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PENAMBAHBAIKAN LIPUTAN UJIAN SCAN MELALUI KONFIGURASI 

PERALATAN PENJANAAN CORAK UJIAN AUTOMATIK (ATPG) 

 

ABSTRAK 

 

 

Penambahbaikan liputan ujian scan dengan menggunakan konfigurasi peralatan 

penjanaan corak ujian automatik (ATPG) dikaji. Meningkatkan liputan ujian adalah 

penting dalam mengesan kerosakan pengilangan dalam industri semikonduktor supaya 

produk yang berkualiti tinggi boleh dibekalkan kepada pengguna. Peralatan ATPG 

yang digunakan adalah Mentor Graphics Tessent TestKompress (versi 2014.1). Kajian 

ini telah dilakukan dengan memperkenalkan beberapa eksperimen menggunakan 

pengubahsuaian terhadap arahan dan suis ATPG, memerhatikan peningkatan liputan 

ujian dari laporan statistik yang dibekalkan semasa proses penjanaan corak ujian dan 

menyediakan perbincangan yang berkaitan. Dengan pengubahsuaian arahan ATPG, 

dijangka liputan ujian  akan meningkat. Corak ujian scan yang dijana adalah corak 

ujian stuck-at. Berdasarkan eksperimen yang telah dilakukan, perbandingan telah 

dibuat pada bacaan liputan yang berbeza dan kaedah yang paling optimum dan aliran 

ATPG telah ditentukan. Aliran paling optimum telah memberi peningkatan 0.91% 

dalam liputan ujian. Corak ujian yang dihasilkan telah ditukar dan diuji menggunakan 

peralatan ujian automatik (ATE) untuk memerhati prestasinya pada silikon sebenar. 

Peningkatan liputan ujian menggunakan peralatan ATPG dan bukannya kaedah 

berasaskan reka bentuk adalah penting sebagai penyelesaian alternatif yang lebih cepat 

bagi jurutera ujian untuk menyediakan kandungan ujian berkualiti tinggi dalam 

tempoh pembangunan produk yang singkat. 
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SCAN TEST COVERAGE IMPROVEMENT VIA AUTOMATIC TEST 

PATTERN GENERATION (ATPG) TOOL CONFIGURATION 

 

ABSTRACT 

 

 

The scan test coverage improvement by using automatic test pattern generation 

(ATPG) tool configuration was investigated. Improving the test coverage is essential 

in detecting manufacturing defects in semiconductor industry so that high quality 

products can be supplied to consumers. The ATPG tool used was Mentor Graphics 

Tessent TestKompress (version 2014.1). The study was done by setting up a few 

experiments of utilizing and modifying ATPG commands and switches, observing the 

test coverage improvement from the statistical reports provided during pattern 

generation process and providing relatable discussions. By modifying the ATPG 

commands, it can be expected to have some improvement in the test coverage. The 

scan test patterns generated were stuck-at test patterns. Based on the experiments done, 

comparison was made on the different coverage readings and the most optimized 

method and flow of ATPG were determined. The most optimized flow gave an 

improvement of 0.91% in test coverage which is acceptable since this method does not 

involve a change in design. The test patterns generated were converted and tested using 

automatic test equipment (ATE) to observe its performance on real silicon. The test 

coverage improvement using ATPG tool instead of the design-based method is 

important as a faster workaround for back-end engineers to provide high quality test 

contents in such a short product development duration. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

 

The semiconductor industry globally has gone through tremendous 

technological development and advancement the past few decades. In Malaysia, two 

national wafer foundries namely Malaysian Institute of Microelectronics Systems 

(MIMOS) Berhad and SILTERRA Malaysia Sdn Bhd (previously Wafer Technology 

Malaysia Sdn Bhd) were established in 1985 and 1995 respectively[1][2] to indicate 

the importance of semiconductor industry for this country. A handful number of multi-

national companies like Intel, Motorola, Texas Instruments and Broadcom are based 

in Malaysia showing that Malaysia is moving up the value chain in this industry and 

at the same time strengthening its economic growth. Strong collaboration between 

industrial companies and public universities with state-of-the-art facilities had 

generated more sophisticated knowledge for the advancement of the semiconductor 

industry.  

 

In this modern era, semiconductors and microelectronics are becoming the gist 

for almost every technology that we have from computers, automotive, 

communications to securities and even artificial intelligence-based applications [3]. 

Semiconductor companies are competing to be the leader in the industry by proposing 

their own gauge for technological supremacy. For example, Intel are starting to make 
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10nm chips and with it they proposed a transistor density metric that it challenged 

rivals to adopt [4]. The competition sparks a necessity for these companies to deliver 

devices that are high quality and reliable. An important part in a device life cycle to 

determine its reliability is the test and validation stage [5].  

 

Devices fabricated from the foundry require testing to sort out the defective 

devices. Testability is one of the most important factors that are considered during the 

design life cycle along with reliability, speed, power consumption, cost and other 

factors important for a customer [6]. Especially for optimization, testability is required 

to provide information about the easiness of testing a given device under test (DUT) 

with minimal error and in reasonable time. Production testing applies test patterns to 

exercise devices for defect detection. Sometimes devices with a defect will pass all 

applied tests. These are known as escapees. Those devices that fail at the customer site 

are returned back to the manufacturer for analysis. However, if this ever happened it 

would somehow tarnished the confidence of the customers toward the products from 

the said manufacturer and this might affect future prospects for the manufacturer. 

 

There are two types of tests, functional (or engineering) test and manufacturing 

test. The functional test is used to verify the circuit functionality where analog, digital 

and mixed-signal testing is done. This includes simulation and verification of design 

logic. The manufacturing test is used to verify that the design has no manufacturing 

defects. It does not verify how the silicon should behave as specified. There are 

different types of manufacturing test which includes Built-in Self-Test (BIST), 

memory test, functional test and SCAN test which is the focus in this project. 
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SCAN test is a process that creates control and observation point by replacing 

flip-flops with scan cells. A standard scan cell consists of a D-flip flop with a 

multiplexer residing before the D input of the flip flop as shown in Figure 1.1. The 

multiplexer selects the data input using the Scan_Enable signal (SE) where, DI is 

selected in normal mode and Scan_In (SI) is selected in scan mode.  

 

 

 

Figure 1.1: A Typical SCAN Cell [7] 

 

The scan cells are organized into shift registers and connected together to form 

scan chains as shown in Figure1.2. Utilizing these scan chains, test patterns are 

generated using Automatic Test Pattern Generation (ATPG) method to test the 

combinational logic inside the design model. The control element is obtained by 

setting a specific value at a specific node. Whereas, the observation element is obtained 

by propagating the result so it can be measured.  
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Figure 1.2: Mux-D Full SCAN Circuit [7] 

 

The ratio of how much of the area that can be tested to the whole device is 

called the SCAN test coverage. It is clear that the quality and reliability of the SCAN 

test to detect real defects in a device manufactured depend on how much of the area in 

the device that can be tested using the SCAN test patterns. The aim of this project is 

therefore to improve the SCAN test coverage of ATPG generated test patterns by 

modification of the ATPG tools configurations, instead of the design-based 

modification method as will be discussed in Chapter 2: Literature Reviews. A range 

of Mentor Graphics tools and Intel-owned tester facility and devices were utilized to 

implement the project and for data collection. 
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1.2 Problem Statements 

 

Today’s demands for high quality semiconductor devices especially in the 

automotive industry are extremely challenging [8]. The most important factor for this 

demand is the reliability of the devices in its application. Higher performance of the 

integrated circuits comes with the challenges of designing more complex and denser 

digital circuits, making chips more prone to defects [9]. In modern deep submicron 

technologies, systematic defects are becoming more common than random defects in 

a device manufactured [10]. 

 

In order to achieve low Defect per Million (DPM) in the semiconductor 

fabrication, the device under test (DUT) need to be tested as thoroughly as possible. 

There are many manufacturing tests available such as memory built-in-self-test, 

functional test and SCAN test. In terms of SCAN test, the thoroughness of the device 

being tested depends on the coverage number of the test. A high test coverage is needed 

in order to test as many logic cells as possible in the design.  

 

The usual test coverage percentages required for a reliable stuck-at test is 95% 

after excluding the untestable faults [11]. This number represents the full-chip 

percentage that is being tested. However, there are some partitions in the design that 

are having lower individual test coverage when the test patterns are generated for that 

partitions. Patterns are generated per partition to ease the ATPG tool to evaluate the 

faults and also to reduce run time for the pattern generation. In this project, the test 

coverage is calculated based on partitions used, so a test coverage of less value can be 

expected. In this case, the original partition-based test coverage was 85.64% which 
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was obtained based on an Intel chipset product design. In order for the product to be 

tested as much as possible, and preventing defective devices to flow to customers, the 

test coverage need to be improved. 

 

For a Product Development Engineers (PDEs) working on the SCAN test 

contents for devices validation, these partitions having lower initial test coverage are 

posing a problem whereby, the total test coverage for the full-chip would accumulate 

to be less than 95%. This problem, if not resolved, would be seen after the device has 

been shipped to customers, during the post Failure Analysis stage, where it would be 

reported that the said partitions are the ones causing the high fallout or escapee devices. 

For PDEs validating the design provided during pre-silicon validation, they can 

improve the test coverage by analyzing the design in what is called a low coverage 

analysis and feedback to the design team to make the proper adjustment to improve 

the test coverage. This is usually a time consuming approach. Also, a high level of 

expertise is needed in order to root-cause the low coverage issue in a complex design. 

 

Design-based approaches to improve the test coverage via modifying the 

design for example, modified scan cell, scan cell reordering and extra signal addition 

are available and discussed in Chapter 2. Electronic Design Automation (EDA) entities 

such as Synopsys and Mentor Graphics who claim that they are getting significant 

revenue in their verification segments [12] are providing tools that could help to tackle 

this issue in a different way.  

 

As a more feasible solution for PDEs to improve test coverage in a shorter time, 

the modification on the ATPG tools configuration is proposed to improve the test 
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coverage instead of the design-based approach. A higher test coverage of test patterns 

can be obtained if proper configurations are done on the ATPG tools during pattern 

generation. A thorough understanding of what the configurations do is needed in order 

to generate a reliable test patterns with a high test coverage. Although, it should be 

noted, by modifying the ATPG tool’s configuration does not mean that the circuit 

design would be changed. The modification would alter the way the ATPG tool learn 

about the circuit and providing higher effort to generate test patterns with higher test 

coverage. Thus, the improvement in test coverage would not be as much as the design-

based approach but it would save a lot of time in the test content generation stage 

because fix in the circuit design is not needed. 

 

 

1.3 Project Objectives 

 

 To improve the coverage of a SCAN test by proposing a few modification on 

the switches combination available in ATPG tool from the current default flow.  

 

 To implement the experimental switch combinations in a test pattern 

generation and collect the SCAN coverage reported by the ATPG tool for the 

generated patterns.  

 

 To make a comparison on the coverage readings for the various switch 

combinations and to provide analytical comments regarding the difference in 

the test coverage obtained. 
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1.4 Project Scope 

 

This project mainly covers the SCAN test coverage improvement for one 

integrated circuit design. The coverage improvement method proposed in this project 

is based on ATPG tools configurations and not on design-based methods. The resultant 

test coverage generated based on the few experiments planned were compared and the 

pattern generated from the most comprehensible experiments based on the comparison 

and analysis were converted to tester pattern format (.pobj) and tested on a real device 

to see the behavior. No further debug was made based on the tester result obtained. 

 

 

1.5 Project Contribution 

 

 Today’s demand for high quality semiconductor devices manufacturing has led 

to the importance of testing the devices as much as possible. This translates to the 

needs for a high test coverage in test patterns to be used for the test and validation of 

the devices. In this project, an improvement in the SCAN test coverage by ATPG tools 

configuration was studied and presented. This method proposed instead of the design-

based approach as will be discussed in Chapter 2 would save a lot of labor resources 

and time especially for Product Development Engineers working specifically on the 

test pattern generation with no exposure to the design methodology of a device. 

Although, the test coverage improvement by using this method is not as much as the 

design-based approaches, the amount of time saved compared to the design-based 

approaches made this method suffice. 
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1.6 Thesis Outline 

 

 This thesis was organized into five chapters including this Chapter 1: 

Introduction. The following chapters are summarized and structured as below: 

 

 At the beginning of Chapter 2, the theories and flow of SCAN test are discussed 

including the fault models and SCAN test coverage theories. Then, a discussion on the 

Design for Test (DFT) flow and product development flow are briefly done. 

Afterwards, previous works and papers related to the SCAN test coverage 

improvement are discussed also in this chapter. Lastly, the Tessent ATPG tool’s 

environment is briefly discussed. 

 

 Chapter 3 presents methodology of this project from designing the experiments 

for the different configurations of the ATPG tool, test coverage determination and 

comparison, to the validation of the test patterns generated on a real device. The details 

of the experimental setup flow and tools applied are discussed and elaborated in this 

chapter. 

 

 Chapter 4 presents the results obtained from the experiments designed in 

Chapter 3. Comparison on the different data obtained are also made. The results are 

tabulated and analyzed in detail in this chapter.  

 

 Chapter 5 outlines the conclusions that can be made based on this project’s 

findings and the prospects of future works in this field of research. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

 The main goal of this project is to improve test coverage of SCAN test patterns 

to reduce the defect per million (DPM) in silicon manufacturing. Previous proposed 

theories and researches that relate to this goal were discussed in this chapter. The 

following sections are separated into two parts, first, discussions on the relevant 

theories related to this project were reviewed. Overview on the VLSI development 

process and its testing essentials were first discussed. Then, automatic test equipment 

(ATE) was reviewed for their components and special features. After that, a 

methodology called design for test (DFT) which was used in this project was 

discussed. This includes scan design and its operations. Various fault models for scan 

test were also discussed along with the fault simulation process. Lastly, the scan test 

pattern generation and scan test coverage calculation were discussed. These are the 

basis of achieving the main objective of this project. 

 

 After knowing the relevant theories, in the second section, reviews on previous 

design-based researches on scan coverage improvement were made. There are 

basically five schemes that were reviewed in this section with various researches done 

on them. The schemes reviewed were combination of different scan capture styles, 

multiple scan enable signals, delay test scan flip-flop (DTSFF), dummy flip-flops and 
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additional multiplexer as well as scan chain reordering and dummy latches. Critical 

reviews on various research papers related to these five schemes were done in this 

section. The limitations for those researches were also discussed in this section. The 

reviewed papers coming from design-based researches, served as a motivation on the 

importance of having a high test coverage in the manufacturing world. The limitations 

on these researches were addressed and a workaround was proposed with this project. 

 

 

2.2 Relevant Theories 

 

2.2.1 VLSI Development Process 

 

The improvement in integrated circuit (IC) manufacturing and the existence of 

high quality microchips has resulted in the need for better testing for these devices. 

Following the Moore’s Law [13] the scale of integrated circuits has doubled every 18 

months to the very-large-scale integration (VLSI) devices existing today. This 

consequently led to the reduction in the feature size of the transistors and 

interconnecting wires from tens of microns to the current technology node of less than 

tens of nanometers. The reduction in dimension has resulted in increased clock speeds 

and operating frequency of the IC from the first microprocessor running at the speed 

of 108 kHz, to several gigahertz currently.  

 

The dimension reduction also has resulted in an increased in the probability of 

a manufacturing defect in the IC that can result in a faulty chip. A very small defect 

existing in nanometer devices can affect the behavior of the devices and result in faulty 
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transistors. Defects existing during the manufacturing process are unavoidable, and 

due to this fact, some number of ICs are expected to be faulty and the manufacturer 

need to absorb that small amount of losses. Therefore, proper testing is required to 

ensure that faulty devices doesn’t pass the test and escape to the customers. It is also 

necessary to test the devices at various stages of the devices’ manufacturing cycle.  

 

There is a general agreement that mentions the cost of detecting a defective 

device increases by certain amount of magnitude as the manufacturing cycle is moved 

to the later stage, from device level to board level, to the system level and finally to 

the system operation in the customers’ environments. Testing devices also helps in 

improving production yield by analyzing the cause of defects when faults are detected. 

In some cases, repair on the devices are done to counter the faults detected. Hence, 

testing is important to designers, product engineers, test engineers, managers, 

manufacturers, and end-users [14]. 

 

2.2.2 VLSI Testing 

 

 Testing consists of applying a set of input stimuli to the circuit under test (CUT) 

and analyzing the resulting output responses as illustrated in Figure 2.1. Production 

testing applies test patterns to exercise devices for defect detection. Defects are 

physical problems that occur in silicon due to the fabrication process. Defects may 

cause the silicon to perform differently from the design [7]. Defect free devices are 

candidates for shipping to customers. The devices that fail the test will be considered 

as rejected devices. Too much of the rejected devices will lead to lower production 

yield. Sometimes devices with a defect will pass all applied tests. These are known as 
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escapees [15]. Those devices that fail at the customers’ sites are returned back to the 

manufacturer for analysis. However, if this ever happened it would somehow tarnished 

the confidence of the customers toward the products from the said manufacturer and 

this might affect future prospect for the manufacturer. 

 

 

 

Figure 2.1: Basic Testing Approach [7] 

 

 

 

Figure 2.2: VLSI Development Process [7] 
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The VLSI development process is illustrated in Figure 2.2 above where it can 

be seen that testing is involved at each stage of the process. First and foremost, based 

on a customer need or a project requirement, a design specification is formulated to 

list those device requirements. The design for a VLSI device must adhere to the design 

specification tailored for it. Designers are responsible to do design verification, which 

is to ensure the synthesized design will perform the required function after 

manufactured. If a design error is detected, modifications to the design must be made 

and design verification must be repeated.  

 

Once verified, the VLSI design then goes to fabrication for wafer fabrication 

of the device. At the same time, test engineers develop a test program based on the 

design specification and fault models associated with the implemented technology of 

the device. Once the wafer is fabricated, it is tested at cold temperature to determine 

which dies are defective. The dies that are passing the wafer test are sorted and 

packaged with proper input-output (I/O) pins.  

 

The packaged devices are retested to eliminate those devices that may have 

been damaged during the packaging process or put into defective packages. Additional 

testing is needed for quality assurance before it can be shipped to the market. This final 

testing includes measurement of parameters such as (I/O) timing specifications, 

voltage and current. Burn-in or stress-testing is performed where the devices are 

subjected to high temperatures and supply voltages to accelerate the effect of defects 

that could lead to premature failures of the devices operation.  
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2.2.3 Yield and Reject Rate 

 

It is most certain that some percentage of the manufactured ICs is expected to 

be faulty due to manufacturing process [7]. The yield of a manufacturing process is 

defined as the percentage of acceptable parts among all parts that are fabricated as 

shown in (Eqn. 2-1): 

 

Yield (%) = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 𝑝𝑎𝑟𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑠 𝑓𝑎𝑏𝑟𝑖𝑐𝑎𝑡𝑒𝑑
   (Eqn. 2-1) 

There are two types of yield loss:  

1) Catastrophic – due to random defects. 

2) Parametric – due to process variations. 

 

Automation and improvements in a VLSI fabrication process drastically reduce 

the particle density that can result in random defects over time. Consequently, 

parametric yield loss becomes dominant in current VLSI technology. When ICs are 

tested, two undesirable outcomes may occur: 

 

1) A faulty device may appear to be passing the test. 

2) A good device may appear to be failing the test. 

 

These are often due to a poorly designed test or the lack of Design for testability 

(DFT). For the first case, even if all parts are passing the test, some faulty devices will 

still be found in the field electronic systems. When these faulty devices are returned to 

the IC manufacturer, they undergo failure mode analysis for possible improvements to 

the VLSI development and manufacturing processes. The ratio of field-rejected parts 

to all parts passing quality assurance test is referred to as the reject rate or defect level 

as shown in (Eqn. 2-2). 
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Reject Rate = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑦 𝑝𝑎𝑟𝑡𝑠 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑓𝑖𝑛𝑎𝑙 𝑡𝑒𝑠𝑡 (𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑠 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑓𝑖𝑛𝑎𝑙 𝑡𝑒𝑠𝑡
 (Eqn. 2-2) 

 

The reject rate provides an indication of the overall quality of the VLSI testing 

process [16]. Generally, a reject rate of 500 defects per million (DPM) may be 

considered as acceptable, while 100 DPM or lower shows that the test is high in 

quality.  

 

2.2.4 Automatic Test Equipment (ATE) 

 

Test application is the process of applying test vectors to the DUT and 

analyzing the output responses. Test application is performed either by automatic test 

equipment (ATE) or by the technologies inside the chip itself. ATE is an equipment 

controlled by computer in the production testing of ICs both at the wafer level and in 

packaged form. Utilizing ATE, test patterns are applied to the DUT and the output 

responses are compared to the stored responses for a fault-free circuit. ATE has the 

capability to perform diagnosis on the failure observed to identify the source of the 

issue [7]. 

 

Without the introduction of ATE, testing would become a bottleneck to the 

high-volume production of ICs due to the repetitive tasks needed to be performed 

manually by technicians or lab operators. Automation made available by ATE had 

tremendously contributed to the success of IC production today. Development of a 

custom tester is usually for testing a particular product, whereas a general-purpose 
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ATE is often more flexible and enhances the productivity of high-volume 

manufacturing of ICs.  

  

From a VLSI development point of view, there has been a significant decrease 

in the capital cost of manufacturing a transistor over the past decades. However as 

more complex devices are delivered, the test cost are becoming an increasing portion 

of the overall industry capital requirement per transistor. In the advancement and ever-

changing of VLSI testing, ATE costs should be kept under control too.  

 

In this project, an ATE in the form of Advantest tester is used to apply the 

coverage-improved test patterns generated to observe the output responses on a real 

device. Before the first silicon is made available, the patterns to be tested on the ATE 

should be verified by simulating the patterns and the design model. ATPG tools allow 

to dump a test bench to do the verification on the generated scan patterns. A timing 

simulation with delay data for all lines and logic gates should be performed to take 

into account not only logical behavior but also timing of the design. The scan patterns 

generated from the ATPG should be converted to a format such as Standard Tester 

Interface Language (STIL) which can be easily converted into test vectors for the ATE 

usage. 

 

2.2.5 Design for Test (DFT) 

 

During the early stages of IC production history, design and test of the device 

were regarded as separate functions, performed by separate and unrelated group of 

engineers [7]. Design engineers were to design a circuit based on the required 
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functionality based on the design specification without giving any thought on how the 

manufactured device was to be tested. After the design was handed to test engineers, 

efficient test was to be constructed to screen out the parts that may contain 

manufacturing defects and ship the rest to customers. Based on customer returns, 

measurements are calculated as defects per million (DPM) shipped, as a final test core 

of the quality of the test.  

 

However as circuit complexity increased, a common approach to test these 

devices during the 1980s relied heavily on fault simulation to measure the fault 

coverage of the supplied functional patterns in the CUT [7]. If the supplied patterns 

did not reach the target fault coverage goal, additional functional patterns were added. 

These functional patterns navigate through the long sequential depths of the design, 

with the goal of exercising all the internal states and detecting all possible 

manufacturing defects. Unfortunately, this approach typically failed to improve the 

CUT’s fault coverage beyond 80% and as a result, the quality of the products shipped 

suffered.  

 

Gradually, the fine line between design and test was blurred down and led to 

the development and deployment of design for test (DFT) engineering in the industry.  

The first challenge facing DFT engineers was to find simpler ways of exercising all 

internal states of a design and reaching the target fault coverage. Various methods were 

proposed in 1970s and 1980s to aid in the circuit’s testability or to increase the circuit’s 

controllability and observability [17] [18].  
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For combinational circuits, generating test patterns within a reasonable amount 

of time was not difficult with many innovative ATPG algorithms already existed. 

However, for sequential circuits, due to numerous internal states that are difficult to 

set and check from external pins, automatically generating test patterns did not work 

so well. Hence, structured DFT approaches were developed whereby, direct external 

access is provided in the circuit for storage elements. The reconfigured storage 

elements with direct external access are commonly known as scan cells. As a result of 

this capability, testing the sequential circuit is transformed into a problem of testing 

the combinational circuit which already has many existing solutions. 

 

2.2.6 Scan Design and Scan Design Rules Overview 

 

Scan design is currently the most popular structured DFT approach. The way 

it is implemented is by connecting the scan cells of a design into multiple shift registers 

called scan chains, to provide them with external access. Scan design achieved this by 

replacing the flip-flops with scan cells, each having an additional port called scan input 

(SI) and a shared port called scan output (SO). The scan chains are created by 

connecting the SO port of a scan cell to the SI port of another scan cell. In order for a 

scan design test to achieve the desired DPM goal, specific circuit structure and design 

practices that can affect fault coverage of the circuit must be met. These requirements 

which are known as scan design rules must be adhered by DFT engineers, whereby 

any scan design rule violation must be fixed. The test patterns generated for the scan 

design must be converted to test programs for test engineers to perform manufacturing 

testing on the real ICs using an ATE. 
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2.2.7 Scan Mode of Operations 

 

The structured DFT approach attempts to improve the overall testability of a 

circuit with a test-oriented design methodology [19] [20]. This methodological and 

systematic approach produces more predictable results. Scan design, the most widely 

used structured DFT approach, attempts to improve testability by providing the 

controllability and observability of storage elements in a sequential design. This 

includes converting the sequential design into a scan design with three modes of 

operation: normal mode, shift mode and capture mode.  

 

In normal mode, all test signals are not exercised, and the circuit operates in 

the functional configuration. Whereas, in shift and capture modes, a test mode (TM) 

signal is often used to exercise all test-related signals to simplify the test, debug, 

diagnosis tasks, improve fault coverage and guarantee the safe operation of the circuit 

under test. These circuit modes and operations consist of different test signals and test 

clocks.  

 

Referring to Figure 2.3, this sequential circuit contains combinational logic and 

three normal D flip-flops. Assume that a stuck-at fault f in the combinational logic 

requires the primary input X3, flip-flops FF2 and FF3 to be set to 0, 1 and 0 respectively, 

to capture the fault effect into FF1. The values stored in FF2 and FF3 are not directly 

controllable from the primary inputs, thus require a long sequence of operations to set 

their values. Same goes when the fault effect observation is needed in F1, a long 

propagation is needed for the value to propagate to a primary output. Obviously, while 

the output response of a scan test pattern is shifted out of a scan chain, the scan chain 
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can be shifted in with the scan input data of the next test pattern to save overall test 

time. The resultant test time for a scan test depends mostly on the number of scan test 

patterns used, the size of the longest scan chain and the shift frequency. 

 

 

 

Figure 2.3: Testing a Normal Sequential Circuit for Fault, f [7] 

  

With scan design, external access to the flip-flops are made available for easier 

controllability and observability. The flip-flops are converted into scan cells and 

stitched together to form one or more shift registers called scan chains. Test stimuli 

can now be shifted in and out of the scan cells with significantly more predictable and 

lower clock cycles needed. Hence, the task of detecting fault f can be done by: 

 

1) Shifting in the desired stimuli in shift mode. 

2) Switching to capture mode and applying one clock pulse to capture the fault 

effect into FF1. 
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3) Switching back to shift mode and shift out the test responses stored in FF1, FF2 

and FF3 for comparison with the expected response. 

 

 

2.2.8 Mux-D Scan Cell 

 

The most widely used scan cell design is the Mux-D scan flip-flop as shown in 

Figure 1.1. This scan cell composed of a D flip-flop and a multiplexer. Its basic 

function is to pass a logic value from its input to its output when a clock signal is 

applied. The multiplexer uses a scan enable (SE) signal to select between the data input 

(DI) and the scan input (SI). In normal/capture mode, SE is set to 0 to get input from 

DI when a rising clock edge is applied. In shift mode, SE is set to 1 to get new data 

from SI while the content of the D flip-flop is shifted out.  

 

Major advantages of using mux-D scan cells are their compatibility to modern 

designs using single-clock D flip-flops as storage elements and the comprehensive 

support provided by existing design automation tools which will be used in this project. 

Also, the additional area overhead is small and there are no or very relaxed timing 

constraints on the scan enable signal.  The disadvantage however, each mux-D scan 

cell adds a multiplexer delay to the functional path, therefore it might reduce the 

maximum frequency for functional operation.  

 

2.2.9 Scan Design Rules 

 

In order to integrate scan into a design, the design must adhere to a set of scan 

design rules [21]. Furthermore, a set of design style must be avoided to prevent low 
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fault coverage that can be achieved. Table 2.1 lists a number of scan design rules that 

are required to be adhered in order to successfully utilize scan and achieve the fault 

coverage desired. In this table, a possible recommended solution is provided for each 

scan design rule violation. Those labeled “avoid” must be fixed for both the shift and 

capture operations. Whereas those that are labeled “avoid during shift” are required to 

be fixed during shift operation only. 

 

Table 2.1: Typical Scan Design Rules 

Design Style Scan Design Rule Recommended Solution 

Tristate buses Avoid during shift Fix bus contention during shift 

Bidirectional I/O ports Avoid during shift 
Force to input or output mode 

during shift 

Gated clocks (mux-D full-

scan) 
Avoid during shift Enable clocks during shift 

Derived clocks (mux-D 

full-scan) 
Avoid Bypass clocks 

Combinational feedback 

loops 
Avoid Break the loops 

Asynchronous set/reset 

signals 
Avoid Use external pins 

Clocks driving data Avoid 
Block clocks to the data 

portion 

Floating buses Avoid Add bus keepers 

Floating inputs Not recommended Tie to VDD or ground 

Cross-coupled 

NAND/NOR gates 
Not recommended Use standard cells 

Non-scan storage 

elements 

Not recommended 

for full-scan design 

Initialize to known states, 

bypass, or make transparent 

 

 

2.2.10 Fault Models 

 

The SCAN test pattern generation is developed based on the fault models 

provided in the design model. Fault models provide a mechanism to emulate defects 

in real life so test patterns can be generated to identify the defects. Based on the fault 
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model, the expected good behavior is determined first hand by the ATPG tool. A fault 

is detected when there is an observed difference between good behavior and faulty 

behavior. The most common fault model is a stuck-at fault model introduced in 1959 

[22]. Stuck-at patterns detect a very large percentage of all faults. Another common 

fault model, is the at-speed fault model which can be divided into transition and path 

delay based.  Besides that, there are also other fault models such as layout aware bridge 

and user-defined (UDFM) fault models. Requirements for low Defect per Million 

(DPM) of semiconductor devices typically drive the need for additional fault models. 

 

2.2.11 Targeted Fault Models of Scan Tests 

 

a) Single Stuck-At Fault (SSF) Model 

 

The classical fault model of a scan test is the single stuck-at fault (SSF) model 

introduced in 1959 [22]. In this model, only a single line is fault modeled to be stuck-

at 0 or stuck-at 1. Most people assume the SSF model as stuck-at fault model, which 

is not precise since multiple stuck-at faults would mean a significantly larger set of 

faults that can be hardly handled by automatic test pattern generation (ATPG) 

algorithms. SSF model has the following properties: 

 

- In a circuit design, the number of SSFs increases linearly with the number of 

flip-flops. 

- The ratio of the number of SSFs that can be detected by a given scan test, can 

be the gauge for the quality of the scan test. 

- For a highly efficient scan test patterns just focusing on a SSF model, coverage 

of other faults and defects that exist in the circuit might not be that good [23] 

and this can be improved, if the ATPG tool is configured to detect each SSF n-

times and not only with one pattern (n-detect SSF scan patterns) [24][25]. 

 


