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Variability-sensitive verification pursues effective analysis of the exponentially many variants of a program

family. Several variability-aware techniques have been proposed, but researchers still lack examples of concrete

bugs induced by variability, occurring in real large-scale systems. A collection of real world bugs is needed

to evaluate tool implementations of variability-sensitive analyses by testing them on real bugs. We present

a qualitative study of 98 diverse variability bugs (i.e., bugs that occur in some variants and not in others)

collected from bug-fixing commits in the Linux, Apache, BusyBox, and Marlin repositories. We analyze each

of the bugs, and record the results in a database. For each bug, we create a self-contained simplified version

and a simplified patch, in order to help researchers who are not experts on these subject studies to understand

them, so that they can use these bugs for evaluation of their tools. In addition, we provide single-function

versions of the bugs, which are useful for evaluating intra-procedural analyses. A web-based user interface for

the database allows to conveniently browse and visualize the collection of bugs. Our study provides insights

into the nature and occurrence of variability bugs in four highly-configurable systems implemented in C/C++,

and shows in what ways variability hinders comprehension and the uncovering of software bugs.
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1 INTRODUCTION
Many software projects adopt variability to tailor development of individual software products to

particular market niches [3]. Other software projects, such as the Linux kernel, embrace variability

and use configuration options known as features [30] to tailor functional and non-functional

properties to the needs of a particular user. Such systems are often referred to as highly-configurable
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systems and can get very large and encompass large sets of features. There exist reports of industrial

systems with thousands of features [7], and extensive open-source examples are documented in

detail [8].

Features in a configurable system interact in non-trivial ways, in order to influence the function-

ality of each other. Interestingly, bugs in configurable systems do not always occur unconditionally,

in all configurations. Bugs involving one or more feature that have to be either enabled or disabled

in order for the bug to occur are known as variability bugs. Importantly, variability bugs therefore

occur only in certain configurations and not in others. Some variability bugs involve multiple (two

or more) features each of which have to be enabled, respectively, disabled in order for the bug to

occur; such bugs are known as feature-interaction bugs. A bug in an individual configuration may

be found by analyzers based on standard program analysis techniques. However, since the number

of possible configurations is exponential in the number of features, it is not feasible to analyze each

configuration separately.

Family-based analyses [56] tackle this problem by considering all configurable program variants

as a single unit of analysis, instead of analyzing the individual variants separately. In order to avoid

duplication of effort, common parts are analyzed once and the analysis forks only at differences

between variants. Recently, various family-based extensions of both classic static analysis [4, 9, 12,

19, 32, 35] and model checking [5, 16, 17, 26, 36, 49] based techniques have been developed.

Most of the research so far has focused on the inherent scalability problem. However, we still

lack evidence that these extensions are adequate for specific purposes in real-world scenarios.

In particular, little effort has been put into understanding what kind of bugs appear in highly

configurable systems, and what are their variability characteristics. Gaining such understanding

would help to ground research on variability-sensitive analyses in actual problems.

The understanding of the complexity of variability bugs is not common among practitioners and

in available artifacts. While bug reports abound, there is little knowledge on how those bugs are

caused by feature interactions. Very often, due to the complexities of a large project like Linux, and

the lack of variability-aware tool support, developers are not entirely conscious of the features that

affect the software they work on. As a result, bugs appear and get fixed with little or no indication

of their variational program origins.

The objective of this work is to understand the complexity and nature of variability bugs (including
feature interaction bugs) occurring in four highly configurable systems: Linux, Apache, BusyBox,

and Marlin. We address this objective via a qualitative in-depth analysis and documentation of 98

cases of such bugs. We make the following contributions:

• Identification of 98 variability bugs in four highly configurable systems: Linux, Apache, BusyBox,
and Marlin; including in-depth analysis and presentation for non-experts.

• A database with the results of our analysis, encompassing a detailed data record about each

bug. These bugs comprise common types of errors in C software, and cover different types

of feature interactions. We intend to grow the collection in the future with the help of the

research community. The database is available at:

http://VBDb.itu.dk/

• Self-contained simplified C991 versions of all bugs, including single-function versions. These
ease comprehension of the underlying causes, and can be used for testing bug-finders in a

smaller scale. The single-function versions can be used to test intraprocedural analyses.

• Simplified patch versions of the bugs. These patches also help to understand the bugs and

present ways of fixing them in accordance with the bug-fixing commits.

1
C99 is an informal name for ISO/IEC 9899:1999, a version of the C programming language standard.
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• An aggregated reflection over the collection of bugs. Providing insight on the nature of bugs

induced by feature interactions in four highly configurable systems.

We adopt a qualitative manual methodology of analysis for the following reasons. Most importantly,

searching for bugs with tools only finds cases that these tools cover, while we are interested in

exploring the nature of variability bugs widely. Tools are generally approximating and biased due

to undecidability of essentially all interesting questions about programs. An automated bug hunt

would be heavily biased against a few kinds of bugs for which the tools were designed, and for the

cases of these bugs that they are able to handle. Also, manual sampling from historical bugs avoided

false-positives that would pollute the data, had we used automatic bug finding tools. Additionally,

family-based bug-finders are rare, experimental (only effective type checkers exist), and not fast

enough to extensively scan the long history of Linux and similar systems. Sampling [39] is a good

alternative, however uniform sampling of valid configurations for large systems (like the Linux

kernel) is known to be difficult. This would require investment in new research of applying and

evaluating PSAT-based solutions for the purpose, which, while a fascinating research problem, was

judged to be out of scope for this work. Obviously, the manual sampling has not been uniform

either but helped to direct the work towards qualitative insights. It helped to increase the diversity

of the bugs covered, and in the process inspired us to generate much more information about the

bugs (simplified bugs, simplified patches, etc).

Reflecting on the collected material, we learn that complexity of variability bugs comprises the

following aspects: variability bugs involve many aspects of programming language semantics, they

are distributed in most parts of the code bases, involve multiple features and span code in remote

locations. Detecting these bugs is difficult for both people and tools. Once variability-sensitive

analyses that are able to capture these bugs are available, it will be interesting to conduct extensive

quantitative experiments to confirm our qualitative intuitions.

We direct our work to designers of program analysis and bug finding tools. We believe that all

the knowledge condensed in our collection of variability bugs can inspire them in several ways:

(i) it will provide a set of concrete, well described challenges for analyses, (ii) it will serve as a

preliminary benchmark for evaluating their tools, and (iii) it will dramatically speed up design of

new techniques, since they can be tried on simplified project-independent bugs. Using realistic

bugs from a large piece of software in evaluation can aid tuning the analysis precision, and incite

designers to support certain language constructs in the analysis.

We present basic background in Sect. 2. The methodology is detailed in Sect. 3. Sections 4–6

describe the analysis: first the considered dimensions, then the aggregate observations. We finish

surveying threats to validity (Sect. 7), related work (Sect. 8) and a conclusion (Sect. 9).

2 BACKGROUND
We understand the term software bug broadly, as it is defined by IEEE Standard Glossary of Software

Engineering [55]. This includes any run-time crash, compiler warning or error, and software

weakness in the Common Weakness Enumeration (CWE) taxonomy. Often, these bugs manifested

as a kernel panic (crash), or were spotted by the compiler (in the form of a warning) when building

a specific kernel configuration. While some compiler warnings may appear harmless (for instance

an unused variable), they could be side-effects of serious misconceptions that may lead to more

serious problems.

A feature is a unit of functionality additional to the core software [15]. The core (base variant)
implements the basic functionality present in any variant of a program family. The different

selections of features (configurations) define the set of program variants. Often, two features cannot

be simultaneously enabled, or one feature requires enabling another. Feature dependencies are

ACM Transactions on Software Engineering and Methodology, Vol. X, No. X, Article X. Publication date: October 2017.
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1 int printf(const char * format, ...);
2

3 void foo(int a) { →(5)

•4 printf("%d\n",2/a); // ERROR (6)×

5 }
6

•7 int main(void) { // START ⇒(1)

8 int x = 1; (2)

9 #ifdef CONFIG_INCR // DISABLED |

10 x = x + 1; |

11 #endif |

12 #ifdef CONFIG_DECR // ENABLED ↓

13 x = x - 1; (3)

14 #endif ↓

15 foo(x); (4)→

16 }

Fig. 1. Example of a program family with a variability bug. A division-by-zero error occurs in line 4 whenever

INCR is disabled and DECR is enabled. The right column traces the statements involved from (1) to (6).

specified using a feature model [30] (or a decision model [27]), denoted here byψFM; effectively a

constraint over features defining legal configurations.

Preprocessor-based program families [31] associate features with macro symbols, and define their

implementations as statically conditional code guarded by constraints over feature symbols. The

macro symbols associated to features (configuration options) are often subject to naming conventions,

for instance, in Linux these identifiers are prefixed by CONFIG_. We follow the Linux convention

throughout this paper. Figure 1 presents a tiny preprocessor-based C program family using two

features, INCR and DECR. Statements at lines 10 and 13 are conditionally present. Assuming an

unrestricted feature model (ψFM = true), the figure defines a family of four different variants.

A presence condition φ of a code fragment is a minimal (by the number of referred variables)

Boolean formula over features, specifying the subset of configurations in which the code is included

in the compilation. The concept of presence condition extends naturally to other entities; for

instance, a presence condition for a bug specifies the subset of configurations in which a bug occurs.

Concrete configurations, denoted by κ, can also be written as Boolean constraints—conjunctions of

feature literals. A code fragment with presence condition φ is thus present in a configuration κ iff

κ ⊢ φ. As an example, consider the decrement statement in line 13, which has presence condition

DECR, thus it is part of configurations κ0 = ¬INCR ∧ DECR and κ1 = INCR ∧ DECR.
Features can influence the functions offered by other features—a phenomenon known as feature

interaction, which can be either intentional or unexpected. In our example, the two features interact

explicitly through the program variable x which they both manipulate (read and write). Enabling

either INCR or DECR, or both, results in different values of x prior to calling foo. In general, the

presence condition of a bug will implicitly tell us that features interact, but it does not necessarily
explicitly tell us how they interact.

As a result of variability, bugs can occur in some configurations but not in others, and can also

manifest differently in different variants. If a bug occurs in one or more configurations, and does

not occur in at least one other configuration, we call it a variability bug. Figure 1 shows how one of

the program variants in our example family, namely κ0, will crash at line 4 when we attempt to

divide by zero. Because this bug is not manifested in any other variant, it is a variability bug—with

presence condition ¬INCR ∧ DECR.

ACM Transactions on Software Engineering and Methodology, Vol. X, No. X, Article X. Publication date: October 2017.
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Program family implementations are usually conceptually stratified in three layers: the problem
space (typically a feature model), a solution space implementation (e.g. C code), and the mapping
between the problem and solution spaces (the build system and Cpp in Linux). We show how the

division-by-zero bug of the example could be fixed in each layer separately. We show changes to

code in unified diff format (diff -U0).

Fix in the Code. If function foo ought to accept any int value, then the bug could be fixed by

appropriately handling zero as input:

@@ -4 +4,4 @@
- printf("%d\n",2/a);
+ if (a != 0)
+ printf("%d\n",2/a);
+ else
+ printf("NaN\n");

Fix in the Mapping. If we assume that function foo should never be called with a zero argument,

a possible fix would be to decrement x only whenever both DECR and INCR are enabled:

@@ -12 +12 @@
- #ifdef CONFIG_DECR
+ #if defined(CONFIG_DECR) && defined(CONFIG_INCR)

Fix in the Model. Finally, if the bug is deemed to be caused by an illegal interaction, we can

introduce a dependency in the feature model to prevent the “faulty configuration”, κ0. For instance,
let DECR be only available when INCR is enabled. Assuming feature model ψFM = DECR → INCR
forbids κ0.

3 STUDY DESIGN
Our objective is to qualitatively understand the complexity and nature of variability bugs (includ-
ing feature-interaction bugs) in open-source highly-configurable software systems. This includes

addressing the following research questions:

Research questions:

RQ1: Are variability bugs limited to specific type of bugs, features, or locations in the code base?

RQ2: In what ways does variability affect bugs?

This paper relies on the initial findings of our exploratory case study on variability bugs in Linux

published previously [1]. That study followed an exploratory qualitative method, identifying what

is possible to learn about diversity of variability bugs using the case study method. It produced a

Table 1. The four subject systems with size metrics (as of December 2015).

System Domain LOC #Features #Commits

Marlin 3D-printer firmware 43 k 821 2,783

BusyBox UNIX utilities 176 k 551 13,878

Apache Web Server 195 k 681 27,677

Linux Operating system 14 M 16,490 521,276

ACM Transactions on Software Engineering and Methodology, Vol. X, No. X, Article X. Publication date: October 2017.
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method design and a list of nine
2
initial observations based on the analysis of 42 variability bugs.

These observations explained the answers to the research questions RQ1 and RQ2 for the Linux

kernel project, but they were hypotheses in as far as other systems are considered. Methodolog-

ically, this paper is a confirmatory study where we extend the previous exploratory study with

three new systems and (in)validate the previous hypotheses. In the end, we confirm all previous

observations from the original Linux-only study. This attests to the stability and generalizability of

our observations (more on this later).

We extend the prior work by executing three independent confirmatory case studies, replicating

the same data collection process and analysis for three new subjects that significantly differ from

Linux. The case studies are executed by three new researchers on the project, and the original

researcher responsible for the case study only supervises adherence to the method. This leads

to extending the data sample with 55 new bug analyses, all available in our bug database. After

collecting the data we check, whether the original observations formulated for Linux still hold. It

turns out that we are able to confirm all the observations, thus observations in discussion of RQ1

(Sect. 5) and RQ2 (Sect. 6) are labeled as Confirmed.

3.1 Subjects
We study four open-source highly-configurable systems: Linux, Apache, BusyBox, and Marlin.

Linux and BusyBox use KConfig to model their configuration space, while the other two do not

have an established way of expressing their variability in a well-specified format. Crucially, all

have bug data including commits, developer comments and bug trackers publicly available. They

are qualitatively different highly configurable systems: one small (Marlin), two medium (Apache

and BusyBox), and one large (Linux). They are also different in terms of purpose, variability, and

complexity. Besides that, all have different architectures and developers, which allows us to draw

slightly broader conclusions.

Linux is likely the largest highly-configurable open-source system in existence, with more than

14 million lines of code and 16 thousand features. We have free access to the bug tracker,
3
the source

code and change history, and to public discussions on the mailing list
4
(LKML) and other forums.

There also exist books on Linux development [11, 38]—valuable resources when understanding a

bug-fix. Access to domain-specific knowledge is crucial for the qualitative analysis.

Likewise, BusyBox is an open-source highly-configurable system that provides several essential

Unix tools (such as ls, cp, and mkdir) in a single executable file. BusyBox has more than 500

features and 176 KLOC. Compared to Linux, BusyBox is a much smaller system: about 80 times

less LOC and 29 times less features.

Apache has been developed for over 20 years and is one of the most used and popular web

servers. It is written in C and C++, consisting of almost 200 KLOC and 700 features.

Marlin is a firmware for 3D printers that is highly configurable, with 43 KLOC and around

800 features. The project is written in C++, is hosted on GitHub, and uses GitHub’s issue tracker.

Compared to the other three systems, Marlin is a much newer (started in August 2011) and smaller

project (only 43 KLOC) mainly due to its focused domain.

Table 1 characterizes the subject systems by aggregating the information about domain, lines

of code, number of features, and size of the commit history that we analyze. We examine the

entire history (not a specific version) of each project up to December 2015, since our focus is on

individual bugs in whatever version of the project they happened to reside. Throughout this paper,

2
We merge observations 7 and 8 from [1] due to overlap.

3
https://bugzilla.kernel.org/

4
https://lkml.org/
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we count the lines of code (in any language) with Cloc
5
version 1.53, with the default options. For

Linux and BusyBox, we approximate the number of features as the number of unique (menu)config
entries declared in KConfig files. (This is computed by find . -name ConfigFiles -exec egrep

’ˆ(menu)?config ’{} \; | cut -d’ ’ -f2 | uniq | wc -l, where ConfigFiles is replaced with

’Kconfig*’ and ’Config.*’, for Linux and BusyBox, respectively.) As Apache and Marlin do not

have an explicit feature model nor use KConfig, we use grep to extract all ’#if or #ifdef or
#elif’ directives, and parse the expressions from which we count the unique identifiers. In this

process we eliminate identifiers that have a suffix of the following form: ’_H or H__ or H_’, as
these represent include guards and we do not treat them as features. The size of the commit history

is measured as the number of non-merge commits in the repository, which corresponds to the

output of git rev-list HEAD --no-merges --count. These statistics are approximate, but serve the

purpose of characterizing our four subjects.

3.2 Method
For each of the four cases, we follow a three-part method developed during the Linux study: first, we

identify the variability bugs in the history of our subject systems. Second, we analyze and explain

them. Finally, we reflect on the aggregated material to answer our research questions (formulating

hypothetical observations or confirming them respectively).

To do so, we take the Linux
6
, Apache

7
, BusyBox

8
, and Marlin

9
repositories as the units of

analysis. In all cases, we analyze the master branch of the repository. We focus on bugs already

corrected in commits to the repositories. These bugs have been publicly discussed (usually on

the project’s mailing list or issue tracker) and confirmed as actual bugs by the developers, so the

information about the nature of the bug fix is reliable, and we minimize the chance of including

fictitious problems.

3.3 Part 1: Finding Variability Bugs
The large commit history of the projects rules out manual investigation of each commit. We have

settled on a semi-automated search through the project’s commits and issue tracking system (mostly

for Marlin) to find variability bugs via historic bug fixes.

We have thus searched through the commits for variability bugs using the following steps:

(1) Selecting variability-related commits.We retain commits whosemessage indicates a variability-
related change; or whose patch appears to alter the feature model (in the case of Linux and

BusyBox, as Apache and Marlin do not use KConfig), the feature mapping, or configuration-

dependent code. This is achieved by matching regular expressions of Fig. 2. (We always

perform case-insensitive matching of regular expressions.) Expressions in Fig. 2(a) identify

commits in which the author’s message relates the commit to specific features. Those in

Fig. 2(b) identify commits introducing changes to the (KConfig) feature model, the (Cpp)

feature mapping, or code near an #if conditional. In our search we exclude merges as such
commits do not carry changes. The selection of keywords was based on our understanding

of the systems, and manual analysis of code and commit messages to identify what kind of

keywords are used. Linux and BusyBox follow the pattern of using CONFIG_fid to define

feature names and refer to them in the commit message, while Apache uses HAVE_fid and

HAS_fid. Marlin, however, does not employ either of the two patterns. At the time of our

5
http://cloc.sourceforge.net/

6
http://git.kernel.org/

7
http://git.apache.org/httpd.git

8
http://git.busybox.net/busybox/

9
http://github.com/MarlinFirmware/MarlinDev
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Regular expressions:

configuration
config option
(HAS|HAVE)_f id
if f id is (not)? set
when f id is (not)? set
if f id is (en |dis)abled
when f id is (en |dis)abled
(CONFIG|ENABLE|FEATURE)_f id

(a) Message filters.

Regular expressions:

#if
#else
#elif
#endif
select f id
config f id
depends on f id

(b) Content filters.

Fig. 2. Regular expressions selecting configuration-related commits in: (a) message, (b) content; f id abbrevi-

ates [A-Z0-9_]+, matching feature identifiers.

study analysis, Marlin used simple feature names without having a well-in-place method for

defining them. We used previous knowledge of the system [51] and grep to identify unique

feature identifiers, and used those in combination with few regular expressions as explained

next to detect variability-related commits.

(2) Selecting bug-fixing commits. We further narrow to commits that potentially fix bugs and

thus, together with the previous filter, we obtain candidates to variability bug-fixes. This is

achieved by matching regular expressions of Fig. 3 against the commit message. Expressions

in Fig. 3(a) are generic keywords that can appear in any bug-fixing commit’s message or

in any issue report. At the Linux Kernel Summit 2013 conference, the convention to add a

“Fixes:” footer to the commit message to identify bug-fixing commits was established.
10
For

instance, the regular expression fix (case insensitive) will match commits adhering to this

new convention, at least in the case of Linux. We used an iterative process for finding regular

expressions that can match a diverse sample, based on our understanding and examining the

systems. For example, we searched for commit messages that used memory leak as keyword

and identified potential bug-related keywords. Several Linux commits use the keyword oops
to indicate a possible kernel crash. Expressions in Fig. 3(b) try to identify bug-fixing commits

for specific types of bugs, such as references to void-pointer dereferences (void *), undefined
symbols (undefined), uninitialized variables (uninitialized), and a variety of memory

errors (overflow, memory leak, etc.). Different combinations of keywords select different

number of commits: generic keywords may select still thousands of commits in Linux, while

specific keywords may select only a few hundreds or tens.

(3) Manual scrutiny. Finally, we read the commit message or the issue, and inspect the changes in-

troduced by the commit to remove false positives. For instance, commit 7518b5890dmatches

our regular expression from Fig. 2(a), as the commit message refers to CONFIG_OF_DYNAMIC,
yet once we examined the complete commit message we understood that it does not fix

a bug, but adds new functionality. Especially in the case of Marlin, where often commit

messages simply refer to an issue number —e.g. “Fix #150”, the issue tracking system contains

valuable information for triaging. We down prioritize very complex commits as these are

more difficult to understand and to extract and examine error traces. A very complex commit

either introduces more than a few changes (we choose a cut-off value of ten), or affects very
complex subsystems (an example from Linux is the kernel/sched subsystem). The ideal

10
http://lkml.iu.edu/hypermail/linux/kernel/1310.3/01046.html

ACM Transactions on Software Engineering and Methodology, Vol. X, No. X, Article X. Publication date: October 2017.

http://lkml.iu.edu/hypermail/linux/kernel/1310.3/01046.html


Variability Bugs in Highly-Configurable Systems:

AQualitative Analysis X:9

Regular expressions:

bug
fix
oops
warn
error
unsafe
invalid
closes \#
violation
end trace
kernel panic

(a) Generic bug filters.

Regular expressions:

unused
void \*
overflow
undefined
double lock
memory leak
uninitialized
dangling pointer
null dereference
null pointer dereference
. . .

(b) Specific bug filters.

Fig. 3. Regular expressions selecting bug-fixing commits: (a) generic, (b) problem specific.

commit has an elaborated message providing some form of error trace, and introduces few

modifications.

3.4 Part 2: Analysis of Bug Candidates
This part of the methodology requires considerable effort in the sense that, for each variability

bug identified, we manually analyze the commit message, the patch fix, and the actual code to

build an understanding of the bug. Aside from variability, the bugs involve undisciplined #ifdef
annotations, intraprocedural dataflow, function pointers, and pointer aliasing. When more context

is required, we find and follow the associated discussion on the repository’s mailing list or issue

tracker. Code inspection is supported by ctags
11
and the Unix grep utility, since we lack feature-

sensitive tool support. This step requires some knowledge of the system’s internals in order to

successfully understand the bug. Note that we do not focus on a specific way of finding variability

bug candidates, by using only commit message or only the issue tracking system. We use both

available sources, especially for smaller subjects, where the amount of the potential bug candidates

is smaller. In this step we are interested in understanding the bug and not on analyzing the quality

of the commit or of the bug report. The commits helped us finding bugs and understanding the

bug’s nature.

(1) The semantics of the bug. For each variability bug we want to understand the cause of the bug,
the effect on the program semantics and the relation between the two. This often requires

understanding the inner workings of the project, and translating this understanding to general

programming language terms accessible to a broader audience. As part of this process we try

to identify a relevant runtime execution trace and collect links to available information about

the bug online.

(2) Variability related properties.We establish what is the presence condition of a bug (precon-

dition in terms of configuration choices) and where it was fixed: in the code, in the feature

model or in the mapping.

(3) Simplified version. We condense our understanding in a simplified version of the bug. This
serves to explain the original bug, and constitutes an easily accessible benchmark for testing

and evaluating tools. In addition, we generate single-function versions from the simplified

11
http://ctags.sourceforge.net/

ACM Transactions on Software Engineering and Methodology, Vol. X, No. X, Article X. Publication date: October 2017.

http://ctags.sourceforge.net/


X:10Iago Abal, Jean Melo, S, tefan Stănciulescu, Claus Brabrand, Márcio Ribeiro, and Andrzej Wąsowski

versions of the bugs, intended to help researchers test intraprocedural analyses for the same

problem.

(4) Simplified patch. Last but not least, we also provide a simplified patch of the bug. Seeing how

the bug has been fixed, will help researchers to comprehend the problem.

We analyzed bugs from the previous step (cf. Sect. 3.3) following this method. We stored the reports

from our analyses in a publicly available database. The detailed content of the report is explained

in Sect. 4.

3.5 Part 3: Data Analysis and Verification
We reflect on the set of collected data in order to find answers to our research questions. This

step is supported with some quantitative data but, importantly, we do not make any quantitative

conclusions about the population of the variability bugs in our subject systems (such conclusions

would be unsound given the above research method). The analysis purely characterizes diversity

of the data set obtained. It allows us to present the entire collection of bugs in an aggregated

fashion (e.g., see Sect. 5). We see this qualitative analysis as an important stepping stone towards a

representative analysis about the bugs: any such analysis requires building tools. The qualitative

analysis indicates which tools should be build.

Finally, in order to reduce bias we confront our method, findings, and hypotheses in an interview

with a full-time professional Linux kernel developer.

4 DIMENSIONS OF ANALYSIS
We begin by selecting a number of properties of variability bugs to understand, analyze and

document in bug reports. These are described below and exemplified by data from our database.

We show an example record in Fig. 4, a null-pointer dereference bug found in a Linux driver, which

was traced back to errors both in the feature model and the mapping.

Type of Bug (type). In order to understand the diversity of variability bugs we establish the type of

bugs according to the Common Weakness Enumeration (CWE)
12
—a catalog of numbered software

weaknesses and vulnerabilities. We follow CWE since it had already been applied to the Linux

kernel [50]. However, since CWE is mainly concerned with security, we had to extend it with a few

additional types of bugs, including type errors, incorrect uses of Linux APIs, among others. The

types of bugs that we found are listed in Fig. 8; our additions lack an identifier in the CWE column.

Note that we categorize each bug mostly by its effect as opposed to its cause. This means that,

for example, broken #ifdef statements or unsatisfiable presence conditions are not considered

as a bug type, but rather a potential cause of the bug. For instance, Linux commit 66517915e0913

fixed an undeclared identifier error caused by a wrong presence condition. The bug types directly

indicate what kind of analysis and program verification techniques can be used to address the bugs

identified in the analyzed systems. For instance, the category of memory errors (Fig. 8) maps almost

directly to various program analyses: for null pointers [14, 24, 28], buffer overruns [10, 22, 58],

memory leaks [14, 24], etc.

Bug Description (descr). Understanding a bug requires rephrasing its nature in general software

engineering terms, so that the bug becomes understandable for non-experts. We obtain such a

description by studying the bug in depth, and following additional available resources (such as

mailing list discussions, available books, commit messages, documentation and online articles).

Whenever use of domain-specific terminology is unavoidable, we provide links to the necessary

12
http://cwe.mitre.org/

13
http://vbdb.itu.dk/#bug/linux/6651791
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- 6252547b8a7 -

type: Null pointer dereference

descr: Null pointer on !OF_IRQ gets dereferenced if
IRQ_DOMAIN.

In TWL4030 driver, attempt to register an IRQ domain
with a NULL ops structure: ops is de-referenced when
registering an IRQ domain, but this field is only set
to a non-null value when OF_IRQ.

config: TWL4030_CORE && !OF_IRQ

bugfix:

repo: git://git.kernel.org/pub/.../linux-stable.git

hash: 6252547b8a7acced581b649af4ebf6d65f63a34b

layer: model, mapping

trace:
. dyn-call drivers/mfd/twl-core.c:1190:twl_probe()
. 1235: irq_domain_add(&domain);
.. call kernel/irq/irqdomain.c:20:irq_domain_add()
... call include/linux/irqdomain.h:74:irq_domain_to_irq()
... ERROR 77: if (d->ops->to_irq)

links:
* [I2C](http://cateee.net/lkddb/web-lkddb/I2C.html)
* [TWL4030](http://www.ti.com/general/docs/...)
* [IRQ domain](http://lxr.gwbnsh.net.../IRQ-domain.txt)

(a) Bug record.

1 #include <stdlib.h>
2

3 #ifdef CONFIG_TWL4030_CORE // ENABLED
4 #define CONFIG_IRQ_DOMAIN
5 #endif
6

7 #ifdef CONFIG_IRQ_DOMAIN // ENABLED
8 int irq_domain_simple_ops = 1;
9

10 void irq_domain_add(int *ops) { →(6)

•11 int irq = *ops; // ERROR (7)×

12 }
13 #endif
14

15 #ifdef CONFIG_TWL4030_CORE // ENABLED
16 void twl_probe() { →(3)

17 int *ops = NULL; (4)

18 #ifdef CONFIG_OF_IRQ // DISABLED |

19 ops = &irq_domain_simple_ops; |

20 #endif |

21 irq_domain_add(ops); (5)→

22 }
23 #endif
24

•25 int main(void) { ⇒(1)

26 #ifdef CONFIG_TWL4030_CORE // ENABLED ↓

27 twl_probe(); (2)→

28 #endif
29 return 0;
30 }

(b) Simplified version.

Fig. 4. An example of a bug record and a simplified version of variability bug 6252547b8a7.

background. Obtaining the description is often non-trivial. For example, one bug in our database

(Linux commit eb91f1d0a53) was fixed with the following commit message:

Fixes the following warning during bootup when compiling with CONFIG_SLAB:

[ 0.000000] ------------[ cut here ]------------
[ 0.000000] WARNING: at kernel/lockdep.c:2282 lockdep_trace_alloc+0x91/0xb9()
[ 0.000000] Hardware name: [ 0.000000] Modules linked in:
[ 0.000000] Pid: 0, comm: swapper Not tainted 2.6.30 #491
[ 0.000000] Call Trace:
[ 0.000000] [<ffffffff81087d84>] ? lockdep_trace_alloc+0x91/0xb9
...

It is summarized in our database as:

Warning due to a call to kmalloc() with flags __GFP_WAIT and interrupts enabled

The SLAB allocator is initialized by start_kernel() with interrupts disabled. Later in this process, setup_-

cpu_cache() performs the per-CPU kmalloc cache initialization, and will try to allocate memory for these

caches passing the GFP_KERNEL flags. These flags include __GFP_WAIT, which allows the process to sleep

while waiting for memory to be available. Since, interrupts are disabled during SLAB initialization, this may

lead to a deadlock. Enabling LOCKDEP and other debugging options will detect and report this situation.

We add a one-line header to the description, here shown in bold, to help identification and listing

of bugs.

Program Configurations (config). In order to confirm that a bug is indeed a variability bug we

investigate under what presence condition it appears. To do so, we do a manual in-depth analysis
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for every bug found by looking at the feature model (e.g., KConfig) and the mapping (e.g., Makefile)

to determine which features must be enabled/disabled in order for the bug to occur. This allows to

rule out bugs that appear unconditionally and enables further investigation of variability properties

of the bug, for example, the number of features and nature of dependencies that enable the bug.

Our example bug (Fig. 1) is present when DECR is enabled but INCR is disabled. The Linux bug
captured in Fig. 4(b) requires enabling TWL4030_CORE, and disabling OF_IRQ, in order to exhibit the

erroneous behavior (see config entry in the left part).

Bug-Fix Layer (layer).We analyze the fixing commit to establish whether the source of the bug

is in the code, in the feature model, or in the mapping. Understanding this can help direct future

research on building diagnostics tools: are tools needed for analyzing models, mappings, or code?

Where is it best to report an error?

The bug of Fig. 4 has been fixed both in the model and in the mapping (cf. Fig. 5). The fixing

commit asserts that: first, TWL4030_CORE should not depend on IRQ_DOMAIN (fixed in the model),

and, second, that the assignment of the variable ops to &irq_domain_simple_ops is part of the
IRQ_DOMAIN code and not of OF_IRQ (fixed in the mapping). Note that we put all changes made in

the feature model (i.e., KConfig) into the header of the simplified bug version.

Error Trace (trace). We manually analyze the execution trace that leads to the error state. Slicing

tools cannot easily be used for this purpose, as none of them is able to handle static preprocessor

directives appropriately. Constructing a trace allows us to understand the nature and complexity of

the bug. A documented failing trace allows other researchers to understand a bug much faster.

There are two types of entries in our traces: function calls and statements. Function call entries

can be either static (tagged call), or dynamic (dyn-call) if the function is called via a function

pointer (which is common). A statement entry highlights relevant changes in the program state.

Every entry starts with a non-empty sequence of dots indicating the nesting of function calls,

followed by the location of the function definition (file and line) or statement (only the line). The

statement in which the error is manifested is marked with an ERROR label.
In Fig. 4(a) the trace starts in the driver loading function (twl_probe). This is called from

i2c_device_probe at drivers/i2c/i2ccore.c, the generic loading function for I2C14
drivers,

through a function pointer (driver->probe). A call to irq_domain_add passes the globally-

declared struct domain by reference, and the ops field of this struct, now aliased as *d, is dereferenced
(d->ops->to_irq).

The ops field of domain is not explicitly initialized, so it has been set to null by default (as

dictated by the C standard). Thus the above error trace unambiguously identifies a path from the

loading of the driver to a null-pointer dereference, when OF_IRQ is disabled. Had OF_IRQ been

enabled, the ops field would have been properly initialized prior to the call to irq_domain_add.

Simplified Bug.We synthesize a simplified version of the bug capturing its most essential properties.

We write a small C99 program, independent of the kernel code, that exhibits the same essential

behavior, and the same essential problem. The obtained simplified bugs are easily accessible for

researchers who would like to try program verification and analysis tools without integrating with

each project’s build infrastructure, huge header files and dependent libraries, and, most importantly,

without understanding the inner workings of these projects. Furthermore, the entire set of simplified

bugs constitute an easily accessible benchmark suite derived from real bugs occurring in four highly

configurable systems, which can be used to evaluate bug finding tools on a smaller scale.

The simplified bugs are derived systematically from the error trace. Along this trace, we preserve

relevant statements and control-flow constructs, mapping information and function calls. We keep

14
A serial bus protocol used in micro controller applications.
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@@ -1,8 +1,4 @@
#include <stdlib.h>

-#ifdef CONFIG_TWL4030_CORE
-#define CONFIG_IRQ_DOMAIN
-#endif
-
#ifdef CONFIG_IRQ_DOMAIN
int irq_domain_simple_ops = 1;
@@ -15,9 +11,9 @@
#ifdef CONFIG_TWL4030_CORE
void twl_probe() {
+ #ifdef CONFIG_IRQ_DOMAIN

int *ops = NULL;
- #ifdef CONFIG_OF_IRQ

ops = &irq_domain_simple_ops;
- #endif

irq_domain_add(ops);
+ #endif
}

#endif

Fig. 5. Simplified patch for the simplified bug

from Figure 4(b).

1 #include <stdlib.h>
2

3 #ifdef CONFIG_TWL4030_CORE // ENABLED
4 #define CONFIG_IRQ_DOMAIN
5 #endif

6

7 #ifdef CONFIG_IRQ_DOMAIN // ENABLED
8 int irq_domain_simple_ops = 1;
9 #endif

10

•11 int main(void) { ⇒(1)

12 #ifdef CONFIG_TWL4030_CORE // ENABLED ↓

13 int *ops = NULL; (2)

14 #ifdef CONFIG_OF_IRQ // DISABLED |

15 ops = &irq_domain_simple_ops; |

16 #endif |

•17 int irq = *ops; // ERROR (3)×

18 #endif

19 return 0;
20 }

Fig. 6. Single-function version of the simplified bug from

Figure 4(b).

the original identifiers for features, functions and variables. However, we abstract away dynamic

dispatching via function pointers, structure types, void pointers, casts, and any project specific type,

whenever this is not relevant for the bug. For this reason, these simplified versions only represent

the original bug from the variability perspective. In particular, if a tool finds one of our simplified

bugs, that does not imply that it will find the real bug too. When there exist dependencies between

features, we force valid configurations with #define. This encoding of feature dependencies has
the advantage of making the simplified bug files self-contained.

Figure 4(b) shows the simplified version of our running example bug with null pointer dereference.

Lines 4–6 encode a dependency of TWL4030_CORE on IRQ_DOMAIN, in order to prevent the invalid

configuration TWL4030_CORE ∧ ¬IRQ_DOMAIN. We encourage the reader to study the execution

trace leading to a crash by starting from main at line 25. This takes a mere few minutes, as opposed

to many hours necessary to obtain an understanding of a Linux kernel bug normally. Note that the

trace is to be interpreted under the presence condition from the bug record (enabling/disabling

decisions are specified in comments next to the #if conditionals).

Simplified Patch. For the same reasons that motivated simplified bugs, we create a simplified patch

for each simplified bug that resembles the original bug-fix. A simplified patch helps to understand

a bug by explaining how and where it has been fixed. A simplified patch is representative of the

real patch when the fix is implemented in the mapping, or in the model. Fixes in the code are

represented as faithfully as the simplified bug manages to resemble the real bug.

Figure 5 shows the simplified patch for the simplified bug 6252547b8a7 (cf. Fig. 4(b)). The patch

is given in unified diff format (diff -U2). To fix the bug, the commit message says that the feature

OF_IRQ, which encompasses ops = &irq_domain_simple_ops, should be removed and wrapping

the IRQ domain bits of the driver with IRQ_DOMAIN instead. Besides that, TWL4030_CORE should

not depend on IRQ_DOMAIN.
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Fig. 7. Screenshot of VBDb (bug from Fig. 4).

Single-Function Bug. We also provide single-function versions of the bugs, which are derived from

the already simplified versions. Figure 6 shows a single-function bug corresponding to the simplified

bug from Fig. 4(b). Single-function bugs are intended to assist the development and evaluation of

intraprocedural analysis tools, but can also be useful while debugging interprocedural tools. These

single-function versions further help understanding the essence of variability bugs, especially for

bugs with deep function call graphs such as eb91f1d0a53.
To generate each intraprocedural version, we simply take the main method and transitively

inline all function calls. Note that for some bugs related to function-calls, a single-function version

does not make sense as it would abstract away the bug itself. For instance, bug 7c6048b7c83, which
is an undefined function bug, cannot have a single-function version as it would not fail to compile

as it ought to (i.e., it would not preserve the error of the original bug).

Traceability Information. We store the URL of the repository, in which the bug fix is applied,

the commit hash, and links to relevant context information about the bug, in order to support

independent verification of our analysis.

We have put all of the studied bugs along with all the information recorded for each of them

online with a Web User Interface: http://VBDb.itu.dk/. The raw data is also available online.
15

Figure 7 shows a screenshot of our Web UI database for our sample bug 6252547b8a7 from Fig. 4.

15
https://bitbucket.org/modelsteam/vbdb/src
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L bug type CWE M B A Σ
7 declaration errors: 4 5 9 25

4 undefined function – 2 2 8

2 undeclared identifier – 4 2 7 15

1 multiple function definitions – 1

undefined label – 1 1

10 resource mgmt. errors: 4 5 19

5 uninitialized variable 457 2 1 8

1 memory leak 401 1 2 4

1 use after free 416 1 1 3

2 duplicate operation 675 0 2

1 double lock 764 1

file descriptor leak 403 1 1

11 memory errors: 1 2 4 18

4 null pointer dereference 476 2 2 8

3 buffer overflow 120 1 2 6

3 read out of bounds 125 3

1 write on read only – 1

8 logic errors: 2 3 1 14

5 fatal assertion violation 617 5

2 non-fatal assertion violation 617 2

1 behavioral violation 440 2 3 1 7

4 type errors: 4 1 1 10

2 incompatible types 843 2 1 1 6

1 wrong number of func. args. 685 2 0 3

1 void pointer dereference – 1

2 dead code: 3 2 7

1 unused variable 563 3 4

1 unused function 561 2 3

1 arithmetic errors: 3 4

1 numeric truncation 197 1

integer overflow 190 3 3

validation errors: 1 1

OS command injection 078 1 1

43 TOTAL – 14 18 23 98

Fig. 8. Types of variability bugs in our study of Linux [1] and all of VBDb. (L is for Linux, M is for Marlin, B

is for BusyBox and A is for Apache.)

5 ARE VARIABILITY BUGS LIMITED TO SPECIFIC TYPE OF BUGS, FEATURES, OR
LOCATIONS (RQ1)?

In the following, we sometimes aggregate data with numbers. The numbers are used solely to

describe the collected sample—no statistical conclusions about the broader bug population should

be drawn from them. The reader can use these numbers to get an aggregated characterization of

the data in the variability bugs database. That is, the figures presented here serve exclusively to

characterize population of bugs we found, not to hint at any representative bug distribution. To

emphasize this limited significance of numbers we typeset them in gray.

We start by presenting the observations that support our first research question:

Confirmed observation 1: Variability bugs are not be limited to any particular type

of bug.
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L #occurrences of a feature M B A Σ

71 occurs in one VBDb bug: 17 27 24 139

71 once (1x) 17 27 24 139

12 occurs in 2+ VBDb bugs: 2 1 1 16

8 twice (2x) 1 9

4 thrice (3x) 2 6

four times (4x) 0

five times (5x) 1 1

83 TOTAL 19 28 25 155

Fig. 9. Features involved in variability bugs in Linux and all of VBDb.

Figure 8 lists the type of variability bugs found in the exploratory study of 43 variability bugs in

Linux, along with occurrence frequencies in Linux (leftmost column, labeled L for Linux) and

associated CWE number whenever applicable (third column). We return to the four rightmost

columns shortly. For now, observe that all bug types have been grouped into eight broad error

categories, ranging from declaration errors to arithmetic errors (and one category, validation errors,
not occurring in the Linux bugs). The groups are shown in gray background with accumulated

sub-totals corresponding to each category. For instance, we can see that four of the Linux bugs

involved null-pointer dereferences (CWE 476) in the broad category memory errors, harboring 11 of

the Linux bugs.

The prior study hypothesized that variability bugs—in general—span a wide range of qualitatively

different types of bugs [1]. In Figure 8, we see that the variability bugs in Linux span 21 different

kinds of bugs, falling into seven broad categories.

We now test the hypothesis by considering the results of our confirmatory case study of three

independent systems with variability. The right columns testify how many times a given bug type

occurs in each of the systems: M for Marlin, B for BusyBox, and A for Apache. We confirm that,

in general: variability bugs are not limited to any particular type of bugs. Just like for Linux, the
variability bugs encountered in these systems, also fall into qualitatively different categories.

Considering all bugs in the four systems (the Σ column), we see that a staggering 42 of all the

variability bugs are caught by the compiler at build time, if compiled in the appropriate configuration:

25 declaration errors, 10 type errors, and seven cases of dead code. Despite the compiler checks,

the bugs had been admitted to the code repositories. Since build errors cannot easily be ignored,

we take this as evidence that the authors of the commits, and the maintainers that accepted them,

were unaware of the bugs, presumably because they did not compile the code in configurations

that exhibit the bugs (compiler checks are not family-based).

It appears that conventional automatic code analyzers targeting individual program configura-

tions are insufficient. In order to find the variability bugs in VBDb, analyzers that are able to cope

with variability seem to be needed.

Confirmed observation 2: Variability bugs are not restricted to any specific error

prone feature.

Figure 9 shows the number of times a feature is involved in the bugs. We see that the Linux bugs

involve a total of 83 different features, ranging from debugging options (e.g., QUOTA_DEBUG and

LOCKDEP), through device drivers (TWL4030_CORE and ANDROID), and network protocols (VLAN_8021Q
and IPV6), to computer architectures (PARISC and 64BIT). As many as 71 of these features are

involved only in a single bug; eight are involved in two bugs; and only four features occur in three

of the Linux bugs. Thus, there are no obvious particularly “error-prone features” in Linux.
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Let us confront the hypothesis with the three systems in our confirmatory case study (the

columns: M, B, and A). For example, for BusyBox, we see only one feature, CLEAN_UP that is involved
in two bugs. In fact, only one feature in Apache that stands out, namely, APR_HAS_SHARED_MEMORY,
which is implicated in five variability bugs. Investigation, however, reveals that four of those

occurrences are related to Ldap which, at the time, was an experimental module, thus temporarily

of lower quality than others.

In total, the vast majority of features are involved only in a single bug in our collection (139 out

of 155, see the Σ column). Only nine features are involved in two bugs and six features in three bugs.

The consequence of variability bugs not being concentrated around certain error-prone features,

is that variability analyzers and sampling strategies for testing and analysis should target system

features broadly, not selectively.

Confirmed observation 3: Variability bugs are not confined to any specific location
(file or subsystem).

Figure 10(d) shows a visualization of the organization and relative size of each subsystem in Linux

along with the locations of the bugs in our collection. The size of each subsystem is measured in

lines of code (LOC); a square (regardless of color) represents 25 KLOC. For instance, the kernel/
subsystem with six squares, has approximately 150 KLOC constituting about 1% of the Linux code.

Superimposed onto the size visualization, the figure also shows in which directories the bugs occur.

A bug is visualized as a red (darker) square. With five red (dark) squares, the aforementioned

directory kernel/ thus houses five of our VBDb variability bugs. Note carefully that there are two

units used in the diagram: LOC represented by the number of squares, and the number of bugs

represented by the number of red squares. This is a discrete variant of a visualization using two

curves of different units in a single graph, where correlation of their dynamics is relevant. It allows

us to show the number of bugs with respect to the size of the subsystem in LOC.

We approximate subsystems by existing directory structure. The figure abstracts away smaller
subsystems accounting for less than 0.1% such as virt/ (8.1k), as well as infrastructure16 subsystems

such as tools/ (133.1k) and scripts/ (48.1k). None of these directories contained any of our bugs.

We found bugs in ten of the main subsystems in Linux (cf. Fig. 10(d)), suggesting that variability

bugs do not appear to be confined to any specific subsystem. The bugs occur in qualitatively

different subsystems of Linux ranging from networking (net/) to device drivers (drivers/, block/),
to filesystems (fs/), or encryption (crypto/). Note that Linux subsystems are often maintained and

developed by different people, which adds to diversity of our collection.

For testing the hypothesis, we collected the corresponding data for the other cases (cf. Fig-

ures 10(a), 10(b), and 10(c)). For Marlin, a square visualizes 100 LOC whereas for BusyBox and

Apache a square denotes 500 LOC. For Marlin which does not have an appropriate directory

structure, we use a logical organization into subsystems. As before, we abstract away smaller
subsystems.

As for Linux, variability bugs in the other systems appear to not be confined to any particular

subsystems. In fact, only two out of eight subsystems of Marlin do not house any of our bugs. For

BusyBox, only three out of 14 subsystems are not represented in VBDb. For Apache, only two out

of seven subsystems do not harbor bugs.

The consequence for variability bug hunters, is that there are no short-cuts with respect to

subsystems; the analysis needs to target the entire code-base broadly.

16
E.g., examples, scripts, documentation, and build infrastructure.
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main

10k (24%)

config

8k (19%)

lcd

6k (14%)

language

5k (12%)

movement

4k (9%)

cardreader

3k (8%)

pins

3k (7%)

temperature

3k (6%)

(a) Marlin: ■ (possibly red) = 100 LOC; ■ = 1 bug.xxxxxx

e2fsprogs

30k (15%)

networking

29k (14%)

shell

18k (9%)

util-linux

17k (8%)

libbb

15k (7%)

archival

14k (7%)

coreutils

11k (6%)

miscutils

11k (5%)

editors

10k (5%)

procps

5k (3%)

modutils

5k (2%)

main

5k (2%)

...

sysklogd

1k (.6%)

init

1k (.5%)

(b) BusyBox: ■ (possibly red) = 500 LOC; ■ = 1 bug.

modules

128k (66%)

server

46k (23%)

support

9k (5%)

include

5k (3%)

main

4k (2%)

os

2k (1%)

test

1k (.6%)

(c) Apache: ■ (possibly red) = 500 LOC; ■ = 1 bug.xxxxxx

drivers

7.5M (59%)

arch

2.0M (16%)

fs

817k (6%)

sound

639k (5%)

net

609k (5%)

include

404k (3%)

kernel

151k (1%)

lib

73k (.6%)

crypto

69k (.5%)

mm

67k (.5%)

security

50k (.4%)

block

24k (.2%)

(d) Linux: ■ (possibly red) = 25,000 LOC; ■ = 1 bug.

Fig. 10. Project structure and relative size of subsystems vs location of bugs in VBDb. Note: The figure serves

exclusively to characterise population of bugs (including their locations), not to hint at any representative

bug distribution.
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Conclusion for RQ1
We are now ready to answer RQ1. Based on analyzing four highly-configurable systems, we conclude

that:

Conclusion 1: Variability bugs are not confined to any particular type of bug, error-
prone feature, or location.

In total, we have found 98 variability bugs falling in 25 different types of error categories, involving

155 distinct features, and spread out in over 30 different subsystems in the four systems investigated.

Variability is ubiquitous. There appears to be no specific nature of variability bugs that could

be exploited. If analysis tools were to focus on particular flavors of variability bug during family-

based analysis, they would thus fail to detect large classes of errors (the flavors not focussed

on). Consequently, the analysis of variability bugs in highly-configurable systems needs to be

targeted widely at all types of bugs, all kinds of features, and all subsystems. This conclusion

is also interesting from the point of view of understanding the reasons for which bugs appear.

Appearing everywhere, variability bugs hint that it is the variability itself that enables or amplifies

their introduction (possibly standalone, or in concert with other aspects of system complexity).

Perhaps this is not so surprising, but now we can confirm these folkloric hypotheses with evidence
in terms of hard data. Further, the tremendous variation among the bugs in the VBDb collection

itself provides a useful resource for further research on variability bugs and bug finders. In fact,

VBDb has already been used in a variety of recent publications [2, 29, 39]. (We elaborate on this in

Section 9.)

6 IN WHATWAYS DOES VARIABILITY AFFECT BUGS (RQ2)?
We now turn to evidence regarding research question RQ2:

Confirmed observation 4: Variability bugs may involve non-locally defined features
(i.e., features defined in another subsystem than where the bug occurred).

In Linux, we have identified 30 bugs that involve non-locally defined features. Understanding

such bugs involves functionality and features from different subsystems, while most Linux de-

velopers are dedicated to a single subsystem. For example, bug 6252547b8a7 (Fig. 4) occurs in

the drivers/ subsystem, but one of the interacting features, IRQ_DOMAIN, is defined in kernel/.
Bug 0dc77b6dabe, which occurs in the loading function of the extcon-class module (drivers/), is
caused by an improper use of the sysfs virtual filesystem API—feature SYSFS in fs/. We confirmed

with a Linux developer that cross-cutting features constitute a frequent source of bugs.

We now use our three replication systems to test the hypothesis that variability bugs may involve

features defined in “remote” subsystems. However, among the three systems considered, only

BusyBox permits local feature models where KConfig files may be nested to define features that

are local to subsystems. We thus note that not all highly-configurable systems have a concept of

local features.
In BusyBox, we identified seven cases of non-locally defined features that testify that bugs

may involve variability cross-cutting remote locations in the code. For instance, bug 5cd6461b6fb
occurs due to a wrong format parameter to printf() whenever the feature LFS (large file support)

is enabled. The error occurs in networking/whereas the LFS feature is defined in the util-linux/
directory.

For developers of highly-configurable systems, this observation means that when modifying

one subsystem, they cannot simply ignore features in other subsystems. Feature definitions may

be scattered across subsystems. For tools, this means that they cannot simply zoom in on one

subsystem without taking the features defined in other subsystems into consideration.
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1 #ifdef CONFIG_VLAN_8021Q // DISABLED |

2 void vlan_hwaccel_do_receive() { |

3 ... |

4 } |

5 #else // ENABLED ↓

6 void vlan_hwaccel_do_receive() { →(3)

•7 BUG(); // ERROR (4)×

8 }
9 #endif

10

•11 void __netif_receive_skb() ⇒(1)

12 vlan_hwaccel_do_receive(); // USAGE (2)→

13 }

Fig. 11. Excerpt from bug 0988c4c7fb5 illustrating a configuration-dependent definition of a function. In line

12, the function vlan_hwaccel_do_receive is invoked. The actual code run, however, will depend on the

configuration. If the feature VLAN_8021Q is enabled, the function is defined in lines 2–4 will run; otherwise,

the function is defined in lines 6–8 will run (which provokes an assertion violation in line 7).

Confirmed observation 5: The use of a function, variable, macro, or type may involve

implicit variability caused by configuration-dependent definitions.

We investigated configuration-dependent definitions (functions, variables, macros, and types) that

are defined differently in different configurations, or conditionally defined in only some configura-

tions whose use in other configurations provokes an error. Configuration-dependent definitions

complicate the identification of variability-related problems as the variability is implicit, most often

hidden in a header file, or in another translation unit. Even if variability is explicit in the definition,

it is not visible at the usage location.
In Linux, for instance, bug 242f1a34377 involves a conditionally dependent definition; the func-

tion crypto_alloc_ablkcipher() is only defined whenever CRYPTO_BLKCIPHER is enabled. The
bug occurs due to a function call to crypto_alloc_ablkcipher() in another file, leading to an

undefined function error (Fig. 8) when CRYPTO_BLKCIPHER is disabled.
For an example of different definitions in different configurations, consider Linux bug 0988c4c7fb5.

Figure 11 shows an exerpt of this bug. Here, the function vlan_hwaccel_do_receive() is called
if a VLAN-tagged network packed is received. This function, however, has two different defini-

tions depending on whether feature VLAN_8021Q is present or not. (In reality, the two alternative

functions are defined in different files.) Variants without VLAN_8021Q support are compiled with a

mockup-implementation of this function that unconditionally enters an error state. The definition

clearly involves variability. Its use, however, shows no apparent involvement of variability. Decep-

tively, the definition of the function itself (in lines 6–8), appears to involve no variability. However,

since the function definition is wrapped inside a conditional #ifdef annotation, the error will only

occur whenever the feature VLAN_8021Q is disabled.
Another example is bug 0f8f8094d28, where a variability-dependentmacro definition is involved.

It can be regarded as a simple out of bounds access to an array, except that the length of the array

(KMALLOC_SHIFT_HIGH+1) is architecture-dependent, and only the PowerPC architectures, and

only for a particular virtual page size, are affected. Macro KMALLOC_SHIFT_HIGH has alternative

definitions at different source locations.

Perhaps an even more subtle example of implicitly variable code is a conditional if statement

with guard on the size of a type: for instance (sizeof(type) != 0), which introduces dependency

of code execution on a type being defined as non-empty under some feature condition. Type

ACM Transactions on Software Engineering and Methodology, Vol. X, No. X, Article X. Publication date: October 2017.



Variability Bugs in Highly-Configurable Systems:

AQualitative Analysis X:21

L layer M B A Σ

39 single layer: 14 17 23 93

28 code 11 7 14 60

5 mapping 3 9 9 26

6 model – 1 – 7

4 multiple layers: 1 5

2 code & mapping 1 3

1 mapping & model – – 1

1 code & mapping & model – – 1

43 TOTAL 14 18 23 98

Fig. 12. Bug-fixing layers.

declarations are typically made in header files, and they are not immediately visible in the use

place. Such cases are rather difficult to handle by simple extensions to single-program analyzers, as

variability in the imperative code is mixed with the variability in the type language of the program

(and even worse so via size properties of types). An example of such implicit variability can be

found in bug 218ad12f42e, involving a selected field in the structure type rwlock_t.
It turns out that implicit variability likely appears in Linux’s source code due to internal coding

conventions. The following coding guidelines on #ifdef usage from How to Get Your Change Into
the Linux Kernel17 advises:

“Code cluttered with ifdefs is difficult to read and maintain. Don’t do it. Instead, put your
ifdefs in a header, and conditionally define ‘static inline‘ functions, or macros, which are
used in the code.”

We now consider configuration-dependent definitions involved in variability bugs in our three

independent systems.

In Marlin, bug 831016b, for instance, involves the function, lcd_setstatus, which is defined

to take two arguments when the feature ULTRA_LCD is enabled and only one argument whenever

ULTRA_LCD is disabled. However, whenever SDSUPPORT is enabled and ULTRA_LCD is diabled (2-

degree bug), lcd_setstatus is erroneously invoked with two arguments (instead of one).
In BusyBox, bug bc0ffc0e971 involves a function called delete_eth_table() that has two

different definitions depending on whether feature CLEAN_UP is enabled or not. Variants without

CLEAN_UP are compiled with a mockup implementation of this function (which, like in Linux,

appears to be common practice). BusyBox bug 5cd6461 involves the use of a variable total which,

depending on whether the feature LFS is enabled or not, is defined either as a long long or a long.
However, in configurations where LFS is disabled, when attempting to print the value of the total,
printf is erroneously invoked with the format %ld (long) which ought to have been %lld (long
long).
For developers, configuration-dependent definitions means that programs may deceptively

involve variability even though they appear not to. For analyzers, this means that variability tools

should make sure to associate definitions with presence conditions (i.e., keep associations between

definitions and configurations).

Confirmed observation 6: Variability bugs are fixed not only in the code; some are

fixed in the mapping, some are fixed in the model, and some are even fixed in a combi-
nation of these layers.

17
https://www.kernel.org/doc/Documentation/SubmittingPatches
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A bug can be fixed in the code, mapping, and model (cf. Section 2). Since bug fixes often involve

multiple locations, variability bugs can occur in multiple layers. Figure 12 shows whether the bugs

in our sample were fixed in the code, mapping, model, or combinations thereof. For our replication

studies, please note that Marlin and Apache have no notion of feature model (at least, not in the

classical sense). Instead, these projects capture feature dependencies operationally, as we do in

our simplified bugs (see lines 3–5 of Fig. 4(b)). We therefore include a dash in the figure for layers

involving the model.
In Linux, commits 472a474c663 and 7c6048b7c83, fix variability bugs in the mapping and

model, respectively. The former adds a new #ifndef to prevent a double call to APIC_init_-
uniprocessor—which is not idempotent, while the latter modifies STUB_POULSBO’s Kconfig entry

to prevent a build error.

Linux bug-fix 6252547b8a7 (Fig. 5) removes a feature dependency (TWL4030_CORE no longer

depends on IRQ_DOMAIN) and changes the mapping to initialize the struct field ops when IRQ_-
DOMAIN (rather than OF_IRQ) is enabled. An example of multiple fix in mapping-and-code is commit

63878acfafb, which removes the mapping of some initialization code to feature PM (power man-

agement), and adds a function stub. We also found one Linux bug, e68bb91baa0, that was fixed in

all the three layers.

In Figure 12, we see that the variability bugs in Marlin, BusyBox, and Apache are also not only

fixed in the code, but in various layers. Although, like for Linux, the variability bugs appear to be

fixed predominantly in the code and mapping layers. In BusyBox, commit 5cd6461b6fb fixes an
incompatible type bug, caused by a wrong format parameter in a printf() method, in multiple

layers, by changing the code and mapping layers.

In total (the Σ column), note that, even though we only documented bugs that manifested

themselves in code, 38 bugs in our sample were, in fact, not exclusively fixed in the code: 26 bugs

were fixed exclusively in the mapping, seven exclusively in the model, and five in multiple layers.

The stratification into code, mapping, and model may obscure the cause of bugs, because an

adequate analysis of a bug requires understanding these three layers. Further, each layer involves

different languages; in particular, for Linux: the code is C, the mapping is expressed using both Cpp

and Gnu Make, and the feature model is specified using Kconfig.

Presumably, this complexity may cause a developer to fix a bug in the wrong place. For instance,

in Linux, the dependency of TWL4030_CORE on IRQ_DOMAIN removed by bug-fix 6252547b8a7
was added by commit aeb5032b3f8. Apparently aeb5032b3f8 introduced this dependency into

the feature model to prevent a build error, so to fix a bug, but this had undesirable side-effects.

According to the message provided in commit 6252547b8a7, the correct fix to the build error was

to make a variable declaration conditional on the presence of feature IRQ_DOMAIN.
The realization that bugs in highly-configurable software might need to be fixed outside the

main code, is congruent with the work of Passos and co-authors [48], who observe that evolution

of features in the Linux kernel involves all the three layers. This should inform research on bug

finding and bug fixing. For instance, it is not sufficient to look at the feature model in isolation in

order to find complex bugs, yet most of the research on analysis of feature models does exactly

that [6]. Similarly, for bug fixing techniques [25], it is not sufficient to synthesize patches for C

programs—changes to the preprocessor directives and build scripts (that specify the mapping), as

well as to the feature model should be considered, too.

Confirmed observation 7:Many variability bugs involve multiple features and are

hence feature-interaction bugs.
We define the variability degree of a bug (or just the degree of a bug), as the number of individual

features occurring in its presence condition. Intuitively, the degree of a bug indicates the number
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L degree M B A Σ

8 single-feature bugs: 7 9 17 41

8 1-degree 7 9 17 41

35 feature-interaction bugs: 7 9 6 57

22 2-degree 3 6 4 35

9 3-degree 4 3 1 17

1 4-degree 1

3 5-degree 1 4

43 TOTAL 14 18 23 98

Fig. 13. Variability degrees.

of features that have to interact so that the bug occurs. A bug present in any valid configuration is

a bug independent of features, or a 0-degree bug. Bugs with a degree greater than zero are known

as variability bugs, involving one or more features, thus occur in a non-empty strict subset of valid

configurations. In particular, if the degree of a bug is strictly greater than one, the bug is caused by

the interaction of two or more features. A software bug that arises as a result of feature interactions

is referred to as a feature-interaction bug.
Figure 13 summarizes the variability degrees of the bugs studied; there are 57 of those in our

bug collection and 22 of those involve three features or more.

Our exploratory study of Linux identified 35 so-called feature-interaction bugs. For instance,

Linux bug 6252547b8a7 (cf. Fig. 4(b)) is a feature interaction bug. The code slice containing the bug

involves three different features, and represents four variants (corrected for the feature model), but

only one of the variants presents a bug. The ops pointer is dereferenced in variants with TWL4030_-
CORE enabled, but it is not properly initialized unless OF_IRQ is enabled. A developer searching for

this bug needs to either think of each variant individually, or consider the combined effect of each

feature on the value of the ops pointer. None of these are easy to execute systematically even in a

simplified scenario [41, 42], and outright infeasible in practice, as confirmed to us by a professional

Linux developer, whom we interviewed.

Feature interactions can be extremely subtle when variability affects type definitions. Commit

51fd36f3fad fixes a bug in the Linux high-resolution timersmechanism due to a numeric truncation

error, that only happens in 32-bit architectures not supporting the KTIME_SCALAR feature. In these

particular configurations ktime_t is a struct with two 32-bit fields, instead of a single 64-bit field,

used to store the remaining number of nanoseconds to execute the timer. The bug occurs on an

attempt to store some large 64-bit value in one of these 32-bit fields, causing a negative value to be

stored instead. Interestingly, the Linux developer we interviewed also mentioned the difficulty to

optimize for cache-misses due to variability in the alignment of struct fields.

Linux bug ae249b5fa27, constitutes a 3-degree bug caused by the interaction of DISCONTIGMEM
(efficient handling of discontinuous physical memory) support in PA-RISC architectures (feature

PARISC), and the ability to monitor memory utilization through the proc/ virtual filesystem (feature

PROC_PAGE_MONITOR). Linux bug 218ad12f42e is a 4-degree bug that has a memory leak which

occurs when an array of locks is allocated if SMP or any of two particular debugging options are

enabled; but is not freed if feature NUMA is present. We also found 5-degree bugs such as commit

221ac329e93, again in Linux, due to 32-bit PowerPC architectures not disabling kernel memory

write-protection when KPROBES is enabled—a dynamic debugging feature that requires modifying

the kernel code at runtime.
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L precondition M B A Σ

21 some enabled: 9 7 14 49

5 a 6 3 7 21

10 a ∧ b 3 3 5 21

5 a ∧ b ∧ c 1 6

1 a ∧ b ∧ c ∧ d ∧ e 1

20 some-enabled-one-disabled: 4 11 10 45

3 ¬a 1 6 10 20

13 a ∧ ¬b 3 4 20

3 a ∧ b ∧ ¬c 1 4

1 a ∧ b ∧ c ∧ d ∧ ¬e 1

2 other configurations: 1 1 4

1 ¬a ∧ ¬b 1

a ∧ ¬b ∧ ¬c 1 1

1 a ∧ ¬b ∧ ¬c ∧ ¬d ∧ ¬e 1 2

43 TOTAL 14 18 23 98

Fig. 14. Presence conditions under which the bugs occur.

Looking at the data for our replication studies, we see another 22 feature interaction bugs; seven

in Marlin, nine in BusyBox, and six in Apache. The Linux study revealed 13 bugs with a degree of

at least three; the replication study uncovered another nine such high-degree bugs.

BusyBox bug 95755181b82 is a logic error involving three features interacting with each other:

BB_MMU, HTTPD_GZIP, and HTTPD_BASIC_AUTH. With HTTPD_GZIP enabled, if a request contained
“AcceptEncoding: gzip”, then the HTTP error response would be incorrectly marked as being

gzip encoded (“Content-Encoding: gzip”) even though it is not. Marlin bug b8e79dc is a 3-

degree bug; it occurs only whenever ULTRA_LCD is enabled and ENCODER_RATE_MULTIPLIER as well
as TEMP_SENSOR_0 are disabled. In Apache, the bug c76df14 is also a 3-degree bug that occurs

whenever CROSS_COMPILE is enabled and either WIN32 or OS2 are enabled.

It is interesting to note that more than half of the bugs in our VBDb collection are, in fact,

feature-interaction bugs (cf. the Σ column in Figure 13). While most feature-interaction bugs have

been identified, documented, and published in telecommunication domain [15], this study provides

a documented collection of feature-interaction bugs in the context of a wider collection of highly-

configurable systems.

Feature-interaction bugs are inherently more complex to find and reason about [41] because

the number of variants, that a developer needs to consider, is exponential in the degree of the bug

(number of features involved). This impacts both variability program developers and analyzers that

consequently have to cope with this combinatorial blow up.

Confirmed observation 8: Presence conditions for variability bugs may also involve

disabled features.

In our exploratory study of Linux, we observed that the precense conditions, under which the bugs

occur, often involved disabled features. Figure 14 lists and groups the structure of the presence

conditions. Two main classes of bug presence conditions emerged: some-enabled, where one or more

features have to be enabled for the bug to occur; and some-enabled-one-disabled, where the bug is

present when enabling zero or more features and disabling exactly one feature. We identified 21

bugs in some-enabled configurations, and another 20 bugs in some-enabled-one-disabled. Only two

configurations fell outside these two categories. Please note that a few of the presence conditions

have the form, (a ∨ a′) ∧ ¬b, but, since it is implied by either a ∧ ¬b or a′ ∧ ¬b, we include it in
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configuration test strategy sample size benefit

all enabled (maximal) O (1) in practice 50% (49/98)

one disabled maximum |F | 96% (94/98)

exhaustive (all configs.) maximum 2
|F|

100% (98/98)

Fig. 15. Effectiveness (cost/benefit) of various testing strategies

if applied to our collection of bugs.

the some-enabled-one-disabled class. Similarly, for presence conditions of the form (a ∨ a′) ∧ b, we
classified as some-enabled. (For this reason, Fig. 13 and Fig. 14 may appear inconsistent.)

Considering our replication studies, we see the same pattern. A total of 25 bugs in the replication

studies fall into the some-enabled-one-disabled category, involving disabled features: four in Marlin,

eleven in BusyBox, and ten in Apache. Similarly to Linux, only two bugs fall outside the two

categories (one in Marlin and one in Apache). In total (the Σ column), the contents of VBDb

amounts to 49 bugs in some-enabled configurations, and another 45 bugs in some-enabled-one-
disabled. Only four configurations fall outside the two main categories identified.

Testing of highly-configurable systems is often approached by testing one or more maximal
configurations, in which as many features as possible are enabled—in Linux this is done using the

predefined configuration allyesconfig. This strategy allows to find many bugs with some-enabled
presence conditions simply by testing one single maximal configuration. But, if negated features

occur in practice as often as in our sample, then testing maximal configurations only, will miss a

significant amount of bugs.

Confirmed observation 9:A one-disabled testing strategy, with a sample size bounded

by the number of features, would find 96% of bugs in our collection.

We propose a one-disabled configuration testing strategy, which considers a maximal configuration

and then disables each of the individual features, one by one.

Figure 15 compares the two strategies, all-enabled (maximal) configuration testing and one-
disabled configuration testing. The sample size is the number of configurations generated by the

given formula (an upper bound). For the all-enabled strategy this number is approximate: in practice,

since feature models are underconstrained [43], a small number of configurations will suffice for real

systems (thus constant in practice). In the worst case all-enabled degrades to one-enabled (the dual

of one-disabled), but the authors have yet to see a pathological system like that. For one-disabled,
the size of the sample is always at most |F|, the maximum occurs if all features can be disabled

independently.

The benefit is measured as bug coverage for our sample: for each strategy we check what

percentage of bugs in our database would be detected by them. We also add an entry for exhaustive
testing of all configurations, serving as a baseline. For exhaustive testing, the sample size is

exponential in |F|. This is in practice reduced by feature constraints, but not below the exponential

growth due to sparsity of the constraints, at least not in highly configurable systems (some software

product lines, in contrast, have very small configuration spaces).

All-enabled (maximal) appears to be a fairly good heuristic intercepting exactly half of the bugs

in our sample at a constant cost (in terms of the number of configurations considered). 49 out of 98

the bugs could be found this way. One-disabled configuration testing has a linear cost in F and thus

can scale reasonably well. Remarkably, 96% of the bugs in VBDb (94 out of 98) could be found by

testing the |F| one-disabled configurations. Note that these configurations also find the bugs with a

some-enabled presence condition (except for the hypothetical configuration requiring all features
to be enabled).
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In practice, we must consider the effect of the feature model in the testing strategy. Because

some features depend on others to be present, we often cannot disable features individually. A

[Max]SAT solver is required in order to enumerate the configurations to test, while selecting

valid configurations only. We expect that enumerating valid one-disabled configurations would

be tractable, given the scalability of modern SAT solvers (hundreds of thousands of variables and

clauses), the size of real-world program families (more often only hundreds of features) and sparsity

of their constraint systems [43].

The proposed one-disabled sampling strategy is related to other well-established strategies dis-

cussed in literature, including the most popular t-wise (also known as combinatorial interaction

testing [13, 18, 20]), as well as other heuristic strategies such as all-enabled, all-disabled, code-
coverage [52–54] and random sampling strategies. Medeiros et al. [39] executed a comparative

quantitative study of effectiveness of various sampling strategies for testing and analysis of config-

urable systems, including all the above, one-disabled
18
and its dual version, one-enabled, added for

symmetry. Like suggested above, they use a solver to enumerate (almost perfectly) one-disabled
and one-enabled configurations that satisfy feature constraints.

For large sampling problems, and in the present of feature constraints, Medeiros et al. report

that one-disabled finds more bugs than pair-wise testing, and it scales better [39]. In fact, one-
disabled is the only non-trivial method that is able to scale to all of the Linux kernel among those

that they studied. None of the t-wise methods do. Besides one-disabled, only the simple sampling

strategies scale, but with worse fault detection rate (one-enabled, all-enabled, all-disabled, and
random sampling). It appears though that classic combinatorial interaction testing techniques are a

better choice for small configuration spaces. We refer the reader to the original work of Medeiros

et al. for a much more comprehensive discussion, including the delimitation of conclusion threats.

Conclusion for RQ2
Let us answer RQ2 now. It is a well-known fact that an exponential number of variants makes it

difficult for developers to understand and validate the code, but:

Conclusion 2: In addition to introducing an exponential number of program variants,

variability increases the complexity of bugs along several dimensions:

– Bugs occur because the implementation of features is intermixed, leading to undesired

interactions, for instance, through program variables;

– Interactions occur between features from different subsystems, demanding cross-subsystem

knowledge from the developers;

– Variability may be implicit and even hidden in alternative or conditionally defined function,

macro, variable, and type definitions specified at remote locations;

– Variability bugs are the result of errors in the code, in the mapping, in the feature model, or

any combination thereof;

– Further, each of these layers involves different languages (e.g., C,Cpp,GnuMake andKconfig

for Linux);

– Not all these bugs will be detected by maximal configuration testing due to interactions with

disabled features;

– The existence of compiler errors in committed code trees shows that conventional feature-

insensitive tools are not enough to find variability bugs.

18
The one-disabled strategy was known to them thanks to personal communication with the authors of the present paper

who proposed the strategy in an earlier version [1].
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7 THREATS TO VALIDITY
We now consider first internal, then external validity.

7.1 Internal Validity

Bias due to selection process. As we extract bugs from commits, our collection is biased towards

bugs that were not only found and reported, but also fixed. Since users run a small subset of

possible configurations, and developers lack feature-sensitive tools, potentially only a subset of

bug categories and properties is found this way.

Further, our keyword-based search relies on the competence of developers to properly identify

and report variability in bugs. Note, however, that in our subject systems, variability is ubiquitous

and often “hidden”. For instance, in Linux the ath3k bluetooth driver module file contains no

explicit variability, yet after variability-preserving preprocessing and macro expansion we can count

thousands of Cpp conditionals involving roughly 400 features. It is then unlikely that developers

are always aware of the variability nature of the bugs they fix. So certain kinds of bugs involving

variability might have been missed, as they were not clearly identified as such by developers.

Additionally, note that we focused on semantic variability errors that have been confirmed by

the developers, minimizing the risk of studying fictitious problems. Syntactic variability errors

consist of a small percentage of bugs. In fact, researchers have found that syntactic variability

errors are indeed not common [40]. For this reason, we focused on this range that seems most

relevant. Anything beyond that it is out of the scope of the paper.

In order to further minimize the risk of introducing false positives, we do not record bugs if we

fail to extract a sensible error trace, or if we cannot make sense of the pointers given by the commit

author. This may introduce bias towards reproducible and lower complexity bugs.

Because of inherent bias of a detailed qualitative analysis method, we are not able to make

quantitative observations about bug frequencies and properties of the entire population of bugs

like representativeness in Marlin, BusyBox, Apache, and Linux. Note, however, that we are able

to make qualitative observations such as the existential confirmation of certain kinds of bugs (cf.

Sect. 5). Since we only make such observations, we do not need to mitigate this threat (interestingly

though, our collection still exhibits very wide diversity as shown in Sect. 5).

False positives and overall correctness. The analysis of the bugs is not run by domain experts,

which introduces the risk of mistaken identification of bugs. This also applies to determining the

presence condition of each bug (under which configurations the bug does and does not occur).

By only considering variability bugs that have been identified and fixed by the developers, we

mitigate the risk of introducing false positives. We only take bug-fixing commits from the subjects

repositories, the commits of which have been reviewed by other developers and, particularly, by a

more experienced maintainer. All of our data have been validated by at least two researchers.

In addition, our data can be independently verified since it is publicly available. The risk of

introducing false positives is not zero though, for instance, Linux commit b1cc4c55c69 adds a

nullity check for a pointer that is guaranteed not to be null.
19
It is tempting to think that the above

indicates a variability bug, while in fact it is just a conservative check to detect a potential bug.
The manual analysis of a bug to extract an error trace is also error prone, especially for a

language like C and complex systems such as Marlin, BusyBox, Apache, and Linux. Ideally, we

should support our manual analysis with feature-sensitive program slicing, if it existed. A more

automated approach based on bug-finders would not be satisfactory. Bug-finders are built for

19
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certain classes of errors, so they can give good statistical coverage for their particular class of errors,

but they would not be able to assess the diversity of bugs that appear.

We derive simplified bugs based on manual slicing, filtering out irrelevant statements. We also

abstract away C language features such as structs and dynamic dispatching via function pointers.

While the process is systematic, it is performed manually and consequently error prone.

7.2 External Validity

Preprocessors. Our study is dedicated and tailored to a particular technique for dealing with vari-

ability: preprocessors. Since developers often use preprocessors [23, 33, 37], which is a well-known

technique, mainly in industry, to implement features in the code level. Generalization to other

variability techniques is not intended.

Number of bugs. The size of our sample speaks against the generalizability of the observations.

However, as we explained before, we firstly analyzed a diverse set of 42 variability bugs in an

exploratory manner (cf. our previous work [1]). Then, we took three others highly-configurable

systems (Marlin, BusyBox, and Apache) and analyzed another 55 bugs to reinforce our observations,

following a confirmatory case study research method. We also added a 43
rd
Linux bug, which came

from an external contributor. The process of collecting and especially analyzing these 98 bugs cost

several man-months, which makes a study of a much larger number of bugs infeasible. We hope

that our database will continue to grow, also from third-party contributions, in the future.

Simplicity bias. Since we considered bugs that were already found, reported, confirmed, and fixed,

our collection might be biased towards simpler rather than more complex bugs. Presumably,

however, this bias mainly applies to bugs that do not manifest themselves with clear symptoms.

Bugs causing real problems obviously stand a higher chance of being caught by the developers.

We wanted to study a wider range of bugs occuring in real systems; for this reason, we adopted a

manual strategy rather than studying a narrower set of errors for which bug finders happen to exist

(and scale to Linux). Note regarding external validity that even if we had compiled a bug collection

based on errors reported by automated bug detection tools, we would still have had a similar bias

towards simplicity. After all, simpler bugs are easier to find, not only for humans, but also for tools.

In addition, tools would introduce the additional risks of studying fictitious problems disguised as

false positive errors reported by the tools.

Subject studies.We used four open-source highly-configurable systems in our study: Marlin, BusyBox,

Apache, and Linux. These are qualitatively different systems in terms of size, purpose, variability and

complexity. Besides that, all have different architectures and developers, which allows us to draw

slightly broader conclusions. However, we acknowledge that our claims might not generalize to all

other highly-configurable systems, especially commercial ones, which require further investigation.

Usability of the data for other studies. All future studies using this data should very carefully

consider the threats described above, following from the collection (for instance drawing statistical

conclusions solely based on this data is not sound). Example good applications of this data are

qualitative: one can use it to extract new hypotheses, learn about properties of problems, or pre-test

hypotheses. Any actual statistical hypotheses should be cross-checked on random samples of bugs

(this one is not random). Our main intention for use of this data, is to scaffold tool development.

Simplified bugs can be used to build the tools faster and to experiment earlier. The evaluation of the

tools on our simplified bugs can show feasibility of solving problems. Scalability should be tested

on the original (not simplified bugs). Precision and recall should be measured on representative

samples (this one is not).
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8 RELATEDWORK
This paper extends previous work [1]. Beyond 42 bugs in Linux, this paper confirms our previous

hypotheses by considering 55 variability bugs from three other highly configurable systems: Marlin,

BusyBox, and Apache. In terms of the database, we added simplified patches and single-function

versions of all bugs.

We have divided this section into work on bug databases, mining variability bugs, and method-
ologically related work.

8.1 Bug Databases
ClabureDB is a database of bug-reports for the Linux kernel with similar purpose to ours [50],

albeit ignoring variability. Unlike ClabureDB, we provide a record with information enabling non

experts to rapidly understand the bugs and benchmark their analyses. This includes a simplified

C99 version of each bug were irrelevant details are abstracted away, along with explanations and

references intended for researchers with limited kernel experience. The main strength of ClabureDB

is its size—the database is automatically populated using existing bug finders. Our database is small.

We populated it manually, as no suitable bug finders handling variability exist (which also means

that none of our bugs is covered in ClabureDB adequately).

Palix et al. reproduced an old analysis (from 2001) on Linux to reevaluate and investigate

the evolution of bugs in Linux over the last decade [47]. The results are available in a public

archive.
20
This study has identified a series of bugs and rule violations such as “do not use floating

point in the Linux kernel”. However, variability was not in their focus. We in turn focus on

qualitatively understanding the complexity and nature of variability bugs. In addition, we consider

four qualitatively different open-source software systems.

Do et al. provided an infrastructure to help the execution of controlled experiments related to

software testing techniques [21]. The idea is to support reproducible experimentation and minimize

certain challenges when performing a new study, such as the high costs when gathering proper

artifacts for the controlled experiment. To do so, the infrastructure provides elements to execute

test cases (e.g., oracles, test classes, stubs, etc) and inputs to reveal faults. Similarly, VBDb can also

contribute to future studies and experiments, but it is a more specific data infrastructure, since we

focus only on bugs related to variability. In this context, future research can benefit, for example,

from the simplified bugs (which can reduce effort when compared to understanding the actual bugs)

and from the inputs, including configurations, that reveal them. In addition, the database might be

used to conduct an empirical study to better understand how developers introduce variability bugs

in highly-configurable systems. The work that introduces the infrastructure [21] also includes a

list of research already using and benefiting from it. VBDb has also already been used in a variety

of recent publications [2, 29, 39].

8.2 Mining Variability Bugs
Nadi et al. mined the Linux repository to study variability anomalies [45]. An anomaly is a mapping
error, which can be detected by checking satisfiability of Boolean formulas over features, such as

mapping code to an invalid configuration. While we conduct our study in a similar way, we focus

on a broader class of semantic errors in code, including data- and control-flow bugs.

Apel and coauthors use a model-checker to find feature interactions in a simple email client [5],

using a technique known as variability encoding (configuration lifting [49]). Features are encoded
as Boolean variables and conditional compilation directives are transformed into conditional

statements. We focus on understanding the nature of variability bugs widely. This cannot be done

20
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with a model-checker searching for a particular class of interactions. Understanding variability

bugs should lead to building scalable bug finders, enabling studies like [5] to be run for Linux in

the future.

Medeiros et al. have studied syntactic variability errors [40]. They used a variability-aware C

parser [34] to automate their bug finding and exhaustively find all syntax errors. They found only

few tens of errors in 41 families, suggesting that syntactic variability errors are rare in committed

code. We focus on the wider category of more complex semantic errors.
Nadi et al. mine feature dependencies in preprocessor-based program families to support syn-

thesis of variability models for existing codebases [44]. They infer dependencies from nesting of

preprocessor directives and from parse-, type-, and link-errors, assuming that a configuration that

fails to build is invalid. Again, we consider a much wider class of errors than can be detected

automatically so far.

8.3 Methodologically Related Work
Tian et al. studied the problem of distinguishing bug fixing commits in the Linux repository [57].

They use semi-supervised learning to classify commits according to tokens in the commit log and

code metrics extracted from the patch contents. They significantly improve recall (without lowering

precision) over the prior, keyword-based, methods. In contrast, we use the keyword-based method

for pragmatic reasons. First, our main emphasis was on analyzing commits, whereas finding them

was secondary and not difficult for our study. That is, in our study most of the time was invested in

analyzing commits, and not in using a precise method with a high recall of finding potential bugs.

Second, this is a straightforward method to apply in any project that stores historical information

on changes. Thus, we found the keyword-based method sufficient for our purpose.

Yin et al. collect hundreds of errors caused by misconfigurations in open source and commercial

software [59] to build a representative set of large-scale software systems errors. They consider

systems in which parameters are read from configuration files, as opposed to systems configured

statically. More importantly, they document errors from the user perspective, as opposed to (our)

programmer perspective.
Padioleau et al. studied collateral evolution of the Linux kernel, following a method close to

ours [46]. Collateral evolution occurs when existing code is adapted to changes in the kernel

interfaces. They identified potential collateral evolution candidates by analyzing patch fixes, and

then manually selected 72 for a more careful analysis. Similarly, they classify and perform an

in-depth analysis of their data.

9 CONCLUSION
Previously, we have conducted an exploratory case study of variability bugs in Linux which led

to nine testable hypotheses [1]. We subsequently performed a confirmatory case study involving

three independent replications: Apache, BusyBox, and Marlin. The study confirmed all hypotheses.

In total, we studied 98 variability bugs in four highly-configurable systems. For each of the bugs,

we analyzed relevant variability properties and condensed our understanding of each of these bugs

into a self-contained C99 program with the same variability properties. These simplified bugs aid

understanding the real bug and constitute a publicly available benchmark for analysis tools. Also,

we created simplified patches, and single-function versions of the bugs for evaluation of prototype

and intraprocedural analyses.

We conclude that variability bugs are not confined to any particular type of bugs, error-prone
features, or specific locations (see Section 5). Hence, analysis tools aiming to find variability bugs in

highly-configurable systems need to be targeted widely at all types of bugs, all kinds of features,

and all subsystems.
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We also characterize in what ways variability affects bugs (see Section 6). In addition to intro-

ducing an exponential number of program variants, variability increases the complexity of bugs

along several dimensions:

– Variability bugs may involve undesired feature-interactions (e.g., via program variables);

– Feature-interactions may span multiple subsystems (demanding cross-subsystem knowledge);

– Variability may be implicitly hidden in configuration-dependent definitions;
– Variability bugs may occur in multiple layers (code, mapping, and/or model)
– These layers involve different languages (e.g., C, Cpp, Gnu Make and Kconfig for Linux);

– Variability bugs may involve disabled features (thus not all variability bugs will be detected

by maximal configuration testing); and

– The existence of compiler errors in committed code trees shows that conventional feature-

insensitive tools are not enough to find variability bugs.

A natural direction to continue this work would be to design quantitative studies to confirm our

qualitative observations. Such studies can be designed in two directions: either by building suitable

tools and applying themmassively to the available historical source code, or by designing controlled

experiments when programmers are observed during programming, with attention to bug finding

and bug fixing tasks. Observing bug introduction however is very difficult in a quantitative manner,

and would have to be done qualitatively.

Some of these observations may lead to better sampling strategies for configurable systems, or

optimizations for family-based analysis, which is our main envisioned direction for the future.

This work has already influenced a quantitative study on the effectiveness of sampling strategies

for configurable systems [39]. Additionally, Iosif-Lazar et al. [29] used our dataset to evaluate

their variability-related transformations, which translate program families into single programs

by replacing compile-time variability with run-time variability. Al-Hajjaji et al. [2] also used our

database to derive a set of mutation operators for software with preprocessor-based variability. We

thus hope that our variability bugs database will continue being useful to the variability research

community, especially to designers of program analysis and bug finding tools. At the same time, we

also hope that the community can contribute to the usefullness of this data by providing new bug

reports and new simplified bugs. The VBDb project allows contributions as pull requests against its

bitbucket repository and as discussion comments in the online website.
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