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Model Pengesahan Agnostik untuk Pengujian Sambungan eFUSE 

 

 

ABSTRAK 

 

Dalam industri semikonduktor, proses pengesahan adalah penting untuk mencari kesilapan 

reka bentuk dan membetulkannya sebelum produk dilancarkan. Litar bersepadu 

semikonduktor biasanya akan diperbaharui dalam kitaran tahunan. Oleh sebab ini, kitaran 

reka bentuk dan pengesahan yang singkat perlu diutamakan tanpa mengabaikan kualiti 

produk. Pada masa kini, proses pengesahan litar bersepadu sering menjadi satu faktor yang 

melambatkan kesediaan produk. Proses pengesahan litar bersepadu perlu diperbaiki supaya 

ia seiring dengan kemajuan proses reka bentuk litar bersepadu. Dalam kerja ini, 

penambahbaikan pengesahan sambungan eFUSE (Electrik FUSE) proses akan difokus. 

eFUSE merupakan satu ciri yang terdapat dalam litar bersepadu. Ia berfungsi sebagai pusat 

penyimpanan ‘tetapan’ penting litar bersepadu dan ‘tetapan’ tersebut akan diagihkan ke 

setiap harta intelek semasa permulaan operasi system komputer. Pengesahan sambungan 

eFUSE diperlukan untuk memastikan setiap harta intelek mendapat nilai eFUSE yang 

betul. Dalam kerja ini, konsep model pengesahan sambungan eFUSE agnostik akan 

diwujudkan dan diuji. Ideanya adalah untuk menghapuskan penjanaan kod ujian secara 

manual, menambah kecekapan pengujian serta membolehkan pengunaan semula kod ujian 

dalam projek yang berbeza. Kaedah ini dapat mengurangkan tempoh masa pengesahan 

sambungan eFUSE secara ketara, iaitu sebanyak 28%. Purata penambahbaikan peratus 

liputan eFUSE adalah sebanyak 65%. Kesimpulannya, tempoh masa pengesahan 

sambungan eFUSE dapat dikurangkan tanpa mengorbankan kualiti ujian. 
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Agnostic Validation Test Bench for eFUSE Connectivity Verification 

 

ABSTRACT 

 

In semiconductor industry, validation is an important process to discover design bugs and 

have it fixed before the product is released. Semiconductor integrated circuit is normally 

refreshed in yearly cadence and it is crucial to have a short design and validation cycle, 

without compromising the product quality. Nowadays, validation process often becomes 

the bottleneck for product readiness. Integrated circuit validation flow has to be improved 

in order to keep up with the advancement of integrated circuit design flow. In this work, 

an improvement method on validation flow is discussed, with particular focus on eFUSE 

(Electric FUSE) connectivity validation. eFUSE is a feature available in integrated circuit 

which functions as a central storage for important ‘settings’, and distribute them during 

system boot up process. eFUSE connectivity validation is needed to ensure each 

intellectual property is able to retrieve the correct eFUSE value. In this work, the concept 

of agnostic validation test bench for eFUSE connectivity validation is developed and tested 

the idea of it is to eliminate manual test development effort, improves validation efficiency 

and promotes reusability across different projects. By using this methodology, eFUSE 

connectivity validation time is reduced significantly and recorded an improvement of 28%. 

There is also an average improvement of 65% in eFUSE coverage percentage. In summary, 

the eFUSE connectivity validation time frame is shortened, without compromising the test 

quality.
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CHAPTER 1   

 

 

INTRODUCTION 

 

 

1.1 Overview 

 

Every semiconductor Central Processing Unit (CPU), chipset or System-on-Chip (SoC) 

product requires multiple stages of validation or verification work to be done before it is 

launched to the market. There is a pre-silicon validation which involves testing the chip 

design using sophisticated simulation and emulation tool to discover functionality bugs. 

After the chip is fabricated, it will then have to go through post-silicon validation where 

the chip is being tested using actual use case scenario. Post silicon normally serves as a 

safety net to discover corner case functionality bugs where pre-silicon failed to catch. In 

addition to those, there are also electrical validation and performance validation to ensure 

that the chip is able to meet all the requirements mentioned inside the specification 

document. All of these validation processes serve only one purpose and that is to 

materialise as many design flaws as possible before the products reach the customers or 

end users. There will not be a complete product without going through stages of validation. 

Hence, this shows that validation plays an important role in semiconductor integrated 

circuit industry. 
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In the 21st century, innovations in user interface design are causing a revolution in design 

which drives the semiconductor industry to integrate ever-greater system complexity onto 

a single chip. The rise in design complexity is motivated by consumer demand for higher 

performance products as well as increase in integration density which allow more 

functionalities to be placed on a single chip. Today, a leading edge mobile-enabled 

electronic system is based on a SoC that contains more than a billion gates, with at least 

ten interface protocols, hundreds of Intellectual Property (IP) blocks, power domains and 

clock domains. The register-transfer logic (RTL) could goes up to millions line of codes. 

This increase in SoC design complexity has created orders of magnitude greater 

challenges in SoC verification or validation. In addition, there is a strong urge to verify 

variety of scenarios such as power management, device-level software, analog 

components, low power structural checks and many more (Lipon, 2014). All this 

additional feature in advance SoC design indirectly creates more validation tasks. Hence, 

sheer capacity in verification or validation technology is desperately needed.  

 

Apart from the system complexity, another crucial factor that drives the success of a 

semiconductor company is the importance of short design time. Consequently, the amount 

of simulation required to design digital systems also increase significantly. Simulation 

time typically scales as the square of the increase in system complexity. In order to keep 

the design time to a minimum and align it to the product launch date, it is critical to 

structure the simulation environment to make it possible to trade-off simulation 

performance for model detail in a flexible manner that allows concurrent software and 

hardware development (Olukotun K. et al., 1998). It is important to have continuous effort 

to improve the simulation environment so that the validation time is kept at the minimum. 
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Short design time is important because after the design is conceived and before the system 

is brought to the market, there is a limited time window in preserving its competitive 

performance (Olukotun K. et al., 1998). 

 

In summary, design complexity and short design time are the two major challenges that 

makes the validation work becomes difficult over the years.  As design complexity 

increases, it is almost impossible for designer to design a perfect chip with zero bugs. 

Hence, the validation work has become extendedly important. Moreover, the short design 

time factor also pushes the validation task to its limit because it has to meet the product 

time-to-market (TTM) schedule without sacrificing the quality of validation. Verification 

is a major obstacle in creating the final product and it is the most important component of 

timely market release and success (Sethulekshmi R, et al., 2016). For this reason, there is 

a need to improve the validation methodology to ensure that it is aligned with the design 

advancement.  

 

 

1.2 Problem Statement 

 

The integration of more than a million transistors on a single chip has been achieved with 

the development of semiconductor manufacturing process of 16 nanometer. The 

complexity of this has made verification the most critical bottleneck in the chip design 

flow. Approximately 70 to 80 percent of the design cycle is spent on functional 

verification. The SoC design faces a gap between the production capabilities and time to 

market pressures. The longer a bug of a design does undetected, the more expensive it will 

cost when it is discovered. So both innovative verification methodologies and an effective 
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verification environment are urgently needed (Chai L. et al., 2014). Increase in efficiency 

of verification, and reduction of time consumed in verification stage are therefore crucial 

to speed up the entire development process (Li Y. et al., 2009). 

 

SoC verification scope has been increased to verify IPs’ integration and on-chip inter-IP 

communication among multiple IPs (Zhaohui H. et al., 2012). This means, it is an 

important charter in SoC design team to ensure the connectivity and inter-IP 

communication is linked or connected correctly. Inside a SoC microprocessor, there will 

be a dedicated eFUSE controller, which is an IP, to fetch the values or settings from 

eFUSE memory and distribute them to respective IPs.  In order for a SoC to function with 

desired setting, it is important to make sure that every single IP inside a chip gets the 

correct values or setting from the eFUSE memory. This is an important technology and 

eFUSE has a history of wide use in embedded systems (Uhlmann G. et al., 2008). Hence, 

it is necessary to have eFUSE connectivity validation to check the entire eFUSE 

distribution flow. This eFUSE connectivity validation validates the data coherency 

between the source which is the eFUSE memory, and the destination which is the IP. In 

real world, the eFUSE list could be very huge and it could goes up to hundreds or 

thousands of values depends on number of IPs inside a chip, or set of functionality that IP 

designer wish to control using eFUSE. Creating a test manually to validate every single 

eFUSE connectivity would require huge amount of effort and it is prone to human error.  

 

 

 



5 

 

1.3 Aim and Objectives 

 

The goal of this research is to create an ideal test suit to minimize human effort, where the 

manual test suit modification or configuration can be reduced to a minimum. Hence, 

agnostic validation test bench came into the picture where its purpose is to eliminate the 

test dependency on projects and improve the overall portability of the tests. In addition, 

the aim is also to create a test bench that is re-usable for future chipsets, which promotes 

scalability and reusability (Keaveney M. et al., 2008). Efficient reuse can deliver 

significant savings in design cost and time if implemented correctly (Wakefield A. & 

Mohd B. J. , 2002). The objectives of this research can be break down into two main 

subsections: 

1. To create a new test suit that is able to minimize human effort, and maximize 

reusability across projects which fulfil the concept of agnostic validation test 

bench. By this mean, the aim is to reduce test development effort by introduce 

automation element into the eFUSE connectivity validation flow and replace the 

traditional manual test development method. 

2. To provide a comparative study between the previous and new eFUSE 

connectivity validation flow in terms of validation efficiency, simulation time and 

resource consumed, and eFUSE coverage. Leverage data from the mentioned 

measurable parameters to analyse if the new eFUSE connectivity validation flow 

is feasible. 
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1.4 Scope of Work 

 

In general, the research work will be carried out in different phases to fulfil the two main 

objectives stated in previous section. Included are the high level scope of work of this 

research work, which includes what is in scope and will be covered, and also what is out 

of scope, restrictions or limitations. 

1. This research will focus only on eFUSE connectivity validation flow or 

methodology improvement. This research does not cover functionality validation 

methodology, latest eFUSE technology or design architecture of eFUSE 

controller. 

2. All work will be carried out in OVM-based simulation environment and will be 

using System Verilog coding language. Test subject or DUT will be based on the 

latest available SoC RTL which is in Verilog code. 

 

1.5 Thesis Outline 

 

This thesis consists of 5 main chapters and it is being organized as follows. Chapter one 

starts with the introduction of the importance of validation work. It provides an overview 

on the major factors that are driving the needs for validation methodology improvement 

or breakthrough. This chapter also highlights the problems encountered in a specific 

validation chapter which is eFUSE connectivity validation. The research objectives and 

the scope of work have been included in details as well. 
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Chapter 2 includes the theoretical background and literature review that are related to this 

research. It contains high level information on the eFUSE design and technology, and 

validation methodology that is being used in this specific validation chapter, eFUSE 

connectivity validation. In addition, this chapter also covers the background knowledge 

of tools and simulation environment that is being used in this research. 

 

Chapter 3 outlines the work flow of this research. This chapter includes the proposed 

eFUSE connectivity validation methodology which is expected to exhibits more 

advantages and benefits as compared to the previous methodology. The differences and 

changes between the new and previous methodology will be included. Details on the new 

methodology such as the automation script structure and functions will be explained in 

this chapter as well.  

 

Chapter 4 highlights the results obtained by using the new eFUSE connectivity validation 

methodology. Comparison is being conducted between the new and previous eFUSE 

connectivity validation methodology. The results mainly focus on validation efficiency, 

simulation time and eFUSE coverage percentage between two methodologies. Overview 

of the Perl script codes is also included in this chapter. 

 

Chapter 5 consists of the conclusion and the recommendation for future work. The major 

achievement from this research is summarized and highlighted. In addition, it also 

provides recommendation on how this validation methodology can be reused across other 

connectivity validation chapter. 
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CHAPTER 2   

 

 

LITERATURE REVIEW 

 

 

In the previous chapter, the importance of pre and post silicon validation of a 

microprocessor have been discussed. In addition, the brief overview of eFUSE 

connectivity validation methodology problem is elaborated.  

 

Complementing the previous chapter, this chapter introduces the necessary background 

concepts and literature relating to pre silicon simulation, semiconductor intellectual 

property, eFUSE technology, and processor internal interconnects. This chapter starts by 

reviewing the pre silicon simulation environment, followed by introduction of DUT and 

semiconductor IP.  After that, the background of eFUSE technology is reviewed by 

looking into eFUSE functionality, application and its evolution. In addition, basic 

background theory of register access in computer architecture will be discussed. Finally, 

the internal interconnects between of a processor is reviewed to provide a bigger picture 

on how IPs communicate with each other, which is crucial for eFUSE distribution and 

eFUSE verification. 
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2.1 Verification Environment 

 

In pre-silicon validation, there are few popular verification environment that has been 

widely used in semiconductor industry. One of the famous framework and widely used 

across semiconductor industry is the Open Verification Methodology (OVM) and this 

work will be conducted in OVM based simulation, which was developed by Verisity 

Design in 2001. OVM is a documented methodology with a supporting building-block 

library for the verification of semiconductor chip designs. OVM test bench composed of 

reusable verification environments called OVM verification components (OVCs). An 

OVC is an encapsulated, ready-to-use, configurable verification environment for an 

interface protocol, a design sub-module, or a full system. Each OVC follows a consistent 

architecture and consists of a complete set of elements for stimulating, checking, and 

collecting coverage information for a specific protocol or design (Cadence Design 

Systems Inc, 2011). Example of OVM framework is shown in Figure 2.1 below. It consists 

of sequencer, driver, monitor and many other OVC components. OVM environment will 

allow user to reuse OVM components that is created by other user. User does not need to 

know what is encapsulated inside and OVM component. User will only need to know the 

function and the purpose of those component and apply into their test suit. By having this 

test bench environment, multiple users are able to work on the same test bench and create 

their own test suit to validate different IP blocks inside a chip. This allows multiple 

validator to work on a complex chip at the same time. OVM is a complete verification 

methodology that codifies the best practices for development of verification environments 

targeted at verifying large gate-count, IP-based SoCs (Malik et al., 2013). 
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Figure 2.1: OVM verification environment (Cadence Design Systems Inc, 2011) 

 

The test bench environment and test are developed using System Verilog language. 

SystemVerilog is a special hardware verification language to be used in function 

verification (Mulani P. D., 2009). It provides high-level data structures available in OO 

(object-oriented) language, which is similar to C++ programming language. The data 

structures in OO programming language allows high level abstraction and modeling of 

complex data types. In addition, System Verilog also provides constructs necessary for 

modeling hardware concepts or behaviour. For example, clock cycles, tri-state values, 

wire. All these are similar to the Verilog hardware language which is used for RTL 

development. With all these advantages, System Verilog is definitely capable and suitable 

to be used for HDL design simulation.   
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2.2 Device Under Test 

 

Device/Design under test (DUT), also known as equipment under test (EUT) and unit 

under test (UUT), is a term used to refer to a manufactured product undergoing testing, 

either at first manufacture or later during its life cycle as part of ongoing functional testing 

and calibration checks. In front end verification environment, the chip design (RTL code) 

will be instantiated as DUT under the test bench. There will be OVC components wrapped 

around the DUT to form a functional test bench. By referring to chip specification and 

requirement documents, user will be able create respective tests and inject transactions 

into the DUT by utilizing OVC components that is generated in the test bench. User can 

also add in self-check logics or assertion checks inside their test to verify the functionality 

and behaviour of the DUT.  

 

2.3 Semiconductor IP Block: 

 

Semiconductor IP block is a reusable unit of logic, cell, or chip layout design that is the 

legally owned and licensed by one party. The intellectual property may be in a form of 

core, IP core, or IP block that can be licensed to another party and used in their own 

processor design. Inside a CPU, it normally consists of processing core, graphics core, 

memory, cache, power management unit and etc. Different types of chip might have 

different IP blocks depends on the purpose of the chip. 
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2.4 CPU & PCH Architecture 

 

In today’s server architecture, the x86 platform can be considered as one of the dominant 

architecture used. Majority of the servers in data centers nowadays are based on the x86 

architecture. The x86 platform was originally designed for personal computers. However 

it is now implemented in all types of systems, from netbooks up to the fastest multi CPU 

servers. This x86 architecture (also known as PC architecture) is based on the original 

IBM PC and x86 servers first started to appear in the 1990s. During that time, the personal 

computer were housed in 19 inches racks without dedicated keyboards and monitors (Laan 

S., 2015). 

 

Over the years, x86 servers became the design environment for adaptive computing 

technology standard for servers. Their low cost, the fact that there are many manufacturers 

and their ability to run familiar operating systems like Microsoft Windows and Linux, 

made them extremely popular. The x86 architecture consists of several building blocks, 

integrated in a number of specialized chips. These chips are also known as the x86 chipset. 

The heart of an x86 based system is a CPU from the x86 family. The CPU contains a large 

number of connection pins to connect address lines, data lines, clock lines, and many more 

additional logic connections. These are known as Northbridge and Southbridge x86 

architecture (Laan S., 2015). The interconnects of this architecture are shown in Figure 

2.2. 

 

In the x86 Northbridge and Southbridge architecture, the data path of the CPU, which also 

known as Front Side Bus (FSB), was connected to a fast Northbridge chip, and function 
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to transport data between the CPU and, both the RAM memory and the PCIe bus. The 

Northbridge was also connected to the Southbridge chip by a bus called the Direct Media 

Interface (DMI). The relatively slow Southbridge chip connected components with slower 

data paths, like the BIOS, the PCI bus, USB ports, SATA adaptors, and etc (Laan S., 

2015). 

 

 

Figure 2.2: CPU, Northbridge and Southbridge connectivity (Laan S., 2015) 

 

In 2008, the Northbridge and Southbridge architecture was replaced by the Platform 

Controller Hub (PCH) architecture with the introduction of the Intel’s 5 Series chipset. 

The example of interconnect for this architecture is shown in Figure 2.3. In this 

architecture, the Southbridge functionality is managed by the PCH chip, which is directly 

connected to the CPU via the DMI (Laan S., 2015). As for the Northbridge, most of its 

functions were integrated into the CPU while the PCH absorbs the remaining functions in 
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addition to the traditional roles of the Southbridge. The RAM and PCIe data paths are 

directly connected to the CPU in this PCH architecture. Today, one of the examples of 

x86 architectures where the Northbridge is integrated in the CPU is Intel’s Sandy Bridge 

processor (Laan S., 2015). 

 

In 2015, the Skylake architecture is the most recent Intel x86 architecture and some 

variants of Skylake will have the PCH integrated in the CPU as well, which makes the 

CPU effectively a full system on a chip (SoC). In 2015, Broadwell-based Xeon D was 

announced by Intel as its first platform to fully incorporate the PCH in a SoC configuration 

(Laan S., 2015). 

 

 

Figure 2.3: CPU and PCH connectivity (Laan S., 2015) 
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2.5 eFUSE Technology 

 

In a semiconductor chip, there is a technology named as FUSE or eFUSE. eFUSE was 

originally developed by IBM in 2004. This technology is basically a technique to 

“hardcode” or “etched” some logics onto a chip. The primary application of this 

technology is to provide in-chip performance tuning or real time reprogramming (UBM 

Techlnsights, 2010). For example, of the usage is that, if certain sub-systems fail, or are 

taking too long to respond, or are consuming too much power, the behaviour of the chip 

can be instantly changed by "blowing" an eFUSE. The reliability of electrical fuses 

becomes very critical to ensure chip level functionality during its lifetime (Tian C. et al., 

2006). 

 

The ability to incorporate a non-volatile memory element on a VLSI chip allows for a host 

of innovative solutions and applications. However, it is expensive to incorporate charge 

storage non-volatile memory elements such as Flash or NVRAM into a logic technology. 

So the alternative was to use eFUSE technology. eFUSE is a resistive link that can be 

permanently programmed between a conductive state and a highly resistive. The eFUSE 

state is sensed at chip boot and latched for subsequent uses. eFUSE technology has been 

used as the key enabler for reconfiguration of the chip function. In addition, it is also 

functioned as performance programmed using electromigration of the silicide from 

specification. This technology is widely used in VLSI components (Robson N. et al., 

2007). 
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On the other hand, there were some study to utilize eFUSE in a chip to enhance security 

protection of a chip. Conventional authentication methods are vulnerable to invasive 

attacks. Hence, PUF (physical unclonable function) has been introduced to improve the 

conventional method. Manufacturing flow causes a process variation and this information 

can be used to identify each chip or integrated circuit. PUF uses CRPs (challenge – 

response pairs) to generate the secret keys, instead of the conventional method where the 

secret keys are stored inside IC. eFUSE information are programmed differently on chip 

to trim the reference voltages. This is dependent on process variations and the value could 

be different for each chips. Hence, this piece of information can be used to represent a 

unique characteristic of the ICs and being used in security enhancement as well (Lee & 

Yang, 2016). 

 

In summary, eFUSE is a hard coded setting of a chip.  In order for the chip to function as 

expected based on the desire eFUSE setting, each IP inside a chip must be able to fetch 

those eFUSE information into their respective IP block. Figure 2.4 shows an example of 

how IP blocks are connected to the eFUSE IP. Other than that, there is also other 

application usage as well such as secure authentication. So, it is crucial that to make sure 

the value burned into eFUSE rom (non-volatile read only memory) is taken and consumed 

by the individual IP inside a chip.  
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Figure 2.4: eFUSE connection and distribution diagram 

 

2.5.1 Evolution from Laser Fuse to Electric Fuse (Robson N. et al., 2007) 

 

Circuit elements are not perfect. In order to improve yield and circuit robustness, circuit 

spares are designed, tested and available for replacement and fuses play an important role 

to enable the replacement. For example, fuses enable circuit trimming for process 

variances which is needed to optimize performance. Another example is using fuse to 

encode the electronic chip ID which is useful throughout a products life cycle. This 

electronic chip ID also called chip’s DNA. On the customization point of view, fuses can 

be used to personalize and deliver the correct customization for some products that 

required unique configuration to serve different customer needs (Tonti W., 2008). 

 

For several decades, laser fuse was the only choice for all the mentioned applications. The 

laser fuse employs a top level metal layer, which is intact or blown to store the non-volatile 
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data on integrated circuits. This non-volatile feature allows keeping the data bits 

permanently. Initially, laser fuse is widely used for electrical chip identification (ECID) 

and for redundancy in high density and low cost standalone memories. However, there are 

few downsides for laser fuse. First is the logistics of the data infrastructure where the test 

system that generates the fuse blow string and the laser fuser are different platforms. 

Secondly, it is lack of scalability whereby the fuse dimension is related to the CO2 laser 

wavelength used for fusing. In addition, this is one time wafer only programming because 

the fuse has to be at the top most metal layer. The third is the laser fuse occupies up to 5% 

of die area which is large amount of physical size. 

 

Modern VLSI systems require reconfiguration of functional features in the field which 

cannot be realized by the traditional laser fuse. The electrical fuse (eFUSE) offers a small, 

scalable solution that can be contained within one level of metal wiring with no higher 

level metal wiring restrictions. This allows enabling larger data bit storage on chip. 

Another advantage is that the energy for programming the fuse is transmitted electrically 

instead of optically. This allows a more precise delivery to the selected fuse without 

affecting its neighbour components. Other than this, fuse programming can be done at 

different stage such as wafer final test, through module test or system board test. These 

eFUSE features not only replace the laser fuse applications and features including field 

repairable memory, field programmable memory, and ID & security chips programmable 

in the field with RF technology, it also allows a self-reconfiguring system-on-chip with 

build-in self-test. 
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In the history of development of eFUSE using silicided polysilicon, one requirement since 

the beginning is that the fuse link requires no additional wafer processing. In addition, the 

fuse device needs to be robust across the technology window. In early process 

development fuse operation can be adjusted with external voltage stimulus. As the 

technology matures, the optimized design of the fuse circuits is converged based on 

application needs. Early work on eFUSE focused on thermally rupturing metal fuses but 

this material produced significant collateral damage. Later on in subsequent work, 

silicided polysilicon showed promising results and the first generation of electrical fuse 

was implemented using tungsten silicide polysilicon process. At this stage, eFUSE is used 

specifically for DRAM repair. At that time, metal laser fuse was still the preferred method 

of manufacture and eFUSE basically mimicked the operation of laser fuse, with high 

resistance achieved by breaking the fuse link. There were reliability concerns with this 

early non-electro migration fuse work. Because of this reason, metal laser fuse remained 

the dominant or preferred choice for this and the next logic technology node. 

 

The second generation of electrical fuse development began with the 0.18um logic 

technology using cobalt silicided polysilicon and the basic building block of the fuse 

remained the same. The fuse structure was optimized to improve the programming 

window. This fuse link introduced programming via electro migration, with no collateral 

damage resulting in a wide window of operation. To produce the desired electro migration 

phenomena, a programming current of 12mA and anode voltage of 5V range were 

established. The fuse achieved typical programmed resistance in excess of 100K ohm with 

all fuses over 10K ohm. The fuse link requirements drive the initial circuit designs for the 
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programming FET and sense circuits. This fuse programming and sensing scheme was 

migrated to the next technology nodes. There were minimal changes during the migration. 

 

Due to the high programming and sense current requirements, special consideration is 

required during design integration of the fuse elements. Legacy designs with excessive 

wiring resistance to the fuse circuits exhibited local programming voltage supply pin 

(VFSOURCE), drain voltage supply pin(VDD), and ground(GND) variation. This resulted an 

inadequate fuse programming condition as well as reduced sense signal margin during 

sense operation. It is important to reduce the resistance of VFSOURCE and GND nets. As a 

solution for this, distributed or lumped NMOS clamp FETs were added or fitted to the 

VFSOURCE lines and a time staggered sensing scheme was devised. This approach allowed 

the GND for the sense amplifier to be tightly coupled to the grounded VFSOURCE. By having 

this, fuse sensing margin can be improved without degrading the fuse programming 

margin. 

 

The electrical fuse solution (IPROG = 10mA and VFSOURCE = 3.5V) was adopted in 

manufacturing for select products at the 130nm node. At this time, the design community 

was eager to adopt the eFUSE technology across mainstream designs and a single bit kit 

was offered for foundry customer solutions. The kit comprised a fuse link, a programming 

NMOS FET, and a single ended sense design with a VFSOURCE clamp FET for the 90nm 

generation. ASIC library IP block included this kit as part of its library and it is widely 

used for embedded dynamic random access memory (eDRAM) redundancy. The eFUSE 

kit was employed by the eDRAM system with a self-repair eFUSE controller circuit and 
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built-in-self test (BIST). Since then, eDRAM macros were able to be tested, repaired and 

retested in a single touch down on the automated test equipment (ATE). 

 

Variety of specific voltages where used by eDRAM on integrated circuit or chip. These 

include the bitline high voltage, the negative wordline low voltage, the wordline boost 

voltage and the body bias on the pass transistor. Charge pumps are used to generate all 

these voltages on chip which are in turn, set using digital to analog converters (DACs). It 

is possible to use the BIST to set these voltages using eFUSE in 90nm eDRAM 

technology. This can be done on a die-by-die basis during test to maximize wafer yield. 

This is a good example of how on-chip programming coupled with BIST has led to 

autonomic capability.  Due to the benefits over laser fuse became apparent to the product 

design, manufacturing and test communities, the use of eFUSE has spread across different 

technology variants. One of the example is that eFUSE solutions were used in IBM’s 

90nm bulk and silicon on insulator (SOI) technology products, which includes game 

console chips and mainframe chipsets such as the POWER5 microprocessors. 

 

There were additional challenges when scaling into 65nm technology node. Due to 

polysilicon process change to nickel silicide, this resulted in a change for the fuse element 

post programmed resistance distribution.  As a solution to this new challenge, differential 

sensing was introduced to offer a robust solution. Several differential sense schemes were 

evaluated in order to find the best sensing circuitry.  

 

In the fourth generation of electrical fuse development, low-voltage (IPROG = 7mA and 

VFSOURCE = 1.5V) fuse in 65nm and 45nm logic technology were first adopted as starting 
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point. To accommodate a lower fuse programming voltage requirement with standard gate 

oxide FETs, the Nikel Silicide fuse element was scaled. The density was also improved 

with the One-Time Programmable Read-Only-Memory (OTPROM) architecture. Two 

different macros were developed to support a variety of customers’ requirements. First 

macro was the general purpose one dimensional linear array offering for bulk foundry 

customers who require minimal design migration to the next technology node. Second 

macros was the high density two dimensional array OTPROM 4Kb building block IP 

offering that can be tiled to create larger arrays. 

 

eFUSE scales with technology but Laser Fuse does not. eFUSE relies on the front end 

process technology, but laser fuse relies on the back end process technology. Hence, 

eFUSE can be designed to not impact the back end. In short, eFUSE consists of the 

following advantages. Firstly, it can be enabled at any level of assembly and function 

within the product. Secondly, it does not require any external programming stimulus at 

low level (e.g wafer) of processing. eFUSE also exhibits autonomic capability which is 

not found in Laser Fuse. As for overall performance, eFUSE is able to make reliable 

product “more reliable” (Tonti W., 2008). 

 

2.6 Register Space 

 

The CPU and the PCI devices need to access memory that is shared between them. Device 

drivers uses memory to control the PCI devices and to transfer information between them. 

Registers normally consist of a small amount of storage. Typically, the shared memory 

contains control and status registers for the PCI devices. These registers are used to control 
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the PCI devices and also provides status update to the CPU or host. Some registers have 

specific hardware functions such as for power management and performance control. 

Others may just store information and may be read-only or write-only. The CPU's system 

memory could be used for this shared memory as well. But there is a drawback for this, 

where the CPU would have to stall when PCI devices access the memory. CPU can only 

resume its task after the PCI device completed its memory access because access to 

memory is generally limited to one system component at a time. As a result, the entire 

system could be slow down significantly. In addition, it is also not recommended to allow 

the system's peripheral devices to access main memory in an uncontrolled way. If there is 

a rogue device accesses some core section of the main memory, this could make the 

system very unstable and compromised. Accesses by peripheral devices into the system's 

memory is very strictly controlled using DMA (Direct Memory Access) channels and 

peripheral devices have their own dedicated memory spaces to do its task. ISA (Industrial 

Standard Architecture) devices have access to two address spaces, which are ISA I/O 

(Input/Output) and ISA memory. On the other hand, PCI devices have access to three 

address spaces. They are known as PCI I/O, PCI Memory and PCI Configuration space. 

All of these address spaces are accessible by the CPU. For example, device drivers will 

be using the PCI I/O and PCI Memory address spaces. PCI initialization code uses PCI 

Configuration space within the Linux kernel (Rusling, 1999). 

 

2.6.1 PCI Configuration Space 

 

PCI devices have a set of registers which is known as ‘Configuration Space’. On top of 

this register space, The PCI Configuration Space format is shown in Figure 2.5. PCI 
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Express introduces Extended Configuration Space for devices. Configuration space, 

including the extended configuration space, registers are mapped to memory locations. 

Configuration space registers are accessed by the device drivers and diagnostic software. 

Operation systems such as Windows and Linux will have dedicated APIs to allow access 

to the device configuration space. However there are cases where operating system does 

not have access methods defined or APIs for memory mapped configuration space 

requests.  Under such condition, the device drivers or diagnostic software has to access 

the configuration space in a compatible manner which does not violate the operating 

system underlying access rules. In all systems, device drivers are encouraged to use APIs 

provided by the operating system for configuration space registers access. PCI Express 

defines an Enhanced Configuration Access mechanism (ECAM) for systems that do not 

implement a processor architecture specific firmware interface standard that allows 

configuration space registers access (Advanced Micro Devices Inc, 2008). 


