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This paper mainly forecasts the daily closing price of stock markets. We propose a two-stage technique that combines the empirical
mode decomposition (EMD) with nonparametric methods of local linear quantile (LLQ). We use the proposed technique, EMD-
LLQ, to forecast two stock index time series. Detailed experiments are implemented for the proposedmethod, in which EMD-LPQ,
EMD, andHolt-Wintermethods are compared.The proposed EMD-LPQmodel is determined to be superior to the EMD andHolt-
Winter methods in predicting the stock closing prices.

1. Introduction

Recent studies have indicated that financial markets typi-
cally follow nonlinear and nonstationary behavior.Therefore,
forecasting finance using classical techniques is quite diffi-
cult. The empirical mode decomposition (EMD) explored
by Huang et al. [1] is a very powerful tool in modern
quantitative finance and has emerged as a powerful statistical
modeling technique [2, 3].The capacity of the EMD to handle
nonlinear and nonstationary behaviors has provided both
researchers and practitioners with an attractive alternative
tool. The EMD can explain the generation of time series data
from an alternative perspective by breaking up time series
signals into smaller numbers of independent and concretely
implicational intrinsic modes based on scale separation.
This distinguishing feature makes the EMD a valuable and
desirable tool for forecasting financial time series signals [4].
The current study aims to extract and forecast the trend of
two stock markets, namely, the Kuala Lumpur Bursa (KLSE)
index and the New Zealand stock market index (NZX50),
using the advantages of local linear quantile (LLQ) regression.
The proposedmethod consists of two stages. In the first stage,
LLQ is applied to corrupt and noisy data. The remaining
series is subsequently expected to be hidden in the residuals.
In the second stage, EMD is applied to the residuals.The final

estimate is the summation of the fitting estimates from the
LLQ and EMD. To extract and forecast the trend using
EMD-LLQ and EMD, we summarize the steps as follows.
(1) A signal is decomposed by the EMD-LLQ and EMD.
(2) Meaningful intrinsic mode functions (IMFs) (compo-
nents) are selected using the fast Fourier transform (FFT)
(see [5]). (3) Selected components are added to the residue
to obtain the trend. (4) The Holt-Winter method is based
on the selected components and provides the forecasting
results.

The remainder of this paper is organized as follows.
Section 2 presents a brief background of the EMD and
LLQ. Section 3 introduces the proposed method. Section 4
compares the results of the original EMD algorithm and the
new proposed method by forecasting the daily closing prices
of two stock markets, namely, the KLSE and the NZX50.
Section 5 concludes.

2. Why EMD-LPQ (Empirical Mode
Decomposition Combined
with Local Linear Quantile Regression)?

Due to the edged effects, nonparametric techniques such as
empirical mode decomposition show a sharp increase in

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 708918, 5 pages
http://dx.doi.org/10.1155/2014/708918



2 The Scientific World Journal

variance and bias at points near the boundary. The presence
of such problem has dramatic effects on results. Varieties of
works have been reported in literature in order to reduce
the effects of boundary problem in traditional EMD. Two-
stagemethods or couplingmethods nowadays have beenused
extensively for solving such problem; for instance [6], applied
neural network to each IMF to restrain the end effect [7]
provided an algorithm based on the sigma-pi neural network
which is used to extend signals before applying EMD. Refer-
ence [4] proposed a new two-stage algorithm.The algorithm
includes two steps: the extrapolation of the signal through
support vector (SV) regression at both endpoints to form
the primary expansion signal, and then the primary signal
is further expanded through extrema mirror expansion and
EMD is performed on the resulting signal to obtain reduced
end limitations. All previous methods have been shown to
have good solutions to the end point and achieved a higher
precision in an application part as well. In this paper we have
followed [8]. The proposed method EMD-LPQ (empirical
mode decomposition combined with local linear quantile
regression) is designed to be a robust version of classical
empirical mode decomposition especially in presence of edge
effect problems.

3. Empirical Mode Decomposition

The EMD [1] has proven to be a natural extension of and an
alternative technique to traditional methods for analyz-
ing nonlinear and nonstationary signals, such as wavelet
methods, Fourier methods, and empirical orthogonal func-
tions [9]. In this section, we briefly describe the EMD
algorithm. The EMD mainly decomposes the data 𝑦

𝑡
into

smaller signals called IMFs. An IMF is a function in which
the upper and the lower envelopes are symmetric. Moreover,
the number of zero-crossings and the numbers of extremes
are equal or differ by one, at the most [10]. The algorithm for
extracting IMFs for a given time series 𝑦

𝑡
is called shifting,

and it consists of the following steps.

(i) The initial estimates for the residue are set at 𝑟
0
(𝑡) =

𝑦
𝑡
, 𝑔
0
(𝑡) = 𝑟

𝑘−1
(𝑡), and 𝑖 = 1, and the IMF index is set

at 𝑘 = 1.

(ii) The lower minima 𝐼min𝑖−1 and the upper 𝐼max𝑖−1 envel-
opes of the signal are constructedusing the cubic
spline method.

(iii) The mean values 𝑚
𝑖
are computed by averaging the

upper and lower envelopes as 𝑚
𝑖−1

= [𝐼max𝑖−1+𝐼min𝑖−1]/
2.

(iv) The mean is subtracted from the original signal; that
is, 𝑔
𝑖
= 𝑔
𝑖−1

− 𝑚
𝑖−1

and 𝑖 = 𝑖 + 1. Steps (i) to (iv) are
repeated until𝑔

𝑖
becomes an IMF.Hence, the 𝑘th IMF

is given by IMF
𝐾

= 𝑔
𝑖
.

(v) The residue is updated via 𝑟
𝑘
(𝑡) = 𝑟

𝑘−1
(𝑛) − IMF

𝐾
.

This residual component is treatedas new data and
subjected to the previously described process to cal-
culate the next IMF

𝐾+1
.

(vi) The previous steps are repeated until the final residual
component 𝑟(𝑥) becomes amonotonic function. The
final estimation of residue 𝑟(𝑥) is subsequently con-
sidered.

Several methods have been presented to extract trends
from a time series. Freehand and least squares methods are
the commonly used techniques; the former depends on the
experience of users, whereas the latter is difficult to use when
the original series is very irregular [11]. The EMD is another
effective method for extracting trends [6].

4. Local Linear Quantile (LLQ) Regression

The seminal study of Koenker and Bassett [12] introduced
parametric quantile regression, which is considered an alter-
native to the classical regression in both parametric and non-
parametric fields. Numerous models for the nonparametric
approach have been introduced in statistical literature, such
as the locally polynomial quantile regression by Chaudhuri
[13] and the kernel methods by Koenker et al. [14]. In this
paper, we adopt the LLQ regression employed byYu and Jones
[15].

Let {(𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1 . . . , 𝑛} be bivariate observations. To

estimate the 𝜏th conditional quantile function of response 𝑦,
the equation below is defined given 𝑋 = 𝑥:

𝑔 (𝑥) = 𝑄
𝑦
(𝜏 | 𝑥) . (1)

Let𝐾 be a positive symmetric unimodal kernel function,
and consider the following weighted quantile regression
problem:

min
𝛽∈𝑖
2

𝑛

∑

𝑖=1

𝑤
𝑖
(𝑥) 𝜌
𝜏
(𝑦
𝑖
− 𝛽
0
− 𝛽
1
(𝑥
𝑖
− 𝑥)) , (2)

where 𝑤(𝑥) = 𝑘((𝑥
𝑖
− 𝑥)/ℎ)/ℎ. Once the covariate observa-

tions are centered at point, the estimate of 𝑔(𝑥) is simply 𝛽
0
,

which is the first component of the minimizer of (1), and
determines the estimate of the slope of the function 𝑔 at point
𝑥.

5. Bandwidth Selection

The practical performance of 𝑄
𝛼
(𝑥) strongly depends on the

selected bandwidth parameter. We adopt the strategy of Yu
and Jones [15]. In sum, we employ the automatic bandwidth
selection strategy for smoothing conditional quantiles as
follows.

(1) We use ready-made and sophisticated methods in
selecting ℎmean; we employ [16] which explored
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a “direct plugin” bandwidth selection procedure
which relies on asymptotically optimal bandwidth:

ℎmean = {
𝜎
2
𝑅 (𝐾) (𝑏 − 𝑎)

𝑛𝜇2
2
∫ {𝑚󸀠󸀠 (𝑥)}

2

𝑝 (𝑥) 𝑑𝑥

}

1/5

= 𝐶
1
(𝐾) {

𝜎
2
(𝑏 − 𝑎)

𝑛𝜃
22

}

1/5

,

(3)

where and for later use we have introduced the array

𝜃
𝑟𝑠

= ∫𝑚
𝑟
(𝑥)𝑚
𝑠
(𝑥) 𝑝 (𝑥) 𝑑𝑥, 𝑟, 𝑠 ≥ 0, 𝑟 + 𝑠 even. (4)

Again for later use we write down the following estimator
with a bandwidth 𝑔 for 𝜎

2:

𝜎
2

𝑔
=

1

]

𝑛

∑

𝑖=1

{𝑌
𝑖
− 𝑚̂
𝑔
(𝑋
𝑖
)}
2

. (5)

This is simply a normalized residual sum of squares and
normalizing quantity ], sometimes known as the degrees of
freedom, which is given by ] = 𝑛 − 2∑

𝑖
𝑤𝑥
𝑖,ℎ

(𝑋
𝑖
) +

∑
𝑖,ℎ

𝑤
2
𝑥
𝑗,ℎ

(𝑋
𝑖
).

Its presented guarantees 𝐸(𝜎
2

𝑔
| 𝑋
1
, . . . , 𝑋

𝑛
) = 𝜎
2, where

𝑚(𝑥) is either constant or linear [17].

(2) We use ℎ
𝜏

= ℎmean{𝜏(1 − 𝜏)/𝜙(Φ
−1

(𝜏))
2

}
1/5

to obtain
all of the other ℎ

𝜏
𝑠 from ℎmean. 𝜙 and Φ are standard

normal density and distribution functions, and ℎmean
is a bandwidth parameter for regressionmean estima-
tion with various existing methods. This procedure
obtains identical bandwidths for the 𝜏 and (1 − 𝜏)

quantiles.

6. Proposed Method

The proposed method consists of two stages that automati-
cally decrease the boundary effects of EMD [8]. At the first
stage, LLQ which is considered as an excellent boundary
treatment [18] is applied to the corrupted and noisy data.
The remaining series is then expected to be hidden in the
residuals. At the second stage, EMD is applied to the residuals.
The final estimate is the summation of the fitting estimates
from LLQ and EMD. Compared with EMD, this combination
obtains more accurate estimates.

This section elaborates the proposedmethod, EMD-LLQ.
The basic idea behind the proposed method is to estimate
the underlying function 𝑓 with the sum of a set of EMD
functions, 𝑓EMD, and an LLQ function, 𝑓LLQ. That is,

𝑓LLQR.EMD = 𝑓EMD + 𝑓LPQR. (6)

We estimate the two components 𝑓EMD and 𝑓LLQ to ob-
tain our proposed estimate, 𝑓EMD.LLQ, through the following
steps.

(1) The LLQ is applied to the corrupt and noisy data 𝑦
𝑖
,

and the trend estimate 𝑓LLQ is subsequently obtained.

(2) The residuals of 𝑒
𝑖
from LLQ, that is, 𝑒

𝑖
= 𝑦
𝑖
− 𝑓LLQ,

are determined.

(3) The EMD is applied to 𝑒
𝑖
, given that the remaining

series is expected to be hidden in the residuals. This
step is accomplished by performing the following
substeps: this substep is accomplished by performing
algorithms (i) to (vi).

(4) The final estimate is the summation of the fitting
estimates from LLQ and EMD and is as follows:

𝑓LLQ.EMD = 𝑓EMD + 𝑟 (𝑡) . (7)

7. Experiment Analysis and Results

In this section, we consider the daily closing prices of two
stock markets, namely, KLSE and NZX50, from December
3, 2007, to December 6, 2013, see Figure 1. The last 10,
30, and 50 days of the KLSE and NZX50 stock indices
are forecasted, respectively, based on the past sequences.
The selection of these two indices aims to qualitatively and
culturally compare the time series of two different markets.
The data used in this study are collected from the website:
http://in.finance.yahoo.com/. We analyze the two indices
based on the EMD-LLQ and EMD, in combination with the
FFT and the Holt-Winter methods. The approach consists of
several steps. First, we decompose the daily closing prices
of the stock markets into a finite number of components
called IMFs and one residue. Second, we select significant
components by applying the FFT to each IMF. Third, we
add the significant component obtained from step two to the
residue to acquire the trend. Finally, we employ the Holt-
Winter method for forecasting the trend.

8. Comparison of Forecasted Data

Two criteria are used to evaluate the forecasting performance
of the different models in empirical studies. The forecasting
accuracy measures employed in this study are root mean
square error (RMSE), mean error (MAE), and mean absolute
square error (MASE). The RMS, MA, and MASE values
obtained through the EMD-LLQ, EMD, and Holt-Winter
methods in each test set for the two index series are sum-
marized in Tables 1 and 2. The results demonstrate that the
proposed EMD-LLQ method is more successful in all cases
in forecasting the stock closing prices than the EMD and the
Holt-Winter methods.

9. Conclusion and Future Research

Wepropose an EMD-LLQmodel for forecasting future prices
by considering the past sequences of daily stock prices. The
EMD-LLQ method is a new two-stage forecasting method
that combines the EMDandLLQalgorithm.The effectiveness
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Figure 1: (a) and (b) KLSE price and NZX50 closing price index, respectively.

Table 1: Comparison of RMSE, MA, and MASE values for KLSE
using the Holt-Winter, LLQ, EMD, and EMD-LLQ methods.

n.head = 10 RMSE MAE MASE
EMD-LLQ

𝜏(0.25)
822.4843 468.8303 133.0985

EMD-LLQ
𝜏(0.50)

822.2308 468.7086 129.4356
EMD-LLQ

𝜏(0.75)
821.6983 468.3845 135.1209

EMD-LLQ
𝜏(0.95)

822.3858 468.7594 135.0173
EMD 824.3217 470.1197 135.2341
Holt-Winters 824.0651 473.557 218.0672

Table 2: Comparison of RMSE, MA, and MASE values for NZX50
using the Holt-Winter, LLQ, EMD, and EMD-LLQ methods.

n.head = 10 RMSE MAE MASE
EMD-LLQ

𝜏(0.25)
2002.658 1146.388 141.743

EMD-LLQ
𝜏(0.50)

2003.291 1146.721 140.9419
EMD-LLQ

𝜏(0.75)
2003.833 1146.989 146.0694

EMD-LLQ
𝜏(0.95)

2002.921 1146.404 143.3273
EMD 2005.733 1147.129 154.8274
Holt-Winters 2010.189 1159.261 225.7123

of the new model is analyzed by performing experiments
on KLSE and NZX50 data. The capability of the EMD-LLQ
for forecasting the future daily stock closing prices is better
than that of LLQ, EMD, and the Holt-Winter methods. The
results demonstrate that EMD-LLQ is an effective method
for forecasting financial time series. Future research should
improve the performance of the proposed method. We
can consider several forecasting strategies by analyzing the
composition of daily stock closing prices. Another possi-
ble strategy is to apply the Hilbert-Huang transform for
selecting meaningful IMFs (components) instead of using
the FFT.
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