
Boise State University
ScholarWorks
Electrical and Computer Engineering Faculty
Publications and Presentations

Department of Electrical and Computer
Engineering

1-24-2018

Superimposed Signaling Inspired Channel
Estimation in Full-Duplex Systems
Abbas Koohian
Australian National University

Hani Mehrpouyan
Boise State University

Ali A. Nasir
King Fahd University of Petroleum and Minerals

Salman Durrani
Australian National University

Steven D. Blostein
Queen’s University

This document was originally published in EURASIP Journal on Advances in Signal Processing by Springer. This work is provided under a Creative
Commons Attribution 4.0 license. Details regarding the use of this work can be found at: http://creativecommons.org/licenses/by/4.0/. The final
publication is available at doi: 10.1186/s13634-018-0529-9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boise State University - ScholarWorks

https://core.ac.uk/display/153212489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.boisestate.edu
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical
https://scholarworks.boisestate.edu/electrical
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1186/s13634-018-0529-9


EURASIP Journal on Advances
in Signal Processing

Koohian et al. EURASIP Journal on Advances in Signal
Processing  (2018) 2018:8 
DOI 10.1186/s13634-018-0529-9

RESEARCH Open Access

Superimposed signaling inspired channel
estimation in full-duplex systems
Abbas Koohian1* , Hani Mehrpouyan2, Ali A. Nasir3, Salman Durrani1 and Steven D. Blostein4

Abstract

Residual self-interference (SI) cancellation in the digital baseband is an important problem in full-duplex (FD)
communication systems. In this paper, we propose a new technique for estimating the SI and communication
channels in a FD communication system, which is inspired from superimposed signaling. In our proposed technique,
we add a constant real number to each constellation point of a conventional modulation constellation to yield
asymmetric shifted modulation constellations with respect to the origin. We show mathematically that such
constellations can be used for bandwidth efficient channel estimation without ambiguity. We propose an expectation
maximization (EM) estimator for use with the asymmetric shifted modulation constellations. We derive a closed-form
lower bound for the mean square error (MSE) of the channel estimation error, which allows us to find the minimum
shift energy needed for accurate channel estimation in a given FD communication system. The simulation results
show that the proposed technique outperforms the data-aided channel estimation method, under the condition that
the pilots use the same extra energy as the shift, both in terms of MSE of channel estimation error and bit error rate.
The proposed technique is also robust to an increasing power of the SI signal.

Keywords: Full-duplex systems, Channel estimation, Self-interference cancellation, Superimposed signaling

1 Introduction
1.1 Background
Full-duplex (FD) communication, allowing devices to
transmit and receive over the same temporal and spectral
resources, is a promising mechanism to potentially double
the spectral efficiency of future wireless communication
systems [1]. The main challenge in implementing a FD
communication system is the cancellation of the strong
self-interference (SI) signal, which is caused by transmis-
sion and reception in a single frequency band [2, 3]. This
strong self-interference signal has to be suppressed to
the receiver noise floor in order to ensure that it does
not degrade the system performance. For instance, for
small-cells in Long Term Evolution (LTE), the maximum
transmit power is typically 23 dBm (200 mW) and the typ-
ical noise floor is− 90 dBm [4]. Ideally, this requires a total
of 113 dB SI cancellation for realizing the full potential of
FD systems [4].
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Recently, there has been a lot of interest in SI cancella-
tion techniques for FD systems [5–11]. The SI cancellation
techniques in the literature can be divided into two main
categories [5]: (i) passive suppression in which the SI sig-
nal is suppressed by suitably isolating the transmit and
receive antennas [5, 6] and (ii) active cancellation which
uses knowledge of the SI signal to cancel the interference
in either the analog domain (i.e., before the signal passes
through the analog-to-digital converter) [5, 7] and/or
the digital domain [8–10]. Depending upon the design,
passive suppression and analog cancellation can provide
about 40–60 dB cancellation in total [11]. Hence, in prac-
tice, the SI is cancelled in multiple stages, beginning with
passive suppression and followed by cancellation in the
analog and digital domains. In this paper, we focus on the
SI after the passive suppression and analog cancellation,
termed residual SI.

1.2 Motivation and related work
The residual SI can still be relatively strong in the base-
band digital signal, e.g., for the LTE small-cell example, it
can be as high as 50 dB assuming state-of-the-art passive
suppression and analog cancellation provide 60 dB of the
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total required SI cancellation of 113 dB. Thus, accurate
digital SI cancellation is required to bring the SI as close
to the noise floor as possible. The effectiveness of any dig-
ital interference cancellation technique depends strongly
on the quality of the available channel estimates for both
the SI and desired communication channels [12–14]. Typ-
ically, the baseband channels are estimated by using data-
aided channel estimation techniques, where a portion of
the data frame is allocated for known training sequences
or pilot symbols [13, 15–17]. In this regard, a maximum-
likelihood (ML) approach was proposed in [13] to jointly
estimate the residual SI and communication channels by
exploiting the known transmitted symbols and both the
known pilot and unknown data symbols from the other
intended transceiver. Another approach was proposed in
[18] where a sub-space-based algorithm was developed
to jointly estimate the residual SI and communication
channels.
Compared to half-duplex (HD) systems, data-aided

channel estimation in FD systems can be bandwidth inef-
ficient. This is because, firstly, two channels need to
be estimated and, secondly, accurate channel estimation
requires a larger number of pilots [19, 20]. A bandwidth
efficient channel estimation technique in HD systems is
superimposed training, where no explicit time slots are
allocated for channel estimation. Instead, a periodic low
power training sequence is superimposed with the data
symbols at the transmitter before modulation and trans-
mission [21, 22]. The downside of this approach is that
some power is consumed in superimposed training which
could have otherwise been allocated to the data trans-
mission. This lowers the effective signal-to-noise ratio
(SNR) for the data symbols and affects the bit error rate
(BER) at the receiver. In contrast to data-aided and super-
imposed training-based channel estimation techniques,
blind techniques avoid the use of pilots altogether by
exploiting statistical and other properties of the transmit-
ted signal [23–27]. However, blind estimators can only
estimate the channel up to a scaling factor and cannot
recover the channel phases [23]. The necessary and suf-
ficient conditions for ambiguity-free blind estimation can
be determined using identifiability analysis, which deter-
mines whether a parameter can be uniquely estimated
without any ambiguity [19, 23, 28–30]. To the best of our
knowledge, bandwidth efficient and accurate channel esti-
mation methods for FD systems are still an important
open area of research.

1.3 Paper contributions
In this paper, we consider the problem of bandwidth effi-
cient channel estimation in a single-input single-output
(SISO) FD communication system. We propose a new
technique for channel estimation and residual SI cancella-
tion in FD systems. Our approach draws inspiration from

(i) blind channel estimation techniques in that we exam-
ine the condition for identifiability of channel parameters
in FD systems and (ii) superimposed signaling in that
we superimpose (i.e., add) a constant real number to
each constellation point of the modulation constellation.
However, our proposed technique is distinct from super-
imposed signaling. In superimposed signaling, the super-
imposed signal is typically a periodic training sequence
that is added to the data signal after the data symbols are
modulated. Hence, the additional power of the superim-
posed signal is only used for channel estimation. In our
proposed technique, the superimposed signal is a con-
stant (non-random) signal and the objective is to shift the
modulation constellation away from the origin, which we
exploit for estimating the SI and communication chan-
nels without ambiguity. In addition, the additional power
of the superimposed signal is used for both modulating
the data symbols and channel estimation, which does not
reduce the effective SNR as in superimposed signaling.
The novel contributions are as follows:

• We derive the condition for identifiability of channel
parameters in a FD system (cf. Theorem 1) and show
that symmetric modulation constellations with
respect to the origin cannot be used for
ambiguity-free channel estimation in a FD system.
Based on Theorem 1, our proposed technique is able
to resolve the inherent ambiguity of blind channel
estimation in FD communication via shifting the
modulation constellation away from origin.

• Using the proposed technique, we derive a
computationally efficient expectation maximization
(EM) estimator for simultaneous estimation of both
SI and communication channels. We derive a lower
bound for the channel estimation error, which
depends on the energy used for shifting the
modulation constellations, and use it to find the
minimum signal energy needed for accurate channel
estimation in a given FD communication system.

• We use simulations to compare the performance of
the proposed technique against that of the data-aided
channel estimation method, under the condition that
the pilots use the same extra power as the shift. Our
results show that the proposed technique performs
better than the data-aided channel estimation
method both in terms of the mean square error
(MSE) of channel estimation and BER. In addition,
the proposed technique is robust to an increasing SI
power.

1.4 Notation and paper organization
The following notation is used in this paper. Capital
letters are used for random variables, and lower case
letters are used for their realizations. fY (y) denotes the
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probability density function (PDF) of random variable Y.
EY [·] denotes the expectation with respect to the random
variable Y. pX(x) denotes the probability mass function
(PMF) of a discrete random variable X, and P(X = a) is
the probability of the discrete random variable X taking
the value a. CN

(
μ, σ 2) denotes a complex Gaussian dis-

tribution with mean μ and variance σ 2. Bold face capital
letters, e.g., Y, are used for random vectors, and bold face
lower case letters, e.g., y, are used for their realizations.
Capital letters in upright Roman font, e.g., G, are used
for matrices. Lower case letters in upright Roman font,
e.g., g, are used for functions. IN represents the N × N
identity matrix. [ ·]T denotes vector and matrix transpose.
j �

√−1 and the real and imaginary parts of a complex
quantity are represented by �{·} and �{·}, respectively. z∗
and |z| indicate scalar complex conjugate and the absolute
value of complex number z, respectively. Finally, det(·) is
the determinant operator.
This paper is organized as follows. The system model is

presented in Section 2. The channel estimation problem
and the proposed technique are formulated in Section 3.
The EM estimator and the lower bound on the channel
estimator error are derived in Section 4. The performance
of the proposed technique is assessed in Section 5. Finally,
conclusions are presented in Section 6.

2 Systemmodel
Consider the channel estimation problem for a SISO
FD communication system between two nodes a and b,
as illustrated in Fig. 1. Transceiver nodes a and b are
assumed to have passive suppression and analog cancella-
tion stages, and we only consider the digital cancellation
to remove the residual SI, i.e., the SI, which is still present
after the passive suppression and analog cancellation. We
consider the received signal available at the output of the
analog-to-digital converter (ADC). The received signal at
node a is given by1

ya = haaxa + hbaxb + wa, (1)

where xa �
[
xa1 , · · · , xaN

]T and xb �
[
xb1 , · · · , xbN

]T are
theN×1 vectors of transmitted symbols from nodes a and
b, respectively, ya �

[
ya1 , · · · , yaN

]T is the N × 1 vector
of observations, wa is the noise vector, which is mod-
eled by N independent Gaussian random variables, i.e.,
fWa(wa) = CN

(
0, σ 2IN

)
, and haa and hba are the residual

SI and communication channel gains, respectively. Fur-
thermore, we model haa and hba as independent random
variables that are constant over one frame of data and
change independently from frame to frame [12].

Remark 1 Including all the hardware impairments and
unknown parameters inmathematical modeling of param-
eter estimation problem in FD communication results in
a highly non-linear system model, which may not have
a tractable solution. The current approach is to separate
the estimation of the linear and non-linear parameters
[13, 18]. In this paper, we focus on the estimation of linear
parameters, while the estimation of non-linear parameters
can be the topic of future works.

2.1 Modulation assumptions and definitions
In this paper, we assume that the transmitted symbols are
all equiprobable and call the setA � {x1, x2, ..., xM}, which
contains an alphabet ofM constellation points, a modula-
tion set. Let K � {1, · · · ,M} denote set of indices of the
constellation points.
We define E as the average symbol energy of a given

constellation, i.e.,

E � EXk [ |xk|2]=
∑M

k=1 |xk|2
M

, (2)

where xk ∈ A. Note that the average symbol energy can
be related to the average bit energy as Eb � E/ log2(M).

3 Channel estimation for FD systems
In this section, we first formulate the blind channel
estimation problem for the FD system considered in
Section 2. Based on this formulation, we present a

Fig. 1 Illustration of full-duplex communication between two transceivers, each with a single transmit and a single receive antenna. ADC
analog-to-digital converter, DAC digital-to-analog converter, TX transmit, RX receive
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theorem which provides the necessary and sufficient con-
dition for ambiguity-free channel estimation. Finally, we
discuss the proposed technique to resolve the ambiguity
problem.

3.1 Problem formulation
Without loss of generality, we consider the problem of
baseband channel estimation at node a only (similar
results apply at node b). In formulating the problem,
we make the following assumptions: (i) the transmitter
is aware of its own signal, i.e., xa is known at node a,
which is a commonly adopted assumption in the literature
[3, 5], (ii) the interference channel haa and the commu-
nication channel hba are unknown deterministic param-
eters, (iii) the transmit symbol from node b is modeled
using a discrete random distribution, and (iv) we observe
N independent received symbols.
The blind channel estimation problem requires the

knowledge of the joint probability density function (PDF)
of all observations, which is derived from the condi-
tional PDF of a single observation. Given the system
model in (1), the conditional PDF of a single observation
is given by

fYai (yai |xbi ; haa, hba) =
1

πσ 2 exp
(−1

σ 2
∣∣yai − hbaxbi − haaxai

∣∣2
)
, (3)

where i ∈ I � {1, · · · ,N}, yai is the ith received symbol,
and xai and xbi are the ith transmitted symbols from nodes
a and b, respectively.
The marginal PDF of a single observation is then found

by multiplying (3) by the uniform distribution pXbi
(xbi) =

1
M I{A}(xbi), and summing the results over all the possible
values of xbi , where, I{A}(x) = 1 if x ∈ A and 0 otherwise.
Therefore, we have

fYai (yai ; haa, hba)

=
∑

∀xbi
fYai (yai |xbi ; haa, hba)pXbi

(xbi)

= 1
Mπσ 2

∑

∀xbi
exp
(−1

σ 2 |yai − hbaxbi−haaxai |2
)
I{A}(xbi)

= 1
Mπσ 2

M∑

k=1
exp

(−1
σ 2 |yai − hbaxk − haaxai |2

)
, (4)

where the last step follows from the fact that I{A}(xbi) = 1
if and only if xbi = xk , where xk ∈ A. Finally, since the
transmitted symbols are assumed independent, and we
observe N independent observations, the joint PDF of all
the observations is given by

fYa(ya; haa, hba)

=
N∏

i=1
fYai (yai ; haa, hba)

=
(

1
Mπσ 2

)N N∏

i=1

M∑

k=1
exp
(−1

σ 2 |yai − hbaxk − haaxai |2
)
.

(5)

where we substitute the value of fYai (yai ; haa, hba) from (4).
Using (5), we can state the channel estimation problem

as shown in the proposition below.

Proposition 1 The blind maximum likelihood (ML)
channel estimation problem in a SISO FD system is given
by

arg max
haa,hba

fYa(ya; haa, hba), (6)

where fYa(ya; haa, hba) is given by (5).

In the next subsection, we show that (6) does not have
a unique solution if modulation sets which are symmetric
around the origin are used.

3.2 Identifiability analysis
In this subsection, we present the identifiability analysis
for the blind channel estimation problem in (6), which
allows us to determine when ambiguity-free channel esti-
mation is possible. For ease of analysis, we first define
θ �[ haa, hba] and rewrite (5) as

fYa(ya; θ) =
(

1
Mπσ 2

)N N∏

i=1

M∑

k=1
exp
(−1

σ 2 |yai − θ(1)xai − θ(2)xk|2
)
,

(7)

where θ(1) and θ(2) represent the first and second ele-
ments of θ .
We start the identifiability analysis by presenting the

following definition and remark:

Definition 1 ([28], Definition 5.2) If Y is a random vec-
tor distributed according to fY(y; θ), then θ is said to be
unidentifiable on the basis of y, if ∀y there exists θ ′ 	= θ for
which fY(y; θ) = fY(y; θ ′).

Remark 2 Definition 1 states that θ and θ ′ (θ 	= θ ′) can-
not be distinguished from a given set of observations if they
both result in the same probability density function for the
observations. This implies that if θ is unidentifiable, then
it is impossible for any estimator to uniquely determine the
value of θ .
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In order to present the main result in this subsection,
we first give the definitions of a symmetric modulation
constellation [31] and a bijective function [32].

Definition 2 We mathematically define modulation
constellation as the graph of the function f(xk) = xk, where
xk ∈ A ∀k ∈ K. Then a modulation constellation is sym-
metric with respect to the origin if and only if f(−xk) =
−f(xk) ∀xk ∈ A [31].

Definition 3 Let C andD be two sets. A function from C
to D denoted t : C → D is a bijective function if and only
if it is both one-to-one and onto.

The above definition states that a bijective function is
a function between the elements of two sets, where each
element of one set is paired with exactly one element of
the other set and there are no unpaired elements. Note
that a bijective function from a set to itself is also called a
permutation [32].
In this work, we define and use the bijective function

g: K → K, i.e., g is a one-to-one and onto function on
K → K. Using this bijective function, we present themain
result as below.

Theorem 1 There exists a θ ′ 	= θ for which the
joint probability density fYa(ya; θ) given by (7) is equal to
fYa(ya; θ ′) ∀ya, if and only if there exists a bijective func-
tion g: K → K, such that xk

xg(k) = c ∀k ∈ K, where c 	= 1 is
a constant and |c| = 1, i.e., the modulation constellation is
symmetric about the origin.

Proof We prove the result in Theorem 1 in three steps.
First, we assume θ ′ 	= θ for which fYa(ya; θ) = fYa(ya; θ ′)
∀ya exists and show that it leads to a bijective function g
satisfying xk

xg(k) = c ∀k ∈ K. Then, we assume that a bijec-
tive function g satisfying xk

xg(k) = c ∀k ∈ K exists and show
that there exists a θ ′ 	= θ for which fYa(ya; θ) = fYa(ya; θ ′)
∀ya. Finally, using Definition 2, we show that the condition
xk
xg(k) = c ∀k ∈ K is equivalent to the modulation con-
stellation being symmetric with respect to the origin. The
details are in Appendix 1.

Remark 3 From Theorem 1, we can see that since
the modulation constellations, such as M-ary quadrature
amplitude modulation (M-QAM), satisfy the definition
of symmetric modulation constellations in Definition 2,
the blind channel estimation problem in (6) does not
have a unique solution and suffers from an ambiguity
problem.

3.3 Proposed technique
In this subsection, we present our proposed technique to
resolve the ambiguity problem in (6).

The rationale behind the proposed technique comes
from the fact that Theorem 1 shows that symmetry of the
modulation constellation with respect to the origin is the
cause of the ambiguity. A simple way to achieve constella-
tion asymmetry2 is to add a constant s to each element of
A. The resultant asymmetric shifted modulation constel-
lation is formally defined as follows:

Definition 4 The asymmetric shifted modulation con-
stellation, Ā, is defined as

Ā � {xk + s, ∀ xk ∈ A, s ∈ R
+}, (8)

where R+ is the set of positive real numbers.

In the rest of the paper, we also use x̄k = xk +s to denote
the kth element of Ā.
For illustration, Fig. 2 shows the effect of the proposed

technique on the 16-QAM constellation. We can see that
the resulting modulation constellation is shifted along the
horizontal axis, which increases the average energy per
symbol of the modulation constellation. This increase in
the average energy per symbol can be justified as follows:
in reality, it is inevitable to use some extra energy to esti-
mate the unknown channels, whether it is done by pilots
or by the proposed technique. In this regard, it is impor-
tant to note that the smaller the energy used for shift-
ing the modulation constellation, the closer the average
energy of the proposed technique is to the ideal scenario
where the channels are perfectly known at the receiver and
no extra energy is needed for channel estimation.

Remark 4 The addition of the DC component lowers
power efficiency similar to the use of superimposed training
[22]3. However, the proposed shifted modulation technique
has the offsetting advantages that (i) bandwidth efficiency
is not reduced and (ii) the DC offset can be used to reduce
the peak-to-average power of the signal envelope during
transmissions resulting in lowered cost/complexity power
amplifiers. Moreover, the proposed scheme is well-suited to
MQAM as investigated here. Since, this is a spectrally effi-
cient modulation scheme used where power efficiency is not
critical

For the sake of numerically investigating the problem of
smallest possible shift energy, we define β as the portion
of the average energy per symbol that is allocated to the
shift and use the real constant s �

√
βE, where 0 < β < 1

to shift the symmetric modulation constellation. In this
case, the problem of smallest shift energy corresponds to
the problem of finding the minimum value of β . The mini-
mum value of β is an indication of howmuch extra energy
is needed compared to the perfect channel knowledge
scenario.
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Fig. 2 Effect of the proposed technique on the constellation of 16-QAM. The resulting constellation is shifted along the horizontal axis, i.e., it is
asymmetric around the origin

In Section 4.1, we derive a lower bound on the esti-
mation error, which allows us to numerically find the
minimum value of β .

4 EM-based estimator
In this section, we derive an EM estimator to obtain chan-
nel estimates in a FD system with asymmetric shifted
modulation constellation defined in Definition 4. We
derive a lower bound on the estimation error of the
estimator. Finally, we investigate the complexity of the
proposed estimator.
For the sake of notational brevity, we first define

φ �[�(haa),�(haa),�(hba),�(hba)] . (9)

We can then reformulate the ML problem in (6) as
follows

[ ˆ�(haa), ˆ�(haa), ˆ�(hba), ˆ�(hba)]� argmax
φ

(ln fYa(ya;φ)),

(10)

where fYa(ya;φ) is given by (7) and ln fYa(ya;φ) is known
as the log-likelihood function.
In formulating the channel estimation problem in (6)

(and hence in (10)), we assumed unknown transmitted
symbols. These unknown transmitted symbols can be
treated as hidden data. A common approach to solving the
maximization problem in (10) in the presence of hidden
data is the EM algorithm [33], which is adopted in this
work. The main steps of EM algorithm are

1. Expectation step: In the E-step, the expectation of
the log-likelihood is taken over all the values of the
hidden variable, conditioned on the vector of
observations, and the nth estimate of φ (φ(n)). In (1),
the hidden variable is x̄b and consequently, we need
to evaluate Q(φ|φ(n)) � EX̄b|ya,φ(n) [ ln fYa(ya, x̄b|φ)].

2. Maximization step: In the M-step, the function
Q(φ|φ(n)) obtained from the E-step is maximized
with respect to φ.

3. Iterations: We iterate between the E- and M-steps
until convergence is achieved.

The equations needed for the E- and M-steps are sum-
marized in the propositions below.

Proposition 2 The E-step during nth iteration of the
algorithm is given by

Q
(
φ|φ(n)

)
= −N ln

(
Mπσ 2)

− 1
σ 2

N∑

i=1

M∑

k=1
T (n)

k,i |yai − hbax̄k − haax̄ai |2,

(11)

where φ(n) �
[
ĥ(n)
aa , ĥ(n)

ba

]
are the estimates of the chan-

nels obtained from φ(n) during the nth iteration of the
algorithm, and T (n)

k,i is defined as

T (n)

k,i �
exp

(−1
σ 2 |yai − ĥ(n)

ba x̄k − ĥ(n)
aa x̄ai |2

)

∑M
k̄=1 exp

(−1
σ 2 |yai − ĥ(n)

ba x̄k̄ − ĥ(n)
aa x̄ai |2

) , (12)

where k ∈ K, i ∈ I �[ 1, 2, · · · ,N], x̄k ∈ Ā, x̄ai ∈ Ā and
x̄k̄ ∈ Ā.

Proof See Appendix 2.

Proposition 3 TheM-step during the nth iteration of the
algorithm is given by

φ(n+1) = 1
s1s4 − s22 − s23

⎡

⎢
⎢
⎢⎢
⎢
⎣

−s2v3 − s3v4 + s4v1
−s2v4 + s3v3 + s4v2
s1v3 − s2v1 + s3v2
s1v4 − s2v2 − s3v1

⎤

⎥
⎥
⎥⎥
⎥
⎦
, (13)
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where

s1 �
N∑

i=1
|x̄ai |2, s2 �

N∑

i=1

M∑

k=1
T (n)

k,i �(x̄ai x̄∗
k), (14a)

s3 �
N∑

i=1

M∑

k=1
T (n)

k,i �(x̄ai x̄∗
k), s4 �

N∑

i=1

M∑

k=1
T (n)

k,i |x̄k|2, (14b)

v1 �
N∑

i=1
�(x̄∗

aiyai), v2 �
N∑

i=1
�(x̄∗

aiyai), (14c)

v3 �
N∑

i=1

M∑

k=1
T (n)

k,i �(yai x̄∗
k), v4 �

N∑

i=1

M∑

k=1
T (n)

k,i �(yai x̄∗
k).

(14d)

Proof See Appendix 2.

Remark 5 It is well-known that the EM algorithm may
be very sensitive to initialization [34]. Although different
methods exist for EM initialization, generally they are not
computationally efficient [34, 35]. For the given channel
assumptions in Section 5, our empirical results showed that
initializing the EM algorithm by φ(0) �[ 0, 0, 0, 0] resulted
in the lowest estimation error. Hence, this initialization is
used in this work.

4.1 Lower bound on the estimation error
In this section, we derive a closed-form lower bound
on the estimation error of the proposed estimator. The
derived lower bound directly links the channel estimation
error to the parameter β , defined in Section 3.3.
The EM algorithm, defined in Propositions 2 and 3, is

a ML estimator for the parameter vector φ in (9). Hence,
we aim to derive the lower bound for the variance of the
proposed ML estimator. The ML estimator is asymptoti-
cally efficient [36] and its MSE is lower bounded by the
inverse of the Fisher information matrix (FIM) [36]. This
result is known as Cramer Rao lower bound (CRLB) and is
given by

E
�̂l
[ |φ̂l − φl|2]≥

[
I−1 [fYa(ya;φ)

]]
l,l , (15)

where φl is the lth element of the parameter vector φ,
φ̂l is an estimate of φl, for l ∈ {1, 2, 3, 4}, [·]l,l is the lth
diagonal element of a square matrix, and I−1 [fYa(ya;φ)

]

is the inverse of FIM. Since the inverse of FIM in (15) can-
not be found in closed-form [24, 37], we derive a lower
bound on the MSE of the proposed estimator, which is
in closed-from. The result is presented in the proposition
below.

Proposition 4 The variance of the proposed estimator is
lower bounded by

E
�̂l
[ |φ̂l − φl|2]≥

(
σ 2

2NE

)
1 + β

(1 + 2β)
, (16)

where l ∈ {1, · · · , 4}, N is the number of observations, E is
the average symbol energy of the modulation constellation
before the shift, and β is the portion of E that is allocated
to the shift.

Proof See Appendix 3.

Remark 6 The result in (16) links the closed-form lower
bound of the estimation error to the average energy of the
modulation constellation before the shift and the portion of
this average energy allocated to the shift. This is important
because in Section 5.1, we will use (16) to find theminimum
shift energy needed for the proposed technique.

4.2 Complexity analysis
To evaluate the feasibility in implementing the proposed
estimator, we investigate the computational complexity of
the estimator in terms of required floating point multipli-
cations and additions (flops) [38].
Table 1 shows the number of multiplications and addi-

tions needed for the EM estimator for hba. Although we
only present the complexity analysis of hba, similar com-
plexity is also observed for estimating haa. In each row of
the table, the number of required additions and multipli-
cations to implement a given equation is presented and
are then summed to obtain overall complexity.
It is clear from Table 1 that the complexity of EM esti-

mator per iteration is proportional to NM2. This analysis
shows that the EM algorithm is computationally very effi-
cient since, for a given modulation constellation with size
M, the computational complexity of the EM estimator
only grows linearly with the number of observations, N.

Remark 7 In data-aided approaches to channel esti-
mation, both xa and xb in (1) are assumed to be known.
Consequently, linear channel estimation can be performed

Table 1 Complexity analysis of the EM estimator

EM—complexity per iteration

(Eq. no.) Additions Multiplications

(12) 3M + 2 6M + 6

(11) NM(3M + 4) NM(6M + 9) + 5

(13) 4NM(3M + 2) + 3N + 14 4NM(6M + 8) +
3N + 33

ĥba 15NM2 + 12NM + 3N + 3M + 16 30NM2 +41NM+
3N + 6M + 44
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for linear Gaussian models (LGMs) as explained in [36].
It is a well-known fact that linear estimator complexity
estimators for LGM is independent of the modulation size
M, and only grows linearly with the number of observa-
tions [36]. The extra complexity of the proposed algorithm
compared to linear estimators is expected. This is because
as opposed to linear estimators, the proposed estimator
requires no data-aided piloting, and hence, it allows for
efficient use of the bandwidth for channel estimation.

5 Simulation results
In this section, we present numerical and simulation
results to investigate the performance of the proposed
estimator with asymmetric shifted modulation constella-
tion. We consider a FD communication system as illus-
trated in Fig. 1. The analysis in Section 4.1 shows an
identical lower bound for the estimation error of both haa
and hba. Hence, in this section, we only present the results
for the communication channel hba since identical results
are obtained for the SI channel haa.
For each simulation run,N data and interfering symbols

are randomly generated assuming shifted 16-QAM mod-
ulation constellation is used (M = 16). The channels are
constant for the transmission of N symbols, i.e., the quasi
static assumption. We assume that there is no line-of-
sight (LOS) communication link between the transmitter
of node b and the receiver of node a. Hence, the com-
munication channel hba can be modeled as a Rayleigh
fading channel, i.e., hba ∼ CN

(
0, σ 2

hba

)
. For the SI chan-

nel, experimental results have shown that before passive
and active cancellation, the SI channel has a strong LOS
component and can be modeled as a Rician distribution
with a large K factor (approximately 20–25 dB). After pas-
sive suppression and analog cancellation, the strong LOS
component is significantly reduced but still present and
can be modeled as a Ricean distribution with K = 0 dB
[5]. Hence, we generate the SI channel as

haa =
√

K
K + 1

σhaae
jζ +

√
1

K + 1
CN

(
0, σ 2

haa

)
, (17)

where ζ is uniformly distributed angle of arrival of the
LOS component of the SI channel [39].
For the simulations, the signal-to-interference-noise

ratio (SINR) is given by [5]

SINR = 1
1
SIR + 1

SNR
, (18)

where the signal-to-interference ratio SIR = σ 2
hba

σ 2
haa

assum-
ing both nodes use constellations with the same aver-
age energy, the desired signal-to-noise ratio SNR =
σ 2
hba

log2 (M)Eb
N0

, Eb is the average bit energy which is defined
below (2) and N0 is the noise power spectral density.

As discussed in Section 1, even with state-of-the-art
passive suppression and analog cancellation, the SIR can
still be around − 5 dB [5, 40]. Hence, we adopt this value
of the SIR in the simulations while assuming that the
communication channel has average energy of unity, i.e.,
E
[|hba|2

] = σ 2
hba = 1. Furthermore, in order to inves-

tigate the performance of the proposed estimator over a
range of SINR, we fix N0 = 1 and run the simulations for
different values of Eb/N0 (in dB). The figures of merit used
are the average mean square error (MSE) and the BER,
which are obtained by averaging over 5000 Monte Carlo
simulation runs.

5.1 Minimum energy needed for channel estimation
In this subsection, we are interested in finding the mini-
mum value of β , for a given Eb/N0 and N. As discussed in
Section 3.3, we use s �

√
βE, where 0 < β < 1, to shift

the symmetric modulation constellation. Hence, a lower
value of β is desirable since it means less energy is used to
shift the modulation constellation.
In order to find a minimum value of β suitable for a

practical range of Eb/N0 and N, we use the average MSE
lower bound in (16) to observe the behavior of the pro-
posed estimator as a function of β at low N and low
Eb/N0. This is motivated by the fact that the minimum
value of β found for low N and low Eb/N0 will ensure
that the desired estimation error will also be achieved for
high Eb/N0 and/or when the number of observations N is
large. This intuition is confirmed from (16), which indi-
cates that higher values of β are needed at low Eb/N0
to reach a given estimation error. Furthermore, since the
lower bound on the estimation error also decreases with
N, the minimum value of β found for smaller N can
also serve for larger N. Since the experimental results
of [5, 41] show that the FD communication channel is
normally constant for more than N > 128 symbols,
we propose to find the minimum β at N = 128 and
Eb/N0 = 0 dB.
Figure 3 shows the MSE performance of the proposed

technique versus β for Eb/N0 = 0 dB, N = 128, and SIR
= − 50 dB. If the desired estimation error is taken to be
within 10% of the lower bound error, then we can see from
the figure that for β < 0.2, the MSE of the proposed esti-
mator is within 10% of the lower bound. Consequently, the
minimum value of β is 0.2.
Figure 4 shows the MSE performance of the proposed

estimator with β = 0.2 (the selected minimum value of β)
vs. Eb/N0 (dB) forN = 128 and SIR = − 50 dB. The lower
bound in (16) is plotted as a reference. The figure shows
that as Eb/N0 increases, the gap between the performance
of the proposed estimator and the lower bound decreases.
The gap is less than 2 dB after Eb/N0 = 20 dB.
In the following sections, we set β = 0.2 andN = 128 to

study the performance of the FD communication system.
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Fig. 3MSE performance of the proposed channel estimator for
different values of β for Eb/N0 = 0 dB, N = 128, and SIR = − 50 dB

5.2 Comparison with data-aided channel estimation
In this section, we compare the MSE and BER perfor-
mance of the proposed estimator against a data-aided
channel estimator for the case that the average energy per
transmitted frame is the same for both methods4. For the
proposed technique, we assume that (i) all the transmitted
symbols are data symbols and (ii) shifting the modulation
constellation increases the average energy by 20% com-
pared to the ideal scenario when no channel estimation
is needed (corresponds to β = 0.2). For the data-aided
channel estimation, we assume that (i) 64 pilot symbols
are used in a frame of 128 symbols and (ii) these pilots also
require an extra 20% energy.
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Fig. 4MSE performance of the proposed channel estimator vs. Eb/N0

for β = 0.2, N = 128, and SIR = − 50 dB

5.2.1 MSE performance
The average MSE reveals the accuracy of the channel esti-
mation. Figure 5 plots the average MSE vs. Eb/N0 with
β = 0.2, N = 128, and SIR = − 50 dB. The lower
bound from (16) is plotted as a reference. We also plot the
MSE for data-aided channel estimation with (i) 64 pilot
symbols in a frame of 128 symbols and (ii) 128 pilot sym-
bols in a frame of 128 symbols. Figure 5 shows that the
proposed technique outperforms data-aided channel esti-
mation when both methods use the same extra amount
of energy for channel estimation. At high Eb/N0, the MSE
performance of the proposed technique is within 3− 4 dB
of the lower bound.
It has been shown in [9] that the effect of quantization

error in FD communication system can be modeled as
an additive Gaussian noise. This means the system model
given by (1) implicitly includes the effect of quantization
noise as well as the effect of thermal noise in the Gaussian
noise term wa. Consequently, the effect of quantization
noise on the performance of the proposed estimator can
be studied by observing the MSE results of the proposed
estimator in the low SNR region as shown by Fig. 5. The
results of Fig. 5 show that at low SNR region, a notice-
able MSE gain is not obtained by using the proposed
estimator instead of the data-aided technique that uses
128 pilots. However, the proposed technique is still more
attractive compared to the data-aided technique because
of the bandwidth efficiency.

5.2.2 BER performance
Figure 6 shows the average BER vs. Eb/N0 (dB) with β =
0.2, N = 128, and SIR = − 50 dB. The BER performance
with perfect channel knowledge is plotted as a reference.
We also plot the BER for data-aided channel estimation
with 64 pilot symbols in a frame of 128 symbols. Figure 6
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Fig. 5MSE performance of the proposed technique
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Fig. 6 BER performance of the proposed technique

shows that the proposed technique outperforms the data-
aided channel estimation in terms of the BER. This is to
be expected since, as shown in Fig. 5, for the same extra
amount of energy for channel estimation the proposed
technique has much lower MSE compared to data-aided
channel estimation. In addition, at high Eb/N0, the BER
performance of the proposed technique is within 1 dB
of the ideal performance obtained with perfect channel
knowledge.
As shown in this sub-section, in comparison to the

data-aided algorithms, the proposed algorithm is more
bandwidth efficient. Also compared to the existing blind
algorithms, which suffer from phase ambiguity [23],
the proposed algorithm can estimate the channel with no
phase ambiguity. These advantages have been obtained
by an increase in complexity as explained in Remark 7.
However, the superior performance of the proposed algo-
rithm as shown in Figs. 5 and 6 produces attractive
tradeoffs compared to the existing data-aided and blind
algorithms.

5.3 Effect of power of SI signal
In the results so far, we have set the SIR to − 50 dB. In this
section, we assess the impact of the SI power level on the
performance of the proposed technique.
Figure 7 plots the BER versus the SIR (dB) for Eb/N0 =

0, 10, 20 dB, with β = 0.2 and N = 128. We can see
that as the SI power increases, the BER performance of
the proposed technique remains nearly constant. This is
because in FD communication the self-interference sig-
nal is completely known to the receiver [3]. Consequently,
for relatively small channel estimation error of the pro-
posed estimator, the SI can be cancelled regardless of its
power. Figure 7 illustrates the robustness of the proposed
technique, i.e., even with weak passive suppression and
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Fig. 7 Effect of SI power level on the BER performance of the
proposed technique

analog cancellation requiring digital SI cancellation to
handle a very large SIR (e.g., − 100 dB), the BER is not
significantly altered.

6 Conclusions
In this paper, we have proposed a new technique to esti-
mate the SI and communication channels in a FD com-
munication systems for residual SI cancellation. In the
proposed technique, we add a real constant number to
each constellation point of a modulation constellation to
yield asymmetric shifted modulation constellations with
respect to the origin. Using identifiability analysis, we
showmathematically that such amodulation constellation
can be used for ambiguity-free channel estimation in FD
communication systems. We proposed a computationally
efficient EM-based estimator to estimate the SI and com-
munication channels simultaneously using the proposed
technique. We also derived a lower bound for the estima-
tion error of the proposed estimator. The results showed
that the proposed technique is robust to the level of SI
power.

Endnotes
1Note that the system model for FD communication

in (1) is applicable to per subcarrier communication in
orthogonal frequency division multiplexing (OFDM) FD
communication [3, 5, 41].

2Note that it may be possible to achieve constellation
asymmetry through other means, such as design of irreg-
ular modulation constellations. The optimum design of
suchmodulation constellations is outside the scope of this
work.
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3Note that the existing hardware implementations for
superimposed training [42] can also be used here for
shifting the modulation constellation.

4Note that the simulation results have been obtained
by normalizing the shifted modulation so the extra power
needed to shift the modulation does not push the power
amplifiers into saturation and hence, power amplifiers do
not experience any non-linearities.

Appendix 1
Proof of Theorem 1
The proof consists of three main steps.
Step 1: We show that if θ ′ 	= θ exists such that

fYa(ya; θ ′) = fYa(ya; θ) ∀ya, then a bijective function g :
K → K exists, such that xk

xg(k) = c ∀k ∈ K, where c 	= 1 is
a constant and |c| = 1. This is done as follows.
If the two joint probability densities fYa(ya; θ ′) and

fYa(ya; θ) are equal ∀ya, then it easily follows that the
marginal densities fYai (yai ; θ

′) and fYai (yai ; θ) are also equal
∀yai . From (4), fYai (yai ; θ

′) and fYai (yai ; θ) are given by

fYai (yai ; θ) =
(

1
Mπσ 2

) M∑

k=1
exp

(−1
σ 2 |yai − θ(1)xai − θ(2)xk|2

)
,

(19)

fYai (yai ; θ
′) =

(
1

Mπσ 2

) M∑

k=1
exp
(−1

σ 2 |yai − θ ′(1)xai − θ ′(2)xk|2
)
.

(20)

If fYai (yai ; θ
′) and fYai (yai ; θ) are equal ∀yai , they should

also be equal for yai = θ(1)xai + θ(2)x1. In this case, we
have

M∑

k=1
exp

(−1
σ 2 |θ(2)(x1 − xk)|2

)
=

M∑

k=1
exp
(−1

σ 2
∣
∣(θ(1) − θ ′(1))xai + θ(2)x1 − θ ′(2)xk

∣
∣2
)
.

(21)

The left hand side (LHS) of (21) is independent of
i, while the right hand side (RHS) of (21) depends on
i through xai . Consequently, for (21) to hold for ∀yai ,
the coefficient of xai should be zero, i.e., θ ′(1) = θ(1).
Knowing that θ ′(1) = θ(1) and equating (19) and (20),
we have

M∑

k=1
exp

(−1
σ 2 |yai − θ(1)xai − θ(2)xk|2

)
=

M∑

k=1
exp

(−1
σ 2 |yai − θ(1)xai − θ ′(2)xk|2

)
. (22)

By taking the first and second order derivatives of both
sides of (22) with respect to yai , it can be shown that ∀k ∈
K, the points yai = θ(1)xai + θ(2)xk and yai = θ(1)xai +
θ ′(2)xk maximize the summations of the M exponential
functions on the LHS and RHS of (22), respectively. Con-
sequently, since (22) holds ∀yai , the points that maximize
the summation of M exponential on the LHS of (22) are
the same as the points that maximize the summation of
M exponentials on the RHS of (22). Hence, for a bijective
function g : K → K

θ(1)xai + θ(2)xk = θ(1)xai + θ ′(2)xg(k) (23)

It can easily be verified that if (23) holds ∀yai , then,

θ(2)xk = θ ′(2)xg(k), (24)

or

θ ′(2)
θ(2)

= xk
xg(k)

. (25)

The LHS of (25) does not depend on k; consequently, the
RHS of (25) should also be independent of k and should be
a constant. Hence, for bijective function g, xk

xg(k) = c, where
c 	= 1 is a constant. We note that if c = 1 then θ(2) =
θ ′(2) and hence θ = θ ′, which violates the assumption that
fYa(ya; θ ′) = fYa(ya; θ) for θ 	= θ ′.
Let us now define permutation 	 on the ordered set

A = {x1, · · · , xM} as

	�
(

x1 x2 · · · xM
	(x1) = xg(1) 	(x2) = xg(2) · · · 	(xM) = xg(M)

)
.

(26)

The sequence (xk ,	(xk),	(	(xk)), · · · , xk) forms an
orbit of the permutation 	 [32]. If xk = cxg(k) ∀k ∈ K,
then from the definition of the orbit it is clear that xk =
cmxk ∀k ∈ K, where m is the length of the orbit sequence
and c 	= 1 is a constant. Since, xk = cmxk ∀k ∈ K, we can
conclude that cm = 1 and |c| = 1.
Step 2: We show that if the bijective function g: K →

K exists, such that xk
xg(k) = c ∀k ∈ K, then there exists a

θ ′ 	= θ for which fYa(ya; θ ′) = fYa(ya; θ) ∀ya. This is done
as follows.
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Firstly, in Section 3.2 we showed that the joint PDF of all
the observations is given by

fYa(ya; θ) =
(

1
Mπσ 2

)N N∏

i=1

M∑

k=1
exp
(−1

σ 2 |yai−θ(1)xai − θ(2)xk|2
)
,

(27)

We can see that for a fixed i in (27), M different expo-
nential functions corresponding to different values of xk ∈
A are summed together. Since, g : K → K is a bijec-
tive function and consequently replacing xk by xg(x) only
affects the order of the exponential functions, we can
rewrite (27) as

fYa(ya; θ) =
(

1
Mπσ 2

)N N∏

i=1

M∑

k=1
exp
(−1

σ 2 |yai−θ(1)xai−θ(2)xg(k)|2
)
,

(28)

Secondly, for θ ′ �[ θ(1), θ(2)
c ], fYa(ya; θ ′) is given by

fYa(ya; θ ′) =
(

1
Mπσ 2

)N N∏

i=1

M∑

k=1
exp
(−1

σ 2 |yai − θ(1)xai − θ(2)
c

xk|2
)
,

(29)

and since xk
c = xg(k) ∀k ∈ K, (29) can be written as

fYa(ya; θ ′) =
(

1
Mπσ 2

)N N∏

i=1

M∑

k=1
exp
(−1

σ 2 |yai−θ(1)xai−θ(2)xg(k)|2
)
,

(30)

Comparing (30) with (28) reveals that for θ ′ 	= θ ,
fYa(ya; θ ′) = fYa(ya; θ) ∀ya. Consequently, if bijective func-
tion g:K → K exits, such that xk

xg(k) = c ∀k ∈ K, then there
exists a θ ′ 	= θ for which fYa(ya; θ ′) = fYa(ya; θ) ∀ya.
Step 3: Thirdly, we show that the condition xk

xg(k) = c
∀k ∈ K is equivalent to the modulation constellation
being symmetric around the origin. To prove this equiva-
lency, we need to consider the following two sub-cases:

(i) Firstly, we need to show that if a bijective function
g : K → K exists such that xk

xg(k) = c, then the
modulation constellation is symmetric with respect
to origin. Equivalently, we can show that if a bijective
function g : K → K does not exist such that
xk
xg(k) = c, then the modulation constellation is not
symmetric with respect to origin. To prove this
equivalent statement, we use proof by contradiction.
We assume g : K → K does not exist such that
xk
xg(k) = c, but the modulation constellation is

symmetric with respect to origin. If the modulation is
symmetric with respect to the origin, then it satisfies
the condition of Definition 2 and hence,

f(−xk) = −f(xk). (31)

However, since the function f(xk) is defined on set
A, (31) holds if and only if both xk and −xk are in the
setA. Consequently, setA can be represented by

A = {x1, x2, · · · , xM
2
,−x1,−x2, · · · ,−xM

2
}. (32)

Now, if the bijective function g is defined as
g(k) = k + M

2 , then
xk
xg(k) = −1. However, this

contradicts the assumption that bijective function
g : K → K does not exist, such that xk

xg(k) = c∀k ∈ K.
Hence, if g : K → K does not exist such that
xk
xg(k) = c, then the modulation constellation cannot
be symmetric with respect to origin.

(ii) Secondly, we need to show that if the modulation is
symmetric then a bijective function g : K → K exists
such that xk

xg(k) = c ∀k ∈ K. This easily follows from
the proof of previous step, where we showed that if
the modulation constellation is symmetric thenA
can be represented by (32). Consequently, a bijective
function g : K → K exists such that xk

xg(k) = −1
∀k ∈ K, i.e., g(k) = k + M

2 ∀k ∈ K.

Combining the proofs of the three steps, Theorem 1 is
proved.

Appendix 2
Proof of Propositions 2 and 3
Propositions 2 and 3 correspond to the E and M steps of
the EM algorithm. We assume that both transmitters at
nodes a and b use the asymmetric shiftedmodulation con-
stellation Ā defined in Definition 4, i.e., x̄ai , x̄bi ∈ Ā and
assume a uniform discrete distribution for the transmitted
symbols.

2.1 Proof of E-step
In the E-step of the algorithm function Q(φ|φ(n)) is given
by

Q
(
φ|φ(n)

)
= EX̄b|ya,φ(n)

[
ln fYa(ya, x̄b|φ)

]
. (33)

To calculate (33), we require
ln fYa(ya, x̄b|φ). Hence, we start with the following joint

PDF

fYai (yai , x̄bi ;φ) = fYai (yai |X̄bi = x̄bi ;φ)pX̄bi
(x̄bi )

= 1
Mπσ 2

M∑

k=1
δx̄k ,x̄bi exp

(−1
σ 2 |yai −hbax̄k − haax̄ai |2

)
,

(34)
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where, δx̄k ,x̄bi is theKronecker delta function and δx̄k ,x̄bi = 1
if x̄bi = x̄k and 0 otherwise [31]. Consequently, the log-
likelihood of all the observations is given by

ln(fYa(ya, xb;φ))=
N∑

i=1
ln(fYai (yai , x̄bi ;φ))=−N ln(Mπσ 2)

− 1
σ 2

N∑

i=1

M∑

k=1
δx̄k ,x̄bi |yai − hbax̄bi−haax̄ai |2.

(35)

The expectation in (33) is conditioned on knowing
φ(n) during the nth iteration of the algorithm, which is
obtained from the M-step. Substituting (35) in (33), we
have

Q(φ|φ(n)) = Ex̄b|ya ,φ(n) [ ln fYa (ya, x̄b;φ)]= −N ln(Mπσ 2)

− 1
σ 2 Ex̄b|ya ,φ(n)

[ N∑

i=1

M∑

k=1
δx̄k ,x̄bi |yai − hbax̄bi − haax̄ai |2

]

.

(36)

The assumption of independent transmitted symbols
allows to rewrite (36) as follows

Q(φ|φ(n)) = −N ln
(
Mπσ 2

)

− 1
σ 2

N∑

i=1

M∑

k=1
Ex̄bi |ya ,φ(n)

[
δx̄k ,x̄bi

|yai −hbax̄bi −haax̄ai |2
]
,

= −N ln(Mπσ 2)

− 1
σ 2

N∑

i=1

M∑

k=1
P(x̄bi = x̄k |ya,φ(n))|yai − hbax̄k − haax̄ai |2.

(37)

We define

T (n)

k,i � P(x̄bi = x̄k|ya,φ(n)). (38)

Then, it can easily be shown that

T (n)

k,i =
exp

(−1
σ 2 |yai − ĥ(n)

ba x̄k − ĥ(n)
aa x̄ai |2

)

∑M
k̄=1 exp

(−1
σ 2 |yai − ĥ(n)

ba x̄k̄ − ĥ(n)
aa x̄ai |2

) . (39)

Finally, substituting (39) into (37), Q(φ|φ(n)) can be
found as in (33). This concludes the proof of Proposition 2.

2.2 Proof of M-step
The maximization-step of the EM algorithm is given by

φ(n+1) = argmax
φ

Q(φ|φ(n)) = argmin
φ

N∑

i=1

M∑

k=1
T (n)

k,i |yai

− hbax̄k − haax̄ai |2. (40)

We define the following function

r(φ) �
N∑

i=1

M∑

k=1
T (n)

k,i |yai − hbax̄k − haax̄ai |2, (41)

The minimum of function φ (the maximum of the like-
lihood function), which corresponds to the solution of the
M-step of the EM algorithm during the nth iteration, hap-
pens at the critical point φ(n+1) for which the Jacobian is
zero, i.e., J = 0 [43]. To find this critical point, the Jacobian
matrix should be constructed and set equal to zero. This
is done by taking the derivative of r(φ) with respect to
the four elements of vector φ, as defined by (9), to con-
struct the Jacobian matrix and then set it equal to zero.
Then, it can be easily shown that the critical point φ(n+1) is
given by

φ(n+1) = S−1v, (42)

where

S �

⎡

⎢
⎢
⎣

s1 0 s2 s3
0 s1 −s3 s2
s2 −s3 s4 0
s3 s2 0 s4

⎤

⎥
⎥
⎦ , v �

⎡

⎢
⎢
⎣

v1
v2
v3
v4

⎤

⎥
⎥
⎦ , (43)

where the elements of S and v are given by (14b)–(14d).
However, to ensure that the critical point φ(n+1) is the

minimum of function r(φ), the Hessian matrix H should
be positive semi-definite [43]. By taking the second deriva-
tives of r(φ) with respect to the four elements of vector φ,
we can show that H = 2S. Then, according to Sylvester’s
criterion [43], H is positive semi-definite if and only if all
the following are positive

s1, det
([

s1 0
0 s1

])
, det

⎛

⎝

⎡

⎣
s1 0 s2
0 s1 −s3
s2 −s3 s4

⎤

⎦

⎞

⎠ , det(S).

(44)

It can easily be shown that det(S) = (
s1s4 − s22 − s23

)2

and is always positive. According to (14b), s1 is always pos-
itive, and it is clear that the second determinant is always
positive. However, the positivity of the third determinant,
i.e., s1s4 − s22 − s23, directly depends on the initialization.
This is evident from definitions in (14b)–(14d), which link
s1, s2, s3, and s4 to the function T (n)

k,i and the derivation
of function T (n)

k,i in (39), which is a function of ĥ(n)
aa and

ĥ(n)

ba , i.e., the estimates from the nth iteration. Our numer-
ical investigation shows that for the initialization vector
φ(0) �[ 0, 0, 0, 0], the Hessian matrix H is always positive
and hence the critical point φ(n+1) is indeed the mini-
mum of function r(φ). Consequently, the EM algorithm
with initialization vector φ(0) �[ 0, 0, 0, 0] converges to the
maximum of the likelihood function.
This concludes the proof of Proposition 3.
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Appendix 3
Proof of Proposition 4
It is shown in [44] that for any random variables X and
Y and any parameter θ , if the probability distribution of
X is independent of the parameter θ , then I[ fY (y; θ)]<
I[ fY (y|x; θ)], where I[ ·] is the FIM and f (·; θ) is the
probability density function parameterized by θ . Conse-
quently, the performance of the proposed estimator is
lower bounded by the inverse of I[ fYa(ya|x̄b;φ)], i.e.,

E
�̂l
[ |φ̂l − φl|2]≥

[
I−1 [fYa(ya|x̄b;φ)

]]
l,l ∀l ∈ {1, 2, 3, 4},

(45)

where φl is the lth element of the parameter vector φ,
φ̂l is an estimate of φl, and [ ·]l,l is the lth diagonal ele-
ment of matrix. This is because (i) the performance of
the proposed estimator is lower bounded by I[ fYa(ya;φ)]
according to (15) and (ii) pX̄b

(x̄b) is independent of φ. Fur-
thermore, since (45) holds ∀x̄a, x̄b, then the variance is also
lower-bounded by

E
�̂l

[
|φ̂l − φl|2

]
≥
[
I−1
avg
[
fYa(ya|x̄b;φ)

]]

l,l
∀l ∈ {1, 2, 3, 4},

(46)

where Iavg = EX̄b,X̄a

[
I[ fYa(ya|x̄b;φ)]

]
. The value of

I[ fYa(ya|x̄b;φ)], needed to evaluate Iavg , is presented in the
Lemma below.

Lemma 1 I[ f (ya|x̄b;φ)] is a 4 × 4 matrix with its ele-
ments given by

i1,1 = i2,2 = 2
σ 2

N∑

i=1
|x̄ai |2, I3,3 = I4,4 = 2

σ 2

N∑

i=1
|x̄bi |2,

(47a)
i2,4 = i4,2 = i1,3 = i3,1

= 2
σ 2

N∑

i=1

(�{x̄ai}�{x̄bi} + �{x̄ai}�{x̄bi}
)
, (47b)

i2,3 = i3,2 = −i1,4 = −i4,1

= 2
σ 2

N∑

i=1

(�{x̄bi}�{x̄ai} − �{x̄ai}�{x̄bi}
)
. (47c)

Proof It can be easily seen from (5) that fYa(ya|x̄b;
haa, hba) is given by

fYa(ya|x̄b; haa, hba) =
(

1
πσ 2

)N
exp

N∑

i=1

(−|yai − haax̄ai − hbax̄bi |2
σ 2

)
.

(48)

Then, for l, l′ ∈ {1, 2, 3, 4}, I[ fYa(ya|x̄b; haa, hba)] is [36]

Il,l′ = −EYa

[
∂2

∂φm∂φn
ln fYa (ya|x̄b; haa, hba)

]
, (49)

where m, n ∈ {1, 2, 3, 4}, φm and φn are the mth and nth
elements of φ =[�{haa},�{haa},�{hba},�{hba}]. By eval-
uating (49), using the joint PDF given by (48), the non-zero
elements of I[ fYa(ya|x̄b; haa, hba)] can be found and are
given by (47b)–(47c).

Using the value of I[ f (ya|x̄b;φ)] given by the above
lemma, we need to evaluate the expectations in
order to find Iavg . As discussed in Section 3.3, we
assume that both nodes a and b use a real constant
s �

√
βE to shift the modulation constellation. Since

all the constellation points are equally likely to be
transmitted, before shifting the modulation constel-
lation we have E�{X̄ai }[�{xai}]= E�{x̄bi }[�{xbi}]=
E�{X̄ai }[�{xai}]= E�{X̄bi }[�{xbi}]= 0. However, after
the shift, E�{X̄ai }[�{x̄ai}]= E�{X̄bi }[�{x̄bi}]=

√
βE and

E�{X̄ai }[�{x̄ai}]= E�{X̄bi }[�{x̄bi}]= 0. Furthermore,
EXai

[ |x̄ai |2]= EXbi
[ |x̄bi |2]= E + βE since the average

energy of the constellation after the shift is increased by
the shift energy (|s|2 = βE). Consequently, the average
FIM with respect to x̄a and x̄b is given by

Iavg = 2NE
σ 2

⎛

⎜
⎜
⎝

1 + β 0 β 0
0 1 + β 0 β

β 0 1 + β 0
0 β 0 1 + β

⎞

⎟
⎟
⎠ , (50)

and I−1
avg is given by

I−1
avg = σ 2

2NE

⎛

⎜
⎜
⎜
⎜
⎝

β+1
(2β+1) 0 − β

(2β+1) 0
0 β+1

(2β+1) 0 − β
(2β+1)

− β
(2β+1) 0 β+1

(2β+1) 0
0 − β

(2β+1) 0 β+1
(2β+1)

⎞

⎟
⎟
⎟
⎟
⎠
.

(51)

Using (46) and considering the diagonal elements
of (51), we arrive at the result in (16).
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