
i

FSM-BASED ENHANCED MARCH C- ALGORITHM FOR

MEMORY BUILT-IN SELF-TEST

BY

CH’NG MING ZONG

A DISSERTATION SUBMITTED FOR PARTIAL

FULFILMENT OF THE REQUIREMENT FOR THE

DEGREE OF MASTER OF SCIENCE

(MICROELECTRONIC ENGINEERING)

AUGUST 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/153212063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgement

 Firstly, I would like to express my greatest appreciation to my supervisor, Dr.

Zulfiqar Ali Abdul Aziz. He willingly to spend his time on supervising me with

pertinent comment and guidance. With the guidance and advice given throughout the

research period had enabled me to complete the dissertation without any difficulties.

 Besides that, I would also like to thank my family members to provide all the

support that I had been needed while I was researching. They had given a lot of

assistance that enable me to fully focus on my research works.

 Last but not least, I would like to take this opportunity to thanks all of my

friends that showed their support. They kindly provide suggestions and advice when I

was in doubts of the facts or methodologies. Without their support and encouragement,

this researching process will not be as easy as it was.

ii

PENAMBAHBAIKAN MARCH C- ALGORITHMA MENGGUNAKAN ASAS

FSM UNTUK MEMORI BIST

Abstrak

Algoritma memain peranan yang penting dalam Memori BIST dimana struktur

algoritmanya berupaya mentakrif pengesan liputan kesalahan di dalam sesuatu sistem.

Oleh yang demikian, jika penambahbaikan algoritma itu dibuat, ia membenarkan lebih

banyak jenis kesalahan dapat dikesan walau hanya dengan satu ujian sahaja. Bagi

algorithma MARCH C-, ia merupakan salah satu algoritma stabil yang mempunyai

liputan jenis kesalahan yang tinggi kerana ia mampu mengesan banyak kesalahan

seperti Address Decoder Fault, Stuck-At Fault, Transition Fault dan Coupling Fault

namun begitu ia tidak berupaya untuk mengesan jenis kesalahan seperti Read

Destructive Fault dan Data Retention Fault. Bagi meningkatkan prestasi algoritma

MARCH C- untuk mengesan dua jenis kesalahan tersebut, beberapa pengubahsuaian

perlu dilakukan. Melalui hasil analisa corak-corak kesalahan dan jenis algoritma lain,

dua metodologi bagi penambahbaikan algorithma MARCH C- telah dikesan. Dengan

menggunakan operasi pembacaan yang berganda dalam elemen tunggal MARCH yang

terdapat didalam algoritma MARCH-NU boleh membantu untuk mengesan Read

Destructive Fault manakala penggunaan HOLD time dalam algoritma MARCH 9N

mampu mengesan Data Retention Fault. Melalui gabungan kedua-dua cara tersebut

dalam algoritma MARCH C- membolehkannya untuk mengesan kesalahan Data

Retention Fault dan Read Destructive Fault secara 100% tanpa menjejaskan prestasi

asal MARCH C-. Selain daripada itu, penambahbaikan algoritma MARCH C- juga

boleh mengesan jenis-jenis kesalahan secara struktur dan mengasingkan kesalahan

iii

diantara kesalahan tingkahku (Data Retention Faults) dan kesalahan umum memori

serta dianatara kesalahan Stuck-At Fault dan Transition Fault. Fault Injection test telah

dijalankan bagi memastikan Enhanced MARCH C- boleh mengenal pasti corak-corak

kesalahan. Enhanced MARCH C- mempunyai kadar lulus 100% dalam mengenal pasti

Stuck-At Fault, Transition Fault, Data Retention Fault, Inversion Read Fault, Incorrect

Read Fault dan Read Destructive Fault. Ia mempunyai kadar 95.16% dalam mengenal

pasti State Coupling Fault dan Idempotent Coupling Fault. Sebagai konklusi,

Enhanced MARCH C- algorithm telah berjaya meningkatkan liputan jenis kesalahan

dalam Data Retention Fault dan Read Destructive Fault manakala ia juga mempunyai

abiliti untuk mengenal pasti jenis kesalahan secara struktur.

iv

FSM-BASED ENHANCED MARCH C- ALGORITHM FOR MEMORY

BUILT-IN SELF-TEST

Abstract

Algorithms plays an important role in the Memory Built-In Self-Test as its

structure will define the fault coverage of the system. Thus, the improvement of the

algorithms will allow more fault types being identified in single test. For MARCH C-

algorithm, it was a quite balance algorithm as it has the ability to cover Address

Decoder Fault, Stuck-At Fault, Transition Fault and Coupling Fault but it was not able

to identify Read Destructive Fault and Data Retention Fault. To increase the fault

coverage of the MARCH C- algorithm on that two fault types, some enhancements

were needed to make on the algorithm. Through the analysis of the fault patterns and

other algorithm, it was found that multiple read operation within a single MARCH

element from MARCH-NU algorithm can aid in the identification of the Read

Destructive Fault whereas having HOLD time in the MARCH 9N algorithm would

expose the Data Retention Fault. By integrating both new fault identification

methodologies into the MARCH C- algorithm and enhance it so that it would able to

increase the identification of the Data Retention Fault and Read Destructive Fault by

100% and without causing any performance to interfere with the original fault

identification ability. Besides that, the enhanced MARCH C- algorithm can

structurally identify the fault types and differentiate among the behavioural faults

(Data Retention Faults) and common memory faults as well as among Stuck-At Fault

and Transition Fault. Fault injection test were carried out to ensure the coverage of the

enhanced MARCH C- algorithm. It was having high passing rate which are 100%

v

identification of the Stuck-At Fault, Transition Fault, Data Retention Fault, Inversion

Read Fault, Incorrect Read Fault and Read Destructive Fault. It also obtained 95.16%

for the State Coupling Fault and Idempotent Coupling Fault. As a conclusion, the

enhanced MARCH C- algorithm had increased its fault type identification in Data

Retention Fault and Read Destructive Fault while having the ability to structurally

identify the fault types.

vi

CONTENTS

Acknowledgement .. i

Abstrak ..ii

Abstract .. iv

CONTENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF ABBREVIATION .. xiii

CHAPTER 1 INTRODUCTION ... 1

1.1 Background .. 1

1.2 Problem Statement ... 4

1.3 Research Objectives ... 5

1.4 Research Scope .. 5

1.5 Thesis Outline .. 6

CHAPTER 2 LITERATURE REVIEW ... 7

2.1 Introduction .. 7

2.2 Memory Types (DRAM, SRAM) .. 7

2.3 Faults .. 11

2.4 MARCH algorithms ... 18

2.5 Finite State Machine (FSM) Methodology and Microcode Methodology 28

2.6 Summary .. 30

CHAPTER 3 DESIGN METHODOLOGY ... 32

3.1 Introduction .. 32

3.2 Analysis of previous MARCH algorithms ... 33

3.3 Proposed Algorithm: Enhanced MARCH C- Algorithm 35

3.3.1 Detail Analysis of Enhanced MARCH C- algorithm 38

3.4 Proposed Memory BIST system .. 46

3.4.1 Block Diagram and Functions .. 47

3.4.2 Structure of proposed MBIST system .. 49

3.4.3 Flow Chart of the MBIST system .. 55

3.5 Performance Evaluation of the Enhanced MARCH C- algorithm 57

3.6 Summary .. 58

CHAPTER 4 RESULTS AND DISCUSSIONS .. 59

4.1 Introduction .. 59

vii

4.2 Fault Coverage Test of Enhanced MARCH C- algorithm 59

4.2.1 Data Retention Fault (DRF) Test ... 61

4.2.2 Stuck-At Fault (SAF) Test ... 64

4.2.3 Transition Fault (TF) Test .. 67

4.2.4 State Coupling Fault (CFst) Test ... 71

4.2.5 Idempotent Coupling Fault (CFid) Test ... 76

4.2.6 Inversion Read Fault (CFin) Test ... 80

4.2.7 Incorrect Read Fault (CFir) Test .. 83

4.2.8 Read Destructive Fault (CFrd) Test ... 87

4.3 Comparison Analysis of original MARCH C- and Enhanced MARCH C-

algorithm .. 91

4.3.1 Data Retention Fault test for original MARCH C- algorithm 91

4.3.2 Read Destructive Fault test for original MARCH C- algorithm 93

4.4 MBIST System Execution Time Test .. 96

4.4.1 Execution time test for different RAM size in MBIST system with enhanced

MARCH C- algorithm ... 97

4.4.2 Execution time test between enhanced MARCH C- algorithm and original

MARCH C- algorithm ... 100

4.5 Summary .. 102

Chapter 5 Conclusion and Future Improvements ... 105

5.1 Conclusion ... 105

5.2 Future Improvements ... 106

REFERENCE ... 108

APPENDICES .. I

APPENDIX A: Fault Free MBIST System Full Waveform View I

APPENDIX B: Fault Free RAM Response Overview .. II

APPENDIX C: Full Waveform Overview for Data Retention Fault Test III

APPENDIX D: Full Waveform Overview for Stuck-At Fault Test (SAF 1) IV

APPENDIX E: Full Waveform Overview for Transition Fault Test (DTF) V

APPENDIX F: Full Waveform Overview for State Coupling Fault Test (CFst (1,1)

Victim Cell > Aggressor Cell) .. VI

APPENDIX G: Full Waveform Overview for Idempotent Coupling Fault (CFid (U,1)

Victim Cell > Aggressor Cell) ... VII

APPENDIX H: Full Waveform Overview for Inversion Read Fault (CFin (U, ~) Victim

Cell > Aggressor Cell) .. VIII

APPENDIX I: Full Waveform Overview for Incorrect Read Fault (CFir (1, -) Victim Cell

> Aggressor Cell) .. IX

viii

APPENDIX J: Full Waveform Overview for Read Destructive Fault (CFrd (1, ~) Victim

Cell > Aggressor Cell) ... X

APPENDIX K: Full Waveform of MBIST with original MARCH C- algorithm test on

Data Retention Fault ... XI

APPENDIX L: Full Waveform of MBIST with original MARCH C- algorithm test on

Read Destructive Fault (CFrd (1, ~) Victim Cell > Aggressor Cell) XII

APPENDIX M: Full Waveform of MBIST executing RAM size of 8 words XIII

APPENDIX N: Full Waveform of MBIST executing RAM size of 16 words XIV

APPENDIX O: CTOP Module Coding .. XV

APPENDIX P: FAULTY_RAM Module Coding ... XVI

APPENDIX Q: Comparator Module Coding ... XIX

APPENDIX R: TPG Module Coding ... XXV

APPENDIX S: Fault_Type_Indicator Module Coding.. XXXI

ix

LIST OF TABLES

Table 2-1: Table of MARCH Operations and its functions. .. 21

Table 2-2: MARCH algorithms and Fault Coverage ... 22

Table 2-3: Enhanced MARCH C- algorithm and its strength .. 27

Table 2-4: Comparison of FSM-based microcontroller and Microcode-based microcontroller

 ... 29

Table 3-1: Fault Signature for Data Retention Fault, Stuck-At Fault, Transition Fault......... 41

Table 3-2: Fault Signature for State Coupling Fault (CFst), Idempotent Coupling Fault

(CFid) and Inversion Coupling Fault (CFin) ... 42

Table 3-3: Fault Signature for Incorrect Read Fault (CFir) and Read Destructive Fault (CFrd)

 ... 43

Table 3-4: Summary of Fault Signature of Enhanced MARCH C- algorithm 45

Table 4-1: Result Summary for Section 4.2 Fault Coverage Test 102

Table 4-2: Comparison table between original MARCH C- and enhanced MARCH C-

algorithm .. 103

x

LIST OF FIGURES

Figure 1-1: Memory area in SoC as per year growth [3] ... 1

Figure 1-2: Percentage of Faults found in RAM [5] .. 2

Figure 2-1: Normal Memory Cells... 11

Figure 2-2: Stuck-At 0 Fault .. 12

Figure 2-3: Stuck-At 1 Fault .. 12

Figure 2-4: Transition (⇑, 0) Fault ... 12

Figure 2-5: Example of Address Decoder Fault (ADF) [16] ... 13

Figure 2-6: Example of State Coupling Fault (CFst (0,1)) .. 14

Figure 2-7: Example of Idempotent Coupling Fault (CFid (U,0)) ... 15

Figure 2-8: Example of Inversion Coupling Fault (CFin (D, ~)) ... 16

Figure 2-9: Example of Incorrect Read Fault (CFir) ... 16

Figure 2-10: Example of Read Destructive Fault (CFrd) ... 17

Figure 2-11: Example of Deceptive Read Destructive Fault (CFdrd) 18

Figure 2-12: General Block Diagram for Memory BIST [17] ... 19

Figure 3-1: Flow of designing enhanced MARCH C- algorithm... 33

Figure 3-2: General Block Diagram of the proposed MBIST system.................................... 47

Figure 3-3: Block Diagram of the Faulty_RAM .. 49

Figure 3-4: Block Diagram of Test Pattern Generator (TPG) .. 51

Figure 3-5: Moore Finite State Machine diagram of Test Pattern Generator (TPG) 52

Figure 3-6: Block Diagram of Comparator .. 53

Figure 3-7: Block Diagram of Fault Type Identifier .. 54

Figure 3-8: Flow Chart of the MBIST system ... 55

Figure 4-1: DRF Test Result Report .. 61

Figure 4-2: Detailed View of DRF .. 62

Figure 4-3: DRF Fault response ... 63

Figure 4-4: SAF0 Test Result Report .. 64

Figure 4-5: SAF1 Test Result Report .. 65

Figure 4-6: Detailed View of SAF 1 .. 66

Figure 4-7: SAF1 Fault Response .. 66

Figure 4-8: UTF Test Result Report .. 68

Figure 4-9: DTF Test Result Report .. 69

Figure 4-10: Detailed View of DTF ... 69

Figure 4-11: DTF fault response .. 70

Figure 4-12: CFst (0,0) Victim cell’s location < Aggressor cell’s location Test Result Report

 ... 72

Figure 4-13: CFst (0,0) Victim cell’s location > Aggressor cell’s location Test Result Report

 ... 72

Figure 4-14: CFst (0,1) Victim cell’s location < Aggressor cell’s location Test Result Report

 ... 72

Figure 4-15: CFst (0,1) Victim cell’s location > Aggressor cell’s location Test Result Report

 ... 72

Figure 4-16: CFst (1,0) Victim cell’s location < Aggressor cell’s location Test Result Report

 ... 72

Figure 4-17: CFst (1,0) Victim cell’s location > Aggressor cell’s location Test Result Report

 ... 72

xi

Figure 4-18: CFst (1,1) Victim cell’s location < Aggressor cell’s location Test Result Report

 ... 73

Figure 4-19: CFst (1,1) Victim cell’s location > Aggressor cell’s location Test Result Report

 ... 73

Figure 4-20: Detailed View of the CFst (1,1) > Fault. ... 73

Figure 4-21: CFst (1,1) Victim Cell > Aggressor Cell Faulty RAM Responses 74

Figure 4-22: CFid (D,0) Victim cell’s location < Aggressor cell’s location Test Result Report

 ... 77

Figure 4-23: CFid (D,0) Victim cell’s location > Aggressor cell’s location Test Result Report

 ... 77

Figure 4-24: CFid (D,1) Victim cell’s location < Aggressor cell’s location Test Result Report

 ... 77

Figure 4-25: CFid (D,1) Victim cell’s location > Aggressor cell’s location Test Result Report

 ... 77

Figure 4-26: CFid (U,0) Victim cell’s location < Aggressor cell’s location Test Result Report

 ... 77

Figure 4-27: CFid (U,0) Victim cell’s location > Aggressor cell’s location Test Result Report

 ... 77

Figure 4-28: CFid (U,1) Victim cell’s location < Aggressor cell’s location Test Result Report

 ... 77

Figure 4-29: CFid (U,1) Victim cell’s location > Aggressor cell’s location Test Result Report

 ... 77

Figure 4-30: Detailed View of CFid (U,1) > Fault .. 78

Figure 4-31: CFid (U,1) Victim Cell > Aggressor Cell Faulty RAM Responses 78

Figure 4-32: CFin (D, ~) Victim cell’s location < Aggressor cell’s location Test Result

Report ... 80

Figure 4-33: CFin (D, ~) Victim cell’s location > Aggressor cell’s location Test Result

Report ... 80

Figure 4-34: CFin (U, ~) Victim cell’s location < Aggressor cell’s location Test Result

Report ... 81

Figure 4-35: CFin (U, ~) Victim cell’s location > Aggressor cell’s location Test Result

Report ... 81

Figure 4-36: Detail View of CFin (U, ~) > Fault ... 81

Figure 4-37: CFin (U, ~) Victim Cell > Aggressor Cell Faulty RAM Responses 82

Figure 4-38: CFir (0, -) Victim cell’s location < Aggressor cell’s location Test Result Report

 ... 84

Figure 4-39: CFir (0, -) Victim cell’s location > Aggressor cell’s location Test Result Report

 ... 84

Figure 4-40: CFir (1, -) Victim cell’s location < Aggressor cell’s location Test Result Report

 ... 84

Figure 4-41: CFir (1, -) Victim cell’s location > Aggressor cell’s location Test Result Report

 ... 84

Figure 4-42: Detail View of CFir (1, -) > Faults .. 85

Figure 4-43: CFir (1, -) Victim Cell > Aggressor Cell Faulty RAM Responses 86

Figure 4-44: CFrd (0, ~) Victim cell’s location < Aggressor cell’s location Test Result

Report ... 88

Figure 4-45: CFrd (0, ~) Victim cell’s location > Aggressor cell’s location Test Result

Report ... 88

xii

Figure 4-46: CFrd (1, ~) Victim cell’s location < Aggressor cell’s location Test Result

Report ... 88

Figure 4-47: CFrd (1, ~) Victim cell’s location > Aggressor cell’s location Test Result

Report ... 88

Figure 4-48: Detail View of the CFrd (1, ~) > Fault .. 89

Figure 4-49: CFrd (1, ~) Victim Cell > Aggressor Cell Faulty RAM Responses 89

Figure 4-50: Partial Waveform of Data Retention Test for Original MARCH C- algorithm

test case .. 92

Figure 4-51: Partial Waveform of Data Retention Test for enhanced MARCH C- algorithm

test case .. 92

Figure 4-52: Partial Waveform of Read Destructive Fault for Original MARCH C- algorithm

test case. ... 94

Figure 4-53: Partial Waveform of Read Destructive Fault for enhanced MARCH C-

algorithm test case. ... 95

Figure 4-54: Execution time of MBIST when RAM size is 8*4 bit 97

Figure 4-55: Execution time of MBIST when RAM size is 16*4 bit 98

Figure 4-56: Execution time of MBIST built with original MARCH C- algorithm when

RAM size is 16*4 bit ... 100

xiii

LIST OF ABBREVIATION

CFid Idempotent Coupling Fault

CFin Inversion Read Fault

CFir Incorrect Read Fault

CFrd Read Destructive Fault

CFst State Coupling Fault

DRF Data Retention Fault

FSM Finite State Machine

MBIST Memory Built-In Self-Test

RAM Random Access Memory

SAF Stuck-At Fault

SoC System-on-Chip

TF Transition Fault

TPG Test Pattern Generator

1

1. CHAPTER 1

INTRODUCTION

1.1 Background

System-On-Chip (SoC) is result of the development of the CMOS technology that

enable the integration of systems into a single chip [1]. Normally, a SoC would contain

microcontrollers, memory blocks, oscillators, internal and external peripherals and

power management circuits. Among all these partitions, memory blocks has played an

important role in terms of functioning and has grown its size for accounting up to 50%

or more in the chip area [2]. From the data gathered by the Semiconductor Industry

Association (SIA), the area size of memory in SoC had increase from 20% to 71% in

2005 and SIA had predicted that in 2014 it would even reach up to 94% of the SoC

area [3]. This statistic had been gathered for International Technology Roadmap for

Semiconductors (ITRS) report and are tabulated in the Figure 1-1.

Figure 1-1: Memory area in SoC as per year growth [3]

1985

1990

1995

2000

2005

2010

2015

2020

20% 52% 71% 83% 90% 94%

Year vs Memory Area in SoC

2

As the technology advances with memory accounting for more and more area in

SoC, it has become necessary to maintain a good production yield for the memory

partition, else it would drop the yield in SoC manufacturing which will cost a fortune.

Normally, the yield drop in memory partition is due to the presence of faults in it.

RAM as part of the memory partition having its own fault types. The common faults

found in the RAM are Stuck-At-Fault (SAF), Address Decoding Fault (AF), Coupling

Fault (CF), Transition Fault (TF) and many more [4]. Figure 1-2 shows the percentages

of memory faults in the RAM. Manufacturers have used automated test equipment

(ATE) to identify these faults. Automated test equipment are tester devices that are

used to attach on the device under test (DUT) or circuit under test (CUT) to exercise

SoC healthiness.

Figure 1-2: Percentage of Faults found in RAM [5]

As cost of fixing a bug is directly proportional with the process stage, it would be

causing a little cost in the early stage but greater financial effect is higher in the later

stage when discover a fault and bug fix it. One of the methods is to simulate the test

50%

34%

7%
9%

Percentage of Faults in RAM

Coupling Faults

Single Cell Faults

Dynamic Faults

Linked Faults

3

with the help of ATE. However, executing the test with the aid of ATE has drawbacks

such as increasing the testing cost and building up reliance upon external test

equipment. Thus, Memory Built-In Self-Test (MBIST) system that does not require

external hardware has become the new preferred method to carry out fault

identification tests.

MBIST is a system that able to perform the memory functional check for the

memory partition without the needs of external components. A MBIST is normally

made up of test controller, Test Pattern Generator (TPG), Circuit Under Test (CUT),

Output Response Analyser (ORA), Output Response Compactor (ORC) and

comparator.

There are many types of algorithms that able to be used with MBIST to detect

faults in the memory partition. The most common algorithm used with MBIST is

MARCH algorithm. This algorithm has a lot of derived algorithms based on it. For

example: MATS, MATS+, Marching I/O, MATS++, MARCH X, MARCH C,

MARCH A, MARCH Y, and MARCH B [6]. These algorithms can detect the common

faults and have different advantages and disadvantages in term of fault coverage, test

length, area overhead and power consumption.

After identifying the faults, the next process will be BISR (Built-In Self-Repair)

which will be having the self-reparability of the faulty memory cell that had been

identified by the MBIST. By synchronizing the BIST and BISR systems, it would save

the cost and functionality of the product [2] as the system will be able to repair the

fault immediately after identifying it. This process will be efficient in terms of

increasing the productivity and saving manufacturing time and cost.

4

1.2 Problem Statement

As the size of the memory increases in the System-on the Chip (SoC), it has

become one of the major partitions that requires high passing rate of the self-checking

test to secure the production yield and reduce the cost spent in the fault repairing.

The algorithms that had developed for the MBIST system having the disadvantages

of it able to cover its target fault only. For example, MARCH C- algorithm can only

covers Address Decoder Fault, Stuck-At Fault, Transition Fault and Coupling Fault

but it was unable to extend its fault coverage to other types of fault such as Data

Retention Fault and Read Destructive Fault. Data Retention Fault and Read

Destructive Fault are not covered 100% by the fault detection in the previous

algorithms [7]. Thus, to increase the algorithm efficiency the methodology of detecting

those faults are needed to integrate to MARCH C- for further enhancement.

Despite of able to detect the fault types of the respective fault, it was also

recommended to having the MBIST system able to provide precise location of the fault

memory cells. With the precise location of the fault memory cells, it would help and

aid the Built-In Self-Repair works to replace the faulty memory cells with using lesser

spare memory cells [8].

Lastly, it was found that previous works and the algorithms can only detect the

faults in the memory but do not come with the ability to clearly classify the types of

faults that had occurred [3]. To further enhance the MBIST system, it would be good

to having the system for clearly identify between the types of the fault detected

(Normal Memory Fault and Behavioural Fault) in the system. However, this feature

has its own challenges as some of the faults (Stuck-At Faults and Transition Faults)

will shared almost the same fault signature.

5

1.3 Research Objectives

The objectives of this dissertation are to develop a better performance MBIST

algorithm with the following criteria:

• Increase the fault type coverage of the MARCH C- algorithm and precisely

identify the faulty memory cell up to bit scale

• Classify the memory fault types structurally after identified the faulty memory cell

location and able to distinguish between Normal Memory Fault with Behavioral

Fault as well as differentiate Stuck-At Fault with Transition Fault.

1.4 Research Scope

This dissertation will be carried out using Modelsim software version 10.4d as the

MARCH algorithm will be coded in Verilog to generate the register transfer level

(RTL) abstraction of the system.

The types of fault that are included in the fault coverage to be tested out are the

behavioural fault (Data Retention Fault) and common memory faults (Stuck-At Fault

(SAF), Transition Fault (TF) and various Coupling Faults such as State Coupling Fault

(CFst), Idempotent Coupling Fault (CFid), Inversion Coupling Fault (CFin), Incorrect

Read Fault (CFir) and Read Destructive Fault (CFrd)).

The proposed system should be able to differentiate the types of fault between

Stuck-At Fault (SAF) and Transition Fault (TF) as both fault signatures are very

similar. It should also can differentiate between behavioural faults and common

memory faults.

6

1.5 Thesis Outline

This dissertation is made up of five chapters which are Chapter 1: Introduction,

Chapter 2: Literature Review, Chapter 3: Design Methodology, Chapter 4: Results and

Discussions and Chapter 5: Conclusion and Future Improvements.

Chapter 2: Literature Review will be describing on the previous research that had

been done by other researchers for the MBIST system and MARCH algorithm. The

ideas and methodologies will be analysed in this chapter. Besides that, detail

explanations regarding memory faults types and the respective fault signatures will be

discussed as well. Lastly, a comparison of the BIST methodology between Finite State

Machine (FSM) methodology and Microcode methodology will be studied.

In Chapter 3: Design Methodology will be introducing enhanced MARCH

algorithm and MBIST system proposed by providing sufficient explanations on it and

how it is able to fulfil the objectives. There will also be explanation on how the system

and algorithm work and with validation methodologies that show its fault coverage.

Chapter 4: Results and Discussion analysed the results obtained from tests that had

been executed to prove that the system was able to cover the faults as expected. Each

of the test situation will be analysed and conclusion are drawn at the end of each test

case. Additionally, the test time of the BIST system using different memory cell

address ranges will be tested out to show that the execution time of the system is based

on the testing address range.

Lastly, Chapter 5 will be summarizing all the work that had been done so far for

this dissertation and discussing on the future improvement of this field that may aid

others to enhance in this research topic.

7

2. CHAPTER 2

 LITERATURE REVIEW

2.1 Introduction

This chapter will be discussing and analysing the previous research works that had

been done by others in Memory Built-In Self-Test field. In section 2.2, detail

discussions will be carried out based on the different types of memory and previous

methodology that had been done to discover the faults in those memory types. Section

2.3 will be discussing regarding the types of faults that occur in memory. Section 2.4

will be discussing on MARCH algorithm that had been used in previous researchers

works and the coverage of faults by the selected algorithms. The methodology of how

the MBIST system had been carried out via finite state machine (FSM) methodology

and Microcode methodology by the previous researches will be discussed in section

2.5. Lastly, a summary will be drawn based on the previous research works and define

the specification needed for this dissertation to meet the aim and objectives.

2.2 Memory Types (DRAM, SRAM)

Memories can be split into two big groups which are the Random-Access Memory

(RAM) and Read Only Memory (ROM). RAM is a volatile memory that will lost its

data when the power supply is turned off whereas ROM is a non-volatile memory that

able to retain its own data although there is no power supply. As ROM characteristic

ability to retain data with or without power supply, it is more commonly used to store

8

critical programs. Whereas for RAM volatile characteristic, it is more often used as a

temporary storage for data by the operating system. For Memory BIST, normally RAM

are selected to be tested compared with the ROM.

RAM can be further split into two smaller groups which are Static Random-Access

Memory (SRAM) and Dynamic Random-Access Memory (DRAM). SRAM does not

require periodical refresh like DRAM. A DRAM would require constant refresh to

preserve its memory content. This is due to the capacitor inside the DRAM integrated

circuit as it will keep on leaking its charge (leakage current) and if it was not refreshed

periodically, then the data might had contaminated.

Both RAM cases had been tested out with MBIST by many previous works done

by researchers. Previous findings explained a lot on the fault characteristics of each

respective RAM and the methodology been used. This sub-chapter will be discussing

on the types of RAM and the respective fault types that were being identified.

The work of [5], focused on testing out the common fault that will be found in the

SRAM which were Stuck-At Fault, Transition Fault and Coupling Faults using macro

and micro codes. The work analyzed that the highest fault percentage among the

SRAM were Coupling faults (50%) and followed up by single-cell faults (34%).

Single-cell faults refer to the faults that happen in single memory cells and does

interfere with neighbour memory cells. Single memory cell faults were commonly

referring to Stuck-At Fault (SAF) and Transition Faults (TF). Thus, a few MARCH

algorithms had been tested out on micro and macro codes environment. The algorithm

used and fault coverage will be discussed in the MARCH algorithm sub-chapter

(Section 2.4) whereas the macro and micro code methodology detail will be discussed

in the FSM methodology and Microcode methodology sub-chapter (Section 2.5).

9

Work of [9] used MARCH CL algorithm to test out coupling faults, intra-word

stuck-at, and transitions faults in SRAM. Faults that were covered in this work were

Stuck-At Faults, Transition Faults, State Coupling Faults, Idempotent Coupling Faults

and Write Disturb Coupling Faults. To achieve that, MARCH CL algorithm was

designed to have a complexity of 12N (N is the number of memory words) and was

split to three steps for fault identification. At first, MARCH CL was performed to filter

out the fault. After that, the aggressor word was being identified by a 3N or 4N March-

like algorithm and followed up by a last step which was to identify the aggressor bit

from the aggressor word. The last step would be using a March-like algorithm of

9(1+logB) (B is the number of bit in the word) to detect and locate the inter-word faults.

With this precise fault determination methodology, it has a higher fault identification

ability and much lower time complexity. The number of read operation performed via

this methodology was 41.6% lower than MARCH 17N in determine inter-word fault.

However, [10] had come out with an improvement from [9] methodology to have

more fault coverage such as faults that happen in single memory cell and multiple

memory cells. The extra covered faults were Write Destructive Faults, Read

Destructive Faults, Deceptive Read Destructive Fault, Incorrect Read Fault, Transition

Coupling Faults, Read Destructive Coupling Faults, Deceptive Read Destructive

Coupling Faults and Incorrect Read Coupling Faults [10]. MARCH PD was being

proposed as it has the complexity of 31N to enable better coverage than the previous

work mentioned above. With the similar methodology of identifying the fault via

narrowing down the scope, MARCH PD was used to identify and partially diagnose

the DUT and followed up by a MARCH algorithm of 3N to 5N for identifying the

aggressor word. Another MARCH algorithm having complexity of 16logB+18 were

10

used to locate aggressor bit from the aggressor word. Through this methodology, it

had proven to have a better fault coverage than the previous methodology.

In the research work presented by [11] had further improvement by reducing N in

the MARCH algorithm was used to perform fault filtering and partial diagnostic to

18N. The methodology performed are the same as [9], [10]. Although the number of

MARCH element had decreased but it remains its high fault type coverage ability such

as state fault, transition fault, coupling faults etc. with low time complexity.

The research work performed by [12] focused on performing test coverage in

SRAM common faults (Stuck-At Faults, Transition Faults, Coupling Faults by using

MARCH AB that was made up of 22N and able to cover all SRAM common faults.

The test had successfully reduced the test complexity by 15.4% compared to others

MBIST tests.

From [13]’s research on the MBIST for DRAM, it used three MARCH like

algorithm to test on the following fault coverage: Stuck-At Fault (SAF), Coupling

Fault (CF), Address Decoder Fault (ADF) and Transition Fault (TF). By using anti-

random test pattern generation methodology, the test efficiency had been increased

largely due to the test vector was different each time when a test was being executed.

This had increased the fault coverage rate and eventually hit up to 96% of accuracy.

 MATS++ algorithm had been used in [14]’s work to cover the identification of

Stuck-At Fault, Transition Fault and four types Address Decoding Fault in DRAM.

Although the work was focusing on the Built-In Self-Repair functionality, the model

can identify the types of common faults that occurred on DRAMs. From the test result,

MATS++ had the result of covering up to 96.72% of the mentioned faults.

11

As a conclusion, the fault types that had caught the interest of the previous

researchers are the commonly found fault in memory partitions (SRAM and DRAM)

such as Stuck-At Fault (SAF), Coupling Fault (CF) and Transition Fault (TF).

2.3 Faults

The word faults in this dissertation are referring to the error conditions in the

memory array. It can be split two types: behavioral fault and common memory fault.

Behavioral fault is related to the fault occurred due to the characteristic of the memory

cells, whereas common memory fault can be categorized as two major types which are

the single cell faults and multiple cell faults. Single cell faults are the memory faults

that occur within single memory cells, whereas multiple cell faults involve two or more

memory cells. Examples of single cell faults are stuck-at fault, transition fault and

address decoding fault [10]. The example of multiple cell fault is coupling faults.

Figure 2-1 shows the healthy memory cell having write/read operations in two states.

Figure 2-1: Normal Memory Cells

As shown in Figure 2-2 and Figure 2-3, Stuck-At fault is the fault having the value

of the memory stuck in line or memory cells. It can be differentiated into Stuck-At-0

(SA0) or Stuck-At-1 (SA1). Just like its name, Stuck-At-0 refers to the value is always

stuck at logic 0 whereas Stuck-At-1 having permanent logic of 1 [15].

12

Figure 2-2: Stuck-At 0 Fault

Figure 2-3: Stuck-At 1 Fault

Transition Fault is (TF) is the fault having failure on performing transition of logic.

Same as Stuck-At Fault, Transition Fault can be differentiated into two subclasses:

Transition (⇑, 0) and Transition (⇓, 1). Transition (⇑, 0) refers to the situation where

the defective memory cell fails to undergo changes of logic 0 to logic 1 during rising

transitions. As opposed to Transition (⇑, 0), Transition (⇓, 1) refer to the situation

where the defective memory cell fails to undergo changes of logic 1 to logic 0 during

falling transitions [9]. Figure 2-4 shows the Transition (⇑, 0) Fault where it fails to

change the state from S0 to S1 when W1.

Figure 2-4: Transition (⇑, 0) Fault

Address Decoder Fault is the fault caused when the address is wrongly decoded.

It can be categorized into four types which are no memory cell that can be accessed

13

with the given address, none of the memory cells that are able to be accessed, multiple

memory cells are being accessed with given address and certain memory cell that can

be accessed with multiple addresses. Normally, Address Decoder Fault is a

combination of two different cases stated above as it is not able to exist alone due to

addresses are generated based on multiple memory cells [14]. It exists as the following

combination as shown in Figure 2-5:

1. Fault A: address failed to access the memory cell and memory cells failed

to be accessed by address

2. Fault B: address failed to access targeted memory cells whereas the

targeted memory cells are being accessed by another address range

3. Fault C: certain memory cells fail to be accessed by designated addresses

as the addresses were accessing wrong memory cells

4. Fault D: having multiple memory cells that are able to be accessed by

multiple addresses.

Figure 2-5: Example of Address Decoder Fault (ADF) [16]

14

Coupling Fault is a multiple cell fault. It involves two cells which was the

aggressor cell and victim cell. Aggressor cell was the memory cell that was a normal

cell but its state or transaction will affect the behavior of the victim cells. Victim cell

was the faulty memory cell that will change the state or transaction when the aggressor

cell hit a certain condition. Coupling faults occur when the aggressor cell was written

with a value or in a certain transaction, the victim cells will have the value changed

[15]. It can be differentiated into a few types as stated below [9]:

1. State Coupling Fault (CFst)

State Coupling Fault (CFst) happens when the victim cell is forced into

a certain logic state (can be either logic 0 or 1) as the aggressor cell is

at a certain state (logic 0 or 1) without any operation being performed

to the victim cell. Figure 2-6 shows an example of the CFst. The victim

cell changed its data from 0 to 1 when the aggressor cell is in state (0).

This fault can be further separated into four types which are: CFst (0,0);

CFst (0,1); CFst (1,0); CFst (1,1). The first parameter is representing

the aggressor cell’s state and the second parameter is the value changed

by the victim cell.

Figure 2-6: Example of State Coupling Fault (CFst (0,1))

15

2. Idempotent Coupling Fault (CFid)

Idempotent Coupling Fault (CFid) is the case when the aggressor cell

is having a transition, the victim cell will be forced to a certain value.

Figure 2-7 shows an example of the Idempotent Coupling Fault where

when the aggressor cell is having an up transaction, it changed the value

of the victim cell. Same as State Coupling Fault (CFst), it can be further

separated into four types: CFid (D,0); CFid (D,1); CFid (U,0); CFid

(U,1). The first parameter is the transaction of the aggressor cell and

the second parameter is the value changed by the victim cell.

Figure 2-7: Example of Idempotent Coupling Fault (CFid (U,0))

3. Inversion Coupling Fault (CFin)

Inversion Coupling Fault (CFin) occurs when the aggressor cell

undergoes a transaction, the content of the victim cell is inverted (logic

0  logic 1 and vice versa). Figure 2-8 is an example of the Inversion

Coupling Fault when the aggressor cell had down transactions, it

inverts the value of the victim cell. The Inversion Coupling Fault can

be split into two types which are: CFin (U, ~) and CFin (D, ~). The first

parameter is for the transaction of the aggressor cell and the second

parameter is the value changed by the victim cell.

16

Figure 2-8: Example of Inversion Coupling Fault (CFin (D, ~))

4. Incorrect Read Fault (CFir)

Incorrect Read Fault happens when a read operation applied to the

victim cell, it returns an incorrect value when the aggressor word is in

the given state. The state of the victim cell is not changed. Figure 2-9

shows the example of Incorrect Read Fault as when aggressor cell is at

the certain state (0), the data read out by the victim cell is 1 but the data

it holds remains 0.

Figure 2-9: Example of Incorrect Read Fault (CFir)

17

5. Read Destructive Fault (CFrd)

Read Destructive Fault occurs when having a read transaction towards

the victim cell while aggressor cell is in the given state, it will return an

invalid value for the read process. The state of the victim cell is changed

to the invalid value. Figure 2-10 shows how Read Destructive Fault

occurs as the aggressor cell is in the certain state (0), the read operation

will change the data value inside the victim cell and return the invalid

value to the read operation.

Figure 2-10: Example of Read Destructive Fault (CFrd)

6. Deceptive Read Destructive Fault (CFdrd)

Deceptive Read Destructive Fault is caused by having a read operation

to the victim cell and it return a correct value with a transition that will

change the value of the victim cell when the aggressor cell is at a certain

state. Figure 2-11 shows the example of Deceptive Read Destructive

Fault having the value of the victim cell changed in the second read

when the aggressor cell in a certain state (0).

18

Figure 2-11: Example of Deceptive Read Destructive Fault (CFdrd)

Data Retention Fault is a behavioral fault. It happens when the data get corrupted

after some time before the refresh of the RAM occurs. This fault would be corrupting

the existing data as it was unable to retain the data’s integrity after a period of time. It

can be tested out by adding some extra time before the read operation is run.

2.4 MARCH algorithms

As the size of the SoC chips are getting smaller and the memory size in the SoC

chips had increasing rapidly, Automatic Test Equipment and Built-In Self-Test are

being proposed as ways to ensure the healthiness of the memory partition.

Among both methods, Built-In Self-Test are preferable by the testers due to it

having lesser cost needed as the usage of external equipment is avoided. The usage of

BIST will also reduce the effort for development of test patterns in the ATE. Most

importantly, better observation and controllability on the generation of the test pattern

can be obtained via this method [14]. Furthermore, BIST allow the test to be executed

at full functional speed, which will save a lot of the test time.

19

MBIST environment is made up of address bus, data bus, multiple read/write

control signals that was controlled by the test pattern generator [17]. There were many

MBIST techniques that had been developed, but mostly been conducted by using

exhaustive test of the MARCH algorithm that promises a high percentage of fault

coverage [13]. MBIST techniques share almost the same methodology as the BIST

with a slight difference as it consists of some extra components. The common

components that exist in the Memory BIST are test controller, Test Pattern Generator

(TPG), test collar, Circuit under Test (or is known as Device under Test), Output

Response Analyzer (ORA), Output Response Compactor (or known as Multiple-input

Signature Register (MISR)), comparator and a ROM. Figure 2-12 shows how the Test

Pattern Generator (TPG) affects the Memory Under Test.

Figure 2-12: General Block Diagram for Memory BIST [17]

There were many algorithms that generated under the concept of the Memory BIST

such as Checkerboard (CB), Address Decoder Open (AD), Address Complement (AC),

Waltz, Column Disturb and MARCH algorithm [18].

Checkerboard (CB) is an algorithm that works in the concept of having 0101

patterns in the neighbouring cells. Thus, all the neighbouring memory cells are having

20

opposite status with each other [18]. The values will be inverted in the next state and

remain 0101 differences among the cells.

Address Decoder Open is the method used to detect the open faults in the address

decoder by writing the neighbouring address with a Hamming distance of one and

check the neighbour cells to ensure that it was not affected by the neighboring values

[18].

Address Complement is the method to overcome the worst scenario of the address

decoder would ever face. With all the address bits are being switched at the same time

could easily cause address decoder fault due to the decode timing might be

mismatching and causing the address to be wrongly decoded. This method requires

state changes in all the NAND gates in the decoder to settle down to generate the

correct address [18].

MARCH algorithm is a common algorithm that is been used for MBIST. This is

due to its short testing time and high fault coverage [4]. There were many types of the

MARCH algorithm that had been derived and each of them have their strength and

weakness in identifying certain types of faults. A normal MARCH algorithm is made

up of a series of March Elements.

March Elements are the operations that will applied to each cell in the memory

before applying to another memory cell based on the address order [8]. March elements

are separated from each other by using a semicolon (;) between each of the March

elements. There were seven types of notations that had been used to generate a March

element which has its function linked with address and write/read controllability. The

following equation is an example a MARCH algorithm known as MATS++ that has

three march elements:

21

𝑀𝐴𝑇𝑆 + +∶ ⇕ (𝑊0); ⇑ (𝑅0, 𝑊1); ⇓ (𝑅1, 𝑊0, 𝑅0);

MATS++ algorithm can be deciphered as firstly performing write 0 to the memory

cells either from minimum address range to maximum address range or writing 0 from

maximum address range to minimum address range. After that, a read operation is

performed and expecting the returning memory value would be 0 and simultaneously

performing write 1 to that memory cells after the read from minimum address range to

maximum address range. Lastly, read operation is performed with expecting the return

value is 1 and writes 0 before another read operation that expecting reading 0 from the

memory cells. The last operation is performed from maximum address range to

minimum address range.

Table 2-1 are the detailed explanation of the operation that used to construct March

elements.

Table 2-1: Table of MARCH Operations and its functions.

Operations Descriptions

⇑ Minimum address to the Maximum address

⇓ Maximum address to the Minimum address

⇕ Can be either Minimum address to Maximum address or

Maximum address to Minimum address

W0 Write logic 0 to that memory cell

W1 Write logic 1 to that memory cell

R0 Read from the memory cell which should contain the value of 0.

R1 Read from the memory cell which should contain the value of 1.

Table 2-2 explains the existing MARCH algorithms with respective definitions

and fault coverage:

22

Table 2-2: MARCH algorithms and Fault Coverage

MARCH

Algorithms

Definitions Fault

Coverage

MATS +

[5], [19]

[20], [21]

{⇕ (𝑤0); ⇑ (𝑟0, 𝑤1); ⇓ (𝑟1, 𝑤0)} SAF

MATS ++

[14]

{⇕ (𝑤0); ⇑ (𝑟0, 𝑤1); ⇓ (𝑟1, 𝑤0, 𝑟0)} ADF, SAF,

TF

MARCH A

[5], [19]

[20], [22]

{⇕ (𝑤0); ⇑ (𝑟0, 𝑤1, 𝑤0, 𝑤1); ⇑ (𝑟1, 𝑤0, 𝑤1);

⇓ (𝑟1, 𝑤0, 𝑤1, 𝑤0); ⇓ (𝑟0, 𝑤1, 𝑤0)}

SAF, TF,

ADF, some

CF

MARCH B

[5], [19]

[20], [21]

[22]

{⇕ (𝑤0); ⇑ (𝑟0, 𝑤1, 𝑟1, 𝑤0, 𝑟0, 𝑤1);

⇑ (𝑟1, 𝑤0, 𝑤1); ⇓ (𝑟1, 𝑤0, 𝑤1, 𝑤0);

⇓ (𝑟0, 𝑤1, 𝑤0)}

SAF, TF,

ADF, some

CF

MARCH

C- [4], [5]

[19], [20]

[21], [22]

{⇕ (𝑤0); ⇑ (𝑟0, 𝑤1); ⇑ (𝑟1, 𝑤0); ⇓ (𝑟0, 𝑤1);

⇓ (𝑟1, 𝑤0); ⇕ 𝑟0)}

SAF, TF,

ADF, CF

MARCH X

[19], [20]

[22]

{⇕ (𝑤0); ⇑ (𝑟0, 𝑤1); ⇓ (𝑟1, 𝑤0); ⇕ (𝑟0)} SAF, TF,

ADF, some

CF

MARCH U

[5], [19]

[20], [21]

{⇕ (𝑤0); ⇑ (𝑟0, 𝑤1, 𝑟1, 𝑤0); ⇑ (𝑟0, 𝑤1);

⇓ (𝑟1, 𝑤0, 𝑟0, 𝑤1); ⇓ (𝑟1, 𝑤0)}

SAF, TF, CF

23

MARCH Y

[19], [22]

{⇕ (𝑤0); ⇑ (𝑟0, 𝑤1, 𝑟1); ⇓ (𝑟1, 𝑤0, 𝑟0); ⇕ (𝑟0)} SAF, TF,

ADF, some

CF

MARCH

AB [22]

{⇕ (𝑤0), ⇓ (𝑟0, 𝑤1, 𝑟1, 𝑤1, 𝑟1);

⇓ (𝑟1, 𝑤0, 𝑟0, 𝑤0, 𝑟0);

⇑ (𝑟0, 𝑤1, 𝑟1, 𝑤1, 𝑟1);

⇑ (𝑟1, 𝑤0, 𝑟0, 𝑤0, 𝑟0); ⇕ (𝑟0)}

SAF, TF, CF

MARCH

LR [5],

[20], [21],

[22]

{⇕ (𝑤0); ⇑ (𝑟0, 𝑤1, 𝑤0, 𝑤1, 𝑟1);

⇑ (𝑟1, 𝑤0, 𝑤1, 𝑤0, 𝑟0);

⇓ (𝑟0, 𝑤1, 𝑤0, 𝑤1, 𝑟1);

⇓ (𝑟1, 𝑤0, 𝑤1, 𝑤0, 𝑟0); ⇓ (𝑟0)}

SAF, TF, CF

MARCH

CL [9]

{⇑ (𝑤0); ⇑ (𝑟0, 𝑤1); ⇕ (𝑟1); ⇑ (𝑟1, 𝑤0);

⇓ (𝑟0, 𝑤1); ⇕ (𝑟1); ⇓ (𝑟1, 𝑤0);

⇕ (𝑤0)}

SAF, TF, CF

MARCH

PD [10]

{⇑ (𝑤0); ⇑ (𝑟0, 𝑟0, 𝑤1, 𝑤1, 𝑟1, 𝑟1);

⇑ (𝑟1, 𝑤0, 𝑤0, 𝑟0); ⇑ (𝑟0, 𝑤1};

⇑ (𝑟1, 𝑤0); ⇑ (𝑟0); ⇓ (𝑟0, 𝑤1);

⇓ (𝑟1, 𝑤0); (𝑟0, 𝑟0, 𝑤1, 𝑤1, 𝑟0, 𝑟0),

⇓ (𝑟1, 𝑤0, 𝑤0, 𝑟0); ⇓ (𝑟0)}

SAF, TF, CF

MARCH

MSS [11],

[19]

{⇑ (𝑤0); ⇑ (𝑟0, 𝑤1, 𝑤1, 𝑟1); ⇑ (𝑟1, 𝑤0, 𝑤0, 𝑟0);

⇓ (𝑟0, 𝑤1, 𝑤1, 𝑟1);

⇓ (𝑟1, 𝑤0, 𝑤0, 𝑟0); ⇓ (𝑟0)}

SAF, TF, CF

24

MARCH

9N with

Pause Test

[23]

{⇓ (𝑤0); ⇓ (𝑟0, 𝑤1); ⇓ (𝑟1, 𝑤0); ⇑ (𝑟0, 𝑤1);

⇑ (𝑟0, 𝑤1) 𝐷𝑒𝑙𝑎𝑦;

⇓ (𝑟0, 𝑤1) 𝐷𝑒𝑙𝑎𝑦; ⇓ (𝑟1)}

DRF

MARCH-

NU [7]

{⇕ (𝑤0);

⇑ (𝑟0, 𝑤0, 𝑟0, 𝑟0, 𝑤1, 𝑟1, 𝑤1, 𝑟1, 𝑟1, 𝑤0, 𝑟0);

⇑ (𝑟0); ⇑ (𝑟0, 𝑤1); ⇓ (𝑟1, 𝑤0); ⇕ (𝑤1);

⇓ (𝑟1, 𝑤0, 𝑟0, 𝑟0, 𝑤0, 𝑟0, 𝑤1, 𝑟1, 𝑟1, 𝑤1, 𝑟1);

⇓ (𝑟0)}

SAF, TF,

SOF, DRF,

CF, ADF,

NPSF,

As mentioned in Table 2-2, there are many available MARCH algorithms and each

of it has each specific fault coverage. The following are the research works that had

been done by using MARCH algorithm mentioned above.

[14]’s work had implemented MATS++ algorithm to cover Stuck-At Fault,

Transition Fault and four types of Address Decoder Fault. The MBIST system design

consumed 1884 gates having 100% coverage for Stuck-At Fault, Transition Fault,

Address Decoder Fault Types A and B. However, the design has 88% fault coverage

for Address Decoder Fault Type C and D due to the tests are generating fixed data for

BIST which are unable to cover certain condition cases.

The methodologies applied on [9], [10] and [11] were similar three steps with

different algorithms: identifications of the functional faults model (common fault),

identifications of the aggressor word, and finally identification of the aggressor bit

within the aggressor word. The MARCH algorithms used were MARCH_PD,

MARCH CL and MARCH MSS. These algorithms have a high coverage in the

