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Abstract
A Crank-Nicolson finite difference method is presented to solve the time fractional two-dimensional sub-diffusion
equation in the case where the Grünwald-Letnikov definition is used for the time-fractional derivative. The stability
and convergence of the proposed Crank-Nicolson scheme are also analyzed. Finally, numerical examples are pre-
sented to test that the numerical scheme is accurate and feasible.
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1 Introduction

Fractional calculus is essentially arbitrary order differentiation and integration. Comprehensive studies on frac-
tional calculus and its applications can be found in [1-4]. Certain phenomena and processes can best be described by
the fractional diffusion equation having fractional order derivatives in time or space or space-time [5]. Most papers
on the numerical solution of the time fractional sub-diffusion equation have utilized the Caputo definition for the
time fractional derivative [6, 7, 8, 9]. There have not been many studies that utilize the Grünwald-Letnikov defini-
tion. The limited studies that have used the Grünwald-Letnikov (or related to Grünwald-Letnikov) definition include
[10, 11, 12, 13, 14].
This paper discusses the use of a Crank-Nicolson scheme for solving the two-dimensional time fractional sub-diffusion
equation is constructed by applying the Grünwald-Letnikov definition instead of the Caputo definition for the time-
fractional derivative. If the initial condition is zero then the Grünwald-Letnikov definition and Caputo definition are
equivalent [15, 16]. It should be noted however that the Grünwald-Letnikov definition has the advantage of being less
complex and more easily applied.
This paper considers the following two dimensional time fractional sub-diffusion equation

∂ α u(x,y, t)
∂ tα =

∂ 2u(x,y, t)
∂x2 +

∂ 2u(x,y, t)
∂y2 + f (x,y, t), 0 ≤ t ≤ T, (1.1)

subject to
u(x,y,0) = f1(x,y), (1.2)
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u(0,y, t) = f2(y, t), u(x,0, t) = f3(x, t),

u(1,y, t) = f4(y, t), u(x,1, t) = f5(x, t),

0 ≤ x,y ≤ L, 0 ≤ t ≤ T, (1.3)

where f1, f2, f3, f4 and f5 are known functions, and u is the unknown dependent variable.
The time fractional derivative of order α(0 < α ≤ 1) of u can be defined by

∂ α u(x,y, t)
∂ tα =


1

Γ(1−α)

∫ t
0

du(x,y,s)
dt

1
(t−s)α ds, 0 < α < 1

∂u(x,y,t)
∂ t , α = 1

(1.4)

and

∂ α u(x,y, t)
∂ tα =


1

Γ(1−α)
d
dt
∫ t

0 u(x,y,s) 1
(t−s)α ds, 0 < α < 1

∂u(x,y,t)
∂ t , α = 1

(1.5)

According to [9], (4) is known as the Caputo formula and (5) is known as the Riemann-Liouville formula. The
Grünwald-Letnikov time fractional derivative formula is defined by [15]

∂ α u(x,y, t)
∂ tα =

t−α

Γ(1−α)
u(x,y,0)+

1
Γ(1−α)

∫ t

0

du(x,y,s)
dt

1
(t − s)α ds. (1.6)

The Caputo fractional derivative and Grünwald-Letnikov fractional derivative are equivalent if u(x,y,0) = 0.
The Grünwald-Letnikov formula can also be written as [13]

∂ α u(x,y, t)
∂ tα = lim

n→0
1/τα

[t/τ]

∑
k=0

ω(α)
k u(x,y, t − kτ)+O(τ), t > 0, (1.7)

where t/τ is an integer, ω(α)
k = 1, ω(α)

k = (1− α+1
k )ω(α)

k−1 and k = 0,1,2, ..t/τ .
The right shifted Grünwald-Letnikov formula can be defined as

∂ α u(x,y, t)
∂ tα = 1/τα

[t/τ]

∑
k=0

ω(α)
k u(x,y, t − (k−1)τ)+O(τ), t > 0. (1.8)

Lemma 1.1. The relation between Caputo and Reimann-Liouville fractional derivative is [16]:

D1−α
t u(x,y, t) =c D1−α

t u(x,y, t)+
u(x,y,0)

Γ(α)t1−α , (1.9)

These two fractional derivatives are equivalent if and only if u(x,y,0) = 0. The proof is given by the Lemma 6.4.2 in
[18].

Lemma 1.2. In (1.8), the coefficients ω(α)
k ,(k = 0,1,2, ...), satisfy (see[13]):

(1) ω(α)
0 = 1,ω(α)

1 =−α,ω(α)
k < 0,k = 1,2, ...,

(2)
∞

∑
k=0

ω(α)
k = 0;∀n ∈ N+,−

n

∑
k=1

ω(α)
k < 1.
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2 Crank-Nicolson method

For the discretization of the time fractional derivative we use specifically the right shifted Grünwald-Letnikov for-
mula defined by (8) and replace the second order spatial derivatives in equation (1) by central difference approxima-
tion. The space steps are taken as xi = i(∆x), in the x-direction with(i= 0,1, ...,Mx−1), ∆x= L

Mx
and in the y-direction

with y j = j(∆x),( j = 0,1, ...,My −1), where ∆y = L
My

. The time stepping is tk = kτ ,(k = 0,1, ...,N−1), where τ = T
N .

Let uk
i, j be the numerical approximation to u(xi,y j, tk). Neglecting the truncation error terms O(τ +∆x2 +∆y2), we

obtain

uk+1
i, j +ω(α)

1 uk
i, j +

k+1

∑
s=2

ω(α)
s uk−s+1

i, j = S1(uk+1
i+1, j −2uk+1

i, j +uk+1
i−1, j +uk

i+1, j −2uk
i, j +uk

i−1, j)+

S2(uk+1
i, j+1 −2uk+1

i, j +uk+1
i, j−1 +uk

i, j+1 −2uk
i, j +uk

i, j−1)+ f
k+ 1

2
i, j , (2.10)

where S1 =
τα

2(∆x)2 ,S2 =
τα

2(∆y)2 .
The Crank-Nicolson finite difference scheme for the two-dimensional time fractional sub-diffusion equation (1.1)-
(1.3) utilizing the right shifted, with associated initial and boundary conditions, is as follows

−S1(uk+1
i+1, j +uk+1

i−1, j)+(1+2S1 +2S2)uk+1
i, j −S2(uk+1

i, j+1 +uk+1
i, j−1) = S1(uk

i+1, j +uk
i−1, j)−

(ω(α)
1 +2S1 +2S2)uk

i, j +S2(uk
i, j+1 +uk

i, j−1)−
k+1

∑
s=2

ω(α)
k uk−s+1

i, j + τα f
k+ 1

2
i, j , (2.11)

where i = 1,2, ...,Mx −1, j = 1,2, ...,My −1 and k = 0,1,2, ...,N −1
with

u0
i, j = f1(xi,y j), (2.12)

uk
0, j = f2(y j, tk), uk

i,0 = f3(xi, tk),

uk
M, j = f4(y j, tk),uk

i,M = f5(xi, tk),

0 ≤ x,y ≤ L, 0 ≤ t ≤ T. (2.13)

3 Stability analysis of Crank-Nicolson method

We follow the approach in [14] for the analysis of stability. Suppose that Uk
i, j, is the approximate solution of (11)

and the error is defined as Ψn
i, j = Uk

i, j − uk
i, j, i = 0,1,2, ...,Mx − 1, j = 0,1,2, ...,My − 1,k = 0,1,2, ...,N − 1. Due to

linearity, the error satisfies equation (11) and we have

−S1(Ψk+1
i+1, j +Ψk+1

i−1, j)+(1+2S1 +2S2)Ψk+1
i, j −S2(Ψk+1

i, j+1 +Ψk+1
i, j−1) = S1(Ψk

i+1, j +Ψk
i−1, j)−

(ω(α)
1 +2S1 +2S2)Ψk

i, j +S2(Ψk
i, j+1 +Ψk

i, j−1)−
k+1

∑
s=2

ω(α)
k Ψk−s+1

i, j . (3.14)

The error and initial conditions are given by

Ψk
0 = Ψk

M = Ψ0
i, j = 0. (3.15)

By defining the following grid functions for k = 0,1,2, . . . ,N −1

Ψk(x,y) =


Ψk

i, j, when xi− ∆x
2
< x ≤ xi+ ∆x

2
,y j− ∆y

2
< y ≤ yi+ ∆y

2
,

0 when 0 ≤ x ≤ ∆x
2 or L− ∆x

2 ≤ x ≤ L,

0 when 0 ≤ y ≤ ∆y
2 or L− ∆y

2 ≤ y ≤ L,

(3.16)
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then Ψk(x,y) can be expanded as a Fourier series:

Ψk(x,y) =
∞

∑
l1,l2=−∞

λ k(l1, l2)e2
√
−1π(l1x/L+l2y/L), (3.17)

where

λ k(l1, l2) =
1
L

∫ L

0

∫ L

0
Ψk(x,y)e−2

√
−1π(l1x/L+l1y/L)dxdy. (3.18)

From the definition of l2 norm and Parseval equality:

∥ ek ∥2
∞=

Mx−1

∑
i=1

My−1

∑
j=1

∆x∆y|ek
i, j|2 =

∞

∑
l1,l2=−∞

|λ k(l1, l2)|2. (3.19)

Supposing that
Ψk

i, j = λ ke
√
−1(σ1i∆x+σ2i∆y), (3.20)

where σ1 = 2πl1/L,σ2 = 2πl2/L and substituting (3.20) in (3.14),

λ k+1 =
λ k(α −µ)−∑k+1

s=2 ω(α)
s λ k−s+1

(1+µ)
, (3.21)

where, µ = 4
(

S1sin2(σ1∆x
2 )+S2sin2(σ2∆y

2 )
)
≥ 0,

Proposition 3.1. If λ k+1 (k = 0,1,2, . . . ,N) satisfy (3.21), then |λ k+1| ≤ |λ 0|.

Proof. The proof utilizes mathematical induction; take k = 0, in (3.21)

λ 1 =
(α −µ)λ 0

(1+µ)
,

and as 0 < α < 1, µ ≥ 0, then
|λ 1| ≤ |λ 0|.

Now, assuming that
|λ m| ≤ |λ 0|; m = 1,2, . . . ,k−1

and as 0 < α < 1 and µ ≥ 0, from (3.21) and Lemma 1.2, we obtain

|λ k+1| ≤
|λ k|(α −µ)+∑k+1

s=2 |ω
(α)
s ||λ k−s+1|

(1+µ)
,

≤
( (α −µ)+∑k+1

s=2 |ω
(α)
s |

1+µ

)
|λ 0|,

=
( (α −µ)+(−∑k+1

s=1 ω(α)
s −α)

1+µ

)
|λ 0|,

=
(α −µ +(1−α)

1+µ

)
|λ 0|,

|λ k+1| ≤ |λ 0|. (3.22)

This complete the proof of Proposition 3.1 by induction method.

By using Proposition 3.1 and (3.19), it can be seen that the solution of (2.11) satisfies

∥ λ k+1 ∥2≤∥ λ 0 ∥2,

which means that the Crank-Nicolson difference scheme in (2.11) is unconditionally stable.
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4 Convergence analysis of Crank-Nicolson method

We follow the approach in [14] for analyzing the convergence. Let u(xi,y j, tk) be the exact solution represented
by Taylor series. Then the truncation error of Crank-Nicolson method is

T k+1/2
i, j =

1
τα

k+1

∑
s=0

ω(α)
s u(xi,y j, tk−s+1)−

u(xi+1,y j, tk+1)−2u(xi,y j, tk+1)+u(xi−1,y j, tk+1)+u(xi,y j, tk)−2u(xi,y j, tk)+u(xi−1,y j, tk)
2(∆x)2 −

u(xi,y j+1, tk+1)−2u(xi,y j, tk+1)+u(xi,y j−1, tk+1)+u(xi,y j+1, tk)−2u(xi,y j, tk)+u(xi,y j−1, tk)
2(∆y)2 −

f (xi,y j, tk+1/2), (4.23)

with i = 1,2, . . . ,Mx −1, j = 1,2, . . . ,My −1, k = 0,1,2, . . . ,N −1.
From (1.1), we have

T k+1/2
i, j =

1
τα

n

∑
s=0

ω(α)
s u(xi,y j, tk−s+1)−

∂ α u(xi+1,y j, tk+1)

∂ tα +
∂ 2u(xi,y j, t + k+1)

∂x2 −

u(xi+1,y j, tk+1)−2u(xi,y j, tk+1)+u(xi−1,y j, tk+1)+u(xi,y j, tk)−2u(xi,y j, tk)+u(xi−1,y j, tk)
2(∆x)2 −

+
∂ 2u(xi,y j, tk+1)

∂y2 −

u(xi,y j+1, tk+1)−2u(xi,y j, tk+1)+u(xi,y j−1, tk+1)+u(xi,y j+1, tk)−2u(xi,y j, tk)+u(xi,y j−1, tk)
2(∆y)2

= O(τ +(∆x)2 +(∆y)2). (4.24)

Since i, j and k are finite, a positive constant C1 exists, for all i, j and k, such that

|T k+1/2
i, j | ≤C1(τ +(∆x)2 +(∆y)2), (4.25)

with i = 1,2, ...,Mx −1, i = 1,2, ...,My −1, k = 0,1,2, ...,N −1.
The error is defined as

ϕ k
i, j = u(xi,y j, tk)−uk

i, j. (4.26)

From (4.23), we have

−S1(u(xi+1,y j, tk+1)+u(xi−1,y j, tk+1))+(1+2S1 +2S2)u(xi,y j, tk+1)−
S2(u(xi,y j+1, tk+1)+u(xi,y j−1, tk+1)) = S1(u(xi+1,y j, tk)+u(xi−1,y j, tk))

− (ω(α)
1 +2S1 +2S2)u(xi,y j, tk)+S2(u(xi,y j+1, tk)+u(xi,y j−1, tk))−

k+1

∑
s=2

ω(α)
s u(xi,y j, tk−s+1)+ τ f (xi,y j, tk+1/2). (4.27)

To obtain the error equation, subtract (4.27) from (2.11) to obtain

−S1(ϕ k+1
i+1, j +ϕ k+1

i−1, j)+(1+2S1 +2S2)ϕ k+1
i, j −S2(ϕ k+1

i, j+1 +ϕ k+1
i, j−1) =

S1(ϕ k
i+1, j +ϕ k

i−1, j)− (ω(α)
1 +2S1 +2S2)ϕ k

i, j +S2(ϕ k
i, j+1 +ϕ k

i, j−1)−
k+1

∑
s=2

ω(α)
k ϕ k−s+1

i, j + τα T
k+ 1

2
i, j , (4.28)
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with error boundary conditions
ϕ k

0 = ϕ k
M = 0, k = 0,1,2, . . . ,N −1,

and the initial condition
ϕ 0

i, j = 0, i = 1,2, . . . ,Mx, j = 1,2, . . . ,My.

Next, the following grid functions are defined for k = 0,1,2, . . . ,N −1

ϕ k(x,y) =


ϕ k

i, j, when xi− ∆x
2
< x ≤ xi+ ∆x

2
, y j− ∆y

2
< y ≤ y j+ ∆y

2
,

0 when 0 ≤ x ≤ ∆x
2 or L− ∆x

2 ≤ x ≤ L,

0 when 0 ≤ y ≤ ∆y
2 or L− ∆y

2 ≤ y ≤ L,

and

T k(x,y) =


T k

i, j, when xi− ∆x
2
< x ≤ xi+ ∆x

2
, y j− ∆y

2
< y ≤ y j+ ∆y

2
,

0 when 0 ≤ x ≤ ∆x
2 or L− ∆x

2 ≤ x ≤ L,

0 when 0 ≤ y ≤ ∆y
2 or L− ∆y

2 ≤ y ≤ L,

i = 1,2...Mx −1, j = 1,2, . . . ,My −1, k = 0,1,2, . . . ,N −1.

Here, the ϕ k(x,y) and T k(x,y) can be expanded in Fourier series such as

ϕ k(x,y) =
∞

∑
l1,l2=−∞

ξ k(l1, l2)e2
√
−1π(l1x/L+l2y/L),k = 0,1,2, . . . ,N,

T k(x,y) =
∞

∑
l1,l2=−∞

Ψk(l1, l2)e2
√
−1π(l1x/L+l2y/L),k = 0,1,2, . . . ,N,

where

ξ k(l1, l2) =
1
L

∫ L

0

∫ L

0
ϕ k(x,y)e−2

√
−1π(l1x/L+l2y/L)dxdy, (4.29)

Ψk(l1, l2) =
1
L

∫ L

0

∫ L

0
T k(x,y)e−2

√
−1π(l1x/L+l2y/L)dxdy. (4.30)

From the definition of l2 norm and the Parseval equality:

∥ϕ k∥2
l2 =

Mx−1

∑
i=1

My−1

∑
j=1

∆x∆y|ek
i, j|2 =

∞

∑
l1,l2=−∞

|ρk(l1, l2)|2, (4.31)

and

∥T k∥2
l2 =

Mx−1

∑
i=1

My−1

∑
j=1

∆x∆y|ek
i, j|2 =

∞

∑
l1,l2=−∞

|Ψk(l1, l2)|. (4.32)

Based on the above, suppose that
ϕ k

i = ξ ke
√
−1(σ1i∆x+σ2 j∆y), (4.33)

T k
i = Ψke

√
−1(σ1i∆x+σ2 j∆y), (4.34)

respectively, where σ1 =
2πl1

L , σ2 =
2πl2

L . Substituting (4.33) and (4.34) into (4.28), gives

ξ k+1 =
ξ k(α −µ)−∑k+1

s=2 ω(α)
s ξ k−s+1 + τα Ψk+1/2

(1+µ)
, (4.35)

where µ is as mentioned in section 3.
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Proposition 4.1. Let ξ k+1(k = 0,1,2, . . . ,N) be the solution of (4.35), then there is a positive constant C2 such that

|ξ k+1| ≤C2(k+1)τα |Ψ1/2|,

Proof. From ϕ 0 = 0 and (4.29), we have
ξ 0 = ξ 0(l1, l2) = 0. (4.36)

From (4.30) and (4.32), then there is a positive constant C2, such that

|Ψk| ≤C2|Ψ1/2(l1, l2)|. (4.37)

Using mathematical induction, for k = 0, then from (4.35) and (4.36) , we obtain

ξ 1 =
1

1+µ
(τα Ψ1/2).

Since µ ≥ 0, from (4.37), we get
|ξ 1| ≤ τ|Ψ1/2| ≤C2τα |Ψ1/2|.

Now suppose that
|ξ m| ≤C2mτα |Ψ1/2|. m = 1,2, . . . ,k−1.

As 0 < α < 1, µ ≥ 0, from (4.34), (4.36) and Lemma 1.2, we have

|ξ k+1| ≤
|ξ k|(α −µ)+∑k+1

s=2 |ω
(α)
s ||ξ k−s+1|+ τα |Ψk+1/2|

(1+µ)
,

≤
[k(α −µ)+∑k+1

s=2 |ω
(α)
s |(k− s+1)+1

(1+µ)

]
C2τα |Ψ1/2|,

≤
[k(α −µ)+ k(−∑k+1

s=1 ω(α)
s −α)+1

(1+µ)

]
C2τα |Ψ1/2|,

=
[k(α −µ)+ k(1−α)+1

(1+µ)

]
C2τα |Ψ1/2|,

≤ (k+1)C2τα |Ψ1/2|. (4.38)

This completes the proof of the proposition.

Theorem 4.1. The proposed Crank-Nicolson difference scheme is l2 convergent and the order of convergence is
O(τ +(∆x)2 +(∆y)2).

Proof. From (4.24) and (4.32), we obtain

∥T k+1∥ ≤
√

Mx∆x
√

My∆yC1(τ +(∆x)2 +(∆y)2) = LC1(τ +(∆x)2 +(∆y)2). (4.39)

In view of Proposition 4.1, (4.31), (4.32) and (4.39)

∥ϕ k+1∥l2 ≤ (k+1)C2τ∥T 1/2∥ ≤C1C2kτL(τ +(∆x)2 +(∆y)2),

as kτ ≤ T, thus

∥ϕ k+1∥l2 ≤C1C2T L(τ +(∆x)2 +(∆y)2),

where C =C1C2T L.
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5 Numerical Experiments

Example 5.1. Consider the following equation [7]

∂ α u(x,y, t)
∂ tα =

∂ 2u(x,y, t)
∂x2 +

∂ 2u(x,y, t)
∂y2 +

( 2t2−t

Γ(3−α)
+2t2

)
sin(x)sin(y),

0 < α ≤ 1, 0 ≤ t ≤ T, (5.40)

subject to the conditions
u(x,y,0) = u(0,y, t) = u(x,0, t) = 0, (5.41)

u(1,y, t) = t2sin(1)sin(y), u(x,1, t) = t2sin(x)sin(1), 0 ≤ t ≤ T. (5.42)

The exact solution of (5.40) is given by

u(x,y, t) = t2sin(x)sin(y), 0 ≤ x,y ≤ 1. (5.43)

The error is defined as follows
E∞ = max

0≤i, j≤M,0≤k≤N
|u(xi,y j, tk)−uk

i, j|. (5.44)

The proposed Crank-Nicolson scheme is applied to problem (5.40)-(5.42). Table 1 shows the errors E∞ at T = 1.0 for
different values of space step size( ∆x,∆y) and τ . Note that the time step, τ is defined by τ = T

N .

Table 1: The errors E∞ between the exact solution and the numerical solution of (TFSDE) at T = 1.0

τ ∆x = ∆y γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9
1/4 1/2 1.6373 e-3 1.3083 e-3 9.7032 e-4 6.2414 e-4 2.7168 e-4
1/16 1/4 41098 e-4 3.0745 e-4 2.0061 e-4 9.2696 e-5 1.6877 e-5
1/64 1/8 1.1152 e-4 8.1593 e-5 5.0626 e-5 1.9344 e-5 1.1412 e-5
1/128 1/10 4.8991 e-5 3.4093 e-5 1.8680 e-5 3.0995 e-6 1.2233 e-6

Table 1 shows that, for various values of α , the errors decrease as we reduce the time and space step size τ and
(∆x,∆y). This indicates the method is convergent.
Figures 1 and 2 shows the numerical solution of the equation (5.40) and compares it with exact solution at T = 1.0.

Figure 1: at α = 0.5, T = 1.0,y= 0.1 and N = 128.
Figure 2: at α = 0.5, T = 1.0,y = 0.125 and N =
64.

Clearly the numerical solution is in good agreement with the exact solution. These results seem to confirm the
theoretical analysis.
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Example 5.2. Consider the following equation [21]

∂ α u(x,y, t)
∂ tα =

∂ 2u(x,y, t)
∂x2 +

∂ 2u(x,y, t)
∂y2 +

(
Γ(2+α)−2t1+α

)
ex+y,

0 < α ≤ 1, 0 ≤ t ≤ T, (5.45)

with conditions

u(x,y,0) = 0, u(1,y, t) = e1+yt1+α ,

u(0,y, t) = eyt1+α , u(x,1, t) = e1+xt1+α ,

u(x,0, t) = ext1+α , 0 ≤ x,y ≤ 1, 0 ≤ t ≤ T. (5.46)

The exact solution is

u(x,y, t) = ex+yt1+α . (5.47)

Table 2: The errors E∞ between the exact solution and the numerical solution of (TFSDE) at T = 1.0

τ ∆x = ∆y γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9
1/4 1/2 4.0157 e-3 2.3261 e-3 1.8037 e-5 6.2414 e-4 2.7168 e-4
1/16 1/4 2.0009 e-3 1.4263 e-3 7.5927 e-4 5.5386 e-5 9.8580 e-4
1/64 1/8 6.1583 e-4 4.7313 e-4 3.0411 e-4 1.0299 e-4 1.4257 e-4
1/128 1/10 2.8506 e-4 2.1330 e-4 1.2824 e-5 2.6784 e-5 9.7067 e-5

Example 5.3. Consider the following equation on (0,1)2 × (0,1] [22]

∂ α u(x,y, t)
∂ tα =

∂ 2u(x,y, t)
∂x2 +

∂ 2u(x,y, t)
∂y2 +

2
Γ(2−α)

t2−α(x− x2)2(y− y2)2−

2t2(1−6x+6x2)(y− y2)2 −2t2(1−6y+6y2)(x− x2)2,

0 < α ≤ 1, 0 ≤ t ≤ T, (5.48)

with conditions

u(x,y,0) = 0,
u(0,y, t) = u(1,y, t) = 0

u(x,0, t) = u(x,1, t) = 0, 0 ≤ x,y ≤ 1, 0 ≤ t ≤ T. (5.49)

The exact solution is

u(x,y, t) = t2(x− x2)2(y− y2)2. (5.50)
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Table 3: The errors E∞ between the exact solution and the numerical solution of (TFSDE) at T = 1.0

τ ∆x = ∆y γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9
1/4 1/2 3.5866 e-3 3.5419 e-3 3.4934 e-3 3.4413 e-3 3.3860 e-3
1/16 1/4 9.3188 e-4 9.1046 e-4 8.8557 e-4 8.5714 e-4 8.2513 e-4
1/64 1/8 3.1952 e-4 3.0149 e-4 2.8018 e-4 2.5551 e-4 2.2748 e-4
1/128 1/10 2.4690 e-4 2.2923 e-4 2.0829 e-4 1.8402 e-4 1.5642 e-4

Example 5.4. Consider the following equation on (0,1)2 × (0,1] [22]

∂ α u(x,y, t)
∂ tα =

∂ 2u(x,y, t)
∂x2 +

∂ 2u(x,y, t)
∂y2 +

2a tanh(
√

t/
√

1+ t)
Γ0.5

√
1+ t

t2−α(x− x2)2(y− y2)2−

2ln(1+ t)(1−6x+6x2)(y− y2)2 −2ln(1+ t)(1−6y+6y2)(x− x2)2,

0 < α ≤ 1, 0 ≤ t ≤ T, (5.51)

with conditions

u(x,y,0) = 0,
u(0,y, t) = u(1,y, t) = 0

u(x,0, t) = u(x,1, t) = 0, 0 ≤ x,y ≤ 1, 0 ≤ t ≤ T. (5.52)

The exact solution is

u(x,y, t) = ln(1+ t)(x− x2)2(y− y2)2. (5.53)

Table 4: The errors E∞ between the exact solution and the numerical solution of (TFSDE) at T = 1.0,N = 60

∆x = ∆y γ = 0.25 γ = 0.5 γ = 0.75
1/4 5.4065 e-4 5.4381 e-4 5.5738 e-4
1/6 2.1728 e-4 2.2009 e-4 2.3178 e-4
1/10 5.4219 e-5 5.6854 e-5 6.7629 e-5

The above numerical results show that the exact solution and the numerical solution are in good agreement. The result
displayed and discussed in this section seems to confirm the results of our theoretical analysis.

6 Conclusions

The Crank-Nicolson difference method for two-dimensional sub-diffusion equation of fractional order has been
described the Grünwald-Letnikov formula was used for time fractional derivative. The scheme was found to be
convergent with order (τ +(∆x)2+(∆y)2). Further it is unconditionally stable. The results of an application to certain
examples indicated that the scheme is feasible and accurate.
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