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Abstract 

In the present study, three-dimensional (3D) finite element simulation on 132 

PIN fleXBGATM package was performed to predict the effect of solder joint 

geometry on the reliability of Ball Grid Array (BGA) solder joints on flexible 
and rigid PCBs subjected to thermo-cyclic loading. The commercial FEA tool 

ABAQUS Version 6.9 was used for the simulations of various shapes of solder 

joints such as barrel, column and hourglass. Apart from a global modeling, the 

submodeling analysis technique (local modeling) was also used on the critically 

affected solder joints, in order to enhance the computation efficiency. The 

accumulated creep strain and strain energy density were observed for each case, 
and optimum geometries were obtained. The model was validated with the 

published experimental data with the minimum percentage error of 3%. It was 

observed that the hourglass solder joint geometry was very crucial on the 

reliability of BGA solder joints, and for a given PCB, the optimal choice of 

hourglass solder joint geometry depended on its rigidity. 

Keywords: Finite element simulation, Ball grid array (BGA), Solder joint geometry, 

                   Flexible PCB, Submodeling analysis technique. 

 

 

1.  Introduction 

Tin-based eutectic and lead-free solder joints are used in the ball grid array (BGA) 

packages to ensure electrical and mechanical functionalities between the packages and 

the PCB [1-2]. Alternating strains and stresses caused by mismatch of coefficient of 

thermal expansion are the main causes of failure in solder joint interconnections. 

Several factors have been found to be affecting the solder joint reliability, such          

as solder joint geometry, board material, chip size, interface metallurgy,  and underfill 
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Nomenclatures 
 

A Power Law multiplier, s-1
 

B Hyperbolic law multiplier, MPa
-1

 

D Pad diameter, mm 

H Standoff height of the solder joint, mm 

M Midpoint diameter of solder joint, mm 

n Stress order 

R Universal gas constant, J/mol.K 

VT Volume of barrel-shaped solder joint, mm
3
 

Ux, 

Uy, Uz 

Velocity component in x, y, z directions, mm/s 

 

Greek Symbols 

∆� Activation energy, J/mol 

∆W Accumulated strain energy density per cycle of each element, MPa 

∆Wave Average accumulated strain energy density per cycle for the 

interface elements, PSI 

∆Wmax Accumulated strain energy density per cycle of critical element, MPa 

���� Equivalent strains 

Ө Temperature of thermal load, K 

Ө�
 User-defined value of absolute zero on the temperature scale used, K 

	�� Equivalent stresses, MPa 

	
 Fatigue life, cycles 

Φc Diameter of copper pad, mm 

Φs Diameter of midpoint solder joint, mm 

and substrate materials [3]. However, very little work is found in the open 

literature, on the solder joint reliability analysis of flexible electronics [4]. The 

flexible printed circuit board (FPCB) has unique capabilities including reduced 

board thickness, added “twist” of flexibility and vibration resistance. This 

lightness, and ability to bend to various shapes, make FPCB play vital role in 

electronic product miniaturization and replace rigid boards (RPCB) in numerous 

electronic devices [4]. 

Liu and Lu [5] found that solder joint geometry characterized by shape and 

standoff height is the dominant factor affecting solder joint reliability. Several 

approaches, such as stacked solder, double bump technology, stretched solder, 

ceramic column grid array and second-reflow-process approach [6] were reported 

to increase the standoff height and control the shape of solder bump connection. 

The stacked solder technique used the bump-limiting metal pads to separate 

solder bump at different level by sequential stacking process [7]. Double bump 

technology entailed the controlled overlapping of two molten solder bumps on 

both surfaces to form nearly cylindrical joint [8]. A mechanical standoff was used 

in this technique to control the final separation between packages and PCB. A 

cost effective stretch solder joint involved the process of stretching the solder 

joint to acquire hourglass shape and greater standoff height [9]. Liu and Lu [5] 
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demonstrated that hourglass shape solders had the lowest plastic strain and better 

reliability during thermal cycling. For the constant solder volume and pad size, 

hourglass-shaped solder joint had the greatest standoff height, followed by 

column and barrel shaped solder joint. 

Accelerated thermal cycling (ATC) tests have been widely used in the 

electronics industry to assess the reliability of new electronic products against the 

low-cycle fatigue in field environment [10]. However, this test method is expensive 

and time consuming. With the maturity of numerical techniques, the failure of 

solder joints could easily be predicted by simulations without resorting to lengthy 

and costly tests. Over the past decades, the validity of finite element analysis (FEA) 

has been discussed by many researchers [11-13]. Ridout and Bailey [10] reviewed 

various modeling methods to predict solder joint failure, such as analytical method, 

constitutive law plus fatigue law methods, and damage mechanics based methods 

[14]. The analytical method proposed by Engelmaier [15] for predicting the lifetime 

of 63Sn37Pb joints was recommended in the IPC-D-279 standard. The damage 

mechanics based methods allowed crack paths to be predicted. A review of 

covering several methods has provided by Desai and Whitenack [16]. 

Constitutive law plus fatigue law methods work by running transient 

simulation with FEM tools such as MSC/NASTRAN, ANSYS or ABAQUS to 

predict the solder’s stress strain behavior during a thermal cycle. The standard 

method for FEA of solder joints involves only the modeling of steady-state creep, 

which could provide a reasonable prediction. Many authors [17] have used 

hyperbolic sine creep to capture the change in creep mechanism. Darveaux et al. 

[18] have published constants for four different alloys including SnPb and 

Sn3.5Ag. From this prediction, either the accumulated effective plastic strain per 

cycle or the accumulated strain energy density per cycle of each element (∆W) 

was extracted to be used in a fatigue law. Lee et al. [19] reviewed various fatigue 

laws; the simplest fatigue laws were the Coffin–Manson law and the strain energy 

based law, used by Akay et al. [11]. Darveaux [20] fatigue law  predicted the time 

taken for crack initiation, and crack propagation rate by averaging ∆W over a 

layer of solder 25 µm thick adjacent to the package interface where the cracks 

were expected to develop.  

As far as the authors are aware, the effect of solder joint geometry on the 

reliability of BGA solder joints on FPCB has less reported so far [21-23]. 

Accordingly, in the present study, three-dimensional (3D) finite element simulation 

on 132-PIN fleXBGATM package is performed considering both FPCB and RPCB 

[24-25]. The commercial FEA tool ABAQUS Version 6.9 is used for the 

simulations of various shapes of solder joints such as barrel, column and hourglass. 

Furthermore, the submodeling analysis technique [26] is used to enhance the 

computation efficiency. The accumulated creep strain and strain energy density are 

observed for each case, and optimum geometries are obtained. The model is 

validated with the published experimental data [24] with acceptable error. 

 

2. Materials and Methods  

2.1. Package dimensions 

Figure 1 shows the fleXBGATM assembly [24] and Fig. 2 shows the 3D quarter 

of a fleXBGATM component. It has 132 tin-lead (63Sn37Pb) eutectic solder 
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joints which are interconnected by 66 couples of shorted copper pads on the BT 

substrate without underfill. The multi-layer FPCB is made of polyimide and 

copper materials with a minimum thickness of 0.31mm whereas RPCB is made of 

4 layers FR-4 material (2S2P) with a thickness of 1.6 mm. The detailed 

dimensions of the package are summarized in Table 1. 

 

Fig. 1. FleXBGATM Assembly. 

 

 

Fig. 2. 3D Quarter of a FleXBGATM Component. 

 

Table 1. Dimensions of the FleXBGATM Package. 

Material Dimensions (mm) 

RPCB 1.6×140×120 

FPCB 0.31×140×120 

Copper pad Φc=0.33 

63Sn37Pb solder joint Height= 0.4 Φs=0.4572, Pitch= 0.8 

BT substrate 0.05×12×12 

Silicon die 0.3×6.4×6.4 

Molding compound 0.84×12×12 

 

2.2.  Package materials and properties 

The molding compound, silicon die, BT substrate and RPCB (FR-4) are assumed 

as isotropic linear elastic materials whose properties are listed in Table 2 [11, 12, 

25]. The equivalent material property of polyimide based multi-layer FPCB was 

predicted by Pan and Vatanporast [27], as shown in Table 2. The coefficients of 

thermal expansion (CTE) for various materials are shown in Table 3. 
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Table 2. Properties of Constituent Materials. 

 

Table 3. Coefficient of Thermal Expansion (CTE) for Various Solders. 

Material Temperature (K) CTE (ppm/K) 

63Sn37Pb [1] 
293 24.0 

423 26.9 

FPCB: Polyimide [27] - 26.1 

RPCB: FR-4 [25] - 15 

BT Substrate [11] - 15 

Silicon [12] - 2.5 

Molding Compound [12] - 14.8 

Since the solder temperature is assumed to be above half of its melting point, 

time-dependent creep processes are expected to dominate the deformation 

kinetics. A hyperbolic sine creep law [1, 16] is used to study the evolution and 

accumulation of irreversible strains and energies of solder joints made of various 

types of solder:  

���� = �(sinh�	��)
� exp�(−

∆�

�(Ө�Ө�)
)               (1) 

where �����  is equivalent strains, �	��  is equivalent stresses, θ  is the 

temperature, θ 
z
, the user-defined value of absolute zero on the temperature scale 

used, R is the universal gas constant, A is Power Law multiplier, B is hyperbolic 

law multiplier, n is the stress order and ∆� is the activation energy. Besides, A, B, 

n and ∆�  represent the characteristics for the secondary creep behavior of a 

particular solder. The values A, B, n and ∆� and R for the 63Sn37Pb solder used 

in the present study are listed in Table 4 [1].  

Note that this type of creep constitutive equation ignores transient creep 

effects and assumes steady-state creep after the beginning of loading. This might 

be deficient in studying creep under thermal stress reversals. Besides, for thermal 

load cycles with a period of 3600s, the creep dominates and the instantaneous 

time-independent plasticity is assumed as insignificant; this would suggest that 

the common practice of ignoring instantaneous plasticity is justified [10]. 

Table 4. Creep Law Constants of Various Solders [1]. 

Solder A (s
-1

) B (MPa
-1

) n ∆�(J/mol) R (J/mol.K) 

63Sn37Pb 96200 0.086956 3.3 67390 8.314 

Material 
Young’s Modulus 

(MPa) 

Poisson’s      

ratio 

PCB  

 

FPCB: Polyimide [27] 5225 0.25 

RPCB: FR-4 [25] 18200 0.25 

Leaded 

Solder 
63Sn37Pb [1] 

23250 (373K) 0.36 (373K) 

19000 (423K) 0.36 (423K) 

Substrate BT Substrate [11] 26000 0.39 

Die Silicon [12] 130360 0.28 

Mold Molding Compound [12] 16520 0.25 
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2.3.  FEA modelling 

The following three steps are carried out in the present ABAQUS modeling: 

Step 1: Global modeling: The purpose of global modeling is to identify the 

critical local ball and to provide driving boundary conditions for the 

subsequent submodeling analysis. For the symmetrical plane, the global 

model comprised one-fourth of the entire package as shown in Figure 

3(a). Meshing is done with C3D8R Hexahedral element with 23,991 

elements, which contributed by 30,227 nodes. Symmetrical boundary 

conditions are applied along the centre line of the PCB, and node of 

diagonal bottom corner of PCB is constrained with boundary condition 

Ux = Uy = Uz = 0 to prevent free body translation. 

Step 2: Local modeling: The local model contains the most critical solder joint 

located in the package, where the maximum accumulated creep strains 

(CEEQ) take place. The width of the local model is equal to the solder 

joint pitch. Figure 3(b) shows the higher mesh density of local model 

(1,588 nodes and 1,233 elements). 

Step 3: Accumulated strain energy density per cycle of critical element (∆Wmax) 

obtained for various shapes of solder geometry are used to predict 

optimum geometry of the solder joint. 

 

 

Fig. 3.  (a) 3D Global Model (Quarter of the                                                            

Whole Package), (b) 3D Local Model. 

 

2.4.  Various solder joint geometries 

The geometry of the solder joints is described by two non-dimensional parameters, 

the aspect ratio (AR) and the shape factor (SF) [9], which are defined as: 

Aspect�ratio�(�%) = �
�

&
                 (2) 

Shape�Factor�()*) = �
+

&
                 (3) 

where H is the standoff height of the solder joint, D is the pad diameter and M 

is the midpoint diameter of solder joint. SF essentially describes the profile of the 

solder joint.  

In this work, five solder joint geometries (Table 5) are generated to study their 

effect on CEEQ. The conventional barrel shape is chosen as the reference with 

specifications as shown in Fig. 4. Assuming H = 0.4 mm, the volume of barrel-
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shaped solder joint (,-) [28] could be calculated from Eq. (4) by knowing D, M 

and H 

 

Fig. 4. Barrel Shape Solder Joint with Specifications. 

 

,- =
.�

/0
(220 + 40)                 (4) 

then the value of H for the other geometries are estimated by using the 

truncated ellipsoid model [25] as expressed in Eq. (5). 

� =
/567

.(0+89+&9:.<5&8)
                 (5) 

 

Keeping ,-  and D fixed, when M is reduced, the barrel shape successively 

takes different shapes with increasing H, such as, Column, Hourglass 1, 

Hourglass 2 and Hourglass 3, as shown in Table 5. 

 

Table 5. Various Solder Joint Geometries with Specifications [28]. 

 
 

2.5. Thermo-cyclic loading 

The thermal cycling conditions applied in the present study are the same as those 

used by Darveaux et al. [24]. The temperature profile in Fig. 5 shows a range 233 

to 398 K at 1 cycle/hour (1 cph), with 15 min dwell time at the extreme 

temperatures and 11oC/min ramp rate. The reference temperature for the stress 

free state is 298 K [25]. 
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Fig. 5. Temperature Cycle Profile. 

3.  Results and Discussion 

3.1.  Grid independence test 

Grid independence test is carried out on the global model meshes for FPCB and 

RPCB. The FPCB and RPCB meshes are declared independent when the 

maximum CEEQ and maximum displacement did not change by more than ± 

0.1% between successive meshes. The summary of grid independence test for 

FPCB meshes is presented in Table 6. Case 5 being the finest in grid size, the 

deviations in maximum CEEQ and maximum displacement of cases 1, 2, 3 and 4 

from case 5 are checked, and accordingly, case 4 (23,991 meshes) is found to be 

acceptable, as evident from Table 6. By following similar procedure, the mesh 

size for RPCB is adopted as 24,151 (case 4 in Table 7). 

Table 6. Summary of Grid Independence Test for FPCB Meshes. 

 

Table 7. Summary of Grid Independence Test for RPCB Meshes. 

 

3.2. Verification of submodeling 

The submodeling procedure [26] in the current simulation is verified by means of  

a two dimensional (2D) FEA model, meshed with quadrilateral elements, as 

shown in Fig. 6; the material properties are same as in Section 2.2. 

Due to axis-symmetric geometry, the global model represents only half of the 

package length. For verification purpose, scales of the FE meshes on the global 

model and the local model are set identical. The 2D FEA model is subjected to 

the same cyclic thermal load as mentioned in Section 2.5.  

Case 1 2 3 4 5 

Elements 10,091 13,566 20,516 23,991 27,466 

Maximum CEEQ 0.11730 0.09890 0.09750 0.09737 0.09740 

Deviation from case 5 (%) 20.431 1.540 0.103 0.030 0.00 

Maximum displacement 0.07880 0.04690 0.04750 0.04756 0.04760 

Deviation from case 5 (%) 65.546 1.471 0.210 0.084 0.00 

Case 1 2 3 4 5 

Elements 10,119 13,626 20,640 24,151 27,654 

Maximum CEEQ 0.07916 0.08666 0.08568 0.08558 0.08557 

Deviation from case 5 (%) 7.491 1.274 0.129 0.012 0.00 

Maximum displacement 0.03260 0.02131 0.02130 0.02128 0.02128 

Deviation from case 5 (%) 53.195 0.141 0.094 0.00 0.00 
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Figure 7 shows hysteresis loops of shear stresses versus creep shear strains for 

critical element, and Fig. 8 depicts the history of the accumulated volume-

weighted average creep energy density for the thin layer of critical solder joint. 

These two quantities are broadly applied in numerical assessments of fatigue life 

or reliability study on solder joint. Clearly, results from the global model matched 

those from the local model precisely, indicating that the preset submodeling 

procedure is valid.  

 

Fig. 6. Finite Element Meshes for the 2D Global and Local Model. 

 

 

Fig. 7. Hysteresis Loops of Shear Stresses vs. Creep Shear Strains. 

 

Fig. 8. Accumulated Volume-weighted                                                               

Average Creep Energy Density vs. Time. 

3.3.  Comparison with previous experiments 

The present simulations are substantiated by previous experimental results. As no 

reference data is available for FPCB, validation is performed in the case of RPCB 

for CEEQ pattern and fatigue life. As illustrated in Fig. 9, the failure locations in 
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solder joints of barrel, column and hourglass shapes match well with the 

experimental observations [9]. This matching is presumed to testify the validity of 

simulations on FPCB as well. The fatigue life (	
 ) for barrel shape is also 

estimated in ABAQUS, by using the Darveaux Fatigue law (applicable only for 

barrel shape), and the results are compared with the published experimental data 

[24], as presented in Table 8. It shows that the present predictions are in 

acceptable agreement with the experimental data, as the variations are within 25% 

[20]. The discrepancy may be attributed to the factors such as, experimental 

errors, the use of “equivalent” material properties for the BT substrate, RPCB and 

FPCB, the material properties assumed in the FE modeling, etc. 

Table 8. Comparison of Predicted and Experimental                                       

Results of Fatigue Life for Barrel Shape. 

 
 

 

Fig. 9. Comparison of Experimental Crack                                                   

Locations with the Present Predictions. 

Data Set 

Fatigue life, 	=  (cycles) 
Difference  

(%) 
Experiment 

[24] 

Present  

simulation 

11 2998 2908 3.00 

17 2967 2277 23.26 

29 708 622 12.15 
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3.4. Accumulated creep strain (CEEQ) 

The locations of critically affected solder joints (maximum CEEQ) for different 

solder joint geometries in FPCB and RPCB at the end of the third cycle are 

shown in Fig. 10, and the corresponding creep strain contours, are shown in Fig. 

11. For RPCB, locations of critically affected joints remain constant (at the 

inner row, as in Fig. 10), whereas for FPCB, it changes according to the 

geometry. The joints having maximum CEEQ are most likely to fail first [18]. 

Figure 11 indicates that, the crack locations of solder joints on RPCB  shift 

from the chip-solder interface to the midpoint of the solder joint when the 

aspect ratio is increased, as also observed by  Lim et al. [9]. But, the crack 

locations of solder joints on FPCB does not shift from the chip-solder interface 

for the 1
st
 three geometry, and start to shift to the midpoint of the solder joint 

for the last 2
rd

 geometry shape with higher aspect ratio.  

 

 
Fig. 10. Locations of Critically Affected Solder Joints on FPCB and RPCB. 
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FPCB RPCB 

  

  

  

  

  
 

Fig. 11. The Creep Strain Profiles for                                                        

Different Geometries for FPCB and RPCB. 

 

3.5.  Accumulated strain energy density (CENER) 

Figure 12 shows that the accumulated volume-weighted average creep energy 

density of the barrel-shaped solder joint for the FPCB is higher than that of the 

RPCB. This observation seems a little different from the general perspective, that 

the increase in flexibility will improve the solder joint reliability. Some reasoning 
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is made based on the displacement distribution as shown in Fig. 13; for 

fleXBGA
TM

 package with the FPCB, the displacement distribution is non-uniform 

with larger magnitudes, Fig. 13(a), whereas the RPCB shows uniform 

displacement distribution with smaller magnitude, Fig. 13(b). Larger magnitude 

of PCB causes the larger warpage effect and induces the larger mismatch of 

coefficient of thermal expansion between the die and substrate. Thus, larger stress 

concentration to act on the nearest solder balls under the die, causing the creep 

energy density of FPCB to be larger than that of the RPCB. Besides, non-uniform 

displacement distribution also causes the failure locations to change, as already 

seen in Fig. 10. For most experiments on fleXBGA
TM

, it was found [24] that the 

row of joints just outside or just underneath the die edge failed first; this 

substantiates the present simulation results. Similar experimental results for 

PBGAs were also observed by Ladani and Dasgupta [29]. 

 
Fig. 12. Accumulated Volume-weighted Average Creep                                   

Energy Density of Barrel-shaped Solder Joint vs. Time. 

 

 
Fig. 13. The Displacement Distribution of: (a) FPCB and (b) RPCB. 

 

3.6.  Optimum solder joint geometry 

For the barrel shape, crack occurs first at the corners of interfaces between solder 

joint and silicon die, and solders bump and substrate due to the high thermal stress 

concentration. However, the hourglass-shaped solder joint has much lower stress at 

the solder joint corners for both FPCB and RPCB; their smaller contact angle 

reduces the order of the singularity thereby reducing the stress and strain field near 

(a) 

(b) 
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contact edges. Moreover, the hourglass shape contributes to protecting the weak 

interfaces between the solder joint and the substrate, by allowing the CEEQ to move 

towards the middle. It was established by tensile and shear tests that that hourglass-

shaped solder joint had high adhesion stress than barrel-shaped solder joint, and 

failed at or close to midpoint while barrel-shape failed at the interface [7].  

It should be noted that, for a given solder joint volume, the advantage of protecting 

the weak interface by increasing the aspect ratio is countered by the threat of midpoint 

failure. Moreover, increasing the solder joint height without affecting the solder joint 

pitch is restricted by I/O density and cost. This situation calls for optimum solder joint 

geometry in terms of aspect ratio, strain distribution pattern and cost.   

Accordingly, a comparison is made, of the maximum CEEQ of different 

geometries on FPCB and RPCB, as shown in Fig. 14. It is observed that for 

FPCB, the three hourglass shapes exhibit lower values of maximum CEEQ 

compared to the other two shapes; for RPCB, column, hourglass 1 and hourglass 

2 are acceptable.  Similar conclusion can be drawn from the comparison of 

accumulated strain energy density per cycle of the critical element (∆Wmax) as 

well, as illustrated in Fig. 15. 

 
Fig. 14. Maximum CEEQ vs. Solder Joint                                                 

Geometry for FPCB and RPCB. 

 

Fig. 15.  ∆Wmax (MPa) vs. Solder Joint Geometry for FPCB and RPCB. 
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4.  Conclusions 

In the present study three-dimensional (3D) finite element simulation on 132-PIN 

fleXBGATM package is performed to predict the effect of solder joint geometry on 

the reliability of BGA solder joints on flexible and rigid PCBs.  The commercial 

FEA tool ABAQUS Version 6.9 is used for the simulations of various shapes of 

solder joints such as barrel, column and hourglass. The model is well validated with 

the published experimental data. From the global and local modeling and 

simulations, it is observed that the solder joint geometry significantly influences the 

reliability of BGA solder joints, and for a given PCB, the choice of solder joint 

geometry depends on its rigidity. It is also found that as the geometry changes; the 

locations of critically affected joints do not change on RPCB, but change on FPCB. 

For future work, experiments may be performed to confirm the present simulation 

results on FPCB. Study on the effects of solder materials (both leaded and lead-free) 

on the reliability of different types of geometries will also be interesting. 
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