
A TEST VECTOR MINIMIZATION ALGORITHM

BASED ON DELTA DEBUGGING FOR POST-SILICON

VALIDATION OF PCIe ROOTPORT

By

 TOH YI FENG

A Dissertation submitted for partial fulfilment of the requirement

for the degree of Master of Science

(Electronic Systems Design Engineering)

August 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/153212215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ACKNOWLEDGEMENT

I would like to take this opportunity to thank all people who have been very supportive

throughout my thesis writing. I have to thank my loving parents for providing moral support, as

thesis writing is a tough journey, especially while working full-time job at the same time.

I have to thank my thesis supervisor, Dr Teh, for providing valuable advice and comments

on thesis writing, and pointing a clear direction on doing better research and writing a better thesis.

I am also grateful to have a caring and understanding manager at work, Mr. Heng, who

supported me to pursue a Master programme despite having to work full-time. Without his help, I

wouldn’t have the resources to evaluate the performance of the minimizer algorithm.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... ii

TABLE OF CONTENTS .. iii

LIST OF TABLES ... v

LIST OF FIGURES .. vi

LIST OF ABBREVIATIONS ... viii

ABSTRAK .. ix

ABSTRACT ... x

CHAPTER 1. INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem Statement ... 7

1.3 Objectives .. 8

1.4 Scope .. 9

1.5 Thesis Outline .. 9

CHAPTER 2. LITERATURE REVIEW ... 10

2.1 Overview .. 10

2.2 Hardware Verification.. 10

2.2.1 Pre-Silicon and Post-Silicon Verification ... 11

2.2.2 Formal Verification methods .. 12

2.2.3 Simulation Methods .. 15

2.2.4 Prototyping Methods ... 17

2.2.5 Test Vector Generation Methods .. 18

2.3 Software Verification and Debugging Methodologies .. 20

2.3.1 Random Testing .. 20

2.3.2 Cyclic Debugging ... 21

2.3.3 Program Slicing .. 21

2.3.4 Delta Debugging ... 22

2.3.5 Replay-Based Debugging ... 24

2.4 PCIe-Specific Verification Methodologies ... 25

2.4.1 Data Verification with Repeated Memory Read/Writes ... 25

2.4.2 Simulation with Random Generator Input and Reference Model 26

2.4.3 Incremental Modelling with Theorem Provers ... 27

2.4.4 System Level Assertion-based Verification using Simulation 28

2.5 Chapter Summary .. 28

iv

CHAPTER 3. METHODOLOGY ... 30

3.1 Overview .. 30

3.2 Modification of Existing PCIe Test ... 30

3.3 Overall Minimizer Program Structure and Flow ... 33

3.4 Minimizer Algorithm ... 36

3.5 Tokenizer and Parser algorithm ... 43

3.6 Generating PCIe Test Vector with Errors to Evaluate Performance of Minimizer.............. 50

3.6.1 Using No-Snoop Bit to Generate Errors ... 50

3.6.2 Using Overlapped Byte Enables to Generate Errors ... 53

3.7 Testing the Effectiveness and Robustness of Minimizer Algorithm................................... 54

3.8 Chapter Summary .. 56

CHAPTER 4. RESULTS AND DISCUSSION ... 57

4.1 Overview .. 57

4.2 Effects of Different Sizes of Test Vector Set ... 57

4.3 Effects of Different Number of Erroneous Test Vectors ... 61

4.4 Effects of Different Types of Error Injected .. 63

4.5 Effects of Different Positions of Erroneous Test Vectors .. 64

4.6 Effects of Different Distribution of Erroneous Test Vectors ... 66

4.7 Combined Effects of Different Numbers of Erroneous Test Vectors and Sizes of Test

Vector Set ... 68

4.8 Combined Effects of Different Numbers and Positions of Erroneous Test Vectors 69

4.9 Combined Effects of Different Numbers of Erroneous Test Vectors and Distribution

(Spacing) .. 70

4.10 Summary of Results ... 72

CHAPTER 5. CONCLUSION ... 73

5.1 Conclusion ... 73

5.2 Future Improvements ... 74

REFERENCES .. 75

APPENDIX A – Python Code of Minimizer (testcontrol.py).. 77

APPENDIX B – Python Code of Minimizer (minimizer_algo.py) ... 79

APPENDIX C – Python code of parser (blparser.py) .. 82

v

LIST OF TABLES

Table 2.1 Comparison between pre-silicon verification and post-silicon verification 12

Table 3.1 An example of minimizer algorithm applied to an 8-vectors test case. 42

Table 3.2 The list of tokens that are processed by the tokenizer. 44

Table 3.3 Parameters of input test vectors to test effectiveness of minimizer

algorithm. .. 54

vi

LIST OF FIGURES

Figure 1.1 The different scopes of verification. .. 2

Figure 1.2 Diagram depicting the spectrum of characteristics of pre-silicon

verification, manufacturing testing and post-silicon verification. 3

Figure 1.3 Logical layers of PCI Express (showing two devices on a single link). 4

Figure 1.4 An example hierarchy of a PCIe system, consisting of a root

complex(hosting a root port), a switch and 3 endpoints. 5

Figure 1.5 The 3 main phases of a typical random concurrency test. 7

Figure 2.1 Binary Decision Diagrams (BDDs) used for simplification of boolean

equations. ... 14

Figure 2.2 Steps involved in Cyclic Debugging. .. 21

Figure 2.3 Example of delta debugging algorithm using binary search method. 23

Figure 2.4 Flowchart illustrating record-replay based debugging algorithm. 25

Figure 2.5 Simulation model using random generator and a reference model to verify

a PCIe design. Excerpted from (Hyun and Seong, 2005). 27

Figure 3.1 Simplified generic block diagram showing the existing test framework

prior to the addition of minimizer algorithm. .. 31

Figure 3.2 Block diagram showing test framework integrated with the minimizer

algorithm. .. 33

Figure 3.3 Structure chart of the minimizer program. .. 34

Figure 3.4 The overall flowchart of the minimizer. .. 35

Figure 3.5 Flowchart of the test vector minimization algorithm. 38

Figure 3.6 Testing complements of a subset. .. 39

Figure 3.7 The use of currentIndex and currentLength when testing complement of

subsets. .. 40

Figure 3.8 The flowchart of the tokenizer. ... 46

Figure 3.9 Example of the input vector file, illustrating the structure of the language....... 47

Figure 3.10 The syntax tree structure that the parser generates. ... 48

Figure 3.11 Flowchart of the parsing algorithm. .. 49

Figure 3.12 TLP header structure of the Memory Read/Write Request. (Excerpted from

PCI Express Base Specification Revision 3.1a) .. 51

vii

Figure 3.13 The meaning of each Attr bits in the TLP header. (Excerpted from PCI

Express Base Specification Revision 3.1a.) .. 51

Figure 4.1 Graph of number of tests performed by minimizer vs size of test vector

list. ... 58

Figure 4.2 Graph of CPU time consumed by minimizer vs size of test vectors. 60

Figure 4.3 Number of tests vs number of injected erroneous test vectors. 61

Figure 4.4 CPU time consumed by minimizer(in seconds) vs the number of injected

erroneous test vectors. ... 62

Figure 4.5 Total tests performed vs number of injected erroneous test vectors. 63

Figure 4.6 Number of tests performed by minimizer against the position of the 5

erroneous test vectors. ... 65

Figure 4.7 Number of tests vs the spacing between the erroneous test vectors. 67

Figure 4.8 Total number of tests performed vs number of injected error test vectors

and size of test vector list. ... 68

Figure 4.9 Number of tests vs number of erroneous test vectors and position of the

injected erroneous test vectors. .. 69

Figure 4.10 The number of tests performed by minimizer vs the number of erroneous

test vectors and spacing between the erroneous test vectors. 71

viii

LIST OF ABBREVIATIONS

BDD Binary Decision Diagram

BE Byte Enable (used in Last DW BE and 1st DW BE in TLP field)

BFM Bus Functional Model

BIOS Basic Input/Output System

BMC Bounded Model Checking

CPU Central Processing Unit

DW Double Word (Data size convention in Intel 32bits or 4Bytes)

FPGA Field Programmable Gate Array

HDL Hardware Description Language

IC Integrated Circuit

IP Intellectual Property (usually referring to silicon design in the form

 of HDL)

LFSR Linear Feedback Shift Register

MTRR Memory Type Range Register

OBDD Ordered Binary Decision Diagrams

PCH Platform Controller Hub

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

RAM Random Access Memory

RTL Register-Transfer Level (a category of HDL code)

SAT Boolean Satisfiability

SoC System-on-Chip

SUT System-under-test

TLP Transaction Layer Packet

UC Uncachable memory type

WB Write-Back (memory cache type)

WC Write-Combining (memory cache type)

WP Write-Protect (memory cache type)

WT Write-Through (memory cache type)

ix

Algorithma Minimisasi Vektor Ujian Bedasarkan Delta Debugging untuk

Pengesahan Pasca-Silikon dalam Rekabentuk PCIe Rootport

ABSTRAK

Dalam reka bentuk peranti silikon, contohnya peranti PCIe, pengesahan reka bentuk adalah

bahagian yang penting dalam proses reka bentuk, di mana peranti tersebut diuji dengan ujian

pengesahan yang mengesahkan fungsinya. Walau bagaimanapun, penyahpepijatan(debugging)

manual masih digunakan secara meluas dalam pengesahan pasca-silikon dan sebilangan besar ujian

vektor perlu dianalisis dan ianya melambatkan proses. Justeru, suatu algoritma minimisasi vektor

ujian telah dicadangkan untuk menghapuskan vektor ujian berlebihan yang tidak menyumbang

kepada penghasilan semula(reproduction) kegagalan ujian. Kaedah yang dicadangkan diilhamkan

oleh algoritma “Delta Debugging” yang digunakan dalam penyahpepijatan automatik perisian

tetapi masih belum diaplikasikan dalam penyahpepijatan pasca-silikon. Kaedah ini beroperasi

dengan menggunakan prinsip pembahagian binari vektor ujian secara binary, dan menguji setiap

subset pada satu sistem pasca-silikon “Sistem-Under-Test” (SUT) untuk menentukan jika subset

boleh dihapuskan. Apabila diuji dengan menggunakan set ujian vektor yang mengandungi ujian

vektor salah dengan sengaja, algoritma ini dapat mengeluarkan vektor ujian salah dengan baik.

Dalam kes-kes ujian yang mengandungi sehingga 10,000 vektor ujian, minimizer hanya mengambil

masa kira-kira 16ns untuk setiap ujian vektor dalam kes ujian apabila ianya hanya mengandungi

satu vektor ujian yang salah. Dalam kes ujian dengan 1000 vektor termasuk vektor yang salah, ia

mengambil masa kira-kira 140μs setiap ujian vektor salah yang disuntik. Dengan itu penggunaan

CPU minimizer sangat kecil jika dibandingkan dengan masa ujian yang dijalankan pada SUT.

Faktor-faktor yang memberi impak besar kepada prestasi algoritma, adalah bilangan vektor salah

dan penaburan (jarak) vektor salah. Kesan daripada jumlah vektor ujian dan kedudukan vektor

salah agak kecil berbanding dengan dua yang lain. Oleh itu, algoritma ini paling berkesan bagi kes-

kes di mana terdapat hanya beberapa vektor ujian yang salah, dengan set vektor ujian yang besar.

x

A Test Vector Minimization Algorithm Based on Delta Debugging For Post-Silicon

Validation of PCIe Rootport

ABSTRACT

In silicon hardware design, such as designing PCIe devices, design verification is an essential part

of the design process, whereby the devices are subjected to a series of tests that verify the

functionality. However, manual debugging is still widely used in post-silicon validation and is a

major bottleneck in the validation process. The reason is a large number of tests vectors have to be

analyzed, and this slows process down. To solve the problem, a test vector minimizer algorithm is

proposed to eliminate redundant test vectors that do not contribute to reproduction of a test failure,

hence, improving the debug throughput. The proposed methodology is inspired by the Delta

Debugging algorithm which is has been used in automated software debugging but not in post-

silicon hardware debugging. The minimizer operates on the principle of binary partitioning of the

test vectors, and iteratively testing each subset (or complement of set) on a post-silicon System-

Under-Test (SUT), to identify and eliminate redundant test vectors. Test results using test vector

sets containing deliberately introduced erroneous test vectors show that the minimizer is able to

isolate the erroneous test vectors. In test cases containing up to 10,000 test vectors, the minimizer

requires about 16ns per test vector in the test case when only one erroneous test vector is present.

In a test case with 1000 vectors including erroneous vectors, the same minimizer requires about

140µs per erroneous test vector that is injected. Thus, the minimizer’s CPU consumption is

significantly smaller than the typical amount of time of a test running on SUT. The factors that

significantly impact the performance of the algorithm are number of erroneous test vectors and

distribution (spacing) of the erroneous vectors. The effect of total number of test vectors and

position of the erroneous vectors are relatively minor compared to the other two. The minimization

algorithm therefore was most effective for cases where there are only a few erroneous test vectors,

with large number of test vectors in the set.

1

CHAPTER 1. INTRODUCTION

1.1 Background

In the electronics industry, one of the currently most prominent subdomain is

microelectronics. As the name implies, microelectronics involves the design and manufacturing of

electronic devices based on extremely tiny structures in semiconductor. Almost all digital electronic

devices nowadays take advantage of the microelectronics to manufacture highly complex circuits

on silicon, containing millions or billions of transistors on a single silicon die, which is then

packaged into an Integrated Circuit (IC). These products are so common, and to put things into

perspective, microprocessors and System-on-Chip (SoC) in our computers and smartphones are

examples of IC.

The sheer complexity of IC introduces high chances of design errors or bugs. When it is

compared to simpler devices, a complex device has more possible points of failure. For this reason,

Hardware Verification and Validation (V&V) or “verification” for short, has been an important

activity in developing such complex IC. Verification can be described as a series of processes that

include testing the device, locating bugs and solving bugs to ensure that a device operates properly

according to its specifications (“IEEE Draft Standard for System, Software and Hardware

Verification and Validation,” 2015). Failure to ensure bug-free ICs before delivering them to

customer has far-reaching effects. For example, if such buggy ICs are used in healthcare devices

or industrial robots, they will lead to unreliable operation or even catastrophic harm to the device

or to the users. Buggy devices will also impose a significant financial penalty to the company, for

example, the Pentium FDIV bug costed Intel at least 475 million USD in order to replace all faulty

devices (Pratt, 1995).

Verification activities can be characterized in many ways. In terms of scope, verification

of a digital IC ranges from as small as an IP block (or module) to full-chip level and finally to

2

system-level, as shown in Figure 1.1. The IP block verification tests an IC module, for example

network controller within a smartphone SoC. Full-chip verification tests the whole chip at once.

System-level verification tests the IC together with the application circuit (for example testing a

microprocessor on a motherboard).

Figure 1.1 The different scopes of verification.

Verification of digital ICs can also be classified according to the stages of product

development, roughly into 3 categories such as pre-silicon verification, manufacturing Testing, and

Post-silicon verification, as shown in the Figure 1.2. Pre-silicon verification refers to design

verification prior to silicon fabrication. Manufacturing testing refers to basic verification during

manufacturing of the devices. Post-silicon verification refers to the verification after

manufacturing, in final form (silicon die). Generally, pre-silicon verification uses model checking

or simulation techniques to verify the correctness of the design. Manufacturing testing uses

consistency checks to verify that all devices behave the same as a way to rule out fabrication

defects. Post-silicon verification typically runs verification workloads on real environments (such

as on a consumer product), and it is used to detect and address issues that only manifest in real

silicon (Mitra et al., 2010).

3

Figure 1.2 Diagram depicting the spectrum of characteristics of pre-silicon verification,

manufacturing testing and post-silicon verification.

Post-silicon is relatively less standardized than pre-silicon verification as there are no

generic methods that can fully verify full design like the formal methods available in pre-silicon

verification. There are, however, ongoing researches that try to bridge pre-silicon methods with

post-silicon methods, and thus, post-silicon verification is an emerging field of research in the

sphere of hardware V&V. Even though pre-silicon and post-silicon verification share similar traits,

they are sufficiently different to make both of them equally important. Most notably, post-silicon

verification has a much higher speed than pre-silicon methods (pre-silicon methods can’t run at

real-time speed like real device does), while pre-silicon methods has better debuggability and

observability (Wagner and Bertacco, 2011). Researches are being done to improve debuggability

of post-silicon verification methods.

PCIe (Peripheral Component Interconnect Express) is a high speed serial bus that is used

for connecting a wide array of peripheral devices, such as graphics cards, networking cards, storage

devices and etc. to a computer system. It is a replacement to the PCI and PCI-X buses that are

based on a shared parallel bus that is bandwidth scalability limited. Unlike the predecessor PCI bus,

4

PCIe is a point-to-point link, which uses separate set of receive and transmit differential pair wires

to connect devices. It is packet-based protocol, with a 3-layered protocol in the hardware to handle

the packets which are Transaction Layer, Data Link Layer and Physical Layer. A data transaction

such as “memory write”, is turned into a data packet in Transaction Layer, and pass through

subsequently lower layers, the Data Link Layer and Physical Layer, for further processing, and it

is sent through the PCIe link to the device on the other end of the link, where the data packet will

traverse the layers in reverse, and arrives in Transaction layer where it will finally be decoded into

a memory write transaction, as shown in Figure 1.3.

Figure 1.3 Logical layers of PCI Express (showing two devices on a single link).

PCIe protocol is robust, flexible, scalable and highly configurable. For example, a PCIe

link can support a link width configuration ranging from x1 to x32 with a step increase of power-

of-two (a link width of x1 refers to 1-lane link, which consists of a transmit and a receive differential

pairs per lane) depending on the maximum link width shared by the devices on the two ends of a

link. Link speed is also configurable, from 2.5Gbps to 8Gbps per lane, depending on the required

bandwidth or power savings requirement. The PCIe bus is not just used for transferring data but it

also has the capability to handle power management events, hot plug events, interrupts, access

5

control, local time synchronization across devices, traffic prioritization and etc. All of these require

complex circuits to support the features. Thus, PCIe is both a communication link but also virtually

forms the backbone of a computer system.

A PCIe device can be either a root port, an endpoint, a switch or a bridge. The simplest

PCIe system consists of a root port connected to an endpoint with a PCIe link. Another example of

PCIe system is shown in Figure 1.4. The root port refers to the PCIe port that is exposed by the

host system, typically a computer chipset or a microprocessor, while an endpoint refers to a device

(for example, graphics card) that connects to the rootport. This dissertation will specifically address

the verification of a PCIe rootport of an Intel PCH. The PCIe rootport is considered as an IP block

by itself, so verification of a PCIe rootport is considered as IP-level verification.

CPU

Root
Complex

PCIe Endpoint PCIe Endpoint PCIe Endpoint

Switch

PCIe link

Figure 1.4 An example hierarchy of a PCIe system, consisting of a root complex (hosting

a root port), a switch and 3 endpoints.

The complexity of the PCIe bus protocol is daunting. The compliance checklist for an

endpoint exceeds 1000 items (Endpoint Compliance Checklist for the PCI Express Base 1.0a

Specification, 2004). Couple this with the number of configurable features, the permutations for all

possible verification test cases may exceed millions. In short, it has an extremely large verification

space. Moreover, multiple clock boundaries, and massive state machines (often containing sub-

state machines in each state) and long simulation time to simulate certain features and state

6

transitions also further increase the complexity (Emara et al.,2005). The PCIe specification

separates the PCIe functionality into 3 distinct layers, e.g. the transaction layer, the data link layer

and the physical layer, as shown in Figure 1.3. The purpose of this separation is to ease the work

of designing a PCIe device as well as reducing the difficulty of verification. Despite this, the

verification of PCIe root port IP is still a challenging task for both pre and post-silicon. Post silicon

validation is especially important as the PCIe subsystem closely interacts with the whole computer

system in many aspects, for instance, power management (e.g. turn on, sleep, standby etc.).

Moreover, physical effects such as random link noise and data corruptions (which the PCIe IP must

handle gracefully) can only be tested in post-silicon. Therefore, a PCIe rootport has to be verified

in post-silicon together with the systems surrounding it (such as memory controllers, CPU etc.)

under a condition that mimics a realistic workload.

Two main approaches of post-silicon verification of PCIe rootport are the directed focus

tests and random concurrency tests. The former is a more focused approach that only exercise one

feature to maximize the number of iterations for a specific feature while the latter involves running

tests on all features at the same time to maximize the interactions between different features.

Random concurrency tests has become the major test for PCIe, especially for regression tests, as it

is able to uncover more corner-case bugs that are not usually detected in focus tests. It is worth

highlighting that most of the random concurrency tests are in fact pseudorandom. This means that

the test sequences appear to be random but are predictable and reproducible in order to aid in bug

reproduction and debugging.

A random concurrency test usually has three major phases, which are setup phase, execute

phase and verify phase, as shown in Figure 1.5. Setup phase initializes the hardware in preparation

for the test, execute phase runs the tests (e.g. sends the data up and down the link without verifying

them), and verify phase checks for any errors or coherency issues. The stimuli that drive the

7

hardware during execution of a test are referred to as test vectors, with each test vector being a

discrete action that will generate a result.

Setup phase
(Prepare system/
environment and

generate test vectors)

Execute phase
(Execute the test

vectors)

Verify phase
(Verify data and errors)

Figure 1.5 The 3 main phases of a typical random concurrency test.

Random concurrency tests are used most often for testing PCIe rootport as this scheme

maximizes the stressing of PCIe bus in the execution phase, allowing more corner cases to be

covered. Stressing is achieved by making sure that verification activity which causes bus idling

doesn’t occur during test execution phase.

1.2 Problem Statement

An inherent drawback of the random concurrency test approach is the long error detection

latency. This means that when an error occurs during the execute phase, it may not be detected

immediately until it enters verification phase. When verification failure occurs, the test vectors that

lead to the error have to be manually determined. However, since the random stimuli concurrency

tests involve a large set of test vectors per unique iteration, it is very difficult to manually examine

them all in a reasonable amount of time. Often, such ICs provides a means of capturing some of

the internal signals. Otherwise, a logic analyzer can be used to capture internal signals of the IC, if

it is deliberately exposed. However, there is a limit on the number of signals and the amount of

signal data that can be captured. This is due to the inability to fully capture the signals for the

execution of the full set of vectors that can take more than a million clock cycles.

In most cases, only some of the test vectors in a test case are responsible for the error

reproduction. As the slow manual debugging process is a major bottleneck in post-silicon validation

8

effort, it is vital to reduce the amount of the input test vectors using an automated approach due to

tight marketing schedule.

1.3 Objectives

1. To enhance a PCIe post-silicon random concurrency test by implementing an algorithm

that automatically minimize the number of test vectors for reproducing bug.

o Reducing the size of test vectors by eliminating non-error-causing test vectors

improves debugging efficiency as less time is wasted on identifying the real cause

of an issue.

2. To determine the execution speed of the proposed test vector minimization algorithm.

o The speed of minimizer algorithm is measured by determining the total number of

tests executed on the SUT by the minimizer program, and CPU time spent within

the minimizer algorithm.

3. To determine the efficiency of the proposed test vector minimization algorithm when

subjected to different scenarios.

o The minimizer algorithm is subjected to different input parameters such as size of

a set of test vector in each test case (each test case has exactly one set of test

vectors), number of error-inducing test vectors, position of error-inducing test

vectors and distribution of error-inducing test vectors. The speed of execution

under the different conditions are compared.

9

1.4 Scope

The focus of this work is to improve the verification software used for testing PCIe root

port in post silicon verification. This thesis focuses on the study and the development of a software

algorithm that is used in conjunction with an existing random-concurrency test for post-silicon

verification. The aim is to enhance the existing test software and test content without introducing

additional hardwares.

This research does not cover:

(i) Hardware enhancement and methods to aid debuggability of post-silicon

verification

(ii) Model-based verification (existing random-concurrency test do not require the

mathematical model of the PCIe root port to be known)

(iii) Verification of other digital circuits other than PCIe such as microprocessors and

other subsystems

1.5 Thesis Outline

The thesis begins with Chapter 1 that provides overview of the silicon design validation

methodologies, the PCIe technology and the motivation behind this research. Chapter 2 compares

and contrasts in detail the current state of the art of hardware verification, software verification

methodologies and debugging methodologies, as well as PCIe-specific verification methodologies.

Chapter 3 outlines the implementation of test vector minimization algorithm and also steps to

evaluate the algorithm’s efficiency. The performance data of the minimizer algorithm is discussed

in Chapter 4. The dissertation concludes in Chapter 5 with additional comments on future

improvements.

10

CHAPTER 2. LITERATURE REVIEW

2.1 Overview

This section discuss about the current state of the art of testing/verification/validation

methodologies that are currently being used in various fields. The section begins with the discussion

of hardware verification methodologies, followed by software testing/verification methodologies,

and finally PCIe-specific testing methodologies. A summary of the findings is given and the

available gaps are identified.

2.2 Hardware Verification

Hardware verification usually refers to the functional verification of a complex digital

device such as microprocessor. The terminology may also differ as some manufacturers and even

some research papers refer to it as “Validation”. Hardware functional verification is part of the

design cycle and it commences immediately after a digital circuit is designed with Hardware

Description Language (HDL) code such as Verilog and VHDL. If a design error is found during

verification stage, the HDL code will be modified, and then verifications are repeated.

Hardware verification is a challenging task due to the enormous number of possible

scenarios (in terms of inputs and current state of state machines). For example, a simple design

with 100 flip-flops has a total of 2100≈1030 combinations of possible states, and for a moderately

complex design with 512 flip-flops has about 2512≈10154 combinations which are impossible to be

fully verified in a lifetime. Therefore, the number of possible test scenarios increases exponentially

with the number of transistor in the design. Hence the industry typically spends more than 50% of

their effort in terms of cost and time in verification activities during the design phase

(Narayanasamy et al., 2006). Nonetheless, errors continue to slip through to customers, and it is

common for manufacturers to release documents known as errata sheets that describe device bugs

and workarounds.

11

All hardware verifications aim to find and fix issues in the design. However, there is no

single perfect verification algorithm or methodology that works for all applications and scenarios.

Each of the verification methodologies has its own set of strength and weaknesses. Therefore, it is

necessary to review the currently available ways for hardware verification.

2.2.1 Pre-Silicon and Post-Silicon Verification

The two major types of design verification are pre-silicon and post-silicon verification.

Pre-silicon verification is carried out directly by processing the design HDL codes to verify that

the code are written correctly and function according to the specifications. Post-silicon verification

is carried out after the HDL code has been converted into a real device (i.e. manufactured), usually

in a hardware and software environment same as the customer’s configuration.

Generally, pre-silicon verification benefits from good controllability and observability

since the entire design in pre-silicon stage is still in the form of a HDL code that can be observed

and modified easily. The HDL code represents the model of the device, thus with the use of an

appropriate software algorithm, the behavior of the device can be reproduced and studied easily.

Any signals in the circuit can be observed at any time. In contrast, in post-silicon verification,

controllability and observability is limited as all the signals are physically embedded in the

semiconductor chip, and only a limited number of signals can be broken out using pins at any time.

Once a bug is found during pre-silicon, the fix only requires code changes, but a bug fix during

post-silicon requires circuit editing or respinning a new mask or bypass the problem by patching

firmware, which is very costly. Moreover, it is easier to quantify verification coverage during pre-

silicon phase since the design is fully transparent to the designers in the form of codes. Typically,

the verification coverage metrics include code coverage, assertion coverage and mutation coverage.

12

On the other hand, post-silicon verification has a speed advantage, as the device is already

in the physical form that can be run at full speed. Pre-silicon verification cannot be as fast as post-

silicon since it requires computation power to model the behavior of the device (Park, 2010). In

addition, pre-silicon verification doesn’t take account of physical effects fully, such as electrical

noise, signal crosstalk, thermal effects etc. because it would consume too much computational

power and slowing down the verification excessively, thus it is common to just verify at the gate

level only. Table 2.1 shows the summary of comparison between the pre-silicon verification and

post-silicon verification:

Table 2.1 Comparison between pre-silicon verification and post-silicon verification

Pre-silicon verification Post-silicon verification

Good controllability Limited controllability

Good observability Limited observability

Speed of verification is slow
(Simulation and formal verification are slow)

Speed of verification is high
(Direct execution in silicon is fast)

Does not account for physical effects fully,
only a the model in form of HDL is tested
(Layout, noise etc.)

Takes account of all real environment effects
since it is real silicon device

Coverage metrics exist (e.g. code coverage) Coverage metrics is still open to debate

Cost of fixing bug is low Cost of fixing bug is high

2.2.2 Formal Verification methods

Formal verification refers to a family of techniques that mathematically verifies that a

design will always behave according to the specification under all valid input values (Wagner,

2011). Typically, to use this method, the design will need to be represented using mathematical

equations such as Boolean equations, and the equations will be solved to determine if it obeys the

design rules and specifications. Certain formal verification methods are also able to generate

counterexamples, which is a description of a way that violates the specification, when design

inconsistencies are found. Inherently, formal verification methods are best suited for pre-silicon

verification.

13

Formal verification methods can be roughly partitioned into two groups, which is

reachability analysis and deductive methods (Kern and Greenstreet, 1999). Model checkers and

equivalent checkers are part of reachability analysis while automated theorem provers are example

of deductive methods. Due to the vast scope of verification, the properties that are verified using a

specific formal verification method are usually limited and usually one form of design specification

is used (either RTL level, gate level, abstract function block, or transistor (switch) level) (Cohn

1989). Binary decision diagrams and SAT solvers are the main mathematical tools for formal

verification techniques including model checking and theorem proving.

Binary decision diagrams (BDD) are used extensively to represent the Boolean functions

of a design. BDDs are data structures in the form of directed acyclic graphs, i.e. a tree, with each

node representing a variable in the Boolean function. Each node has two outgoing paths connecting

to the next node, with each path corresponds to the value 0 or 1 for the variable. The final nodes

that do not have outgoing paths, are not variables but contain the value (result) of the Boolean

function. BDDs are able to represent complex Boolean equations in a compact form by eliminating

redundant nodes and edges. The canonical form of BDD is known as Ordered Binary Decision

Diagram (OBDD), is a BDD with additional constrains such that on all paths from root node to leaf

nodes, all variable appears only once, in the same order. Equivalence checking can be performed

easily by comparing the OBDD of two circuits. Two circuits which implement the same

functionality will have identical OBDD. OBDD can be used to check the possible states a design

can reach given all possible inputs. Figure 2.1 illustrates an example of simplification using the

BDD technique.

14

Figure 2.1 Binary Decision Diagrams (BDDs) used for simplification of Boolean

equations.

SAT, short for Boolean satisfiability, is a mathematical problem of determining whether

there is a set of values, when assigned to the variables of a Boolean function, the function will

evaluate to true. The SAT solver is very useful to ensure that a certain erroneous state will not be

reached, or to ensure certain signals must follow certain pattern or rules. For example, it can be

used to ensure that read and write signals will not be asserted at the same time for a memory

interface. A simple SAT algorithm can be implemented using a backtracking search (Gupta et al.,

2006). This can be done by first picking an unassigned variable, assign either 0 or 1 to it, and solve

the resulting subproblem recursively. At a point where it is determined that there are no solution

for the subproblem, the value is flipped and recursed again. If the subproblem can be proved to not

satisfy the problem, then there is no need to branch (assign another variable with 0 or 1) further. If

there is a set of values that can satisfy the problem, then the SAT problem is said to be satisfiable.

Model checking is a method that verifies that states and transitions in the design exactly

follows formal specification. The specifications, or in other words, the desired properties of the

design, are specified typically using temporal logic. Temporal logic is used to describe the

properties of the system not just in relation to inputs and states, but also time. Usually, as the

properties have a specific time window where the formal specification applies, bounded model

15

checking (BMC) is used, whereby a property is checked only over a limited number of clock cycles

and can be deemed sufficient if no violation occurs.

 Automated theorem proving is another method to perform formal verification. In this

approach, mathematical techniques are used to perform automatic reasoning to formulate the proof

for a theorem that is related to the design. The “theorems”, as opposed to the Boolean equations

used in model checking, are actually abstract (high level) mathematical descriptions of certain

properties of the design. It requires human assistance throughout the process of obtaining a proof.

Usually, a human will start by proving a simple theorem, then progress to increasingly difficult

theorems.

All formal verification methods currently have the same problems. They either require

excessively large memory space or excessive long time to finish execution. For example, BDD-

based verification may require an extremely large memory to contain all the nodes and edges of the

BDD, especially when the BDD can’t be optimized significantly due to complexity. SAT is a NP-

complete problem, which means it requires an exponential time relative to the input size to complete

execution. Tradeoff has to be made between the verification coverage and verification time. Most

of the time, the verification coverage or scope has to be very limited in order to allow verification

to complete within a reasonable time, unless the design is very simple. The other problem is that

the intentions of the designer must be captured precisely in the Boolean equations, models or

theorems, and there is no exact approach that can do that flawlessly. Furthermore, some physical

effects that only manifest in real silicon can only be determined by experiment, i.e. using post-

silicon methods is the only way to test them.

2.2.3 Simulation Methods

Digital logic simulators are also used for verification of IC designs. As the name implies,

simulators imitate the real behavior of a device using a pure software approach. Simulation is part

16

of pre-silicon verification as it doesn’t involve hardware implementation of the design. The two

basic methods of simulations are compiled simulation and event-driven simulation (Gunes et al.,

2005). For design verification, event-driven simulation is always a preferred choice over the other

as event-driven simulation takes account of timing in the design more accurately.

 Simulation requires the use of simulation models, which is a representation of the design

that can be used to determine the behavior of the design under different inputs at different times.

Precision of the simulation can be varied depending on the requirement, with low-level simulation

being the most precise but comes at a cost of considerably higher computation power and slower

since the model will be more complex. From low precision to high precision, the simulation models

include behavioral simulation, functional simulation, gate-level simulation, switch-level simulation

and transistor-level or circuit level simulation. When different requirements are needed in different

parts of the circuit, mixed-mode simulation can be used, whereby several kinds of simulation

models can be used to provide more accuracy at certain parts and maintain speed of simulation at

the rest.

During simulation, the output of the design-under-test is continuously recorded while being

“exercised” by injecting various combination of valid inputs at the same time. To ensure a good

coverage, it is often required to inject a large number of unique input values to hit as much scenarios

as possible. Therefore, it allows the design to be scrutinized using scenarios that the device will

encounter during normal operation, albeit at a much slower rate than the real device.

In simulation, certain specialized models are available for verifying designs involving bus

protocols such as PCIe. One example is the Bus Functional Model or also referred to as Transaction

Verification Models, allows the simulation to be done to visualize the behavior at a higher level, in

terms of bus transactions. For PCIe it is commonly used as simulation test benches to inject bus

transactions into a PCIe device-under-test and which then allows responses to be captured and

analyzed.

17

Simulation, especially with precise models like gate-level or finer models, is very slow,

because the software has to evaluate the next state of the system by calculating the output states of

every logic gates in the design, one by one. Simulation can be accelerated using multiple processors

to calculate multiple logic gates at a time, but it is still very slow as there are millions of gates in a

practical design.

2.2.4 Prototyping Methods

Prototyping refers to hardware implementation of the design. There are mainly two

methods of prototyping, which are hardware emulation or live system (post-silicon). Hardware

emulation uses a specialized hardware, typically one or more Field Programmable Gate Array

(FPGA) chips, to load the design and execute it. In fact, since FPGA consists of programmable

logic gates and circuits, it is able to perform as if it were the fabricated device, only it was somewhat

slower compared to the real IC which is a custom-made chip. Instead of using software like what

is used in simulation, prototyping FPGA actually uses real hardware logic gates to implement the

gates in the design, which all run at the real-time in parallel, therefore it is many orders of magnitude

(typically 1000 times or more) faster than software simulation methods. This method is still

considered pre-silicon since the device is yet to be fabricated. Being a pre-silicon method allows

quick changes so any verification issues can be fixed quickly.

The other method, needless to say, is a method whereby a real device is fabricated in its

final form and tested on the final platform of the end user. This method is the so-called post-silicon

verification where a device is tested after it is being manufactured. The drawback of the method is

the extremely long turn-around-time of the manufacturing process of the device, which may take

up to months for devices as complex as the latest microprocessors from Intel. If an error is found

in this stage, it would incur a significant cost to re-spin a new mask and a very long time to

remanufacture again. Unfortunately, there are many bugs that can only be found when running at

18

the full silicon speed, especially physical and electrical interactions, thus usually one or two extra

re-spinning of masks is inevitable.

2.2.5 Test Vector Generation Methods

For certain verification algorithms like simulation, emulation and post-silicon tests, it is

required to generate a set of values as inputs, which is known as test pattern or test vector, to the

design-under-verification. The quality of the test vector is very crucial, as it influences the test

coverage.

Pseudorandom test vector has been one of the most commonly used technique. Generally

it uses a linear feedback shift register (LFSR) to generate a sequence of pseudorandom numbers

which is fed into a test vector generator to generate test vectors that can be used by the design-

under-test. Given enough numbers of test vector, pseudorandom test can usually provide good test

coverage, with low cost of test vector generation (Wagner et al., 1987).

In many cases, there are certain rules to be followed when creating the test vector. For a

device that communicates with PCIe protocol, the data packets travelling on the PCIe bus follows

certain format, and the values within each field of the PCIe data packets are constrained by the

values of another field. Thus, the test vectors are not completely random but is constrained such

that all the generated values are in the set of valid values (Shi, 2016). Such test vector generator is

called constrained random test vector generator.

However, as the size and complexity of circuit design increase, the verification space also

grows enormously, requiring a much longer time to execute more pseudorandom tests vectors in

order to obtain sufficient coverage. This creates the necessity to algorithmically generate a compact

set of test vectors that can efficiently provide a good test coverage, in terms of high fault detection

rate, without requiring very long test time.

19

Many methods exist for generating compact set of test vectors. Static and dynamic

compaction methods are available, whereby the static compaction method eliminates redundant

vectors after the full set of vectors are generated, and dynamic compaction method involves

embedding of compaction algorithm within the test generation algorithm. One of the early

examples include the usage of partitioning and reordering to statically compact the test vectors

(Hsiao and Chakradhar, 1998). Another method uses a greedy test compaction at initial phase and

incremental dynamic test vector compaction at the later phase which enables better coverage for

hard-to-detect faults (Jha, 2013).

There is another test vector generation method that generates test vectors in the form of

pairs of complementary operations, which allows an easy verification since it doesn’t need to

compute the every output for each unique input or test vectors, and the only verification is to make

sure that the initial states are unchanged at the end of test (Wagner and Bertacco, 2008).However,

this method will not be able to detect complete failure that causes system to hang, which causes the

final state (after the test) identical to initial state, and this condition can be mistaken as passing the

test.

Test vector compaction has also been used specifically in fault diagnosis, whereby the

diagnostic test vectors are reduced to shorten the execution time for fault diagnosis, reduce testing

resources and cost of debug (Higami et al., 2006). Test vector compaction in fault diagnosis is

relatively unexplored as mentioned by (Higami et al., 2006).

At the time of writing all the existing test vector compaction methods seems to be only

applicable for pre-silicon testing as it involves simulation or formal verification, whereby the

simulation model of the design is available for analysis by the compaction algorithms. Not to

mention, the compaction algorithms are computationally intensive as even the problem of

estimating the minimum size test-set for single stuck-at fault it is NP-hard, and heuristic methods

20

must be employed. Current heuristic methods still doesn’t yield optimal test vector set to certain

extent (Hochbaum, 1996).

2.3 Software Verification and Debugging Methodologies

In the sphere of software engineering, there are similar counterparts to the hardware

verification, and it is known as software testing. Several methodologies in software testing and

debugging have been identified to be highly applicable in hardware debugging and related to the

work of this thesis and thus presented here.

2.3.1 Random Testing

Given that a typical software nowadays contain a large array of features and are complex

as well, software programmers often find themselves having not enough input data to test their

software. Traditionally programmers themselves have to think of all possible scenarios to write test

cases containing all possible inputs. This approach is not only tedious but is also very limited in

terms of coverage. As number of possible paths increases exponentially with number of decision

points in the program, the possible number of test cases grows exponentially. (Biere and

Brummayer, 2008)

Instead of having to manually prepare the data sets, the data is generated randomly by a

random test case generator. Of course, a programmer has to put effort to write such program to

generate test cases that can be verified against a known correct value. In long term, it is cheap and

scalable for large projects. It is also good for small projects with limited number of programmer

that performs the testing. When the random test generator includes invalid inputs in its test cases,

it is also called fuzz testing, which is a great method to detect security holes in a software.

21

2.3.2 Cyclic Debugging

Cyclic debugging is a technique whereby a program is repeatedly executed to reproduce

and observe the bug. It is an iterative debugging process whereby a software is re-executed, fast-

forwarded to time of failure and making hypothesis and then the cycle repeats until a root cause is

found. The method focuses on localizing the region of code that is erroneous. Figure 2.2 illustrates

the general flow of cyclic debugging.

Figure 2.2 Steps involved in Cyclic Debugging.

 Cyclic debugging usually involves setting breakpoints in the code at area of interest,

executing the program and then observing the state of the program at that breakpoint, to

incrementally obtain more information about the failure. However, it can only be used when the

program is fully deterministic, such as a single-threaded program or sequential program, which can

consistently reproduce the same bug when re-executed repeatedly. In addition, cyclic debugging

typically requires manual work to locate the fault, thus it is not very effective for a very large

program. However, the repetitive execution pattern has been used as a basis of all other debugging

algorithms.

2.3.3 Program Slicing

Program slicing is another debugging method that is based on extraction of a subset of

program statements from a given source code, using a specified criteria (Silva 2012). The criteria

22

is typically based on data dependencies, searching for all program statements that are involved in

generating or modifying a particular value. Program slicing greatly eases the fault localization as it

reduces the number of codes that a programmer has to analyze for the cause of a bug. By reducing

the code size, the interactions of the system that causes the bugs become more apparent to the

debugger and hence it can result in quicker and more effective debugging.

Slicing can be done either statically or dynamically. Static slicing only uses the source code

itself to provide the clues while dynamic slicing uses information collected during a particular

program execution of interest, usually from a program trace. In other words, static slicing extract

all codes that modifies the value of a particular variable regardless of whether the codes are

executed or not. On the other hand, dynamic slicing determines if a branch (choices in an if-else

statement) is taken and only considers the series of codes that are executed during a particular

program run. Thus, dynamic slicing is more concise and accurate as compared to static slicing,

since it eliminates portions of codes that are not relevant in a failing program execution.

However, program slicing cannot be used alone in software debugging. In most cases, one

does not simply know which criteria to be used in performing the program slicing, and a means of

obtaining that key information must be sought from other methods.

2.3.4 Delta Debugging

Delta debugging is an automated methodology for debugging programs by finding changes

(delta) that causes the failure of a program. Similar to the previous methods, it executes the program

repeatedly in a loop to determine failure-inducing changes in the program. The change can be in

the form of program input, the program code or even thread schedule. For example, the delta

debugging can be used to minimize the set of program code that still produces a failure, by

repeatedly remove a small section of program code and re-execute it until a smallest size of program

23

code remains. The resulting minimized code is easier for programmers to determine the real cause

of failure. (Zeller and Hildebrandt, 2002)

There are several algorithms that can be employed in the delta debugging. One of the

simplest approach is based on the concept of binary search. When applied to minimization of

program input, the binary search method involves splitting the program input into two halves, each

considered as one test case. Each of the test case will be fed to the program and executed, and if

the program fails, the test case will be regarded as currently most minimized failing test case, and

in turn, it will be further divided into two smaller parts and the process is repeated again. The

divide-and-conquer approach will give a failure test case that can no longer be minimized (that still

fails the program), which will be the final result of the delta debugging. Figure 2.3 depicts delta

debugging flowchart using binary search method.

Figure 2.3 Example of delta debugging algorithm using binary search method.

Instead of minimizing a failing test case, it can be used in reverse way, by isolating

differences that causes the failure. It does so by maximizing the passing test case. The algorithm is

similar to the minimization algorithm, but instead of minimizing the failing test case, it maximizes

the passing test case, by collecting all the portions of the program input that are tested to be passed

24

(originally only portion that produces the failure input is retained). A passing test case with

minimum difference from the originally failing test case, is produced. The passing test case can be

easily compared to original failing test case to reveal the difference that makes the program to fail.

There are many considerations when designing the algorithm for the delta debugging. The

delta debugging may produce a minimized test case with different type of failure from the original,

depending on how the algorithm is designed. If the algorithm is designed to be strictly generating

minimized test case with exactly same failure, in general the time required would be longer, and

the test case will be larger than the absolute minimum.

In addition, binary partitioning might not work for every case since certain failure only

occur with a combination of several parts of a test case that may be distributed throughout the test

case. For this reason, other algorithms of partitioning needs to be employed, with varying

granularity, may need to be employed. A good delta debugging algorithm may also need to

dynamically change the partitioning method or employ hybrid techniques to suit a variety of test

case scenarios.

2.3.5 Replay-Based Debugging

More often than not, software debugging processes often get very complicated due to the

presence of non-determinism in the bug reproduction. In other words, it is not easy to ensure a

failure can be reproduced consistently, even when the same set of program inputs are provided,

expected failures do not occur every time. This is due to the nature of the program execution itself,

which is highly dynamic. Many factors, which includes timing of user actions, can affect code

execution of the program in seemingly mysterious ways.

A family of debugging techniques that are called the replay-debugging techniques are

currently available to deal with non-deterministic failures effectively. Basically it is a technique

that produces program execution that is similar or identical to the original execution, by making

