this study. 

Peripheral blood mononuclear cells were obtained from healthy human blood samples via 

Ficoll-Hypaque density centrifugation (Histopaque-1077, Sigma, St Louis, MO), and 

CD4+ T cells isolated by negative immunomagnetic selection as previously reported [16]. 

Purified CD4+ T cells (>95 % purity) were cultured in RPMI/10 % FBS and suspended at 

a final concentration of 1 x 106 cells/ml. CD4+ T cells were then incubated for 24 hour with 

increasing amounts of each of the nZnO suspensions (24-800 g/mL) in order to establish 

an IC50. CD4+ T cells were then stained and viability analyzed by flow cytometry. 

Reactive Oxygen Species (ROS) Detection 

Mitochondrial superoxide levels were determined by flow cytometry using 

MitoSOX Red (Invitrogen, Eugene, OR) staining. MitoSOX Red is a cell permeable 

fluorescent dye that becomes oxidized by interacting with mitochondrial superoxide [48]. 

The resulting fluorescent signal occurs upon binding of the oxidized dye to nucleic acids. 

As a positive control, samples were treated with 0.2 nM of the mitochondrial electron 

transport inhibitor antimycin-A to ensure that the cells were capable of producing ROS. 

Jurkat cells were incubated with 0.4 mM nZnO or nZnO-FBS for 6, 18 and 24 hours and 
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then dually stained with CD3 antibody and 2.5 µM MitoSOX Red for 30 min. 

Mitochondrial superoxide levels were determined by flow cytometry. 

Statistical Analyses 

Statistical analyses were performed using Jump Pro 10 software (SAS; Cary, NC). 

The cytotoxicity data were analyzed using repeated measures of variance with post hoc 

comparisons and significance levels defined as p < 0.05 to determine statistical differences 

between the means and allow within-sample variation to be separated from between-

sample variation. Data for Figure 2.10, Figure 2.11, and Figure 2.12 were analyzed using 

a two-way analysis of variance (ANOVA) to test for statistical significance of the model, 

and post hoc comparisons were used to test for statistically significant effects of treatment 

on cell viability (p < 0.05) with an asterisk denoting statistical significance in the indicated 

figures.  

Results and Discussion 

ZnO Nanoparticle Synthesis and Characterization 

The pure ZnO NPs (nZnO) and the FBS-coated formulation (nZnO – FBSdried) were 

thoroughly characterized prior to use. Analysis of the powder x-ray diffraction spectra of 

the NPs revealed the expected hexagonal wurtzite crystal structure (Figure 2.1A). The 

MAUD software, which employs the Rietveld method [49] showed the particles had an 

average crystallite size of 10.0  0.74 nm and lattice parameters a = 3.2580 Å and c = 5.226 

Å. The nZnO – FBSdried sample also showed similar crystallite size and lattice parameters 

suggesting that the FBS coating did not alter the crystalline structure of the nZnO 

nanoparticles. Additionally, TEM analysis confirmed that the NPs in both formulations 

were primarily spherical in morphology with similar size distributions (Figure 2.1B, C).  
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Surface charge for nZnO and the nZnO – FBSdried NP samples, measured in 

nanopure water, were found to be 43.8 ± 0.55 mV and -11.8  0.39 mV, respectively. 

Bovine serum albumin (BSA), the predominant component of FBS has an isoelectric point 

(IEP) of 5.1 indicating that BSA would be positively charged at lower pH (<5.1) and 

negatively charged at higher pH values (>5.1) [50]. Therefore, the positive to negative shift 

in the zeta potential observed for the nZnO – FBSdried NPs is indicative of the absorption 

of negatively charged protein components on the surface of the nZnO [51]. To determine 

the IEP of each NP suspension, the pH was varied from 3-12 using 0.1 M HCl or 0.1 M 

NaOH and the zeta potential was measured at several points in three independent trials 

(Figure 2.2A). An IEP of 9.5 was observed for nZnO indicating these NPs would carry a 

positive charge below pH 9.5 and a negative charge at pH > 9.5. In contrast, the nZnO – 

FBSdried formulation had an IEP of pH 6.1, resulting in positively charged particles at much 

lower pH values (below 6.1) and negatively charged particles at pH > 6.1. Below pH 6.5, 

partial NP dissolution was observed for nZnO but not for the nZnO – FBSdried sample. The 

decreasing zeta potential trend observed at low pH values for nZnO has been documented 

for nZnO prepared using this synthesis method [28].  

The FTIR spectra of nZnO and nZnO – FBSdried are shown in Figure 2.2B. Both 

samples contain a strong band characteristic of Zn-O vibrations [52] at 456 cm-1 (nZnO) 

and 451 cm-1 (nZnO – FBSdried). The nZnO sample exhibits two bands commonly 

associated with the carboxyl functional group, specifically 1412 cm-1 [s(COO-)] and 1597 

cm-1 [as(COO-)] [53, 54]. Additionally, weaker bands consistent with (CH2) and 

(C – OH) at 903 and 1076 cm-1
, respectively, indicate the presence of surface-adsorbed 

carboxyl groups originating from the zinc acetate precursor or the DEG solvent [52-54]. 
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Furthermore, the absence of the (C=OOH) band at ~1720 cm-1 suggests that the carboxyl 

groups are in an expected deprotonated form as a result of the alkaline synthesis procedure 

[53]. Noticeably absent in the nZnO – FBSdried samples are the strong symmetric and 

asymmetric stretching modes of the carboxyl group with new bands appearing in the 

spectrum at 1646 cm-1 and 1533 cm-1 representing the amide I and amide II regions that 

arise from vibrations of the peptide bonds of the protein backbone [55, 56]. The amide I 

region, often used for secondary structure prediction, exhibits a maximum at 1650- 1656 

cm-1 when -helices predominate in the protein secondary structure [56]. At 1646 cm-1, the 

amide I band of the nZnO – FBSdried particles is close to this wavenumber maximum and 

suggestive of the presence of a protein with the -helical structure components found in 

BSA. The slight shift of this maximum is consistent with a more random secondary 

structure (1644–1648 cm-1) and has been observed in protein adsorption and binding 

studies with albumin [57]. Taken together, these findings clearly establish the displacement 

of adsorbed carboxyl groups and strong binding of the FBS protein components [58, 59] 

on the nanoparticle surface.  

Agglomeration and Sedimentation Profiles 

As previously discussed, determining the best media components and dispersion 

conditions for the preparation of stable nZnO dispersions was a major goal of this study. 

Reported cellular toxicity studies using Jurkat and Hut-78 cells have frequently employed 

a variety of different biological solutions used to disperse NP powder samples prior to 

treatment. Considerations in choosing stock solution components include maintaining a 

viable environment for the cells as well as creating a stable NP dispersion for treatment 

conditions. Commonly used stock solutions consist of nanopure water, PBS or un-
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supplemented cellular media. In addition, various capping agents [60] or protein 

components are often utilized to reduce steric attractions between charged particles and 

solution components and reduce NP agglomeration [51, 60, 61]. Solutions such as PBS or 

un-supplemented media are generally preferred as they do not result in unwanted pH 

changes during the toxicity study or affect cellular osmolality. Likewise, media proteins 

such as BSA and FBS are frequently used as stabilizing agents.  

The average hydrodynamic size of the nZnO sample in six different 25 mM stock 

dispersions was measured every 10 minutes for a 24-hour time period using dynamic light 

scattering (DLS) technique (Figure 2.3A). From this data, inferences can be made about 

the agglomeration tendencies of the NPs over time in different biological solution systems. 

Two of the solutions, RPMI and PBS, exhibited unstable average hydrodynamic size 

profiles over time evidenced by the immediate formation of very large agglomerates of 

2,031 nm and 3,578 nm, respectively. The agglomerate sizes in PBS increased over time 

from 3,578 nm to 5,811 nm and eventually stabilized to a variable range of 2,500 – 4,200 

nm over the remaining test period. In RPMI, the nZnO agglomerate size increased 

dramatically over time from 2,031 nm to sizes exceeding the limits of the Zetasizer 

(~10,000 nm) by the end of the time period. These data indicate that agglomeration 

behavior of NP systems increases with increasing ionic strength of the dispersion solution 

(nanopure water < PBS < RPMI). All other test dispersions exhibit stable average 

hydrodynamic size profiles over time with average size profiles of 306 nm (nanopure 

water), 150-200 nm (DMEM-based cellular media), 263 nm (RPMI-based cellular media) 

and 78 nm (FBS). To evaluate the effect of FBS on dispersion stability, all three nZnO/FBS 

formulations, nZnO - FBSdried (dried FBS-coated nZnO), nZnO – FBSwashed (FBS-coated 
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nZnO with excess FBS removed) and nZnO – FBS (nZnO coated with 10 % FBS per 

volume of desired solution), were dispersed in both PBS and nanopure water at 

concentrations of 25 mM. For PBS stock dispersions, the FBS-coating provided long-term 

hydrodynamic size stability (up to ~15 hours) regardless of the formulation employed when 

compared to the nZnO/PBS dispersion (Figure 2.3B). Beyond 15 hours, the nZnO – 

FBSdried/PBS dispersions demonstrated some instability in agglomeration behavior with 

average agglomerate sizes increasing from approximately 400 nm to 800 nm. The addition 

of FBS in nanopure water dispersions did not appreciably change the agglomerate stability 

of the NP suspensions. Relatively stable agglomeration profiles were observed between 

~200 - 350 nm for all dispersions (Figure 2.3C). Interestingly, the nZnO – FBSdried 

formulation also displayed a mild degree of dispersion instability at ~13 hours. These 

findings, along with those for the PBS-based suspension, suggest that the nZnO – FBSdried 

formulation is not the most ideal preparation for downstream applications which require 

long-term dispersion stability.  

Although average size profiles highlight the agglomeration tendencies of NP 

dispersions, they fail to depict how agglomerate formation affects NP sedimentation, 

changes in the net nZnO concentration in solution over time and the ever-changing size 

distribution of a complex NP dispersion. To address these shortcomings, experiments 

evaluating the sedimentation behavior of nZnO dispersions were performed by measuring 

changes in the optical absorbance intensity at λmax (~378 nm corresponding to the band gap 

energy of nZnO) relative to the initial absorbance intensity. Decreases in the relative 

absorbance intensity at λmax as a function of time have been correlated to decreasing NP 

concentrations in solution as a result of NP sedimentation [23, 62]. The sedimentation 
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tendencies over a two-hour time period for various stock dispersions are depicted in Figure 

2.4A. As expected, nZnO in RPMI rapidly settles out of solution with 100 % sedimentation 

noted by the one-hour time point. Other dispersions that displayed sedimentation behavior 

were nZnO dispersions in both RPMI-based cellular media (29 % at 2 hours) and PBS (49 

% at 2 hours). None of the nZnO - FBS formulations (nZnO – FBSdried, nZnO – FBSwashed 

or nZnO – FBS) showed any appreciable sedimentation behavior over the 2-hour time 

period in PBS or nanopure water (Figure 2.4A, B).  

Further evidence of NP dispersion stability can be observed in the hydrodynamic 

size distribution profiles at various time intervals (Figure 2.5, 6 and 7). Stable dispersions, 

such as those observed for the nanopure water (Figure 2.5A), demonstrate similar size 

distribution trends across the evaluated time period. Strong agglomeration and 

sedimentation tendencies result in broader distributions initially as a result of immediate 

agglomerate formation, followed by narrower distributions as large agglomerates settle out 

of the dispersion. This trend is readily apparent for the PBS dispersion (Figure 2.5B) and 

present to a lesser degree for the cellular media stock (Figure 2.5C) which reflects the 

improved stability of the nZnO in RPMI-based cellular media, containing 10% FBS, 

compared to the PBS stock. The size distribution trends observed for the nZnO – FBSdried, 

nZnO – FBSwashed and nZnO – FBS dispersions in PBS (Figure 2.6) and water (Figure 2.7) 

affirm the findings previously observed. Both the nZnO – FBSdried/PBS (Figure 2.6A) and 

nZnO – FBSdried/water (Figure 2.7A) dispersions begin to show dispersion instability at 

~12 hours which is readily apparent by 24 hours. Taken together, the agglomeration 

profiles obtained from DLS and the sedimentation trends observed by UV-Vis 
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spectrophotometry provide an accurate qualitative assessment of the NP dispersion 

stability. 

After evaluating several stock dispersions independently, the behavior of the NPs 

was assessed under conditions used for cellular toxicity assays. In short, aliquots of the 25 

mM nZnO/PBS and nZnO – FBS/PBS stock dispersions were introduced to RPMI-based 

cellular media at concentrations of 0.6 mM and the agglomeration and sedimentation 

tendencies of the NPs were observed for 24 hours (Figure 2.8). Analysis of the data 

collected under in vitro experimental conditions reveal that NPs dispersed in nZnO/PBS 

display strong agglomeration potential in the cellular media compared to those prepared 

using the nZnO – FBS/PBS stock. NPs in the dispersion prepared using the PBS stock 

formed large agglomerates immediately (>500 nm) (Figure 2.8A, C), which precipitated 

rapidly from the cellular media (Figure 2.8B), reducing the percent intensity and changing 

the maximum in the agglomerate size distribution (Figure 2.8C). At the 12-hour time point, 

the hydrodynamic size profile revealed a large distribution of NP sizes present within 

solution with a 54 % decrease in the nZnO absorbance. Significant decreases in the 

hydrodynamic size distribution can be seen by the 24-hour time point suggesting that large 

agglomerates had precipitated from the cellular media (Figure 2.8A and C). The 

sedimentation profile (Figure 2.8B) confirms that by 24 hours nearly 60 % of the nZnO 

was no longer present in the cellular media. Comparatively, the experimental dispersion 

(0.6 mM) prepared from the nZnO – FBS/PBS stock exhibited considerably more size 

stability over time (Figure 2.8A and D) resulting in less sedimentation behavior (39 %) by 

24 hours (Figure 2.8B). In the context of in vitro cytotoxicity studies, these results imply 

that using FBS as a NP stabilizing agent prior to solution dispersion results in more NPs 
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being bioavailable to interact with cells cultured in suspension. Although most of the ZnO 

NPs are in the 100 - 250 nm range at the 24-hour time point, there are some significantly 

large agglomerates (3,000 – 6,000 nm) in the hydrodynamic size profiles (inset in Figure 

2.8D) of nZnO - FBS samples. However, their percent abundance is <5 % of the total 

number of observed aggregates at 24 hours. 

Dissolution Studies 

Experiments were conducted to investigate if Zn2+ ions are released from the ZnO 

NP, when dispersed in stock solutions prepared at concentrations typically employed for 

downstream biological assays (6 mM of nZnO). Zn2+ dissolution was measured using a 

PBS stock dispersion and compared to the same after adding 10 % FBS to improve 

dispersion stability. Figure 2.9 shows the Zn2+ dissolution data (displayed as percentage of 

the total nZnO concentration in each solution as a function of time). Among these, the 

nZnO – FBS/PBS stock dispersion showed the highest Zn2+ dissolution (0.151  0.029 % 

at 24 hours) while the nZnO/PBS stock (0.033  0.004 % at 24 hours) showed significantly 

less Zn2+ ion release. These dissolution studies were then extended to samples prepared 

under actual experimental conditions (0.6 mM nZnO) used for the in vitro toxicity assay 

studies as previously described. This lowering of the nZnO concentration by 10-fold caused 

significant increases in percentage Zn2+ dissolution for both dispersion combinations, as 

shown in Figure 2.9. Decreasing nZnO concentration in solution will decrease NP 

agglomeration tendencies and subsequently increase the interaction of the nanoparticles 

with the medium, resulting in more Zn2+ ion formation in the dispersion [63]. Interestingly, 

the FBS/PBS sample showed lower Zn2+ dissolution (8.668  0.247 % at 24 hours) than 

the pure PBS sample (10.041  2.905 % at 24 hours). Since FBS addition increases 
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dispersion stability and reduces hydrodynamic size, an increase in the Zn2+ dissolution is 

expected if interaction of the NPs with the dispersed medium alone is the most important 

factor. The observed lower Zn2+ dissolution of the nZnO - FBS/PBS sample may be due to 

the presence of serum proteins from FBS on the nZnO surface, reducing direct NP-media 

interaction and thus protecting them from Zn2+ dissolution. Both FTIR and zeta potential 

measurements have shown that 10 % FBS addition produces a surface layer of serum 

proteins on the nZnO surface. Thus, the lower Zn2+ dissolution of nZnO – FBS/PBS 

dispersion (0.6 mM) is likely attributed to the serum coating of the nZnO and the resulting 

reduction in the NP-medium interactions. Another potential contributing factor in these 

systems is the propensity of free zinc ions to form insoluble zinc carbonate (ZnCO3) or 

zinc phosphate (Zn3(PO4)2) precipitates in biologically relevant solutions [61, 64]. 

Precipitation of these species may explain dissolution potential differences between the 

prepared nZnO/PBS and nZnO – FBS/PBS stock dispersions given the assumption that the 

FBS present in suspension may provide a protective function against nZnO and Zn2+/ media 

interactions, thus reducing the amount of insoluble complexes formed and increasing the 

concentration of ionic Zn2+ [65]. However, if this were the sole contributing factor, the 

same dissolution pattern would be expected when the stock dispersions were introduced 

into the cellular media. The reversal of the dissolution potential trend going into the cellular 

media underscores the complex nature of nZnO dissolution in biologically relevant 

solutions. While our results appear to contradict a recent study by Hsiao and Huang [41] 

in which a much larger Zn2+ dissolution was observed when FBS-coated ZnO NPs were 

dispersed in DMEM media, these apparent discrepancies may be attributable to solution-

related dissolution differences. Additional studies conducted in our laboratory have shown 
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that nZnO dispersed in the RPMI-based cellular media employed in this study exhibit 

significantly less dissolution potential than nZnO dispersed in the DMEM used by Hsiao 

and Huang (data not shown). The decrease in ionic zinc in the RPMI-based media 

compared to DMEM could be attributed to increased precipitation of insoluble Zn3(PO4)2 

in the phosphate-rich RPMI system [61, 65]. Furthermore, NP dissolution in the presence 

of serum proteins appears to be a competition between two processes. Serum proteins 

reduce agglomerate size allowing more interaction between NP surface and the dispersing 

medium. However, serum proteins will also attach to the nanocrystal surface effectively 

reducing the interaction of surface bound Zn ions and the medium.  

Reactive Oxygen Species (ROS)  

The potential role of intracellular ROS generation in the cytotoxicity of nZnO was 

demonstrated in our earlier reports [10, 15, 16] and through several other studies for a 

variety of cells types [66-68] by using fluorescent dyes to directly detect ROS. Since redox 

reactions at the NP surface are a primary driver in extracellular and intracellular ROS 

production, changes in the NP surface structure as a result of protein coating could change 

ROS generation and, in turn, also influence the cytotoxicity. To evaluate the amount of 

ROS produced by nZnO and nZnO-FBS, Jurkat cells were exposed to 0.4 mM ZnO for 6, 

18 and 24 hours and subsequently stained with MitoSOX Red. As Figure 2.10 illustrates, 

appreciable differences exist between the amounts of ROS produced at 6 hours (Figure 

2.10A and B), as measured by the mean MitoSOX fluorescence intensity (MFI), between 

the nZnO dispersion (PBS stock; 33.9 ± 2.66 MFI) versus the nZnO-FBS dispersion 

(FBS/PBS stock; 49.9 ± 4.98 MFI) representing a 47.2 % increase in the amount of NP-

induced ROS present in cells treated with the nZnO-FBS dispersion. As the exposure time 
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increases, the differences in the ROS production increase significantly. The greatest 

disparity, noted at 24 hours (Figure 2.10A and D), represents an 88.2 % increase in the 

amount of ROS induced by the nZnO-FBS over the nZnO dispersion. Given that the 

agglomerates present in the nZnO-FBS dispersion are significantly smaller and more 

bioavailable than those in the nZnO dispersion, more surface area to volume interactions 

are possible in the more stable nZnO-FBS which could result in the significant differences 

observed in the ROS induction. While many surface modification, such as SiO2 coating 

have demonstrated protective benefits such as less cytotoxicity and cellular stress-inducing 

ROS production [42, 66], FBS-coating does not appear to impart protective benefits against 

ROS generation. 

Cellular Toxicity Studies 

It has been previously shown in our laboratory that these nZnO synthesized in DEG 

media demonstrate strong cytotoxic effects against Jurkat leukemic and Hut-78 lymphoma 

T cell cancer lines [16]. Experiments were performed to determine if FBS coating and the 

resulting improvements in NP stability and bioavailability influence the cytotoxicity of 

NPs in these suspension cell models. Cells were exposed to increasing concentrations of 

freshly prepared nZnO/PBS or nZnO - FBS/PBS stock dispersions for 24 hours. NP-

induced toxicity was then determined using an alamar blue assay or through flow cytometry 

utilizing a T-cell specific fluorescent antibody and propidium iodide (PI) dye uptake [16]. 

As shown in Figure 2.11, both types of cancer cells showed a significant increase in the 

NP-induced cytotoxicity (p = 0.0022 and p = 0.0488 for Jurkat and Hut-78 cells, 

respectively) when nZnO – FBS/PBS stock treated cultures were employed, thus 

confirming the favorable role of 10 % FBS addition in the stock dispersion preparation. 
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The IC50 values for Jurkat cells decreased from 0.39 ± 0.03 mM for nZnO/PBS dispersions 

to 0.27 ± 0.02 mM for the nZnO – FBS/PBS dispersion using alamar blue staining (Figure 

2.11A) and from 0.38 ± 0.03 mM for uncoated nZnO to 0.25 ± 0.004 mM for nZnO – FBS 

using flow cytometry and PI uptake (Figure 2.11B). Similarly, the IC50 value for the Hut 

cells (Figure 2.11C) also showed a decrease from 0.21 ± 0.03 mM when treated with the 

nZnO/PBS dispersion to 0.14 ± 0.02 mM when treated with the nZnO – FBS/PBS 

dispersion. These results clearly demonstrate that coating nZnO with FBS proteins and the 

resulting improved dispersion stability increases their toxic response to cancer cells by 

~33 % for both cell types. Additionally, FBS coatings may also provide a potential 

approach to reduce the IC50 values of nZnO against cancer cells from their current mM 

range to more suitable ranges appropriate for therapeutic applications.  

Our previous work has shown that ZnO NPs display some selectivity in their toxic 

response against cancerous T cells as the IC50 values observed for primary quiescent T cells 

under similar conditions are considerably higher. Similar toxicity studies using nZnO – 

FBS/PBS dispersions also showed stronger toxic responses (p = 0.0303) to resting CD4+ 

T lymphocytes (Figure 2.11D). Here, the IC50 values decreased from 4.69 ± 0.85 mM when 

treated with nZnO/PBS dispersion to 2.43 ± 0.0.24 mM when nZnO – FBS/PBS 

dispersions were used. Thus, the effect of coating NP with serum proteins is evident in 

primary cells as well. While these results are consistent with our previously reported 

preferential cytotoxicity of nZnO to cancer cells, the therapeutic index of Hut cancer cells 

decreased from 22.6 for nZnO/PBS dispersions to 17.0 for the nZnO – FBS/PBS 

dispersion. Even with the modest decrease noted in the therapeutic index for the nZnO - 

FBS/PBS dispersion, the resulting therapeutic efficiency of the nZnO appears better than 
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some commonly recognized traditional chemotherapeutic agents using comparable in vitro 

assays [16]. Thus, the protein interaction with nZnO increases their cytotoxicity in the 

suspension cell models evaluated, yet maintains some of the cancer cell selectivity 

previously observed.  

Some published studies have reported that coating nZnO with organic molecules or 

media protein components results in decreased cytotoxicity and ROS accumulation 

compared to uncoated nZnO [25, 38, 40-42, 69]. While these studies appear to contradict 

our findings, it should be noted that most of these reports evaluated adherent cells while 

the primary T cells and cancerous counterparts employed here are all grow as suspension 

cultures. In adherent cell cultures, poor dispersion stability results in faster sedimentation 

of NP agglomerates onto the cell monolayer. This rapid sedimentation may artificially lead 

to higher increases in NP-cell interactions [34] and the observed increased toxicity [39, 41, 

42]. When the dispersion stability improves and sedimentation decreases with the addition 

of suitable molecules such as FBS, adherent cells will be exposed to lesser amounts of 

deposited NPs resulting in more accurate dosimetry kinetics, measured effective 

administered doses and observed toxicity values, as reported by many recent studies [25, 

38, 40-42, 69]. This possibility was confirmed by comparing the effects of nZnO/PBS and 

nZnO – FBS/PBS dispersions in two different adherent epithelial cancer cell lines, T-47D 

mammary gland carcinoma and LNCaP prostate cancer cell lines (Figure 2.12). For both 

adherent cell lines, the nZnO - FBS/PBS treated cells exhibited less toxicity when 

compared to the nZnO/PBS treated cells (p = 0.0020 and p = 0.0008 for the T-47D and 

LNCaP cells, respectively). For the T-47D (Figure 2.12A) cells, a 48.7 % increase in the 

IC50 was observed for the nZnO – FBS/PBS dispersions over the nZnO/PBS treated cells 
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(from 0.39 ± 0.02 mM for nZnO/PBS to 0.58 ± 0.01 mM for nZnO-FBS). Comparatively, 

the IC50 for the LNCaP cells (Figure 2.12B) increased from 0.35 ± 0.02 mM nZnO/PBS 

treated cells to 0.60 ± 0.06 mM for nZnO – FBS/PBS treated cells representing a 71.4 % 

decrease in the toxic response.  

In comparison to the suspension cell models, FBS-coating leads to opposite effects 

in adherent cells. Suspension cells interact with fewer NPs in experimental conditions 

consisting of even minimally unstable dispersions since a portion of the original NP 

concentration sediments and may not be bioavailable for cellular interactions. This will 

skew toxicity assay results to suggest lower toxicity for suspension cells than expected. 

When the stability of the NP dispersion is improved by suitable molecular additives such 

as 10 % FBS (Figure 2.11), the cytotoxicity increases significantly for both Jurkat and Hut 

cancer cells as well as for the primary T cell lymphocytes. More ZnO NPs are freely 

available in the stable NP dispersions to interact with more cells, thus resulting in the higher 

cytotoxicity observed in suspension cell models. The stability-induced differences between 

suspension and adherent cells underscore the importance of this work. The results from 

suspension cell studies alone would seem surprising considering other reports employing 

similar serum coatings describe decreases in NP-induced cytotoxicity in adherent cells 

lines suggesting that NP coating could be a potential means to control unwanted 

cytotoxicity [39]. One such study, Hsiao and Huang [41], demonstrated that 5-10 % FBS 

coating on ZnO NPs increased dispersion stability and Zn2+ ion release, and decreased the 

NP-induced cytotoxicity. They hypothesized that this reduction in cytotoxicity in the serum 

coated NPs was a result of serum-induced increases in cell growth and resulting decreases 

in nZnO dosage-per-cell ratios. Additionally, these authors [41]  showed larger Zn2+ release 
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in their experiments with FBS coated ZnO thus negating Zn2+ release as a primary 

contributing mechanism to nZnO cytotoxicity. In this present study, FBS coating appears 

to decrease the Zn2+ release while significantly increasing NP-induced cytotoxicity for the 

suspension cell model when compared to uncoated nZnO. With the addition of the 10 % 

FBS to our phosphate-rich stock dispersion, it is plausible that decreases in formation of 

toxic insoluble Zn3(PO4)2 precipitates [70] could translate to perceptible decreases in the 

NP-induced cytotoxicity observed for nZnO – FBS/PBS treatment. However, decreases in 

Zn3(PO4)2 formation would also result in measured increases in Zn2+ release which was not 

observed. Therefore, extracellular Zn2+ dissolution is unlikely to be a primary factor for the 

increased cytotoxicity noted for our nZnO – FBS NPs. It is clear from FTIR and zeta 

potential studies that FBS molecules bind to the ZnO NP surface. This modification of the 

NP surface influences their interaction with other NPs (and on agglomerate formation and 

sedimentation effects) as well as with cells. 

Modeling and Dosimetry Studies 

Given the toxicity trend differences noted for the differing cell models, 

mathematical models were investigated as a potential method to confirm the observed 

trends and to model the dosimetry kinetics for both the investigated stock dispersions 

(nZnO/PBS versus nZnO – FBS/PBS) and the different cellular models. All of the 

investigated experimental parameters of dispersion stability can be applied to the in vitro 

sedimentation, diffusion and dosimetry (ISDD) computational models, put forth by 

Hinderliter et al. (2010), to predict the transport properties of the NPs in various 

experimental conditions [43]. The NP and experimental parameters which most influence 

the NP transport properties include hydrodynamic size (dh), agglomeration state, effective 
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particle density (ρe) and the media height in the cell well (L) [43]. Central to the effective 

dosimetry determination in the ISDD model is the calculation of a NP deposition factor  

(h-1), Equation 2 in “Methods”, which interrelates the diffusion rate (D), sedimentation 

velocity (V) and media height [32, 33, 43, 44]. While the diffusion rate is primarily 

dependent upon the hydrodynamic size, the sedimentation velocity depends upon both the 

hydrodynamic size and the effective particle density occupied by NP agglomerates [43, 

44]. The effective particle density (ρe) can be approximated in the ISDD model (Equation 

7) using the hydrodynamic size-dependent agglomerate porosity parameter (εagg) [43] or 

can be determined experimentally (Equation 1) as a part of the Harvard Volume 

Centrifugation Method (VCM) [33, 43]. The Harvard VCM employs an experimental 

determination of NP agglomerate volumes to directly determine effective particle density. 

Furthermore, the VCM has been modified to incorporate mass lost due to the dissolution 

of soluble or partially soluble NPs such as ZnO [32, 33]. 

To determine dosimetry curves for various experimental conditions, 25 mM 

dispersions were prepared and dispersed in complete cellular media at a concentration of 

1.25 mM and the effective density (pe) determined using Harvard VCM (Table 2.1) [33]. 

From the calculated deposition factor, , dosimetry curves were constructed (Figure 2.13) 

as described in Cohen et al. (2014) [33]. Originally introduced as a model for adherent cell 

culture, the deposition fraction curve [fD(t)] (Equation 3; Figure 2.13A) depicts the fraction 

of NPs that are deposited upon an adherent cell layer as a function of time [32, 33]. 

However, the same  values may be used to model the fraction of NPs that remain 

bioavailable [fA(t)] as a function of time for suspension cells (Equation 5; Figure 2.13B). 

Based on these curves, a t90 value can be calculated to make accurate determinations of 



 

 

95 

 

 

 

 

effective NP dose either deposited on an adherent cell layer or bioavailable to suspension 

cells at desired time points.  

The influence of FBS on the dosimetry kinetics is evident in an analysis of the 

experimentally stable water, FBS/water and FBS stock dispersions introduced to the 

RPMI-based cellular media. Given the dependence of agglomerate behavior and effective 

density (pe) on the hydrodynamic size of NPs in dispersion, the water (182.5 nm), 

FBS/water (185.1 nm) and FBS (185.5 nm) stock dispersions should exhibit similar 

dosimetry kinetics. However, the effective density (pe) of the NPs in the three dispersions 

decreased with increasing amounts of FBS in the stock preparation thus increasing the 

calculated deposition factor. These disparities are a direct result of measured increases in 

the effective volume of the NP pellet with increasing amounts of FBS in solution. So while 

the similarities in the hydrodynamic diameters of these three dispersions imply consistent 

NP diffusion rates (Equation 9), the differing effective volume measurements suggest 

different NP sedimentation velocities (Equation 8) [32]. Therefore, even though all three 

dispersions demonstrate dispersion stability experimentally, the effective volume occupied 

by the resulting protein corona in the NP agglomerates decreases the sedimentation 

velocities of the NPs predicted by the model, thus increasing the deposition factor and 

shifting the dosimetry kinetics.  

Interestingly, the dose metrics obtained for the unstable stock dispersions of PBS 

and RPMI suggest dosimetry trends opposite to what would be expected considering the 

experimentally determined agglomeration and sedimentation profiles. However, the VCM 

dosimetry model assumes that the dispersions used to obtain the experimental  values are 

stable across the time frames defined by the model. As this is not the case with the PBS 
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and RPMI stock dispersions, these obtained dosimetry curves cannot be used to accurately 

model the dosimetry kinetics under these conditions. To model potentially unstable 

dispersions, it is necessary to calculate  values using experimentally determined stability 

parameters such as hydrodynamic size at multiple time points. For this, we employed the 

ISDD model. This model approximates effective particle density utilizing the 

hydrodynamic size-dependent parameter εagg. While the approximation of the ρe employed 

in this model lacks the experimental accuracy achieved for ρe measurements afforded by 

VCM, the ISDD model does allow for time-resolved approximation of NP transport 

parameters within unstable dispersions. Employing the ISDD model,  values were 

obtained using time-resolved dh values and the dosimetry curves for both the nZnO/PBS 

and nZnO – FBS/PBS stock dispersions in RPMI-based cellular media were modeled for 

several time points from 0 to 24 hours. These time-resolved points were compiled to 

generate ISDD curves which were then fit to both the fD(t) and fA(t) mathematic models to 

obtain  values for each representative graph (Figure 2.13C and D). For the unstable 

nZnO/PBS stock, the ISDD  values of 0.290 for adherent cell model conditions and 0.120 

for the suspension cell models were significantly higher (1037 % and 1279 % increases for 

adherent and suspension cell models, respectively) than those obtained using the Harvard 

VCM (Table 2.1). The ISDD modeled t90 values of 7.94 (adherent cells) and 19.12 

(suspension cells), were more consistent with the experimental stability data discussed 

earlier. Applying the same model to the stable nZnO – FBS/PBS stock dispersion yielded 

 values (0.331 and 0.107 for adherent and suspension cell models, respectively) more 

closely aligned to the VCM determined values (Table 2.1) with percent increases of 107 % 

and 97 % for adherent and suspension cell models, respectively. Surprisingly, the ISDD 
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modeled curves for the nZnO/PBS (unstable) and nZnO – FBS/PBS (stable) dispersions 

imply similar dosimetry kinetics for both cellular models and, if considered without 

experimentally derived stability profiles (e.g. average hydrodynamic size profiles, size 

distribution histograms and sedimentation analysis), would not reflect the true dosimetry 

for unstable stock dispersions. While the ISDD derived fD(t) curve for the unstable 

nZnO/PBS stock dispersion (Figure 2.13C) at face value implies stable dosimetry kinetics, 

the individual ISDD curves at each time point reflect the unstable nature of the nZnO/PBS 

dispersion (Figure 2.14A). As a result, using either mathematical model to predict the 

effective dose for this dispersion would not be advisable. For the stable nZnO - FBS/PBS 

dispersion, both the VCM and ISDD models (Figure 2.13 and Figure 2.14B) depict stable 

dosimetry kinetics for both suspension and adherent cell models. For adherent cells, the t90 

value of 14.5 hours (Table 2.1; VCM) suggests 90 % of the NPs in suspension will come 

in contact with and potentially interact with the cell layer by the 24-hour time point 

indicating that the experimentally observed toxicity values are an accurate assessment of 

the in vitro toxicity for adherent cell types. Mathematical models for stable dispersions in 

suspension cells may provide less definitive information regarding effective dose. While 

these models can accurately predict the number of NPs remaining in dispersion as a 

function of time [fA(t)], the models fail to account for NP-cellular interactions that will 

occur within the suspension culture before sedimentation processes remove NPs from the 

dispersion. Better mathematical models are needed to predict the fate and transport of NPs 

in suspension cell models that include NP sedimentation rates as well as time-resolved NP-

cellular interactions. Taken together, these observations underscore the importance of time-
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dependent stability studies for NP stock dispersions prior to the implementation of fate and 

transport dosimetry models and downstream experimental applications.  

Conclusions 

Studies reported in this work show that ZnO nanoparticles form very large 

agglomerates with hydrodynamic sizes in the 300 to 20,000 nm range which depend 

primarily on the solution composition used. Presence of such agglomerates leads to 

sedimentation of a significant portion of the nanoparticles which increases in time. For 

adherent cells, this will increase the effective NP concentration interacting with the cells at 

very early time points and may cause unusually large and potentially inaccurate in vitro 

toxicity measurements. This was demonstrated using two adherent epithelial cell lines 

(T-47D and LNCaP) with both cell types experiencing significant decreases in NP-

mediated cell death with the more stable NP stock dispersions. Likewise, this 

sedimentation process will reduce the effective NP concentration remaining in the solution 

medium. Subsequent investigations using suspension cells showed that this phenomenon 

results in an opposite trend due to the reduction in the number of nanocrystals interacting 

with the suspension cells and consequently, a lower than actual toxic response is obtained. 

Using a 10 % FBS/PBS-stock to disperse the same nZnO, the IC50 values for Jurkat (Hut) 

cancer cells decreased from 0.39 mM (0.21 mM) for nZnO/PBS treated cells to 0.27 mM 

(0.14 mM) for the nZnO – FBS/PBS dispersion. Their normal counterparts (CD4+ T 

lymphocytes) also showed a reduction in IC50 with 10 % FBS addition. Its IC50 decreased 

from 4.69 mM for nZnO/PBS dispersions to 2.43 mM when nZnO – FBS/PBS stock was 

used. On the other hand, treating the adherent cells T-47D and LNCaP using the nZnO – 

FBS/PBS dispersion resulted in 48.7 % and 71.4 % reductions, respectively, in the NP-
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induced toxic response compared to nZnO/PBS dispersion. Surface modification of these 

nZnO using serum proteins seems to be a suitable approach to obtain stable dispersions 

and accurate cytotoxicity values, thus improving their utility in therapeutic applications. 

This study has shown the important role of serum proteins in modifying the ZnO 

nanocrystal surface resulting in the formation of considerably smaller agglomerates and 

stable NP dispersions. Furthermore, these FBS surface coatings influenced Zn2+ release 

from the nanocrystals and induced changes in the mitochondrial function of the cells as 

evidenced by the increased ROS production in the nZnO – FBS/PBS treated cells. Given 

these findings, it is readily apparent that the addition of serum proteins adds a level of 

complexity to our experimental understanding of NP-cell interactions. Further studies are 

needed to examine how FBS-coatings change NP-cellular surface interactions, influence 

cellular uptake mechanisms and modify molecular interactions with other extracellular 

matrix components. Additionally, these studies should be extended to include newer 3D 

cellular culture models which often employ complex biomolecular solution systems or 

molecular scaffolds to better mimic in vivo-like environments for mechanistic biological 

assays [71, 72]. These complex culture systems will influence the formation of the NP 

biomolecular corona and change the diffusion and sedimentation rates for NP dispersions 

especially those containing additional serum proteins. Furthermore, 3D culture systems 

alter cellular growth patterns, metabolism, genetic expression and phenotype organization 

changing NP-induced cellular responses which could be further influenced by the addition 

of NP-coating materials [72, 73]. Finally, these studies should be extended into other cell 

types. Molecular coatings are often considered as a means to achieve safer nZnO structures, 
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yet little is known about how these molecular coatings will influence NP-cellular 

interactions with endothelial cells [18, 27, 74] and other primary immune system cells [10].  
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Tables and Figures 

 

 

Figure 2.1 Crystal phase composition, size and morphology characterization for 

nZnO and nZnO – FBSdried NPs. A) XRD spectra and TEM images for B) nZnO and 

C) nZnO – FBSdried. 
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Figure 2.2 Surface property analysis for nZnO and nZnO – FBSdried. A) Zeta 

potentials measured as a function of pH and B) FTIR spectra with the wavenumbers 

of the main peaks marked. 
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Figure 2.3 Aggregation profile evaluation for NP stock solutions. Average 

hydrodynamic size profiles of 25 mM ZnO stock dispersions (pH = 7.3) for a 24-hour 

time period. A) nZnO in various biologically relevant solutions. B) nZnO, nZnO – 

FBSdried, nZnO – FBSwashed and nZnO – FBS stock dispersions in PBS and C) nZnO, 

nZnO – FBSdried, nZnO – FBSwashed and nZnO – FBS stock dispersions in nanopure 

water. 
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Figure 2.4 Sedimentation profile evaluation for NP stock dispersions. 

Sedimentation profiles of 25 mM ZnO stock dispersions (pH = 7.3) for a 2-hour time 

period. A) nZnO, nZnO – FBSdried, nZnO – FBSwashed and nZnO – FBS stock 

dispersions in various biologically relevant solutions. B) Sedimentation histograms 

for 0, 0.5, 1.0, 1.5 and 2.0 hour time points for nZnO – FBSdried, nZnO – FBSwashed and 

nZnO – FBS stock dispersions in PBS and nanopure water.  
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Figure 2.5 Hydrodynamic size distribution profiles at 0, 12 and 24 hours. Histograms represent 25 mM stock dispersions 

prepared in A) nanopure water B) PBS and C) RPMI-based cellular media. 
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Figure 2.6 Hydrodynamic size distribution profiles at 0, 12 and 24 hours. Histograms represent 25 mM stock dispersions 

prepared in PBS for A) nZnO – FBSdried, B) nZnO – FBSwashed and C) nZnO – FBS.
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Figure 2.7 Hydrodynamic size distribution profiles at 0, 12 and 24 hours. Histograms represent 25 mM stock dispersions 

prepared in water for A) nZnO – FBSdried, B) nZnO – FBSwashed and C) nZnO – FBS. 
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Figure 2.8 Dispersion stability analysis for nZnO/PBS and nZnO - FBS/PBS stock 

solutions introduced to RPMI-based cellular media at a concentration of 0.6 mM. A) 

Average hydrodynamic size profiles for a 24-hour time period. B) Sedimentation 

profiles for a 24-hour time period. Hydrodynamic size distribution profiles at 0, 12 

and 24 hours for C) nZnO/PBS stock dispersion in RPMI-based cellular media and 

D) nZnO – FBS/PBS stock dispersion in RPMI-based cellular media. 
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Figure 2.9 Extracellular dissolution of 6 mM nZnO/PBS and nZnO – FBS/PBS 

stock dispersions and 0.6 mM of those respective nZnO stock dispersions in RPMI-

based cellular media.  Zn2+ concentration is expressed as % Zn2+ (total dissolved Zn2+ 

measured by ICP-MS / total Zn2+ in sample) to normalize for concentration.  
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Figure 2.10 Cellular production of ROS following ZnO NP exposure. ROS 

generation was evaluated in Jurkat cells at 6, 18 and 24 hours following treatment 

with nZnO/PBS (PBS) and nZnO - FBS/PBS (FBS/PBS) stock dispersions using 

MitoSOX red and flow cytometry (means ± standard error, minimum of n = 3). Cells 

were treated with 0.4 mM nZnO and stained with MitoSOX red and CD3 antibody 

after the desired time.  A) Mean MitoSOX fluorescence intensity for a non-treated 

control (NT) and nZnO and nZnO-FBS exposure. To assess relative increases in ROS 

following NP treatment, a marker (M1) was set so that background fluorescent in 

control samples (MitoSOX loaded/no NP) was between 1 and 3.5 %. Histograms 

represent B) 6 hours, C) 18 hours and D) 24 hours. 
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Figure 2.11 ZnO NP toxicity using nZnO/PBS and nZnO-FBS/PBS stock 

dispersions for 24 hours on various suspension cell types. Cultures were treated 

concurrently with varying concentrations of ZnO NP for 24 hours and cell viability 

was evaluated (means ± standard error, minimum of n = 3). Statistical analysis was 

performed using repeated measures analysis of variance and model-based means post 

hoc test (p < 0.05) with an asterisk denoting statistical significance. Jurkat cell 

viability was assessed using both (A) alamar blue staining or (B) flow cytometry and 

PI uptake to evaluate between assay variability and repeatability. (C) Hut-78 cell 

viability using alamar blue staining and (D) CD4+ T Cell viability using flow 

cytometry and PI uptake. 
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Figure 2.12 ZnO NP toxicity using varying concentrations of nZnO/PBS and nZnO 

- FBS/PBS stock dispersions for 24 hours on adherent cell types. (A) T-47D epithelial 

mammary gland carcinoma and (B) LNCaP epithelial prostate cancer cells. Cultures 

were treated concurrently and cell viability was evaluated (means ± standard error, 

minimum of n = 3). Statistical analysis was performed using repeated measures 

analysis of variance and model-based means post hoc test (p < 0.05) with an asterisk 

denoting statistical significance. 
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Figure 2.13 Dosimetry curves for various stock dispersions introduced to RPMI-

based cellular media at a concentration of 1.25 mM. A) Curves constructed using α 

values calculated for 24-well plates and representing the fraction of NP deposited 

[fD(t)] to an adherent cell as a function of time. B) Curves constructed using α values 

calculated for 96-well plates and representing the fraction of NPs available [fA(t)] to 

cells grown in suspension as a function of time. Dosimetry curves constructed using 

both the Harvard VCM and ISDD models for both the nZnO/PBS and nZnO - 

FBS/PBS stocks representing C) NP deposition [fD(t)] and D) NP availability [fA(t)]. 
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Figure 2.14 Dosimetry curves constructed using both the Harvard VCM and ISDD 

models for nZnO/PBS and nZnO – FBS/PBS stock dispersions introduced to RPMI-

based cellular media at a concentration of 1.25 mM. Curves were constructed using 

α values calculated for 24-well plates at various time points (ISDD) and Harvard 

VCM α values (Table 1). These curves represent the fraction of NPs deposited [fD(t)] 

to an adherent cell layer as a function of time for A) nZnO – PBS stock dispersions 

and B) nZnO – FBS/PBS stock dispersions.   
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Table 2.1  Delivered Dose Metrics. 

Delivered dose metrics: pe: agglomerate effective density (g/cm3); dH: Hydrodynamic diameter (nm); L: media height; : deposition 

fraction; t90: Time required for delivery of 90 % of administered dose (h);   and t90 (h) values are designated for each well plate 

employed (96-well plate for suspension cells and 24-well plate for adherent cells).

Stock Dispersion in 

complete RPMI 

Zeta Potential 

(mV) 
dH (nm) pe (g/cm3) 

96-well plate 

(L = 6.6 mm) 
 

24-well plate 

(L = 2.25 mm) 

      t90 (h)    t90 (h) 

Water -16.1 ±1.45 182.5 2.021 0.1453 15.6  0.4261 5.4 

FBS/Water -15.1 ± 0.81 185.1 1.692 0.2085 11.1  0.6116 3.8 

FBS -13.9 ± 0.40 185.5 1.464 0.3121 7.4  0.9154 2.5 

PBS -8.1 ± 1.93 663 1.879 0.0087 264.9  0.0255 90.3 

FBS/PBS -9.8 ± 2.08 322 1.743 0.0543 42.4  0.1593 14.5 

RPMI -14.7 ±1.46 770.5 1.623 0.0087 263.8  0.0256 89.9 

Complete RPMI -13.6 ± 2.63 244.4 1.682 0.1116 20.6  0.3273 7.1 
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Abstract 

ZnO nanoparticles (nZnO) are commonly used in nanotechnology applications 

despite their demonstrated cytotoxicity against multiple cell types. This underscores the 

significant need to determine the physicochemical properties that influence nZnO 

cytotoxicity. In this study, we analyzed six similarly sized nZnO formulations, along with 

SiO2-coated nZnO, bulk ZnO and ZnSO4 as controls. Four of the nZnO samples were 

synthesized using various wet chemical methods, while three employed high-temperature 

flame spray pyrolysis (FSP) techniques. X-ray diffraction and optical analysis 

demonstrated the lattice parameters and electron band gap of the seven nZnO formulations 

were similar. However, zeta potential measures, hydrodynamic size, photocatalytic rate 

constants, dissolution potential, reactive oxygen species (ROS) production and, more 

importantly, the cytotoxicity of the variously synthesized nZnO towards Jurkat leukemic 

and primary CD4+ T cells displayed major differences. Surface structure analysis using 

FTIR, X-ray photoelectron spectroscopies (XPS) and dynamic light scattering (DLS) 

revealed significant differences in the surface-bound chemical groups and the 

agglomeration tendencies of the samples. The wet chemical nZnO, with higher cationic 

surface charge, faster photocatalytic rates, increased extracellular dissolution and ROS 

generation demonstrated greater cytotoxicity towards both cell types than those made with 

FSP techniques. Furthermore, principal component analysis (PCA) suggests that the 

synthesis procedure employed influences which physicochemical properties contribute 

more to the cytotoxic response. These results suggest that the synthesis approach results in 

unique surface chemistries and can be a determinant of cellular cytotoxicity and oxidative 

stress responses. 
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Introduction 

Zinc oxide nanoparticles (nZnO) are widely used in industrial processes, 

electronics and consumer products due to their unique optical, electronic, and structural 

properties that are absent in bulk ZnO (around one micron in size) [1-3]. Given this, 

considerable research has centred around the inherent toxicity that nZnO demonstrates 

towards various organisms [4, 5], as well as prokaryotic [6-10] and eukaryotic cells [9, 11-

19]. While many researchers have worked to engineer safer-by-design nanomaterials 

through material properties modification [20-22], others have sought to exploit this 

differential toxicity for potential use in nZnO-based therapeutics [9, 11, 12]. Central to both 

of these long-term objectives are a comprehensive examination of nZnO-specific 

physicochemical properties and how material property modifications influence oxidative 

stress and nanoparticle (NP)-induced toxicity. Despite the wealth of available research, 

however, clear mechanistic determinants of these responses remain elusive. Among the 

proposed mechanisms is that intrinsic ROS production originating from redox reactions on 

the NP surface contributes directly to cellular membrane, organelle, or DNA damage [23-

25]. Alternatively, perturbations in intracellular zinc homeostasis from NP dissolution, pro-

inflammatory responses and mitochondrial damage leading to ROS production from the 

cell death process have also been implicated [26-32]. Regardless, controlling reactivity at 

the NP-surface and nZnO dissolution is critical to influencing biological outcomes. 

Most studies investigate changes in NP-induced toxic response as a function of a 

single material property modification in a specific nZnO formulation. For example, minor 

changes within the same synthesis method can alter both the crystal size and shape [25]. 

Likewise, surface modification via surface coating, chemical modification, or heat 
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treatment has demonstrated efficacy in changing surface charge, surface structure and NP 

solubility [23-25, 33, 34]. While this formulation controlled approach has been 

instrumental in identifying how specific physicochemical modifications influence cellular 

responses, it fails to explain how comparable studies using similar NP modifications and/or 

mammalian cell types, but differently synthesized nZnO samples, often result in differing 

cytotoxicity. These discrepancies have resulted in uncertainty as to how changes in material 

properties, within a very diverse set of nZnO formulations, influence the toxicity of nZnO.  

Studies in bacterial models routinely employ step-wise synthesis method changes 

to improve nZnO photocatalytic activity and antimicrobial properties [6-8, 10, 35-40]. 

However, similar studies in mammalian cells remain an underrepresented area in nZnO 

research. In previous work, our lab compared two spherical and similarly sized (~9 nm) 

pristine nZnO formulations fabricated using different wet-chemical methods [25]. Despite 

these similarities, the two formulations exhibited different (i) hydrodynamic size, (ii) 

electrophoretic mobility, (iii) isoelectric point (IEP), (iv) surface-adsorbed groups, (v) 

photocatalytic activity, and (vi) remarkably different cytotoxicity. This work illustrates the 

importance of investigating how changes to the synthesis method can dramatically alter the 

surface reactivity, and thus, NP-induced toxicity.  

Additionally, there is still much debate as to the roles that extracellular [13, 30], 

intracellular free [29, 31], and total cell-associated zinc [13, 31] play in the mechanistic 

process of NP-induced toxicity. Once introduced into cell culture, nZnO will begin to 

dissolve into ionic zinc (shown as extracellular zinc in Scheme 3.1). Inevitably, some of 

this ionic Zn2+ will be taken up by cells to become intracellular free Zn2+ within the cytosol 

or endocytotic vesicles [32, 41, 42]. Additionally, Zn2+ ions will interact with carbonate 
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and phosphate anions to produce zinc carbonate or phosphate species [43]. While these 

species show negligible toxicity towards mammalian cells [44, 45], they do interact with 

large agglomerates of intact nZnO (i.e., non-ionic zinc) to form amorphous complexes of 

encapsulated crystalline zinc that freely attach to cellular membranes or enter cells through 

various uptake mechanisms (designated as cell-associated Zn2+ in Scheme 3.1) [17, 31, 41, 

45]. Consequently, a thorough examination of these processes is critical in NP-toxicology 

studies.  

In this work, we sought to expand upon our previous studies by evaluating a more 

diverse panel of nZnO formulations with differential toxicity to include four wet-chemical 

samples, two FSP prepared samples, and three control samples, specifically ZnSO4, bulk 

ZnO, and a SiO2-coated nZnO formulation. Careful consideration was used in choosing the 

nZnO samples for investigation. Wet chemical methods are ubiquitously used in research 

studies as they are easily synthesized using inexpensive, common laboratory equipment 

and chemicals, and can be readily modified with simple experimental changes. The four 

wet chemical methods chosen are among the most popular approaches utilized. All employ 

a forced hydrolysis synthesis reaction with variable precursors and solvent systems. FSP 

synthesis is favored in industrial settings because of its simplistic methodology with fewer 

process steps, scalability, easy collection systems, high yield, and purity of the final product 

[46-51]. Additionally, FSP methods employ high temperatures that well exceed any 

temperatures employed by most wet chemical methods. The specific FSP methods were 

selected based on differing precursor solutions and carrier gas mixtures. The use of 

nanomaterials bridging both research application and consumer product use should provide 

NP representation across multiple areas of nZnO usage. All the nanoscale samples were 
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found to have average sizes in at least one dimension between 16 – 45 nm with similar 

bandgaps centred near 3.3 eV. Extensive characterizations were performed to evaluate the 

physicochemical differences present in the surface properties of the samples, and explore 

the roles that extracellular zinc, free intracellular zinc, and cell-associated zinc play in 

cellular toxicity. By looking at a broad panel of pristine nZnO with variable toxic potential, 

we have identified how NP-induced toxicity is influenced by both the dissolution potential 

and the surface reactivity of nZnO. This understanding could provide critical insight into 

previously unexplained discrepancies in the wider body of research as well as define which 

material property interactions have the greatest potential to affect cellular toxicity. 

Experimental 

Synthesis of nZnO 

Seven nZnO samples were used in this study. Four of the samples were synthesized 

using wet chemical methods. The DEG nZnO sample was produced using the forced 

hydrolysis of a zinc acetate dihydrate precursor in diethylene glycol (DEG). The solution 

was held at 150 °C for 90 minutes. Nanopure water was added to the solution at 80 °C to 

obtain the desired crystallite size [12]. Once cooled to room temperature, the nZnO were 

separated from solution via centrifugation and subsequent washings with ethanol.  

The second wet chemical method, EtOH nZnO, was synthesized using a similar 

hydrolysis method with the same precursor, but denatured ethanol was used as the reaction 

solvent along with a strong base, LiOH, to maintain appropriate pH [25]. The solution was 

held at 80 °C for 90 minutes, cooled to room temperature, and aged with n-heptane for 

several hours. The NPs were removed from suspension via centrifugation, followed by 
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subsequent washings with nanopure water and ethanol. After washings, both the DEG and 

EtOH nZnO precipitates were dried in an oven at 65 °C for >12 hours. 

The third sample, EG nZnO, was synthesized using a wet chemical method 

followed by a thermal decomposition. Zinc acetate dehydrate was used as the precursor 

with polyvinylpyrrolidone (PVP) as a binding agent. The reaction was carried out by 

suspending the precursor and PVP in ethylene glycol (EG), and held at 180 °C for 90 

minutes. After cooling to room temperature, the particles were collected by centrifugation, 

followed by ethanol washings. The sample pellet was dried overnight at 65 °C and then 

annealed at 350 ⁰C for 2 hours to remove any residual organics. 

The final wet chemical sample, NaOH nZnO, was synthesized by introducing a 0.5 

M zinc nitrate [Zn(NO3)2·6H2O] precursor solution dropwise to an equal volume of 1.0 M 

NaOH heated to 80 °C [52]. This solution was continuously stirred for two hours. The 

resulting precipitate was removed from solution via centrifugation and repeatedly washed 

with ethanol and nanopure water, and dried at 65°C for >12 hours. 

The three remaining nZnO samples were prepared using high-temperature flame 

spray pyrolysis (FSP). Rod-shaped FSP NPs (FSPR) and a silica-coated formulation of the 

FSPR sample (SiO2-FSPR) were prepared by collaborators at the Department of 

Environmental Health, Harvard University. Both samples employed a precursor solution 

of 0.5 M zinc naphthenate dissolved in ethanol for the formation of the nZnO core with the 

addition of hexamethyldisiloxane (HMDSO) utilized to form the silica coating. Specific 

synthesis details have been previously reported [21, 22]. A spherical FSP sample (FSPS) 

was synthesized by the Nanoscience Research Laboratory at Chiang Mai University in 

Thailand as outlined in Liewhiran et al. (2007) [53]. For this formulation, zinc naphthenate 
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was dissolved in a toluene /acetonitrile mixture with a ratio of 80/20 vol% at a precursor 

concentration of 0.5 M ZnO. Lastly, a bulk ZnO sample was obtained by annealing a 

commercially available ZnO powder (Sigma Aldridge; St. Louis, MO) at 500 °C for 5 

hours to ensure all nanosized particles less than 200 nm were removed from the sample. 

Characterization 

X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light 

scattering (DLS), zeta potential, UV-vis spectrophotometry, and Fourier transform infrared 

spectroscopy (FTIR) were employed to evaluate chemical composition, crystal size, 

morphology, electrophoretic mobility and surface structure. Philips X’Pert and Rigaku 

Miniflex 600 X-ray diffractometers with a Cu Ka source (l = 1.5418 Å) in Bragg-Brentano 

geometry were used to record room temperature XRD spectra. Rietveld refinement using 

Materials Analysis Using Diffraction (MAUD) software corrected for instrumental 

broadening was used to determine crystal size and lattice parameters [54]. An FEI Tecnai 

transmission electron microscope operating at 120 kV was employed to collect TEM 

images. High-resolution TEM analysis was performed on an FEI Titan microscope 

operating at 300 kV. Image processing was carried out using the Digital Micrograph 

software from Gatan (Pleasant, CA).  The average particle size and the standard deviation 

of the nanopowders was determined by measuring 100 plus individual NPs within Image J 

software (NIH, Bethesda, MD) [55]. 

The specific surface areas of the samples were determined via nitrogen gas 

physiosorption at 77 K using a Quantachrome NOVA 2200e analyzer. Prior to the analysis, 

all samples were vacuum degassed at 250 °C for 3.5 hours. The linear portion 
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(P/Po = 0.05 - 0.3) of the Brunauer–Emmett–Teller (BET) model was used for the 

calculation of specific surface area with NovaWin Version 11.04 software.  

Room-temperature (RT) ultraviolet and visible light optical absorbance spectra 

were obtained with a CARY 5000 spectrophotometer. RT diffuse reflectance UV−vis 

spectra were collected for band gap determination, and RT UV−vis absorbance spectra 

were obtained for photocatalytic rate analysis. Electrophoretic mobility and hydrodynamic 

sizes of nZnO dispersions created in nanopure water and cellular media were collected with 

a Malvern Zetasizer® NanoZS. Each formulation was measured three times using freshly 

prepared NP dispersions and a minimum of six replicates were collected for each 

measurement. FTIR spectra were measured using a Bruker Tensor 27 spectrometer. 

Cell culture and cytotoxicity studies. 

Cells were cultured at 37 °C and 5 % CO2. For cell cytotoxicity assays, Jurkat 

leukemia T cells were cultured in supplemented Roswell Park Memorial Institute (RPMI)-

1640 media (10 % FBS, 2 mM L-glutamine, 1.5 g/L sodium bicarbonate, 4.5 g/L glucose, 

10 mM HEPES, 1.0 mM sodium pyruvate, and 1 % penicillin-streptomycin) and 

maintained in log phase prior to treatment. Stock solutions for the nZnO samples were 

created by suspending the nanomaterial in nanopure water and sonicating for 30 minutes 

using a power of 1.05 W. These sonication parameters deliver a determined sonication 

energy [56] of 181 J/mL needed to obtain stable nZnO dispersions [57]. Working stock 

dilutions were prepared by introducing the NP stock to cellular media and vortex mixing 

for 30 seconds. The NPs were then added to cells (5 x 105 cells/mL) and cultured for 24 

hours. ZnSO4 was utilized as a positive ionic zinc control. Cell viability was determined 

using a metabolic assay in which alamar blue (10 % of total volume) was added to cells 
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and incubated for an additional 4 hours. Fluorescence changes were measured with a 

Biotek Synergy MX® plate reader (Winooski, VT) using an excitation of 530 nm and 

emission collection at 590 nm.  

Additional studies were performed using human primary CD4+ T cells. Written 

informed consent was obtained from all blood donors and the study was approved by the 

University Institutional Review Board. Ficoll-Hypaque density centrifugation 

(Histopaque-1077, Sigma Aldridge; St. Louis, MO) was used to isolate peripheral blood 

mononuclear cells from normal human blood samples followed by negative 

immunomagnetic selection (Stem Cell Technologies; Vancouver, BC, Canada) to obtain 

CD4+ T cells [11]. Purified CD4+ T cells (>95 % purity) were cultured at a concentration 

of 1 x 106 cells/mL in RPMI with 10% FBS. Cells (1 x 106 cells/ml) were treated with NPs 

for 24 hours. Cell were then stained with a fluorescein isothiocyanate (FITC)-labelled 

mouse anti-human HLA ABC antibody (Clone: G46-2.6; BD Bioscience; San Jose, CA) 

0.04 µg/mL propidium iodide (PI) at 4 °C for 30 minutes. A BD FACSCalibur flow 

cytometer (BD Biosciences; San Jose, CA) was used to monitor the loss of cell membrane 

integrity, and light forward scatter (FSC) and side scatter (SSC) parameters were used to 

exclude any NPs from the analysis. Additionally, each sample was treated with 10 µL of 

fluorescent CountBright counting beads (Invitrogen; Carlsbad, CA) to enable 

determinations of absolute cell numbers.  

Photocatalytic Studies 

The photocatalysis method employed was adapted with changes from 

Punnoose, et al. (2015) [25]. Using the model fluorescent dye sulfo-Rhodamine B, 

nZnO/dye solutions were prepared by adding 2 mg of nanomaterial in 1 mL of nanopure 
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water, sonicating for 15 minutes, and then introduced into 20 mL of 2.5 x 10-5 M solution 

of sulfo-Rhodamine B dye (excitation/emission maxima ~ 565/586 nm) The nZnO/dye 

solution was equilibrated in the dark at room temperature with continuous stirring for 15 

minutes. After reaching equilibrium, an aliquot was removed for UV-Vis analysis. The 

nZnO/dye solution was then placed in a Rayonet RPR-100 UV reactor equipped with 2537 

Å UV lamps to deliver approximately 3.2 mW/cm2. Once the lamps were turned on, 

another sample was immediately extracted for analysis for the zero-minute time point. 

Aliquots were then removed every 15 minutes for a period of 120 minutes or until complete 

dye degradation. All liquid aliquots were centrifuged at 13,000 x g for 90 seconds to 

separate NPs from the solution. The supernatant was then transferred to a quartz cuvette, 

and optical absorbance was measured using a Cary-5000 UV−vis spectrophotometer. The 

photocatalytic rate constant k is given by kt = ln(C0/C), where t = time (minutes), C0 = 

initial concentration of fluorescent dye molecules, and C = concentration of the fluorescent 

dye molecules following its illumination with the NP sample. As a control, the self-

degradation of sulfo-Rhodamine B under UV irradiation without the presence of ZnO NPs 

was measured prior to nZnO studies and was found to be negligible.  

Extracellular dissolution of nZnO stock solutions 

To simulate cellular assay conditions, aliquots of NP stocks were added to cellular 

media. These suspensions were placed in 25 mL culture flasks at a fluid depth of 6.6 mm 

to mimic the dispersion dynamics experienced by nZnO in the 96 well cellular assays and 

were kept in an incubator. Two mL aliquots were removed at 4 and 24 hours and 

centrifuged at 5,000 x g for 20 minutes using an Amicon™ Ultra-4 Centrifugal Filter Unit 

with a 3-Kd molecular weight cutoff (0.1 nm pore size) to remove any undissolved nZnO 
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while allowing free zinc ions to pass through. Control experiments were performed to 

demonstrate that 99 % NP-derived zinc ions are recoverable using this methodology [34]. 

Quantitative analysis of the dissolved Zn2+ ions was conducted on a Thermo X Series 2 

quadrupole inductively-coupled plasma mass spectrometer (ICP-MS) under normal 

operating conditions (i.e., no CCT) with the Xt cone set. Instrument performance was 

evaluated and optimized for each run. The instrument was calibrated using multi-element 

calibration standards containing Zn, Cr, Mn, Fe, Co and Ni in 2 % HNO3 at concentrations 

of approximately 1, 10, 100 and 1000 ppb. Instrument drift was monitored and corrected 

using 20 ppb indium as an internal standard introduced online. 

Intracellular Zn2+ determination 

The amount of intracellular Zn2+ present in Jurkat cells post nZnO treatment was 

determined using the zinc specific dye FluoZin 3AM (Invitrogen; Eugene, OR). Jurkat cells 

were plated at 5 x 105 in 96-well plates and cultured with nZnO. At 4 and 24-hour time 

points, cells were harvested, rinsed twice with phosphate-buffered saline (PBS) and 

centrifuged at 500 x g for 10 min. The cell pellets were re-suspended in phosphate-free 

Dulbecco's Modified Eagle's medium (DMEM), stained with 3.25 µM FluoZin 3AM dye 

and incubated at RT for 30 minutes in the dark. Cells were then rinsed with FACS buffer 

(PBS supplemented with 3 % FBS and 0.02 % sodium azide), centrifuged at 500 x g for 7 

min, re-suspended in FACS buffer, and stained with a FITC-labelled anti-HLA ABC 

antibody at RT for 30 min in the dark. Samples were then analyzed using a BD 

FACSCalibur flow cytometer with unbound NPs excluded from analysis based on the 

absence of fluorescence signal and light forward scatter (FSC) and side scatter (SSC) 

characteristics.  
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Cell-associated Zn2+ 

Cell-associated Zn2+ was determined via inductively coupled plasma mass 

spectrometry (ICP-MS). Jurkat cells (1 x 105 cells/ml) were treated with nZnO and 

incubated. At 4 and 24-hour time points, cells were washed twice in PBS, centrifuged at 

500 x g for 10 min, re-suspended in FACS buffer, stained with 10 µL of a FITC-labelled 

mouse anti-human HLA ABC antibody, and separated from any remaining extracellular 

nZnO via cell-sorting with a BD Influx cell sorter using Spigot software (version 6.1.4). 

Recovered live and dead intact cells were counted (>5 times) using a hemocytometer and 

a Luna - IITM automated cell counter (Logos Biosystems; Annandale, VA). Sample aliquots 

were resuspended in a 10 % HNO3 (double distilled 15.8 N trace metal-grade) solution (pH 

~3.0) containing 5 x 105 cells and were mechanically lysed with a probe-tip sonicator at 

50W for 2 minutes using 30 seconds on/10 second off pulse cycles. The acidified, lysed 

aliquots were stored in acid-rinsed eppendorf tubes overnight to ensure complete 

dissolution of any undissolved nZnO. The lysed aliquots were then filtered using a 10 kDa 

MW cut-off Eppendorf filter, Sartorius Vivaspin® 500 (Sartorius AG; Goettingen, 

Germany), to remove cellular debris prior to analysis. Control experiments were 

performed to demonstrate that 99 % NP-derived zinc ions are recoverable using this 

methodology [34]. NP-only control samples demonstrated that the sorting procedure did 

not significantly affect the ionic zinc levels in the experimental samples. Quantitative 

analyses of the solutions were performed via ICP-MS. 

Dosimetry 

Two empirical methods, the Harvard Volume Centrifugation Method (VCM) [58, 

59] and the in vitro sedimentation, diffusion and dosimetry (ISDD) computational model 
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[60] were employed to determine the effective NP density of the agglomerates (ρe, g/cm3) 

and the amount of nanomaterial deposited within a cell culture scenario, respectively. The 

effective volume of NP pellets (Vpellet), was obtained by first creating a nZnO dispersion in 

cellular media as previously described [57]. The resulting dispersions were then 

centrifuged at 2,000 × g for one hour in TPP (Techno Plastic Products, Trasadingen, 

Switzerland) packed cell volume tubes and the resulting NP pellets were measured utilizing 

the TPP "easy read" measuring device by the same manufacturer. The ρe of the NP 

agglomerates was calculated using the following equation (DeLoid et al.) [59]. 

𝜌𝑒 =  𝜌𝑚𝑒𝑑𝑖𝑎 +  [(
𝑀𝑍𝑛𝑂− 𝑀𝑍𝑛𝑂𝑆𝑜𝑙

𝑉𝑝𝑒𝑙𝑙𝑒𝑡𝑆𝐹
) (1 −

𝜌𝑚𝑒𝑑𝑖𝑎

𝜌𝑍𝑛𝑂
)]    (Eq 1) 

The ρe is determined as a function of the media density (ρmediaρmedia) and the 

material density of ZnO NPs (ρZnO) of 5.606 g/cm3. To account for the solubility of ZnO, 

the mass of solubilized ZnO (MZnOSol) determined by ICP-MS (see “Extracellular 

Dissolution” section) was subtracted from the original mass of ZnO (MZnO). A theoretical 

stacking factor (SF) of 0.634 was utilized to approximate random close stacking employed 

by many dosimetry models [58, 59]. The ISDD model was provided by Justin G 

Teeguarden from the Pacific Northwest National Laboratory and is outlined in this paper 

[61]. 

Zinc speciation determination 

The molecular speciation into amorphous nZnO, zinc phosphate and zinc carbonate 

under cellular assay conditions was evaluated through FTIR, X-ray photoelectron 

spectroscopy (XPS) and TEM. For this assay, samples containing 32.4 µg/mL nanopure 

water-based nZnO stock solution were introduced to RPMI media and incubated. At 4 and 

24 hours, the entire volume of one of the samples was centrifuged at 5000 x g for 30 
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minutes to pellet any suspended nZnO or amorphous zinc complexes. The resulting pellet 

was rinsed with nanopure water, centrifuged and dried overnight at 60 °C. FTIR pellets 

were made by combining 0.2 g of anhydrous KBr with 1.5 mg of dried precipitate and then 

grinding into a fine powder. The powder was compressed with 8 tons of pressure for 4 

minutes. Vibrational spectra were obtained with a Bruker Tensor 27 spectrometer and peak 

deconvolution performed using Opus 7.0.129 software. A Physics Electronics Versaprobe 

system outfitted with an Al Kα X-ray source delivering 25 W of power with a beam 

diameter of approximately 100 m was used to collect XPS spectra. Pass energy values of 

117.5 eV and 23.65 eV were used to obtain survey and high-resolution core level scans, 

respectively. Peak deconvolution and integrated peak analysis were performed with 

OriginLabPro 2017 software. TEM samples were obtained by dispersing a ~0.5 mg of 

sample in EtOH followed by sonication for 10 minutes and deposition onto carbon grids. 

Image collection was performed using a JEOL JEM-2100 HR analytical TEM.  

Reactive Oxygen Species (ROS) Detection 

To assess cellular ROS levels, Jurkat cells (1 x 105 cells/ml) were incubated with 

nZnO for 24 hours and then dually stained with 10 µL of an anti-HLA-ABC PE antibody 

and 2.5 µM of MitoSOX™ Red (Invitrogen; Eugene, OR). In the presence of mitochondrial 

superoxide, MitoSOX Red becomes oxidized and a fluorescent signal appears upon 

binding of the oxidized dye to nucleic acids [62]. For a positive control, cells were treated 

with 0.2 nM antimycin-A to ensure that the cells were capable of producing ROS. Flow 

cytometry was used to measure mitochondrial superoxide levels with the percent positive 

MitoSOX cells designated as gated lymphocytes staining positive for both HLA-ABC and 

MitoSOX red. 
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Statistical analyses 

Statistical analyses were performed using JMP Pro 12 software (SAS; Cary, NC). 

The cytotoxicity data were analysed using repeated measures of variance with post hoc 

comparisons and significance levels defined as p < 0.05 to determine statistical differences 

between the means and allow within-sample variation to be separated from between-

sample variation. Data for Fig. 3.1-3.5 were analyzed using a two-way analysis of variance 

(ANOVA) to test for statistical significance of the model, and post hoc comparisons were 

used to test for statistically significant effects of treatment on the experimental outcome 

(p < 0.05) with lowercase letters denoting statistical significance in the indicated figures. 

Linear least squares regression was employed to determine statistical significance between 

individual synthesis and control sample groups (Fig. 3.1-3.5). A linear regression was 

employed to determine the Pearson correlation coefficient (R2) value for Fig. S3.3. 

Principal component analysis (PCA) was used to reduce dimensionality of our 

multivariate data set to obtain canonical variables that are statistically independent of each 

other yet still representative of the experimental data [63]. Using the correlation method, 

PCA was performed with JMP Pro 12 software followed by common factor analysis using 

squared multiple correlation communality estimates and a varimax rotation method to 

obtain rotated principal components (PCs). A standard least squares regression model was 

used to evaluate the linearity of the measured IC50 values of the Jurkat cells against the 

obtained PCs to obtain a predictive model for NP-induced toxicity (Table S3.1 in the 

electronic supplementary information (ESI)). 
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Results 

X-ray Diffraction, XPS and TEM Analysis for Crystal Structure, Composition, and 

Morphology 

A diverse panel of nZnO was synthesized by both wet chemical and high 

temperature flame spray hydrolysis. Four of the formulations (DEG, EtOH, EG and NaOH) 

were produced using wet chemical forced hydrolysis synthesis (designated green in Table 

3.1), while two nZnO samples, a spherical FSP (FSPS) and a rod-shaped FSP (FSPR), were 

prepared via flame spray pyrolysis (FSP; blue in Table 3.1). Finally, a nanosized silica-

coated version of the FSPR sample (SiO2-FSPR) and bulk ZnO (bulk) were employed as 

control samples (shown in dark grey in Table 3.1) given their reported tendencies to be 

biologically safer than most nanoscale ZnO formulations [21, 22]. Prior to the 

implementation of biological assays, all formulations were thoroughly characterized. The 

crystal structure, phase purity and compositional purity of the formulation panel were 

evaluated using XRD analysis and confirmed that all formulations were nZnO and 

displayed a wurtzite crystal phase without alternate crystal phases present (Fig. S3.1(a-b) 

in ESI) and XPS (Fig. S3.2). TEM (Fig. S3.1(c-j)) revealed that the nanoscale samples had 

average particle sizes in at least one dimension between 16 – 45 nm. The bulk ZnO sample 

was found to contain very large particles (mostly >500 nm) of mixed morphology (Fig. 

S3.1j). TEM images showed that the nZnO samples were spherical in morphology except 

for the NaOH, FSPR and SiO2-FSPR samples which exhibited rod-like morphology (Fig. 

S3.1(f, h & i)).  
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Cellular toxicity and oxidative stress responses 

To evaluate the toxicity and oxidative stress induced by the nZnO formulations, 

Jurkat leukemia T cells (Fig. 3.1(a)) and primary non-transformed CD4+ T cells (Fig. 

3.1(b)) were treated with increasing concentrations of nZnO for 24 hours (see Table S3.1 

for millimolar concentration values and therapeutic indices). The cytotoxic response of 

both cell types to the different NP formulations can be roughly divided into three groups 

Nanoparticles prepared with wet chemical methods (DEG, EG, EtOH and NaOH) showed 

the greatest level of toxicity, followed by the FSP samples. Interestingly, the rod-shaped 

nZnO appeared less cytotoxic in both the wet chemical method group (NaOH) and the FSP 

group (FSPR) than the spherical NPs synthesized in a similar fashion (EtOH and FSPS, 

respectively); however, these differences were more pronounced in the primary cells. 

Consistent with the literature, the SiO2-FSPR and bulk control samples were significantly 

less toxic than the nZnO formulations, whereas the positive ionic zinc ZnSO4 control 

exhibited the most toxicity. Additionally, the IC50 value obtained for SiO2-FSPR is in line 

with those values obtained for silica NP of comparable size indicating an efficient and 

hermetic coating [64, 65]. Linear contrast analysis found the differences observed between 

three ZnO groupings, wet chemical, FSP and control samples to be statistically significant. 

Intracellular ROS generation is considered a primary contributor to NP-induced 

toxicity in mammalian cells [11, 12, 16, 66]. ROS produced by structural or functional 

damage to mitochondria can be assessed through the measurement of mitochondrial 

superoxide [12, 66, 67]. Figure 3.2 illustrates that the nZnO samples generated ROS in a 

formulation-dependent manner. Specifically, the most toxic formulation, DEG nZnO 

(Jurkat IC50 = 20.7 ± 3.1 µg/mL), produced the highest percentage of ROS positive cells at 
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39.1 ± 2.5 %, while treatment with the least toxic nanoscaled sample, FSPR (86.4 ± 4.7 

µg/mL), resulted in only 12.1 ± 0.6 % ROS producing cells. These findings directly 

correlated increases in NP-induced toxicity to corresponding increases in mitochondrial 

superoxide generation. The one exception, the SiO2-FSPR nZnO, produced only 

6.1 ± 0.2 % of ROS positive cells despite showing significantly more toxicity than bulk 

ZnO, possibly due to complexation or shielding of the electron donor or acceptor sites 

needed for mitochondrial damage [23, 68]. 

Surface characterization and reactivity 

As different synthesis methods are expected to result in unique surface chemistry, 

several characterizations were performed to elucidate these differences. Surface bound 

species and hydroxylation were identified using FTIR analysis. Present in all formulations 

was the characteristic broad Zn-O vibrational mode (Fig. 3.3) centered between 451 cm-1 

and 475 cm-1, and the broad FTIR peak associated with surface adsorbed OH groups at 

3410 cm-1 [69-72]. Notable differences present only in the wet chemically synthesized 

samples (Fig. 3.3(a)) included the O-H bending mode and the vs(COO-) of carboxylic acid 

at 910 cm-1 at 1412 cm-1, respectively [71, 72]. Additionally, the DEG sample displayed a 

v(C-OH) mode at 1076 cm-1 and the vas(COO-) band at 1591 cm-1 [70-72]. The above 

mentioned peaks can be attributed to function group remnants of the synthesis precursor or 

the reaction solvent [25]. Finally, the SiO2 coating was confirmed through the presence of 

the Si-O-Si bending and Si-O-Si stretching modes found at 800 and 1081 cm-1, respectively 

[69]. 

The FTIR data confirmed that the NP formulations differed in the type and quantity 

of surface adsorbed functional groups and charged ions. These modifications, along with 
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intrinsic surface defects are often conferred by the synthesis procedure, and alter the 

surface charge density and ionization potential of the nanocrystals resulting in the 

generation of an enhanced surface charge [25]. Zeta potential (ζ-potential) measurements 

(Table 3.1) verified these synthesis method-dependent differences. The positive ζ-potential 

values of the uncoated samples were higher for samples with more surface-adsorbed 

functional groups and hydroxylation. When the IC50 in Jurkat cells was plotted as a function 

of ζ-potential (Fig. S3.3 in ESI), a linear correlation (R2 = 0.72; p <0.0001) was observed 

for the uncoated nZnO samples. This correlation is interesting considering that all samples 

experienced similar electrophoretic mobility shifts when suspended in cellular media 

(Table 3.1). While this normalization of the NP surface charge in cellular media may be 

due in part to protein corona formation, these findings may also be skewed by free protein 

remaining in the media. Indeed, control experiments using a dried protein-coated DEG 

nZnO sample revealed a ζ-potential measurement of -11.8 ± 0.39 mV as compared to the 

value of -6.80  0.85 obtained for the wet sample [57]. This commonly observed surface 

charge normalization has prompted speculation that ζ-potential values measured in aqueous 

solutions contribute little to NP-induced toxicity [23], however, our results clearly do not 

fit with this speculation. A possible explanation for this is intrinsic surface defects that 

contribute to the nZnO surface charge, may still be present in the interior of the nZnO 

crystals and contribute to their toxic response when internalized into cells. Additionally, 

the variably charged surfaces noted for the different formulations could result in 

differential attractive forces to organic and biological molecules present in the extracellular 

milieu and/or cellular environment. Indeed, Han et.al (2014), observed that differently 

charged nZnO experienced variable adsorption of humic acid at circumneutral pH. In their 
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study, a positively charged nZnO sample adsorbed higher amounts of the negatively 

charged humic acid along with concentration-dependent shifts in the measured zeta 

potential when compared to a negatively charged nZnO sample [73].  

In addition to their ability to influence surface charge, intrinsic defects such as 

oxygen vacancies or interstitial Zn ions, increase the number of possible electron donor or 

receptor sites available to participate in abiotic redox reactions at the NP surface [25, 74, 

75]. Seen as an indirect measurement of redox potential, photocatalytic activity has been 

connected to synthesis modification and resulting biological outcomes [25]. The highly 

reactive valance band holes (ℎ𝑣𝑏
+ ) and conduction band electrons (𝑒𝑐𝑏

− ) produced during UV 

irradiation participate in redox reactions at the NP surface to produce multiple ROS 

species, resulting in sulfo-rhodamine B fluorescent dye degradation [25, 74, 75]. Figure 

3.3(c), demonstrates this time-dependent degradation of the dye for the EG formulation. 

The average catalytic rate constants (k, min-1) for the uncoated nZnO formulations varied 

from 0.076 min-1 (DEG) to 0.036 min-1 (FSPR) (Fig. 3.3(d)), while the SiO2-FSPR sample 

did not exhibit any significant photocatalytic activity. All reported k values are consistent 

with current literature [25, 36, 74]. Additionally, rod-shaped NPs exhibited lower k values 

compared to spherical nZnO samples demonstrating a strong dependence of k values on 

NP shape [36]. The k values for the spherical nZnO plus the bulk control, (Inset; Fig. 

3.3(d)), demonstrated a positive correlation with the observed cytotoxicity for both the cell 

types, and is consistent with our previous findings [25]. ZnSO4 treatment did not result in 

any appreciable dye degradation with or without UV illumination thus eliminating ionic 

zinc as a contributor to the photocatalytic process.  
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Dissolution potential and zinc speciation 

ZnO NPs are known to release Zn2+ in many biologically relevant solutions [76] 

and induce cellular damage both extracellularly and intracellularly [13, 29-31]. To 

determine if a relationship existed between these two dissolution measures, extracellular 

(bars in Fig. 3.4) and intracellular free Zn2+ (line graph in Fig. 3.4) dissolution assays were 

performed concurrently. As seen in Fig. 3.4, a clear trend exists between extracellular zinc 

release and the measured intracellular free Zn2+ for all samples. Additionally, the wet 

chemically synthesized NPs exhibited higher extracellular and intracellular free Zn2+ levels 

than the FSP or control samples with two notable exceptions. First, the EtOH sample was 

less soluble than the FSP nZnO despite being a wet chemical formulation and having a 

larger specific surface area (SSA) of 67.1 m2/g. However, the increased hydrodynamic size 

of this sample (Table 3.1) reduces its surface area-to-volume ratio thereby decreasing its 

dissolution potential. Secondly, the SiO2-FSPR released relatively low amounts of Zn2+, 

despite its small hydrodynamic size, due to the protective benefits of the silica coating [22]. 

The same general trend was apparent for all samples at both time points, with modest 

increases between 1.5 and 3.9 % in the amount of Zn2+ released by 24 hours. Overall, these 

results agree with dissolution trends noted in the literature and are consistent with the 

kinetic profiles observed for these nZnO formulations in nanopure water (Fig. S3.4 in ESI).  

One limitation of the extracellular dissolution and intracellular free Zn2+ assays 

discussed above is that they do not address zinc associated with cells as non-ionic 

complexed forms of nZnO [17, 31, 41, 45]. To address this, an assay was developed to 

isolate intact cells and subsequently measure the total cell associated zinc including 

nanomaterial attached to the outer membrane and all forms of intracellular zinc. Following 
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nZnO treatment, Jurkat cells were isolated from unbound nZnO by FACS sorting, and 

equivalent numbers of cells mechanically lysed and chemically digested to ensure that any 

zinc associated with the cells would be in an ionic form. Following filtration to remove 

cellular debris, zinc concentrations were determined by ICP-MS. Additionally, control 

experiments verified that the cell sorting procedure did not capture any un-associated 

nanomaterial. At 4 hours, the cell-associated zinc varied with no significant trends apparent 

amongst the synthesis methods or particle morphology (Fig. 3.5). By 24 hours, a few 

patterns emerged. First, within the wet chemical synthesis group, the amount of cell-

associated zinc follows the inverse trend observed for cytotoxicity. Specifically, the most 

toxic NPs (DEG) contained the least cell-associated zinc while the least toxic formulation 

in that group (NaOH) had the most. This pattern was mirrored in nZnO samples created 

using high temperature conditions (>1000 °C) including the FSPS, FSPR, SiO2-FSPR and 

bulk samples. Of interest are the observed inconsistencies between the intracellular free 

zinc data (Fig. 3.4) and cell-associated zinc experiments (Fig. 3.5). One might expect that 

NP formulations with higher amounts of intracellular free zinc would also contain higher 

amounts of cell-associated zinc; however, the opposite was found to be true.  

It is evident from the extracellular, intracellular and cell-associated Zn2+ 

measurements, that there are other zinc species contributing to the cell-associated levels 

other than intracellular free zinc. Since nZnO readily aggregates into amorphous 

precipitates containing nZnO, mixed phosphate/carbonate phases and serum proteins 

within the extracellular environment [77-79], it is probable that large amounts of zinc will 

attach to or enter cells in non-ionic zinc forms. To characterize the nature and composition 

of these forms, FTIR and XPS analysis was employed. FTIR analysis of agglomerates 
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isolated from cellular media demonstrated the time-dependent evolution of these 

amorphous precipitates (Fig. S3.5 in ESI and Fig. 3.6(a)) through the disappearance of 

peaks associated with the surface adsorbed groups and the appearance of the amide I 

vibrational mode at 1651 cm-1 indicative of bound serum proteins or crystalline water [80-

82]. Furthermore, the development of zinc phosphate is evidenced by the broad band 

convolution of phosphate bending and stretching modes at 1031 cm-1 and phosphate 

shoulder peaks between 502 and 637 cm-1 [44, 80, 83, 84], whereas complexed carbonate 

phases are evidenced by the vs(CO3
2-) anion and the C-O stretching modes at 1405 cm-1 

and 1535 cm-1, respectively [43, 85]. XPS confirmed these compositional changes with the 

atomic additions of nitrogen and phosphorous and increases in the relative intensity of 

carbon and oxygen observed in the survey spectra (Fig. S3.7 in ESI). In addition, the single 

Zn2P3/2 peak present at 1021.6 eV in the as-prepared samples was replaced by two peaks 

due to a chemical shift consistent with a Zn-P peak overlapping with the Zn-O peak with 

an approximate difference of +2-eV (Fig. 3.7(d)). 

To quantify the intensity variations observed between the different formulations, 

the ratio of crystalline nZnO to the amount of phosphate in the precipitates (ZnO/PO4
3-) 

was determined by calculating the integrated area ratio of the nZnO peak to the broad 

phosphate band at 1031 cm-1 (Fig. 3.6). Since the broad peak from ~ 350 – 700 cm-1 is no 

longer solely representative of pure ZnO vibrational modes, peak deconvolution was 

employed to separate the integrated area associated with phosphate species from that of 

pure nZnO vibrational modes (Fig. 3.6(b & c), Fig. S3.6 and Table S3.3 in ESI). 

Interestingly, the area ratios (black spheres in Fig. 3.7(a & b)) increased as the amount of 

cell-associated zinc increased and mirrored the geometric trend established with the cell-
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associated zinc levels. As corroboration, calculated Zn/P ratios obtained from XPS survey 

spectra atomic concentrations, (white triangles in Fig. 3.7(a & b)) were generally consistent 

with the ZnO/PO4
3- values obtained from the FTIR experiment. A notable exception was 

the Zn/P ratio obtained for SiO2-FSPR nZnO sample which was negligible in comparison 

to the ZnO/PO4
3- ratio. Considering the slow dissolution kinetics of the SiO2-FSPR nZnO 

in cellular media, any agglomerates formed will likely have high protein content with lower 

zinc phosphate/carbonate formation thus resulting in the observed zinc and phosphate 

values below the detection limit (<0.1 %). 

Qualitative evidence of the FTIR and XPS results can be seen in the high resolution 

TEM images collected on the precipitates (Fig. S3.8 - Fig. S3.15 in ESI). Agglomerates of 

crystalline nZnO, confirmed by the lattice fringes observed in the high-resolution images, 

can be seen embedded in an organic matrix within all the nZnO and control samples. 

Furthermore, the more soluble nZnO formulations (DEG and EG) contained smaller, more 

porous nZnO aggregates with larger amounts of visible amorphous material compared to 

the denser ZnO agglomerates observed in less soluble samples. Additionally, the FSPR and 

SiO2-FSPR formulations retained much of their rod-shaped morphology even up to 24 

hours. Taken with the ZnO/PO4
3- and Zn/P calculations, these observations suggest that 

large increases in cell-associated zinc can be attributed to non-ionic zinc complexes.  

Dosimetry 

Increasing nZnO agglomerate size results in many downstream effects including 

decreased dissolution, increased sedimentation, and changes in the overall dosimetry of the 

NPs [86]. The in vitro sedimentation, diffusion and dosimetry (ISDD) computational 

model [61] was employed to determine the fraction of nanomaterial (in µg) that is deposited 
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onto an adherent cell layer for a given time frame. Figure 3.8(a) demonstrates that 

formulation-specific differences exist in the amount of nZnO deposited over 30 hours with 

differences likely due to stronger sedimentation effects exerted by nZnO with large 

hydrodynamic diameters (Table 3.1 and Fig. 3.8(b)). The deposition differences at 24 hours 

when plotted with the hydrodynamic diameters of the NPs illustrated this connection (Fig. 

3.8(b)). It is noteworthy that the geometric trend observed for these measurements was 

nearly identical to that observed for the cell-associated trend (Fig, 3.5 and Fig. 3.7). The 

SSA measurements obtained by BET were also plotted in Fig 3.8b to evaluate potential 

connection between dosimetry, hydrodynamic diameter and SSA. No clear patterns, 

however, were observed between these measures. While hydrodynamic diameter appears 

to correlate strongly to both dosimetry and cell-associated zinc in this study, there are 

cautions that need to be considered with the discussion of hydrodynamic size. One common 

artefact is the possible presence of very large agglomerates which may mask the detection 

of smaller agglomerates in the dispersion thus skewing the average hydrodynamic 

diameter. Additionally, agglomerates with a loosely packed open structure, allowing for 

exposed NP surface area within the agglomerates, may alter NP dissolution kinetics or 

mass transport in unpredictable ways. Despite these potential artefacts, hydrodynamic 

diameter appears to be a significant variable in NP-induced toxicity, but should be 

considered as part of a broader characterization protocol including BET, TEM and 

dosimetry measurements.  

Principal Component Analysis 

Given the highly correlated and complex nature of our multivariate data set, 2D 

principal component analysis (PCA) was used to determine if the individual formulations 
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could be quantitatively separated based on their material properties. The 2D analysis 

identified two statistically independent principal components (PCs) that accounted for 

74 % of the observed experimental variability. From the table (Fig. 3.9(a)), the individual 

experimental factors appear to be grouped by their contribution to either oxidative stress 

responses (PC1; 51 %) or agglomeration potential (PC2; 23 %). At first glance, the 

inclusion of photocatalysis with PC2 appears anomalous; however, increasing aggregation 

behavior decreases photon absorption leading to fewer electron-hole pairs and less ROS 

generation [87]. Qualitative groupings based on similar component scores (colored ellipses 

in Fig. 3.9(b)), revealed some interesting patterns. Not surprisingly, the bulk sample (purple 

ellipse) scored high for PC1 given its large hydrodynamic sizes and cell-associated zinc 

values. Whereas the SiO2-FSPR formulation (pink ellipse) associated negatively with both 

PCs due to decreased dissolution potential, ROS production, aggregation potential and 

photocatalytic activity. Amongst the uncoated nanosized samples, the most toxic samples, 

DEG and EG (yellow ellipse), scored positively for both PCs and is likely a consequence 

of high intracellular Zn2+ levels, stronger surface reactivity and faster photocatalytic 

activity. In contrast, the other samples (blue ellipse), with lower toxicity, demonstrate less 

surface reactivity thus lowering their oxidative stress contributions.  

Discussion 

This work sought to expand upon previous results demonstrating the importance of 

synthesis method in modulating surface reactivity, NP-induced toxicity and oxidative 

stress [25]. The goal of this research was two-fold: 1) to thoroughly characterize the surface 

reactivity, and dissolution potential of the nZnO panel and 2) identify the relative 

contributions of these material properties in NP-induced toxicity and oxidative stress. Upon 
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assessing the toxicity of the nZnO panel against Jurkat leukemic and primary CD4+ T cells, 

it was observed that NPs synthesized through wet chemical methods imparted greater 

toxicity to both cell types than those synthesized using FSP methods (Fig. 3.1). Several 

possible scenarios may explain these discrepancies.  

First, the dissolution kinetics are remarkably different amongst the nZnO 

formulations. The more toxic samples demonstrate faster dissolution kinetics within the 

extracellular environment (Fig. 3.4). Consequently, these nZnO exhibit decreased 

agglomeration potential (Table 3.1) and increased intracellular zinc levels (Fig. 3.4). In 

comparison, as the toxicity of the nZnO formulations decreased, the kinetic balance shifted 

from extracellular dissolution towards more agglomerate formation and the cellular 

adherence of large amounts of non-ionic zinc as evidenced by the cell-associated zinc (Fig. 

3.5 and 3.7) and dosimetry (Fig. 3.8) data. Ultimately, both extracellular and cell-

associated zinc contribute to increased levels of intracellular free zinc and disruption of the 

zinc homeostasis of the cell [13, 28, 29, 66]. However, identifying the source of 

intracellular free zinc levels can be difficult. One proposed mechanism is that large pools 

of extracellular ionic zinc that are liberated from the nZnO are taken up by the cell [32, 41, 

42]. This hypothesis is consistent with our extracellular/intracellular zinc data. While these 

results suggest that rapid increases in extracellular free zinc give rise to corresponding 

increases in intracellular free zinc, our experiments cannot definitively verify this 

correlation. Indeed, it is highly probable that some of the intracellular zinc levels observed 

may result from dissolution of non-ionic zinc intracellularly [17, 18, 28, 29, 31, 88], which 

would occur more rapidly for smaller nZnO agglomerates. Alternatively, studies have also 

shown that increased intracellular zinc in cells treated with highly toxic nZnO [13, 28, 89-
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91] results from disruption of cellular membranes by lipid peroxidation or by nZnO 

translocation into the cell [13, 28, 80-82]. 

Secondly, the variable synthesis methods resulted in differing surface reactivity. 

The hydrolysis based synthesis methods used here are known to produce NPs with multiple 

defects such as oxygen vacancies and interstitial zinc and oxygen atoms [92]. Additionally, 

singly and doubly ionized oxygen vacancies give rise to higher overall positive charge 

through increased OH surface absorption and excess Zn2+ [25, 93]. The presence of these 

synthesis method induced defects is validated through the high positive surface charge 

(Table 3.1 and Fig. S3.3) and faster photocatalytic rates (Fig. 3.3) observed for the wet 

chemical formulations and the direct correlation of this surface reactivity to the toxicity 

and ROS findings. (Fig. 3.1 and 3.2). 

Dissolution kinetics and surface reactivity are often viewed as competing 

mechanisms for NP-induced toxicity. We contend, however, that these processes work 

concurrently as suggested by the principal component analysis. The PCA reduced the 

complexity of this data into two statistically independent principal components (PC1 and 

PC2) (Fig. 3.9). The first PC represents the material properties that are direct contributors 

of oxidative stress; specifically, increased ζ-potentials, extracellular and intracellular 

dissolution, and cellular mitochondrial superoxide production. The second PC was more 

representative of agglomeration potential, with strong contributions coming from 

hydrodynamic size and cell-associated zinc. Regression analysis of the IC50 values for 

Jurkat cells as a linear function of PC1 and PC2 revealed that both PCs contribute 

significantly to the model (p < 0.05; Table S3.2 in ESI).  
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As the model suggests, PC1 (oxidative stress contributors) increases the NP-

induced toxicity; while PC2 (agglomeration potential) works to decrease these effects. 

Additionally, PC score associations also appear to be related to the synthesis method 

employed, as two of our most toxic wet-chemically synthesized formulations (yellow 

ellipse in Fig. 3.9(b)), aligned strongly with PC1 when compared to less toxic samples. The 

following mechanistic scenario described below highlights the synergistic contribution 

from the two PCs. In the more toxic samples (higher PC1 vs PC2 scores), it is possible that 

the higher positive surface charges (aligned with PC1) for the wet chemical samples results 

in increased electrostatic interactions with both anionic lipids and protein domains, 

potentially leading to increased nZnO uptake and increases in the total intracellular zinc. 

Additionally, nZnO with intrinsic surface defects have higher ROS generating capability 

abiotically allowing for increased lipid peroxidation and passive cellular uptake. Once 

internalized, interactions between a more reactive formulation of nZnO and various cellular 

components would lead to heightened ROS generation and increased oxidation events 

within the cell. As for PC2 contributions, the smaller agglomerate sizes increase the 

extracellular dissolution potential and decrease non-ionic complex formation. A 

combination of zinc transporters and fluid phase pinocytosis pulling in larger amounts of 

free zinc, can elevate intracellular free zinc levels directly from liberated free zinc within 

the media [28-30, 94]. This scenario demonstrates that while these PCs are statistically 

independent, they are not mutually exclusive. Even the most toxic of the nZnO 

formulations exhibited agglomeration and sedimentation potential and measurable cell-

associated zinc (PC2), however those variables associated with PC1 were more influential 

in the toxic response. 
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Conclusions 

Identifying the physicochemical properties that most influence NP-induced toxicity 

has been a challenging endeavour in nanotoxicology. This investigation sought to resolve 

this question by evaluating a diverse panel of pristine nZnO samples. Through extensive 

analysis and mathematical modelling, two consistent sets of properties emerged as strong 

contributors to cytotoxicity. The first set of variables relating to surface reactivity, 

extracellular and intracellular Zn2+ dissolution, and oxidative stress responses has long 

been suggested as the primary mechanistic contributor to NP-induced toxicity. The second 

set (agglomeration tendencies, non-ionic zinc complexes and cell associated zinc levels) 

has also been implicated, but to a lesser degree. Collectively, our experimental results and 

the PCA model suggest that both sets of experimental variables contribute to nZnO 

cytotoxicity. Additionally, these findings suggest that the NP fabrication method employed 

results in differential material properties and resulting cellular responses. Wet chemically 

synthesized nanomaterials demonstrate increased surface reactivity and dissolution 

potential and decreased agglomeration potentially leading to the uptake of large amounts 

of non-ionic zinc complexes. Given that disruption of cellular zinc homeostasis and cell 

death will occur at a critical level of internalized zinc regardless of the NP formulation 

employed, other toxic mechanisms, such as surface reactivity, are likely responsible for the 

differential toxicity observed in our samples. This underscores the need for additional 

studies to evaluate how changes to specific NP physicochemical properties alter cellular 

uptake mechanisms, genotoxicity, apoptosis, and ROS-mediation pathways.  
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Tables and Figures 

 

 

 

TOC 3.1 nZnO synthesis approach results in unique surface chemistries which 

influence agglomeration tendencies, dissolution potential, oxidative stress responses 

and NP-induced toxicity. 
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Schematic 3.1  Illustration depicting the nZnO dissolution processes and 

interactions with cells after NP treatment. 
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Table 3.1 Physical properties of ZnO formulations measured via TEM, BET, 

UV-Vis, and DLS. Wet chemically and FSP synthesized formulations are shaded 

green and blue, respectively, while the control samples are indicated with the dark 

grey. The average size values are based on a minimum of 100 measured NPs on 

TEM images. The hydrodynamic diameters were determined by measuring the 

number of particles within each size bin in the histogram distribution.  

aThe pH values of the nZnO dispersions varied from 7.5 – 7.7 for all dispersions used for ζ-Potential 

measurements. 

 

 

 

Formulation 

(Band Gap; eV) 

Average 

Size 

(nm) 

 

Specific 

Surface 

Area (m2/g) 

 

ζ-Potential (mV)a 

 

Water            Media (4 h) 

                                (24 h) 

Hydrodynamic 

Diameter 

(Media) 

(nm) 

DEG 

(3.36) 
33  7 34.5 29.7   0.19 

-5.71    0.49 

-6.80    0.85 
221.7 ± 14.16 

EG 

(3.36) 
29  5 22.5 27.6 ± 0.37 

-5.58    0.85 

-6.68    0.46 
544.9 ± 120 

EtOH 

(3.36) 
16  2 67.1 23.0 ± 0.25 

-5.86    0.90 

-6.69    0.48 
630.4 ± 32.5 

NaOH 

(3.31) 

L: 79  25 

W: 21  5 
38 18.9 ± 0.18 

-6.28    0.34 

-6.89    0.11 
623.2 ± 128 

FSPS 

(3.38) 
43  10 25 18.9 ± 0.18 

-6.11    0.72 

-6.53    0.65 
227.2 ± 15.6 

FSPR 

(3.38) 

L: 94  24 

W: 26  5 
41.0 17.8 ± 0.12 

-6.29    066 

-6.36    0.70 
669.7 ± 119 

SiO2-FSPR 

(3.39) 

L: 106  

19 

W: 30  8 

55.0 -44.1 ± 0.23 
-1.45    0.46 

-6.18    0.50 
148.0 ± 1.26 

Bulk 

(3.39) 
852  350 1.25 7.23 ± 2.84 

-6.67    0.39 

-6.30    0.23 
2039.5 ± 137.7 
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Figure 3.1  NP-induced toxicity values for (a) Jurkat leukemic cell and (b) normal 

primary CD4+ T cell viability at 24 hours after treatment with the wet chemical 

method (green bars; wet), flame spray pyrolysis (blue bars; FSP) nZnO formulations 

and the SiO2-FSPR and bulk controls (black bars; control). The white labels on the 

histogram bars depict the IC50values obtained for the indicated sample. The 

histogram bars were ordered from lowest to highest IC50 for both cell types to depict 

the synthesis method trends observed for the NP-induced toxicity. Cultures were 

treated concurrently with varying concentrations of nZnO dispersed in nanopure 

water/RPMI for 24 hours and cell viability was evaluated (means ± standard error, 

minimum of n = 3) using Alamar blue staining (Jurkat Cells) or flow cytometry with 

PI staining (CD4+ T cells). Statistical analysis was performed using repeated measures 

analysis of variance and model-based means post hoc test (p < 0.05) with differing 

letters denoting statistical significance. Linear contrast models were used to 

determine statistical significance between the wet chemical, flame spray pyrolysis and 

control samples. 
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Figure 3.2  nZnO samples generated ROS in a formulation-dependent manner. 

Mitochondrial superoxide generation by all nZnO at 24-hour post treatment with 32.4 

µg/mL ZnO using flow cytometry and MitoSox™ Red staining. Statistical analysis 

was performed using repeated measures analysis of variance and model-based means 

post hoc test (p < 0.05) with differing letters denoting statistical significance. 
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Figure 3.3  Surface property characterization for the powered samples ((a) and 

(b)). and catalytic activity plots ((c) and (d)) depicting the UV/Vis monitored 

fluorescence of the model sulfo-Rhodamine B dye and the average dye degradation 

kinetic values obtained for the evaluated treatment conditions. FTIR spectra for (a) 

wet chemical synthesis methods, and (b) heat treatment methods illustrate the peaks 

observed and the corresponding wavenumber values. The graph in (c) is 

representative of the time-dependent plots obtained and demonstrate the 

photocatalytic decomposition of sulfo-Rhodamine B dye in nanopure water after 

treatment with EG NPs. The histogram in (d) depicts the average catalytic rate 

constants (k, min-1) for the nZnO and control samples. Statistical analysis in (d) was 

performed using repeated measures analysis of variance and model-based means post 

hoc test (p < 0.05) with differing letters denoting statistical significance. Histogram 

bars represent n=3 replicates with error bars indicating s.e. 
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Figure 3.4 nZnO formulations display similar dissolution kinetic trends in cellular 

media at 4 and 24 hours. Extracellular (EC) Zn2+ concentrations (µg/mL) measured 

via ICP-MS (bars and left y-axis) and intracellular Zn2+ concentrations measured via 

flow cytometry and expressed as mean fluorescence intensity (MFI) of the zinc 

specific dye FluoZin-3 AM (line graphs and right y-axis) evaluated at 4 hours (top 

graph) and 24 hours (bottom graph). Control samples, designated as the left most bar 

or line graph symbol were RPMI-based cellular media (EC assay) and NT cells 

(Intracellular (IC) assay). Statistical analysis was performed for the extracellular zinc 

measurements (histogram bars) using repeated measures analysis of variance and 

model-based means post hoc test (p < 0.05) with differing letters denoting statistical 

significance. Histogram bars or line graph circles represent the average of n = 4 

replicates with error bars depicting s.e.  
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Figure 3.5 Cell-associated (CA) Zn2+concentrations (µg/L) measured at 4 and 24 

hours via ICP-MS. A control sample designated as the left most grey bar, were non-

treated cells grown in cellular media. Statistical analysis was performed using 

repeated measures analysis of variance and model-based means post hoc test 

(p < 0.05) with differing letters denoting statistical significance. Histogram bars 

represent the average of n = 4 replicates with s.e. error bars. 
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Figure 3.6 Representative samples highlighting the FTIR region from 1800 to 350 

cm-1 and the ZnO peak deconvolution. The figure includes (a) FTIR spectra from 

1800 to 350 cm-1 for the EG nZnO sample at 4 hours (blue) and 24 hours (red) and 

peak deconvolution of the broad FTIR band from 750-350 cm-1 for the EG nZnO 

sample at (b) 4-hour and (c) 24-hour time points. Samples were introduced to cellular 

media at a concentration of 32 µg/mL and incubated for the indicated time points. 

After incubation, the dispersions were centrifuged and the precipitate retained and 

dried overnight at 60 °C. 
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Figure 3.7 The integrated area ratio of ZnO to PO43- from the FTIR spectra and the atomic concentration ratio of Zn/P 

from the XPS survey spectra of the insoluble zinc amorphous precipitates isolated from nZnO dispersions in cellular media post 

incubated for 4 and 24 hours. The left-hand side of the figure represents the integrated area ratio of ZnO to PO4
3- from the FTIR 

spectra (line graphs with circles and first right y-axis) and the atomic concentration ratio of Zn/P from the XPS survey spectra 

(line graphs with tringles and second right y-axis) evaluated at (a) 4 hours and (b) 24 hours. The faded histogram bars 

represented the CA zinc results presented in Fig. 3.5 and are included for reference. The right-hand side of the figure represents 

the XPS spectra from 1027eV to 1018.5 eV illustrating the deconvolution of the Zn2p3/2 peak for the (c) EG nZnO as prepared 

sample and the (d) EG nZnO in cellular media at the 4-hour time point.
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Figure 3.8 The time-dependent deposition nZnO onto the bottom of a well in a 96-well culture plate as determined by ISDD 

dosimetry modelling for the individual nZnO formulations. The total amount of nZnO introduced to the cellular media was 6.48 

µg (32.4 µg/mL introduced into 0.2 mL of RPMI-based cellular media). The curves in (a) represent the calculated nZnO 

deposition over a 30-hour period. The histogram bars (left y-axis) in (b) demonstrate the modelled concentration of nZnO 

deposited at the 24-hour time point with the half white/half black circles (firs right y-axis) correlating to hydrodynamic size and 

the red triangles (second right y-axis) representing the specific surface area (SSA) as measured by BET.  Error bars in (b) 

represent s.e. with n = 3 replicates. 
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Figure 3.9 PCA model-generated values for both PC1 and PC2 and a graphical representation of the PC scores and Jurkat 

cells IC50 values for each evaluated sample. The table in (a) represents the loading values (x 100) for each measured variable, 

eigenvalues and the percent variation explained for each PC. The indicated abbreviations refer to hydrodynamic size 

(hydrosize), intracellular zinc [IC Zn2+], cell-associated-zinc [CA Zn2+], and extracellular zinc [EC Zn2+] concentrations. The 

green cubes (wet chemical methods), blue spheres (FSP method) and black tetrahedrons (controls samples) depicted in the 3D 

graph in (b) represent PC1 scores versus IC50 values versus PC2 scores. The colored ellipses denote sample grouping based on 

similar PC1 and/or PC2 scores. 
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Electronic Supplementary Information 

XRD, XPS and TEM Images 

XRD (Fig. S3.1(a) and (b)), TEM (Fig. S3.1(c) through Fig. S3.1(j)) and XPS (Fig. 

S3.2) and were performed to verify the crystal structure, chemical composition, average 

size and morphology of the NP samples.  

Cellular Toxicity 

Table S3.1 includes IC50 values for the Jurkat leukemic cells and the primary CD4+ 

T cells (see Fig. 3.1) expressed in millimolar concentration units. Also included is the 

calculated therapeutic index for each nZnO formulation. 

Dissolution Kinetics for Nanopure Water Stock Solutions 

Prior to conducting experiments with cells, we first investigated the kinetic 

behavior of the panel of nZnO formulations in nanopure water at concentrations identical 

to the NP stock solutions used in biological assays. Nanopure water dispersions containing 

486 µg/mL of each ZnO formulation were prepared and stirred continuously at room 

temperature for a total of 24 hours. At several time points, individual aliquots were 

extracted and prepared for analysis with ICP-MS. The results of this analysis can be seen 

in Fig. S3.4. All the samples exhibit similar kinetic behavior throughout most of the 

experimental time frame. The kinetic pattern generally suggests that the dissolution rate of 

the NPs is faster from 0.5 to 6 hours and then decreases gradually as the process approaches 

a dynamic equilibrium. Additionally, this data directly correlates with the measured 

hydrodynamic sizes of the NP agglomerates in water (R2 = 0.88) validating experimental 

evidence for the dependence of measured Zn2+ concentration on hydrodynamic size. While 

these results cannot be used to make inferences as to dissolution kinetics of the nZnO under 



 

 

179 

 

 

biological assay conditions, these results confirm that at early time points, dissolution of 

all nZnO samples demonstrate similar kinetic behavior.   

FTIR and FTIR Peak Deconvolution 

For this assay, the evaluated samples were incubated in RPMI-based cellular media 

at a concentration of 32.4 µg/mL and sampled at 4 and 24 hours. Post incubation, the 

resulting precipitate was isolated and dried overnight. Figure S3.5 illustrates the vibrational 

modes present for all samples at 4- and 24-hours. The graphs in Fig. S3.6 represent the 

deconvolution of the broad ZnO band present at approximately 350-700 cm-1 for all 

samples at the 24-hour time point. To eliminate zinc phosphate peak overlap with zinc 

oxide normal modes (Table S3.3), only those peaks identified below 500 cm-1 were 

included in the ratio of crystalline ZnO to phosphate (ZnO/PO4
3-) calculations. Likewise, 

only the integrated area of the broad phosphate band at 1031 cm-1 was considered in the 

ratio to eliminate any interference from ZnO in the phosphate determinations. 

XPS Spectra of Samples in Cellular Media  

XPS was used to confirm the chemical compostion for all samples post incubation 

in cellular media for 4 and 24 hours (Fig. S3.7). Survey spectra illustrated the presence of 

zinc, oxygen, nitrogen, carbon and phosphorous in all samples. The SiO2-FSPR sample 

also contains silica as expected.  

TEM 

The following figures, (Fig. S3.8 through Fig. S3.15), represent low and high 

resolution TEM images obtained for the samples described above in the FTIR section. Low 

resolution images revealed that large nZnO agglomerates (darker areas) were surrounded 

by an organic matrix. The higher resolution scans provided confirmation that the darker 



 

 

180 

 

 

regions of the TEM images were composed of primarily crystalline ZnO due to the 

presence of observed lattice fringes representing the individual planes of the ordered ZnO.  

Principal Component Analysis 

Table S3.2 describes the results of the linear contrast model predictions for Jurkat 

cells IC50 as a function of PC1 and PC2.  
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Tables and Figures – Electronic Supplementary Material 

 

Figure S3.1  Crystal phase composition, size and morphology characterization for 

nZnO NPs. XRD spectra for (a) nZnO synthesized through wet chemical synthesis 

methods and (b) nZnO synthesized through flame spray pyrolysis (FSP) synthesis 

methods. TEM images for (c) DEG, (d) EG (e) EtOH, (f) NaOH, (g) FSPS, (h) FSPR, 

(i) SiO2-FSPR and (j) bulk samples were used to identify morphology and average NP 

size and distribution. 
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Table S3.1 The Jurkat and primary CD4+ T cell IC50 values converted to 

millimolar (mM) concentrations and the calculated therapeutic index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formulation 
Jurkat Cell 

IC50 (mM) 

Primary T Cell 

IC50 (mM) 

Therapeutic Index 

(
𝑇 𝑐𝑒𝑙𝑙 𝐼𝐶50

𝐽𝑢𝑟𝑘𝑎𝑡 𝑐𝑒𝑙𝑙 𝐼𝐶50
) 

DEG 0.26 4.0 16 

EG 0.45 5.8 13 

EtOH 0.52 6.3 12 

NaOH 0.60 18.4 30 

FSPS 0.77 22.7 30 

FSPR 1.07 30.9 29 

SiO2-FSPR 2.10 30.9 15 

Bulk 13.07 30.9 2 
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Figure S3.2  XPS survey scans for all tested powder samples 
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Figure S3.3 IC50 (µg/mL) values plotted as a function of the nZnO zeta potential 

(mV) in aqueous conditions depicting the linear correlation between the two measures 

variables for wet chemical and FSP synthesized nZnO. 
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Figure S3.4 Dissolution kinetics for nanopure water dispersions for all tested 

formulations 
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Figure S3.5  FTIR spectra obtained for the amorphous precipitate material 

retained at the 4-hour [(a) and (c)] and 24-hour [(b) and (d)] time points. Samples 

were introduced to cellular media at a concentration of 32 µg/mL and incubated for 

the indicated time points. After incubation, the dispersions were centrifuged and the 

precipitate retained and dried overnight at 60 °C.  
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Figure S3.6 FTIR peak deconvolution results for all powdered samples post 

incubation in cellular media for 24 hours. Each graph is labeled with the sample name 

with legend numbers corresponding to the peak position (in nm) for each identified 

peak during the deconvolution process.  
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Figure S3.7 XPS survey scans for all tested samples incubated in cellular media for 

(a) 4 hours and (b) 24 hours. 
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Figure S3.8 Low (a) and (c) and high (b) and (d) resolution TEM images for the 

DEG sample precipitates isolated from RPMI-based cellular media at (a) and (b) 4-

hour and (c) and (d) 24-hour time points.  
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Figure S3.9 Low (a) and (c) and high (b) and (d) resolution TEM images for the EG 

sample precipitates isolated from RPMI-based cellular media at (a) and (b) 4-hour 

and (c) and (d) 24-hour time points.  
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Figure S3.10 Low (a) and (c) and high (b) and (d) resolution TEM images for the 

EtOH sample precipitates isolated from RPMI-based cellular media at (a) and (b) 4-

hour and (c) and (d) 24-hour time points.  

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 



 

 

192 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3.11 Low (a) and (c) and high (b) and (d) resolution TEM images for the 

NaOH sample precipitates isolated from RPMI-based cellular media at (a) and (b) 4-

hour and (c) and (d) 24-hour time points.  
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Figure S3.12 Low (a) and (c) and high (b) and (d) resolution TEM images for the 

FSPS sample precipitates isolated from RPMI-based cellular media at (a) and (b) 4-

hour and (c) and (d) 24-hour time points.  
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Figure S3.13 Low (a) and (c) and high (b) and (d) resolution TEM images for the 

FSPR sample precipitates isolated from RPMI-based cellular media at (a) and (b) 4-

hour and (c) and (d) 24-hour time points.  
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Figure S3.14 Low (a) and (c) and high (b) and (d) resolution TEM images for the 

SiO2 – FSPR sample precipitates isolated from RPMI-based cellular media at (a) and 

(b) 4-hour and (c) and (d) 24-hour time points.  
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Figure S3.15 Low (a) and (c) and high (b) and (d) resolution TEM images for the 

Bulk sample precipitates isolated from RPMI-based cellular media at (a) and (b) 4-

hour and (c) and (d) 24-hour time points.  
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Table S3.2 Linear regression model for IC50 as a linear function of PC1 and PC2.  

Term Estimate (S.E.)2 

Intercept -0.11 (0.05) 

PC1 -0.64 (0.08) 

PC2 0.48 (0.07) 

 

1Overall model for IC50 as a linear function of PC1 and PC2 is statistically significant 

(F2, 21 = 39.91, p < 0.0001) with 24 observations and is presented as:  

𝑱𝒖𝒓𝒌𝒂𝒕 𝑰𝑪𝟓𝟎 =  −𝟎. 𝟏𝟏 − 𝟎. 𝟔𝟒(𝑷𝑪𝟏) + 𝟎. 𝟒𝟖(𝑷𝑪𝟐) 

 

2All statistically significant at p < 0.05 
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Table S3.3  Identified FTIR peaks for the 24-hour precipitate analysis after deconvolution of the broad ZnO band (350-750 

cm-1) including the possible peak assignment and reference 

 

DEG EG EtOH NaOH FSPS FSPR SiO2-FSPR Bulk Peak Assignment Reference 

397   390 403 400 405 398 A1(TO) [1-3] 

 417 415 424 426 426 432 426 E1(TO) [1-6] 

449     444   E2 high (Raman) [2, 3, 6] 

 460 460  482  463 480 Lower surface phonon [4, 6] 

497  500 494     Zn-O vibrational mode [7-11] 

520 507 519   516  502 v4 phosphate mode [12] 

551 553 551 557 559  538 539 v4 phosphate mode [12] 

      595  v4 phosphate mode [12] 

629 623 624 614 637 621 629 630 v4 phosphate mode [12] 

 700   700 701   C-H bending  

      682  Si-H [13] 

      775  O-C rocking [14] 

      816  Si-O-Si bending [15] 

      882  Si2O3 [16, 17] 
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CHAPTER 4 CELLULAR TRANSCRIPTOME RESPONSES IN JURKAT 

LEUKEMIC AND PRIMARY CD4+ T CELLS FOLLOWING ZNO 

NANOPARTICLE TREATMENT 

 

Introduction 

Cancer, known as a condition of uncontrolled cell differentiation, has major impact 

globally. In 2016, it was estimated that 1.6 million new cancer diagnoses would be made 

in the United States alone with approximately 600,000 mortalities [1]. For decades, 

preferred treatments have included chemotherapy, radiation and surgery [2]. Significant 

progress has been made in the past 25 years towards the development of effective 

chemotherapeutic agents [2, 3]. Many challenges remain in controlling collateral damage 

to normal healthy cells while selectively killing cancerous cells, such as limiting acquired 

chemotherapy resistance in cancer cells and reducing undesirable side effects [4, 5]. Metal-

based nanoparticles (NPs) have emerged as promising drug-delivery vectors to improve 

drug solubility [4], increase drug payload at targeted tumor cells [6, 7], enhance bioimaging 

[8-11] and mediate hyperthermia-induced toxicity [12-14]. Although many NP systems are 

considered safe to biological systems [4], nZnO possesses an inherent natural toxicity 

related to its material properties [15-17]. As such, considerable attention in nZnO research 

over the past decade has focused on exploiting this inherent toxicity as a potential 

chemotherapeutic treatment.  
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Several research studies in the past decade have investigated the potential selective 

toxicity of nZnO towards mammalian cancer cells when compared to their un-transformed 

primary cell counterparts including glioma, breast, prostate and immune system cell types 

[18-23]. Among these studies, zinc oxide NPs (ZnO NP), 6-8 nm in size, demonstrated a 

preferential toxicity (IC50 of ~0.17-0.21 mM) towards cancerous T cells (28-35 fold 

increase) while leaving normal quiescent T cells essentially unaffected [18, 23]. In contrast, 

this NP-mediated selectivity towards immune system cancers appears to exceed ex vivo 

therapeutic indices (<10) reported for chemotherapeutic agents, such as doxorubicin and 

cisplatin, commonly used for the treatment of acute myeloid leukemia and non-Hodgkin's 

lymphoma [24].  

While multiple studies have demonstrated that nZnO NPs show preferential 

cytotoxicity towards cancer cells, the exact mechanism of the selectivity remains 

undetermined. Many potential hypotheses have been put forth to including both specific 

nanomaterial properties associated with the nZnO core or surface composition, and non-

specific interactions relating to NP size and surface area-to-volume ratios [25]. The surface 

structure of nZnO is strongly dependent upon the formation of an adsorbed neutral 

hydroxide layer which influences the surface charge of the nZnO at neutral pH and the 

formation of the biomolecular corona [26, 27]. nZnO has an isoelectric point at a pH of 

~9.5 which leads to a cationic surface potential at neutral pH which would increase 

electrostatic interactions between the nZnO and the anionic cellular membranes of cancer 

cells [28]. Additionally, the biomolecular corona formation partially determines the 

biological character of NP agglomerates, adhesion to cellular membranes and potential 

cellular uptake mechanisms [29-31]. Furthermore, these surface changes influence the 
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solubility of nZnO agglomerates in both the extracellular environment and intracellular 

compartments. Internalized extracellular zinc or the release of soluble zinc ions within the 

cell contribute to signaling cascades that may contribute to the toxic response [22, 32]. 

Additionally, it has been shown that nZnO undergoes rapid preferential dissolution in 

acidic cancer microenvironment leading to oxidative stress, mitochondrial damage and cell 

cycle arrest proceeding cell death [22].  

In addition to the differential effects imparted by nZnO material properties, specific 

cellular mechanisms have also been suggested as contributing factors in this selective 

toxicity. One proposed cellular mechanism implicates the differential reactive oxygen 

species (ROS) production observed in proliferating cancerous cells compared to primary 

cells [18, 19, 33, 34]. Since cancerous cells are known to express higher amounts of ROS 

and ROS-associated signaling proteins due to their increased metabolism [35], exposure to 

low concentrations of nZnO significantly increases cellular ROS production inducing rapid 

cell death [32]. On the other hand, in normal cells basal levels of ROS are much lower with 

fewer available signaling molecules available to ramp up ROS production in response to 

external stressors. Thus, the level of ROS induced by nZnO treatment in primary cells may 

be insufficient to cause cell death [35]. 

The goal of this study was to investigate whether the preferential nZnO toxicity 

observed in Jurkat leukemic and primary CD4+ T cells results from differential 

transcriptional regulation of cellular processes. Since zinc is a necessary component of 

many critical cellular processes, excess zinc could have deleterious effects on cellular 

function. Towards this end, the gene expression of Jurkat leukemic and primary CD4+ T 

cells was evaluated using Illumina’s Human HT-12 BeadChip arrays microarray to 
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determine how nZnO treatment differentially modulates the transcriptome in a manner that 

could explain the discordant cytotoxicity observed between these cells. Using Ingenuity 

Pathway Analysis (IPA), differential gene and signaling pathway regulation were 

evaluated to discern possible transcriptome contributions to the differential toxicity. 

Microarray platforms facilitate the analysis of numerous genes simultaneously and the 

identification of potential transcriptional regulators of NP-induced toxicity. To date, our 

results have identified several key groups of gene transcripts, including proteins 

responsible for zinc sequestration and transport, oxidative stress and cell death signaling 

molecules, inflammatory and stress response cytokines, metabolism proteins, and cell 

cycle regulators that may be potentially involved in the cancer cell selectivity. Future 

studies are needed to validate these preliminary findings including reverse transcription 

polymerase chain reaction (RT-PCR) to verify mRNA expression levels, western blotting 

to assess proteome changes, and ultimately studies involving gain or loss of function.   

Materials and Methods 

Zinc Oxide Synthesis and Characterization 

nZnO was fabricated using forced hydrolysis method. Briefly, a zinc acetate 

precursor was added to a DEG solvent and the resulting mixture was heated while stirring 

to approximately 80 °C. A desired amount of nanopure water was introduced and the 

temperature increased to 150 °C for 90 minutes. The resulting colloid was then cooled to 

room temperature and the NPs collected through centrifugation at 21,000 rpm, washed with 

ethanol, and the resulting precipitate dried overnight at 60 °C. Prior to use in downstream 

biological assays, the NPs were thoroughly characterized. A Rigaku Miniflex 600 X-ray 

diffractometer using Rigaku PDXL analysis software version 1.8.0.3 was employed to 
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collect XRD spectra and determine crystal structure and phase, lattice parameters, and 

average crystalline size. Average particle size and morphology were obtained using a JEOL 

JEM-2100 HR analytical transmission electron microscope. FTIR using a Bruker Tensor 

27 spectrometer was used to evaluate surface structure and room-temperature optical 

spectra in the ultraviolet and visible light wavelengths were collected using a CARY 5000 

spectrophotometer to evaluate band gap and NP sedimentation. A Malvern Zetasizer 

NanoZS was used to determine ζ-potential and hydrodynamic size, respectively. To 

determine the isoelectric point (IEP), zeta potentials of the nZnO were measured in 

nanopure water as a function of pH. The pH of the room temperature NP dispersion was 

varied from a pH of 6 to a pH value of 12 using 1.0 N HCl and 1.0 N NaOH prior to 

collecting the data. At least six data collections per run were performed on three separate 

aliquots of the ZnO suspension for each sample.  

Extracellular Dissolution 

For extracellular dissolution experiments, nZnO stock dispersions were prepared as 

previously described at 6 mM concentrations. To simulate cellular assay conditions, an 

aliquot of each stock dispersion was added to cellular media at a final nZnO concentration 

of 0.6 mM. All dispersions were stirred continuously to prevent nZnO sedimentation. At 

desired time points, an aliquot of the sample was removed and centrifuged at 5,000 x g for 

20 minutes using an Amicon™ Ultra-4 Centrifugal Filter Unit with a 3-Kd molecular 

weight cutoff (0.1 nm pore size) to remove any undissolved nZnO while allowing free zinc 

ions to pass through. Quantitative analysis of the dissolved Zn2+ ions was conducted on a 

Thermo X Series 2 quadrupole inductively-coupled plasma mass spectrometer (ICP-MS) 

under normal operating conditions (i.e., no CCT) with the Xt cone set. Instrument 
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performance was evaluated and optimized for each run. The instrument was calibrated 

using multi-element calibration standards containing Zn, Cr, Mn, Fe, Co and Ni in 2 % 

HNO3 at concentrations of approximately 1, 10, 100 and 1000 ppb. Instrument drift was 

monitored and corrected using 20 ppb indium as an internal standard introduced online.  

Cell Culture and Toxicity Experiments 

For this study, Jurkat leukemic and primary CD4+ T cell line were employed. Jurkat 

leukemic cells (ATCC, Rockville, MD) were cultured in RPMI 1640 containing 10 mM 

HEPES and supplemented with 10 % FBS, 1 % penicillin/streptomycin, and 2 mM L-

glutamine per manufacturer’s recommendations. Cells were maintained in log phase and 

seeded at a concentration of 5 × 105 cells/mL in a 96-well plate for viability assays. The 

nZnO solutions were created by suspending the NPs in autoclaved nanopure water and 

sonicated for 30 minutes using a power of 1.05 W to deliver a determined sonication energy 

[36] of 181 J/mL to obtain stable nZnO dispersions [37]. Working stock dilutions were 

prepared by introducing the NP stock to cellular media and vortex mixing for 30 seconds. 

The NPs were then added to cells (5 x 105 cells/mL) and cultured for 6 and 24 hours at 37 

°C and 5 % CO2. For the alamar blue metabolic assay, 10 % v/v alamar Blue was introduced 

to cells 4 hours prior to the desired endpoint (e.g. at 20 hours after treatment with NPs for 

24-hour assay) and incubated at 37 °C and 5 % CO2. The fluorescence intensity was then 

determined at 24 hours by a Biotek Synergy MX plate reader using excitation/emission at 

530/590 nm.  

For CD4+ T cell viability experiments, written informed consent was obtained from 

all blood donors and the University Institutional Review Board approved this study. 

PBMCs (peripheral blood mononuclear cells) were obtained from healthy human blood 
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samples via Ficoll-Hypaque density centrifugation (Histopaque-1077, Sigma, St Louis, 

MO), and CD4+ T cells isolated by negative immunomagnetic selection [18]. The purified 

CD4+ T cells (>95 % purity) were cultured in RPMI medium with 10 % FBS at a 

concentration of 1 x 106 cells/ml. CD4+ T cells were then incubated for 6 and 24 hours with 

nZnO dispersions prepared as described above to establish an IC50. CD4+ T cells were then 

stained and viability analyzed by flow cytometry. After the treatment period, cells were 

washed with PBS and resuspended in FACS buffer (PBS/15 % FBS/0.02 % NaN3) and 

stained with a FITC labeled anti-HLA ABC antibody (BD Biosciences, San Jose, CA). 

Cells were subsequently washed, and stained propidium iodide (PI) to detect dead cells 

using a BD FACS Calibur flow cytometer. 

RNA Isolation 

Total RNA was extracted from nZnO treated Jurkat leukemic and primary CD4+ T 

cells using the RNeasy Kit (Qiagen, Inc, Valencia, CA) according to the manufacturer’s 

protocol. Bleach gels and a Biotek Synergy MX® plate reader fitted with a micro-volume 

analysis plate were employed to ensure the resulting RNA was free of contaminating 

proteins and genomic DNA. Bleach gels were prepared according to the protocol published 

by Arlanda et al. (2012) which involves the addition of 1.0 % v/v Clorox® bleach (e.g. 0.5 

mL in 50 mL) into a 1.0 % w/v agarose solution in 1 x TAE buffer (e.g. 0.5 g in 50 mL) 

[38]. The resulting mixture was heated in a microwave until the agarose had melted and 

cooled prior to the addition of ethidium bromide to a final concentration of 0.5 μg/mL. 

Solidified gels were submerged with 1 x TAE buffer and loaded with 1 µg total RNA with 

a 1 x DNA loading buffer. The gels were run for 30 minutes at 100 V prior to imaging 

under UV transillumination. Samples were considered acceptable if the bleach gels showed 
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only minimal traces of genomic DNA and the absorbance ratio A260/A280 fell between 

1.8 – 2.0. Additional testing was performed at the National Institute for Occupational 

Safety and Health (NIOSH) in Morgantown, WV using an Agilent 2100 Bioanalyzer 

(Agilent Technologies, Palo Alto, CA) to confirm RNA integrity (RIN>8) and 

concentration. Acceptable samples were then combined to reduce biological variation and 

increase the total amount of mRNA. 

Microarray Analysis of Global Gene Expression Profile 

The following analysis was performed at the National Institute for Occupational 

Safety and Health (NIOSH) in Morgantown, WV. The global gene expression profile for 

the isolated Jurkat and CD4+ RNA was obtained using Human HT-12_v3_BeadChip arrays 

(Illumina, Inc, San Diego, CA) and experiments conducted in compliance with Minimal 

Information About a Microarray Experiment (MIAME) protocols. An Illumina Totalprep 

RNA Amplification Kit (Ambion, Inc.) was used to obtain biotin labeled cDNA followed 

by Chip hybridizations, washings and Cy3-streptavidin staining. The Beadstation 500 

platform (Illumina, Inc) was employed for chip scanning according to the manufacturer’s 

protocol. Prior to loading into the Beadstudio (Framework version 3.0.19.0) Gene 

Expression module v.3.0.14, metric files confirmed that the samples fluoresced at 

comparable levels. Proper chip detection was verified using housekeeping, hybridization 

control, stringency, and negative control genes. Illumina BeadArray expression data were 

exported into flat files comprised of mean fluorescent intensity across like beads and bead 

variance estimates and analyzed in Bioconductor. The microarray array was processed 

using the ‘lumi’ Bioconductor package to obtain normalized and annotated expression data 

followed by ‘limma’ package analysis to obtain FDR p values and log fold changes [39]. 
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Significantly differentially expressed genes (SDEG), to be used for subsequent analysis, 

were selected based on fold change values (FC) > 1.5 and false discovery rate (FDR) p-

values < 0.05. Ingenuity Pathway Analysis (IPA, Ingenuity Systems, www.ingenuity.com) 

was used for subsequent bioinformatics analysis.  

Results 

nZnO Characterization 

Size, Morphology and Composition 

Zinc oxide NPs were prepared using a forced hydrolysis method that has known 

selective toxicity towards Jurkat leukemic cells when compared to primary CD4+ T cells 

[18, 23]. Prior to use in downstream biologicals assays, the nZnO was thoroughly 

characterized. X-ray diffraction revealed that the nZnO contained a wurtzite crystal 

structure with no identifiable phase impurities (Figure 4.1A). Transmission electron 

microscopy (TEM) confirmed the expected spherical morphology of the nZnO (Figure 

4.1B). Additionally, size measurements from the resulting TEM images demonstrated that 

the average NP to be 9.7 ± 0.3 nm. The atomic composition of the nanomaterial powder 

was analyzed using x-ray photoelectron spectroscopy (XPS) and identified zinc, oxygen 

and carbon species (Figure 4.1C). 

Surface Structure Analysis 

The forced hydrolysis method employed to synthesize the nZnO used in this study 

is known to deposit surface-adsorbed functional groups, related to the synthesis 

components, onto the NP surface [37, 40]. FTIR was utilized to identify these surface-

adsorbed components (Figure 4.2A). Evidence of the synthesis precursor (zinc acetate) 

remnants was observed with the presence of the vs(COO-) and vas(COO-) carboxylic acid 
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vibrational modes at 1412 cm-1 and 1591 cm-1, respectively [41-43]. The O-H bending 

mode at 910 cm-1 and the v(C-OH) mode at 1076 cm-1at [42, 43] could also be secondary 

to the synthesis precursor or molecular fragments remaining from the DEG reaction solvent 

[40]. Additionally, the DEG sample displayed a broad FTIR peak associated with surface 

adsorbed OH groups at 3410 cm-1 [41-44].  

Surface-adsorbed molecules plus intrinsic surface defects influence the charge 

density and ionization potential of the nZnO. These changes result in augmented surface 

charge which can be evaluated through electrophoretic mobility measurement [40]. The 

isoelectric point of nanomaterials refers to the pH at which the ζ-potential value is equal to 

zero. Figure 4.2B demonstrates the pH dependent changes in the ζ-potential of the nZnO. 

The established IEP for this sample is ~9.5 and is consistent with nZnO made with this 

synthesis method [37, 40]. Below this point, the ζ-potential values trend towards positive 

values with a maximum value of 39.3 ± 0.7 observed at a pH of 8.0. At pH values above 

the IEP, negative ζ-potential values were measured. This characteristic IEP plot results 

from the surface-adsorbed neutral hydroxyl groups that form M−OH surface layers, as can 

be seen in FTIR data (Figure 4.2A). Above the IEP (higher pH values), chemisorbed 

protons (H+) migrate from the NP surface into the aqueous medium resulting in partially 

bonded oxygen atoms (M−O−) and the observed negative ζ-potential measurements [26, 

40]. In more the acidic conditions below the IEP, aqueous protons migrate to the nZnO 

surface to form a surface adsorbed water layer (M−OH2
+) groups and a positively charged 

surface layer [26, 40].  
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Agglomeration Behavior and Dissolution Potential 

ZnO NPs are known to exhibit strong agglomeration behavior in a variety of 

biologically relevant solutions [37]. Therefore, an important consideration in nZnO toxicity 

studies is the stability of the treatment dispersions during the evaluation time frame. To 

access this stability, FBS/PBS nZnO stock dispersion were introduced into RPMI-based 

cellular media at a concentration of 486 µg/mL. The hydrodynamic diameters of the 

suspended agglomerates were measured at regular intervals over a 24-time frame via 

dynamic light scattering (DLS). Figure 4.3A illustrates the hydrodynamic size distributions 

at several time periods. The initial size distribution (0 hours) demonstrates that the 

dispersion is composed of agglomerates primarily centered around 300 nm. While most of 

the agglomerates are narrowly distributed from ~200 – 475 nm, there is a small percentage 

of agglomerates between 10 – 40 nm. At later time points (6 and 12 hours), the overall size 

distribution remained centered at ~350 nm although had broadened indicating the existence 

of larger agglomerates in dispersion. This broadening distribution trend continued through 

the remainder of the evaluation period. These results indicate that the agglomeration 

behavior of the nZnO dispersion is somewhat variable with increasing time, however; a 

large percentage of particles persist within a stable hydrodynamic range during the several 

hours it takes to complete the assay.  

Another critical material property of nZnO is its solubility in many solution systems 

[45]. The ionic zinc released from the nZnO is considered a primary mechanism in NP-

induced toxicity. Ionic zinc levels for nZnO dispersions utilized in the cellular toxicity 

assays were evaluated using ICP-MS at several time points over 48 hours (Figure 4.3B). A 
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time-dependent linear increase in released Zn2+ was observed over 48 hours with ionic zinc 

values approaching ~20 µg/mL of Zn2+ or roughly 5 % of the initial concentration.  

Effects of nZnO on Jurkat Leukemic and Primary CD4+ Cell Transcriptomes 

Based on previous data, nZnO is known to exhibit preferentially toxicity towards 

Jurkat leukemic T cells when compared to primary CD4+ T cells [18, 23, 34]. Several 

hypotheses have been put forth to explain this selective toxicity including increased 

oxidative stress, proliferation, or dissolution in the acidic environment of cancerous cells 

[18, 20, 22, 46]. However, no definitive mechanisms have been identified thus far. To 

address this question, genome-wide transcriptional profiling was employed at 6 hours to 

potentially identify early to intermediate transcriptional changes caused by nZnO 

treatment. Several nZnO concentrations were chosen including those above and below the 

IC25 at 6 hours and the IC50 at 24 hours for both cell types. Importantly, the IC50 at 24 hours 

and the IC25 at 6 hours were found to be nearly identical for both cell types, which helps to 

validate the concentration ranges used in this study (Figure 4.4A and B). In this study, 

mRNA was isolated at 6 hours post nZnO treatment to identify genes that are differentially 

expressed at a relatively early time point that precedes the considerable cell death observed 

at 24h. Thus, nZnO concentrations of 6.1, 12.2, 24.4, 40.7, and 61.0 µg/mL were used for 

Jurkat leukemic cells, and 61.0, 122.0, 244.0, and 407.0 µg/mL used for primary CD4+ T 

cells. The lowest nZnO concentration used in each cell group produced little to no toxicity 

at 24 hours, while the highest dose caused considerable toxicity. Expression BeadChips 

were used to determine global expression levels for three replicate experiments for all 

treatment conditions.  
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Initial analysis focused on general trends observed within the transcriptome 

analysis. Limma statistical analysis in Bioconductor [39] was employed to determine the 

significantly differentially expressed genes (SDEGs) following nZnO exposure. Fold 

change values were determined by comparing the normalized fluorescent data to the 

control treatment group (no nZnO). FDR p-values were determined by evaluating the spot 

signal intensity to the signal intensity of background or non-specific gene binding 

microarray spots. Genes that had fold change values of at least 1.5 and FDR p-values less 

than 0.05 were chosen for further analysis (Figure 4.3C). The number of SDEGs for both 

cell types increased in a dose-dependent manner. Primary CD4+ T cells showed 

significantly more differentially expressed genes compared to cancerous Jurkat cells 

(Figure 4.3C). The number of differentially expressed genes at the lowest nZnO 

concentration evaluated in each cell type (6.1 and 61.0 µg/mL for the Jurkat and CD4+ T 

cells, respectively) was 12 for Jurkat cells and 1,041 for the primary CD4+ T cells. At the 

highest NP concentrations (61.0 and 407.0 µg/mL for the Jurkat and CD4+ T cells, 

respectively), the number of SDEGs was 781 for Jurkat cells and 2,161 for primary T cells. 

As the concentration of NPs increased beyond the IC25 in the Jurkat cells, the number of 

SDEGs did not increase appreciably; however, the number of expressed genes continued 

to increase incrementally through the evaluated concentration range.  

An analysis of the up- and down-regulated genes revealed a similar dose-dependent 

pattern for the total number of expressed genes (Figure 4.4D). In general, there are no 

significant differences in the relative number of up-regulated versus down-regulated genes 

for any one NP concentration or cell type. For the Jurkat cells, the lower nZnO 

concentrations (6.1 and 12.2 µg/mL) had more up-regulated genes when compared to 
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concentrations at or above the IC50 value (24.4, 40.7 and 61.0 µg/mL). In the primary cells, 

more down-regulated genes were observed for the 244.0 and 407.0 µg/mL NP treatments.  

The Ingenuity Pathway Analysis (IPA) knowledgebase was used to classify the 

expressed genes into functional classes (Table 4.1) It is noteworthy that in primary cells 

the number of SDEGs in several of the functional classes (i.e., enzymes, G-protein coupled 

receptors, ion channels, phosphatases, transcriptional and translational regulators, and 

genes belonging to the other category) is roughly double that that in Jurkat cells. There 

were also substantially more cytokine and enzyme genes differentially expressed in 

primary cells. The functional class with the most SDEGs was designated as ‘other’ and 

includes metallothioneins and other zinc binding proteins, and zinc transporters. 

Transcriptional regulators were also enriched within both cells types as were transcripts 

encoding enzymes, kinases and phosphatases. 

Metallothioneins  

Considering the role that metallothioneins (MT) have in buffering intracellular 

zinc, numerous studies have investigated the MT transcriptome in response to sub-lethal 

[47-53] and lethal concentrations [54-57] of zinc. Even at low doses of zinc or nZnO, 

metallothionein expression is upregulated. Among the differentially expressed genes in 

Jurkat and primary cells, 11 MT genes were identified (Figure 4.4). As a heterogeneous 

family of proteins, MTs contain several isoforms and sub-isoforms which differ in 

structure, cellular location and, to a limited extent, function [58, 59]. MTF1 is the most 

widely studied metallothionein. It responds to small changes in intracellular zinc and upon 

zinc binding, travels to the nucleus where it acts as a transcription factor for other MT 

genes [58]. Of the major gene isoforms, the MT-1 and MT-2 families, are widely 



  

 

215 

 

 

 

 

distributed throughout mammalian tissues where they contribute to copper and zinc 

regulation, heavy metal detoxification, immune system function, digestive tract functions, 

and cell transcription [59]. A minor isoform is MT-3 which is primarily localized to the 

central nervous system,[59], and research on this isoform is sparse. In our data set the MT-

1 gene sub-isoforms (MTF1, MT1A, MT1E, MT1G, MT1H, MT1M, MT1JP and MT1X) 

were the most prominently upregulated MT genes for both cell types, however the degree 

of upregulation was significantly higher in primary T cells, especially for MT1G, MT1H 

and MT1M (Figure 4.4). While some of the individual sub-isoforms have recently been 

linked to certain disease states, definite explanations for the variable differentiation of these 

MT-1 sub-isoforms is lacking [60]. Additionally, MT2A is upregulated in both cell types 

and increased MT3 expression was observed exclusively in primary cells.  

Solute-Linked Carrier Proteins 

The solute-linked carrier family of proteins is a rather large and diverse group of 

proteins responsible for the transport and regulation of multiple substances essential for 

normal cell function. Many of these proteins transport xenobiotics and various drugs 

making them promising targets for disease remediation [61, 62]. Within the SLC proteins 

six families of genes regulate the transport of metal ions (SLC11, SLC30, SLC31, SLC39, 

SLC40, and SLC41) [62]. When Jurkat and primary CD4+ T cells were exposed to nZnO, 

four of these families were differentially expressed (Figure 4.5). SLC30A1 and SLC30A2 

(commonly ZnT1 and ZnT2) are responsible for Zn2+ efflux from the cytosol to the 

extracellular spaces and into lysosomes, respectively [63]. Given their role in maintaining 

intracellular zinc steady state concentrations, it is not surprising that these genes were 

upregulated following nZnO treatment (Figure 4.5). SLC30A1, the most widely distributed 
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ZnT protein, was upregulated in both cell types with expression levels in primary cells 

three or more times higher than in Jurkat cells. ZnT2, however, was only upregulated in 

the Jurkat cells.  

In contrast to the SLC30 transport family, the SLC39 family, commonly referred to 

as Zips, controls zinc import into the cytosol of the cell [63, 64]. SLC39A1 or Zip1 was 

upregulated in all samples following nZnO treatment; however, SLC39A10 was 

downregulated. The upregulation of Zip1 is somewhat surprising as this would work to 

increase extracellular zinc levels; however, Zips are responsive to other signaling 

molecules such as hormones and cytokines [64]. Indeed, cytosolic zinc concentrations have 

been shown to increase substantially within minutes after T cell activation and the 

enhanced expression of numerous Zip proteins [65]. Therefore, it is possible that the 

expression of this transcript could be under the control of factors other than ionic zinc.  

The ion transporters SLC11A2 and SLC40A1 also have demonstrated ability to 

regulate zinc levels. SLC11A2 is a metal cation/proton exchange protein found in most 

human cell types [62]. SLC40A1 is commonly known as a ferroportin in that its primary 

function is to maintain iron homeostasis. Iron, however, binds protein in multiple forms 

including oxo-diiron (Fe-O-Fe), oxo-iron-zinc (Fe-O-Zn), iron-sulfur clusters (Fe-S) and 

heme, thus playing a secondary role in zinc transport [66]. In primary cells, both 

transporters were downregulated. In the Jurkat cells, however, the expression of SLC11A2 

is downregulated in concentrations at and below the IC50 but upregulated in the higher 

treatment conditions.  

The last SLC family that was differentially regulated by nZnO was the SLC31 

copper ion transporters [67]. While these transporters do not contribute to the control of 



  

 

217 

 

 

 

 

zinc homeostasis, they are critical for the function of copper containing enzymes such as 

the ROS scavenger Cu/Zn superoxide dismutase (Cu/ZnSOD1) [67]. The upregulation of 

SLC31A1 and SLC31A2 observed in the primary CD4+ T cells could be associated with the 

oxidative stress experienced by the cells following nZnO treatment. SLC31A1 was also 

upregulated in Jurkat cells, however, SLC31A2 was downregulated.  

Another group of differentially expressed transcripts belonged to SLC families 

responsible for the uptake of various sugar molecules. As quiescent cells, CD4+ 

lymphocytes have very low energy requirements and utilize oxidative phosphorylation 

within the mitochondria to generate any needed ATP [68]. Upon activation, T cells 

dramatically increase energy stores by increasing both glucose intake and oxygen 

consumption. However, activated primary T cells and cancerous T cells prefer to use 

aerobic glycolysis following the upregulation of glucose transporters [68]. SLC2A1 or 

GLUT 1 is normally responsible for increases in glucose uptake in activated T cells; 

however, SLC2A3, and SLC2A6 also demonstrate differential regulation following T cell 

activation [69]. Following nZnO treatment, SLC2A1 was downregulated in both cell types. 

In contrast, SLC2A3, SLC2A6 and SLC2A14 were upregulated (Figure 4.6). The remaining 

two glucose transporters, SLC45A4 and SLC50A1, were both downregulated in Jurkat cells. 

In primary cells, SLC45A4 demonstrated decreased expression, while SLC50A1 was 

upregulated. While the function of the SLC2A1 is well characterized in immune system 

cells, little is known regarding the function of the remaining transcripts. Therefore, it is not 

possible to predict the net result of glucose uptake in nZnO treated Jurkat or CD4+ T cells.  

The final group of SLC families that were differentially expressed post nZnO 

treatment are responsible for the cellular transport of amino acids and small peptides. The 



  

 

218 

 

 

 

 

first six of these transcripts (SLC1A4, SLC1A5, SLC3A2, SLC7A1, SLC7A5, and SLC7A11) 

were essentially upregulated in both cell types (Figure 4.8). However, the SLC1A5 

transcript was downregulated at the lowest concentration of nZnO treatment in the Jurkat 

cells. The tripeptide glutathione (GSH) is an integral component of T cell activation with 

increases in GSH associated with T cell proliferation [70]. Since quiescent T cells have 

little need use for exogenous sources of cysteine (Cys) or cystine (Cys2) needed for the 

enhanced GSH production, activated T cells require a means to obtain these amino acids 

[70]. The primary way by which activated T cells accomplish this is through the 

upregulation of the SLC1A4, SLC1A5, SLC3A2, and SLC7A11 genes. SLC1A4 and 

SLC1A5, also known as ASCT1 and ASCT2, respectively, transport cysteine, while 

SLC3A2 (CD98) and SLC7A11 comprise a cystine/glutamate antiporter [70]. 

Additionally, the glutamine importer SLC7A, and the SLC7A5 (LAT1) leucine transporter 

are upregulated during TCR activation and are involved in lymphocyte metabolic 

reprograming for T cell differentiation [71, 72]. The remaining two SDEGS in this SLC 

family, SLC15A3, and SLC15A4, were significantly downregulated in the primary T cells, 

while only the SLC15A4 transcript was downregulated in the Jurkat cells (Figure 4.8). 

These small peptide transporters are known to assist in the cellular endocytosis of NOD1 

and NOD2 ligands and signaling pathways involved in inflammation [73]. 

Discussion  

The goal of this study was to identify potential genetic targets likely to account for 

the cancer cell selectivity of nZnO. Towards this goal, Jurkat leukemic and CD4+ T cells 

were treated with varying concentrations of nZnO above and below the established IC50 

(Figure 4.3B). At 6 hours post-treatment, mRNA was isolated from the treated cells, and a 
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microarray was utilized to identify significantly differentiated changes in cellular 

transcription responses. IPA was then conducted to evaluate these changes in relationship 

to cell type and treatment concentration. From this analysis, several genes have been 

selected for further analysis.  

Our initial analysis focused on a general overview of the transcriptome response 

and specific gene targets involved in the regulation of zinc homeostasis. Metallothioneins, 

responsible for maintaining zinc steady state conditions, were among the most highly 

upregulated genes identified (Figure 4.4). While these transcripts were upregulated in both 

cell types in a dose-dependent manner, their expression levels were significantly higher in 

the primary cells. Of these, MTF1 is of primary interest as it functions as a transcription 

factor for the MRE and ARE promoters responsible for the expression of all other MT 

proteins. The remaining MT SDEGs are also relevant as MT proteins sequester excess zinc 

and contribute to ROS remediation. Therefore, the increased expression of these genes, 

specifically in primary cells, may allow cells to remove excess zinc and reduce oxidative 

stress thereby preventing toxicity.  

The other group of proteins involved in zinc homeostasis maintenance are those 

belonging to the SLC30 (ZnTs) and SLC39 (Zips) family of genes. Two genes, SCL30A1 

and SLC 39A1 are of particular interest in this study. The SCL30A1 efflux transcript was 

significantly enhanced (up to 3 times) in primary cells over Jurkat cells. Since ZnT1 is 

localized primarily to the cellular membrane, increased expression of this protein would 

result in greater efflux of ionic zinc out of the cell. SLC39A1, or Zip1, functions as an 

importer of zinc into the cell which seems counterintuitive under conditions of excess zinc. 

However, this gene is important given that T cell activation results in the upregulation of 
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Zip proteins. Additionally, the cation/proton exchange protein gene SLC11A2 is 

noteworthy as it was upregulated in primary cells yet regulated differently in Jurkat cells 

depending on nZnO concentration. Finally, the copper transporter gene SLC31A2 and its 

potential connection to the ROS scavenger Cu/Zn superoxide dismutase (Cu/ZnSOD1) 

draws attention because of its potential contribution to oxidative stress remediation. This 

is especially relevant considering this transcript was upregulated in only the primary cells. 

Two other types of differentially expressed transporters, sugar and amino acid 

transporters were also identified within the broad SLC family of genes. The regulation of 

glucose/sugar transporters in T lymphocytes, are generally associated with T cell activation 

and increased cellular metabolism. Within our SDEGs, two sugar transporters were 

particularly noteworthy, SLC2A3, and SLC50A1. The expression levels for the SLC2A3 

gene were much higher for the Jurkat cells than the primary cells which is counter to the 

expression patterns observed for the remaining glucose transporters. The SLC50A1 gene, 

identified as a sugar efflux transport gene in plants and some mammals [74], was 

downregulated in the Jurkat cells yet upregulated in the primary cells. The differential 

regulation of the glucose transporters, especially in the CD4+ T cells, suggests that nZnO 

could potentially influence the activation state of T lymphocytes. Additional evidence of 

this was observed with the upregulation of numerous amino acid transporters (SLC1A4, 

SLC1A5, SLC3A2, SLC7A1, SLC7A5, and SLC7A11). During T cell activation, the amino 

acid demands of the T cells significantly increase to meet the proteomic needs of increased 

metabolism, cell survival, cellular proliferation and differentiation [75].  

In addition to the above-mentioned genes, many other gene transcripts attracted 

attention and have been grouped within Table 4.2 into three broad categories, inflammatory 
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mediators, T cell activation and cellular stress responses. Numerous research studies have 

investigated the ability of nZnO to affect immune activation in a variety of cells [17, 76-

78]. Indeed, cellular transcriptome and proteome changes post nZnO treatment have 

indicated that inflammatory responses may contribute to the toxic mechanism; however, 

the precise inflammatory mediators detected across the literature have not been consistent. 

Our initial analysis revealed several pro-inflammatory mediators (Table 4.2; Inflammatory 

Mediators) that were differentially expressed in primary cells indicating a potential role for 

these factors in the cytotoxicity. For example, the inflammatory genes included in Table 

4.2 code for proteins involved in signaling pathways that promote T cell proliferation and 

survival [79].  

Additional research has linked NP-induced cytotoxicity to cellular proliferation and 

the activation status of hematopoietic cells ([23] and unpublished data). Indeed, NP 

cytotoxicity has been linked to the proliferative capacity of the cell with the highest degree 

of toxicity associated with the most rapidly dividing cells (unpublished data). Considering 

this, it is important to ascertain if nZnO can influence the activation state of naïve primary 

T cells. Interestingly, several SDEGS relating to T cell activation were identified within 

our data set including upregulated transcripts for early activation markers such as CD69 

(Table 4.2; T Cell Activation). Future studies are needed to verify that the observed SDEGS 

are associated with cellular activation responses.  

Finally, Table 4.2 (Cellular Stress Responses) lists several gene transcripts 

associated with stress-induced proteins. Several of these genes are associated with heat 

shock proteins which facilitate the removal of misfolded proteins. Another interesting 

target is the HMOX1, or heme oxygenase 1 gene, which encodes an essential enzyme for 
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heme catabolism, and had upregulated fold change values ~50 times higher in primary T 

cells than in Jurkat cells. It is noteworthy that HMOX1 deficient cells have demonstrated 

susceptibility to oxidative stress, and its upregulation is considered an adaptive mechanism 

that may protect cells from oxidative damage [80].  

Although several of the above-mentioned transcriptional changes may relate to the 

selective toxicity mechanism of nZnO, many additional studies are needed to confirm their 

potential significance. First, RT-PCR is needed to verify key results of the initial analysis. 

Secondly, western blot studies can confirm the actual protein expression levels of the 

SDEGs in question. Additionally, as many of these genes initiate signaling pathways that 

may contribute to the toxicity mechanism, evaluation of the expression and function of key 

downstream signaling proteins will be critical to the final analysis. Finally, gain or loss of 

function studies will be needed to confirm the functional significance of transcripts and 

mechanistic pathways found to be critical to the cancer cell selectivity of nZnO. 
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Tables and Figures

Figure 4.1 Size, morphology and composition analysis for the nZnO. A) represents the XRD spectrum used to 

verify crystal structure and phase purity. TEM analysis (B) was employed to confirm NP morphology and average 

particle size. The atomic composition of the powered nanomaterial was determined using XPS (C).  
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Figure 4.2 Surface structure analysis of the nZnO. A) Surface adsorbed groups were evaluated using FTIR and B) ζ-potential 

and IEP were determined using DLS.  
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Figure 4.3 The A) agglomeration tendencies and B) dissolution potential of nZnO dispersions were evaluated utilizing DLS 

measurements and ICP-MS, respectively. The nZnO dispersions utilized for both assays were created by introducing a nZnO 

FBS/PBS stock solution introduced to RPMI-based cellular media at a concentration of 486 µg/mL. Error bars in (B) represent 

the standard deviation of n = 3 replicates. 
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Figure 4.4 nZnO induced toxicity in Jurkat leukemic (green squares and line) and 

primary CD4+ T cells (blue circles and line) measured at A) 6 hours and B) 24 hours 

post treatment. The dashed lines in both plots represent the mathematical fit for the 

plotted data points. The bottom axis represents nZnO concentrations for Jurkat cells 

and the top axis depicts nZnO concentrations for the CD4+ T cells. C) The number of 

significantly differentially expressed genes for Jurkat leukemic (green patterned 

bars) and primary CD4+ T cells (blue patterned bars) determined using cutoff values 

of (fold change) FC > 1.5 and (false discovery rate) FDR p < 0.05. D) The number of 

up- and down-regulated differentially expressed genes for Jurkat (green patterned 

bars) and primary CD4+ T cells (blue patterned bars). Up-regulated genes are 

represented as positive values and down-regulated genes as negative values. 
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Table 4.1 The number of SDEGs in each functional class. Functional classes 

were designated by Ingenuity Pathway Analysis (IPA) knowledge base. The yellow 

bars represented the nZnO treatment concentration closest to the IC50 for each cell 

type. 

 

Number of Genes Jurkat Primary 

nZnO Concentration (µg/mL) 6.1 12.2 24.4 40.7 61.0 61.

0 

122.

0 

244.

0 

407.

0 
Cytokine  1 1 2 3 16 14 15 16 

Enzyme 1 39 114 116 115 245 243 322 410 

G-protein coupled receptor  2 6 6 6 11 14 19 21 

Growth Factor  1 4 5 5 1 1 3 7 

Ion channel  1 4 4 3 8 7 9 11 

Kinase  3 18 19 20 59 56 186 101 

Ligand-dependent nuclear receptor      1 1 1 1 

Micro-RNA  1      1 2 

Other 9 108 333 369 375 548 560 806 100

5 
Peptidase  1 6 6 6 24 20 39 116 

Phosphatase  7 11 14 12 18 17 26 30 

Transcription Regulator  19 88 87 98 118 111 163 215 

Translation regulator  1 4 4 5 9 8 16 17 

Transmembrane Receptor  7 12 11 11 36 38 46 60 

Transporter 2 12 32 31 29 56 59 79 102 
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Figure 4.5 Differential expression of metallothionein genes in Jurkat and primary CD4+ T cells treated with 

varying concentrations of nZnO for 6 hours. All displayed genes statistically significant (FC > 1.5 and FDR p <0.05) 

and represent the average of four replicates. 
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Figure 4.6 The expression of genes from the SLC30, SLC39, SLC31, SLC11 and SLC40 transporter families in Jurkat 

and primary CD4+ T cells treated with varying concentrations of nZnO for 6 hours. All displayed genes statistically 

significant (FC > 1.5 and FDR p <0.05) and represent the average of four replicates. 
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Figure 4.7 The expression of genes from the SLC2A, SLC45A, and SLC50A transporter families in Jurkat and primary CD4+ 

T cells treated with varying concentrations of nZnO for 6 hours. All displayed genes statistically significant (FC > 1.5 and FDR 

p <0.05) and represent the average of four replicates
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Figure 4.8 The expression of genes from the SLC1A, SLC3A, SLC7A, and SLC15A transporter families in Jurkat and 

primary CD4+ T cells treated with varying concentrations of nZnO for 6 hours. All displayed genes statistically significant 

(FC > 1.5 and FDR p <0.05) and represent the average of four replicates 
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Table 4.2 Fold change values for selected genes relating to inflammation, T cell activation and cellular stress.  

Gene Description 

nZnO Treatment Concentration (µg/mL) 

Jurkat Cells CD4+ T cells 

6.1 12.2 24.4 40.7 61 61 122 244 407 

             

Inflammatory Mediators 

IL1A Interleukin 1 alpha           1.684 1.434 1.55 1.516 

IL1B Interleukin 1 beta           3.687 2.623 2.602 2.49 

TNF-α Tumor necrosis factor           2.783 2.919 3.434 4.378 

             

T Cell Activation 

EGR1 Early growth response  1.034 1.285 2.826 3.809 4.601 1.766 1.885 2.315 2.835 

CD69 

Activation genes 

 

-1.002 2.131 5.681 6.132 5.748 5.701 5.689 7.012 8.941 

CTLA4           -2.054 -2.129 -2.328 -2.611 

ICOS -1.02 1.551 1.509 1.413 1.363 1.111 1.081 -1.001 -1.041 

Table 4.2 Fold change values for selected genes relating to inflammation, T cell activation and cellular stress.  
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AARS Alanyl-tRNA synthetase 1.189 1.748 2.064 1.81 1.726 2.226 2.376 2.264 2.236 

IARS Isoleucyl-tRNA synthetase 1.004 1.08 1.152 1.173 1.194 1.807 1.713 1.698 1.779 

MARS Methionyl-tRNA synthetase -1.001 1.261 1.357 1.304 1.272 2.042 2.086 1.96 2.035 

TARS Threonyl-tRNA synthetase 1.003 1.468 1.87 1.928 1.942 4.664 4.602 4.968 5.382 

CARS Cysteinyl-tRNA synthetase -1.024 1.325 1.677 1.623 1.617 1.903 1.974 1.91 1.856 

GARS Glycyl-tRNA synthetase 1.044 1.368 1.658 1.548 1.574 2.53 2.585 2.687 2.744 

BIN1 Bridging integrator 3           -2.029 -1.841 -2.112 -1.903 

TOB1 
TNF superfamily member 

17 
-1.031 1.094 1.234 1.26 1.224 -2.018 -2.011 -2.058 -2.144 

LTA TNF-β 1.096 1.209 1.164 1.115 1.143 2.241 2.484 2.614 2.803 

NFKB1A NF-κβ -1.029 1.398 1.677 1.663 1.58 4.41 4.407 5.198 5.485 

NFKBIB 

NF-κβ inhibitors 

-1.022 1.102 1.188 1.175 1.146 1.881 2.045 2.422 2.842 

NFKBID 1.007 1.025 1.138 1.193 1.172 1.66 1.8 2.22 2.748 

NFKBIE -1.041 -1.041 1.001 1.436 1.536 1.625 3.839 3.881 4.724 

NFKBIZ -1.003 1.001 1.051 1.042 1.035 2.047 2.053 1.995 2.412 

Table 4.2 Fold change values for selected genes relating to inflammation, T cell activation and cellular stress.  
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NKIRAS1 
NFKB inhibitor interacting 

Ras  
1.012 1.234 1.774 1.824 1.93 1.709 1.742 2.109 2.418 

REL 
NF-κβ subunits 

1.012 1.117 1.125 1.106 1.108 2.228 2.224 2.359 2.691 

RELB 1.028 1.263 1.67 1.684 1.656 10.24 10.058 9.944 12.417 

JUN 

AP-1 transcription factor 

subunits 

1.134 3.486 13.359 15.789 16.698 6.612 8.14 9.903 13.986 

JUNB -1.03 -1.125 -1.035 1.057 1.098 1.112 1.073 1.337 1.818 

JUND 1.226 1.972 3.405 3.54 3.629 1.301 1.441 1.663 1.712 

FOS 1.01 1.776 8.55 14.441 20.317 14.999 18.153 28.127 48.1 

FOSB 1.001 1.447 7.228 12.283 15.014 9.91 12.701 15.503 28.943 

MYC c-Myc transcription factor 1.055 -1.724 -6.81 -9.666 -10.705 -1.679 -1.839 -2.291 -2.99 

LCK LCK proto-oncogene -1.062 -1.093 -1.027 1.003 1.062 -1.203 -1.232 -1.269 -1.194 

LAG3 Lymphocyte activating 3           -1.857 -1.665 -1.796 -1.779 

RAC1 Ras-related gene -1.007 -1.014 -1.041 -1.092 -1.106 -1.234 -1.226 -1.253 -1.363 

RAC2 Ras-related gene 1.039 -1.138 -1.287 -1.317 -1.227 -1.393 -1.366 -1.344 -1.401 

RASA3 Ras-related gene -1.012 -1.105 -1.099 -1.063 -1.039 -1.543 -1.515 -1.727 -1.686 

Table 4.2 Fold change values for selected genes relating to inflammation, T cell activation and cellular stress.  
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RASD1 Ras-related gene 1.066 1.115 1.379 1.668 1.925 1.844 2.103 2.778 3.414 

SLAMF1 
Signaling lymphocytic 

activation molecule  
          -1.303 -1.386 -1.456 -1.747 

CABIN1 
Calcineurin binding protein 

1 
1.06 -1.027 1.011 -1.001 1.035 -2.318 -2.128 -2.377 -2.448 

CALR calreticulin -1.048 -1.203 -1.144 -1.06 -1.087 1.421 1.36 1.493 1.505 

CAMK2G 

Calcium/calmodulin protein 

related genes 

 

-1 -1.276 -1.236 -1.138 -1.076 -2.033 -2.263 -2.594 -2.976 

CAMK2N1 1.044 1.113 1.123 1.09 1.118 1.16 1.244 1.338 1.344 

CAMK4           1.12 1.067 1.161 1.168 

CAMSAP1 1.059 -1.009 -1.012 -1.02 1.028 -1.551 -1.598 -1.643 -1.833 

CALHM2 
Calcium homeostasis 

modulator  
-1.08 -1.048 -1.058 -1.069 -1.014 -1.767 -1.778 -1.818 -1.758 

PMAIP1 
Pro-apoptotic member of 

the Bcl-2 protein family 
1.06 2.238 3.47 3.562 3.444 10.743 10.827 12.349 16.39 

PIM2 
Pim-2 proto-oncogenes, 

serine/threonine kinase 

-1.093 -1.255 -1.098 1.047 1.053 1.685 1.64 1.822 1.955 

PIM3 -1.033 -1.199 -1.173 -1.173 -1.101 2.168 2.334 2.881 3.866 

 

Table 4.2 Fold change values for selected genes relating to inflammation, T cell activation and cellular stress. 
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MAP3K4 MEKK4 1.023 -1.188 -1.172 -1.093 -1.077 -1.471 -1.485 -1.562 -1.598 

MAP3K5 ASK1 1.026 -1.047 -1.086 -1.077 -1.041 -1.61 -1.622 -1.73 -1.897 

MAP3K6 ASK2 -1.015 1.026 1.047 1.093 1.116 -1.522 -1.539 -1.588 -1.682 

MAP3K8 tpl-2, TPL2, COT, AURA2 1.056 1.428 1.19 1.046 1.023 2.402 2.118 2.104 1.979 

MAP4K1 HPK1 1.004 1.006 1.128 1.124 1.102 -1.964 -1.857 -2.033 -2.016 

MAPKAPK3   1.003 -1.215 -1.195 -1.199 -1.194 -1.412 -1.383 -1.592 -1.629 

             

Stress Induced Protein  

HSPA6 Heat shock protein family 

(Hsp70)  

 

Heat shock protein family 

(Hsp70) 

1.055 8.429 38.521 43.314 49.866 34.024 41.029 57.326 96.021 

HSPA1A/ 

HSPA1B 
1.38 11.343 18.903 17.874 19.273 24.557 28.633 34.486 38.712 

HSPA7 1.022 3.033 11.044 14.15 14.957 7.322 8.909 10.497 19.054 

HSPH1 
Heat shock protein family 

(Hsp110)  
1.51 3.729 4.856 4.852 4.717 13.155 14.108 17.1 19.917 

HSPE1 
Heat shock protein family 

(Hsp10)  
1.042 1.395 1.538 1.528 1.543 5.525 5.823 6.172 7.821 



 

 

 

 

2
4
5
 

Table 4.2 Fold change values for selected genes relating to inflammation, T cell activation and cellular stress. 

DNAJB1 

DnaJ heat shock protein 

family (Hsp40)  

-1.005 5.927 13.259 13.742 13.743 4.372 4.827 6.73 8.526 

DNAJA1 1.172 1.615 1.878 1.818 1.859 5.663 5.859 6.606 7.612 

DNAJB4 1.028 1.48 1.967 2.02 1.792 4.253 4.029 5.396 6.926 

HSPB1 Heat shock protein family B  1.035 1.343 1.543 1.527 1.462 4.943 5.819 6.077 6.857 

STIP1 
Stress induced 

phosphoprotein 1 
1.153 1.781 2.258 2.03 2.076 4.287 4.974 5.322 6.758 

HMOX1 Heme oxygenase 1 1.03 1.262 2.073 2.205 2.368 54.142 58.963 76.719 84.388 

HIF1A Hypoxia inducible factor 1.031 -1.006 -1.086 -1.066 -1.061 1.965 1.804 2.043 2.138 

DRAM1 
DNA damage regulated 

autophagy modulator 1 
          1.625 1.615 1.63 1.844 

SQSTM1 sequestosome 1 -1.023 1.125 1.281 1.323 1.297 3.236 3.408 3.784 4.046 
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CHAPTER 5 CONCLUSIONS 

 

nZnO has a promising future in biomedical applications if clear mechanisms of 

toxicity can be identified. This study sought to explore these potential mechanisms from 

two distinct perspectives. First, we explored how the physicochemical properties of nZnO 

influence NP-induced cytotoxicity and cellular oxidative stress. Secondly, we analyzed the 

cellular transcriptome changes in response to nZnO treatment to potentially elucidate 

cellular processes that contribute to nZnO selective toxicity towards cancer cells. 

Several important findings reveal that the physicochemical properties of nZnO 

influence NP-induced toxicity. The agglomeration and sedimentation behavior of unstable 

NP dispersions adversely alters the results of downstream biological assays. Obtaining 

stable nZnO dispersions with the use of FBS proteins significantly changes the assay results 

in both suspension and adherent cell models compared to findings with unstable 

dispersions. These results confirm our hypothesis that achieving stable NP dispersion 

stability is a critical factor in obtaining reliable and reproducible findings. 

When the material properties of a panel of differently synthesized nZnO were 

analyzed, the synthesis method was identified as a contributing factor to cytotoxicity. 

Indeed, nZnO synthesized using wet chemical methods demonstrates greater surface 

reactivity, extracellular dissolution potential and significantly greater cytotoxicity than 

nZnO synthesized through high temperature methods. Additionally, our results underscore 

the importance of extensive material characterization as no one specific physicochemical 



 

 

247 

 

 

 

 

property was found to contribute solely to the observed cytotoxicity. Rather a combination 

of material properties appears to influence the toxic potential of nZnO. 

Finally, preliminary analysis of the transcriptome changes in cancerous and 

primary T cells post-treatment with nZnO reveal several potential gene targets that may 

regulate the selective toxicity of nZnO against cancer cells. Significant differences between 

the cancer and primary T cells are present in the expression of genes involved in the 

regulation of zinc homeostasis, ion transport, cellular metabolism, inflammation, T cell 

activation, and cellular stress responses. Additional experiments are needed to verify these 

initial findings and confirm the importance of these transcriptome changes in the 

preferentially selectively of nZnO towards cancer cells.  

Together, the results of this dissertation confirm that nZnO toxicity is strongly 

influenced by the NP fabrication methods, material properties and differential cellular 

responses. Further studies are needed to connect specific material properties to unique 

cellular responses and mechanisms of cell death. This knowledge would potentially enable 

the development of a “design rule” for the fabrication of nZnO to achieve environmentally 

safe NPs for consumer products and NPs with maximal selective toxicity for use in 

alternative cancer therapeutics.  
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